
SIDE-CHANNEL ANALYSIS WITH GRAPH NEURAL
NETWORKS

SIDE-CHANNEL ANALYSIS WITH GRAPH NEURAL
NETWORKS

Thesis

to obtain the degree of Master in Computer Science at Delft University of Technology, to
be publicly defended on Thursday, April 29nd 2021 at 14:00

by

Vasco DE BRUIJN
Born in Rotterdam, The Netherlands.

Cyber Security Group,
Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology,
Delft, The Netherlands.

Thesis committee:

Chair Prof.dr.ir. Inald Lagendijk , Faculty EEMCS, TU Delft
Daily Supervisors: Dr. Elvin Isufi, Faculty EEMCS, TU Delft

Dr. Stjepan Picek , Faculty EEMCS, TU Delft
Committee member: Dr. Riccardo Taormina, Faculty CEG , TU Delft

Keywords: cyber security; graph neural networks; graph signal processing; pro-
filed side-channel analysis

Copyright © 2021 by V. de Bruijn

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary vii

1 Introduction 1

2 Background 5
2.1 Notation . 5

2.1.1 Traces . 5
2.2 AES . 6
2.3 Profiled Side-Channel Analysis . 7

2.3.1 Leakage Model . 8
2.3.2 Guessing Entropy . 9

2.4 Graph Neural Networks . 11
2.4.1 Signal Graphs . 11
2.4.2 Shift operator . 12
2.4.3 Graph Convolutional Filter. 12
2.4.4 Graph Neural Network Architectures. 13

2.5 Conclusion . 18

3 Related Works 21
3.1 Non-Profiled Power Analysis . 21
3.2 Profiled Side-Channel Analysis . 21

3.2.1 Template Attack . 22
3.2.2 Countermeasures . 22
3.2.3 Machine Learning in SCA . 23

3.3 Graph neural networks . 25
3.4 Graph neural networks in Cyber security 25
3.5 Discussion . 27

4 Translation from side-channel analysis to graph signal classification 29
4.1 Graph Signal Classification . 29
4.2 Examples . 32
4.3 Conclusion . 33

5 Numerical Experiments 35
5.1 Datasets. 35

5.1.1 DPAcontest v4 . 35
5.1.2 ASCAD . 36

5.2 Feature Reduction . 36
5.2.1 Absolute Correlation . 37
5.2.2 Principal Component Analysis . 37

v

vi CONTENTS

5.3 Experimental Setup . 37
5.4 Main Findings. 39

5.4.1 DPAv4 . 39
5.4.2 ASCAD . 41

5.5 Secondary Findings . 42
5.6 Ablation Study . 45
5.7 Hyper-parameter Analysis . 49
5.8 Discussion . 53

6 Conclusion 55
6.1 Thesis Summary . 55
6.2 Answers to the posed Research Questions. 56
6.3 Future Work. 58

6.3.1 Using a different graph generation method 58
6.3.2 Combining GNN with existing SCA architectures 58
6.3.3 Use another GNN paradigm . 59

6.4 Limitations . 59
6.5 Broad Impact . 59
References . 61

A Code 67

B Additional Results 69
B.1 Comparison architectures . 69
B.2 Hyperparameter analysis . 70
B.3 Ablation Studies. 73

B.3.1 DPAv4 . 73
B.3.2 ASCAD . 74

B.4 Losses Study . 75
B.5 Learning Rate Study. 77
B.6 Study difference size training set . 79

C Other Approaches 83
C.1 Semi-supervised . 83

SUMMARY

In cyber security, side-channel attacks (SCA) are of interest because they target the vul-
nerabilities in implementation rather than inherent vulnerabilities in the algorithm. Pro-
filed SCA is especially interesting as it assumes that the adversary has unlimited access to
a clone device that can generate sufficient traces to create a profile of the device. The lat-
est techniques used for profiled SCA are based on convolutional neural networks (CNN).
However, CNN’s are limited in scope in how they define convolution. By running the
convolution over a graph instead, we can achieve a more flexible convolution method.
Therefore, we want to apply graph neural networks (GNN) to SCA. To achieve this, we
need to translate our SCA problem to a graph signal processing (GSP) problem. This is
done by generating a graph based on the power traces on which the traces can be run
as graph signals. Subsequently, this graph is used in a GNN to solve the GSP problem.
We experiment with different GNN architectures to see how they differ in performance
compared to SCA state-of-the-art. We also want to observe how our model deals with the
different leakage models and if there is a considerable performance gap between them.
We also want to see how GNNs deal with countermeasures such as masking and desyn-
chronization. Finally, we perform hyper-parameter analysis to know whether we can
reduce the number of learnable parameters without substantially decreasing the perfor-
mance of our model. The numerical results demonstrate that our model is not compet-
itive compared to state-of-the-art methods. The performance of our method is mainly
derived from the classification multilayer perceptron instead of the graph convolutional
filter layers. However, the results suggest that the graph convolutional filter layers are
potentially helpful in existing SCA architecture as an initial layer that performs feature
extraction.

vii

1
INTRODUCTION

In cyber security, side-channel attacks (SCA) are of interest because they target the vul-
nerabilities in the implementation of the cryptographic algorithm rather than the vul-
nerabilities in the algorithm itself [43]. SCA exploits information leaked by the hardware
implementation of cryptography, such as a timing attack [2], which exploits the differ-
ence in response time to determine the quality of the guessed password. In other words,
if one guesses the first byte of the password correctly, the response time is higher than if
one guesses the first byte of the password incorrectly [22].
For this research, we measure either the power usage or electromagnetic radiation of a
chip during an encryption operation as the leaked information. The rationale behind
these methods is that flipping the value of a bit takes more power than keeping the bit in
the same state. So a technique based on these measurements assumes that hidden in-
formation can be derived from the number of bitflips in each operation. The encryption
algorithm we will attack is the Advanced Encryption Standard (AES) method, also known
as the Rijndael cipher [8] where the targeted hidden information is the (partial) key used
during the encryption. One of the components in AES uses an exclusive OR (XOR) oper-
ation with the partial key as one of the inputs. Since an XOR operation is equivalent to a
bitflip, this operation’s output will be used as a leakage model of our attack. The leakage
model describes how the desired secret information is leaked from the observed data.

We use different datasets [1], [37] which contain recorded leakage traces of a chip
running an AES implementation with corresponding partial keys. A trace refers to a set
of measurements taken across a cryptographic operation.
Profiled SCA (PSCA) is a category of SCA where the adversary is assumed to have access
to a clone of the target device. For this reason, PSCA is deemed the most potent SCA
technique since the adversary has access to everything but the key used for encryption.
The template attack is a category of PSCA where the traces of the clone device are used to
create a probability distribution for the states of the target device, which can be used to
attack the target device [5]. It is deemed one of the most powerful techniques from a the-
oretical point of view. It generates a distribution that models the relationship between
the leaked information and the device state. The main disadvantage of this technique

1

1

2 1. INTRODUCTION

is that it requires many traces before an accurate distribution can be constructed. This
problem can be mitigated by using machine learning techniques to derive the hidden
information instead of using a probability distribution for a lower amount of traces to
get a similar result[15].
As with most other machine learning applications, deep learning has emerged as a more
powerful alternative for conventional machine learning within the domain of SCA[18].
The current state-of-the-art [51] used convolutional neural networks (CNN) as the base
architecture for their deep learning modules. CNN’s are powerful since they combine
neighboring features into more abstract/higher-level features. Since the used features
for this problem are generally time series, the adjacent features are naturally the ones
that are close in the temporal space. However, when considering countermeasures such
as random delays, and feature reduction by selection, this becomes a weaker designa-
tion of neighbor. Instead, another way of determining neighbors is desirable, requiring
a method to encode ’arbitrary’ neighbors.
One possible solution would be to use a Graph Neural Network (GNN) as a base archi-
tecture for deep learning. A GNN is a type of neural network which can process data
represented in a graph domain. As the data is extended unto a graph, it is possible to
define neighbors based on this graph instead of the temporal ordering of features. This
introduces more flexibility when describing neighborhoods in a convolutional network
depending on how the graph is designed. Another advantage of using a GNN is that it
can exploit some symmetries in the traces, and this could help to reduce the number of
parameters without impacting performance.
The goal of the SCA problem is to retrieve the (partial) keys used in the AES implemen-
tations using the power traces as leaked data. So the purpose of this thesis is to apply a
GCNN to solve the problem above.

RQ1. How can the SCA problem be rephrased into a graph machine learning problem
and which methods can we use to generate a graph based on a set of traces?

To address this research question, we propose to convert the SCA problem into a
graph signal classification (GSC) problem. The goal of GSC is to label graph signals,
so we transform the traces into graph signals. We propose to generate the graph
by letting the time instances of the traces correspond to the nodes. The edges will
be generated based on the correlation of the measurements at the different time
instances.

RQ2. How does a graph neural network compare to state-of-the-art machine learning
SCA techniques?

(a) How can we apply a graph neural network to reduce the number of learnable
parameters without degrading performance?

(b) What is the influence of countermeasures on graph neural networks perfor-
mance?

(c) How does a graph neural network perform on different leakage models?

(d) Which graph neural network architectures are (most) suitable to solve the
graph machine learning problem?

1

3

To address these research questions, we analyze the performance of our graph
neural network using different scenarios. We use hyperparameter tuning to find
the best parameters for each architecture and compare the results. We also use
datasets that each are generated using different countermeasure setups. Finally,
we run different scenario’s with both the Hamming Weight and the intermediate
value as leakage model.

The answers to these research questions result in the following contributions:

1. We introduce a method to generate a graph based on a set of traces and how to use
graph neural networks to solve side-channel analysis problems. The technique
used to generate the graph is adaptable as it works regardless of the number of
traces in the dataset or feature reduction.

2. We show that graph neural networks can solve the SCA problem by getting the
guessing entropy sufficiently low to guess the key for the DPAv4 and ASCAD datasets.
However, it could not achieve comparable results to state-of-the-art machine learn-
ing SCA techniques, especially concerning consistency.

The remainder of this document is organized as follows. Chapter 2 introduces the back-
ground required the problems . Chapter 3 discusses the literature related to this thesis.
Chapter 4 contains the approach for translating this problem to a GNN problem. Chap-
ter 5 describes the planned experiments and in Chapter 6 we conclude upon our thesis.

2
BACKGROUND

In this Chapter, we provide the background required to understand this thesis. In Section
2.1 we introduce the notation used in this report. In Section 2.2 we describe AES, the
cryptography algorithm we plan to target. In Section 2.3 we describe the techniques
used in side-channel analysis (SCA): we explain what traces and leakage models are. In
Section 2.4 we discuss the theory required to understand graph neural networks (GNN).
Furthermore, we compare different GNN architectures that are candidates to use in side-
channel analysis.

2.1. NOTATION
Let bold upper-case letters such as X represent a matrix and let bold lower-case letters x
represent a row vector while xT represents a column vector (or rather, a transposed row
vector). Furthermore, let non-bold letters such as X or x represent scalars or singular
values. Let calligraphic letters such as X denote sets where |X | represents the size of a
set and let x or x represent an arbitrary object drawn from that graph.
When we consider a graph, let G = {V ,E } be a graph. consisting of the set of vertices
V = [1, . . . , |V |] and the set of edges E = {(i , j), . . .} where i , j ∈ V .

2.1.1. TRACES

Let column vector xi = [xi 1, . . . , xiQ]> represent the i th trace in the dataset as a feature
vector, where xi j corresponds with the measurement of trace i at time instance j . Let
X = [x1, . . . ,xP] be a Q×P matrix which corresponds to all traces in a given dataset, where
P represents the number of traces and Q the measurements in each trace. Put differently,
we can consider P as the number of items in the dataset and Q as the number of features,
or time instances when traces are treated as time series. Let x j = [x1 j , . . . , xP j]> represent
all measurements taken at time instance j . Let the vector containing the (partial) keys
for the traces in the dataset be k = [k1, . . . ,kP]> where scalar ki is the key associated with
the i th trace.

5

2

6 2. BACKGROUND

When using AES, the used key is either 128, 192, or 256 bytes. It is customary to attack
a single byte of the key at a time to reduce the complexity of this problem [15]. Therefore
we use ki to represent a single key byte from now on. Furthermore, ti represents the
plaintext byte associated with the i th trace. A byte consists of 8 bits which each can have
as value either one or zero, so mathematically we define byte b as b ∈ [0,1]8. However, we
mostly use the decimal representation of the byte as that is easier to read. Let K = |K |
represents the number of possible keys, where for a given K the set of possible keys is
represented by K = {0, . . . ,K −1} When considering a single byte, the number of possible
keys is K = 28 = 256.

2.2. AES
Advanced Encryption Standard (AES) is an encryption method used for many applica-
tions, which makes it an attractive target for cryptoanalysis [8]. AES-128 and AES-256
are implementations of AES where 128 and 256 refer to the size (in bits) of the key used
in the implementation. We define encryption as enc(t ,k) = c where t is the plaintext we
want to encrypt, k as the key used to encrypt, and c as the ciphertext resulting from the
encryption. If we want to decrypt a ciphertext, we use a decryption function dec(c,k) = t
which returns the plaintext t using the ciphertext c and the key k as input. AES is a sym-
metric encryption method, so the key used for encryption is the same as the key used for
decryption.
The encryption method used in AES works with multiple rounds, where each round uses
a different round key. The number of rounds is dependent on the size of the key. At ini-
tialization, the plaintext is stored as an array of bytes called the state on which the AES
operations are performed. The final state is directly output as ciphertext c.

1. KeyExpansion - Round keys are derived from key k using the AES key schedule.
Each round requires a round key, plus one additional key for the initialization
round

2. Initial round key addition

(a) AddRoundKey – each byte of the state is combined with a byte of the round
key using a bitwise exclusive or (xor) operation.

3. Rounds of transformation operations

(a) SubBytes - each byte in the state is substituted according to the S-box lookup
table

(b) ShiftRows - the last three rows of the state are shifted cyclically

(c) MixColumns - a linear mixing operation combining the four bytes in each
column of the state

(d) AddRoundKey

4. Final round

(a) SubBytes

2.3. PROFILED SIDE-CHANNEL ANALYSIS

2

7

(b) ShiftRows

(c) AddRoundKey

For our thesis, the SubBytes step is the step of interest as we intend to focus our attack
on the substitution operation. It should be noted that this attack only targets a single
round and yields the round key as a result. However, the round keys used during en-
cryption are the same as the round keys used for decryption, albeit in reversed order.
Therefore obtaining the round keys is sufficient to break AES. From this point onward,
we mean the round key as target when talking about keys.

2.3. PROFILED SIDE-CHANNEL ANALYSIS
Side-channel attacks (SCA) target the vulnerabilities in the implementation of the algo-
rithm rather than inherent flaws in the algorithm [43] by exploiting information leaked
by the implementation of the cryptographic algorithm. In this thesis, we look specifically
at the information leaked by a chip performing a cryptographic operation. Profiled side-
channel analysis (PSCA) is the category of side-channel analysis where the adversary is
assumed to have full knowledge of the used cryptographic algorithm as well as a copy of
the device which they are free to program. The goal of PSCA is to build a “profile” of the
device running the cryptographic algorithm, which can be used to accurately predict the
secret key based on one (or multiple) traces of leaked information. An example of a trace
can be seen in Figure 2.1.

0 500 1000 1500 2000 2500 3000 3500

Time

140

160

180

200

220

240

260

V
a
lu

e

Example of a power trace

Figure 2.1: Example of a trace represented as a time series. Each sample per time unit corresponds with the
measurement taken of the power usage of the chip at that time.

In our scenario, the attacker has obtained a set of profiling traces Tp from a device
in which key k∗ is known and used to build the leakage profile in the profiling phase. In
the attacking step, the attacker obtains additional traces Ta from the device to determine
the secret key k∗. In this thesis, we consider the goal to learn from the traces to break the
key using graph neural networks.

2

8 2. BACKGROUND

2.3.1. LEAKAGE MODEL
While key k∗ is the information we are interested in retrieving, it is not directly related (in
a mathematical sense) to the values of the traces. Therefore, the key needs to be mapped
to an intermediate value (IV) related to the measured leakage. A leakage model maps the
intermediate values to the leakage measurements.

For this mapping, we select an operation of the cryptographic algorithm to attack. As
we assume that we know the used plaintext t , we chose an operation that uses both the
key and plaintext as input value [15],[27]. To reduce the complexity of the attack, we only
attack a single byte of the key at a time. For AES, the operation which is attacked is the
Sbox-substitution operation. The mapping y maps plaintext byte t and key byte k∗ to an
intermediate value assumed to be related to the corresponding traces x. This mapping
is noted as

y(t ,k∗) = Sbox[t ⊕k∗], (2.1)

where Sbox[.] is the substitution look-up table used in AES and ⊕ is the bitwise exclusive-
OR operator. The Sbox maps a single byte input to a single byte output, so y will be con-
sidered a byte. Each entry in the Sbox is unique by design which means that the Sbox
operation can be treated as a bijective mapping. I.e. Sbox[b0] 6= Sbox[b1] if b0 6= b1 and
Sbox[b0] = Sbox[b1] if b0 = b1. The precise definition of the Sbox is not relevant for our
thesis and can be found in [8].
Notice that even when k∗ is a fixed key (i.e. the value of k∗ is the same for each trace), y
can still take different values as it is also dependant on the used plaintext p. For example,
let k∗ = 33 and t0 = 32, t1 = 3. This gives k∗⊕ t0 = 1,k∗⊕ t1 = 34 as intermediate result
and y0 = Sbox[k∗⊕ t0] = 124, y1 = Sbox[k∗⊕ t1] = 221 as final result. This small example
shows that the intermediate values can differ even if the same key is used to calculate
them. This allows us to treat this problem as a classification problem without having to
deal with the issue that the training data is biased towards a single label.

Figure 2.2: Example of calculating the leakage model. The used input is ki = 44, ti = 5 and each step of the
calculation shows the result as bitstring.

2.3. PROFILED SIDE-CHANNEL ANALYSIS

2

9

It is known that devices tend to have leakage which can be correlated to the Ham-
ming Weight of the intermediate value [27],[36],[30],[15],[25]. The Hamming Weight
(HW) represents the number of ones in the bit-string representation of the input. For ex-
ample, HW (5) = 2 as the byte representation of 5 is 00000101 which contains two ones.
Similarly, HW (72) = 2 as well since the byte representation of 72 is 01001000, comprising
two ones. So when using the Hamming Weight as leakage model, the mapping y can be
written as:

y(t ,k∗) = HW (Sbox[t ⊕k∗]) (2.2)

When considering the Hamming Weights of a single byte, the possible values range from
zero (bitstring with only zeros) to eight (bitstring with only ones). This means the Ham-
ming Weight can reduce the label space from 256 to 9 different labels/classes. This re-
duction of the number of classes is a valuable incidental property as it is more difficult
for ML to discriminate between many possible classes [29]. However, this has a disad-
vantage as well. Not each Hamming Weight corresponds to the same number of inter-
mediate values. For example, HW = 0 corresponds to one possible value, while HW = 1
corresponds to eight possible values. So when using the HW leakage model, we incur
class imbalance which might harm our performance [32].

2.3.2. GUESSING ENTROPY
Unlike common classification problems, side-channel analysis uses different metrics to
measure the performance. In general, the output of a classification problem would be
a probability vector p ∈ [0,1]C where C represents the number of possible classes. The
entry pc represents the confidence that the classified object has class c as a label. With
normal classification problems, we are only interested in the predicted class of the ob-
ject, which corresponds with the class c with the highest confidence pc . On the other
hand, with SCA we are interested in guessing the secret key. This is done under the as-
sumption that we can verify whether our guess is correct, but it is unfeasible to find the
key by randomly trying each guess. Therefore, we are not just interested in whether the
key guess with the highest confidence is correct, but rather how many guesses it takes to
find the right key. The metric we use to measure the number of key guesses is called the
Guessing Entropy (GE), which is used as standard in literature [41],[44]. In the remainder
of this subsection, we shall describe how the GE is calculated and how we use it.
Let guessing vector g = [k0, ...,kK]> where ki ∈ [0, ...,K −1] represent the output of some
side-channel attack on the secret key k∗. Vector g represents a guessing vector which
contains all possible keys ordered by decreasing the probability of being the correct pre-
diction for k∗; so k0 is the most likely candidate and kK is the least likely candidate.
To calculate the GE, let us first define the Key Rank (KR) which we need to calculate to
obtain the GE. The KR represents the position of secret key k∗ in a guessing vector g,

KR(g,k∗) = j : k j ∈ g∧k j == k∗ (2.3)

where k j represents the key guess with position j in the guessing vector g. The guessing
entropy represents the average position j of k∗ in gi for a set of guessing vectors G =
[g0, . . . ,gn]. In other words, the guessing entropy is the mean of the key rank applied
to multiple guessing vectors, so we can use the definition of KR as in Equation (2.3) to

2

10 2. BACKGROUND

calculate the GE.

GE(G,k∗) = 1

|G|
∑

gi∈G
KR(k∗,gi) (2.4)

A low GE indicates the secret key corresponds with one of the likelier guesses in the
guessing vectors, while a higher value indicates the secret key corresponds with worse
guesses.
It is common to combine the results of multiple traces corresponding to the same key .
Let the output of an attack on the secret key k∗ for trace i be pi = [pi 0, ..., pi j]> ∈ [0,1]K

where pi j represents the probability that the candidate key k j is equal to the secret key,
i.e. k j = k∗. If the number of traces used for the attack is n, then the combined key
guessing vector c = [c0, ...,cK−1]> can be calculated using the log-likelihood principle for
each entry ck

ck =
n∑

i=1
log(pki) (2.5)

where pki is the estimated probability for candidate key k using trace i . In other words,
ck contains the likelihood that candidate key k is equal to target key k∗ where the likeli-
hood is based on the combination of the guessing vectors resulting from the traces. We
show the process of calculating the GE using a simple example in Figure 2.3

Figure 2.3: An illustration of the calculation of Guessing Entropy. To simplify the explanation, we consider only
four different keys. We define a set of classification probability vectors {p1, p2, p3, p4}. We first combine the
pairs as in Equation (2.5). We use the resulting vector to calculate the Key Rank as per Equation (2.3). Finally,
we take the mean of the Key Ranks to retrieve the Guessing Entropy as per Equation (2.4).

The output of an attack will result in a classification vector p ∈ [0,1]C , where C is the
number of classes which depends on the used leakage model. Therefore, we need to
map p to a probability vector p′ ∈ [0,1]K . We do this by taking the operation to calculate
the leakage model as described in Equation (5.1) and applying it to each candidate key
k ∈K :

p ′
k = py : y = y(t ,k) (2.6)

2.4. GRAPH NEURAL NETWORKS

2

11

Where t is the corresponding plaintext. Since the number of classes when using the
hamming weight as leakage model is nine, and the number of possible keys is 256, p ′
will contain a lot of duplicate probabilities. This is solved by combining the results as
described in Equation (2.5). This works since different plaintexts t1, t2 correspond (in
general) with different Hamming Weights y(t1,k∗), y(t2,k∗). So the set of keys corre-
sponding to the same HW is different for each plaintext. Therefore, when combining
multiple outputs, we get a unique probability for each key, allowing us to calculate the
guessing entropy properly.

2.4. GRAPH NEURAL NETWORKS
A Graph Neural Network (GNN) is a type of neural network used for graph-related deep
learning. GNN’s work by running the input feature vectors on graphs. The main goal of
GNNs for our purpose is to solve different classification tasks: they can be used to clas-
sify nodes or entire graphs [38]. They can also be used for other tasks like link prediction
[52] or regression tasks [17], but those applications are beyond the scope of this thesis.
The classification task that is the focus of this thesis is graph signal classification. Graph
signal classification seeks to find a label for a signal (or feature vector) run on a graph.

2.4.1. SIGNAL GRAPHS

Let G = (V ,E) represent a graph with vertices V = {1, ..., N } and edges E ⊆ V × V . An
example of a simple graph can be found in Figure 2.4

Figure 2.4: An illustration of a undirected graph with 5 vertices.

Consider feature vector x = [x0, . . . , xN] where the number of features equals the num-
ber of vertices |x| = |V | . Each feature xv in x is assigned to corresponding vertex v ∈ V . In
which case x can be considered a graph signal defined on the vertices of graph G . A graph
signal classification problem requires a classifier that, given a graph G and a graph signal
x as input, outputs a label prediction y for the graph signal. We give a visual example of
how a graph signal works in Figure 2.5.

2

12 2. BACKGROUND

Figure 2.5: A illustration of a graph signal. The graph signal x is mapped on the graph G . The goal of the graph
signal classification is to find some function φ(x,G) = y which is able to find the correct label y for the graph
signal

2.4.2. SHIFT OPERATOR
There are multiple notations to represent the edges of a graph. In graph processing the-
ory, it is common to represent the edges as a shift operator matrix S ∈ RN×N . The shift
operator is defined such that entry si j 6= 0 if (i , j) ∈ E . The simplest shift operator is
the adjacency matrix A where si j = Ai j > 0 and Ai j is some edge weight correspond-
ing to edge (i , j). If the edges of the graph are not weighed, each edge (i , j) ∈ E corre-
sponds with entry Ai j = 1. Another commonly used shift operator for undirected graphs
is the graph Laplacian matrix L. Define the diagonal degree matrix D ∈ RN×N such that
Di i = ∑

j Ai j , then the Laplacian can be defined as L = D−A. The Laplacian matrix is
essential for spectral graph analysis which we touch upon briefly in Section 3.3.

2.4.3. GRAPH CONVOLUTIONAL FILTER
A graph filter is a function that takes a graph signal as input, processes it over graph G

and returns a modified graph signal as output. A graph convolution is a type of graph
filter that operates on graph shift operator S and is defined as

H(S) =
K∑

k=0
hk Sk (2.7)

where h = [h0, . . . ,hK] are the filter coefficients. The purpose of this filter is to simulate
the signal traveling through the graph and propagating through its neighbourhood (i.e.
convolving) for K hops, where a filter simulating K hops is said to be of order K . By
applying a graph convolutional filter to a graph signal, we get the output:

x′ =
K∑

k=0
hk Sk x (2.8)

where x represents the input graph signal and x′ represents the output graph signal.
Figure 2.6 shows how a signal propagates through a graph. Figure 2.7 gives a graphi-
cal overview of how the different components of the convolutional filter interact which
each other.

2.4. GRAPH NEURAL NETWORKS

2

13

Figure 2.6: An illustration of a signal, origination from node 1, propagating thorough the graph. The dark green
node represents the signal and the light green nodes represents the propagated signal. S represents the shift
operator

Figure 2.7: Illustration of how the graph convolution filter works. Each transition to the right in the illustration
represents a step taken in the propagation of the signal.

2.4.4. GRAPH NEURAL NETWORK ARCHITECTURES

We consider a GNN as an architecture consisting of L layers where each layer l takes xl−1

as input, and outputs xl . The initial input x0 = x is the graph signal used as input to
the GNN. Each layer consists of two parts: the graph filter Hl (S) used and a nonlinearity
function σ(.). By combining these parts, we get the following propagation rule:

xl =σ(Hl (S)xl−1) (2.9)

2

14 2. BACKGROUND

Figure 2.8: Illustration of how a graph neural network works using a generic graph filter Hl (S). The GNN uses
x0 as input and outputs Y. Each column of operations represents a layer in the GNN.

For now, we assumed that a graph signal x consists of a single node feature. However,
a graph signal can consist of multiple node features. In that case, it is denoted as matrix
X ∈RN×F where F represents the number of features. Therefore, we change the notation
from the propagation rule introduced in Equation (2.9) to

Xl =σ(Hl (S)Xl−1) (2.10)

As the purpose of our GNN is signal classification, we require a function which maps
the output signal Xl to a classification vector p ∈ [0,1]C . We use a multilayer perceptron
(MLP) consisting of fully connected layers to perform this mapping. We define a layer of
the MLP as

xl =σ(Θl xl−1) (2.11)

where Θl =RFl−1×Fl represents the learnable weights of the fully connected layer. Fl de-
notes the size of vector xl . Note that the input of the MLP is a vector, so when we use
matrix Xl as input, we first need to flatten the matrix into a vector.
Depending on the type of graph filter we choose for all the layers, we get a different kind
of GNN architecture. In the following subsections, we discuss three different architec-
tures on which we have decided to focus.

GRAPH CONVOLUTIONAL NEURAL NETWORK

The graph convolutional neural network (GCNN) uses the graph convolutional filter in-
troduced in Section 2.4.3 as graph filter. By adapting the graph convolutional filter as
defined in Equation (2.8) we define a layer in a GCNN as

Xl =σ
(K∑

k=0
Hl k Sk Xl−1

)
(2.12)

.
Here, Xl represents the output of layer l = 1, . . . ,L, where the initial features X0 are

equal to the input X of the GCNN ; S ∈ N ×N represents the shift operator, K is the num-

2.4. GRAPH NEURAL NETWORKS

2

15

ber of propagation steps taken within a layer. Fl represents the number of features out-
put by each layer. σ(·) the non-linearity function (e.g. ReLU) and Hlk ∈ RFl−1×Fl repre-
sents the filter bank at layer l for propagation step k. The dimensions of Hlk corresponds
with respectively the number of input features for layer l and the number of output fea-
tures for layer l . For simplicity, we decided that each layer has the same number of out-
put features F so for each layer Fl = F . This convention is also adapted for the other
architectures.
The main strength of the GCNN is that it convolves the neighboring input features ac-
cording to the input graph. A regular CNN convolves neighboring input features based
on the ordering of the features, assuming that features that are close according to this
ordering are considered neighbors. In Section 3.2 we explain that state-of-the-art(sota)
uses CNN. So we know that convolving the features can yield good results. We could sim-
ulate a CNN with a GCNN by running the GCNN on a cyclic graph 1. Therefore, if we can
find a graph that is a good representation of the neighborhood, we should get good re-
sults. In short, since the GCNN is conceptually similar to CNN and CNN has an excellent
track record for this subject, we think that the GCNN is a good candidate architecture.

GRAPH CONVOLUTION ATTENTION NETWORK

The graph convolution attention (GCAT) filter builds upon the convolution filter by adding
an attention mechanism [16]. The purpose of an attention mechanism is to learn weights
assigned to edges. Those weights are used to find and reduce the impact of low-quality
edges.
The GCAT filter usesΦ ∈ N ×N as an attention matrix. MatrixΦ shares the sparsity pat-
tern of S so it acts like a graph filter as well.

Xl =σ
(K∑

k=0
Hl kΦ

k
l Xl−1

)
(2.13)

The matrix Φl is learned from the output of the previous layer Xl−1. Each layer uses a
different matrix Φl , but we omit layer index l to simplify the notation. The entries of Φ
are calculated using a score ai j :

αi j =σ(eT [
[Xl−1B]i , [Xl−1B] j

]T) (2.14)

where B ∈ RF×F and e ∈ R2F are both learnable parameter matrices. In Equation (2.14)
we take the feature matrix Xl−1 and mix them with the coefficients in B. This mixture re-
sults in graph signal matrix Xl−1B where each node i has F features which correspond to
row vector [Xl−1B]. We concatenate the row features of nodes i and j which is multiplied
with vector e.

1A cyclic graph is a graph where each node n is connected with its direct successor n +1

2

16 2. BACKGROUND

Figure 2.9: Illustration of how the graph convolution attention filter works. Note that the filter is similar to the
convolutional graph filter as this illustration does not show howΦ is learned or that GCAT uses different shift
operators for each layer.

It is possible to use αi j directly as the entry for Φi j , but the model in [16] utilizes
additional attention sparsity. This means that within a neighborhood Ni of node i , we
want to boost the score of neighbors with a high attention score and dampen the score
of neighbors with a low attention score. We use a local softmax operator (SoftMax) to
achieve this. After applying SoftMax, the highest score in the neighborhood will ap-
proach 1 and the other values will approach 0. This effect will diminish if the scores
in the neighborhood are relatively close to each other. The local SoftMax function is de-
fined as:

Φi j = exp(αi j)×
 ∑

j ′∈Ni∪i

exp(αi j ′)

−1

(2.15)

In addition to encouraging attention sparsity, SoftMax also adds normalization as it
ensures that each value Φi j is between zero and one. Furthermore, the sum of all values
in a neighborhood is guaranteed to be one.∑

j ′∈Ni∪i

Φi j ′ = 1 (2.16)

GCAT is similar to GCNN as both use a convolutional graph filter as their main com-
ponent. However, GCNN uses a fixed shift operator S in its graph filter to represent the
edges in the graph. Conversely, GCAT does not use a fixed shift operator but utilizes a
learnable shift operatorΦ to represent the graph. This means that GCAT can correct mis-
takes in the edge/neighborhood generation step by making the shift operator a learnable
component and having a lower weight on the ’erroneous’ edges. In more general terms,
GCAT has a higher number of learnable parameters than GCNN, as shown in Table 2.1.
This implies that GCAT can learn more complex representations compared to GCNN,
which makes it more expressive. However, this may be a disadvantage if the represen-
tation turns out to be relatively simple. In that case, a more complex model will likely
suffer from overfitting.

2.4. GRAPH NEURAL NETWORKS

2

17

Furthermore, the attention mechanism in GCAT might turn out too strict and penal-
ize too many valuable neighbors. This risk is enhanced by the SoftMax operator which
forces attention sparsity. In other terms, the GCAT forces one neighbor for each node,
even if it would be more logical to have multiple neighbors. Therefore, a GCAT model
might be unsuitable for graphs in which nodes depend on multiple edges that are indi-
vidually weak.

To conclude, whether the GCAT model is a suitable architecture depends heavily on
the graph on which the architecture is applied. On the one hand, GCAT is helpful to
correct faulty edges in our graph generation method. On the other hand, it is detrimental
when there is a small difference between the importance of each edge.

EDGE VARYING GRAPH NEURAL NETWORK

The edge varying graph neural network (EdgeNet) is a GNN which uses an edge varying
filter as graph filter [16]. LetΦ(0) be the identity matrix IN and letΦ(1), . . . ,Φ(K) be K ma-
trices with the same sparsity pattern as IN +S. From here on, we can consider Φ(k) to
be a shift operator as well. Let us also define product matrix Φ(k:0) = ∏k

k ′=0Φ
(k ′). Notice

that this product matrix looks similar to the convolutional graph filter, with as main dif-
ference that the convolutional graph filter uses a fixed shift operator for each shift while
Φ(k:0) uses different shift operators or for each shift. Using this as our shift operator, we
can define a layer of an EdgeNet as:

Xl =σ
(K∑

k=0
HlkΦ

(k:0)
l Xl−1

)
(2.17)

Notice in Equation (2.17) that EdgeNet has to learn K × L different shift operators
and compare this to GCAT, which only has to learn L different shift operators or GCNN
which does not have to learn any shift operators. This means that the EdgeNet has more
expressive power compared to the other methods. However, having to train the shift
operators from scratch is expensive compared to the GCAT method, especially since the
GCAT method has a lower number of parameters to calculate per shift operator ((F 2+F))
compared to EdgeNet |E | 2. The EdgeNet has the advantage over the GCAT. It can correct
for erroneous edges and is not explicitly inclined towards shifting all weight towards a
single edge per neighborhood. We could also consider the GCNN and the GCAT as con-
strained variants of the EdgeNet [16]. In which case, assuming shared parameters, each
solution found by the GCNN and GCAT can also (in principle) be seen by the EdgeNet.
So theoretically, the EdgeNet is the most powerful architecture. In practice, the EdgeNet
may not find this solution due to the large degree of freedom and that learning algo-
rithms are not always guaranteed to find the most optimal solution.

2In general, the number of edges in a graph will be substantially higher than the number of features.

2

18 2. BACKGROUND

Figure 2.10: Illustration of how the edge varying graph filter works. Notice how each propagation step uses a
different shift operator unlike the convolutional graph filter

To conclude which architecture is the most suitable for our problem is heavily de-
pendent on the quality of our generated graph. If the graph contains many redundant
edges, the GCAT architecture is the most suitable as it is inclined to reduce the number
of edges. If the graph is of low quality in other areas, the EdgeNet may be the better so-
lution as it has more freedom concerning the edge weights than the GCAT. On the other
hand, if the graph represents the underlying structure, error correction would not add
much to our model. In which case the GCNN is the best architecture as it assumes the
given graph as ground truth and does not spend additional resources for fault correction.

Architecture Parameters
GCNN L(K +1)F 2

GCAT LR(F 2 +2F +F 2(K +1))
EdgeNet L(K (M +N)+N)F 2

Table 2.1: Properties of different graph neural network architectures. Legend: L-number of layers; K -order of
graph filter; F -number of features; N -number of nodes; M-number of edges; R-number of attention branches

2.5. CONCLUSION
This Section summarizes the content we have discussed in this Chapter. In Section 2.1
we introduced the notation used in this report. In Section 2.2 we explain the crypto-
graphic algorithm we want to attack and which component we target. In Section 2.3 we
explained the side-channel analysis problem we want to solve. First, we briefly described
the traces and how we want to use them to obtain the secret key. Next, we explained the
leakage model which allows us to extract the desired leakage from the traces. Finally, we
present how to evaluate the results of a side-channel attack by using guessing entropy.
In Section 2.4 we discuss graph neural networks and the necessary background. First,
we introduce signal graphs, which are graphs on which a signal is run. Next, we discuss
how we use shift operators as a representation of the edges in a graph. Subsequently,
we introduce graph convolutional filters, which are used to filter graph signals and are

2.5. CONCLUSION

2

19

the main component of graph neural networks. Finally, we propose three different GNN
architectures which we deem suitable to solve our problem and compare the different
architectures.

3
RELATED WORKS

This chapter contains an overview of the literature relevant to this thesis. In Section
3.1 we briefly introduce power analysis methods which were used before profiled side-
channel analysis. In Section 3.2, we describe the history behind profiled side-channel
analysis and what the current state-of-the-art is. In Section 3.3, we show works about
graph neural networks. In Section 3.4, we discuss some other applications of graph neu-
ral networks in the cybersecurity domain.

3.1. NON-PROFILED POWER ANALYSIS
Power analysis refers to the use of the power usage of a device as the leveraged leaked
information. The earliest used method used is Simple Power Analysis (SPA) [22]. SPA is
a method that directly leverages power consumption traces by visually inspecting pat-
terns in the traces. It works on the assumption that there no countermeasures are taken
to protect against SCA. Therefore it was sufficiently powerful during the early days of
cryptography. It is still possible to utilize SCA for specific purposes like identifying con-
ditional branches or correlating values in modular multiplication and exponentiation.
A more advanced method is the Differential Power Analysis (DPA) [20]. DPA is a statis-
tical method used to find correlations in the data. It partitions the traces and finds the
differences in the averages of these subsets. If the partition criterion is uncorrelated to
the measurements in the traces, the differences in the subsets’ averages will approach
zero given a sufficiently high number of traces. If the partition criterion is correlated to
the measurements, the averages will approach a non-zero value given a reasonably high
number of traces [21].

3.2. PROFILED SIDE-CHANNEL ANALYSIS
Profiled Side-Channel Analysis (PSCA) is a type of side-channel analysis that uses a model
built from a set of traces separate from the set of traces used for the attack. In this sec-
tion, we distinguish between three different categories of PSCA. The template attack uses
a purely statistical method to create its profile [5]. It uses the profiling traces to develop a

21

3

22 3. RELATED WORKS

multivariate Gaussian model of the noise in the traces. This model is used in the attack-
ing phase as a prior to calculating the likelihood for the different keys.
The machine learning (ML) techniques treat the PSCA as a classification problem for
machine learning. Multiple machine learning techniques have been used for PSCA, but
the most common are Support Vector Machines (SVM) and Random Forests(RF).
Deep Learning (DL) techniques make use of neural networks to solve PSCA problems.
DL techniques are technically speaking a subset of ML techniques, but due to the recent
popularity of DL in PSCA[24],[3] [32][18] we consider it a separate category.

3.2.1. TEMPLATE ATTACK

The template attack works by using the device to derive a distribution of the noise gener-
ated by the device for each possible secret key. This distribution is used in tandem with
the average signal for the given key to compute a template for each possible key. These
templates are used to classify a sample by calculating the likelihood of generating the
given sample for each template. The template attack (TA) works under the assumption
that the adversary has unlimited access to the device it tries to compromise [5]. This
allows the adversary to use an unlimited number of traces to support their attack. The
adversary has complete control over which parameters (e.g., plaintext and secret key)
are used to generate the traces. This allows the template attack to break implementa-
tions believed to be immune to earlier attacks such as DPA. This is because TA seeks
to build a multivariate profile that has more explaining power compared to DPA, which
seeks correlations.
A drawback of the template attack is that it requires one thousand samples per possi-
ble key to getting a good approach of the mean signal and the multivariate distribution
of the noise according to [5]. Even though the adversary has a clone device available,
recording many traces is an expensive endeavor.

3.2.2. COUNTERMEASURES

Countermeasures are used to make it more difficult for the adversary to get useful infor-
mation out of the leakage. One could either make it more difficult (or even impossible)
to capture the leakage or try to make it more challenging to extract useful information
from the leakage. Since we are working from a PSCA perspective, we are only interested
in the latter type of countermeasures.

With the advent of using SCA to break cryptographic algorithms, countermeasures
were developed to shield against side-channel attacks like the template attack or DPA.
Methods commonly used for countermeasures include hiding countermeasures and mask-
ing. Both approaches have shown to be effective countermeasures against template at-
tacks [42], [46].
The basic idea behind masking is to randomize the secret variables (i.e., the secret key)
during a cryptographic operation by applying a randomly generated mask [42]. In gen-
eral, this can be explained as follows. When we input a plaintext, a mask is randomly
generated. This mask is applied to the plaintext to create a masked variable. Subse-
quently, the encryption algorithm is applied to the masked variables. Simultaneously,
the device calculates a de-masking variable that will return the original variable if ap-
plied to the masked variable.

3.2. PROFILED SIDE-CHANNEL ANALYSIS

3

23

Hiding countermeasure is a type of countermeasure which makes use of time random-
ization to improve protection against SCA [46]. There are multiple options for imple-
menting de-synchronization: one method is to introduce random delays (jitter) between
different operations[7]. Another method is to introduce randomness in the order of op-
erations [13]. The technique used for the ASCAD dataset[1](which we plan to use) was
to randomly shift the time instances, so it becomes more challenging to align points of
interest. The main goal of this approach is to make the temporal relation between the
cryptographic operation and the measured traces less straightforward.

3.2.3. MACHINE LEARNING IN SCA
One of the first approaches for using machine learning for PSCA was in [15] where the
authors used support vector machines (SVM) to perform the classification task to com-
pare it with the template attack. The results show that the SVM has comparable per-
formance to the TA and outperforms the TA in some cases. The results also show that
SVM requires fewer traces for a good performance, where only at 500 traces a significant
decrease in quality was observed. SVM and Randoms Forest (RF) are shown to break
countermeasures such as masking in [26]. This work shows that ML techniques like SVM
and RF can outperform TA when countering countermeasures is concerned. This work
also observed that the noise present in the measurements does not follow a Gaussian
distribution. Recall that TA works under the assumption that a Gaussian distribution
can model the noise. This explains why ML techniques can outperform TA, as (most)
ML techniques do not make this assumption. SVM and RF have commonly been used in
multiple other works as well [34][23][33][31][14].
From a learning point of view, PSCA has some particularities because leakage models
are used as labels instead of the keys directly, which are addressed in the work of [32].
The first one is that when the Hamming Weight (HW) is used as leakage model, a class
imbalance is incurred as not every HW is mapped to an equal number of intermediate
values (i.e. a HW value of 0 is mapped to a single value while a value of 4 is mapped
to 70 different values). Another issue is that guessing entropy as a metric is more com-
plex than the usual ML metrics like accuracy. Both of these issues are addressed where
the authors compare side-channel metrics to regular machine learning metrics and use
balancing techniques such as SMOTE (generation of artificial data points for the imbal-
anced class based on intrapolation) to deal with the class imbalance problem. The work
in [48] shows that guessing entropy can give wrong results as a metric as well and pro-
poses an improved guessing entropy based metric which makes use of bootstrapping
the test data instead of using all test data. This method does have the unfortunate caveat
that it requires a larger test set for this method to work properly compared to the simple
guessing entropy.

More recently, deep learning has emerged as a more effective alternative for machine
learning in PCSA. In side-channel analysis, there are two deep learning methods that are
commonly used: the multilayer perceptron (MLP) and convolutional neural networks
(CNN). The use of MLP for PSCA was introduced in the work of [12]. It is interesting to
note that this work uses two MLPs for their attacks. The first MLP counteracts the mask-
ing countermeasure by directly finding the mask. The found mask is subsequently used

3

24 3. RELATED WORKS

by the second MLP which performs the key recovery. The subsequent works we mention
in this thesis combine these functionalities in a single network. Which is to say, recov-
ering the masks is done implicitly in the networks mentioned afterwards. The work in
[24] is one of the first to use deep learning for SCA. The authors used MLP and CNN in
their experiments (as well as the auto-encoder) as methods for a side-channel attack.
This work shows that DL methods outperform both TA and earlier ML methods (SVM
and RF). As opposes to SVM, (and RF) DL methods can exploit temporal relations in the
traces. Also, CNN has the ability to generate high-level features from the raw data.

In [3] the authors continue with this line of thought and note that CNN’s are robust to
misalignment of data which is a helpful property as de-synchronization is a commonly
used countermeasure against these attacks. CNN’s can perform feature extraction on
datasets without manual feature pre-processing. This is useful, as this removes the need
for an extra pre-processing step in which the attacker needs to select points of interest.
In the case of de-synchronization countermeasures, the attacker might also need to re-
synchronize the traces. Both of these methods are heuristic-based which makes it likely
that those methods are not optimal for preprocessing. Moving the feature processing
step in the neural network and making it learnable makes it possible to optimize the fea-
ture extraction. Although it should be noted that manual feature processing can still be
helpful for feature reduction to speed up learning.
Hyperparameter choice is an important aspect for the performance of any DL method,
as the choice of the hyperparameters is linked to the complexity of the model. Complex-
ity is defined in terms of the number of learnable parameters in a model. In general, it
holds that a more complex model can solve more difficult tasks, at the expense of time
and memory. A complex model has a large solution space, so for a simple problem, a
complex model might find an over-complex solution while a simple solution might give
better results. For example, a polynomial of order O(x1) can provide a better fit to a set
of points on a straight line compared to a polynomial of order O(x9). To get more insight
into the choice of hyperparameters, the work of [51] introduces a standard to compare
different models concerning the chosen hyperparameters by comparing the complex-
ity of the models. This work shows that it is possible to find more efficient models than
other state-of-the-art while having a smaller complexity. It should be noted that with
sufficient hyperparameter tuning on the same dataset, it is very likely to find a configu-
ration that gives a good performance on that specific dataset. In fact, it would be a sign of
robustness if the performance of a neural network is consistently good- not necessarily
great- regardless of the choice of hyperparameters up to a certain degree. Such a neural
network was introduced in [18]. In this work the authors propose a general CNN which
has a good performance on multiple datasets as compared to the CNN’s introduced in
[3] or [1] which was tuned to a single dataset. The work does note that while the base
architecture gives a good performance on all proposed datasets, each dataset does need
some fine-tuning with regards to hyperparameters. This work also shows that adding
Gaussian noise to the traces increases the performance of their model for most datasets.
The addition of this noise is equivalent to adding a regularization term to the objective
function. This causes the model to be more robust as the addition of noise means that
the model learns multiple permutations of the input data, making it less likely to gener-

3.3. GRAPH NEURAL NETWORKS

3

25

alize.

3.3. GRAPH NEURAL NETWORKS
The first graph neural network model was introduced in [38] where it was used for fea-
ture propagation. This feature propagation was done by taking the features of a node
and all its neighbors and feed this to a learnable function that projects the inputs onto a
space with the same dimensionality of the input features. The weights of the learnable
function are defined per node. Depending on the type of task the GNN is designed for,
the output function of the GNN can either be defined on node-level or graph level. This
design of the GNN is rather flexible and can be adapted for different tasks like node clas-
sification, graph classification, link prediction, and regression tasks.
Graph convolutional neural networks were first used in [9] where convolutional filters
based on spectral graphs filters were introduced for graph signal processing. This work
is based on an existing method that allows for a spectral operator on graphs using con-
volution [39].
Another method for GCNN was introduced in [11] where the authors design a convolu-
tional filter based on the shift operator of the graph. This work presents two GNN ar-
chitecture that implements pooling, unlike the work done in [9] which graph coarsening
and clustering are used instead. The result is a more general type of architecture similar
to the original CNN and thus is more easily adapted and expanded to other purposes.
The work in [45] presents graph attention networks (GAT) which use self-attention lay-
ers in their architecture. The purpose of those layers is to implicitly assign weights to
different nodes in a neighborhood which makes the architecture more resistant to faults
in the graph. This property is helpful for this thesis as we cannot guarantee the quality
of our generated edges.

To better compare different architectures, the authors of [16] deemed it useful to in-
troduce a framework to define different GNN architectures using a standard notation.
This resulted in the EdgeNet, an architecture that allows individual nodes to explicitly
assign weights to each of their different neighbors. Using this as a foundation, it is pos-
sible to rewrite all aforementioned architectures in the form of an EdgeNet. This paper
also introduces the graph convolutional attention network (GCAT) architecture which
combines the attention mechanism with graph convolution. GCAT has a large degree of
freedom in learning parametrization compared to the GCNN while being more restric-
tive than pure EdgeNet.

3.4. GRAPH NEURAL NETWORKS IN CYBER SECURITY
In this Section we discuss other applications of graph neural networks in the domain
of cyber security. Graph neural networks are useful tools for several graph-related tasks
and there are cyber security-related problems that can be seen as graph-related tasks.
For example, a network topology can be easily modeled as a graph, and finding an in-
fected device within that network can be seen as a node classification task. On the other
hand, there are also less obvious ways to use GNNs in cyber security. Especially of note

3

26 3. RELATED WORKS

are models which need to generate a graph using an input that one would not initially
consider as a graph. These models are of interest to us as we are trying to do something
similar by generating graphs based on traces.

One possible application is the use of GNN’s to detect vulnerabilities in code [53].
The authors propose a model which encodes the program control and data dependency
of a program into a graph. The graphs are fed to a GNN which performs graph-level clas-
sification to determine which programs contain vulnerabilities. The GNN module is also
able to extract useful features from the graph representations. This means that the GNN
cannot only detect whether a program contains vulnerabilities but also gives informa-
tion about the vulnerability. A similar idea is used to detect malware instead of vulnera-
bilities [49]. In this method, the binary of the (potential) piece of malware is represented
as a control flow graph. These graphs are used as input in a graph convolutional neural
network to perform graph-level classification. Memory forensics is another branch of
cyber security in which Graph Neural Networks can be applied. The work in [40] shows
a method that uses GNNs for kernel data structure detection. This is done by modeling
the objects from raw memory dumps as a graph. In this graph each node represents a
segment of contiguous memory bytes between two pointer fields. The edges represent
either adjacency or a ’points-to’ relation between two nodes. The goal of this GNN is first
to generate higher-level features for the nodes after which the nodes are classified. Note
that unlike most node-classification problems, which are often applied to one graph, this
model aims for robustness and being able to classify nodes in multiple graphs. Notice
that models proposed in [53],[49],[40] all represent a piece of software/code as a graph.
A graph is a useful and versatile model as it can show the different relations of the oper-
ations in the software. For example, operations can be related by shared variables or by
the control flow of the software.

Another application is anomaly detection in an IoT network [35]. The authors pro-
pose a distributed system that represents an IoT environment modeled as a graph. The
distributed system runs a GNN in real-time to perform node/edge classification as an
anomaly detector. The system is distributed to safeguard against compromised nodes
and spread the expense of the calculations over the entire network. There have been
already some studies on using GNNs for social network-related tasks [10],[4],[50]. The
work in [6] shows that GNNs can also be used for cyber security purposes. The authors
use the GNN for anomaly detection, or to be more precise, to find anomalous profiles
focusing on spam accounts. Unlike the other works mentioned in this section, this work
does extensive feature pre-processing instead of letting the GNN generate high-level fea-
tures. The work gives some rationale for this, namely because these pre-processed fea-
tures are connected to hypotheses about properties of anomalous profiles the authors
wanted to test. Nevertheless, the full power of the GNN remains unutilized as the au-
thors could have used the generated features to deduce beneficial properties and com-
pare these against their handcrafted features.

For networks consisting of either users or devices, graphs are an obvious represen-
tation. This network will generally not be fixed but change dynamically over time when
devices are added and removed. The propagation aspect of a graph is more important

3.5. DISCUSSION

3

27

for a computer network as malware tends to spread from a single node (device or user)
to the entire network.

3.5. DISCUSSION
In this Chapter, we summarize the relevant literature related to the subjects of our the-
sis. In Section 3.1 we discuss non-profiled power analysis, which is the direct predeces-
sor of profiled-side channel analysis. In Section 3.2 we examine works related to pro-
filed side-channel analysis. We begin with works related to the template attack, which is
the first iteration of the profiled SCA paradigm. Next, we discuss countermeasures that
were implemented to make side-channel analysis (both profiled and non-profiled) more
difficult. We continue by looking at works that use machine learning methods to solve
side-channel analysis problems. We finish by discussing how deep learning is used to
solve SCA, which is the current state-of-the-art method. In Section 3.3 we discuss works
related to graph neural networks. First, we take a look at the work that introduced the
concept of graph neural networks. Next, we examine several works which are about con-
volutional graph neural networks. In Section 3.4 we look at other applications of graph
neural networks in the domain of cyber security. Those works model the execution flow
of software and computer networks as graphs used in conjunction with GNNs.

The goal of this thesis is to use a graph neural network to solve a side-channel anal-
ysis problem. We aim to do this by transforming our SCA problem in a graph signal
classification problem. This requires us to generate a graph on which the signal is prop-
agated. We shall treat the power traces as graph signals for this purpose. From this, it
follows that the vertices in the graph represent the time instances (i.e., features) of the
traces. We generate the edges of the graph based on the correlation between the mea-
surements for each pair of features. Given this translation from an SCA into a graph
signal classification problem, we use a graph neural network to solve the problem and
compare the results with state-of-the-art. We experiment with different architectures for
the GNN (GCNN, GCAT, EdgeNet) to see how they differ in performance. Furthermore,
we also want to observe how our model deals with the different leakage models (HW, IV)
and if there is a large performance gap between them. We also want to see how graph
neural networks deal with countermeasures such as masking and desynchronization. Fi-
nally, we perform hyper-parameter analysis to see whether we can reduce the number of
learnable parameters without substantially reducing the performance of our model. We
hope to find out if using graph neural networks is a viable alternative for the currently
used models for side-channel analysis by asking those questions.

4
TRANSLATION FROM

SIDE-CHANNEL ANALYSIS TO GRAPH

SIGNAL CLASSIFICATION

In this Chapter, we describe our approach to translate the SCA problem into a GNN clas-
sification problem and answer Research Question 1. In Section 4.1 we explain which
function we use to the traces to generate a graph. The nodes of this graph correspond
with the features of the traces and the edges signify the relationship between the fea-
tures. Subsequently, we run a graph neural network over the built graph. In Section 4.2
we show some examples of the results of our proposed method to generate graphs.

4.1. GRAPH SIGNAL CLASSIFICATION
Consider a graph G = (V ,E) and a feature vector x. The number of features equals the
number of vertices |x| = |V | so each feature xv ∈ x is assigned to corresponding vertex
v ∈ V and x can be considered a graph signal defined on the vertices of graph G . We can
now consider a graph signal classification problem which requires a classifier that, given
graph G and a graph signal x as input, outputs a label prediction y for graph signal x. So
each vertex in the graph represents a time instance. This implies each edge represents
the relationship between two time instances. The feature vector (or graph signal) is a
a trace ti . Since a trace is a time series, each feature f j represents the measurements
taken at time instance j . As we are talking about the relation between two sets of mea-
surements, the (Pearson) correlation is a reasonable metric to determine the relation-
ship (i.e., generate edges) between two time instances (i.e., nodes). We chose correlation
since it actually calculates the similarity between two sets of repeated measurements.
Most other candidate metrics, like Euclidean or Cosine distance, instead measure the
distance between a set of points.

29

4

30 4. TRANSLATION FROM SIDE-CHANNEL ANALYSIS TO GRAPH SIGNAL CLASSIFICATION

Given the Pearson correlation as a similarity metric, there are still multiply methods
to build a graph based on the correlation between a pair of time instances. One method
would be to create a fully connected graph and let the weights of each edge correspond
to the correlation between the nodes. This method is likely to introduce complications
from a large number of edges. The weights might interact unexpectedly, especially as
the graph is expected to contain negative weights which correspond to a negative corre-
lation.
Another method is to draw edges if the correlation between two nodes is above a certain
threshold. This would lead to a smaller number of edges and ensures that each edge
represents a meaningful relation. This method does have a few disadvantages. A slight
variation in the threshold value could lead to both a significant change in the set of edges,
or it might not change the set of edges at all. So it is a bit finicky. Furthermore, this also
means that it is difficult to predict how many edges it will generate.
The final method we introduce is based on the (k−)nearest-neighbor principle. This is
to say; each node n is connected with its k nearest neighbors. I.e., edges are drawn to-
wards the k nodes which have the highest correlation with node n. This method has
the advantage that the number of edges is stable and that each node is guaranteed to be
connected to at least k other nodes. The disadvantage is that this method may leave out
edges corresponding to high correlation connections or include edges between nodes
with low correlation. In the end, we chose the latter approach as we believe that having
a guaranteed number of edges is more important than each edge representing a strong
relationship between the nodes. Especially since we are not confident that correlation is
the most representative metric to describe the relation between the nodes.

The mapping function F in Algorithm 1 shows how to generate the graph for this
problem from a set of training samples. The number of time instances Q is independent
of the size of the training data but is determined by the output of the feature reduction.
For a pair of time instances (i , j), an edge ei j is generated when the correlation coeffi-
cient between their measurements is in the top ne of all possible edges for that node.

Algorithm 1 GenerateGraph(T,Q,ne)

E ←; . Initiate edge set
V ← {i , ...,Q} . Map every time instance to a vertex

cor(v,u) =
∑n

i=1(vi−v̄)(ui−ū)√∑n
i=1(vi−v̄)2

√∑n
i=1(ui−ū)2

. Define correlation function

. x̄ is the sample mean of x
for i = 1 : Q do

for j = 1 : Q do
cvi j ←cor(fi , f j) . Calculate correlation for each pair of nodes

end for
Let ni be the top ne nodes j for which cvi j is highest.
E ← E ∩ (i ,ni) .We generate the edges for node i and add them to our set of edges

end for
G ← (V ,E)
return G

4.1. GRAPH SIGNAL CLASSIFICATION

4

31

The resulting graph can be used to run on top of it a classification GNN as described
in Section 2.4. The output y represents the classification distribution. We use cross-
entropy as a loss function defined as

C E(Y, Ŷ) =− 1

P

P∑
n=1

C∑
c=1

ync log (ŷnc) (4.1)

where Ŷ ∈ [0,1]C×P represents the predicted posterior distribution obtained from the
GNN. P denotes the number of training traces and C denotes the number of classes.
Y ∈ {0,1}C×P represents the ground truth for the classification. Algorithm 2 outlines the
entire training process for the GCNN. The other architectures are trained using a similar
process, but with a differently sizedΘ and different convolution operations. We simplify
the notation a bit by considering the MLP as a function to transform the output signal
into a classification vector. In reality, the MLP is also a neural network containing train-
able parameters trained using stochastic gradient descend. However, we opt not to show
this to focus on the operations which are more relevant to our research.

Algorithm 2 TrainGCNN(T,k,c,L,K ,F)

(T′,Q) ← ReduceFeatures(T) . Apply feature reduction to the dataset
((Ttr ai n ,ktr ai n), (Ttest ,ktest)) ← (T′,k) . Split dataset in test and train
G ← GenerateGraph(Ttr ai n ,Q ′,c) . Generate the graph
S ← A . Let the shift operator be the adjacency matrix of G
Θ←rndF×K×L . Initialize the parameter matrix with random values
X0 ← Ttr ai n

while Not Convergence do
for l = 1 : L do

Xl =σ(
∑K

k=0 Sk Xl−1θlk) . Calculate the output for each layer
end for
Y = MLP(Xl))
Calculate loss L using cross entropy
UpdateΘ by stochastic gradient descend

end while
ReturnΘ

Considering we are talking about time instances, another logical method would be to
simply connect each time instance j with j +1 as they are temporally connected. This
type of graph is known as a cyclic graph. However, this method is not able to translate
more complex relationships. For example, if it is known that a certain interesting peak
happens somewhere in the interval [j − 5, j + 5], this would show up as a heavily con-
nected neighborhood in using the first method. In contrast, the latter method would not
encode this information. Furthermore, if one applies feature selection, the selected fea-
tures are not equidistant in temporal space. Which is to say, if points i −a, i , i +b before
feature selection correspond with points i −1, i , i +1 after feature selection, a is not guar-
anteed to be equal to b. Thus, one might connect two nodes with an edge while those
nodes are quite far apart in the original dataset and this edge would be equally impor-

4

32 4. TRANSLATION FROM SIDE-CHANNEL ANALYSIS TO GRAPH SIGNAL CLASSIFICATION

tant as an edge between two nodes that are actually close.

4.2. EXAMPLES
This subsection shows some examples of how the graphs resulting from our graph gen-
eration method look like. We visualize the graphs by showing the resulting adjacency
matrices. We’ve chosen not to show the actual graph visualization as a large number of
nodes (especially for the ASCAD dataset) makes the graph look rather messy and com-
plicated to see what exactly is going on.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

E=5

0 100 200 300 400 500 600

0

100

200

300

400

500

600

E=10

0 100 200 300 400 500 600

0

100

200

300

400

500

600

E=25

0 100 200 300 400 500 600

0

100

200

300

400

500

600

E=50

Adjacency Matrices for ASCAD dataset

Figure 4.1: Visualization of the adjacency matrices generated by our method using the ASCAD dataset for
different numbers of edges per node

In Figure 4.1 we show an example of a graph generated using the method explained
in Algorithm 1 for the ASCAD dataset. The diagonal line in the resulting graph for ne = 5
shows that most nodes are connected towards other nodes whose corresponding time
instances are close. I.e., the resulting graph resembles a cyclic graph. This is not very
surprising because the original data is a time series. So it is reasonable to expect that two
subsequent time instances have similar values and are therefore correlated. When we
increase the number of edges per node, we see that more edges start emerging at ran-
dom places. Nevertheless, it is not entirely random since those edges are arranged in a

4.3. CONCLUSION

4

33

somewhat grid-like structure. These lines likely correspond with more essential features,
although it could also be a coincidence. We also see that despite the emergence of those
edges, the density of edges is still getting higher across the diagonal line corresponding
with the cyclic graph. When considering which of these graphs to use for in the GNN, it
seems that the ones with the higher number of edges have more edges that are randomly
generated. Or rather, those edges likely correspond with little to no correlation between
the node features. Therefore, the graph ne = 5 seems to be the best candidate graph
to use in our model since it contains a meaningful pattern without too many arbitrary
edges.

In Figure 4.2 we show several examples of graphs generated by our method for the
DPAv4 dataset using feature reduction. Compared to the ASCAD graph, these graphs
have a far lower resemblance to the cyclic graph. The diagonal line is present since all
nodes are also connected to themselves. This is likely since we’ve applied feature re-
duction to our dataset. So features which are close (in the temporal sense) after feature
reduction are not necessarily close in the original data. This explains how the subse-
quent features are less likely to correlate when using feature reduction. Despite these
graphs looking less like a cyclic graph, we can still distinguish some patterns and clus-
ters. For example, we see that clusters emerge around the (3,3) area and the (10,10) area.
This indicates that at the beginning, the traces are more similar and start decorrelating
more over time. While none of the graphs look like they have a meaningful pattern, one
could say that the graph for ne = 2 looks rather sparse. On the other hand, the adjacency
matrices for ne = 8 and ne = 10 seem rather overcrowded. So the graph for ne = 5 looks
like an adequate candidate to use in that regard.

4.3. CONCLUSION
In Section 4.1 we describe the method we use to generate graphs and translate the SCA
problem to a GSP problem. In Section 4.2 we show visualizations of the generated graphs.
This Chapter answers Research Question 1 as we show how we transform a SCA problem
into a GSP problem. We consider each time instance in the traces as a node for our
generated graph. We generate the edges of the graph based on the correlation between
features corresponding to the time instances.

4

34 4. TRANSLATION FROM SIDE-CHANNEL ANALYSIS TO GRAPH SIGNAL CLASSIFICATION

0 20 40

0

10

20

30

40

E=2

0 20 40

0

10

20

30

40

E=5

0 20 40

0

10

20

30

40

E=8

0 20 40

0

10

20

30

40

E=10

Adjacency Matrices for DPAv4 dataset

Figure 4.2: Visualization of the adjacency matrices generated by our method using the DPAv4 dataset for dif-
ferent numbers of edges per node

5
NUMERICAL EXPERIMENTS

In this Chapter, we present our experiments and their results. In Section 5.1 we discuss
the two datasets we are using for our experiments. In Section 5.2 we consider applying
feature reduction to the traces. In Section 5.3 we show the configuration of our exper-
imental setup. In Section 5.4 we discuss the main findings of our experiments. Which
is to say, how well did our model perform on both datasets. In Section 5.5 we examine
how well our model deals with countermeasures and analyze the behavior of our model
more closely. In Section 5.6 we look at the ablation studies we performed. In Section 5.7
we investigate the use of different values for chosen hyperparameters. In Section 5.8 we
discuss all the results that we have gathered and conclude this Chapter.

5.1. DATASETS
In this Section, we discuss the datasets we use in our experiments. Both datasets contain
measurements during the Sbox operations of the AES cipher. Both measured devices
used a fixed key for the data generation: the used key is the same for each trace.

5.1.1. DPACONTEST V4
We use the DPAcontest v4 (DPAv4) [37] dataset for the exploratory phase of our experi-
ments as this is the most straightforward dataset commonly used for side-channel anal-
ysis. This should be understood in this case as being unprotected, containing little noise
and only the samples of the relevant operation are selected. Unprotected means that
no countermeasures to prevent SCA are present which we limit to masking and desyn-
chronization in this thesis. The traces are obtained by measuring the power usage of an
AES-256 implementation on an Atmel ATMega-163 smart card.

While the AES implementation used to generate the traces is masked, the masks are
given and therefore the dataset can be treated as unmasked. The dataset contains 50,000
traces that consist of 10,000 features and includes measurements of a masked AES im-
plementation, but it can be converted to an unprotected implementation by assuming
the mask to be known. However, the mask used in DPAv4 is known to be flawed and it

35

5

36 5. NUMERICAL EXPERIMENTS

leaks[28]. Accordingly, the leakage model changes to

y(t ,k∗) = HW (Sbox[p ⊕k∗]⊕M), (5.1)

where M represents the known mask. We apply feature reduction to this dataset by se-
lecting 50 features with the highest absolute correlation coefficient between the mea-
surement traces and the corresponding keys. Since we know that this dataset is easily
breakable, we apply the feature reduction to this dataset to increase the speed. This al-
lows us to perform tasks that require a large number of runs like hyperparameter tuning.

5.1.2. ASCAD
The ASCAD dataset [1] contains electromagnetic radiation measurements of a masked
AES-128 implementation on an 8-bit AVR microcontroller (ATmega8515). The ASCAD
dataset contains 60,000 traces of 700 features, split into a profiling set of 50,000 traces
and an attack set of 10,000 traces. So it is faster to run tests on the dataset without feature
reduction compared to the DPAv4 dataset. It contains countermeasures to test against
to see if our model also holds for a more realistic scenario. As we want to treat ASCAD
as a masked model, we use the leakage model in Equation (5.1). The ASCAD dataset also
contains options to differ the degree of desynchronization used in the traces. The degree
of desynchronization dmax signifies that each trace (both the training set and attack set)
has been shifted by δ ∈ [0,dmax] to the left.
Initial tests have shown that using cross-evaluation for experiments that use the ASCAD
dataset is not feasible due to time and resource constraints. Furthermore, the guessing
entropy did not converge to 0 after 1000 traces. Instead, we randomly sample 10,000
traces from the set of profiling traces for each instance, from which we use 9000 traces
for the training set and 1000 traces for the validation set. For the testing set, we use all
10,000 traces from the set of attack traces,

5.2. FEATURE REDUCTION
Each trace contains many samples, so feature reduction might be desirable to break the
"curse of dimensionality". If we apply feature reduction to the traces, this would help
to reduce the complexity and runtime of our problem. Whether we want to use feature
reduction depends on the dataset we are using. Let us consider the datasets we want to
use: the DPAv4 dataset and the ASCAD dataset. The DPAv4 dataset contains 10,000 sam-
ples per trace and is noted to be relatively easy to break. Both factors make it appealing
to use feature reduction on the DPAv4 dataset, as there is much room for speedup re-
garding the number of features. Since the dataset is easy, the potential performance loss
is not as much of an issue. In fact, with such a large number of features, feature reduc-
tion may even increase the performance.
For the ASCAD dataset we use only 700 samples1 per trace and is more difficult to break
than the DPAv4 dataset. Therefore we do not apply feature reduction to this dataset as
700 features allow for a reasonable runtime. If the results show that we can take a mi-
nor hit in performance, we may use feature reduction for the ASCAD dataset for later

1To be more precise, it has 700 features for processing the targeted key byte

5.3. EXPERIMENTAL SETUP

5

37

experiments. In the related literature[5], [18] there are already established methods of
feature reduction for the datasets we plan to use in the related literature: selection based
on highest absolute correlation, and Principal Component Analysis (PCA).

5.2.1. ABSOLUTE CORRELATION
Absolute correlation is used as a feature selection method in [18]. This method selects
F ′ features with the highest absolute correlation coefficient between the measurement
traces f j and the corresponding keys yk . The notation maxF ′

means that it selects the F ′
highest values, instead of a single value that max would denote.

X′ = F ′
max

j∈{1,...,Q}

K∑
k=0

corr(f j ,yk) (5.2)

Matrix X′ ∈ RP×F ′
represents the reduced data matrix after the feature reduction, where

F ′ is the number of reduced features. corr(·, ·) represents the Pearson Correlation be-
tween two vectors of equal order. yk ∈ {0,1}P represents the classification vector of class
k, where entry ytk signifies whether trace t is associated with key k.
The main advantage of this method is that it leverages the relation between the infor-
mation in the data and the target keys so it can filter out noisy and irrelevant features.
A downside of this method is that it does not care about the temporal distance between
the features. When considering that there are different regions that contain relevant fea-
tures, this method might ignore some of these regions while sampling a large number
of features from other regions. Furthermore, this method does not guarantee that the
resulting features are equally good discriminators for all classes. This method also as-
sumes a direct correlation between the data and the classes, which is not the case for the
ASCAD dataset [1].

5.2.2. PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is used in [1] as feature reduction method. PCA
has some disadvantages which makes it a poor choice as a feature reduction method for
this approach. PCA transforms the data instead of just selecting the features of interest.
This means the data cannot be interpreted as a time series anymore and therefore loses
the temporal information embedded in the data. Thus, PCA is only helpful for feature
reduction if we do not care about the temporal relationship present in the original data.
In general, there are other structures in the traces which might disappear when using
PCA. Therefore, we shall not use PCA as a feature reduction method but instead use the
absolute correlation method.

5.3. EXPERIMENTAL SETUP
We use two different datasets in our experimental setup: the DPAcontest (DPAv4) dataset[37]
and the ASCAD dataset[1]. From those dataset we select N = 10,000 traces to use for
cross-validation with k = 10. In each experimental run, we split the selected dataset into
a train set of N = 9000 and test set N = 1000 using ten-fold cross-validation. As shift op-
erator we use the adjacency matrix S = A. The graph over which the GNN-architecture is
run will be generated using Algorithm 1 using ne = 5 as the number of neighboring edges

5

38 5. NUMERICAL EXPERIMENTS

generated for each node. We train the neural network as described in Algorithm 2.
We perform experiments using the GCNN, GCAT, and EdgeNet architectures as described
in Section 2.4. We chose the GCNN as our primary GNN architecture as it is the faster
architecture, which makes it the most suited for repeated experiments. We use the other
architectures introduced in Chapter 2 in experiments which are designed to compare
their performance. We also introduce an architecture that uses an edge varying filter in
the first layer and a graph convolutional filter in the second layer. The main idea behind
this method is as follows: The first layer functions on a more local level as it can dis-
criminate between edges. The second layer functions on a global level and introduces
stability as it is less likely to overfit. So in theory, this architecture should combine the
best properties of both the GCNN and EdgeNet. We shall denote this architecture as GC-
EdgeNet in the remainder of this thesis.
For each different architecture, we perform hyper-parameter search to find the best com-
bination of hyper-parameters for each architecture. We do this by performing a grid
search over the following hyper-parameters: number of features F ∈ {1,2,4,8,16,32,64,128};
filter order K ∈ {1,2,3,4,5}; and number of layers L ∈ {1,2,3,4}
For the leakage model, we use both the Hamming Weight and the Intermediate Value
leakage models. We use the Hamming Weight(HW) of the intermediate value for the
leakage model as described in Equation (5.1) for our initial experiments. This means that
we consider a classification problem with 9 classes when using the HW leakage model.
We directly use the intermediate value for the leakage model for other experiments, as
described in Equation (2.1). This implies a classification problem with 256 classes when
using the IV leakage model.
The classification MLP has two fully connected layers: the input layer has F ×Q nodes
and the output layer has C nodes. Where F is the number of features used by the output
signal Xl , Q is the number of nodes in the graph, and C is the number of classes. So the
number of learnable parameters for this MLP is F ×Q ×C .

Furthermore, we train the GNN using ADAM[19] as optimiser with learning rate 0.001
and forgetting factor β1 = 0.9 and β2 = 0.999. Training is performed in 100 epochs with a
batch size of 100. As an evaluation metric, we use the guessing entropy as described in
Section 2.3.2.
The main goal of each experiment is to observe how many traces are required to con-
verge the guessing entropy to zero. We visualize this by plotting the guessing entropy
against the number of traces for each experiment. We also give the numerical results in
a table for a more precise comparison. This also allows us to show much variance there is
between different runs in an experiment. This table contains the mean number of traces
required for the guessing entropy to get below a threshold. It also includes the standard
deviation and highest and lowest number of traces required to reach the threshold for
the instances of the given experiment.
We compare our results with the work of [51] and [1]. The work in [1] serves as a baseline
while the work in [51] is more recent. We give the number of traces to reach a guessing
entropy of 1 and the number of trainable parameters in Table 5.1 for easy reference.

5.4. MAIN FINDINGS

5

39

Dataset |Θ| Nt

DPAv4 52112 4
ASCAD 66,652,444 1146

ASCAD(desync) 66,652,444 >5000

(a) [1]

Dataset |Θ| Nt

DPAv4 8782 3
ASCAD 16960 191

ASCAD(desync) 87280 244

(b) [51]

Table 5.1: Table which shows the number of learnable parameters |Θ| and number of traces to reach a guessing
entropy of 1 Nt for the models used in [1] and [51]

5.4. MAIN FINDINGS
In this Section, we want to establish the performance of our model. We want to see how
well it performs on both the DPAv4 and the ASCAD datasets. We also want to compare
the different architectures we’ve discussed in Chapter 2 on the different datasets. While
we are primarily interested in performance (i.e., how many traces are needed to make
the Guessing Entropy converge towards 1), we want to balance this against the complex-
ity of the model.
The complexity of a model is directly related to the number of learnable parameters in
a model. In Table 2.1, we can see that each architecture has a different dependency be-
tween hyperparameters and the number of learnable parameters. So reducing the num-
ber of learnable parameters has two sides: both the choice of architecture and the values
of the hyperparameters are important. Furthermore, the choice of the leakage model
is also relevant for the number of learnable parameters since the size of the classifica-
tion MLP is proportional to the number of classes. As mentioned earlier, the number of
classes when using HW as leakage model is 9, while the number of classes when using IV
as leakage model is 256. The number of learnable parameters for the classification MLP
is linearly proportional to the number of classes. When the other values are equal, the
IV model has more than an order of magnitude more learnable hyperparameters than
the HW model. This means that we cannot answer research question RQ2(a) without
considering the answers to RQ2(c) and RQ2(d) as well.

5.4.1. DPAV4

0 2 4 6 8 10

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

o
p
y

HW

GCNN

GCAT

EdgeNet

GC-EdgeNet

0 2 4 6 8 10

Number of Traces

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
u

es
si

n
g

E
n
tr

o
p
y

IV

GCNN

GCAT

EdgeNet

GC-EdgeNet

DPAv4 Different Architectures

Figure 5.1: Results using different architectures using the DPAv4 dataset for different leakage models. (left)
Hamming Weight leakage model; (right) Intermediate Value leakage model

5

40 5. NUMERICAL EXPERIMENTS

Architecture µ σ min max
GCNN 13.4 2.3 10.0 24.0
GCAT 24.64 3.8 18.0 33.0

EdgeNet 11.72 1.7 9.0 18.0
GC-EdgeNet 14.55 2.9 11.0 27.0

(a) HW

Architecture µ σ min max
GCNN 3.60 0.76 2.0 6.0
GCAT 4.25 4.44 2.0 18.0

EdgeNet 1.62 0.49 1.0 2.0
GC-EdgeNet 15.83 14.79 3.0 97.0

(b) IV

Table 5.2: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as the
lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

The results in Figure 5.1 and Table 5.2 show that the GCAT is the worst performing archi-
tecture while the EdgeNet is the best performing architecture for both leakage models.
The GC-EdgeNet architecture performed even worse on the IV leakage model, but this
is likely due to an outlier. The main difference between the GCAT and the other archi-
tectures is that it incentives to reduce the weight of all but the most important edge in
the neighborhood for each node. If this is a problem where strong inter-connectivity
between nodes is essential to the solution, this would be a disadvantageous property of
the GCAT. As our graph is generated based on heuristics rather than ground truth, it is
unlikely that there is an edge that is considerably more important than the other edges
in a neighborhood.
The results show that the IV leakage model has a considerably better performance than
the HW leakage model. We have three possible explanations why this is the case: The
first explanation would be that the IV model does not suffer from class imbalance, un-
like the HW model as described in [18]. Another explanation would be that the IV model
better describes the leakage compared to the HW model. The final explanation would be
that the architecture that uses the IV model is more powerful because the classification
MLP is more complex. This complexity is derived from having more learnable param-
eters since the IV model uses more classes. This would imply that the MLP is the main
contributor towards the performance rather than the graph filter layers.
The first explanation seems rather unlikely since the difference in performance between
balanced and unbalanced datasets (for comparable configurations) [18] is a lot less than
the difference we observe in our experiments. The second explanation is also not very
likely as this would contradict earlier literature [27],[36],[30],[15],[25]. Therefore, the
third explanation is the most likely. We can test the last explanation by observing how
much the MLP contributes to the model in the ablation studies.

When we compare our results for the IV leakage model with the results of the works
in Table 5.1, we observe that the EdgeNet architecture requires fewer traces to converge
than both other works. However, the number of parameters of the EdgeNet architecture
is higher than for the work of [51]. As the classification MLP contains a considerable
share of the learnable parameters for the IV leakage model, it is impossible to signifi-
cantly reduce the number of learnable parameters2. Meanwhile, the performance of the

2Unless we change the design of our model to replace the classification MLP with something else. But that
would be outside the scope of this thesis.

5.4. MAIN FINDINGS

5

41

HW leakage model is considerably worse even though it has a more reasonable number
of learnable parameters.

5.4.2. ASCAD
Figure 5.2 shows that the performance for the ASCAD dataset is rather disappointing. In
fact, from all the architectures only the GCNN can produce results for which some in-
stances of our experiment converge. Therefore, we will also show the results where the
non-convergent instances are filtered out. We also give the percentage of convergent in-
stances for each setup.

0 2000 4000 6000 8000 10000

Number of Traces

100

120

140

160

180

200

220

240

G
u

es
si

n
g

E
n
tr

op
y

Different Architectures

GCNN

GCAT

GC-EdgeNet

EdgeNet

0 2000 4000 6000 8000 10000

Number of Traces

0

20

40

60

80

100

120

140

160

G
u

es
si

n
g

E
n
tr

op
y

GCNN: Different LM and Convergences

HW

IV

HW(Convergent Only)

IV(Convergent Only)

ASCAD

Figure 5.2: Results using the ASCAD dataset for different leakage models. (left) Different architectures using
the HW leakage model; (right) Different Leakage models and ignoring non-convergent results using the GCNN
architecture

Leakage Model µ σ min max %conv
HW 9935.7 195.9 9348.0 10001.0 10%

(Conv. Only) 9348.0 0.0 9348.0 9348.0 -
IV 6181.91 4460.40 242.0 10001.0 45.45%

(Conv. Only) 1599.0 2294.28 242.0 6157.0 -

Table 5.3: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well
as the lower and upper bound and the percentage of convergent runs. Runs which did not converge below
this threshold are given the value 10001. All results are only for the GCNN architecture, as none of the other
architectures has a convergent instance.

Based on the results of the DPAv4 dataset, it was not unexpected that the GCAT archi-
tecture performed poorly. It is a bit surprising to see that the EdgeNet architecture had a
bad performance as well as it was the best performing architecture for the DPAv4 dataset.
The most likely explanation is that the EdgeNet architecture is too complex when using
the ASCAD dataset. To be more precise, the number of learnable parameters for the Ed-
geNet architecture is dependent on the number of nodes and edges in the graph. This
number is a lot higher for the ASCAD dataset compared to the DPAv4 dataset, for which
we performed feature reduction, as we can see in Table B.2.
We also see that the IV leakage model has a far better performance than the HW leakage
model for the ASCAD dataset. When we look at the number of learnable parameters in

5

42 5. NUMERICAL EXPERIMENTS

Table B.2, we can calculate that for the GCNN, the number of learnable parameters of the
MLP is larger than the number of learnable parameters for the graph filter layers. This
is a strong hint for our explanation that the MLP is the main contributor to the perfor-
mance in our model.
When we compare our results with the results in Table 5.1, it is evident that our results
are a lot worse compared to both works. Even if we disregard that a significant fraction of
our instances does not converge to zero, the number of traces required for convergence
is still higher for our model than the other models.
When we use the results in this section to answer our research questions, let us con-
sider both datasets. When we look at the ASCAD dataset, the answer to RQ2(d) is rather
straightforward: the GCNN architecture is the only one that produces convergent results,
so it is the only suitable architecture for that dataset. When we look at the DPAv4 dataset,
the answer to this question gets a bit more complicated. Concerning performance, Ed-
geNet and GCNN have similar performance, although EdgeNet has a slight edge. How-
ever, the EdgeNet has fewer learnable parameters while the GCNN has a faster runtime.
Furthermore, the GCAT architecture has the fewest parameters but also has worse per-
formance. When we consider RQ2(c), we see that the IV leakage model performs better
than the HW leakage model for both datasets. However, this difference in performance
is likely since the complexity of the classification MLP gets increased when using the IV
leakage model. It should also be noted that our hyper-parameter search method only
looked at the best performance. So it could be possible to have a configuration with a
negligible difference in performance while having a far lower number of learnable pa-
rameters. We look more closely into this in Section 5.7 which gives us the answer for
RQ2(a).

5.5. SECONDARY FINDINGS
In this Section, we want to take a closer look to see how good our model deals with coun-
termeasures and to get answers for research question RQ2(b). First, we take a look at the
masking countermeasure. We compare the results of the masked DPAv4 dataset to the
results of the unmasked DPAv4 dataset. We look at the desynchronization countermea-
sure by comparing the regular ASCAD dataset with the desynchronized ASCAD dataset.
So we try to answer RQ2(b) by splitting it into two subquestions: ’What is the difference
in performance between a masked and an unmasked implementation?’ and ’What is the
difference in performance for a synchronized and a desynchronized dataset?’
Next, we investigate the causes for the bad performance of the ASCAD dataset. There are
several possible causes for the bad performance, but there are two in particular that we
want to investigate: one possible cause is that our model has difficulty learning a good
solution for this problem. Therefor we want to analyze how our model learns utilizing
the loss curves. We plot the cross-evaluation loss for the loss curve as in Equation (4.1)
for both the validation and the training sets at each epoch. The desirable behavior would
be for both the training loss and validation loss to converge towards zero. It is possible
that our model could be overfitting on the training data. In that case, the training loss
would converge to zero while the validation loss would not converge to zero.

Another thing that we want to investigate is why we do not have consistent conver-

5.5. SECONDARY FINDINGS

5

43

gence behavior. A possible cause could be the random selection of the training set. It
could be the case that some randomly generated training sets can train a better model
compared to other sets. We test this by running an experiment where we used a fixed
training set for each instance instead of a randomized one. If the choice of the training
set influences the performance of our model concerning convergence, we expect to have
a percentage of convergent instances of either 0% or 100%.

0 200 400 600 800 1000

Number of Traces

0

20

40

60

80

100

120

G
u

es
si

n
g

E
n
tr

op
y

DPAv4 (Masked)

GCNN

GCAT

EdgeNet

GC-EdgeNet

GCNN(unmasked)

0 2000 4000 6000 8000 10000

Number of Traces

0

20

40

60

80

100

120

G
u

es
si

n
g

E
n
tr

op
y

ASCAD (Desync)(Convergent Only)

ASCAD (regular)

ASCAD (desync)

Countermeasures

Figure 5.3: Results comparing countermeasures versus baseline performance. (left) DPAv4 dataset using the
masking countermeasure against unmasked implementation; (right) ASCAD dataset comparing desynchro-
nized dataset against synchronized dataset using only convergent traces.

Architecture µ σ min max
GCNN 498.7 222.8 174.0 929.0
GCAT 1001.0 0.0 1001.0 1001.0

EdgeNet 498.1 188.5 252.0 898.0
GC-EdgeNet 485.4 269.9 174.0 1001.0

Table 5.4: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as the
lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

Dataset µ σ min max % conv
Regular 1599.0 2294.28 242.0 6157.0 45.45%
Desync 2785.67 1924.68 1381.0 7019.0 54.5%

Table 5.5: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

We can see in Figure 5.3 and Table 5.5 that the masked implementation of DPAv4
is far more challenging to solve than the unmasked variant. The number of traces re-
quired for the guessing entropy to converge is about ten times higher than the number
for the unmasked variant. It is interesting to note that the GCAT architecture cannot
find a solution at all for the masked implementation (or rather, the curve suggests that
it is converging very slowly). This is another argument that the GCAT architecture does
not appear to be suitable for our problem. We observe that the EdgeNet and the GCNN
appear to have similar performance. Since masking is a powerful technique and using
GNNs does not seem to have inherent advantages to solving masked implementations,

5

44 5. NUMERICAL EXPERIMENTS

it is logical that there is a significant difference between masked and unmasked.
The difference for the desynchronized dataset is a lot less pronounced. This can be ex-
plained by our use of graph filters and the structure of the graph. The desynchronized
dataset diffuses the values for measurement over a larger range in time. Recall from
Chapter 4 that the temporal structure of the traces remains intact for the graph that we
generate. This means that our graph filters convolve over the neighbors which contain
some of the diffused measurements. Therefore, when we convolve over our graph, the
diffusion is counteracted to a certain degree. So our GCNN model contains an inherent
property that makes it well suited to deal with the desynchronization countermeasure.

0 20 40 60 80 100

Epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
E

L
o
ss

Losses for IV-leakage dataset(Model=GCNN)

DPAV4 IV(valid)

ASCAD IV(valid)

ASCAD IV (Conv)(valid)

DPAV4 IV(train)

ASCAD IV(train)

ASCAD IV (Conv)(train)

0 2000 4000 6000 8000 10000

Number of Traces

0

20

40

60

80

100

G
u

es
si

n
g

E
n
tr

op
y

Fixed Training Set

Baseline

Fixed Training Set

Baseline(Conv)

Fixed Training Set(Conv)

Figure 5.4: (left) Loss curves for different setups using the IV leakage model; (right) Comparison of using a fixed
training set against using a random training set for each instance in an experiment. Both setups are run on the
GCNN architecture using the IV leakage model on the ASCAD dataset.

Training Set µ σ min max % conv
Random TrainSet 1599.0 2294.28 242.0 6157.0 45.5%

Fixed TrainSet 1067.0 794.6 284.0 2125.0 40%

Table 5.6: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are not included.

In Figure 5.4, we can see that the training and validation losses are very similar for
each setup, so it is unlikely that we are overfitting. For the DPAv4 dataset, the losses con-
verge to zero. As we mentioned earlier, this is the desired behaviour of the loss curve
as it implies that the model has learned the dataset so that it can classify all the data
correctly. Since the validation loss also converged, our model has not overfitted on the
training data. More importantly, this also means that there is no inherent flaw or bottle-
neck in our model, making it impossible for the losses to converge. The loss curves for
the ASCAD dataset do not seem to converge to zero. This is interesting, as one would ex-
pect that at the very least the training loss would converge to zero. So our model may be
inclined to overgeneralize, making it difficult for the training loss to reach zero. Another
explanation would be that the data is too complex/our model is not expressive enough
for the training loss to converge. We see that our model is learning for about 15 epochs,
after which the losses remain stable. The losses which correspond with only convergent
instances show different behavior compared to the complete set. A possible explanation

5.6. ABLATION STUDY

5

45

for this would be that some instances are inclined to get stuck in local optima. To verify
whether our model gets stuck in local optima, we will look into varying the learning rate
of our model in Section 5.7. By varying the learning rate, our model traverses differently
in the solution space, which might allow us to dodge those local optima.
In Table 5.11, we see a difference between the performance of the fixed training set and
the random training set. However, the boxplot in Figure B.7 explains this difference as
being caused mostly by an outlier in the results. More importantly, we see that the con-
verge percentage is similar for both configurations. As we stated earlier, if being conver-
gent was dependent on the selection of the training set, we would expect that the rate of
convergence would be either zero or hundred percent when each instance uses the same
training set. Since this is not the case, we can conclude that the differences in training
sets do not explain the inconsistent convergences.

5.6. ABLATION STUDY
It is impossible to give a direct quality assessment of the generated graph as there are
no metrics to measure the ’quality’ of the graph. Furthermore, the quality of the graph
is interwoven with the results of the GNN. Therefore, we want to perform an ablation
study in which we examine the quality of the graph by comparing it with graphs which
structure is not directly derived from the traces. We shall use four kinds of those graphs
to compare:
The first one is the cyclic graph. A cyclic graph is defined such that for each node i
there is an edge (i , i + 1) and for the last node N there is an edge (N ,1). Note that the
cyclic graph reflects the temporal relations which are present in traces. The next one
is a random graph. For this graph, we randomly generate M number of edges, where
M is the number of edges in the original generated graph. We generate a random edge
by uniformly sampling two nodes u, v ∈ V and adding the edge (i , j) to our graph by
updating the adjacency matrix Ai j = 1. The third one is a fully connected graph, where
all nodes are connected to each other. The last graph we use is the unconnected graph,
which uses the identity matrix as an adjacency matrix. We show a visual representation
of each graph in Figure 5.5.

0 20 40

0

10

20

30

40

Random

0 20 40

0

10

20

30

40

Fully Connected

0 20 40

0

10

20

30

40

Unconnected

0 20 40

0

10

20

30

40

Cyclic

Adjacency Matrices for Ablation Study

Figure 5.5: Visualization of the graphs used for the ablation study.

The cyclic graph aims to study the effect of the number of edges while retaining a
meaningful relation (i.e., the temporal relation) between the edges. The purpose of the

5

46 5. NUMERICAL EXPERIMENTS

random graph is to examine whether our graph is meaningful by removing the relational
aspect of the edges while keeping the same number of edges. The fully connected graph
represents maximum uncertainty about the relationship between the nodes. Finally, the
unconnected graph aims to observe how much the classification MLP contributes to the
architecture. The main idea behind this is that the graph filters layers do not learn any-
thing from an unconnected graph, so the MLP is the only part of the GNN which actually
learns.
When using the GCAT of EdgeNet, the experiment with the fully connected graph should
be interpreted differently compared to the GCNN. GCAT/EdgeNet learn shift operator
matrix S based on the input adjacency matrix A. For a fully connected graph, each en-
try is A(i , j) = 1 for each vertex i , j = 1, . . . , N . If we assume that S can be learned such
that S(i , j) ≈ 0 for any pair of vertices i , j , this implies that GCAT and EdgeNet are able
to learn graph representations of the data. For this reason, we also include an additional
experiment for those architectures where we add L1 regularization to the loss function of
our model. The L1 regularization penalizes having large values for the learnable param-
eters. This encourages our model to learn more sparse graphs. The loss function using
L1 regularization can be defined as:

C E(Y, Ŷ) =− 1

P

P∑
n=1

C∑
c=1

ync log(ŷnc)+λ|Θ| (5.3)

where |Θ| is the sum of all learnable parameters and λ is the regularization parameter.

For the DPAv4 dataset, we perform the ablation test on each different architecture:
GCNN, GCAT and EdgeNet. For the ASCAD dataset we only perform the ablation test on
the GCNN architecture using the IV leakage model.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

op
y

Ablation Study GCNN

Baseline

Cyclic

Fully Connected

Random Graph

Unconnected Graph

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

op
y

Ablation Study GCAT

Baseline

Cyclic

Fully Connected

Random Graph

Unconnected Graph

FC, L1=0.01

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

op
y

Ablation Study EdgeNet

Baseline

Cyclic

Fully Connected

Random Graph

Unconnected Graph

FC, L1=0.01

Figure 5.6: Ablation Study on the DPAv4 Dataset for different architectures

5.6. ABLATION STUDY

5

47

Graph type µ σ min max
Baseline 14.0 2.1 12.0 18.0

Cyclic Graph 16.8 4.2 11.0 25.0
Fully Connected Graph 921.5 132.07 634.0 1001.0

Random Graph 14.3 2.8 11.0 21.0
Unconnected Graph 22.8 3.8 18.0 30.0

Table 5.7: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as
the lower and upper bound for the ablation study using the GCNN architecture. Runs which did not converge
below this threshold are given the value 1001.

From the results in Table 5.7, we see that our model performs considerably worse on
the fully connected graph. This is to be expected as a GCNN using an FC graph would
convolve every node equally, resulting in oversmoothing. Secondly, the performance
of the other graphs (baseline, cyclic, random) is a bit better compared to the uncon-
nected graph. This shows that the classification MLP can solve the problem without
using graph filter layers. Nevertheless, the differences in performance between the un-
connected graph and the others show that the graph filter layers contribute something
to the model. However, this difference is relatively small, so we must conclude that the
classification MLP is a critical component of our model concerning performance when
considering the DPAv4 dataset and the GCNN architecture.
It is noteworthy that the random graph has a similar performance as our baseline graph.
This might imply that the quality of our graph generation method is not very good since
it has comparable performance to a randomly generated graph. However, the contribu-
tion of the MLP seems to be dominant in this ablation study. Furthermore, we already
noted that this dataset is easy to solve. So it is likely that the dataset is too easy for differ-
ences in the graphs to matter. In that case, any graph which is not sabotaging our model
(like the fully connected graph) would be sufficient to help the MLP solve the problem.
Since the ASCAD dataset is more difficult to solve, we expect that the differences in the
suitability of the graphs will be more pronounced.
In Figure 5.6 we see the ablation study on the GCAT and EdgeNet architectures. This
reinforces our belief that GCAT is not a good fit for our problem, as the unconnected
graph has the same performance as our baseline. This means that the GCAT filters do
not add anything useful to our model. The results for the EdgeNet ablation study are
more fruitful. We see that both experiments using the fully connected graph have the
best performance. This suggests that the EdgeNet can learn a graph that can outperform
a pre-generated graph. An obvious disadvantage is that the number of learnable param-
eters (and run-time complexity) of the EdgeNet is dependent on the number of edges,
which is the square of the number of nodes when considering a fully connected graph.

5

48 5. NUMERICAL EXPERIMENTS

0 2000 4000 6000 8000 10000

Number of Traces

0

25

50

75

100

125

150

175

G
u

es
si

n
g

E
n
tr

o
p
y

Ablation Study GCNN

Baseline

Cyclic

Fully Connected

Random Graph

Unconnected Graph

0 2000 4000 6000 8000 10000

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

o
p
y

Ablation Study GCNN (Conv)

Baseline

Cyclic

Random Graph

Unconnected Graph

Figure 5.7: Ablation Study on the ASCAD Dataset for the GCNN architecture. (left) Ablation study using all
instances; (right) Ablation study using only convergent instances

Graph type µ σ min max % conv
Baseline 6181.91 4460.40 242.0 10001.0 45.5%

(Conv. only) 1599.0 2294.28 242.0 6157.0 -
Cyclic Graph 8711.67 2407.38 2369.0 10001.0 25%
(Conv. Only) 4843.67 1798.15 2369.0 6588.0 -

Fully Connected Graph 10001.0 0.0 10001.0 10001.0 0%
Random Graph 993.4 301.6 594.0 1646.0 100%

(Conv. Only) 993.4 301.56 594.0 1646.0 -
Unconnected Graph 9247.09 2384.07 1708.0 10001.0 9.1%

(Conv. Only) 1708.0 0.0 1708.0 1708.0 -

Table 5.8: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

Figure 5.7 shows the results of the ablation test for the ASCAD dataset using the IV
leakage model. The most outstanding result is that the random graph manages to con-
verge for all instances. Another important result is that the unconnected graph con-
verges for some instances. This implies that the classification MLP is an important com-
ponent in our model concerning performance. Compared to the DPAv4 dataset, the
classification MLP appears to be less critical as the choice of the graph influences the
performance and the number of convergent instances.
When we look at Table 5.8, we notice that the performance on the cyclic graph is worse,
but otherwise, the baseline, random and unconnected graph seem to have a compara-
ble performance. The performance of the unconnected graph being similar to the other
graphs is a strong indication that the power of our model is derived mainly from the
classification MLP. However, we can see that the unconnected graph does not converge
as often as compared to the other graphs. So this means that the graph filters are some-
how contributing to the performance.
It is of note that the random graph seems to be remarkably stable as it converges in every
case. From a graph learning perspective, it is rather strange for a random graph to have
better performance (with respect to convergent instances) than a graph with a structure
that is more representative of the original data. While it could be argued that the graph

5.7. HYPER-PARAMETER ANALYSIS

5

49

generation method we chose is not representative of the underlying structure, Figure 4.1
clearly shows a distinct pattern. Considering that the data we are using has a temporal
structure and the pattern resembles a cyclic graph, the graph that we generate is at the
very least a reasonable approximation of the underlying structure. This is to say; a cyclic
graph is the graph representation of a time series. Nevertheless, while the random graph
is devoid of inherent meaning, it still contains useful properties. The most noteworthy
one is that the random graph is connected on a global scale as all edges are generated
randomly. The graph that we generate is connected mostly locally as Figure 4.1 shows.
If the data functions on a global scale, rather than on a local scale, one would expect a
globally connected graph to perform better. So the performance of the random graph
might indicate that data functions more on a global rather than local scale.
Another thing to consider is that the classification MLP seems to have a considerable
contribution towards the power of our model. So it might be prudent to consider the
MLP as the main component of our architecture and the GNN layers as a feature extrac-
tion component. In that case, we could consider the random graph filter as having a reg-
ularizing influence, as it combines random features and appears to improve the stability.
The baseline graph filter has less of a regularizing effect. This is logical as we see that the
baseline graph is connected chiefly locally. However, when we filter our non-converging
instances, the baseline performs better, so it has more of an enhancing function.

5.7. HYPER-PARAMETER ANALYSIS

In this Section, we perform hyper-parameter analysis for several hyper-parameters. First,
we perform hyper-parameter analysis on the DPAv4 dataset for the number of features F
and the number of edges per nodes Ne . Next, we will perform hyper-parameter analysis
for Ne for the ASCAD dataset and the loss rate LR. Finally, we try to increase the complex-
ity of the ASCAD model by using higher values for the number of features F and layers L.

0 20 40 60 80 100

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

o
p
y

F

F=1

F=2

F=4

F=8

F=16

F=32

F=64

F=128

0 20 40 60 80 100

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

o
p
y

Ne

N=1

N=2

N=5

N=8

N=10

N=16

Hyperparam Analysis DPAv4

Figure 5.8: Hyper-parameter analysis on the DPAv4 dataset for number of features using the GCNN architec-
ture F (left) and number of edges per nodes Ne (right)

5

50 5. NUMERICAL EXPERIMENTS

F µ σ min max
1 909.1 275.7 82.0 1001.0
2 346.2 428.8 50.0 1001.0
4 40.8 8.8 28.0 55.0
8 25.3 7.2 16.0 43.0

16 21.2 4.4 15.0 28.0
32 19.8 3.6 16.0 28.0
64 23.0 8.0 15.0 42.0

128 27.3 13.6 15.0 56.0

Ne µ σ min max
1 40.1 18.4 19.0 85.0
2 31.2 9.1 21.0 53.0
5 43.3 10.5 23.0 64.0
8 219.0 262.8 94.0 1001.0

10 214.7 193.6 109.0 787.0
16 860.0 281.4 172.0 1001.0

Table 5.9: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as the
lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

The results in Figure 5.8 show clearly that for very low values of F , the guessing en-
tropy does not consistently converge to zero. It also shows that for the other values,
increasing the number of features gives diminishing returns quickly . In fact, Table 5.9
shows that the performance of very high values of F decreases. This is because too many
features overcomplicate the model. This leads to the model overfitting more on the train-
ing data which explains the slightly worse performance. Considering that the runtime
complexity is quadratic concerning F , it can be desirable to sacrifice minor performance
to gain in speed. This is why we have chosen a lower F for our ASCAD models, under the
assumption that the behavior concerning the number of features is the same for both
datasets.
We observe that from Ne = 8 onward, having a higher number of edges per node is detri-
mental for the performance. Since our graph generation algorithm has a fixed number
of edges per node, it will inevitably add low-quality edges if the fixed number of edges
is high enough. Even when disregarding the quality of the edges, this graph is relatively
small (50 nodes). Having a (relatively) large number of edges would oversmooth the
graph without a mechanism to discriminate between edges. We can observe this in the
ablation study in Section 5.6 where the performance of the GCNN on a fully connected
graph is abysmal. On the other hand, the performance of the GCAT and EdgeNet ar-
chitectures (which can discriminate between edges) is not as bad when using the fully
connected graph.
We have chosen to relocate the results for the hyper-parameter analysis for the number
of layers L and filter order K , to the Appendix. The reason for this is that those results are
fairly straightforward and are not particularly interesting for analysis.

5.7. HYPER-PARAMETER ANALYSIS

5

51

0 2000 4000 6000 8000 10000

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

o
p
y

Hyperparam Analysis

E=5

E=10

E=25

E=50

0 20 40 60 80 100

Epochs

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

C
E

L
os

s

Loss Rate

E=5

E=10

E=25

E=50

Ne

Figure 5.9: Hyper-parameter analysis on the ASCAD dataset for the number of edges per node Ne using the
GCNN architecture and IV leakage model. (left) Results for different numbers of edges using only convergent
instances; (right) Loss curves for different numbers of edges using only convergent instances

Ne µ σ min max % conv
5 1599.0 2294.3 242.0 6157.0 45.5%

10 555.0 526.1 213.0 1464.0 33.3%
25 284.0 20.0 264.0 304.0 16.7%
50 272.5 22.2 238.0 298.0 40.0%

100 - - - - 0.0%

Table 5.10: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are not included.

When we look at Figure 5.9, it seems that a higher number of edges results in faster
convergence. That is until a certain limit as having too many edges causes the graph not
to converge at all. When we look at Table 5.10, we see some interesting things. First, both
the variance and the mean tend to decrease as the number of edges increases. while the
percentage of convergent instances also decreases. This pattern breaks for Ne = 50: the
variance gets slightly more, but the rate of convergent runs is a lot higher than Ne = 25.
So when we compare the results of Ne = 50 with Ne = 5, Ne = 50 has a better performance
at the cost of having a lower rate of successful convergences.
When we look at the losses for only the instances which converge in Figure 5.9, we see
something interesting. All the losses seem to converge to the same value again. Fur-
thermore, the loss for Ne = 50 jumps to this value almost instantly, similar to Ne = 25.
Note that this behavior is very similar to the behavior shown by the loss curve of the ran-
dom graph for the IV leakage model (Figure 5.7). Consider that we generate our graph
by calculating the correlation between each pair of nodes and take the n closest ones as
neighbors. If n is sufficiently large, then it is inevitable that some of the selected neigh-
bors have a low correlation. So in that case, the neighbors might as well be selected
randomly. So it is likely that a part of the edges which are generated for Ne = 50 are for all
intents and purposes generated randomly. This explains why it shows behavior similar
to the random graph.

5

52 5. NUMERICAL EXPERIMENTS

0 2000 4000 6000 8000 10000

Number of Traces

60

80

100

120

140

160

180

200

G
u

es
si

n
g

E
n
tr

o
p
y

Hyperparam Analysis

LR=1

LR=0.1

LR=0.01

LR=0.001

LR=0.0001

LR=0.00001

0 20 40 60 80 100

Epochs

100

102

104

106

108

C
E

L
os

s

Loss Rate

LR=1

LR=0.1

LR=0.01

LR=0.001

LR=0.0001

LR=0.00001

LR

Figure 5.10: Hyper-parameter analysis on the ASCAD dataset for the learning rate.(left) Results for different
learning rates ; (right) Loss curves for different learning rates

When we look at Figure 5.11 , we see that only for the default learning rate (10−3)
there is a convergent curve.3. When looking at the losses. we observe that for higher
learning rates, the losses jump to the same value almost instantly. We see that the lower
learning rates are slowly descending, but it appears that it will take a long time before
they reach zero. Furthermore, there is no guarantee that using a lower learning rate will
enable our model to reach a loss of zero.

Based on this experiment, we cannot say for sure whether our model gets stuck in
a local optimum or that our model is finding the global optimum. It is possible that
increasing the number of epochs while lowering the learning rate may result in the loss
eventually converging to zero. However, lower values for the learning rate make a model
more inclined to get stuck in local optima, so this seems unlikely.

0 2000 4000 6000 8000 10000

Number of Traces

0

10

20

30

40

50

60

70

80

G
u

es
si

n
g

E
n
tr

o
p
y

ASCAD IV Higher Complexity

Baseline

L=4

L=5

F=32

Figure 5.11: Hyper-parameter analysis on the ASCAD dataset for number of features F and number of layers L

3We did not include a table with numerical results since all results except the baseline were identical: no con-
vergent instances

5.8. DISCUSSION

5

53

Setup µ σ min max % conv
Baseline 1599.0 2294.28 242.0 6157.0 45.5%

L = 4 - - - - 0%
L = 5 289.0 0.0 289.0 289.0 12%

F = 32 361.3 62.4 300.0 447.0 30%

Table 5.11: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are not included.

The results in Figure 5.11 and Table 5.11 show that the more complex models do not
increase the number of convergent instances. In fact, adding more layers or features
actually reduces the percentage of converging runs. When we ignore the outlier in the
baseline, the performance of the more complex models is similar to that of our baseline.
So increasing the complexity of our graph convolutional layers has little effect on the
performance. So it is unlikely that the GCNN is not complex enough to solve this prob-
lem.
When working under the assumption that the MLP is the main component, it is to be
expected that increasing the complexity of the GNN components would not increase the
performance. However, when we increase the number of features F , we also increase the
complexity of the MLP as the number of input nodes is dependent on F . And we expect
that increasing the complexity of the MLP would improve the performance.

5.8. DISCUSSION
Our experiments have shown with the ablation studies that the unconnected graph has
comparable performance to other graphs and that the IV leakage model outperforms
the HW leakage model. Both of these findings strongly suggest that the classification
MLP is the primary component of our model. Nevertheless, for the DPAv4 dataset we
observe that for the GCNN and EdgeNet architectures, both the random graph and our
generated graph have higher performance compared to the unconnected graph. For the
ASCAD dataset, we observe that the unconnected graph has a very low rate of convergent
instances than the other graphs. So we can conclude that while the graph convolutional
filter layers are not the main component of our model, they improve our model’s power.

We observe that for the ASCAD dataset, only the randomly generated graph consis-
tently converges. Since this happens very consistently for multiple experiments (see Ta-
ble B.15), we rule out that this happens by coincidence. At first glance, it seems weird
that a randomly generated graph performs better than other graphs grounded in the
structure of the data. However, we acknowledge one major difference between the ran-
dom graph and the other types of graphs which we think is the leading cause: the other
graphs are connected chiefly on a local level, while the random graph is connected on
a global level since the edges are generated randomly. If our data functions on a global
scale rather than a local scale, this would explain how the randomly generated graph
performs better than the other graphs.

When trying to break the ASCAD dataset, our model could not consistently converge
the guessing entropy towards zero. Increasing the complexity of our model by adding

5

54 5. NUMERICAL EXPERIMENTS

more layers or features did not appear to resolve this problem nor was this problem
caused by a (un)lucky selection of samples in the training set. The fact that increasing
the number of graph convolutional layers or features did nothing for the performance is
another support for our explanation that the MLP is the main component of our model.
Our model is well suited to solve the desynchronization countermeasure as the graph
convolution can compensate for the temporal diffusion of our data. We also expect that
we can counteract higher rates of desynchronization by increasing the filter order or the
number of edges per node.
While we performed an ablation study and analyzed the behavior of changing the num-
ber of edges per node, we are still not confident to say something conclusive about the
quality of our generated graph. On the one hand, the ablation study shows that our graph
performs better than the cyclic graph and the fully connected graph (for the GCNN ar-
chitecture). On the other hand, we also see that our graph has a similar performance to
the random graph, and the random graph vastly outperforms all other graphs concern-
ing consistent convergence. We also assume that the models applied on both datasets
have the same behavior, given the explicit differences like the number of features and the
use of masking. This may not necessarily be true and the DPAv4 dataset could behave
differently in some aspects relative to the ASCAD dataset.

It is still not perfectly clear why our model only converges sometimes for the ASCAD
dataset using the IV leakage model and GCNN architecture. We think that the incon-
sistency is caused by the initialization of the learnable parameters. To confirm this, we
would need to keep track of all learnable parameters and analyze them to see if we can
find a difference between the parameters for the convergent and non-convergent in-
stances. Another subject we need to build upon further is that the classification MLP is
the main component of our model. Our confidence in this theory would be strength-
ened when an MLP with increased complexity (i.e., adding more layers to the MLP)
would make our model converge consistently. Something else which we need to look
in is why the performance of the random graph is better with regard to consistency. We
have proposed earlier this section that this is likely cause by the random graphs being
more globally connected compared to the other graphs. To verify this, we would need
to expand the ablation studies with a graph which is randomly connected locally and
another graph which is non-randomly connected globally.

6
CONCLUSION

In this chapter, we conclude the research we have conducted in our thesis and give point-
ers towards the direction of future work in this subject. In Section 6.1 we provide a brief
summary of our research. In Section 6.2 we discuss how our research has answered our
research questions. In Section 6.3 we discuss possible directions for future research con-
cerning this subject based on the findings in our research. In Section 6.4 we examine the
limitations we encountered in our research. In Section 6.5 we look at the broader impact
of our research.

6.1. THESIS SUMMARY
In this thesis, we proposed a method to translate a side-channel problem to a graph sig-
nal classification problem and solve this problem using graph neural networks.
In Chapter 1 we introduced the side-channel problem as well as the context of the side-
channel problem. Furthermore, we presented our research questions and gave an overview
of the chapters of our thesis. In Chapter 2 we elaborate on the background required for
understanding our thesis. We first introduce the notation used. Next, we explain the AES
cryptographic algorithm we plan to attack and techniques used in side-channel analysis.
We continue with introducing concepts from graph theory that are relevant to our the-
sis. Finally, we examine several graph neural network architectures that are candidates
for use in side-channel analysis.
In Chapter 3 we discuss related works. First, we discuss works related to side-channel
analysis. Next, we discuss works on graph neural networks. Finally, we look at other ap-
plications of graph neural networks in the cyber security domain.
In Chapter 4 we describe our approach to translate the SCA problem into a graph signal
processing problem. First, we explain how we are building a graph from the traces and
next we describe how we use the graph in a graph neural network to solve the graph sig-
nal classification problem. Next, we show some examples of how those generated graphs
look like.
In Chapter 5 we discuss our experiments. We performed several experiments to test the

55

6

56 6. CONCLUSION

performance of our model on different architectures and datasets. The results show that
our model has trouble with consistently converging to a guessing entropy of zero for the
ASCAD dataset. The ablation studies we’ve performed show that the multi-layer per-
ceptron used for classification has a major contribution to the performance. They also
show that using a random graph instead of the graph we described in Chapter 4 allows
for our model to converge consistently for the IV leakage model. However, closer exam-
ination shows that the training loss does not decrease when learning a model using a
random graph. Based on the results of the experiments, we conclude that the primary
component of our model is the classification MLP and that the graph filter layers play a
supporting role by providing feature extraction.

6.2. ANSWERS TO THE POSED RESEARCH QUESTIONS
RQ1. How can the SCA problem be rephrased into a graph machine learning problem and

which methods can we use to generate a graph based on a set of traces?

In Chapter 4, we have rephrased the SCA problem into a graph machine learning
problem by treating it as a graph signal classification problem. We treat the traces
as graph signals and the corresponding time instances/features of the traces as the
nodes of the graph. We generated the edges by computing the similarity between
the nodes as the correlation between the node features and draw edges by taking
the Ne closest nodes as neighbors for each node.

RQ2. How does a graph neural network compare to state-of-the-art machine learning
SCA techniques?

When we compare to the results in works such as [1] or [51], our results are con-
siderably worse for the ASCAD dataset. The main bottleneck in our results is that
the guessing entropy only converges towards zero half of the time. We believe that
the leading cause behind this behavior is that our model gets stuck easily in local
optima depending on the random initialization of the learnable parameters of our
model.

(a) How can we apply a graph neural network to reduce the number of learnable
parameters without degrading performance?

When we look at the results of the hyperparameter experiments for the DPAv4
dataset in Section 5.7 and the Appendix, we see that we can reduce the num-
ber of features F , filter order K , and the number of layers L to some degree
without an enormous impact on the performance. Since the hyperparame-
ters mentioned above define the number of learnable parameters, reducing
these hyperparameters would reduce the number of learnable parameters
without (considerably) degrading performance. However, these experiments
were not performed for the ASCAD dataset as those experiments would take
quite some time. Furthermore, the performance on the ASCAD dataset was
already not great, so we did not see the point in degrading that performance
even further. The results in Section 5.7suggest that increasing the number of

6.2. ANSWERS TO THE POSED RESEARCH QUESTIONS

6

57

hyperparameters does not influence the performance, so the reverse is also
likely the case for the ASCAD dataset. There is also the problem that the clas-
sification MLP heavily contributes to the number of learnable parameters
when using the IV leakage model. This ensures a hard bottom limit of the
number of learnable parameters in our model. This limitation is less present
when using the HW leakage model, but the results for that model were con-
siderably worse.

(b) What is the influence of countermeasures on graph neural networks perfor-
mance?

For the DPAv4 dataset, we can clearly see that our model finds it far more
challenging to work with the masked version than the unmasked one as is
shown by Figures 5.1 and 5.3. While we did not test this for the ASCAD dataset,
it seems like a safe assumption that this is the case for the ASCAD dataset as
well. When we consider the desynchronization countermeasure, we can see
in Figure 5.3 that our model has a bit more difficulty with the desynchronized
data. However, the difference in performance is less compared to the mask-
ing countermeasure. This is since we use a convolutional graph filter in our
architecture on a graph with a connective pattern resembling the traces’ tem-
poral connection. So our model can somewhat compensate for the desyn-
chronization by convolving over the entire neighborhood.

(c) How does a graph neural network perform on different leakage models?

All the experiments show that the IV leakage model performs better com-
pared to the HW leakage model. The ablation studies suggest that the clas-
sification MLP has a considerable contribution towards the performance of
the model. Using the IV as the leakage model means a higher number of
classes (256) than the number of classes when using the HW leakage model
(9). Since the complexity of the classification MLP is dependent on the num-
ber of classes, this means that using the IV leakage model would result in
a more complex classification MLP. So we attribute the difference in perfor-
mance to the IV model having a more complex classification MLP.

(d) Which graph neural network architectures are (most) suitable to solve the graph
machine learning problem?

For the DPAv4 dataset, we can conclude that the GCAT is in general the worst-
performing architecture. It appears that the attention mechanism is not very
well suited to our problem with the data and graph we use. The main prob-
lem is that the attention mechanism ignores many other edges which are es-
sential for our model. The GCNN and EdgeNet architectures are similar in
performance, but the GCNN has a far lower time and parameter complexity
than the EdgeNet.
The results for the ASCAD dataset show that only the GCNN delivers good
performance. Since the GCAT also performed worse on the more straight-
forward dataset, it is not surprising that it performs mediocre on the ASCAD

6

58 6. CONCLUSION

dataset. That the EdgeNet architecture performs poorly is likely because it
has too many learnable parameters, making it difficult to find a good solu-
tion.

6.3. FUTURE WORK

As far as we are aware, this is the first work that applies graph neural to a side-
channel analysis problem. As such, there are multiple directions for future re-
search. In this section, we discuss several subjects to focus on for future research.

6.3.1. USING A DIFFERENT GRAPH GENERATION METHOD

In this thesis, we have only used a single method to generate a graph. Although we
have suggested some variations of this generation method, we have not performed
experiments to compare the performance of different graph generation methods.
Since the ablation studies show the difference in performance for graphs gener-
ated using our method and a randomly generated graph, there could be room
for improvement for a more sophisticated graph generation method. In the abla-
tion study for the EdgeNet architecture, the EdgeNet architecture can learn graphs
when given a fully connected graph as input. So it would also be an option to have
a learnable graph generation method based on the edge varying filter. The work in
[47] shows another interesting method to achieve this by generating a new graph
for each layer based on the features of the previous layer. We expect that using
a different graph generation method to get a higher quality graph could help to
increase the performance of the graph convolutional filters and reduce the impor-
tance of the classification MLP.

6.3.2. COMBINING GNN WITH EXISTING SCA ARCHITECTURES

We have proposed that the main component of our model is the classification MLP
at the end and that the graph convolution filter layers(GCFL) play a supporting
role, which can be considered as feature extractors. If we consider a GCFL with the
same number of input features as output features, it would require minor modi-
fication to an existing framework to add a graph convolution filter layer. Further-
more, this GCFL would have only K +1 learnable parameters, so it has a minimal
influence on the total complexity of the given framework. Therefore, we think that
it would be interesting to add a GCFL to existing SCA architectures and see if this
would increase the performance with a minimal increase of learnable parameters.
Our graph generation method is agnostic to the dataset, so we can easily generate
graphs for a multitude of different datasets.

We have shown that the GCNN is well-suited for solving the desynchronization
countermeasure as it can counteract the temporal diffusion of the measured data.
Furthermore, if we know the nature of the desynchronization, we could adapt our
graph to better compensate for the desynchronization. For example, a desynchro-
nization over a larger timeframe would require a higher number of edges than

6.4. LIMITATIONS

6

59

a smaller desynchronization. Therefore, we expect that adding a GCFL will help
solve datasets that make use of the desynchronization countermeasure.

6.3.3. USE ANOTHER GNN PARADIGM

In our thesis, we apply graph neural networks to an SCA problem by transforming
the given SCA problem into a graph signal processing problem. However, we also
considered other methods which can be used to apply GNNs to SCA: In our model,
the vertices in the graph represent the time instances. However, we could also have
the vertices in the graph represent the individual traces. Since we want to classify
(i.e., find the associated key) the traces, this would give us a node classification
problem instead of a graph signal classification problem. As we already mentioned
in Section 2.4, we can also use graph neural networks for node classification. The
main challenge for this method would be to generate the graph. For node classi-
fication, the underlying assumption is that nodes tend to have the same class as
their neighbors. This means that the graph generation method should reflect this
to get good results. This approach is explained in more detail in the Appendix C.1.

6.4. LIMITATIONS

The main limitations in our research result from the fact that this is the first work
using graph neural networks for side-channel analysis. The first limitation that we
identified is that it is difficult to assess whether a generated graph is suitable for our
problem. This limitation becomes more complex if we consider that the suitability
of a graph also depends on the choice of architecture. This is illustrated in the ab-
lation study in Section 5.6, where we see that the fully connected graph induces a
terrible performance for the GCNN but works nicely with GCAT and EdgeNet. We
dealt with this limitation by choosing a single graph generation method which we
found reasonable and accepting that it could be a low-quality graph. This would
be alleviated by using architectures with mechanisms to correct faulty edges, such
as GCAT and EdgeNet.
Another limitation we encountered from our research being novel is that it was
difficult to assess the results of our model. While we could compare the perfor-
mance of our model to state-of-the-art, it was complicated to determine whether
particular behavior was native to our model or that there was a fault in the im-
plementation. This resulted in us having to perform additional experiments and
analysis, such as examining the validation and training losses, to get more insight
into our model’s behavior.

6.5. BROAD IMPACT

Graph convolutional neural networks are interesting alternatives for multi-layer
perceptrons or regular convolutional neural networks for side-channel analysis.
While the results of our research do not show that we should replace MLPs and

6

60 6. CONCLUSION

CNNs with GNNs, it is interesting to consider using graph filter layers in combina-
tion with existing SCA architectures. Graph filter layers allow architectures to have
a more fine-tuned convolution defined by a graph rather than just the ordering of
the features.
More broadly, our method is not constrained to just side-channel analysis. Our
graph generation method works for any dataset which consists of feature vectors.
This allows us to convert any arbitrary machine learning problem based on a fea-
ture vector to a graph signal processing problem. While this is not suitable for
all problems, there are some problems for which this approach may be promis-
ing. A good example would be any problem using time series like our original SCA
problem since a time series has a natural graph representation in the correspond-
ing cyclic graph. We can then enhance this cyclic graph to get a more fine-tuned
graph representation of this time series.

REFERENCES

6

61

REFERENCES

[1] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ascad
database. Journal of Cryptographic Engineering, 10, 11 2019.

[2] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

[3] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures. In
Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and
Embedded Systems – CHES 2017, pages 45–68, Cham, 2017. Springer Interna-
tional Publishing.

[4] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Pop-
ularity prediction on social platforms with coupled graph neural networks.
In Proceedings of the 13th International Conference on Web Search and Data
Mining, pages 70–78, 2020.

[5] Rohatgi P Chari S., Rao J.R. Template attacks. In Paar C. Kaliski B.S., Koç .K.,
editor, Cryptographic Hardware and Embedded Systems - CHES 2002. CHES
2002. Lecture Notes in Computer Science, vol 2523. Springer Berlin Heidelberg,
2003.

[6] Anshika Chaudhary, Himangi Mittal, and Anuja Arora. Anomaly detection
using graph neural networks. In 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMITCon), pages 346–
350. IEEE, 2019.

[7] Jean-Sébastienand Dabbous Nora Clavier, Christopheand Coron. Differen-
tial power analysis in the presence of hardware countermeasures. In Çetin K.
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, pages 252–263, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[8] Joan Daemen and Vincent Rijmen. The block cipher rijndael. volume 1820,
pages 277–284, 01 1998.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 3844–3852. Curran Asso-
ciates, Inc., 2016.

[10] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
Graph neural networks for social recommendation. In The World Wide Web
Conference, pages 417–426, 2019.

6

62 REFERENCES

[11] Fernando Gama, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro.
Convolutional neural network architectures for signals supported on graphs.
IEEE Transactions on Signal Processing, 67(4):1034–1049, 2019. Accepted au-
thor manuscript.

[12] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack
on a masked implementation of aes. In 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 106–111. IEEE, 2015.

[13] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Applied Cryptography and Network Security,
pages 239–252, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[14] Annelie Heuser and Michael Zohner. Intelligent machine homicide. In
Werner Schindler and Sorin A. Huss, editors, Constructive Side-Channel Anal-
ysis and Secure Design, pages 249–264, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[15] Gabriel Hospodar, Benedikt Gierlichs, Elke Mulder, Ingrid Verbauwhede, and
Joos Vandewalle. Machine learning in side-channel analysis: A first study. J.
Cryptographic Engineering, 1:293–302, 12 2011.

[16] Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. Edgenets:edge varying
graph neural networks, 2020.

[17] Junteng Jia and Austion R. Benson. Residual correlation in graph neural net-
work regression. Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery Data Mining, Aug 2020.

[18] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural net-
works for profiled side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(3):148–179, May 2019.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

[20] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 388–
397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[21] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Regular paper
introduction to differential power analysis. J. Cryptographic Engineering, 1:5–
27, 04 2011.

[22] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology —
CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidel-
berg.

REFERENCES

6

63

[23] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch,
and François-Xavier Standaert. Template attacks vs. machine learning revis-
ited and the curse of dimensionality in side-channel analysis. In Revised Se-
lected Papers of the 6th International Workshop on Constructive Side-Channel
Analysis and Secure Design - Volume 9064, COSADE 2015, page 20–33, Berlin,
Heidelberg, 2015. Springer-Verlag.

[24] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. pages 3–26,
12 2016.

[25] Stefan Mangard. A simple power-analysis (spa) attack on implementations of
the aes key expansion. volume 2587, pages 343–358, 03 2003.

[26] Olivier Markowitch, Stephane Medeiros, Gianluca Bontempi, and Liran Ler-
man. A machine learning approach against a masked aes. volume 5, 11 2013.

[27] Thomas S. Messerges, Ezzat A. Dabbish, and Robert H. Sloan. Examining
smart-card security under the threat of power analysis attacks. IEEE Transac-
tions on Computers, 51(5):541–552, 2002.

[28] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden leakages.
In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied
Cryptography and Network Security, pages 324–342, Cham, 2014. Springer In-
ternational Publishing.

[29] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classifica-
tion over a large number of classes. In 2008 Sixth Indian Conference on Com-
puter Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008.

[30] Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai Wool.
Algebraic side-channel attacks beyond the hamming weight leakage model.
In International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 140–154. Springer, 2012.

[31] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack versus
bayes classifier. Journal of Cryptographic Engineering, 7:343–351, 2017.

[32] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with ma-
chine learning for side-channel evaluations. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2019(1):209–237, Nov. 2018.

[33] Stjepan Picek, Annelie Heuser, Alan Jovic, and Axel Legay. Climbing down
the hierarchy: Hierarchical classification for machine learning side-channel
attacks. In Marc Joye and Abderrahmane Nitaj, editors, Progress in Cryptol-
ogy - AFRICACRYPT 2017, pages 61–78, Cham, 2017. Springer International
Publishing.

6

64 REFERENCES

[34] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,
Domagoj Jakobovic, and Nele Mentens. Side-channel analysis and machine
learning: A practical perspective. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 4095–4102, 2017.

[35] Aikaterini Protogerou, Stavros Papadopoulos, Anastasios Drosou, Dimitrios
Tzovaras, and Ioannis Refanidis. A graph neural network method for dis-
tributed anomaly detection in iot. Evolving Systems, pages 1–18, 2020.

[36] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
Algebraic side-channel attacks on the aes: Why time also matters in dpa. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2009, pages 97–111, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[37] TELECOM ParisTech SEN research group. Dpa contest (4th edition). http:
//www.DPAcontest.org/v4/, 2013-2014.

[38] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[39] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular do-
mains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

[40] Wei Song, Heng Yin, Chang Liu, and Dawn Song. Deepmem: Learning graph
neural network models for fast and robust memory forensic analysis. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 606–618, 2018.

[41] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Annual international
conference on the theory and applications of cryptographic techniques, pages
443–461. Springer, 2009.

[42] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The world is not enough: Another look on second-order dpa. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010, pages 112–129, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[43] Elisabeth Oswald Stefan Mangard and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer, 2006.

[44] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. Success through con-
fidence: Evaluating the effectiveness of a side-channel attack. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages
21–36. Springer, 2013.

http://www.DPAcontest.org/v4/
http://www.DPAcontest.org/v4/

REFERENCES 65

[45] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks, 2017.

[46] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks: A com-
prehensive study with cautionary note. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology – ASIACRYPT 2012, pages 740–757, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[47] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. Dynamic graph CNN for learning on point clouds.
CoRR, abs/1801.07829, 2018.

[48] Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li, Guilherme Perin, Lejla
Batina, and Stjepan Picek. On the attack evaluation and the generalization
ability in profiling side-channel analysis. Cryptology ePrint Archive, Report
2020/899, 2020. https://eprint.iacr.org/2020/899.

[49] Jiaqi Yan, Guanhua Yan, and Dong Jin. Classifying malware represented as
control flow graphs using deep graph convolutional neural network. In 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 52–63. IEEE, 2019.

[50] Yuyang Ye, Hengshu Zhu, Tong Xu, Fuzhen Zhuang, Runlong Yu, and Hui
Xiong. Identifying high potential talent: A neural network based dynamic so-
cial profiling approach. In 2019 IEEE International Conference on Data Min-
ing (ICDM), pages 718–727. IEEE, 2019.

[51] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36,
Nov. 2019.

[52] Muhan Zhang and Yixin Chen. Link prediction based on graph neural net-
works, 2018.

[53] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program se-
mantics via graph neural networks. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 32, pages 10197–10207. Curran Asso-
ciates, Inc., 2019.

https://eprint.iacr.org/2020/899

A
CODE

The code which has been used for this thesis can be found at https://github.
com/sirpandemona/Thesis

67

https://github.com/sirpandemona/Thesis
https://github.com/sirpandemona/Thesis

B
ADDITIONAL RESULTS

In this chapter we present the results which we were not able to fit into the body of
our thesis.

B.1. COMPARISON ARCHITECTURES

In this section we give some more background information about the different ar-
chitectures we use. Table B.1 shows the values for the hyperparameters we used for
each setting. Table B.2 shows the number of learnable parameters for the differ-
ent architectures. We chose to reduce the number of hyperparameters somewhat
for the ASCAD dataset for performance related reasons. In Table B.3 we show the
average runtime for each architecture.

Architecture F L K R
GCNN(DPAv4) 64 4 2 -
GCNN(ASCAD) 16 4 2 -
GCAT(DPAv4) 8 3 5 5
GCAT(ASCAD) 4 2 4 1

EdgeNet 4 2 3 -

Table B.1: Best hyperparameter settings for each architecture

69

70 B. ADDITIONAL RESULTS

Architecture #learnable parameters
GCNN 49152

GCAT(DPAv4) 1392
GCAT(ASCAD) 208

EdgeNet(DPAv4) 30,400
EdgeNet(ASCAD) 425,600

MLP used #Classes #Nodes #learnable parameters
DPAv4(HW) 9 50 450×F
DPAv4(IV) 256 50 12800×F

ASCAD (HW) 9 700 6300×F
ASCAD (IV) 256 700 179200×F

Table B.2: Number of learnable hyperparameters for each architecture

Dataset GCNN GCAT EdgeNet GC-EdgeNet
DPAv4 4 min 9 min 5.5 min 3.5 min
DPAv4 (IV) 29 min 120 min 108 min 19 min
ASCAD 13 h 13 h 16 h 11 h
ASCAD (IV) 12 h - - -
ASCAD
Desync

16 h 17 h >3 d 15 h

ASCAD
Desync (IV)

17 h - - -

Table B.3: Runtime for each architecture per dataset

B.2. HYPERPARAMETER ANALYSIS

In this Section, we present more results of our hyperparameter analysis.

FILTER ORDER K

0 20 40 60 80 100

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

o
p
y

K=1

K=2

K=3

K=4

K=5

HP-Tuning K

Figure B.1: Hyperparameter tuning over the filter order using the DPAv4 dataset for the GCNN Architecture

B.2. HYPERPARAMETER ANALYSIS 71

K µ σ lowest highest
1 145.7 285.1 45.0 1001.0
2 34.9 8.8 23.0 53.0
3 38.3 12.1 23.0 62.0
4 402.4 400.1 68.0 1001.0
5 950.2 103.5 703.0 1001.0

Table B.4: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as the
lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

In Figure B.1 and Table B.4 we see the results of the hyperparameter analysis on
the filter order K . As one can see, the performance of the model decreases when
K is too high as it oversmoothes.

NUMBER OF LAYERS L

0 20 40 60 80 100

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

L=1

L=2

L=3

L=4

L=5

HP-Tuning L

Figure B.2: Hyperparameter tuning over the number of layers using the DPAv4 dataset for the GCNN Architec-
ture

L µ σ lowest highest
1 41.2 11.5 31.0 68.0
2 33.6 8.5 24.0 55.0
3 30.8 8.4 23.0 46.0
4 38.5 13.3 26.0 63.0
5 64.4 38.1 34.0 162.0

Table B.5: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as the
lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

In Table B.5 and Figure B.2 we show the results of the hyperparamter analysis on
the number of layers L. The results are all relatively close, so the number of layers
does not appear to be critical for the performance.

72 B. ADDITIONAL RESULTS

NUMBER OF EDGES PER NODE Ne

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

ASCAD Different number of edges

E=5

E=10

E=25

E=50

E=100

Figure B.3: Study using different number of edges for the ASCAD dataset using the GCNN architecture and HW
leakage model

Number of edges per node µ σ lowest highest
5 9935.7 195.9 9348.0 10001.0

10 10001.0 0.0 10001.0 10001.0
25 10001.0 0.0 10001.0 10001.0
50 10001.0 0.0 10001.0 10001.0

100 10001.0 0.0 10001.0 10001.0

Table B.6: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

0 20 40 60 80 100

Epochs

102

105

108

1011

1014

1017

1020

1023

C
E

L
o
ss

Losses for different numbers of edges

E=5

E=10

E=25

E=50

E=100

Figure B.4: Validation loss over the number of epochs during training using the GCNN architecture and HW
leakage model for the ASCAD dataset

Figure B.3 and Table B.6 show the results of varying the number of edges per node
for the ASCAD dataset when using the HW leakage model. Increasing the number
of edges did not improve the performance of this model. Figure B.4 shows that the
loss of our model increases exponentially relative to the number of edges.

B.3. ABLATION STUDIES 73

1
0

2000

4000

6000

8000

10000
E=5

1
0

2000

4000

6000

8000

10000
E=10

1
0

2000

4000

6000

8000

10000
E=25

1
0

2000

4000

6000

8000

10000
E=50

Traces required for convergence (Ablation ASCAD IV Different number of edges)

Figure B.5: Boxplot showing the distribution of the number of traces required for the guessing entropy to con-
verge. Study using different number of edges for the ASCAD dataset using the GCNN architecture and IV leak-
age model where only convergent instances are used

Figure B.5 shows the distribution of number of traces each individual instance re-
quired for convergence for the hyperparameter experiment on number of edges
Ne for the ASCAD dataset using the IV leakage model. We can see that a higher
number of edges correlates a tighter distribution of the results.

B.3. ABLATION STUDIES

In this section we discuss ablation studies which we did not include in the main
body of our thesis.

B.3.1. DPAV4

Graph type µ σ lowest highest
Baseline 22.9 3.4 17.0 28.0

Cyclic Graph 28.2 7.1 24.0 49.0
Fully Connected Graph 29.3 6.6 20.0 37.0

Random Graph 23.3 4.4 18.0 33.0
Unconnected Graph 22.7 3.2 18.0 29.0

FC Graph with 1Norm Loss of 0.01 29.3 7.96 17.0 44.0

Table B.7: Results for the ablation test for the GCAT architecture on the DPAv4 dataset.Table showing the mean
number of traces required to reach a guessing entropy GE < 1 as well as the lower and upper bound. Runs
which did not converge below this threshold are given the value 1001.

Table B.7 shows the result for the ablation study for the GCAT architecture on the
DPAv4 dataset. We can see that the unconnected graph has the best performance

74 B. ADDITIONAL RESULTS

(outperforming the baseline with a small margin), which strongly suggests that the
GCAT model is unsuitable for our model.

Graph type µ σ lowest highest
Baseline 11.2 2.0 5.0 20.0

Cyclic Graph 10.1 1.20 8.0 13.0
Fully Connected Graph 6.5 1.3 4.0 12.0

Random Graph 6.3 1.4 4.0 12.0
Unconnected Graph 36.9 9.5 8.0 57.0

FC Graph with 1Norm Loss of 0.01 6.1 1.4 4.0 12.0

Table B.8: Results for the ablation test for the EdgeNet architecture on the DPAv4 dataset. Table showing the
mean number of traces required to reach a guessing entropy GE < 1 as well as the lower and upper bound.
Runs which did not converge below this threshold are given the value 1001.

In Table B.8 we can see the results for the ablation study for the EdgeNet archi-
tecture on the DPAv4 dataset. We see that the unconnected graph has a consid-
erably worse performance compared to the other graphs, which suggests that the
EdgeNet model adds performance on top of the classification MLP.

B.3.2. ASCAD

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

Ablation Study ASCAD (GCNN)

Baseline

Cyclic Graph

Fully Connected

Random Graph

Identity Matrix

Figure B.6: Ablation study for the GCNN architecture using the ASCAD dataset using the HW leakage model

Graph type µ σ lowest highest
Baseline 9935.7 195.9 9348.0 10001.0

Cyclic Graph 10001.0 0.0 10001.0 10001.0
Fully Connected Graph 10001.0 0.0 10001.0 10001.0

Random Graph 10001.0 0.0 10001.0 10001.0
Unconnected Graph 10001.0 0.0 10001.0 10001.0

Table B.9: Results for the ablation test for the GCNN architecture on the ASCAD dataset.Table showing the
mean number of traces required to reach a guessing entropy GE < 10 as well as the lower and upper bound.
Runs which did not converge below this threshold are given the value 10001.

B.4. LOSSES STUDY 75

Figure B.6 and Table B.9 show the results of the ablation study on the ASCAD
dataset using the HW leakage model.

1
0

2000

4000

6000

8000

10000
Baseline

1
0

2000

4000

6000

8000

10000
Cyclic

1
0

2000

4000

6000

8000

10000
Random

1
0

2000

4000

6000

8000

10000
Unconnected

Traces required for convergence (Ablation ASCAD IV)

Figure B.7: Boxplot showing the distribution of the number of traces required for the guessing entropy to con-
verge. Ablation study for the GCNN architecture using the ASCAD dataset using the IV leakage model where
only convergent instances are used

Figure B.7 shows the distribution of number of traces each individual instance re-
quired for convergence for the ablation study for the ASCAD dataset using the IV
leakage model. We observe that the cyclic graph has the widest distribution while
the random generated graph has the tightest distribution.

B.4. LOSSES STUDY

In this Section we present the additional result for our study regarding the behavior
of the validation and training losses of our model.

0 20 40 60 80 100

Epochs

0

1

2

3

4

5

C
E

L
os

s

Losses for DPAv4 dataset(Leakage Model=HW)

GCNN(valid)

GCAT(valid)

EdgeNet(valid)

GCNN(train)

GCAT(train)

EdgeNet(train)

Figure B.8: Training and Validation losses over the number of epochs during training for different architectures
using the DPAv4 dataset for the HW leakage model

Figure B.8 show the losses for the different architectures using the DPAv4 dataset.

76 B. ADDITIONAL RESULTS

The losses for each architecture are relatively close, and are in line with the perfor-
mance of the corresponding architecture.

0 20 40 60 80 100

Epochs

0

5

10

15

20

25

30

C
E

L
os

s

Losses for ASCAD dataset(Leakage Model=HW)

GCNN(valid)

GCAT(valid)

EdgeNet(valid)

GCNN(train)

GCAT(train)

EdgeNet(train)

Figure B.9: Training and Validation losses over the number of epochs during training for different architectures
using the DPAv4 dataset for the HW leakage model

Figure B.9 show the losses for the different architectures using the ASCAD dataset
using the HW leakage model. We see that the GCAT and EdgeNet models do not
appear to learn anything, the GCNN seems to be learning, but has a initial loss
which is a lot higher. Furthermore, the loss for the GCNN also seems to converge
towards the same value as the other architectures.

0 20 40 60 80 100

Epochs

0

5

10

15

20

25

30

C
E

L
os

s

Losses for IV-leakage dataset(Model=GCNN)

DPAV4 IV(valid)

ASCAD IV(valid)

ASCAD IV (rnd-graph)(valid)

DPAV4 IV(train)

ASCAD IV(train)

ASCAD IV (rnd-graph)(train)

Figure B.10: Training and Validation losses over the number of epochs during training using the GCNN archi-
tecture and IV leakage model for different datasets and graph generation methods

In Figure B.10 we see the loss curves for the IV leakage model. The first thing that
we see is that for the DPAv4 dataset, the losses converge to zero. As we mentioned
earlier, this is the desirable behaviour of the loss curve as it implies that the model
has learned the dataset in such a way that it is able to classify all the data correctly.
Since the validation loss also converged, this implies that our model has not been
overfit on the training data.

B.5. LEARNING RATE STUDY 77

B.5. LEARNING RATE STUDY

In this Section we show the results for the study where we vary the learning rate of
our model.

0 20 40 60 80 100

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

LR=1

LR=0.1

LR=0.01

LR=0.001

LR=0.0001

LR=0.00001

DPA4 GCNN Different Learning Rates

Figure B.11: Study using different learning rates for the DPAv4 dataset using the GCNN architecture and HW
leakage model

Learning Rate µ σ lowest highest
100 1001.0 0.0 1001.0 1001.0

10−1 1001.0 0.0 1001.0 1001.0
10−2 16.3 2.7 13.0 20.0
10−3 14.0 2.8 11.0 21.0
10−4 23.8 2.9 21.0 31.0
10−5 72.0 12.0 64 84

Table B.10: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

Table B.10 and Figure B.11 show the results for our learning rate study on the
DPAv4 dataset. We observe that setting the learning rate too high will result in
our model not converging.

78 B. ADDITIONAL RESULTS

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

ASCAD GCNN Different Learning Rates

LR=1

LR=0.1

LR=0.01

LR=0.001

LR=0.0001

LR=0.00001

Figure B.12: Study using different learning rates for the ASCAD dataset using the GCNN architecture and HW
leakage model

Learning Rate µ σ lowest highest
100 10001.0 0.0 10001.0 10001.0

10−1 10001.0 0.0 10001.0 10001.0
10−2 10001.0 0.0 10001.0 10001.0
10−3 9935.7 195.9 9348.0 10001.0
10−4 10001.0 0.0 10001.0 10001.0
10−5 10001.0 0.0 10001.0 10001.0

Table B.11: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

Table B.11 and Figure B.12 show the results for our learning rate study on the AS-
CAD dataset using the HW leakage model. We observe that varying the learning
rate does not improve our rate of convergence.

0 20 40 60 80 100

Epochs

101

103

105

107

109

1011

1013

C
E

L
o
ss

Losses for different learning rates

LR=1

LR=0.1

LR=0.01

LR=0.001

LR=0.0001

LR=0.00001

Figure B.13: Validation losses over the number of epochs during training using the GCNN architecture and HW
leakage model for the ASCAD dataset.

Figure B.13 shows the losses for our learning rate study on the ASCAD dataset using
the HW leakage model. We observe that a lower learning rate results in a slower

B.6. STUDY DIFFERENCE SIZE TRAINING SET 79

convergence of the losses, which is precisely what one would expect.

B.6. STUDY DIFFERENCE SIZE TRAINING SET

In this subsection we describe a series of experiments where we vary the number
of samples used in the training set.

0 20 40 60 80 100

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

DPAv4 Size Training Set

N=625

N=1250

N=2500

N=5000

N=9000

Figure B.14: Study using different sizes of training sets for the DPAv4 dataset using the GCNN architecture and
HW leakage model

Size Training Set µ σ lowest highest
625 73.9 45.2 41.0 200.0

1250 33.5 8.96 25.0 56.0
2500 22.9 6.61 17.0 39.0
5000 15.8 3.92 12.0 26.0
9000 13.37 2.3 10.0 24.0

Table B.12: Table showing the mean number of traces required to reach a guessing entropy GE < 1 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 1001.

Figure B.14 and Table B.12 both show that the performance decreases as the num-
ber of training samples decreases. Only at the lowest number of samples we used
in our experiment, we notice a large difference with its predecessor.

80 B. ADDITIONAL RESULTS

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

ASCAD Size Training Set

N=625

N=1250

N=2500

N=5000

N=9000

Figure B.15: Study using different sizes of training sets for the ASCAD dataset using the GCNN architecture and
HW leakage model

Size Training Set µ σ lowest highest
625 10001.0 0.0 10001.0 10001.0

1250 10001.0 0.0 10001.0 10001.0
2500 10001.0 0.0 10001.0 10001.0
5000 10001.0 0.0 10001.0 10001.0
9000 9935.7 195.9 9348.0 10001.0

Table B.13: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

Table B.15 shows that when we decrease the number of training samples, our model
is not longer able to find convergent instances. Since the performance of the base-
line was already very poor, this is the expected behavior.

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

ASCAD (IV) Size Training Set

N=625

N=1250

N=2500

N=5000

N=9000

Figure B.16: Study using different sizes of training sets for the ASCAD dataset using the GCNN architecture and
IV leakage model

B.6. STUDY DIFFERENCE SIZE TRAINING SET 81

Size Training Set µ σ lowest highest percentage convergent runs
625 7378.43 2301.28 4783.0 10001.0 57.1%

1250 8392.43 1941.87 5031.0 10001.0 42.9%
2500 6323.57 4254.37 1095.0 10001.0 42.9%
5000 4803.14 4508.60 540.0 10001.0 57.1%
9000 6181.91 4460.40 242.0 10001.0 45.5%

Table B.14: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

Figure B.16 shows that the relation between the number of training samples and
performance is less straightforward compared to the results for the DPAv4 dataset.
Table B.14 shows that that there is no strong relation between the number of train-
ing samples and percentage of convergent instances.

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

ASCAD (IV) Size Training Set

N=625

N=1250

N=2500

N=5000

N=9000

Figure B.17: Study using different sizes of training sets for the ASCAD dataset using the GCNN architecture and
IV leakage model where only convergent instances are used

In Figure B.17 we ignore the instances which did not converge. This figure shows
that the lower two training sizes show similar behavior and that the higher three
training sizes also show similar behaviour. So it is unlikely that using an even
higher number of training samples would significantly increase the performance
of our model.

82 B. ADDITIONAL RESULTS

0 2000 4000 6000 8000 10000

Number of Traces

0

50

100

150

200

250

G
u

es
si

n
g

E
n
tr

op
y

ASCAD-Rnd (IV) Size Training Set

N=625

N=1250

N=2500

N=5000

N=9000

Figure B.18: Study using different sizes of training sets for the ASCAD dataset using the GCNN architecture and
IV leakage model on a randomly generated graph

Size Training Set µ σ lowest highest
625 4125.3 352.06 3777.0 4900.0

1250 5473.6 658.53 4726.0 6686.0
2500 2494.27 430.19 1900.0 3308.0
5000 2513.45 1595.01 1182.0 7227.0
9000 993.4 301.566 594.0 1646.0

Table B.15: Table showing the mean number of traces required to reach a guessing entropy GE < 10 as well as
the lower and upper bound. Runs which did not converge below this threshold are given the value 10001.

When we look at Figure B.18 and Table B.15 we observe that even for the smallest
training set, all instances converge. So either our model using the random graph
is really good at learning even when presented a small training set, or our model is
not learning at all and something is going for which we have not found an expla-
nation. Considering the loss curves of the random graph (as seen in Figure B.10)
strongly suggests that the model is not learning, we shall consider the latter ex-
planation. The simplest explanation would be that the random graph consistently
converges purely by chance, or rather that the solution space which is explored by
our model using the random graph is by happenstance very suitable for solving
our problem.

C
OTHER APPROACHES

C.1. SEMI-SUPERVISED

In this approach, the problem will be tackled as a semi-supervised classification
problem. This means that the GNN takes a graph as input where some vertices are
labeled and some vertices are unlabeled. The GNN will output the predicted labels
for the unlabeled vertices. So each vertex is a trace and each label will be the key.
This method transforms the original problem in a vertex classification problem.
Those problems generally consist of a single graph with labeled and unlabeled
vertices so the training data and test data cannot be easily separated. Therefore
the test data is used by necessity during the training phase. Since an approach is
semi-supervised when both labeled and unlabeled data are used during the train-
ing phase, this approach is a semi-supervised approach.
The mapping function F maps each trace ti to node i with corresponding feature
vector vi = ti where F = |vi |. For generating the edges we introduce a function
d(u, v) which measures distance/similarity between a pair of vertices (u, v). This
metric is used to decide whether the graph will contain an edge eu,v connecting
both vertices. Note that the number of vertices is constant N = P , but the amount
of edges can vary depending on the edge selection method N 2 ≥ |E | ≥ 0. Algo-
rithm 3 shows this method as pseudocode. In order to make this graph suitable
for semi-supervised node classification, each vertex i requires a label yi . If the
corresponding trace is in the training set it will get a label corresponding with the
associated key ti ∈ Ttr ai n : yi = ki , else if the trace is in the test set it will get an
empty label ti ∈ Ttest : yi = "".

The resulting graph G and label ȳ can be used as input for the GNN. This GNN
can be described as ψ(G ;θ) = Y where θ represents the trainable parameters of
the GNN and Y represents the predicted labels for the unlabeled vertices.

83

84 C. OTHER APPROACHES

Algorithm 3 MapTraces2Nodes(T,k̄,c)

V ,E ←;
(Ttr ai n ,Ttest) ← T
for i = 1 : P do

V ←V ∩ i
vi ← ti

if ti ∈ Ttr ai n then
yi ← ki

end if
if ti ∈ Ttest then

yi ←′′
end if

end for
d(i , j) =∑Q

q=1 |vi ,q − v j ,q |
for i = 1 : P do

for j = 1 : P do
if d(i , j) ≤ c then

E ← E ∩ (i , j)
end if

end for
end for
G ← (V ,E)
Return (G)

	Summary
	Introduction
	Background
	Notation
	Traces

	AES
	Profiled Side-Channel Analysis
	Leakage Model
	Guessing Entropy

	Graph Neural Networks
	Signal Graphs
	Shift operator
	Graph Convolutional Filter
	Graph Neural Network Architectures

	Conclusion

	Related Works
	Non-Profiled Power Analysis
	Profiled Side-Channel Analysis
	Template Attack
	Countermeasures
	Machine Learning in SCA

	Graph neural networks
	Graph neural networks in Cyber security
	Discussion

	Translation from side-channel analysis to graph signal classification
	Graph Signal Classification
	Examples
	Conclusion

	Numerical Experiments
	Datasets
	DPAcontest v4
	ASCAD

	Feature Reduction
	Absolute Correlation
	Principal Component Analysis

	Experimental Setup
	Main Findings
	DPAv4
	ASCAD

	Secondary Findings
	Ablation Study
	Hyper-parameter Analysis
	Discussion

	Conclusion
	Thesis Summary
	Answers to the posed Research Questions
	Future Work
	Using a different graph generation method
	Combining GNN with existing SCA architectures
	Use another GNN paradigm

	Limitations
	Broad Impact
	titleReferences

	Code
	Additional Results
	Comparison architectures
	Hyperparameter analysis
	Ablation Studies
	DPAv4
	ASCAD

	Losses Study
	Learning Rate Study
	Study difference size training set

	Other Approaches
	Semi-supervised

