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Abstract

An algebraic dynamic multilevel (ADM) method for multiphase flow in heterogeneous fractured porous
media using the projection-based embedded discrete fracture model (pEDFM) is presented. The fine-scale
discrete system is obtained independently for matrix and each lower-dimensional fracture. On the fine-
scale high resolution computational grids, an independent dynamic multilevel gird (i.e., ADM grid) is
imposed. The fully implicit discrete system is mapped completely algebraically to this ADM grid resolution
using sequences of restriction and prolongation operators. Multilevel multiscale basis functions are locally
computed and employed to honor the heterogeneity contrasts of the fractured domain by interpolating
the solution accurately. These basis functions are computed only at the beginning of the simulation to
increase the computational efficiency. Once the ADM system is solved for all unknowns (i.e., pressure and
saturation), the solution at ADM resolution is prolonged back to fine-scale resolution in order to obtain an
approximated fine-scale solution. This dynamic multilevel system employs the fine-scale grid cells only at
the sharp gradient of the solution (e.g., at the moving front). With two fractured test-cases (homogeneous
and heterogeneous), the performance of ADM is assessed by comparing it to fine-scale results as reference
solution. It will be shown that ADM is able to reduce the computational costs and provide efficiency while
maintaining the desired accuracy.

Introduction

In majority of geoscience and geoengineering applications, multiphase fluid flow in porous media with
complex physical phenomena is involved from small to large scales (from orders of millimeters up to
kilometers). Accurate, scientific and scalable modelling of such physical phenomena are of great importance
to satisfy the societal expectations on many different aspects (e.g., economical, environmental, etc.) of
field development plans. To achieve this, the simulation models should be able to capture high contrasts in
rock and fluid properties accurately, while providing scalability. Additionally, many reservoirs consist of
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complex geological fracture networks with extensive conductivity contrasts which have heavy impacts on
flow patterns. Therefore, rigorous representation of the fluid flow model in presence of these conductivity
contrasts is paramount [1]. However, accomplishing this task introduces a number of computational
challenges. The large size of the heterogeneous domain demands for high resolution computational grids
[2]. Non-linear behavior due to strong coupling (e.g., capillarity) results in stability and convergence issues.
Presence of fractures and faults with broad range of conductivity contrasts brings more bounding limits to
the system. The geomechanical effects adds to the complexity [3], [4]. All the mentioned challenges demand
for developing advanced simulation models that are capable of providing efficiency and scalability while
maintaining desirable accuracy such that acceptable representation of the physical phenomena in fractured
porous media is achievable[5].

In this article, an advanced scalable simulation method for multiphase fluid flow in fractured porous
media is presented. Fully-implicit (FIM) method is used to ensure stability of non-linear behavior due to
flow and transport coupling. As a more comprehensive approach compared to embedded discrete fracture
model (EDFM) [6], [7], [8], projection-based EDFM (pEDFM) is employed to explicitly represent the
fractures (with any range of conductivity contrast towards the rock matrix) [9]. The pEDFM implementation
has been extended to include a fully 3D geometry. The fine-scale discretization is done for matrix and
fractures independently. The main two unknowns are pressure and saturation of the flooding phase. Once
the fine-scale discretized system is obtained using pEDFM, it is mapped to a dynamic multilevel grid (i.e.,
ADM grid) which is constructed based on hierarchically nested and multilevel coarse grids [10], [11],
[12]. The mapping process is done fully algebraically where sequences of restriction (R) and prolongation
(P) operators are used to map across multiple coarsening levels. Locally computed basis functions are
employed to interpolate the solution at coarse levels [13], [14], [15]. To honor the heterogeneity of the
domain, multiscale finite volume basis functions are used as pressure interpolators [16], [17], [18], [19],
[20]. These basis functions are only computed at the beginning of the simulation providing computational
efficiency. Once the system is solved at ADM resolution, it is mapped back to fine-scale resolution using
prolongation operators. ADM allows for employing only a fraction of fine-scale grid cells only where and
when it is needed using a front tracking technique, providing significant reduction in the number of degrees
of freedom (DOF).

The article is organized as follows: the governing equations and fine-scale discretization is explained in
section 2; ADM methodology is described in section 3; section 4 contains the numerical results, and lastly
the article is concluded with section 5.

Governing Equations and Fine-scale Discretization

The mass balance equation in porous media for phase a, assuming no capillarity and gravity, with 7,
discrete fractures reads

nfrac

0 .
E(quﬂﬁ”sgl) — V(o vp) = prgme+ Z p’;Q;"f i on QSR
P

for the rock matrix m and

N frac

PR

J=1

%(g}fipéng")* V-(péi/lginfi) Zﬂ;iqginrp’;Qéim+ on Qf CR"!

J#
for the lower dimensional fracture f;. The superscripts m, f and w refer to matrix, fractures and wells,
respectively. Subscript o denotes the phase index. ¢ is the porosity of the medium. p,, S, and 4, are,

. . e . k .
the density, saturation, and mobility of phase a, respectively. 4,= ﬁK , Where k, and u, are the relative
a
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permeability and viscosity of phase a. K is the permeability tensor (in case of anisotropy). ¢, is the source

m .
term related to wells. QZf fand Q-Z " are the flux transfers between matrix and fracture for each phase a. Q; ¥

refers to flux transfer of phase o from fracture f; to fracture f; where intersection occurs. Due to conservation
of mass, IH meid V=- j J. . Qf ""d 4 and ”A Q/ diga= - ”A Q/ g4 applies. Peaceman's well model

is used to formulate the source terms ¢ and qg ¥, namely

>

o PL I (p— pm) faw_ PL-dg-(p7 = p)
qa - V 4 qal - A

where, PI is the well productivity index and 4,* is the effective mobility obtained between the source term

and each medium. The matrix-fracture and fracture-fracture flux transfers (i.e., Qzlfi, Qi " and QO{ iff) are
written as:

o)1=t (/i )
Qg{i’": C[fi’”.,lz.(pm_pfl.)
S S .
Qafz ]:C]fz J'/la'(pfj—pfi).
. . . . A;j
Here, CI is the so-called connectivity index between each two non-neighboring elements and C/ = W
ij

In this formulation, 4; is the area fraction of overlapping fracture elements in the matrix cell and #d#; is
the average distance between them [8§].
n

Considering n, phases in the system, the above equations are written for each phase. As ailSa: 1
holds, there are in total n,-/ number of saturation unknowns and one pressure unknown with n, number
of equations. This article focuses on a two phase problem, with two main unknowns, namely pressure (p)
and saturation of phase / (§)).

The system of equations described above is discretized in space using a two-point flux approximation
(TPFA) finite volume method (FVM) and is discretized implicitly in time using the backward Euler
scheme [21]. Structured grids are imposed on matrix and fractures independently using the projection-based
embedded discrete fracture model (pEDFM). The solution to the non-linear fully implicit system is obtained
using a Newton-Raphson iterative scheme [21]. The equations are written in residual form.

T
Letr"= [(rm)n, ' 1)n, e (rmf nf. rac)"] be the residual vector of the total system at time-step » where (74)" is

the residual of the medium k. The residual at time-step n+1/ is a non-linear function of the main unknowns at
the mentioned time-step (i.e., p”*! and §"*/). At each time-step, using Newton—Raphson method, the residual
is written as

or

vl =pV + =—

op
The superscript v denotes the iteration index. The linearized system can be written in compact form, i.e.,

v a v
or vl _

J'x oxvt1= — v where JV is the Jacobian matrix that consists of sub-blocks and contains all the derivatives.
The linear system of equations can be shown as
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The non-linear convergence is achieved by satisfying the following conditions:

[I7pll 1751l
HFOH <é€rp > H},0||2<€’S > ||5p||2<55p s ||5SH2<€5S >
p'h N

where the mentioned conditions are set as user input parameters for the simulator.

Solving such linear systems of equations is computationally challenging, especially for real-field
applications and more extensively in presence of coupling terms (e.g., capillarity). In the next section, the
algebraic dynamic multilevel (ADM) methodology is explained as an alternative to classical fine-scale
simulation addressing the computational challenges involved.

ADM Methodology

The linear system of equation described above is solved using an algebraic dynamic multilevel method.
At each time-step, ADM constructs a reduced system algebraically which maps the fine-scale system to a
dynamic multilevel grid resolution (i.e., ADM grid). This ADM grid is defined at the beginning of each
time-step using a front-tracking technique and error-estimation strategy. At the start of this process, sets of
N,/ and N/ hierarchically nested coarse grids are imposed on the matrix and fractures. Here, / denotes the
coarsening level and /=0 refers to the fine-scale system. The coarsening ratio ' is defined as

I -1
Nﬁ;l Nfl N”frac

=y, A, L, ===, =, ..,
m fl " frac Ni,, N-lfl Nf”frac

Due to flexibility of the implementation, the coarsening ratios can be defined independently for each
medium. The mapping procedure from fine-scale to ADM grid uses sequences of ADM restriction (ﬁ) and
prolongation (ﬁ) operators at all coarsening levels. At each iteration, the ADM system reads

A 171 /\0 A 1 /\l A /\171 A 0
Rl Rl ‘]0 PO Pl—l 5xADM: _Rl Rl ro

. Al—1 . .. . .
In this system, R; is the ADM restriction operator that maps a section of the solution vector from

N
resolution /-/ to resolution /, and P;_; is the ADM prolongation operator which maps the part of solution
vector from / to level /-1. Once the system is solved at ADM level, the solution (i.e., 0% ;p5;,) is mapped to
fine-scale resolution as an approximated solution (Jx,") using ADM prolongation operators.

5.)(0:5)(7'0:1)0... Pl*l 5'%ADM

The ADM operators are assembled from the static multilevel multiscale operators (i.e., R and P) which are
constructed on the entire domain for all coarsening levels. The static multilevel prolongation operator reads
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To ensure mass conservation on the domain, finite-volume restriction operator is used. In other words,

- 1 if cellnisinside cellm
Rl 1 ) —
o mmn) {0 otherwise
Different interpolators are used for each of the variables. The prolongation operator for pressure employs

multilevel multiscale basis functions. These fully-coupled basis functions are locally computed, taking into
account the connectivity of matrix and overlapping fractures. The saturation prolongation operator uses

. . 1 7. . .
constant basis functions. Therefore, (PS)ﬁ_ = [Rf 1] , with superscript 7 denoting the transpose operator.

The ADM method uses a user-defined gird selection criterion to obtain the dynamic multilevel resolution
map. At each time-step n, the ADM grid resolution is selected based on the information at time-step n-/
by using a threshold value set as an input parameter to the simulator at the beginning of simulation. This
threshold compares the difference between the values of a parameter (in this work, saturation) inside a grid
cell and its neighboring cells in the corresponding coarse node. Therefore, this criterion is based on a spatial

gradient. Assuming Q{ and QZJ as the set of two neighboring coarse grid cells 7 and J at coarsening level
[, with grid cell indices i and j at higher resolution (coarsening level /-1) belonging to coarse cells / and J,
the saturation difference 4S;; is calculated as

AS;;=max(s;— S ) vieq! and vjeql .
The coarse block 7 will be refined to level /-1 if the condition
ASIN > tOZ

is met. In this condition, N indicates all the coarse grid cells neighboring the coarse grid cell /. In addition,
the grid cell near the wells are always kept at fine-scale resolution (/=0) to capture the source term effect
accurately.

Numerical Results

Numerical results for two 2D fractured test cases (homogeneous and heterogeneous) are presented in this
article. The performance of ADM method is studied and compared to results of fine-scale simulation as
reference solution.

The test cases have identical input except the permeability distribution of the rock matrix.
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A 2D domain of /00 m*100 m containing 30 fractures with range of low and high conductivity is
considered. Fractures have different lengths, but identical aperture of 5x/0~3 [m]. The rock matrix is
discretized to /90190 Cartesian grids and 534 grids are imposed on the fracture network (in total 36634
grid cells). Four injection wells are located on the left boundary (P;,=5 <107 [Pa]) and four production wells
exist on the right boundary (P,,,,=10" [Pa]), forming a line-drive well pattern to inject water and produce
oil. This means that the wells on each side are located on equidistant intervals. In both test cases the fracture
networks consist of 9 high conductive fractures (K;=107¢ /[m?]) and 21 low conductive fractures (K,=10%
[m?]). Quadratic relative permeability curves are employed using Brooks-Corey formulation. Table 1 shows
more details of the input parameters used for these test cases.

Table 1—Input parameters used for both test cases

Property Value
Rock Porosity 0.2 [-]
Water density 1000 [Kg/m?]
Oil density 800 [Kg/m’]
Water viscosity 1073 [Pa. sec]
Oil viscosity 3x1073 [Pa. sec]
Connate water saturation 0.0 [-]
Residual oil saturation 0.0 [-]

The coarse grid with a maximum of two coarsening levels for the rock matrix and one coarsening level for
the fracture network is imposed on the domain. The coarsening ratio in each direction and for each medium
is y=3. Simulations are run for each test case, including fine-scale and ADM coarsening criterion AS=0.3.
The ADM results are compared to fine-scale results as reference solution. The error of ADM is calculated as

o [Xrs ~ X4puml|
* 1xpsl]

where x denotes the main unknowns (i.e., pressure and saturation). ADM and FS subscripts refer to ADM
and fine-scale solutions.

Test case 1. In this test case the rock matrix is homogeneous with permeability of K,=10""* [m?].
Simulations are run for 500 [days] and the results are reported on /00 isochronal time intervals.

Figure 1 and Figure 2 show the fracture network, pressure and saturation plots of fine-scale and ADM
simulations related to test case 1. More information such as error value and average percentage of active
grid cells used during the simulation is provided under each ADM plot.
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(a) Fracture network and permeability map (b) Fine-scale pressure (c) ADM, e = 6.2 x 107, AGC = 14%
Figure 1—Test case1: Pressure plots of fine-scale and ADM simulations. Fig. 1a shows the fracture network and the
homogeneous permeability map with fractures permeability range in the color bar. Fig. 1b is the finescale pressure. Fig. 1c
is the ADM result (for thresholds AS=0.3). Under the ADM plot, error and percentage of active grid cells (AGC) are show.
1.0e-06 1.0e+00
0.8
le-10
c
% — 0.6 :.Q_
O
—le-l4 Q 5
£ . —04 o
® n
o

I le-18 0.2

1.0e-22 0.0e+00
(a) Fracture network and permeability map (b) Fine-scale saturation (c) ADM, e = 3.1 x 1071, AGC = 14%

Figure 2—Test case 1: Saturation plots of fine-scale and ADM. Similar to Figure 1, the fine-scale solution is
compared to ADM result. Error and percentage of active grid cells (AGC) are displayed at bottom of the ADM plot.

It should be mentioned that the ADM keeps the regions around the wells at fine-scale resolution to
increase the accuracy and capture the source term effects. As a result, a significant percentage of active grid
cells occurs due to this matter, depending on the size of the domain, resolution and number of wells.

Test case 2. This test case contains heterogeneous rock matrix with permeability ranging from
min(K,,)=7.5x1071% [m?] to max (K,,)=7.5x10""? [m?]. Note that the heterogeneity contrast in the rock
matrix is 4 orders of magnitude. However, including the fractures, this contrast is in /6 orders of magnitude.
Simulations are run for 100 /days] and the results are reported on /00 isochronal time intervals.

The fracture network, permeability distribution of heterogeneous rock matrix, pressure and saturation
plots of fine-scale and ADM simulations related to test case 2 are illustrated on Figure and Figure . Error
values and average percentage of active grid cells used during the simulation are given under the ADM plots.

Pressure
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Figure 3—Test case 2: Pressure plots. Fig. 3a shows the fracture network and the hetergoeneous
permeability map. Please note that the colorbar only shows the matrix permeability range and fracture
networks are identical in both test cases. Fig. 3b is the finescale pressure. Fig. 3c plots the ADM result.
7.5e-12 1.0e+00
0.8
7.5e-13
£ 3
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— 7.5e-14 S
% — 04 "5,',
o
7.5e-15 0.2
7.5e-16 0.0e+00
(a) Fracture network and permeability map (b) Fine-scale saturation (d) ADM, e = 4.2 x 107", AGC = 18%

Figure 4—Test case 2: Saturation plots of fine-scale (Fig. 4b) and ADM (Fig. 4c). Fig. 4a shows
the fracture network and the hetergoeneous permeability map. Please note that the colorbar
only shows the matrix permeability range and fracture networks are identical in both test cases.

Conclusion

An algebraic dynamic multilevel (ADM) method for fully implicit simulation of multiphase flow in
fractured porous media using the projection-based embedded discrete fracture model (pEDFM) is presented.
The discretized fine-scale fully implicit system with computational grids (imposed on rock matrix and
fractures independently using pEDFM) is mapped into a dynamic multilevel resolution grid (i.e., ADM
grid). The mapping process is done using sequences of ADM restriction and prolongation operators which
are assembled from the static multilevel multiscale operators. The static operators are computed only at
the beginning of the simulation once the coarse grids for both matrix and fractures are constructed on all
coarsening levels. Locally computed basis functions are used for this purpose. Different interpolators are
employed for pressure and saturation. While constant basis functions are used for saturation unknowns,
fully coupled multiscale basis functions are computed and employed for pressure unknowns.

The results of two 2D test cases (one with homogeneous and one with heterogeneous rock matrix)
containing heterogeneous fracture networks with significant heterogeneity contrasts (/6 orders of
magnitude) are shown. The ADM results are compared to fine-scale results as reference solution. The
ADM grid is able to dynamically capture the sharp gradients of solution especially at the moving front.
Low threshold (high sensitivity to solution gradient) results in employment of higher percentage of active
grid cells to capture the front more accurately and therefore decreases the error. However, the performance
is compromised due to low threshold. As the threshold increases (i.e., sensitivity decreases) lower active
grid cell percentage is used to capture the front, resulting in an increase in ADM error. Please note that in
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presence of high heterogeneity contrasts, the percentage of active grid cells increases. Additionally, the error
is higher for the heterogeneous test case. In the regions where high conductive and low conductive fractures
intersect, due to significant contrast, the simulator struggles to capture the front and provide the solution
accurately. However, it can be seen that ADM is able to provide acceptable accuracy by employing only a
fraction of fine-scale grid cells, resulting in a reduced system with a smaller number of degrees of freedom
(DOF). A detailed sensitivity study and error analysis of ADM performance will be presented in future
works. Evidently, one can note that due to the scalability of ADM method, for larger domain, lower fraction
of active grid cells will be employed, providing a robust performance compared to fine-scale simulation.
Therefore, ADM casts a promising strategy and applicability, especially for real-field scale domains.
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