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Abstract

The decarbonization of heavy-duty road freight transport requires overcoming the dual challenge of
limited driving range and insufficient charging infrastructure for battery-electric trucks (BETs). This
thesis develops a nationwide bi-level optimization framework that integrates the deployment of static
charging stations (SCS), electrified road systems (ERS), and truck-level battery assignment, leveraging
large-scale tour-based freight data from the Netherlands. By operating explicitly at the tour level rather
than the trip level, the framework captures cumulative energy feasibility across multiple linked trips,
thereby providing a more realistic representation of freight operations.

The model is solved using a Genetic Algorithm (GA), capable of evaluating more than 1.5 million
tours and 3.5 million trips, and validated against exact MILP solutions on small instances. The results
show that the optimization raises feasibility from 58% to 89.9%, reducing infeasible tours to 10.1%,
while overall fitness improves by 34.7%. ERS emerges as the backbone of electrification, with 12,792 km
deployed (€25.7 billion, 65.6% of CAPEX), while 251 SCS facilities (€50.2 million, <1% of CAPEX)
provide low-cost redundancy at regional hubs. Battery allocation is highly heterogeneous: 25% of trucks
operate on 90 kWh, 40% on 600 kWh, and the remainder on intermediate sizes, yielding an average
of 357 kWh—-closely aligned with ElaadNL’s benchmark of 289.5 kWh/day. This heterogeneity reduces
battery CAPEX by approximately 19% compared to a uniform-capacity baseline. Operating expenditures
(OPEX) are dominated by ERS charging, while penalty costs for infeasible tours remain substantial,
averaging €362 per unserved tour.

These findings demonstrate that nationwide electrification is feasible under a layered strategy: ERS as
the long-haul backbone, SCS as regional redundancy, and heterogeneous batteries as cost optimizers. The
study advances the literature by moving from trip-level to tour-level modelling at unprecedented scale,
explicitly quantifying infeasibility, and decomposing system costs into CAPEX, OPEX, and penalties.
The results provide actionable insights for policymakers and industry stakeholders seeking cost-effective
and operationally viable pathways for freight decarbonization in the Netherlands and beyond.

Keywords: Freight electrification; Battery-electric trucks; Bi-level optimization; Genetic Algorithm;
Electric Road Systems (ERS); Static Charging Stations (SCS); Tour-level modelling; Infrastructure plan-
ning; Infeasibility penalty; Nationwide optimisation
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1 Introduction

1.1 Research Background

Road freight transport is the backbone of modern logistics systems, ensuring timely and efficient delivery
of goods across local, national, and international supply chains. However, this indispensable sector is also
a major contributor to global greenhouse gas (GHG) emissions and air pollution. More than a quarter
of global transport emissions are due to road freight: medium and heavy trucks alone emitted more than
1.7 billion tons of CO2 in 2021 [45]. Trucks account for approximately 29.4% of global transport-related
emissions, ranking second only to passenger cars. Within international trade-related transport, road
freight contributes around 53% of total CO5 emissions, a share expected to increase further if no decisive
mitigation strategies are implemented. In the European Union (EU), heavy-duty vehicles (HDVs) are
responsible for more than a quarter of GHG emissions from road transport—and account for over 6% of
total EU GHG emissions [15].

The decarbonization of freight transport is thus emerging as a critical policy and research agenda,
with battery-electric trucks (BETS) considered one of the most promising solutions. Yet, the transition
towards electric freight fleets is hindered by two interrelated challenges: limited driving range due to
battery constraints and the lack of adequate charging infrastructure. While larger batteries can extend
range, they substantially increase vehicle weight, cost, and energy demand—undesirable trade-offs for
freight operations.

Two complementary infrastructure technologies have received increasing attention: static charging
stations (SCS), where trucks charge during dwell times, and electric road systems (ERS), which allow
dynamic charging while driving. Each technology has its advantages and limitations—SCS are cheaper
to deploy but cause downtime and require large batteries, while ERS reduce battery needs and enable
seamless operations but demand high upfront investments. Therefore, an integrated strategy that com-
bines both technologies is essential to balance infrastructure cost, operational efficiency, and technological
feasibility.

Despite the growing literature, most existing studies remain limited in two important ways. First,
previous study often examine SCS or ERS in isolation, rather than in an integrated framework that reflects
real-world deployment needs. However, as freight electrification requires both widespread accessibility
for regional operations and continuous energy supply for long-haul corridors, the coordinated deployment
of SCS and ERS is increasingly recognized as essential. For instance, Sun et al. (2020) proposed an
integrated model for optimally planning both static and dynamic charging infrastructure, highlighting
the value of coordinated deployment [40]. Moreover, Rogstadius et al. (2025) demonstrated through
simulations that ERS inclusion can significantly accelerate freight electrification and reduce long-term
GHG emissions, especially when static charging alone falls short[33].

Second, many rely on synthetic or trip-based data, which fail to capture the operational continu-
ity and path dependencies of freight movements. In reality, freight operations are organised around
tours—multi-stop chains covering complete missions—where energy demand and feasible charging op-
portunities depend on the full sequence of trips, not isolated OD pairs. Neglecting this dimension risks
misallocating infrastructure and underestimating system costs. A recent review by Alam and Guo (2023)
emphasizes the need for dedicated research on charging station planning and fleet operations tailored to
electric freight vehicles, given their unique logistics patterns [2].

In summary, the challenges of freight decarbonization and the limitations of existing approaches call
for a new modelling framework that can integrate infrastructure investment with operational feasibility.
The next sections therefore set out the research objectives (Section 1.3) and research questions (Section
1.4) that guide this thesis.

1.2 Objectives

The overarching objective of this study is to develop a comprehensive optimization framework for the
strategic deployment of charging infrastructure tailored to battery-electric trucks (BETs). Specifically, the
study seeks to determine the optimal spatial distribution and configuration of SCS and ERS such that the
energy demand of freight transport operations is reliably satisfied while the total system cost—comprising
infrastructure investment, operational expenditure, and vehicle-related costs—is minimised.

To achieve this, the thesis pursues several interrelated objectives:



1. Model development: Establish a bi-level optimization model that jointly considers strategic siting
and investment decisions at the upper level, and operational feasibility of freight tours (including
energy balances, charging events, and battery constraints) at the lower level. This enables integrated
planning that explicitly accounts for the interaction between infrastructure deployment and vehicle
operations.

2. Data-driven design: Incorporate large-scale, real-world truck tour data as the primary model input.
Unlike trip-based approaches, tour data preserve the sequential structure of freight movements,
including dwell times and stop dependencies, thereby ensuring that energy demand and charging
opportunities are realistically captured.

3. Technology integration: Evaluate the complementary roles of SCS and ERS within a single opti-
mization framework. By exploring different deployment scenarios, the model aims to identify under
what conditions static charging, dynamic charging, or a combination thereof is most cost-effective,
scalable, and operationally feasible.

4. Methodological innovation: Implement a genetic algorithm tailored to the large-scale nature of
the problem, ensuring computational tractability while preserving solution quality. Benchmark the
Genetic Algorithm against exact MILP solutions in smaller cases to validate correctness.

5. Policy and planning insights: Provide empirically grounded evidence for policymakers, infrastruc-
ture planners, and industry stakeholders on how integrated charging strategies can accelerate freight
decarbonization. The findings will contribute to identifying cost-effective infrastructure investment
pathways that balance environmental benefits with economic and operational viability.

In sum, this research aims not only to propose a novel methodological framework but also to bridge
the gap between theoretical optimization studies and real-world freight system planning. By explicitly
combining SCS and ERS within a nationwide, tour-based optimization framework, the thesis aspires to
inform both academic discourse and practical decision-making on the electrification of heavy-duty road
freight.

1.3 Research questions
This research is driven by the following main research question:

How can a bi-level optimization framework, integrating SCS and ERS, be designed and applied
to real-world truck tour data in order to minimise total system cost while ensuring operational
feasibility of battery-electric freight transport?

To address the main research question, the following subquestions are formulated:

1. What technological, economic, and operational factors need to be incorporated when modelling
SCS and ERS deployment for heavy-duty battery-electric trucks?

2. Which optimization modelling approach (e.g., bi-level MILP, heuristic methods) is most suitable
for nationwide infrastructure planning, and how should the parameters, decision variables, and
constraints be structured to reflect both strategic siting and operational energy feasibility?

3. How can large-scale truck tour data be transformed and utilised as model input, and how does this
differ from the use of conventional trip-based data?

4. What are the impacts of using tour-based data compared to trip-based data on optimization out-
comes, infrastructure deployment patterns, and system cost estimation?

1.4 Approach

To address the main research question and its sub-questions, this study adopts a sequential, mixed-method
research design that integrates literature synthesis, data preparation, model formulation, computational
optimization, and result analysis. First, a systematic literature review identifies technological, economic,
and operational factors relevant to planning SCS and ERS, and surveys modelling paradigms (bi-level
MILP, heuristics, and simulation), thereby informing assumptions, decision variables, and constraints.
Second, large-scale truck trajectory data are processed into tour- and trip-based inputs through tour



identification, Dutch VAM zonal aggregation, and shortest-path reconstruction (542 nodes, 3,252 links).
This step preserves operational continuity while providing tractable corridor-level inputs for optimization.
Third, a bi-level optimization model is formulated: the upper level determines strategic siting of SCS, ERS
deployment, and truck-level battery assignment, while the lower level enforces tour-level energy feasibility
(SOC balance, static/dynamic charging, and penalty terms), explicitly linking infrastructure investment
with vehicle operations. Fourth, a tailored genetic algorithm is designed for the national-scale problem
(binary chromosome for SCS/ERS and battery classes), with corridor-aware crossover/mutation and
layered fitness evaluation. Small instances are additionally solved via an exact MILP to verify correctness
and solution quality. Fifth, results analysis quantifies system costs, infrastructure deployment, feasibility,
and battery utilization, with sensitivity checks. Finally, the findings are synthesised into policy-relevant
insights on cost-effective electrification pathways, highlighting when SCS, ERS, or hybrid strategies are
preferable and how nationwide freight decarbonisation can be accelerated under realistic constraints.

Step 1
Literature Review
SCS/ERS overview; trade-offs;
Tour vs. Trip; related approaches & gap

Y

Step 2
Data Preparation
MASS-GT input; tour identification;
VAM system & paths

Y

Step 3
Model Formulation
Bi-level framework; battery assignment;
Objective & constraints

Y

Step 4
Modelling Approach
GA design & encoding; cost model;

MILP verification

Y

Step 5
Results
Cost structure; infrastructure layout;

Feasibility & batteries; sensitivity

Y

Step 6
Discussion & Conclusion
Key findings; literature comparison;
Policy implications; limitations & future work

Figure 1: Overall research approach flowchart

As shown in Figure 1, the overall workflow proceeds sequentially through literature review, data prepa-
ration, model formulation, modelling approach, result analysis, and discussion with policy implications.



2 Literature Review

2.1 Overview of Static and Dynamic Charging Technologies in Heavy-Duty
Road Freight

Research and practice have shown that charging technologies primarily fall into two categories: static
charging SCS and ERS. SCS typically relies on high-power fast-charging systems but has stringent re-
quirements for grid connectivity and on-site infrastructure. In contrast, ERS technologies (including
overhead contact lines, ground rails, and wireless induction) can provide continuous power supply during
vehicle operation, reducing reliance on battery capacity and the need for charging stops.

In terms of technological maturity, Piedel et al. (2024) noted in their review that static conductive
technologies (such as pantographs) are relatively mature, while dynamic conductive technologies (such
as overhead contact lines) have significant development potential; wireless (inductive) charging remains
in the experimental stage, with efficiency and cost challenges persisting [30].

Earlier studies, such as Sun (2020), proposed an integrated planning model considering the interde-
pendent reliance between transportation and power systems, exploring the optimal strategy for the joint
deployment of SCS and ERS. This perspective aligns closely with the “joint layout optimization” objective
in this study [40].

Furthermore, Rogstadius et al. (2025) used agent-based simulation to analyze the impact of policy
incentives for ERS on the electrification of heavy-duty freight in a European context, finding that when
electric road usage reaches a certain level, it serves as a 'no-regret investment’ with low risk and high
benefits for carbon reduction [33].

2.2 Electric Road System

Electric Road Systems (ERS) are commonly grouped into three technology families: overhead conductive
systems using catenary contact lines (OCL), ground-level conductive rails (in-road or on-road), and
inductive (wireless) power transfer. Multiple technical and policy assessments consistently find that OCL
is the near-term, system-level least-cost option for high-volume truck corridors, provided sufficient traffic
density, while ground-level conductive and inductive systems offer different trade-offs in visual impact,
vehicle compatibility, and installation complexity [39].

Overhead conductive systems, such as the Siemens e-Highway trials [38], are among the most mature
ERS technologies and enable high power delivery suitable for heavy-duty trucks, shown in figure 2.
However, studies highlight significant drawbacks: high installation and maintenance costs, safety concerns
(e.g., collisions, hindrance to emergency services), and limited accessibility for non-commercial vehicles
[46].

Ground-level conductive rails—either embedded in or affixed to the road surface (e.g., Elways, Elon-
road systems)—offer strong power transfer capabilities and broader vehicle compatibility [47]. Measurement-
based analyses like the Swedish eRoadArlanda pilot report end-to-end charging efficiencies in the range of
82-89%, noting that rectifier placement and weather-induced leakage are key efficiency constraints [17].

Inductive (wireless) systems utilize dynamic wireless power transfer through coils embedded beneath
the road surface [4][46]. While offering installation flexibility and eliminating overhead infrastructure,
they typically deliver lower power ( 25-40 kW) and exhibit lower energy transfer efficiency [48][23].
Pilot studies (e.g., Electreon) show energy collection around 64%, but emphasize high implementation
complexity and blockage of underlying infrastructure [23][46].

Comparative technoeconomic assessments (e.g., Sweden’s national electric road program) estimate
initial infrastructure costs per two-lane kilometer as approximately: overhead wires USD 1.1 million,
in-road rail USD 0.7 million, and inductive coils USD 2.2 million [48]. In broader lifecycle cost analysis,
conductive rails appear most cost-effective in reducing battery size and societal energy system costs;
inductive solutions, though feasible, impose higher infrastructure burdens [48][36].

In summary, overhead systems offer high power and maturity but at elevated cost and limited acces-
sibility; ground-level conductive systems balance performance and applicability with moderate cost and
better efficiency; wireless inductive systems are flexible but currently hindered by lower efficiency and
higher infrastructure complexity. Such trade-offs suggest the necessity for detailed comparative analysis
in freight-specific scenarios, an area under-explored in current literature.
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Figure 2: Electrified road freight traffic — the eHighway by Siemens [38]

2.3 Comparative Perspectives on ERS and Conventional Charging

In recent years, several studies have directly compared static charging stations (SCS) and electric road
systems (ERS) to evaluate trade-offs in infrastructure cost, battery requirements, and system-wide per-
formance. Rogstadius et al. (2025) modeled a 6,000 km ERS network and showed that, compare to
traditional charging network, battery consumption per vehicle could be reduced by about 40%, while
cost-minimizing battery capacity could drop by as much as 70% when dynamic charging directly powers
propulsion [33]. Similarly, Shoman et al. (2022), using real-world driving data from Sweden, found that
combining ERS with home charging reduced the required battery range by 62-71%, and that cost savings
from smaller batteries could outweigh the additional infrastructure costs of ERS [36]. From an economic
perspective, a Dutch study (Decisio, 2022) concluded that ERS becomes cost-effective only under high
daily freight distances (above 180-300 km), identifying a breakeven point that links infrastructure invest-
ment to traffic density. At the system level [9], Olovsson et al. (2021) compared the electricity impacts of
SCS and ERS in Sweden and Germany, showing that large-scale ERS deployment raises peak grid load
and requires complementary renewable and storage capacity, while optimized static charging can smooth
demand and better align with renewable generation [29].

Overall, the literature indicates that ERS can significantly reduce battery-related costs and improve
operational efficiency, but only under traffic conditions that justify the infrastructure investment, and
with additional measures to mitigate grid stress. In contrast, SCS is less capital-intensive and more
grid-friendly, though it relies on larger vehicle batteries. A clear research gap remains in freight-specific
applications, particularly in evaluating how hybrid deployment of SCS and ERS could balance infrastruc-
ture cost, operational efficiency, and system integration.

2.4 Tour data versus Trip data

The development of tour-based freight models can be traced back to the late 1990s. One of the earliest
frameworks was the GoodTrip model by Boerkamps and van Binsbergen (1999), which simulated multi-
stop urban goods distribution by linking consumer, wholesale, and warehouse nodes into closed vehicle
chains. This work demonstrated how alternative urban delivery policies affect vehicle-kilometres travelled
and emissions [3].

In the 2000s and early 2010s, further theoretical advances were made to analytically capture tour
formation. Holguin-Veras and colleagues introduced entropy-maximization formulations for tour-flow es-
timation, arguing that closed tours could be inferred at the aggregate level under principles of consistency
and conservation, thereby laying the foundation for analytical approaches to tour modelling [34].

More recently, Gonzalez-Calderon and Holguin-Veras (2019) extended this line of research by propos-
ing an entropy-based freight tour synthesis method. Their study showed how tours can be reconstructed
from traffic count data, and highlighted that the sampling design strongly affects the accuracy of synthe-
sized tours [16].



A 2017 synthesis by Oak Ridge National Laboratory (ORNL) further compared trip- and tour-based
frameworks, concluding that tour-based models better capture stop sequences, dwell times, and driver
constraints than the conventional four-step trip-based approach, albeit at the cost of greater reliance on
high-frequency GPS data and establishment surveys [25].

A detailed comparison of trip-based and tour-based freight modeling approaches is provided in Table

1 below.

Table 1: Comparison of Trip-based Four-Step and Tour-based Freight Models

Dimension

Trip-based Four-Step Model

Tour-based Model

Basic unit
Data requirement

Applicable scenar-
ios

Pros & Cons

OD trip

Freight flows / zone-level produc-
tion—attraction

Long-haul OD flows; strategic na-
tional forecasting

Simple and fast to implement, but
ignores tour-chaining and stop se-
quence decisions

Vehicle tour (sequence of stops
within a duty cycle)

GPS traces or operation logs at stop
level

Urban freight distribution; regional
multi-stop deliveries; reverse logis-
tics (returns, recycling, and back-
hauls)

Captures stop sequence, dwell time,
and driver constraints, but requires
richer data and more parameters

Unlike trip-based data, tour data preserve the full sequence of stops, dwell times, and distances that
a single truck covers within one duty cycle (typically a working day). This is essential for charging-
infrastructure planning for three reasons:

1. Complete energy budget — Battery depletion and re-charging needs accumulate over the entire mis-
sion. Only a tour representation captures the true end-to-end distance and the timing of consecutive
legs, preventing under- or over-estimation of required on-route energy supply.

2. Feasible charging windows — Stop locations and dwell durations embedded in a tour reveal when a
truck is physically able to plug in (static DCFC) or merge onto an ERS segment. Trip-only data
lack this temporal linkage and can misplace chargers at nodes that trucks never visit in sequence.

3. Infrastructure interoperability — Tours expose corridor overlap among multiple carriers: different
trips that appear unrelated at the OD level may in fact share the same highway segments once
chained in a tour. This information helps prioritise ERS deployment on high-utilization corridors
and avoids redundant station placement.

Consequently, the optimization model relies on tour-level inputs to ensure that every complete mission
can be executed without range anxiety while minimising total infrastructure cost. Trip-based inputs
would break this continuity and risk infeasible or sub-optimal charging layouts.

2.5 Related Modelling approach

In the field of transportation and energy facility siting, bi-level optimization models are widely used due
to their structural and decision-making flexibility. These models typically include:

Upper level: Strategic siting and investment decisions to determine facility layout plans.

Lower level: Operational scheduling and route feasibility analysis to evaluate operational performance
and system response after strategy implementation.

This modeling structure has been widely applied in facility location and routing problems (Loca-
tion—Routing Problem, LRP) and electric vehicle charging infrastructure location problems (EV Charging
Station Location Problem, EVCSLP). It enables strategic decision-making and operational analysis to
be closely integrated, thereby enhancing the overall optimization of the system [49].

Liao et al. (2024) developed a bi-objective optimization model to determine ERS deployment strategies
across highway networks in four European countries. Their framework minimizes both infrastructure



investment and transport operating costs, and the case studies quantify how ERS deployment affects
battery capacity requirements and vehicle life-cycle performance under different network configurations
[24].

A study based on an integrated simulation model evaluated the battery and charging requirements of
medium and heavy-duty electric trucks in the M180 ERS demonstration section in the UK [8]. The model
incorporates driving paths, terrain, and charging infrastructure to dynamically simulate vehicle energy
consumption and battery status. By simulating various transportation scenarios, three vehicle configu-
rations—small battery type, medium battery type, and range extension type—along with corresponding
charging strategies were proposed, offering a technical foundation for vehicle selection and infrastructure
planning within the ERS system.

Seilabi et al. (2025) proposed a two-layer framework in the context of sustainable transportation: the
upper layer optimizes the location and capacity allocation of charging stations; the lower layer simulates
users’ travel and energy choice decisions, with the aim of reducing COs emissions. The solution is based
on genetic algorithms, and the model’s potential for application in real-world networks is verified [10].

Kunawong et al. (2025) established a complete two-layer MILP model for long-distance bus networks:
the upper layer determines the location and number of charging stations, while the lower layer optimizes
the configuration of off-site chargers and charging scheduling to maximize the operational efficiency of
the system. Sensitivity analysis was conducted on this model using real-world cases in Thailand [22].

An evaluation based on the MOSTACHI model (Model for Optimization and Simulation of Traffic
and Charging Infrastructure) assessed the role of ERS in the decarbonization of heavy transport in
Europe. The findings suggest that with policy mandates or economic incentives, ERS can achieve high
utilization rates, thereby reducing system costs and accelerating the electrification process, while also
enabling significant reductions in greenhouse gas emissions by 2030 [32].

Inez (2024) formulates the nationwide planning of charging infrastructure as a bi-level mixed-integer
linear program (MILP). At the upper level, strategic decisions are made on the siting of static charging
stations (SCS) and the deployment of electric road system (ERS) segments, with the objective of min-
imizing annualized investment (CAPEX) subject to budget and technical constraints. The lower level
represents the operational feasibility of OD trips given the chosen infrastructure, evaluating operational
expenditures (OPEX) including driver time, electricity tariffs, and tolls. Feasibility is ensured through ex-
plicit state-of-charge (SOC) trajectories, battery capacity bounds, and charging opportunity constraints.
The two layers are coupled by requiring that only layouts that yield feasible and cost-efficient operations
at the lower level are acceptable at the upper level. The model is implemented in Python and solved
using the commercial solver Gurobi, which provides exact MILP solutions after appropriate lineariza-
tion of nonlinear terms. While the thesis discusses heuristic alternatives for large-scale instances, the
methodological emphasis is on the exact MILP construction and solution process, including initialization
with shortest-path calculations, infrastructure allocation at the upper level, operational verification at
the lower level, and iterative convergence. [19]

As summarized in Table 2, prior studies demonstrate the value of bi-level and heuristic optimization
for electrification planning, but rely mostly on trip-based data or focus on single technologies in isolation.
This thesis builds on Inez (2024) by extending the framework to tour-based data, introducing penalty
terms for infeasible tours, and scaling the heuristic to solve nationwide problems with over 1.5 million
tours.



Table 2: Overview of modelling approaches in freight electrification

Study

Focus / Data Basis

Methodological Ap-
proach

Key Findings / Limita-
tions

Liao et al. (2024)

De et al. (2023)

European corridors

UK M180 demo

Bi-objective MILP

Integrated simulation

ERS reduces battery size
(370—90 kWh); large-
scale cost trade-off

Proposed three truck con-

figs; context-specific in-

sights
Seilabi et al. (2025) Sustainable EV net- GA-based bi-level Verified GA feasibility,
works but limited to passenger

Kunawong

(2025)

et al

Long-distance bus net-
works

Two-layer MILP

EVs
Charger siting + schedul-
ing; validated with Thai-

land data

Rogstadius et al. FEurope-wide freight MOSTACHI  system ERS reduces GHG; policy
(2023) model support crucial for utiliza-
tion
Inez (2024) Netherlands  freight Bi-level MILP (solved Formulated integrated
(synthetic trips) with Gurobi) SCS-ERS  optimization;
validated  with  exact
solver, but scalability
limited by trip-based OD
data
This Thesis Netherlands freight Bi-level MILP 4+ GA First nationwide tour-
(2025) (1.5M  tours, MASS- heuristic based optimization of
GT) hybrid SCS-ERS; scalable

and empirically grounded

2.6 Summary of Literature Review

The literature highlights that freight electrification relies on two main infrastructure paradigms: static
charging stations (SCS) and electric road systems (ERS). Section 2.1 introduced these technologies, noting
their complementary strengths and weaknesses. While SCS are cheaper and widely deployable, they
require dwell times and larger batteries. ERS, by contrast, reduce battery size requirements and support
seamless long-haul operations, but involve high capital costs and grid integration challenges. Section 2.2
compared ERS technologies, showing that overhead conductive systems are the most mature, ground-
level conductive rails offer a balance of efficiency and cost, and inductive charging remains experimental
with significant efficiency barriers.

Section 2.3 examined comparative perspectives on SCS and ERS, revealing that ERS can substantially
reduce vehicle battery sizes and operational costs under dense traffic conditions, whereas SCS remain
cost-effective and grid-friendly in most regional contexts. The evidence consistently suggests that hybrid
strategies, combining SCS for widespread accessibility and ERS for corridor continuity, hold the greatest
promise.

Section 2.4 highlighted the methodological importance of adopting tour-based rather than trip-based
models. Unlike trip data, tour data capture chained stops, dwell times, and daily duty cycles, enabling
realistic assessment of energy demand and feasible charging opportunities. Recent advances in Freight
Tour Synthesis, entropy-based demand models, and simulation-based calibration show that tour data are
increasingly adopted in both research and practice, including public-sector freight models in the US and
the Netherlands.

Section 2.5 reviewed related modelling approaches, focusing on bi-level frameworks that integrate
strategic siting with operational feasibility. Studies by Liao et al. (2024), De Saxe et al. (2023), Seilabi
et al. (2025), Kunawong et al. (2025), and Rogstadius et al. (2023) demonstrate the value of combining
infrastructure planning with vehicle operations, yet most rely on synthetic or trip-based data, or focus
on a single technology. Inez (2024) advanced this line of work by formulating a nationwide bi-level MILP



for SCS-ERS planning in the Netherlands, solved with Gurobi, but her reliance on OD-trip data limited
operational realism and scalability.

In summary, the literature converges on three insights: (i) both SCS and ERS are necessary and
complementary for freight electrification; (ii) tour-based data provide a more realistic foundation for
infrastructure planning than trip-based inputs; and (iii) bi-level optimization offers a suitable method-
ological framework, but has so far been applied only at limited scales or with synthetic data. These gaps
motivate the present thesis, which develops the first nationwide tour-based bi-level optimization model
for hybrid SCS-ERS deployment in the Netherlands, solved with a scalable GA heuristic and validated
against exact MILP benchmarks.

Beyond academic contributions, the study also generates practical insights of direct relevance to pol-
icymakers and infrastructure planners. The results provide quantitative evidence on cost structures,
deployment patterns, and feasibility distributions across regions, highlighting the complementary roles of
SCS and ERS and the potential of infrastructure deployment to reduce reliance on oversized batteries.
These findings align with the objectives of the EU Green Deal, the Fit for 55 package, and the forth-
coming Dutch truck-kilometre charge, offering timely input for shaping investment strategies and policy
interventions.



3 Data

3.1 Data Sources and Introduction

The data used in this study originates from the MASS-GT project, an agent-based freight transport model
that generates micro-level trip records through automated reporting from Transportation Management
Systems (TMS). Compared with survey-based data collection, MASS-GT offers far higher density and
completeness of observations. The definition and formation mechanism of tours follow the descriptive
model of Thoen et al. (2020), which incrementally allocates shipments using a random utility framework
and clearly specifies the start and end boundaries of each tour, including empty return legs [41].

The dataset provides a rich set of attributes at multiple levels. Each record contains hierarchical
identifiers for carriers, tours, and trips, along with zonal references under different Dutch systems (NRM,
BG, VAM). Temporal information (departure and arrival times), spatial coordinates (Rijksdriehoekstelsel,
RD), commodity classifications (NSTR codes), vehicle types, shipment weights, and CO5 emissions are
also included. Table 3 summarizes the full range of available fields. For modelling purposes, however,
only a subset is required: tour and trip identifiers to preserve sequential order, zonal and coordinate fields
for embedding into the VAM network, time attributes for detecting charging windows, and distance and
emission measures for energy and penalty calculations. These variables provide the essential inputs for
constructing the corridor-based optimization framework developed in Chapter 4.

Table 3: Tour dataset variables and their descriptions

Field Description

carrier _id Identifier for carrier
tour id Tour identifier
trip_id Trip identifier

origin nrm
destination nrm
origin _bg
destination bg

origin _vam
destination vam
x_rd_origin  meter
x_rd destination  meter
y_rd_origin _ meter
y_rd_destination _ meter
vehicle type lwm
nstr

commodity

logistic _segment
n_shipments

de_id

tour weight  ton
trip weight  ton
tour deptime _ hour
trip_deptime  hour
trip_arrtime _ hour
combustion type
external zone bg
container

co2  gram

co2 nl gram
distance _ kmeter

Origin zone NRM

Destination zone NRM

Origin region BG

Destination region BG

Origin zone VAM

Destination zone VAM

X-coordinate of origin (RD meters)
X-coordinate of destination (RD meters)
Y-coordinate of origin (RD meters)
Y-coordinate of destination (RD meters)
Vehicle type (light /medium/heavy)
NSTR commodity classification
Commodity description

Logistic segment type

Number of shipments

Distribution center identifier

Total weight of tour (tons)

Weight of trip (tons)

Departure time of tour (hour)
Departure time of trip (hour)
Arrival time of trip (hour)

Vehicle combustion type

External zone identifier (BG system)
Container indicator

CO3 emissions (grams)

CO; emissions within NL (grams)
Trip distance (km)
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distance_nl _ kmeter Distance within NL (km)

For the purpose of modelling the optimization tour-based model, only a subset of the available fields
in the tour dataset is required.

First, tour identifiers (carrier_id, tour_id, trip_id) are essential to reconstruct the sequence of
trips that form each complete tour, thereby preserving the stop order and path dependency of freight
operations.

Second, spatial information is needed to embed the tours into the network. We rely on zonal rep-
resentations (origin_vam, destination_vam) and corresponding RD coordinates (x_rd_origin_meter,
y_rd_origin_meter, etc.), which are aggregated into the VAM corridor network. This enables shared
infrastructure planning at the corridor level rather than at individual depots.

Third, temporal attributes (tour_deptime__hour, trip_deptime__hour, trip_arrtime__hour) al-
low us to capture feasible charging windows along a tour, and to approximate tour duration for energy
budgeting.

Fourth, distance and energy-related fields (distance__kmeter, distance_nl__kmeter, co2__gram)
provide the basis for estimating energy consumption, emission levels, and the corresponding cost compo-
nents. Energy demand in the model is derived from distance multiplied by a uniform consumption rate,
while CO5 emissions are used for penalty terms when tours are not served by electric trucks.

Finally, vehicle and commodity information (vehicle_type_lwm, nstr, commodity, tour_weight__ton)
are included to ensure that the dataset aligns with realistic truck operations, even though the optimization
model itself abstracts away from detailed vehicle heterogeneity.

Together, these variables supply the core inputs for constructing the tour-based energy feasibility
checks and the investment—operation trade-off embedded in the bi-level optimization model.

3.2 Tour Data and Identification

Definitions. A trip is a single origin-destination movement of a truck between two stops. A tour is
an ordered chain of trips executed by the same vehicle within one duty cycle (typically a working day),
possibly including deadheading legs (empty moves) and returning to the depot.

Unique identifier and ordering. We construct each tour by grouping records with the same carrier_id
and tour_id and sorting constituent trips by trip_deptime__hour (ascending). The concatenation
< carrier_id > _<tour_id> serves as a unique tour key (e.g., 981_285), which we use throughout the
paper for traceability across preprocessing, modelling, and results.

Path geometry disclaimer. The raw dataset provides only trip endpoints (origins and destinations)
but no intermediate path geometry. Hence, Figure 3 visualises each leg as a straight line between its
endpoints for illustration. The actual corridor-level routes used by the model are reconstructed later on
the VAM network via shortest paths.
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Figure 3: An example tour demo

Sanity checks and cleaning rules. Before using tours as model inputs, we apply the following checks:

Field completeness: required fields in Table 4 must be present and non-null.

Temporal order: for each trip, trip_deptime__hour < trip_arrtime__hour; tour trips are strictly
ordered by departure time.

Leg continuity: after zonal aggregation, the destination zone of leg k£ should match the origin zone
of leg k+1; otherwise records are flagged and corrected or removed.

Distance plausibility: remove zero/negative distances; winsorise extreme outliers (e.g., top 0.1%) if
caused by geocoding errors.

External zones: trips involving external BG/VAM zones are either excluded or truncated at the
national boundary for consistency with the Dutch network analysis (document the chosen policy).

Link to model inputs. For each tour ¢t € T', we retain an ordered set of segments K; with their orig-
in/destination VAM zones, segment distances, and timestamps. These become the basis for shortest-path
reconstruction, energy accounting, charging-window detection, and ultimately the operational feasibility
constraints.
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Table 4: Minimum fields required to construct tours and feed the model

Field Type Role

carrier_id, tour_id, trip_id keys Grouping  (tour),  ordering
(trip), traceability

origin_vam, destination_vam categorical Zonal embedding for corridor
network

distance__kmeter numeric Segment length for energy and
cost

trip_deptime__hour, trip_arrtime__hour numeric Temporal ordering, charging
windows

x_rd_origin__meter, y_rd_origin__meter numeric (Optional) spatial QA / map
rendering

x_rd_destination__meter, y_rd_destination__meter numeric (Optional) spatial QA / map
rendering

3.3 Truck Identification and Tour Aggregation

Motivation

The raw trajectory logs are available at the trip/tour level and contain no native truck identifier.
In reality, however, a single physical vehicle executes multiple tours over the planning horizon. If we
naively treated each tour as a distinct vehicle, the upper level would have to purchase a battery for every
tour, which massively inflates the number of vehicles and leads to an unrealistic, order-of-magnitude
overestimation of battery CAPEX. It would also distort infrastructure siting (SCS/ERS) and bias the
optimiser toward outsourcing, because buying one battery per tour is far more expensive than the per-tour
outsourcing penalty.

To align the data with operational reality and with our model design in Chapter 4 (battery assignment
is made per truck, fixed across all its tours), we therefore construct a consistent vehicle identifier truck_id.
Tours are first grouped by carrier and then partitioned into plausible vehicle bundles so that each bundle
represents the set of tours that could reasonably be served by one truck. This enables (i) realistic battery
investment—one battery per truck rather than per tour, (ii) consistent lower-level evaluation where all
tours of the same vehicle inherit the same battery capacity and initial SOC, and (iii) a fair comparison
between investing in batteries/infrastructure versus outsourcing under the same accounting boundary.

Overall procedure

The pipeline comprises four steps:

S1. Carrier-anchored grouping: group all tours by carrier_id so that tours from different carriers
are never mixed.

S2. Feature-based clustering within each carrier: within each carrier group, compute feature vectors
for all tours (features listed in Table 5) and cluster tours by feature similarity. Each cluster
represents a set of tours that could plausibly be served by the same physical vehicle.

S3. Cluster-to-vehicle mapping: assign a globally unique truck_id to each cluster and label all tours
in that cluster with this truck_id, establishing a hierarchy carrier — truck id — tours.

S4. Post-hoc consistency checks: refine the initial assignment by enforcing temporal non-overlap and
geographic continuity rules (see below). Conflicting tours are reassigned to the nearest feasible
truck_id within the same carrier.

Features used for clustering
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We adopt operationally meaningful features so that tours attracted into the same cluster are realistically
executable by a single vehicle. Table 5 summarises the features and their roles; no calibrated parameter
values are required for understanding the logic.

Table 5: Features for carrier-anchored tour clustering and their roles in truck id generation

Feature

Construction

Rationale

Carrier identity
Vehicle class
Departure time win-
dow

Origin & destination
zZones

Deadhead proximity

Tour duration proxy

carrier_id

vehicle_type_lwm

tour_deptime__hour

origin_vam,
destination_vam

distance__kmeter

trip_arrtime__hour

Hard boundary: tours from different carriers
are never assigned to the same vehicle.

Keeps tours requiring the same vehicle specifi-
cation together; avoids infeasible reassignments
across classes.

Encourages tours with similar duty periods to
be grouped, improving schedule realism and
avoiding systematic time conflicts.

Promotes spatial cohesion so that successive
tours of the same truck are geographically plau-
sible.

Favors clusters where inter-tour repositioning is
short, improving operational continuity.
Groups tours with comparable lengths to bal-

ance per-vehicle workload.
Load
present)

Prevents mixing tours with incompatible capac-
ity requirements under one vehicle.

category  (if categorical load band

Consistency rules (post-processing)

After initial clustering, we enforce two minimal feasibility screens within each truck_id:

e Temporal non-overlap: tours assigned to the same truck_id must not overlap in time. Overlaps
trigger a local reassignment within the carrier.

e Geographic continuity: the end of a tour and the start of its successor (under the same truck_id)
must be reachable within the available turnover interval; otherwise the successor tour is reassigned.

These light-weight screens stabilise the mapping without requiring detailed scheduling.
Link to battery assignment

The resulting mapping provides a one-to-many relationship from truck_id to tours. In all subsequent
modelling, each truck_id is bound to exactly one battery capacity class (upper-level decision), and all
tours of that truck_id inherit the same battery configuration during operational evaluation.

Empirical distribution of tours per truck

Figure 4 depicts the empirical distribution of the number of tours associated with each truck_id.
Most vehicles undertake only a few tours, with a long tail of higher-utilisation vehicles. This pattern
supports our clustering design: the bulk of vehicles form compact tour bundles, while the tail captures
intensive-use trucks that are particularly informative for battery sizing and infrastructure coverage.
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Each Truck Tour Count Distribution
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Tours distributed across 421,732 trucks === Mean: 3.63
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Figure 4: Tours-per-truck distribution

3.4 NL Zonal System

The zonal representation adopted in this study builds on the Dutch national freight modelling framework.
BasGoed (the Basic Freight Model) is the official strategic freight transport model of the Netherlands
and has been widely used for forecasting freight volumes by road, rail, and inland waterways [?]. Within
the broader Dutch modelling system, the National/Regional Models (NRM) are mainly designed for
passenger flows, but share compatible input data and modelling structures with BasGoed [21]. For
freight-specific applications, the VrachtAutoMatrix (VAM) provides a dedicated OD matrix for medium-
and heavy-duty trucks, serving as an important data element in BasGoed. The VAM is generated from
the Basic Freight File (BBGV) and is designed to support freight demand modelling at a national scale.
Since the 2014 revision, light-duty vehicles (bestelauto’s, <1.5 tons) have been excluded from the VAM to
enhance consistency and applicability for freight analysis [7]. Given its freight orientation and nationwide
coverage, the VAM zonal system is adopted in this study as the spatial framework for data aggregation
and corridor-level analysis.

After organizing the detailed trip data into tours, the dataset can be conceptualized as a directed graph
of nodes (origin/destination points) and arcs (trip segments) with fixed tour-level demands. However,
such node-level granularity is too fine for practical planning purposes. Selecting a specific OD node (e.g.
a particular warehouse or depot) as a charging location would likely only serve that individual tour,
since other tours — even those starting nearby — do not share that exact node in their routes (i.e.
there is a lack of shared routing at the node level). Moreover, the trip-level data contain no explicit
path information: two tours with geographically close OD points might in reality travel along the same
highway corridor, but this overlap remains invisible when considering only the disaggregate nodes and
trips. This is particularly problematic for planning shared corridor infrastructure such as ERS, where
identifying and exploiting common routes is crucial. To address these issues, we aggregate the flows to a
higher spatial level using the 542 VAM zones. The geo-data frame also provides the area of each zone,
which in RD coordinates corresponds to a cropping window of approximately 150,000-250,000 m east
longitude and 450,000-550,000 m north latitude. Figure 5 shows the spatial distribution of the VAM
zones.

In this zonal representation, each trip is assigned to an origin and destination VAM zone, and all
freight flow between a given pair of zones is assumed to follow a common representative route on the
network (essentially capturing the main corridor between those regions). Furthermore, we assume that
if a charging station or ERS segment is present within a zone, then all trucks passing through that zone
can potentially access it — reflecting the idea that the zone’s network is covered by the infrastructure. We
adopt the VAM zoning scheme in lieu of finer-grained zones (such as the detailed NRM zones) because it
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offers a far more tractable model size and better corridor-level generalizability. By reducing the problem
to a manageable number of zone-to-zone flows, the model remains computationally feasible, and the
key shared-corridor patterns are preserved. In summary, the VAM-based region aggregation provides a
practical balance between detail and abstraction, ensuring that major freight corridors and overlapping
routes are represented for infrastructure planning while avoiding the complexity and limited insight of
modelling thousands of individual trip nodes.

VAM zones Demo

Figure 5: VAM Zone Demo

ZONE-LEVEL FLOW

NODE LEVEL TRIPS .
all-or-nothing route

Figure 6: Node-level trips vs. zone-level flows

As illustrated in Figure 6, the original freight dataset comprises thousands of node-level trips (left),
where every origin—destination pair is represented explicitly in a dense graph. For modelling purposes,

16



these granular flows are aggregated into a handful of VAM zones (right). Within each zone, individual
stops are retained (small black dots), but all traffic between two zones is loaded onto a single all-or-nothing
corridor (bold line). Dynamic charging infrastructure (ERS) is then positioned directly on this corridor,
while any static charging station located inside a zone is assumed to serve every tour that traverses that
zone. The schematic thus highlights how detailed trip data are condensed into corridor-level flows without
losing the key interaction between freight demand and charging coverage.

3.5 Data Processing
3.5.1 VAM Corridor Network Construction (Delaunay Triangulation)

To obtain a sparse yet well-connected inter-zonal corridor graph consistent with infrastructure siting,
we construct links between VAM zone centroids using a Delaunay triangulation of all nodes (RD New,
EPSG:28992). The triangulation is computed over the planar coordinates of the 542 VAM nodes, and
unique undirected edges are extracted from triangle sides to form the network. This yields a connected
graph with 1613 links and 542 nodes; link lengths are the Euclidean distances between zone centroids
and serve as the basis for energy and toll calculations in the model. Candidate SCS are defined on nodes,
and candidate ERS are defined on links.

Implementation details.

e Input and triangulation: Let N be the set of VAM nodes with coordinates (x,,y,). We compute
a Delaunay triangulation on {(z,,y,) : » € N} and extract all triangle sides as adjacency rela-
tions. This choice maximises the minimum angle and provides natural geometric neighbours at
O(|N|log|N|) complexity.

e Edge set and IDs: Each undirected edge is stored once using a canonical ID ulv with u < v
to avoid duplicates. The resulting link table vam_link.csv contains from_node, to_node, and
distance_km; these distances are the corridor lengths used by the solver.

e Length distribution: Links are predominantly short-to-medium range (< 10km and 10-30 km
buckets dominate), with a small tail of long edges (> 100km) connecting coastal/outlying zones
and preserving single-component connectivity; see Fig. 7.

e Rationale: Compared with k-NN or radius graphs, Delaunay naturally encodes proximate neigh-
bours, avoids unrealistic crisscrossing, and retains full connectivity with a compact number of
links—well suited for corridor-level planning where ERS is deployed on links and SCS on nodes.
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Delaunay VAM Network with Geographic Boundaries

1613 Links, 542 Nodes
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Figure 7: Delaunay-based VAM network

3.5.2 Shortest-path reconstruction on the corridor graph

In the raw truck—tour dataset, many trips connect origins and destinations that are not adjacent VAM
zones. To represent such movements on the corridor network defined in Section 3.5.1, each trip is re-
routed along the network shortest path between its origin and destination zone centroids.
computed with Dijkstra’s algorithm using link lengths (distance_km) as weights, yielding an ordered
list of nodes and inter-zonal links for every trip. For a tour, the trip-level paths are concatenated and
consecutive duplicates are removed, resulting in a clean zone-by-zone representation that is compatible

with node-based SCS siting and link-based ERS deployment.
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Before: Direct Trip Connections After: Shortest Zone Paths
Carrier 13, Tour 131 (4 trips) Carrier 13, Tour 131 (4 trips)
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Figure 8: Tour zone-path example (carrier 13, tour 131)

A comparison between reconstructed VAM path lengths and recorded trip distances shows the ex-
pected pattern: deviations can be noticeable for short movements (intra-zonal or single-hop inter-zonal),
while multi-zone trips are much closer in aggregate. To avoid metric inconsistency between operations
and infrastructure placement, the optimization model consistently uses the reconstructed VAM path length
(sum of link lengths along the shortest path) for energy and toll calculations. The original distances are
retained only for diagnostics and descriptive statistics. This modelling choice keeps corridor costs aligned
with the graph where decisions are made—SCS at nodes and ERS on inter-zonal links—and ensures
that route energy, charging opportunities, and infrastructure usage are evaluated on a common, graph-
consistent basis.

3.6 Conclusion

This chapter transformed raw trajectory logs into graph-consistent inputs for the nationwide optimisation.
First, we constructed vehicle identities by grouping tours within carriers and partitioning them via feature-
based clustering, followed by temporal and geographic consistency checks; the resulting truck_id provides
the key index through which all tours of a vehicle can later share one battery configuration (Section 3.3).
Second, we built a corridor network over VAM zone centroids using Delaunay triangulation, storing unique
undirected links with canonical IDs and lengths; nodes act as SCS candidates and links as ERS candidates
(Section 3.5.1). Third, we re-routed every trip along shortest paths (Dijkstra) on this network and
concatenated trip paths into tour-level zone sequences (Section 3.5.2). To keep infrastructure decisions
and operations on a common metric, all energy and toll calculations in subsequent chapters use the
reconstructed VAM path lengths; original distances are retained only for diagnostics.
The data pipeline outputs the following artefacts for the model layer:

e a tour table with zone-by-zone paths and segment lists aligned to corridor links;

e a link table with canonical edge IDs and inter-zonal lengths for ERS decisions and cost/energy
evaluation;

e a node table of VAM zones for SCS siting;
e a truck catalogue (truck_id — tours) enabling per-vehicle battery assignment.

Together, these artefacts provide a consistent handoff to Chapter 4: the upper level selects SCS/ERS
and assigns one battery class per truck_id, while the lower level evaluates tour feasibility and operating
costs along the reconstructed corridor paths.
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4 Model Formulation

4.1 Modelling Framework and Rationale

Building on the data pipeline in Chapter 3—specifically the Delaunay-based VAM corridor graph (nodes
as SCS candidates, links as ERS candidates; Section 3.5.1) and the tour paths reconstructed as short-
est paths on that graph (Section 3.5.2)—this study formulates a bi-level model that couples long-term
investment with tour-level operations. All energy and corridor-fee calculations in the model use the recon-
structed VAM path lengths, ensuring a common metric between operations and infrastructure decisions.

At the strategic (upper) level, planners jointly decide: (i) where to build SCS on VAM nodes, (ii)
which inter-zonal links to equip with ERS, and (iii) which battery-capacity class to assign to each truck.
These are capital decisions contributing to CAPEX (facilities and batteries). Battery assignment is per
truck and remains fixed across all of that vehicle’s tours, avoiding the unrealistic assumption of per-tour
battery switching.

At the operational (lower) level, each tour is evaluated along its reconstructed VAM path. Energy
feasibility is enforced via segment-by-segment SOC balance. ERS provides continuous in-link charging
(power—time approximation on equipped links), while SCS charging at nodes is conditional: it occurs
only when the current SOC is insufficient to traverse the next segment and is limited by the battery
headroom. Feasible tours contribute OPEX (electricity, time, corridor-related fees); infeasible tours are
outsourced or diesel-executed and incur a penalty capturing fuel, CO5, and distance-based surcharges.
The lower level does not decide battery size; it tests feasibility under the upper-level configuration. Initial
SOC is set to a fraction « of the assigned capacity.

A single-level model would miss these interactions: pure facility location can yield operationally
infeasible layouts, while purely operational models cannot capture long-term investment trade-offs. The
bi-level framework resolves this by coupling the layers through feasibility indicators (e.g., s; for served,
re = 1 — s for unserved) and a composite objective combining CAPEX (SCS, ERS, batteries), OPEX
for served tours, and penalties for unserved tours (with weight € that prioritises feasibility). Figure 9
illustrates the structure.

Upper Level
Strategic Deployment & Battery Assignment
(SCS siting on nodes, ERS on links, battery capacity per truck)

Lower Level
Operational Feasibility on VAM Paths
(SOC balance; conditional SCS; continuous ERS; tour segments)

Y

Objective & Feedback
Minimise CAPEXscs grs,gatt + OPEX + Penalty

(with s¢ served, ry = 1 — s; unserved; cost returned to upper level)

Figure 9: Bi-level optimisation framework aligned to the VAM corridor graph: upper-level SCS/ERS
siting and per-truck battery assignment; lower-level tour feasibility on reconstructed VAM paths.

To operationalise this framework, each tour is classified as feasible or infeasible under the given
infrastructure and assigned battery. A tour is feasible when its SOC never drops below zero and required
charging can be met using available SCS/ERS along the VAM path; it contributes OPEX (electricity,
time, and corridor fees). Otherwise the tour is unserved and contributes a penalty. Figure 10 summarises
this logic using the same graph-consistent inputs.
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Tour ¢
(VAM path, segments, SOC)

Yes (s:=1) ( Compute OPEX

Feasible? > o .
LEIectrlaty, time, corridor fees

No (r:=1)

Compute Penalty
Diesel + CO2 + distance surcharge

Figure 10: Feasibility—cost logic on the VAM path: served tours add OPEX; unserved tours add a penalty.

Service-first mechanism via r; and €.

We introduce a binary indicator r; for each tour to mark infeasibility/outsourcing (r; = 1) versus
service by a BE-HDT (r; = 0, with s; = 1 —1r). In practice, the monetary penalty used for outsourcing a
tour (diesel fuel, CO2 cost, and a distance surcharge) is typically much lower than the capital expenditure
required to purchase larger batteries or deploy additional infrastructure. If left unchecked, an optimiser
would therefore tend to outsource rather than invest, yielding many infeasible tours. To counter this, a
large weight 2 multiplies the count of unserved tours in the objective, acting as a modelling device that
imposes a strong service-first preference: the search is discouraged from declaring tours infeasible and is
nudged to invest in SCS/ERS or larger batteries instead. When r; = 1, the lower-level energy-balance
constraints are relaxed via big-M gating so that infeasible tours do not bind the physics while they still
contribute a penalty term.

Importantly, €2 is not a real economic cost and is excluded from reported cost totals; it is used only
to guide the optimisation away from excessive outsourcing. The precise placement of r;, s¢, €2, and the
penalty term within the objective will be given later in Section 4.3.4.

4.2 Assumptions

Before presenting the mathematical formulation, several modelling assumptions are introduced to keep
the bi-level optimisation tractable and aligned with the data pipeline (Chapter 3). Table 6 updates the
original list to reflect the implemented logic: battery decisions are made at the truck level in the upper
layer; tour operations are evaluated on reconstructed VAM paths with conditional SCS charging and
continuous ERS charging; feasibility is coupled to the objective via an explicit unserved-tour mechanism.

Table 6: Modelling assumptions used in the bi-level optimisation framework

Area Assumption Rationale / Role

Energy consumption Vehicles consume energy at a constant, Simplifies demand as distance x rate;
exogenously specified rate per kilome- avoids dependence on payload, speed, or
tre. weather.

Initial battery state Each tour departs with initial SOC Provides a uniform but flexible starting
equal to a fixed fraction « of its as- SOC consistent with the code interface.

signed battery capacity Q.

Continued on next page
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Area

Assumption

Rationale / Role

Battery decision scope
(upper level)

Truck—tour mapping

Charging opportunities

Static (SCS) charging
policy

Dynamic (ERS) charg-
ing model

Charging-facility capac-
ity

Distance / cost metric
(graph-consistent)

Feasibility and penalty
coupling

Big-M gating for un-
served tours

Demand & routing

Travel time and effi-
ciencies

Electricity & toll prices

Battery degradation

Fleet heterogeneity
(operational)

Policy and behaviour

Battery capacity is assigned per truck
(one class per vehicle) and counted as
CAPEX; tours do not choose or switch
batteries.

Every tour t is linked to a unique truck
k(t) (from Chapter 3), inheriting that
truck’s battery capacity and initial
SOC.

Vehicles may recharge only on their
predetermined VAM path: at SCS
nodes and ERS links encountered
along the route; no detours.

SCS charging at a node is conditional:
it occurs only if current SOC is insuffi-
cient to traverse the next segment, and
is limited by battery headroom.

ERS provides continuous in-link charg-
ing modelled by a power—time approx-
imation on equipped links, subject to
deployment and battery headroom.

No explicit queuing or grid-capacity
limits are modelled; facilities are
treated as always available.

Energy use, time, and corridor-related
fees are computed from the recon-
structed VAM shortest-path lengths;
original trip distances are for diagnos-
tics only.

Each tour has indicators s; (served)
and r;=1—s; (unserved). Unserved
tours incur a penalty; a weight €2 pri-
oritises feasibility.

When s;=0, energy-balance constraints
are relaxed via big-M terms.

OD demand, the set of tours, and their
VAM-path routes are given and deter-
ministic.

Segment travel times and charging effi-
ciencies are treated as constant param-
eters; a default average speed is used
where segment speeds are unavailable.
Electricity tariffs and corridor/toll
rates are time-invariant averages.
Battery ageing and replacement are
not modelled; capacity and efficiencies
are constant over the planning horizon.
Trucks are homogeneous in consump-
tion rate and charging behaviour; het-
erogeneity arises only through upper-
level battery-capacity assignment.
User behaviour, charging preferences,
and policy incentives are not explicitly
modelled.

Matches fleet procurement; prevents
per-tour double-counting of battery
costs; clarifies upper—lower responsi-
bilities.

Enforces vehicle-level consistency across
all tours of the same truck.

Keeps routing fixed and graph-
consistent with infrastructure siting;
avoids operational rerouting decisions.

Reflects the implemented decision rule;
avoids unnecessary dwell while preserv-
ing feasibility.

Tractable representation of in-motion
charging; aligns with segment travel
time on the corridor graph.

Excludes micro-congestion so the opti-
misation focuses on strategic siting and
scale.

Ensures a single metric for both op-
erations and infrastructure placement

(nodes=SCS, links=ERS).

Makes the service gap explicit and tun-
able in the upper objective.

Technically decouples infeasible tours
from lower-level physics while keeping
them in the objective.

Clarifies that stochastic demand and
dynamic rerouting are out of scope.

Provides a stable distance—time—energy
mapping for ERS/SCS calculations.

Simplifies OPEX; avoids time-of-use
pricing and dynamic tolling.

Keeps the model focused on
near/medium-term infrastructure de-
cisions.

Reduces state space while retaining the
key investment dimension.

Maintains tractability; such factors can
be explored in scenarios/simulations.
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4.3 Mathematical Model Formulation

To operationalise the bi-level optimisation framework introduced in Section 4.1, this section formalises
the model in detail. We first define the sets and indices used to represent VAM nodes and links, trucks,
battery classes, tours, and the ordered segments of each tour along its reconstructed VAM path. We then
introduce parameters and decision variables.

The upper-level objective combines CAPEX (SCS siting, ERS deployment, and per-truck battery
investment), OPEX aggregated over served tours, and penalties for unserved tours. The lower level
does not select batteries; it enforces tour-level energy feasibility via SOC balance with conditional SCS
charging at nodes and continuous ERS charging on equipped links, and returns the corresponding OPEX.
The two layers are coupled by service indicators (s; served, r, = 1 — s; unserved) and big-M gating of
constraints when a tour is not served.

All energy, time, and corridor-fee calculations use the length of the reconstructed VAM shortest paths
from Chapter 3, ensuring a common metric between operations and infrastructure decisions. The subse-
quent subsections present the sets/indices, parameters and decision variables, followed by the objective
and the key constraints that guarantee energy feasibility and logical consistency.

It is important to note that the assignment of tours to trucks is not part of the optimisation problem
itself. Instead, the mapping (t) linking each tour ¢ to a truck k is generated exogenously during the
data preparation stage (Chapter 3). The optimisation framework therefore assumes this mapping as fixed
input: trucks are pre-defined carriers of a set of tours, and the model only decides on battery investment
and infrastructure deployment. This distinction ensures that battery capacities are consistently applied
across all tours of the same truck, while avoiding any endogenous reallocation of tours between trucks.

4.3.1 Sets and Indices

Table 7 summarises the sets and indices used in the formulation. The corridor graph follows the Delaunay
construction in Chapter 3: nodes are SCS candidates and undirected links are ERS candidates; link lengths
are used throughout for energy and cost calculations.

Table 7: Sets and indices used in the model

Symbol Meaning Index
N VAM nodes (SCS candidates), |N| = 542 nenN
L Undirected inter-zonal links (ERS candidates), |L| = 1613 (€ L
K Set of trucks ke K
T Set of tours teT
B Battery-capacity classes beB
I; Ordered segments within tour ¢ 1€ 1}
Tk Tours assigned to truck k (T, = {t € T : k(t) = k}) teTy

Auxiliary mappings and notations. For each tour ¢ € T and segment i € I; we define:
e k(t) € K: the truck assigned to tour ¢ (from Chapter 3).

e n(t,i) € N: the start node of segment i (the VAM centroid where the (i—1)-th trip of tour ¢
ends). Static charging opportunities (SCS) are evaluated at n(t,¢) before traversing segment i.

e ((t,i) € L: the (undirected) corridor link traversed in segment i. ERS availability is determined
by whether this link is equipped.

e di; = dy,4): length of segment i (km), inherited from the link table; used for energy and corridor-
fee calculations. Optionally, v;; denotes the reference speed for time conversion.

This representation keeps operational evaluation (SOC balance, SCS/ERS opportunities) consistent with
infrastructure siting on the same corridor graph.

4.3.2 Parameters

Table 8 lists the key parameters. They align the economic and technical inputs with the graph-consistent
evaluation used in this study.
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Table 8: Parameters used in the bi-level optimisation model

Symbol Description

508 Annualised CAPEX of building an SCS at node n (unit: €; upper
level).

cERS Annualised CAPEX of electrifying link ¢ (per km; unit: €/km;
upper level).

dyp Length of link ¢ on the VAM graph; basis for energy, time and
corridor-fee calculations (unit: km).

chat Battery CAPEX for capacity class b (per truck, upper level). Al-
ternatively computed as ¢B2/¥Wh Q, (units: € or €/kWh).

Qy Nominal capacity of battery class b (unit: kWh).

@ Initial SOC fraction at tour start (SOCy = « @ for the assigned

truck battery; unit: —).

pSes SCS charging power (unit: kW).

PERS ERS in—motion charging power (unit: kW).

nSCS, nERS Charging efficiencies for SCS/ERS (constants; unit: —).

Vave Average driving speed used to couple ERS power to time when
segment speeds are unavailable (unit: km/h).

pstat pdyn Electricity tariffs for static/dynamic charging (unit: €/kWh).

7568 Station service fee per SCS charging session (optional; unit: €).

e Corridor fee/toll applied on link ¢ (per km; unit: €/km).

ctime Value of time (driver/vehicle/cargo; unit: €/h).

Q Feasibility weight multiplying unserved tours in the objective (unit:
).

e Base penalty if tour ¢ is not served by BEV (outsourcing, etc.; unit:

Pdiesel Diesel price (unit: €/L).

fdiesel Diesel fuel intensity (unit: L/km).

e§92) COq emission factor of diesel (unit: gCO2/L).

Aco2 Carbon price (unit: €/gCO2).

0] Additional distance-based surcharge used in the penalty term (unit:
€/km).

B BEV energy consumption rate per km (constant; unit: kWh /km).

M Big-M constant used to gate energy-balance constraints when a

tour is unserved (unit: —).

Note

(i) ERS/SCS costs and operations are evaluated on the same VAM graph; hence d; is the sole distance
metric for energy and corridor fees. (ii) Battery CAPEX is an upper-level, per-truck investment; tours
never choose batteries. (iii) COy emissions for penalties are derived as fgiesel - d X egigfel rather than
treated as a per-tour parameter. (iv) If detailed segment speeds v, ; are available, they supersede vayg
for ERS time coupling.

4.3.3 Decision Variables

Upper level: Strategic decisions include SCS siting on nodes, ERS deployment on links, and the truck—level
battery assignment:

x, € {0,1} (n € N), ye € {0,1} (¢ € L), oy €{0,1} (k€ K, b€ B).
Lower level: Operational variables evaluate each tour on its reconstructed VAM path:

s, €{0,1} (t€T), €)% >0, efi° >0, SOC,; >0 (i € I).
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Here n(t,4) denotes the start node of segment ¢ in tour ¢ and £(¢,7) the (undirected) link traversed; SOC} o
is the initial SOC and SOCy; is defined for i =0, ..., |I;|.

Table 9: Decision variables used in the bi-level optimisation model

Symbol

Description

5]@’1, S {0, 1}

x, € {0,1}
Ye € {07 1}

Tt S {0, 1}
St € {0, 1}

scs
ei 2 0

ERS
ey 20

258 €{0,1}
z£1S € {0,1}

SOC,; >0

Equals 1 if truck k is assigned battery class b; exactly one class is
chosen per truck at the upper level.

Equals 1 if a static charging station (SCS) is built at node n.
Equals 1 if link ¢ is equipped with ERS (dynamic charging). Links
are undirected and identified on the VAM corridor graph.
Infeasibility / outsourcing flag: equals 1 if tour ¢ is unserved by
BEV (infeasible w.r.t. SOC) and therefore outsourced; 0 otherwise.
Service indicator: equals 1 if tour t is executed by a BEV; 0 if
outsourced. Enforced by s; =1 — 7 at the model level.

Energy charged statically at the start node n(t,i) before travers-
ing segment i (kWh, measured on the battery side and limited by
headroom).

Energy charged dynamically on link £(t,7) during segment ¢ (KWh,
limited by ERS deployment, travel time and headroom).

Binary indicator: equals 1 if static charging is activated at node
n(t,i) before traversing segment i; 0 otherwise. Used to trigger
SCS tolls in the OPEX formulation.

Binary indicator: equals 1 if dynamic charging is activated on link
£(t,4) during segment i; 0 otherwise. Used to trigger ERS tolls in
the OPEX formulation.

State of charge of tour ¢ at segment index ¢ (kWh). SOC, g is the
initial SOC; SOCY 1, is the terminal SOC.

4.3.4 Objective Function

We minimise a single composite objective that mirrors the implementation:

min Z = QZ?}
teT
——

service-first priority

Upper Level (Strategic)

Facility CAPEX

+ CAPEXpo(7,y) + CAPEXpai(d) + » st OPEX, + Y r, CP™".

teT teT

SCS/ERS truck-level batteries served tours unserved tours

Infrastructure investment follows the VAM corridor graph:

CAPEX (2, y) = Z S, + Z cERS dyyy.

neN LeL

Battery CAPEX (truck level)

Each truck receives exactly one battery class at the upper level:

(When costs are specified per kWh in the data interface, ¢, is taken as c

CAPEXpat(0) = D > ™ 0

keK beB

Bat Bat/kWh
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Lower Level (Operational)
Operating cost

For each tour ¢ € T', the operating cost is decomposed into energy payments, charging dwell time, and
facility tolls:

SCS
. et
OPEX, =Y [y €% 4 p™m effS 4 ¢
iel,
+ TSCS dt,i Zfsﬂcs + TCFZEZS) dt,i ZEvRS:| s (4)
where 255, zERS € {0,1} are binary variables indicating whether SCS or ERS charging is activated on

segment ¢ of tour ¢.
Penalty for an unserved tour

If tour ¢ is infeasible under the assigned battery and infrastructure (r;=1), the penalty is applied per

travelled distance D; = 7, dy i

C{.)en = Dt <pdiesel fdiesel + ACOQ egi(e)s2el + ¢) . (5)

The first two terms represent diesel fuel and carbon costs; ¢ is an additional distance-based outsourcing
surcharge.

Notes on implementation

(i) The service indicators satisfy s; +r; = 1. (ii) ERS/SCS fees in (4) use indicator functions that
are derived in the evaluator (fees are counted only if etEf{S or ets)(fs is positive); no extra binaries are
introduced for these indicators. (iii) All distances d; and d;; are measured on the reconstructed VAM

shortest paths, ensuring consistency between siting and operating-cost evaluation.

4.3.5 Key Constraints

Indexing
For each tour ¢, let I, = {1,...,m;} be the ordered set of segments along its reconstructed VAM path;
SOC,; is the state of charge at the start of segment i, and SOC% ,,,+1 is the terminal SOC.

(i) Battery selection and capacity (mandatory).

D ks =1 Vk € K, (B1)

beB

Spp € {0,1} Vk € K, Vb € B, (B2)

Qr = > Quoip Vk € K. (B3)
beB

Explanation: one truck can only assign to one type of battery

(ii) Service—infeasibility link
St+’l"t:1 vteT. (6)

Explanation: each tour is either served by a BEV (s;=1,7:=0) or outsourced/unserved (s;=0,r;=1);
voluntary outsourcing of feasible tours is excluded.
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(iii) Initial SOC and bounds (start at i = 1)

SOC; = OzQK(t) Vtel, (7)
0 < SOCy; < Quuy + My, VieT, i=1,...,mu+1. (8)

Explanation: each tour starts at a fixed fraction « of its truck’s battery @), and SOC cannot exceed
capacity; when a tour is marked unserved (r;=1) these bounds are relaxed by big-M.

(iv) Segment energy balance (gated by infeasibility)

—M%9%r, < SOCy 41 — SOCy; + Bdy; —175e}S — ef 1S < M9, VteT, i=1,...,m,.

9)

Explanation: SOC decreases by driving (8d; ;) and increases by SCS/ERS charging; if =1 the equality
is deactivated via big-M so infeasible tours do not bind the physics.

(v) Static (SCS) charging at start nodes
0 < &7 < @neifQury = SOC1;) + MPry, VteT, i=1,...m. (10)

Explanation: static charging before segment i is only allowed if an SCS is installed at the start node and
is capped by battery headroom; it is disabled for unserved tours.

(vi) Dynamic (ERS) charging on links

PERS

0 < e < Yo (nERS dm) + MPr, VteT, i=1,...,m, (11)
t,i

ef™S < Quuy — SOCy; + MFry, VteT, i=1,...,m. (12)

Explanation: in-motion charging on segment ¢ is limited by (i) whether the link is ERS-equipped and the
power—time budget, and (ii) the battery headroom; it is disabled for unserved tours.

(vii) Terminal SOC (served tours)
SOCt,mt-&-l >0 - MSOC’/’t VteT. (13)

Explanation: a served tour must end with non-negative SOC; if unserved, this requirement is relaxed by
big-M.

(viii) Linking and feasibility constraints

efFS < M5 TS, Vt € T,Vi € I, (14)
efiS < MERS LFRS, Yt e T\Vi € I, (15)
%00 S Tneas 200 < Yeeas Vi, i, (16)
705 < 11—y, 208 < 1—ry, Vit 4, (17)
zﬁgs,zE?S € {0,1}. (18)

Here MSCS and MRS are sufficiently large constants (e.g., taken from Mp) to enforce that z = 1
whenever the corresponding charging energy is positive.

(ix) Non-negativity
S >0, P00 vieT i=1,...m. (19)

Explanation: charged energies are non-negative by definition.
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(x) Big-M choices (tight)

MSOC — ma O, ME — max{nSCSQmax7 RS IZElfs dmax} 7 (20)
p min
Explanation: big-M constants are chosen as tight, data-driven upper bounds (max battery, max ERS

energy per segment) to stabilise the relaxation without over-penalising numerics; in experiments ¢S =
ERS
n =1.

4.4 Integrated Model Mechanism

The model operates by linking upper-level investment decisions with lower-level tour feasibility checks
in a unified framework. At the core lies the assignment of batteries to trucks: each vehicle is equipped
with exactly one battery capacity class, which determines its maximum usable energy throughout all
tours. This constraint ensures consistency across a truck’s operations and prevents unrealistic switching
of battery sizes between trips.

Service feasibility is enforced through the penalty weight €2, which magnifies the cost of infeasible tours.
By doing so, the model prioritizes serving tours with electric vehicles whenever technically possible, and
only resorts to outsourcing or diesel-based penalties if no feasible charging configuration exists. This
mechanism strongly drives the solution toward high electrification coverage.

Battery selection is embedded in the objective function through CAPE X% (§). The optimizer weighs
the trade-off between investing in larger, more expensive batteries that can cover long tours without
recharging, and choosing smaller, cheaper batteries that rely on strategically placed infrastructure. This
co-optimization between vehicle-side investment and network-side infrastructure deployment enables cost-
efficient planning at scale.

Finally, the charging strategy at the lower level follows an on-demand principle. Static charging at SCS
facilities only occurs when the current state-of-charge is insufficient to cover the upcoming segment, and
only the minimum required energy is drawn. Dynamic charging on ERS segments is similarly conditional:
it is activated solely when the remaining energy would otherwise fall short of completing the tour. This
prevents unnecessary charging and ensures that operational costs reflect rational economic behavior.

Through this combination of truck-level battery assignment, strong infeasibility penalties, balanced
investment trade-offs, and cost-driven charging behavior, the model delivers a realistic and comprehensive
framework for planning electric road freight systems.
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5 Solution Approach
5.1 Genetic Algorithm for the Bi-level Model

The optimisation problem formulated in Chapter 4 is a large-scale, NP-hard combinatorial problem. It
simultaneously decides on static charging station siting, dynamic ERS deployment, and battery capacity
assignment for a nationwide truck fleet. The decision space is extremely large due to the binary nature
of facility placement and the discrete multi-class structure of battery choices. Moreover, the feasibility of
each tour depends on nonlinear SOC balance constraints under the smart charging strategy. These fea-
tures make exact methods such as mixed-integer linear programming (MILP) computationally intractable
at scale, motivating the use of metaheuristics.

The Genetic Algorithm (GA) is particularly well suited to this problem setting. GA evolves a popu-
lation of solutions through selection, crossover, and mutation, enabling exploration of vast search spaces
without relying on convexity or linearity. It is capable of handling mixed discrete decision variables,
nonlinear feasibility checks, and multi-objective cost components. Furthermore, each individual’s fitness
evaluation is independent, making the approach amenable to parallelisation.

Empirical support for GA has been demonstrated in several charging-infrastructure studies. Vazifeh
et al. (2019) showed that GA improved both user inconvenience and the number of charging stations
compared to greedy approaches when optimising EV station siting in Boston [42]. Akbari et al. (2018)
applied GA to Milan and found rapid convergence within a few hundred generations [1|. Cintrano et al.
(2021) also confirmed superior performance of GA over Variable Neighbourhood Search (VNS) in a case
study in Malaga, Spain [6]. More recently, Seilabi et al. (2025) verified the applicability of a GA-based
bi-level optimisation framework in sustainable EV charging station planning, underscoring the method’s
relevance for large-scale real-world networks [10].

In the context of this thesis, GA is tailored to the bi-level model. Chromosomes are structured in
three segments to jointly encode SCS siting, ERS deployment, and grouped truck battery capacities. The
initialisation procedure is biased toward small batteries to reduce investment costs and improve facility
utilisation, while mutation is designed to favour downward transitions in battery capacity. Diversity is
preserved through Hamming distance checks, and a periodic restart strategy is adopted to avoid premature
convergence. The fitness evaluation directly corresponds to the objective function defined in Chapter 4,
including CAPEX, OPEX, infeasibility penalties, and the € term enforcing service priority. This tailored
GA design ensures both scalability to national-level datasets and alignment with the model’s decision
structure.

5.2 GA Mechanisms and Workflow

The evolutionary process of the tailored GA follows the classical structure of genetic algorithms, adapted
to the bi-level optimisation model presented in Chapter 4. After each chromosome is decoded into
infrastructure and battery decisions, the following operators are applied in each generation:

e Selection: A tournament-based scheme is used to ensure that solutions with lower system cost
(better fitness) have a higher probability of reproducing in the next generation.

e Crossover: Offspring are generated by exchanging subsequences of parent chromosomes, with
crossover points aligned with the three main segments (SCS siting, ERS deployment, and battery
grouping). This preserves structural integrity while allowing diverse recombinations.

e Mutation: Individual bits of the chromosome are flipped with low probability to maintain diversity.
In the battery segment, mutation is biased toward smaller capacity classes to avoid over-investment
and encourage facility reliance.

e Elitism: The best-performing individuals in each generation are directly copied into the next
generation, ensuring that high-quality solutions are never lost.

The fitness evaluation of each individual corresponds exactly to the objective function defined in
Chapter 4. For a candidate solution, the evaluator computes the total system cost

f=Q> r + CAPEX(2,y,0) + OPEX(e5%,e"%5) + % "r,cpe", (21)
teT teT

where the ) term penalises infeasible tours, CAPE X represents facility and battery investment, OPEX
covers operational energy, toll, and time costs, and C?*" denotes the outsourcing penalty. This alignment
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between the model objective and the GA fitness ensures that only cost-efficient and feasible infrastructure—
battery configurations survive across generations.

Through repeated cycles of selection, crossover, mutation, and elitism, the GA gradually evolves
the population toward high-quality solutions, while the additional mechanisms described in Section 5.2
guarantee scalability and robustness.

5.2.1 GA Solution Strategy for the Bi-level Model

While the mechanisms of the GA define how populations evolve, the essence of solving the bi-level
model lies in how the algorithm directs the search toward cost-efficient and feasible configurations. The
evaluation of each chromosome is guided by the hierarchical cost structure of the optimisation model,
and the GA naturally balances these objectives through its fitness function.

Minimising infeasible tours: The highest priority of the GA is to reduce the number of infeasible
tours. This is achieved through the 2 term in the fitness function, which imposes a very large penalty
whenever a tour cannot be served by an electric truck under the given infrastructure and battery con-
figuration. As a result, the evolutionary search first focuses on finding configurations that maximise
feasibility, ensuring that a large share of tours can be operated electrically.

Minimising infrastructure investment: Once feasibility is improved, the GA gradually seeks to
reduce system cost by minimising infrastructure CAPEX. Through crossover and mutation, solutions
with fewer SCS sites and shorter ERS stretches are favoured, provided they still maintain feasibility.
This ensures that the algorithm avoids over-deployment of facilities and converges to leaner network
layouts.

Minimising battery investment: Battery costs are incorporated directly through the d; variables
in the chromosome. The biased initialisation and mutation operators promote smaller battery capacities
whenever feasible, thereby reducing vehicle-side CAPEX. This mechanism reflects the trade-off between
investing in large batteries, which increase feasibility but are expensive, and relying on infrastructure to
support smaller, cheaper batteries.

Minimising operational cost (OPEX); Among feasible solutions with reasonable investment levels,
the GA further discriminates based on operating cost. The smart charging strategy embedded in the
evaluator ensures that SCS and ERS are only used when strictly necessary, preventing unnecessary
charging costs. Thus, OPEX is reduced by both efficient facility placement and rational vehicle-level
charging behaviour.

Penalty as a last resort: Tours that cannot be served by any feasible combination incur penalty costs
reflecting diesel usage, emissions, and outsourcing. Although these terms are always dominated by the
Q) penalty, they still influence the search by differentiating between alternative infeasible solutions. This
ensures that, if infeasibility cannot be entirely eliminated, the algorithm still favours configurations with
lower environmental and outsourcing impact.

Through this layered fitness evaluation, the GA sequentially drives the population toward solutions
that (i) maximise feasibility, (i) minimise infrastructure cost, (iii) minimise battery cost, (iv) reduce
operational expenses, and (v) only as a last resort accept penalties.

This ordering of priorities mirrors the objective structure of the model and ensures that the evolution-
ary process converges toward globally cost-efficient and practically implementable infrastructure—battery
configurations.

Figure 11 provides a visual summary of the tailored GA workflow. The diagram illustrates how the
algorithm begins with a biased initialisation of the population, decodes each chromosome into infrastruc-
ture and battery decisions, and then evaluates fitness according to the layered priority structure: first
minimising infeasible tours through the Q penalty, then reducing infrastructure and battery investment,
and finally refining operational costs and penalties. Genetic operators (selection, crossover, mutation,
and elitism) are applied to evolve the population, while diversity control and periodic restarts ensure ro-
bustness against premature convergence. The loop continues until the termination criterion is met, after
which the best configuration of infrastructure and battery assignments, along with detailed performance
statistics, is reported.
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Initialisation
Biased small-battery setup;
sparse SCS/ERS layout;
create initial population

Y
Decode chromosome
Extract SCS sites, ERS links,
and grouped battery capacities

Y
Fitness evaluation

Q- infeasible tours — CAPEXg,. (SC-

S/ERS) — CAPEXy,: (batteries) —

OPEX (energy, time, tolls) — Penalty

No

Y

Y
Genetic operators
Selection (tournament), crossover (aligned
with SCS/ERS/Battery segments), mu-
tation (battery-biased downward), elitism

Y
Diversity control & restart
Monitor Hamming distance; replace low-
diversity individuals; periodic partial restart

Y

Output
-~ Best infrastructure & bat-
tery plan; feasible rate; cost
breakdown; evolution history

{ Terminate? } Yes —L

Figure 11: Workflow of the tailored GA for the bi-level optimisation model.

5.3 Parameter Configuration
5.3.1 GA Parameters

The GA parameters are set following both literature guidance and pilot experiments on the national
dataset. Table 10 summarises the adopted configuration. These values represent a balance between
solution quality and computational tractability: a moderate population size and number of generations
to keep runtime within practical limits, a relatively high crossover rate to encourage recombination of
infrastructure and battery decisions, and a slightly elevated mutation rate to sustain diversity in the
enlarged search space. The restart interval and diversity threshold provide additional safeguards against
premature convergence.

Table 10: Genetic Algorithm parameter configuration

Parameter Description Value

Population size Number of individuals in each genera- 30
tion

Number of generations Maximum number of evolutionary cy- 30
cles

Crossover rate Probability of exchanging subsequences 0.80

between parent chromosomes
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Parameter Description Value

Mutation rate Probability of flipping chromosome 0.15
bits; biased toward smaller battery ca-
pacities

Elitism size Number of best-performing individuals 5
copied to the next generation

Tournament size k Number of individuals competing in 3
each tournament selection

Restart interval Generations after which part of the 12
population is reinitialised

Diversity threshold Minimum Hamming ratio enforced be- 0.12

tween individuals

5.3.2 Value of Model Parameters

Q In this study, the feasibility weight € is set to a fixed value of 100,000. The role of € is not to represent
a real economic cost, but to enforce a strong service-first preference in the optimisation. In practice, the
outsourcing penalty for a tour is typically much lower than the capital cost of procuring additional
batteries or installing new infrastructure. Without €2, the optimiser would tend to declare many tours
infeasible and outsource them, because this appears cheaper in monetary terms. By introducing 2 as a
very large weight multiplied by the number of unserved tours, the model strongly discourages outsourcing
and nudges the search toward investing in batteries and infrastructure. This greatly reduces the incidence
of infeasible tours and ensures that the optimisation produces solutions with high electrification coverage.
Importantly, Q is excluded from the reported cost totals in the results (Chapter 6), as it functions purely
as a modelling device to guide the search rather than a real-world cost component.

CERS A study in Germany indicates that the infrastructure cost of suspended cable (catenary) ERS is
approximately €1.7 - 3.1 million EUR per kilometer. For other types (electromagnetic or inductive), it
is estimated to be €0.4 - 2.7 million per kilometer [36]. In this paper, 2 million EUR per kilometer is
selected as the construction cost of ERS.

CSCS  According to the Rocky Mountain Institute, the hardware cost of a 150 kW DC fast charger
is typically $75,600-100,000, while a full site installation including make-ready and grid upgrades can
be three to five times higher [27]. Based on these estimates, a representative value of €200,000 per
logistics-scale SCS site is adopted in this study.

¢ba,s According to the BloombergNEF report, the price of lithium ion battery packs has fallen to $115
per kWh in 2024 and has decreased by 20% compared to last year [35]. To account for the expected future
costs or convert them into the large-scale logistics purchase price, and for the convenience of calculation,
this article sets the battery price at €100 per kWh.

B The actual energy consumption of electric heavy trucks is approximately 1.08 - 1.3 kWh per kilometer
[36]. Some studies have indicated that for urban areas and highways, it is within the range of 1.2 - 1.8
kWh per kilometer [37]. In this paper, 1.6 kWh per kilometer is selected.

Ctats Ciyn 1D the Netherlands, the national average for public charging (excluding fast chargers) is ap-
proximately €0.36/kWh [28]. For fast DC charging (over 50 kW), average prices range from €0.67 to
€0.86/kWh [12], with an overall average of about €0.76/kWh. Accordingly, this study assumes a static
charging price of €0.73/kWh—consistent with typical fast-charging rates—and a lower dynamic (ERS)
charging price of €0.36/kWh, reflecting potential operational efficiencies or contractual arrangements in
dynamic charging contexts.

c“me  The value of freight vehicle driver time used in UK cost—benefit analysis (COBA framework) is
approximately £18.95/h (2010 prices), equivalent to roughly €23/h today [26]. Given the additional
operational and waiting costs typical in logistics operations, this study adopts a higher value of €38/h
to reflect the true opportunity cost of driver time in freight transport.
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ctoll cg‘;}rll In Germany, heavy goods vehicles are charged an average road toll of approximately €0.15 per

km on highways (LKW-Maut) [44]. Similarly, from 2026 the Netherlands will introduce a kilometre-based
toll for trucks over 3.5 tonnes of around €0.15/km [31]. Therefore, a static charging toll of €0.15/km is
adopted in this study. For dynamic ERS charging, a lower fee of €0.10/km is assumed, reflecting potential
operational efficiencies or lower marginal infrastructure costs associated with dynamic charging.

chs , PgRS A typical ultra-fast DC charging station can provide around 150 kW continuous power,
as demonstrated by commercially available systems (e.g., Heliox) [13]. For electric road systems capable
of dynamic charging—such as Honda’s conductive overhead implementation—power delivery can reach
up to 450 kW [18]. In this study, a conservative yet realistic value of 150 kW is used for SCS, while
200 kW is assumed for ERS, reflecting moderate dynamic charging performance of current infrastructure
prototypes.

049 In most European countries, heavy goods vehicles (HGVs) are legally limited to a maximum speed
of approximately 80 km/h on motorways and expressways [14]. Therefore, an average truck speed of 80
km/h is adopted, representing a realistic operational average under combined motorway and interurban
driving conditions.

CP°"™  The penalty cost per unserved tour is modelled using four components:

e Diesel fuel cost: €1.6/L, consistent with typical European retail prices (e.g., Belgium: €1.603/L;
Denmark: €1.797/L) [5].

e Fuel consumption: 0.35 L/km, slightly above the ICCT-reported average of 0.326 L /km for tractor-
trailers on long-haul routes [20].

e CO; emissions cost: €0.00008 per gram CO4, aligned with current EU-ETS trading prices ( €100/ton
CO») [43].

e External surcharge: €0.10/km, included to reflect additional marginal costs (e.g., logistics delays,
congestion, indirect environmental impacts), adopted as a conservative estimate.

5.4 GA Validation

To verify the accuracy of the GA, we formulated an exact Mixed-Integer Linear Programming (MILP)
model identical to the problem as a “gold standard” for benchmarking under the same data and parameter
settings. Specifically, we adopted unified cost and technical parameters (SCS = €200,000 per station,
ERS = €500,000 per km, 5 = 1.6 kWh/km, Pscgs = 150 kW, Pgrs = 200 kW, battery capacity set =
[100, 150, 200] kWh, ERS length options = [0, 25, 50] km, and excluding time costs) and solved on the
same small-scale subsets (8, 15, and 25 tours) for comparison. The results show that the optimal total
costs obtained by the GA match exactly with those of the MILP in all three cases: €68,000 for 8 tours,
€124,000 for 15 tours, and €208,000 for 25 tours (difference = 0, error tolerance < €1,000). Moreover,
the solution structures are consistent between the two: neither deploys SCS/ERS infrastructure (optimal
being zero infrastructure), and battery selection is predominantly 100 kWh, with a few tours selecting 150
kWh to meet constraints. Furthermore, in the larger-scale case with 40 tours, the MILP could not run due
to the size limitations of the free Gurobi license, whereas the GA was still able to stably produce feasible
and cost-effective solutions, demonstrating its scalability. This comparison confirms that within the scale
solvable by the MILP, the GA yields identical results, thereby proving its correctness and reliability in
the given problem setting; and in larger-scale cases, the GA retains practical solution capability.

5.5 Summary

This chapter has presented the solution approach for the bi-level optimisation model. A tailored Genetic
Algorithm was introduced as the heuristic method capable of handling the large-scale, combinatorial, and
non-linear structure of the problem. The algorithm was specifically adapted to the joint optimisation of
charging infrastructure siting and truck battery capacities through a three-segment chromosome design,
truck grouping strategy, biased initialisation and mutation, and layered fitness evaluation prioritising
feasibility, investment, and operating costs. Parameter settings were discussed to ensure both convergence
quality and computational tractability.
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Together, these methodological innovations establish a robust and scalable optimisation framework.
The GA not only guarantees alignment with the model objectives but also provides practical decision
support for national-scale electrification of heavy-duty freight. The next chapter will present the experi-
mental results obtained with this framework and analyse the implications for infrastructure planning.
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6 Result

6.1 Overall Performance

Building upon the modelling framework and the heuristic solution method introduced in Chapter 4
and Chapter 5, this section evaluates the nationwide optimisation outcomes obtained with the Genetic
Algorithm (GA). The GA is employed to address the computational intractability of the bi-level MILP
at full scale, while retaining the ability to explore investment trade-offs between static charging stations
(SCS), electrified road segments (ERS), and truck battery capacities. Convergence plots are presented
to illustrate how key performance metrics evolve over generations, providing insights into the algorithm’s
efficiency and the quality of the final solutions.

Fitness Convergence Over Generations
Genetic Algorithm Optimization Results
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Figure 12: Convergence of best fitness over generations.

Figure 12 shows that the best fitness value decreases sharply within the first few generations, stabilis-
ing after approximately 12 generations. The overall fitness improves from €83.9 billion to €54.8 billion,
corresponding to a 34.7% reduction. It should be noted that these values include the artificial Q-penalty
for infeasible tours, which enforces service-first behaviour during optimisation. In subsequent cost re-
porting, the €2 component is excluded to reflect true economic expenditures. The rapid convergence
within fewer than 15 generations illustrates the computational efficiency of the GA on a nationwide-scale
problem.

35



Feasibility Rate Convergence Over Generations
Genetic Algorithm Optimization Results
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Figure 13: Feasibility rate convergence across generations.

A similar convergence pattern is observed in the feasibility rate (Figure 13). The proportion of
tours that can be served by battery-electric trucks rises from 58.0% initially to 89.9% after optimisation,
reflecting a 31.9 percentage-point improvement. The feasibility stabilises after about ten generations,
highlighting that the GA prioritises reducing infeasible tours in the early search phase. Nevertheless,
about 10.1% of tours remain infeasible, which motivates the residual infeasibility analysis presented in
Section 6.3.

CAPEX Convergence Over Generations
Genetic Algorithm Optimization Results

—e— Total CAPEX

—=— Infrastructure CAPEX
-4 Battery CAPEX

40

35

30

25

CAPEX (Billion EUR)

15

Final CAPEX Breakdown:

Total: 39.09B EUR

Infrastructure: 25.63B EUR (65.6%)
Battery: 13.46B EUR (34.4%)

10

Total Change: +117.1%

0 5 10 15 20 25
Generation

Figure 14: CAPEX convergence across generations, split by infrastructure and battery.

In terms of capital expenditure (Figure 14), the GA raises total CAPEX from €18 billion in the
initial generation to €39.1 billion at convergence, split into €25.6 billion (65.6%) for infrastructure and
€13.5 billion (34.4%) for batteries. This increase reflects a deliberate investment strategy: higher upfront
costs are accepted to achieve large reductions in operating costs and infeasible tours.
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Figure 15: Convergence of average truck battery capacity.

Battery capacity assignment also converges to a stable configuration (Figure 15). The average assigned
capacity per truck increases from 284 kWh to 357 kWh (+25.9%), with most of the adjustment occurring
within the first 11 generations. This outcome illustrates that the GA does not simply assign maximum-
capacity batteries; instead, it balances marginal battery costs against coverage benefits, leading to a
heterogeneous but stable distribution of battery classes.
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Figure 16: OPEX convergence across generations.

Indeed, the operating expenditure (OPEX) falls significantly over the search process (Figure 16), from
€191 million to €124 million (-35.2%). The sharp decline in OPEX coincides with the period when both
feasibility and battery capacity stabilise, confirming that improved service coverage directly translates
into lower operational burden.

Overall, these results confirm the GA’s ability to efficiently explore the large-scale search space and
converge toward balanced solutions. The optimisation process yields a substantial reduction in infea-
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sible tours, a clear trade-off between CAPEX and OPEX, and a stable battery configuration, thereby
demonstrating both the algorithm’s robustness and the practical feasibility of the proposed modelling
framework. The following section disaggregates the resulting infrastructure layout, highlighting how
ERS and SCS investments jointly contribute to the achieved feasibility gains.

6.2 Infrastructure Deployment

Figure 17 and Figure 18 illustrate the optimised nationwide charging infrastructure layout, combining
dynamic ERS links and static SCS nodes. The deployment pattern reflects the trade-off between corridor-
based electrification for long-haul flows and nodal charging opportunities for regional tours. Investment
costs are based on unit assumptions of €2.0 million per kilometre of ERS (200 kW rated power, average
segment length 20.1 km) and €0.20 million per SCS facility (150 kW rated power).

ERS Dynamic Charging Infrastructure Deployment
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Figure 17: Optimised ERS deployment across the national freight network.

As shown in Figure 17, the GA selects 636 ERS segments with a total electrified length of
12,792 km, corresponding to an investment of €25.7 billion. The deployment is concentrated along
major inter-urban and international freight corridors, forming a backbone that supports high-volume,
long-distance tours. Notably, the densest electrification appears in the Randstad region and major
east—west axes, consistent with observed freight demand patterns. Overall, ERS accounts for 65.6%
of total CAPEX, demonstrating that corridor electrification is the dominant investment component in
the optimised strategy.
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Figure 18: Optimised SCS deployment across the national freight network.

Figure 18 shows the complementary deployment of 251 SCS facilities, each rated at 150 kW, requir-
ing a total investment of only €50.2 million—Iless than 1% of total CAPEX. The spatial distribution
of SCS nodes is notably clustered around urban and regional freight hubs, particularly in the west-
ern Netherlands, while additional coverage is provided across secondary corridors. Although financially
marginal, the SCS network plays an important operational role: it provides critical redundancy and
allows medium-capacity trucks to complete tours that would otherwise require outsourcing. This nodal
charging network ensures that tours not fully covered by ERS can still recharge at intermediate points,
thereby supporting medium-distance and regional freight operations.

Together, the ERS and SCS deployments highlight a layered investment strategy: ERS forms the long-
distance electrification backbone, while SCS nodes provide redundancy and flexibility at key hubs. This
integrated pattern enables high feasibility, with nearly 90% of tours electrified, while balancing capital
cost with operational reliability. Importantly, the availability of ERS reduces reliance on ultra-large
batteries, while SCS stations further mitigate infeasibility for tours operating at the system periphery.
Nevertheless, 10.1% of tours remain infeasible, indicating that residual service gaps persist. These
will be examined in detail in Section 6.3.

6.3 Residual Infeasibility Analysis

Although the optimized deployment of ERS and SCS substantially improves tour feasibility, a non-
negligible fraction of tours remain infeasible. In total, 155,749 tours (10.1% of all tours) could not be
executed by BE-HDTs under the optimized infrastructure layout. This highlights that even large-scale
investments cannot fully eliminate residual infeasibility.
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Figure 19: Top 15 most problematic nodes, ranked by frequency of appearance in infeasible tours.
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Figure 20: Geographic distribution of problematic nodes with high frequency in infeasible tours.

Figures 19 and 20 provide further insight into the distribution of these infeasible tours. A small set
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of nodes is responsible for a disproportionately high share of infeasibility. For instance, Node 542 alone
appears in 21,287 infeasible tours, while Node 526 contributes to 18,088 cases. The top 15 nodes together
account for more than 40% of all infeasible tours, illustrating the presence of structural bottlenecks in
the network.

Geographically, these problematic nodes (Figure 20) are concentrated in cross-border regions and
peripheral areas with sparse charging coverage. This pattern suggests that infeasibility is not uniformly
distributed across the system but rather clustered in specific high-risk zones. Addressing these bottlenecks
through targeted additional investments in critical nodes or corridor segments could drastically reduce
the residual infeasibility rate.

At the same time, the persistence of infeasible tours despite extensive deployment underscores the
necessity of fallback strategies, such as hybrid trucks or limited diesel operations, particularly in areas
where electrification is prohibitively costly. This residual infeasibility analysis provides a roadmap for
future incremental improvements and highlights where investments would have the greatest marginal
impact.

It is important to note that part of the residual infeasibility can be attributed to the limitations of
the aggregate VAM network representation. Outside the Netherlands, zone partitioning is considerably
coarser, particularly in France and other neighbouring regions. For cross-border tours entering such areas,
the inter-zonal distances are substantially larger than within the Dutch core network. Since the model
restricts SCS deployment to VAM centroids, charging opportunities are often absent along these long-
distance corridors, forcing trucks to rely solely on ERS. However, when corridors span very long distances,
the exclusive reliance on ERS becomes prohibitively costly due to its high investment requirements. As a
result, even with the introduction of a large infeasibility penalty parameter ) to discourage outsourcing,
certain tours remain infeasible under the current network representation. This limitation highlights that
residual infeasibility is not only a function of infrastructure siting, but also of the spatial resolution of
the underlying network model.

6.4 Battery Distribution and Charging Behavior

In addition to infrastructure deployment, the optimisation jointly determines the battery capacity as-
signment for each truck and the charging strategies adopted during operation. Figure 21 and Figure 22
summarise the resulting distributions.
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Figure 21: Distribution of battery capacities across the truck fleet.

As shown in Figure 21, the fleet is allocated across five discrete battery classes. The distribution
is skewed toward the extremes: 25% of trucks are assigned the smallest capacity (90 kWh), while 40%
adopt the largest class (600 kWh). Medium classes (180-450 kWh) jointly cover 35% of the fleet, with
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the 450 kWh option representing the largest share among them (20%). This pattern indicates that
the optimisation exploits heterogeneity in tour lengths: trucks operating predominantly short tours can
minimise investment with small batteries, while those serving long-distance or ERS-sparse corridors
require large capacities to maintain feasibility. The prevalence of 600 kWh batteries suggests that even
with extensive ERS deployment, significant on-board energy storage remains necessary for coverage.
Compared to a uniform 300 kWh assignment across all trucks, this heterogeneous distribution reduces
total battery CAPEX by approximately 19%, confirming the value of optimised fleet-level differentiation.
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Figure 22: Distribution of charging behaviors across all tours.

Figure 22 illustrates the charging behavior at the tour level. A majority of tours (60.1%) do not
require any en-route charging, reflecting both the suitability of battery sizing and the presence of ERS
on critical links. Another 24.6% of tours rely exclusively on ERS, while 5.0% combine both SCS and
ERS, meaning that nearly 30% of all tours directly depend on ERS for completion. Only 0.2% of tours
use SCS exclusively, consistent with the model logic that static charging is triggered only when strictly
necessary, since unnecessary SCS stops would add OPEX without improving feasibility. Finally, 10.1%
of tours remain infeasible and are outsourced, highlighting the residual service gap even under optimised
deployment.

Together, these results demonstrate the interplay between battery investment and infrastructure avail-
ability. The heterogeneous distribution of battery sizes enables cost-efficient fleet electrification, while
the charging behavior outcomes underscore that ERS dominates as the backbone of long-distance elec-
trification, with SCS serving a niche but critical backup role. The persistence of a small penalty share
suggests that complete electrification would require either further infrastructure expansion or even larger
on-board batteries, both of which carry additional costs. These patterns also resonate with the residual
infeasibility analysis in Section 6.3: large batteries and ERS corridors together cover the majority of
demand, but structural bottlenecks at system peripheries prevent full electrification.

6.5 Operating Cost Structure

A detailed breakdown of operating expenditures (OPEX) under the optimized infrastructure layout is
shown in Figure 23. The total OPEX amounts to €123.8 million, which combines both feasible-tour
operating costs and penalties for infeasible tours. Of this total, 54.4% (€67.3M) arises from feasible
tours, while 45.6% (€56.4M) corresponds to penalties for infeasible tours.

Among the feasible tours, dynamic ERS charging dominates the cost structure, accounting for €51.2M
(41.4% of total OPEX) and representing over three-quarters of feasible-tour operating costs. This confirms
the central role of ERS in enabling long-haul electrification, but also highlights its associated financial
burden. By contrast, static SCS charging contributes only €6.1M (4.9%), reflecting its role as a supple-
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mentary rather than primary charging option. ERS tolls (€6.6M, 5.3%) and time costs (€2.1M, 1.7%)
remain relatively minor components, while SCS service fees (€1.4M, 1.1%) are negligible.

Penalty costs are split between diesel fuel and emissions surcharges. The largest single penalty compo-
nent is the diesel penalty (€47.9M, 38.7%), reflecting the significant economic and environmental burden
of outsourced tours. A smaller portion arises from the outsourcing penalty surcharge (€8.6M, 6.9%),
designed to internalize the systemic impact of infeasibility. Together, these penalties underscore the
importance of further infrastructure expansion or fallback hybridization strategies to reduce reliance on
non-electrified operations.

Overall, the OPEX results highlight a dual structure: while ERS provides the backbone of cost-
effective long-haul electrification, the residual penalties from infeasible tours remain substantial. This
reinforces the conclusions from Section 6.2.1, suggesting that targeted investments in critical nodes or
corridors could reduce penalty costs substantially and shift more tours into the ERS-based charging
regime.

In addition to the aggregate distribution, the results can also be interpreted on a per-tour basis.
The average cost across all tours is €80.3 per tour, with feasible tours requiring only €48.6 per tour,
while infeasible tours incur an average penalty of €362.4 per tour. This stark contrast demonstrates how
residual infeasibility disproportionately inflates the overall system cost, further motivating infrastructure
reinforcement and policy measures to minimize the occurrence of infeasible tours.

Comprehensive OPEX Distribution
Feasible Tours + Infeasible Penalties
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Figure 23: Comprehensive OPEX distribution for feasible tours and infeasible penalties under the opti-
mized layout.

6.6 Summary

This chapter has presented the optimisation results of the nationwide bi-level model, highlighting how the
GA effectively balances infrastructure investment, battery assignment, and operational feasibility. The
overall performance analysis (Section 6.1) showed rapid convergence within fewer than 15 generations,
reducing infeasible tours from 42% to 10.1% and lowering the fitness value by 34.7%. The infrastruc-
ture layout (Section 6.2) confirmed that ERS is the dominant investment component, with 12,792 km
deployed at a cost of €25.7 billion (65.6% of CAPEX), complemented by 251 SCS facilities costing only
€50.2 million. Despite this large-scale deployment, residual infeasibility remains concentrated in a small
set of cross-border and peripheral nodes (Section 6.3), suggesting that targeted investments could yield
disproportionate improvements.

43



Battery allocation and charging behaviour (Section 6.4) demonstrated the value of fleet heterogene-
ity: 25% of trucks were equipped with only 90 kWh, while 40% required 600 kWh, with medium classes
covering the remainder. Compared to a uniform 300 kWh baseline, this heterogeneous assignment re-
duced battery CAPEX by approximately 19%. Charging patterns revealed ERS as the primary charging
solution (nearly 30% of tours), while SCS served only a small backup role. The operating cost struc-
ture (Section 6.5) further emphasised this reliance: dynamic ERS charging accounted for over 40% of
OPEX, while SCS contributed less than 5%. Meanwhile, penalties for infeasible tours—dominated by
diesel fuel and associated CO2 emissions—made up 46% of OPEX, underscoring both the economic and
environmental cost of residual infeasibility.

Taken together, the results confirm three main insights. First, large-scale ERS deployment provides
the backbone of cost-effective long-haul electrification, while SCS adds marginal but critical redundancy.
Second, optimised fleet heterogeneity significantly reduces battery investment needs, highlighting the
importance of integrated infrastructure-battery planning. Third, scale effects are evident: spreading
infrastructure across nearly 1.5 million tours dilutes capital costs, keeping OPEX below 0.5% of total
annualised system costs. Nevertheless, the persistence of infeasible tours indicates that full electrification
will require either additional targeted infrastructure or fallback hybrid strategies. These findings set the
stage for Chapter 7, where the results are placed in a broader policy and literature context.
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7 Discussion

7.1 Interpretation of Key Findings

The nationwide optimisation results reveal several interrelated patterns that illustrate how investment,
operational feasibility, and cost components interact. A central dynamic is the trade-off between capi-
tal expenditure (CAPEX) and system-wide feasibility. As shown in Chapter 6, the Genetic Algorithm
(GA) deliberately increases CAPEX from €18 billion to €39.1 billion, primarily through large-scale ERS
deployment and heterogeneous battery investments. While this represents more than a doubling of up-
front costs, the effect is a sharp reduction in infeasible tours (from 42% to 10.1%) and a corresponding
improvement in system feasibility by 31.9 percentage points. This pattern underscores that higher in-
vestment is justified by the long-term savings it unlocks in operating expenditure (OPEX) and penalty
costs, highlighting the substitution of recurring costs with upfront infrastructure.

The battery assignment outcomes further reinforce this logic. The average installed capacity converges
to 357 kWh per truck, closely aligned with ElaadNL’s reported daily energy requirement of 289.5 kWh
per heavy-duty vehicle. This alignment suggests that the optimisation framework captures realistic
energy demand profiles. At the same time, the heterogeneous allocation across five classes demonstrates
that electrification need not rely exclusively on maximum-capacity batteries: while 40% of the fleet
requires 600 kWh packs to cover long or ERS-sparse tours, a substantial share operates with much
smaller batteries, thereby reducing over-investment and lowering total battery CAPEX by roughly 19%
compared to a uniform-capacity baseline.

Infrastructure deployment patterns further illustrate the differentiated roles of SCS and ERS. ERS
forms the long-haul electrification backbone, accounting for 65.6% of total CAPEX and directly enabling
nearly 30% of tours to rely on in-motion charging. SCS, by contrast, accounts for less than 1% of CAPEX,
but plays a critical role in reducing infeasibility at regional hubs and peripheral corridors. This layered
deployment ensures that the system combines efficiency on high-volume corridors with redundancy in
secondary locations. Nevertheless, infeasible tours remain concentrated around cross-border and low-
density nodes, highlighting the persistent challenge of spatial bottlenecks.

The cost breakdown also provides broader insights into the system’s economic and environmental
dimensions. OPEX represents less than 0.5% of total annualised cost, confirming that infrastructure
investment dominates the economics of electrification. Within OPEX, dynamic ERS charging constitutes
the majority of feasible-tour costs, while penalty expenditures for infeasible tours—especially diesel fuel
and associated CO2 emissions—remain substantial. This confirms that residual infeasibility not only
represents an economic inefficiency but also an environmental liability. At the same time, scale effects
are evident: with 1.53 million tours electrified, each installed facility serves over 5,000 tours on average,
allowing CAPEX to be diluted across a wide demand base and reinforcing the long-term feasibility of
large-scale electrification.

Overall, the key findings illustrate a consistent mechanism: higher upfront CAPEX in ERS and
batteries reduces infeasibility and operating costs, producing a lower total system cost. The results align
closely with empirical energy demand benchmarks, highlight the importance of heterogeneous battery
strategies, and demonstrate that scale effects further strengthen economic viability. These insights provide
the foundation for the subsequent comparison with literature and the policy implications discussed in
Sections 7.2 and 7.3.
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7.2 Trade-offs Between Cost, Feasibility, and Investment

Genetic Algorithm Key Performance Indicators Convergence
Fitness, Feasibility Rate, and CAPEX Over Generations
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Figure 24: Joint convergence of fitness, feasibility rate, and CAPEX across generations.

Figure 24 integrates the convergence of three key performance indicators—fitness, feasibility rate, and
CAPEX—to illustrate the internal trade-offs of the optimisation process. The trajectories reveal a con-
sistent pattern of interaction. The best fitness value (blue) decreases sharply from €83.9 billion to
€54.8 billion within the first 12 generations, corresponding to a 34.7% improvement. This decline coin-
cides with a steep rise in feasibility (green), which increases from 58% to nearly 90%. In contrast, total
CAPEX (purple) more than doubles, from €18 billion to €39 billion, reflecting the investment required
to achieve such gains in feasibility.

This trade-off highlights the internal mechanism of the optimisation: infeasible tours can only be
reduced substantially by deploying large-scale ERS corridors, complemented with strategically placed
SCS, and equipping part of the fleet with larger batteries. While these measures sharply increase capital
expenditures, they simultaneously reduce penalty costs and operating expenses, producing a lower overall
system cost. In other words, the GA converges towards solutions where higher upfront investments enable
more tours to be served electrically, thereby lowering recurring operational burdens.

Overall, the combined convergence illustrates a key insight: low-capex solutions are mot cost-optimal
once feasibility is accounted for. Instead, the optimum arises from accepting higher investment costs
in exchange for systemic reductions in OPEX and infeasibility penalties, resulting in a substantially
lower long-term fitness value. This demonstrates the central role of investment—feasibility interactions in
shaping the cost-effectiveness of nationwide freight electrification.

7.3 Comparison with Literature

The findings of this study can be positioned within the growing body of research on heavy-duty truck
electrification. Industry-oriented studies, such as the ElaadNL Outlook Logistiek (2025), primarily focus
on aggregate projections of fleet penetration, annual mileage, and electricity demand. ElaadNL reports
an average annual mileage of 68,698 km and an energy intensity of 1.1 kWh/km, corresponding to a
daily energy requirement of 289.5 kWh per truck. The present model yields an average assigned battery
capacity of 357 kWh, closely aligned with this benchmark, indicating that the optimisation results are
consistent with realistic Dutch freight operations. At the same time, the tour-level results presented
here provide a finer granularity than ElaadNL, identifying a heterogeneous battery allocation across five
classes and quantifying infeasible tours (10.1%), which are not captured in purely aggregate outlooks [11].

In the academic domain, Inez (2024) proposed a bi-level framework that couples infrastructure siting
with operational feasibility. However, that work remained at the trip level, without explicitly modelling
battery capacity assignment across complete tours. The present study extends this formulation by adopt-
ing a tour-level perspective, ensuring that battery allocation is consistent across all trips belonging to the
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same truck. This methodological step is crucial, since feasibility depends not only on isolated segments
but on the cumulative state-of-charge across multiple trips within a tour. Moreover, the inclusion of
infeasibility penalties enables the model to highlight structural bottlenecks that would remain invisible in
trip-based formulations, while the use of a nationwide dataset with over 1.5 million tours demonstrates
tractability at scale [19].

Similarly, Liao et al. (2024) examined the deployment of ERS across a trans-European network and
demonstrated the potential to reduce average battery sizes from 370 kWh to as little as 90 kWh under full
electrification. While the findings of this thesis are consistent with Liao’s conclusion that ERS serves as the
backbone for long-distance electrification, this study adds value by explicitly modelling tours rather than
trips. This allows the identification of trucks that still require very large batteries (600 kWh) to maintain
feasibility in ERS-sparse regions, while also decomposing costs into CAPEX, OPEX, and infeasibility
penalties, thereby offering a more integrated view of the system trade-offs [24]. Furthermore, the explicit
incorporation of SCS demonstrates their supplementary role in reducing infeasibility at regional hubs,
despite their minimal CAPEX share.

Taken together, this thesis complements both industry and academic literature. Relative to ElaadNL,
it provides micro-level feasibility insights that inform targeted interventions at bottleneck nodes and
corridors. Relative to Inez (2024) and Liao et al. (2024), its main contribution lies in advancing from trip-
level to tour-level modelling, thereby ensuring realistic consistency in battery allocation and uncovering
systemic infeasibility patterns at scale. These contributions strengthen the evidence base for policy
decisions on cost-effective freight electrification pathways in the Netherlands and beyond.

7.4 Limitations

While the results provide valuable insights into nationwide electrification pathways, several limitations
of the modelling framework should be acknowledged. First, the study relies on an aggregate network
representation based on VAM zones, and all truck trips are mapped onto fixed shortest-path routes.
This assumption neglects the heterogeneity of real-world routing, where carriers may deviate from short-
est paths due to congestion, tolls, delivery constraints, or charging opportunities. As a result, actual
operational flexibility is not fully captured.

Second, infeasibility is handled through the introduction of a large penalty parameter {2, which dis-
courages outsourcing by strongly penalising infeasible tours. Although this mechanism effectively reduces
infeasibility in the optimisation process, it represents a modelling device rather than a direct economic
cost, and thus may bias the solution towards more electrified outcomes than would arise under true
market conditions.

Third, the model necessarily incorporates simplifying assumptions to maintain tractability. Charging
station capacity is treated as unlimited, with no consideration of queuing or power grid constraints; all
tours are assumed to start with fully charged batteries; electricity and toll prices are assumed time-
invariant; and battery degradation and replacement are excluded. These assumptions omit important
temporal and operational dynamics that would influence the real-world feasibility and cost of freight
electrification.

Taken together, these limitations suggest that while the optimisation framework provides useful strate-
gic insights, the quantitative results should be interpreted with caution. Future work could relax these
assumptions by integrating stochastic demand, dynamic routing, grid-capacity constraints, and long-term
battery degradation into the modelling framework.

7.5 Future Work

Building on the limitations identified above, several promising directions for future research can be
outlined. First, the reliance on an aggregate VAM network with fixed shortest-path routing should
be relaxed. Future studies could employ higher-resolution zoning, particularly in peripheral and cross-
border regions such as France, where coarse partitions exaggerate inter-zonal distances and constrain
the flexibility of charging deployment. Incorporating more realistic network representations, including
secondary corridors and multiple feasible routes, would allow charging opportunities to be modelled in
line with actual freight operations.

Second, the current modelling framework uses a large infeasibility weight parameter (2) to discourage
outsourcing. While effective in guiding the optimisation, this remains a heuristic device rather than a
reflection of true market costs. Future work could refine this mechanism by calibrating penalty functions
against empirical outsourcing prices, CO2 taxation schemes, or hybrid fleet operations, thereby improving
the behavioural realism of infeasibility treatment.
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Third, several simplifying assumptions should be relaxed. In particular, the assumption of unlimited
charging capacity at SCS and ERS facilities overlooks potential queuing and grid constraints. Extending
the model to capture congestion effects, time-of-use electricity pricing, and stochastic demand would bet-
ter reflect operational realities. Similarly, battery ageing and replacement dynamics could be incorporated
to assess long-term investment implications.

Finally, advancing the solution approach itself offers an avenue for improvement. While the GA
has demonstrated strong performance at national scale, hybrid methods that combine metaheuristics
with exact solvers or decomposition strategies could further improve scalability and solution quality.
Embedding uncertainty analysis and sensitivity experiments would also strengthen the robustness of the
policy insights derived from the optimisation.

Taken together, these future research directions would enable more realistic, granular, and policy-
relevant assessments of freight electrification strategies, bridging the gap between theoretical optimisation
and practical deployment.
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8 Conclusion

8.1 Summary of the Research

This thesis has developed and applied a nationwide optimisation framework for planning the electrification
of heavy-duty road freight transport in the Netherlands. The framework is formulated as a bi-level model
that integrates three interdependent decision layers: the siting of static charging stations (SCS), the
deployment of electrified road segments (ERS), and the assignment of battery capacities to individual
trucks. To address the computational intractability of solving this model exactly at national scale, a
Genetic Algorithm (GA) was designed, enabling the optimisation of 1.53 million tours while retaining
operational feasibility constraints.

The model was operationalised using large-scale truck trajectory data, aggregated to the Dutch VAM
network. Each tour was evaluated against energy balance, charging opportunities, and battery con-
straints, with infeasibility penalised through a large penalty factor to reflect the economic and environ-
mental cost of outsourcing. The results demonstrate clear improvements in nationwide electrification
feasibility: the share of electrifiable tours increased from 58% in the initial generation to 89.9% after
optimisation, reducing the infeasible fraction to 10.1%. At the same time, the overall system fitness
improved by 34.7%, from €83.9 billion to €54.8 billion.

The optimisation further revealed distinct investment and operational patterns. Total CAPEX rose
from €18 billion to €39.1 billion, with €25.7 billion invested in ERS (65.6% of CAPEX, 12,792 km
deployed) and €50.2 million in SCS (251 stations, less than 1% of CAPEX). Battery investments ac-
counted for €13.5 billion, with capacity assignments distributed heterogeneously: 25% of trucks received
90 kWh packs, 40% were assigned 600 kWh packs, and the remainder occupied intermediate classes. The
average capacity converged to 357 kWh, closely aligned with empirical benchmarks of daily energy de-
mand (289.5 kWh per truck). On the operational side, OPEX remained relatively small at €124 million
(less than 0.5% of total annualised cost), dominated by ERS charging (41.4%) and diesel penalties for
infeasible tours (€47.9 million).

In sum, the study demonstrates that nationwide electrification is feasible under a layered strategy
where ERS provides the long-haul backbone, SCS delivers regional redundancy, and heterogeneous bat-
teries reduce fleet-level investment costs. While infeasibility persists in peripheral and cross-border re-
gions, the results highlight both the potential and the structural challenges of achieving cost-effective
freight decarbonisation at scale.

8.2 Main Contributions

This thesis makes several contributions to the methodological literature, empirical evidence, and academic
debate on the electrification of heavy-duty road freight. From a methodological perspective, the study
advances existing bi-level optimisation frameworks by explicitly integrating truck-level battery assignment
into the upper-level decision space. This ensures that each truck is consistently allocated to a single
capacity class, avoiding the unrealistic assumption in earlier models that batteries could be reselected on
a per-trip basis. A distinctive feature of this work is the adoption of a tour-level formulation, as opposed
to the trip-level models prevalent in the literature. By operating at the tour level, the framework more
realistically captures operational feasibility, since feasibility depends on the energy trajectory across
multiple linked trips rather than isolated segments. This is a major departure from Inez (2024) and Liao
et al. (2024), both of which optimise at the trip level without ensuring consistency across tours.

A further methodological innovation lies in the explicit modelling of infeasibility. By introducing a
large penalty parameter (§2), the framework reduces outsourcing and internalises the systemic costs of
unserved tours, while retaining tractability at scale. The optimisation is solved nationwide using a Genetic
Algorithm, capable of handling over 1.5 million tours. This scale demonstrates that heuristic methods
can overcome the computational intractability of exact MILP approaches, while retaining the ability
to explore infrastructure—battery trade-offs in a realistic national setting. The model also decomposes
costs into CAPEX (ERS, SCS, battery), OPEX (electricity, tolls, time), and penalty terms (diesel, CO4,
outsourcing surcharge), enabling a richer interpretation of trade-offs.

Empirically, the results provide novel insights into nationwide electrification. The model raises tour
feasibility from 58% to 89.9% and reduces system fitness by 34.7%, highlighting the efficiency gains of
integrated planning. ERS deployment dominates as the long-haul backbone (12,792 km, €25.7 billion),
complemented by SCS as a low-cost redundancy (€50.2 million, 251 sites). Battery assignment is hetero-
geneous, with 25% of trucks using 90 kWh and 40% requiring 600 kWh, producing an average of 357 kWh
that aligns with ElaadNL’s benchmark of 289.5 kWh/day. This heterogeneity reduces battery CAPEX
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by roughly 19% relative to a uniform-capacity baseline. Nevertheless, 10.1% of tours remain infeasible,
concentrated in cross-border and peripheral zones, where sparse charging coverage and aggregate network
limitations constrain feasibility. Importantly, the scale effects are pronounced: with 1.53 million tours
electrified, each installed facility serves more than 5,000 tours, spreading CAPEX over a wide demand
base.

Relative to the literature, this thesis complements and extends prior studies. Compared to Inez
(2024), it advances the bi-level framework by integrating heterogeneous battery assignment and explicit
infeasibility penalties. Compared to Liao et al. (2024), it confirms ERS as the backbone of electrifica-
tion but demonstrates the supplementary role of SCS and quantifies systemic infeasibility. Compared
to ElaadNL (2025), it moves beyond aggregate projections by offering tour-level insights into feasibility,
battery allocation, and problematic nodes. Taken together, these contributions establish a comprehen-
sive, large-scale, and operationally realistic framework that provides both methodological innovation and
policy-relevant evidence for cost-effective freight electrification.

8.3 Future Research Directions

Building upon the limitations identified in this study, several promising directions for future research can
be outlined. First, the reliance on an aggregate VAM-based network constitutes a key simplification:
while it enables nationwide tractability, it inevitably introduces distortions in corridor representation,
particularly for cross-border routes such as long-haul flows into France. Future work should therefore
employ more detailed road networks and node representations, which would reduce infeasibility artefacts
arising from overly coarse aggregation.

Second, the assumption of fixed shortest-path routing neglects alternative route choice and stochastic-
ity in freight movements. Incorporating flexible routing, demand variability, and dynamic re-routing into
the optimisation framework would provide a more realistic assessment of tour feasibility under real-world
operating conditions.

Third, infeasibility was handled here through a large penalty weight 2, which effectively prioritises
feasible electrification. While this mechanism succeeds in reducing infeasible tours, future studies could
investigate multi-objective optimisation approaches or explicitly model hybrid/diesel fallback vehicles as
part of the fleet, yielding more nuanced trade-offs between electrification, outsourcing, and system cost.

Fourth, operational realism in charging infrastructure remains an open challenge. This study assumed
unlimited charging capacity at both SCS and ERS facilities, omitting queuing dynamics, charging time
restrictions, and local grid constraints. Extending the model to capture such operational bottlenecks
would substantially strengthen its applicability for infrastructure planning.

Finally, the framework could be enriched by explicitly linking infrastructure deployment to policy and
market instruments. Incorporating carbon pricing, subsidy schemes, or differentiated tolls would enable
scenario analysis of how policy incentives shift the balance between ERS, SCS, and battery investment.
Such extensions would provide valuable insights for policymakers and industry stakeholders seeking cost-
effective and resilient freight electrification strategies.
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Main File

- coding: utf-8 -*-

rt os, time, json

rt pandas as pd

datetime import datetime

typing import Dict, List, Any, Set, Tuple

bilevel_milp_model import EnhancedBilevelEvaluator

data_loader import load_all_from_csv

genetic_algorithm import GroupedGeneticAlgorithm

IG: Dict = {
"alpha_init_soc": 1.0,
"beta_kwh_per_km": 1.6,
"v_avg_kmh": 60.0,
"P_SCS_kw": 150.0,
"P_ERS_kw": 200.0,

"price_stat_eur_per_kwh": 0.73,
"price_dyn_eur_per_kwh": 0.36,
"toll_scs_eur_per_km": 0.15,
"toll_ers_eur_per_km": 0.10,
"c_time_eur_per_h": 38.0,

"capex_scs_eur": 200000.0,
"capex_ers_eur_per_km": 2000000.0,
"battery_cost_eur_per_kwh": 100.0,

"battery_classes_kwh": [90, 180, 300, 450, 600],

"penalty": {
"diesel_eur_per_1": 1.6,
"diesel_1_per_km": 0.35,
"co2_eur_per_g": 0.00008,
"outsourcing_eur_per_km": 0.10,

Fo

"omega": 1leb,

"min_feasible_rate": 0.70,

"big_penalty_for_rate": 1le9,

"ga_pop_size": 30,
"ga_generations": 30,
"ga_elite_size": 5,
"ga_mutation_rate": 0.15,
"ga_crossover_rate": 0.80,
"ga_tournament_k": 3,
"init_prob_scs": 0.4,
"init_prob_ers": 0.1,
"min_hamming_ratio": 0.12,
"ga_restart_every": 12,

"truck_battery_policy": "genetic_optimized",

"battery_margin": 0.15,

s EnhancedLogger:

def __init__(self, out_dir="results_enhanced"):

self.dir = out_dir

os.makedirs(out_dir, exist_ok=True)

self.st = datetime.now()
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def

def

def

def

self.tag = self.st.strftime ("%Y)m/d_%HAM/S")

self.path = os.path.join(out_dir, f"log_enhanced_{self.tag}.txt")
self._w("=" x 70)

self._w("Enhanced Charging Infrastructure Optimization")
self._w("=" * 70)

_w(self, s: str):
print(s)
with open(self.path, "a", encoding="utf-8") as f:

f.write(s + "\n")

save_truck_battery_analysis(self, best_individual: Any, trucks: List[str],
truck_groups: Dict[str, int], evaluator: Any):

try:

from genetic_algorithm import GroupedGeneticAlgorithm

temp_ga = GroupedGeneticAlgorithm(evaluator, [], [], trucks, truck_groups, CONFIG)
_, _, truck_batteries = temp_ga._decode(best_individual)

battery_stats = {}

total_battery_cost = 0O

for truck_id, battery_kwh in truck_batteries.items():

if battery_kwh not in battery_stats:

battery_stats[battery_kwh] = 0

battery_stats[battery_kwh] += 1

total_battery_cost += battery_kwh * CONFIG["battery_cost_eur_per_kwh"]
df = pd.DataFrame ([

{"truck_id": k, "battery_kwh": v, "battery_cost_eur": v *

< CONFIG["battery_cost_eur_per_kwh"]}

for k, v in sorted(truck_batteries.items())

D

battery_file = os.path.join(self.dir, f"battery_optimization_{self.tag}.csv")

df .to_csv(battery_file, index=False)

battery_summary = {
"total_trucks": len(trucks),
"total_battery_cost_eur": total_battery_cost,
"average_battery_kwh": sum(truck_batteries.values()) / len(truck_batteries),
"battery_distribution": {str(k): v for k, v in battery_stats.items()},
"cost_savings_vs_uniform_300kwh": len(trucks) * 300 *
< CONFIG["battery_cost_eur_per_kwh"] - total_battery_cost

battery_stats_file = os.path.join(self.dir, f"battery_statistics_{self.tag}.json")
with open(battery_stats_file, 'w', encoding='utf-8') as f:
json.dump(battery_summary, f, indent=2, ensure_ascii=False)

self._w(f"Battery analysis saved: {battery_file}")

avg_battery = sum(truck_batteries.values()) / len(truck_batteries)

savings = len(trucks) * 300 * CONFIG["battery_cost_eur_per_kwh"] -

— total_battery_cost

self._w(f"Average battery: {avg_battery:.1f}kWh, Savings: {savings:,.0f}€")

except Exception as e:

self._w(f"Error saving battery analysis: {e}")

save_summary(self, info: Dict[str, Any]):

p=

os.path.join(self.dir, f"summary_enhanced_{self.tag}.json")

with open(p, "w", encoding="utf-8") as f:

json.dump(info, f, indent=2, ensure_ascii=False)

self._w(f"Enhanced summary saved: {p}")

save_generation_history(self, info: Dict[str, Any]):

try:
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135

def save_infrastructure_details(self, scs_optimal: set, ers_optimal: set, nodes: list,

—

if 'generation_history' in info and info['generation_history']:

gene

hist

hist
—

hist
hist

—

with

self

ration_history = info['generation_history']
ory_df = pd.DataFrame(generation_history)
ory_csv = os.path.join(self.dir,
f"generation_history_enhanced_{self.tag}.csv")
ory_df.to_csv(history_csv, index=False)

ory_json = os.path.join(self.dir,
f"generation_history_enhanced_{self.tag}.json")
open(history_json, 'w', encoding='utf-8') as f:

json.dump(generation_history, f, indent=2, ensure_ascii=False)

._w(f"Evolution history saved: {history_csv}")

except Exception as e:

self._w(

edges: list,

try:

f"Error saving evolution history: {e}")

scs_capex: float = 0, ers_capex: float =
— ers_total_length_km: float = 0, evaluator=None):

scs_details = []
for i, node_id in enumerate(sorted(scs_optimal)):

O’

scs_details.append ({
"scs_id": i + 1,
"node_id": node_id,
"power_kw": CONFIG["P_SCS_kw"],
"capex_eur": CONFIG["capex_scs_eur"],
"price_eur_per_kwh": CONFIG["price_stat_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_scs_eur_per_km"]
1))
scs_df = pd.DataFrame(scs_details)
scs_file = os.path.join(self.dir, f"scs_stations_{self.tag}.csv")
scs_df.to_csv(scs_file, index=False)
ers_details = []
for i, edge_id in enumerate(sorted(ers_optimal)):
edge_length = 1.0

if evaluator and hasattr(evaluator, ‘edge_length_km') and

—

ers_

B

ers_df =
ers_file
ers_df.t

evaluator.edge_length_km:

edge_length = evaluator.edge_length_km.get(edge_id, 1.0)

details.append({

"ers_id": i + 1,

"edge_id": edge_id,

"length_km": edge_length,

"power_kw": CONFIG["P_ERS_kw"],

"capex_eur_per_km": CDNFIG["capex_ers_eur_per_km“],

"total_capex_eur": edge_length * CONFIG["capex_ers_eur_per_km"],
"price_eur_per_kwh": CONFIG["price_dyn_eur_per_kwh"],

"toll_eur_per_km": CONFIG["toll_ers_eur_per_km"]

pd.DataFrame (ers_details)

= os.path.join(self.dir, f"ers_segments_{self.tag}.csv")

o_csv(ers_file, index=False)

infrastructure_summary = {

"scs

_stations": {

"count": len(scs_optimal),

"total_capex_eur": scs_capex,
"capex_per_station_eur": CONFIG["capex_scs_eur"],
"node_ids": sorted(list(scs_optimal)),
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"power_kw_per_station": CONFIG["P_SCS_kw"],
"price_eur_per_kwh": CONFIG["price_stat_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_scs_eur_per_km"],
"coverage_ratio":
— f"{len(scs_optimal)}/{len(nodes)} ({len(scs_optimal)/len(nodes)*100:.1£}%)"
To
"ers_segments": {
"count": len(ers_optimal),
"total_length_km": ers_total_length_km,
"average_length_km": ers_total_length_km / len(ers_optimal) if
— len(ers_optimal) > 0 else O,
"total_capex_eur": ers_capex,
"capex_eur_per_km": CUNFIG[”capex_ers_eur_per_km"],
"edge_ids": sorted(list(ers_optimal)),
"power_kw_per_segment": CONFIG["P_ERS_kw"],
"price_eur_per_kwh": CONFIG["price_dyn_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_ers_eur_per_km"],
"coverage_ratio":
— f"{len(ers_optimal)}/{len(edges)} ({len(ers_optimal)/len(edges)*100:.1£}%)"
},
"total_infrastructure": {
"scs_count": len(scs_optimal),
"ers_count": len(ers_optimal),
"total_capex_eur": scs_capex + ers_capex,
"scs_capex_eur": scs_capex,
"ers_capex_eur": ers_capex,
"infrastructure_capex_ratio": {
"scs_percentage": scs_capex / (scs_capex + ers_capex) * 100 if
— (scs_capex + ers_capex) > 0 else O,
"ers_percentage": ers_capex / (scs_capex + ers_capex) * 100 if
— (scs_capex + ers_capex) > 0 else 0
To
"coverage_summary": {
"scs_nodes":
— f"{len(scs_optimal)}/{len(nodes)} ({len(scs_optimal)/len(nodes)*100:.1£}/)",
"ers_edges":
— f"{len(ers_optimal)}/{len(edges)} ({len(ers_optimal)/len(edges)*100:.1£}%)"

infrastructure_file = os.path.join(self.dir,

f"infrastructure_summary_{self.tag}.json")

with open(infrastructure_file, 'w', encoding='utf-8') as f:

json.dump(infrastructure_summary, f, indent=2, ensure_ascii=False)

self._w(f"Infrastructure details saved: {scs_file}, {ers_file}")

except Exception as e:
self._w(f"Error saving infrastructure details: {el}")

def save_infrastructure_distribution_json(self, scs_optimal: set, ers_optimal: set,

nodes: list, edges: list, evaluator):

def get_edge_length(edge_id):

if hasattr(evaluator, 'edge_length_km') and evaluator.edge_length_km:
return evaluator.edge_length_km.get(edge_id, 1.0)
return 1.0

scs_distribution = {

"summary": {
"total_stations": len(scs_optimal),
"total_nodes": len(nodes),
"coverage_percentage": len(scs_optimal) / len(nodes) * 100,
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291

292

293

"total_capex_eur": len(scs_optimal) * CONFIG["capex_scs_eur"],
"power_per_station_kw": CONFIG["P_SCS_kw"],
"capex_per_station_eur": CONFIG["capex_scs_eur"],
"charging_price_eur_per_kwh": CONFIG["price_stat_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_scs_eur_per_km"]
To
"stations": []
}
for i, node_id in enumerate(sorted(scs_optimal)):
scs_distribution["stations"].append({
"station_id": i + 1,
"node_id": node_id,
"power_kw": CONFIG["P_SCS_kw"],
"capex_eur": CONFIG["capex_scs_eur"],
"charging_price_eur_per_kwh": CONFIG["price_stat_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_scs_eur_per_km"]
1))
ers_total_length = 0
ers_total_capex = 0
ers_segments_detail = []

for i, edge_id in enumerate(sorted(ers_optimal)):
edge_length = get_edge_length(edge_id)
segment_capex = edge_length * CONFIG["capex_ers_eur_per_km"]
ers_total_length += edge_length
ers_total_capex += segment_capex

ers_segments_detail.append ({
"segment_id": i + 1,
"edge_id": edge_id,
"length_km": edge_length,
"power_kw": CONFIG["P_ERS_kw"],
"capex_eur_per_km": CONFIG["capex_ers_eur_per_km"],
"total_capex_eur": segment_capex,
"charging_price_eur_per_kwh": CONFIG["price_dyn_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_ers_eur_per_km"]

D)

ers_distribution = {
"summary": {
"total_segments": len(ers_optimal),
"total_edges": len(edges),
"coverage_percentage": len(ers_optimal) / len(edges) * 100,
"total_length_km": ers_total_length,
"average_segment_length_km": ers_total_length / len(ers_optimal)
< len(ers_optimal) > 0 else O,
"total_capex_eur": ers_total_capex,
"power_per_segment_kw": CONFIG["P_ERS_kw"],
"capex_per_km_eur": CDNFIG["capex_ers_eur_per_km“],
"charging_price_eur_per_kwh": CONFIG["price_dyn_eur_per_kwh"],
"toll_eur_per_km": CONFIG["toll_ers_eur_per_km"]
g
"segments": ers_segments_detail
}
infrastructure_distribution = {
"metadata": {
"generation_time": datetime.now().isoformat(),
"total_nodes": len(nodes),
"total_edges": len(edges),
"optimization_tag": self.tag
g
"scs_distribution": scs_distribution,
"ers_distribution": ers_distribution,
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294 "cost_comparison": {

205 "scs_total_capex_eur": len(scs_optimal) * CONFIG["capex_scs_eur"],
296 "ers_total_capex_eur": ers_total_capex,
297 "infrastructure_total_capex_eur": len(scs_optimal) *
— CONFIG["capex_scs_eur"] + ers_total_capex,
208 "scs_percentage": (len(scs_optimal) * CONFIG["capex_scs_eur"]) /

— (len(scs_optimal) * CONFIG["capex_scs_eur"] + ers_total_capex) * 100 if
— (len(scs_optimal) * CONFIG["capex_scs_eur"] + ers_total_capex) > O else
—r O’

299 "ers_percentage": ers_total_capex / (len(scs_optimal) *
<+ CONFIG["capex_scs_eur"] + ers_total_capex) * 100 if (len(scs_optimal) *
— CONFIG["capex_scs_eur"] + ers_total_capex) > 0O else 0

300 } B
301 "coverage_analysis": {
302 "scs_coverage": {
303 "selected_nodes": len(scs_optimal),
304 "total_nodes": len(nodes),
305 "coverage_ratio": len(scs_optimal) / len(nodes),
306 "coverage_percentage": len(scs_optimal) / len(nodes) * 100
307 } 3
308 "ers_coverage": {
309 "selected_edges": len(ers_optimal),
310 "total_edges": len(edges),
311 "coverage_ratio": len(ers_optimal) / len(edges),
312 "coverage_percentage": len(ers_optimal) / len(edges) * 100,
313 "total_length_km": ers_total_length
314 }
315 }
316 }
317 distribution_file = os.path.join(self.dir,
— f"infrastructure_distribution_{self.tag}.json")
318 with open(distribution_file, 'w', encoding='utf-8') as f:
319 json.dump(infrastructure_distribution, f, indent=2, ensure_ascii=False)
320
321 self._w(f"Infrastructure distribution saved: {distribution_filel}")
322
323 except Exception as e:
324 self._w(f"Error saving infrastructure distribution JSON: {el}")

325
326
327 def extract_truck_ids_from_tours(tours: List) -> Tuple[List[str], Dict[str, int]]:

328 from truck_grouping_strategy import group_trucks_by_distance_profile

329

330 truck_ids = set()

331 for tour in tours:

332 truck_id = getattr(tour, "truck_id", "")

333 if truck_id:

334 truck_ids.add(truck_id)

335

336 if not truck_ids:

337 estimated_trucks = max(1, len(tours) // 10)

338 truck_ids = {f"virtual_truck_{i:04d}" for i in range(estimated_trucks)}
339 print(£"No truck_id detected, creating {len(truck_ids)} virtual trucks")
340

341 truck_list = sorted(list(truck_ids))

342

343 if len(truck_list) > 1000:

344 print (f"Detected {len(truck_list)} trucks, enabling grouping strategy...")
345 n_groups = min(20, max(5, len(truck_list) // 10000))

346 truck_groups = group_trucks_by_distance_profile(tours, n_groups)

347 print (£"Grouped {len(truck_list)} trucks into {n_groups} groups")

348 return truck_list, truck_groups

349 else:
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truck_groups = {truck_id: i for i, truck_id in enumerate(truck_list)}
return truck_list, truck_groups

def main():
lg = EnhancedLogger ()
try:
base = os.path.dirname(os.path.abspath(__file__))
node_csv = os.path.join(base, "vam_node.csv")
link_csv = os.path.join(base, "vam_link.csv")

377

378

379

380

381

382

383

385

386

387

388

390

391

392

394

395

396

397

= os.path. join(base, "tour_trajectory.csv")

[node_csv, link_csv, traj_csv]:
if not os.path.exists(f):
raise FileNotFoundError(f"Missing data file: {f1}")

lg._w("Data files validated")

lg. _w("\nLoading data...")

time.time ()

tours, nodes, edges, edge_len
node_csv, link_csv, traj_csv,
default_speed_kmh=CONFIG["v_avg_kmh"]

load_all_from_csv(

lg. _w(f"Data loaded: {len(tours)} tours, {len(nodes)} nodes, {len(edges)} edges")
trucks, truck_groups extract_truck_ids_from_tours(tours)
n_groups = len(set(truck_groups.values()))

lg. _w(f"Trucks: {len(trucks)}, Groups: {n_groups}")

evaluator = EnhancedBilevelEvaluator (CONFIG, edge_length_km=edge_len,
< truck_batt_map={})
lg._w("Starting genetic algorithm optimization...")

ga = GroupedGeneticAlgorithm(evaluator, nodes, edges, trucks, truck_groups, CONFIG)
best_indiv, info = ga.evolve(

pop_size=CONFIG["ga_pop_size"],
generations=CONFIG["ga_generations"],
elite_size=CONFIG["ga_elite_size"],
restart_every=CONFIG.get ("ga_restart_every", 12),

scs_optimal, ers_optimal, truck_batteries_optimal = ga._decode(best_indiv)
info.get('infeasible_count', 0)

omega_penalty = infeasible_count * CONFIG.get('omega', 1e6)
info['fitness'] - omega_penalty

sum(battery_kwh * CONFIG["battery_cost_eur_per_kwh"]

infeasible_count

total_battery_cost

for battery_kwh in truck_batteries_optimal.values())
avg_battery_kwh = sum(truck_batteries_optimal.values()) / len(truck_batteries_optimal)
uniform_300_cost = len(trucks) * 300 * CONFIG["battery_cost_eur_per_kwh"]
battery_savings = uniform_300_cost - total_battery_cost
scs_capex = len(scs_optimal) * CONFIG["capex_scs_eur"]
ers_capex = 0
ers_total_length_km = 0
if hasattr(evaluator, 'edge_length_km') and evaluator.edge_length_km:
for edge_id in ers_optimal:
edge_length = evaluator.edge_length_km.get(edge_id, 1.0)
ers_capex += edge_length * CONFIG["capex_ers_eur_per_km"]
ers_total_length_km += edge_length
else:
ers_capex = len(ers_optimal) * CONFIG["capex_ers_eur_per_km"]
ers_total_length_km = len(ers_optimal) * 1.0
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431

432

434

435

436

437

438

439

440

441

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

inf

1g.
1g.
1g.
1g.
1g.
1g.
1g.
1g.

1g.
1g.
1g
1g.
1g.

1g.

—

1g.

except
1g.
imp
1g.

rai

if __name

main()

rastructure_capex = scs_capex + ers_capex

_w("=" % 70)

_w("Enhanced Optimization Results")

_w("=" % 70)

_w(f"Fitness: {info['fitness']:.0f}, Feasible Rate: {info['feasible_rate']l:.1%}")

_w(f"CAPEX: {info['capex']:,.0f}€, OPEX: {info['opex']:,.0f}€")

_w(£"SCS: {len(scs_optimal)} stations, ERS: {len(ers_optimal)} segments")
_w(f"Avg battery: {avg_battery_kwh:.1f}kWh, Savings: {battery_savings:,.0f}€")
_W("=" * 70)

_w("Saving results...")
save_summary (info)

.save_truck_battery_analysis(best_indiv, trucks, truck_groups, evaluator)

save_generation_history(info)
save_infrastructure_details(scs_optimal, ers_optimal, nodes, edges,

scs_capex, ers_capex, ers_total_length_km, evaluator)
save_infrastructure_distribution_json(scs_optimal, ers_optimal, nodes, edges,
evaluator)
_w("All result files saved")

Exception as e:

_w(f"Runtime error: {el}")

ort traceback

_w(f"Detailed error information: {traceback.format_exc()}")
se

== "__main__":

A.2 Data Loader

# -*x- codin
from typing
import pand
from bileve

def _read_c
for enc

gl utf-8 —*-
import List, Tuple, Dict
as as pd
1 _milp_model import Tour, Segment

sv(path: str) -> pd.DataFrame:
in ("utf-8", "utf-8-sig", "latin-1"):

try:

exc

return

def _ensure
miss =

if miss

rai

def _canon_

a, b =
return

def load_fr

return pd.read_csv(path, encoding=enc)
ept Exception:

continue
pd.read_csv(path)

(df: pd.DataFrame, cols: set, name: str):
cols - set(df.columns)

se ValueError(f"{name} missing required columns: {missl}")

edge_id(u: str, v: str) -> str:
str(u), str(v)
f"{a}|{b}" if a <= b else f"{b}|{al}"

om_new_csvs(node_csv: str, link_csv: str, trajectory_csv: str,
default_speed_kmh: float = 60.0) -> Tuple[List[Tour], List[str],
— List[str], Dict[str, float]]:
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27 df _nodes = _read_csv(node_csv); _ensure(df_nodes, {"node"}, node_csv)

28 nodes = [str(x) for x in df_nodes["node"].tolist()]
29
30 df_links = _read_csv(link_csv); _ensure(df_links, {"from_node", "to_node", "distance_km"},
< link_csv)
31 tmp = (df_links.assign(u=lambda d: d["from_node"].astype(str),
32 v=lambda d: d["to_node"].astype(str),
33 length_km=lambda d: d["distance_km"].astype(float))
34 [["u", "v", "length_km"]])
35 tmp["edge_id"] = tmp.apply(lambda r: _canon_edge_id(r["u"], r["v"]), axis=1)
36 edge_len = tmp.groupby("edge_id") ["length_km"] .mean().to_dict()
37 edges = list(edge_len.keys())
38
39 df _traj = _read_csv(trajectory_csv); _ensure(df_traj, {"carrier_id", "tour_id", "trip_id",
— "vam_path"}, trajectory_csv)
40 truck_col = "truck_id" if "truck_id" in df_traj.columns else None
41
42 tours: List[Tour] = []
43 for (carrier, tour), g in df_traj.groupby(["carrier_id", "tour_id"], sort=False):
44 g = g.sort_values("trip_id")
45 truck = str(g.iloc[0] [truck_col]) if truck_col else ""
46
47 node_chain: List[str] = []
48 for _, r in g.iterrows(Q):
49 raw = str(r["vam_path"])
50 if not raw or raw.strip() == "":
51 continue
52 parts = [s.strip() for s in (raw.split("|") if "|" in raw else raw.split("->")) if
— s.strip(Q]
53 if not parts:
54 continue
55 if not node_chain:
56 node_chain.extend(parts)
57 else:
58 node_chain.extend(parts[1:] if node_chain[-1] == parts[0] else parts)
59
60 segs: List[Segment] = []
61 total = 0.0
62 for i in range(len(node_chain) - 1):
63 u, v = str(node_chain[i]), str(node_chain[i + 1])
64 eid = _canon_edge_id(u, v)
65 if eid not in edge_len:
66 raise
< KeyError(f"[Path missing edge] {u}->{v} (canonicalized {eid}) not found in {link_csv}")
67 dist = float(edge_len[eid]); total += dist
68 segs.append (Segment (edge_id=eid, u=u, v=v, dist_km=dist,

— speed_kmh=float(default_speed_kmh)))

69

70 if segs:

71 tour_uid = f"{carrier}_{tourl}"

72 tours.append (Tour (tour_id=tour_uid, segments=segs,

73 origin_node=segs[0].u, dest_node=segs[-1].v,
74 total_dist_km=total, truck_id=truck))

75 return tours, nodes, edges, edge_len

76
e
78 def load_from_old_csvs(centroids_csv: str, links_csv: str, paths_csv: str,

79 default_speed_kmh: float = 60.0) -> Tuple[List[Tour], List[str],
< List[str], Dict[str, float]]:
80 df_nodes = _read_csv(centroids_csv); _ensure(df_nodes, {"LMSVAM"}, centroids_csv)
81 nodes = [str(x) for x in df_nodes["LMSVAM"].tolist()]
82 df_links = _read_csv(links_csv); _ensure(df_links, {"from_vam", "to_vam", "distance"},

— links_csv)
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tmp = (df_links.assign(u=lambda d: d["from_vam"].astype(str),
v=lambda d: d["to_vam"].astype(str),
length_km=lambda d: d["distance"].astype(float) / 1000.0)
[["u", "v", "length_km"]])
tmp["edge_id"] = tmp.apply(lambda r: _canon_edge_id(r["u"], r["v"]), axis=1)
edge_len = tmp.groupby("edge_id") ["length_km"] .mean().to_dict()
edges = list(edge_len.keys())

dfp = _read_csv(paths_csv); _ensure(dfp, {"carrier_id", "tour_id", "trip_id", "path"},
— paths_csv)
tours: List[Tour] = []
for (carrier, tour), g in dfp.groupby(["carrier_id", "tour_id"], sort=False):
g = g.sort_values("trip_id")
node_chain: List[str] = []
for _, r in g.iterrows(Q):
raw = str(r["path"])
parts = [s.strip() for s in raw.split("->") if s.strip()]
if not parts:
continue
node_chain.extend(parts[1:] if node_chain and node_chain[-1] == parts[0] else
< parts)
segs: List[Segment] = []
total = 0.0
for i in range(len(node_chain) - 1):
u, v = str(node_chain[i]), str(node_chain[i + 1])

eid = _canon_edge_id(u, v)
if eid not in edge_len:
raise

< KeyError(f"[Path missing edge] {u}->{v} (canonicalized {eid}) not found in {links_csvl}")

dist = float(edge_len[eid]); total += dist
segs.append (Segment (eid, u, v, dist, float(default_speed_kmh)))
if segs:
tour_uid = f"{carrier}_{tour}"
tours.append (Tour (tour_uid, segs, segs[0].u, segs[-1].v, total, ""))

return tours, nodes, edges, edge_len

load_all_from_csv(csv_a: str, csv_b: str, csv_c: str,
default_speed_kmh: float = 60.0) -> Tuple[List[Tour], List[str],
< List[str], Dict[str, float]]:
dfs = {csv_a: _read_csv(csv_a), csv_b: _read_csv(csv_b), csv_c: _read_csv(csv_c)}
node_like = next((p for p, d in dfs.items() if "node" in d.columns), None)
link_like = next((p for p, d in dfs.items() if {"from_node", "to_node", "distance_km"} <=
< set(d.columns)), None)
traj_like = next((p for p, d in dfs.items() if {"carrier_id", "tour_id", "trip_id",
— "vam_path"} <= set(d.columns)), None)
if node_like and link_like and traj_like:
return load_from_new_csvs(node_like, link_like, traj_like, default_speed_kmh)

cent_like = next((p for p, d in dfs.items() if "LMSVAM" in d.columns), None)
links_like = next((p for p, d in dfs.items() if {"from_vam", "to_vam", "distance"} <=
< set(d.columns)), None)
paths_like = next((p for p, d in dfs.items() if {"carrier_id", "tour_id", "trip_id",
— "path"} <= set(d.columns)), None)
if cent_like and links_like and paths_like:

return load_from_old_csvs(cent_like, links_like, paths_like, default_speed_kmh)

raise

< RuntimeError("Unable to auto-detect structure of the three CSV files, please check column names.")
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A.3 Model

1 # -x- coding: utf-8 -*-
2 from dataclasses import dataclass
3 from typing import Dict, List, Tuple, Set, Optional

5 @dataclass
6 class Segment:

7 edge_id: str

8 u: str

9 v: str

10 dist_km: float

11 speed_kmh: Optional[float] = None

12
13
14 @dataclass
15 class Tour:

16 tour_id: str

17 segments: List[Segment]
18 origin_node: str

19 dest_node: str

20 total_dist_km: float

21 truck_id: str = ""

22
23
24 class EnhancedBilevelEvaluator:

25 def __init__(self, config: Dict,

26 edge_length_km: Optional[Dict[str, float]] = None,

27 truck_batt_map: Optional[Dict[str, float]] = None):

28 self.cfg = config

29 self.edge_length_km = edge_length_km or {}

30 self.truck_batt_map = truck_batt_map or {}

31

32 def _diesel_penalty_cost(self, dist_km: float) -> float:

33 p = self.cfgl"penalty"]

34 fuel_cost = p["diesel_1_per_km"] * dist_km * p["diesel_eur_per_1"]

35 co2_cost = p.get("co2_g_per_km", 0.0) * dist_km * p["co2_eur_per_g"] if "co2_g_per_km"
— in p else 0.0

36 outsource = p["outsourcing_eur_per_km"] * dist_km

37 return fuel_cost + co2_cost + outsource

38

39 def _travel_one_segment_smart(self, soc: float, Q: float, seg: Segment,

40 ers_edges: Set[str], scs_nodes: Set[str],

41 remaining_energy_after_this_seg: float = 0.0) -> Tuple[bool,

— float, float]:

42 """Smart charging: only charge when battery is insufficient"""

43 cfg = self.cfg

44 kwh_per_km = cfg["beta_kwh_per_km"]

45 v = seg.speed_kmh if (seg.speed_kmh and seg.speed_kmh > 0) else cfg["v_avg_kmh"]

46 t_h = seg.dist_km / max(v, 1le-6)

a7 current_need = kwh_per_km * seg.dist_km

48

49 cost = 0.0

50 total_remaining_need = current_need + remaining_energy_after_this_seg

51 if seg.edge_id in ers_edges and soc < total_remaining_need:

52 energy_deficit = total_remaining need - soc

53 max_can_charge = cfg["P_ERS_kw"] * t_h

54 available_capacity = Q - soc

55 ers_energy = min(energy_deficit, max_can_charge, available_capacity)

56

57 if ers_energy > le-9:

58 soc += ers_energy

59 cost += ers_energy * cfg["price_dyn_eur_per_kwh"]
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def

def

cost += cfg["toll_ers_eur_per_km"] * seg.dist_km

if soc < current_need:
if seg.u in scs_nodes:
add = min(Q - soc, current_need - soc)
if add > 1le-9:
tchg = add / cfg["P_SCS_kw"]
soc += add
cost += add * cfg["price_stat_eur_per_kwh"]
cost += tchg * cfg["c_time_eur_per_h"]
cost += cfg["toll_scs_eur_per_km"] * seg.dist_km
if soc < current_need - 1le-9:
return False, soc, cost
soc -= current_need
if soc < O:
soc = 0.0

return True, soc, cost

_travel_one_segment(self, soc: float, Q: float, seg: Segment,
ers_edges: Set[str], scs_nodes: Set[str]) -> Tuplel[bool, float,
— float]:
"""Compatible original interface, using smart charging strategy
return self._travel_one_segment_smart(soc, Q, seg, ers_edges, scs_nodes, 0.0)

_evaluate_tour_with_batt_smart(self, tour: Tour, Q: float,
ers_edges: Set[str], scs_nodes: Set[str]) -> Tuplel[bool,
— float]:

"""Smart tour evaluation with global energy demand consideration

soc = min(Q, self.cfg["alpha_init_soc"] * Q)

cost = 0.0

beta = self.cfg["beta_kwh_per_km"]

remaining_energy_need = sum(beta * seg.dist_km for seg in tour.segments)

for seg in tour.segments:
current_need = beta * seg.dist_km
remaining_energy_need -= current_need

ok, soc, inc = self._travel_one_segment_smart (
soc, (, seg, ers_edges, scs_nodes, remaining_energy_need

)
cost += inc
if not ok:

return False, 0.0
return True, cost

_evaluate_tour_with_batt(self, tour: Tour, Q: float,
ers_edges: Set[str], scs_nodes: Set[str]) -> Tuple[bool,
— float]:

"""Compatible original interface, using smart evaluation"""

return self._evaluate_tour_with_batt_smart(tour, Q, ers_edges, scs_nodes)

evaluate_tour(self, tour: Tour, ers_edges: Set[str], scs_nodes: Set[str]) ->
Tuple[bool, float]:
if tour.truck_id and tour.truck_id in self.truck_batt_map:
Q = float(self.truck_batt_mapl[tour.truck_id])
ok, opex = self._evaluate_tour_with_batt_smart(tour, Q, ers_edges, scs_nodes)
if ok:
return True, opex
else:
return False, self._diesel_penalty_cost(tour.total_dist_km)
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for Q in self.cfg["battery_classes_kwh"]:
ok, opex = self._evaluate_tour_with_batt_smart(tour, Q, ers_edges, scs_nodes)
if ok:
return True, opex
return False, self._diesel_penalty_cost(tour.total_dist_km)

evaluate_tour_detailed(self, tour: Tour, ers_edges: Set[str], scs_nodes: Set[str]) ->

Tuple[bool, Dict[str, floatl]:
"""Detailed evaluation of single tour, returns cost breakdown"""

# Get battery capacity
tid = getattr(tour, "truck_id", "")
if tid and tid in self.truck_batt_map:
Q = float(self.truck_batt_map[tid])
else:
# Fallback: enumerate battery classes to find minimum feasible
for Q in sorted(self.cfg["battery_classes_kwh"]):
ok, cost_detail = self._evaluate_tour_with_batt_detailed_smart(tour, Q,
— ers_edges, scs_nodes)
if ok:
return ok, cost_detail
# If all infeasible, return penalty breakdown
return False, self._get_penalty_breakdown(tour)

return self._evaluate_tour_with_batt_detailed_smart(tour, Q, ers_edges, scs_nodes)

_evaluate_tour_with_batt_detailed_smart(self, tour: Tour, Q: float, ers_edges:
Set[str], scs_nodes: Set[str]) -> Tuplel[bool, Dict[str, float]]:

— ""'"Detailed evaluation of tour with specified battery capacity, using smart charging strategy"""

# Initial SOC
alpha = float(self.cfg["alpha_init_soc"])
soc = alpha * Q

# Detailed cost breakdown

cost_detail = {
"time_cost": 0.0,
"static_charging_cost": 0.0,
"dynamic_charging_cost": 0.0,
"scs_toll_cost": 0.0,
"ers_toll_cost": 0.0,
"total_feasible_opex": 0.0

# Pre-calculate total energy demand for remaining tour
beta = self.cfg["beta_kwh_per_km"]
remaining_energy_need = sum(beta * seg.dist_km for seg in tour.segments)

# Iterate through each segment

for seg in tour.segments:
current_need = beta * seg.dist_km
remaining_energy_need -= current_need

ok, soc, seg_cost_detail = self._travel_one_segment_detailed_smart(
soc, Q, seg, ers_edges, scs_nodes, remaining_energy_need

)
if not ok:
return False, self._get_penalty_breakdown (tour)

# Accumulate various costs

for key in cost_detail:
if key in seg_cost_detail:
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cost_detail [key] += seg_cost_detail [key]

# Calculate total feasible OPEX
cost_detail["total_feasible_opex"] = sum(cost_detaillk] for k in cost_detail if k !=
— "total_feasible_opex")

return True, cost_detail

_travel_one_segment_detailed_smart(self, soc: float, Q: float, seg: Segment,
ers_edges: Set[str], scs_nodes: Set[str],
remaining_energy_after_this_seg: float) ->
— Tuple[bool, float, Dict[str, float]]:

"""Detailed smart single segment travel, returns cost breakdown"""

cfg = self.cfg

beta = float(cfg["beta_kwh_per_km"])

current_need = beta * seg.dist_km

total_remaining_need = current_need + remaining_energy_after_this_seg

v = seg.speed_kmh if (seg.speed_kmh and seg.speed_kmh > 0) else cfg["v_avg_kmh"]
travel_time = seg.dist_km / max(v, le-6)

cost_detail = {
"time_cost": 0.0,
"static_charging_cost": 0.0,
"dynamic_charging_cost": 0.0,
"scs_toll_cost": 0.0,
"ers_toll_cost": 0.0

# 1) ERS smart charging: only use when insufficient battery

if seg.edge_id in ers_edges and soc < total_remaining need:
energy_deficit = total_remaining need - soc
max_can_charge = cfg["P_ERS_kw"] * travel_time
available_capacity = Q - soc

ers_energy = min(energy_deficit, max_can_charge, available_capacity)

if ers_energy > le-9:
soc += ers_energy
cost_detail["dynamic_charging cost"] = ers_energy *
— cfgl["price_dyn_eur_per_kwh"]
cost_detail["ers_toll_cost"] = seg.dist_km * cfg["toll_ers_eur_per_km"]

# 2) SCS charging: if still insufficient for current segment
if soc < current_need:
if seg.u in scs_nodes:
energy_needed = current_need - soc
available_capacity = Q - soc
scs_energy = min(energy_needed, available_capacity)

if scs_energy > le-9:
charging_time = scs_energy / cfg["P_SCS_kw"]
soc += scs_energy

cost_detail["static_charging_cost"] = scs_energy *

— cfgl["price_stat_eur_per_kwh"]

cost_detail["scs_toll_cost"] = seg.dist_km * cfg["toll_scs_eur_per_km"]
cost_detail["time_cost"] = charging time * cfg["c_time_eur_per_h"]

# Check if still insufficient

if soc < current_need - 1le-9:
return False, soc, cost_detail
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# 3) Travel energy consumption
soc -= current_need
if soc < O:

soc = 0.0

return True, soc, cost_detail

_get_penalty_breakdown(self, tour: Tour) -> Dict[str, float]:
"""Get penalty breakdown for infeasible tour"""
distance = tour.total_dist_km

penalty_detail = {
"diesel_cost": distance * self.cfg["penalty"]["diesel_1_per_km"] *
— self.cfg["penalty"]["diesel_eur_per_1"],
"co2_cost": 0.0,
"outsourcing_cost": distance * self.cfg["penalty"]["outsourcing_eur_per_km"],
"total_infeasible_penalty": 0.0

# C02 cost
if hasattr(tour, 'co2_gram'):
penalty_detail["co2_cost"] = tour.co2_gram * self.cfg["penalty"]["co2_eur_per_g"]
elif "co2_g_per_km" in self.cfg["penalty"]:
co2_emissions = distance * self.cfg["penalty"]["co2_g_per_km"]
penalty_detail["co2_cost"] = co2_emissions * self.cfg["penalty"]["co2_eur_per_g"]

# Calculate total penalty
penalty_detail["total_infeasible_penalty"] = sum(penalty_detaillk] for k in
< penalty_detail if k != "total_infeasible_penalty")

return penalty_detail

evaluate_solution(self, tours: List[Tour], scs_nodes: Set[str], ers_edges: Set[str]) ->

Dict:

# Detailed cost breakdown

opex_components = {
"time_cost": 0.0,
"static_charging cost": 0.0,
"dynamic_charging_cost": 0.0,
"scs_toll_cost": 0.0,
"ers_toll_cost": 0.0,
"total_feasible_opex": 0.0

penalty_components = {
"diesel_cost": 0.0,
"co2_cost": 0.0,
"outsourcing_cost": 0.0,
"total_infeasible_penalty": 0.0

# Collect infeasible tours detailed information
infeasible_tours_info = []
feasible_cnt = 0

# New: charging behavior classification statistics
charging_behavior_stats = {

"no_charging": O, # No charging
"scs_only": O, # SCS only
"ers_only": O, # ERS only
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"scs_and_ers": O, # Both SCS and ERS
"penalty_tours": O # Infeasible tours

for t in tours:

ok, cost_detail = self.evaluate_tour_detailed(t, ers_edges, scs_nodes)
if ok:

feasible_cnt += 1

# Accumulate feasible costs

for key in opex_components:

if key in cost_detail:
opex_components [key] += cost_detail [key]

# Analyze charging behavior
has_scs = cost_detail.get("static_charging_cost", 0) > 0
has_ers = cost_detail.get("dynamic_charging_cost", 0) > 0

if has_scs and has_ers:
charging_behavior_stats["scs_and_ers"] += 1
elif has_scs:
charging_behavior_stats["scs_only"] += 1
elif has_ers:
charging_behavior_stats["ers_only"] += 1
else:
charging_behavior_stats["no_charging"] +=
else:
# Count penalty tours
charging_behavior_stats["penalty_tours"] += 1

# Record infeasible tour information

truck_id = getattr(t, "truck_id", "")

battery_capacity = self.truck_batt_map.get(truck_id, 300.0) if truck_id in
— self.truck_batt_map else 300.0

energy_need = self.cfg["beta_kwh_per_km"] * t.total_dist_km

infeasible_info = {
"tour_id": t.tour_id,
"truck_id": truck_id,
"origin_node": t.origin_node,
"destination_node": t.dest_node,
"total_distance_km": t.total_dist_km,
"segments_count": len(getattr(t, 'segments', [1)),
"battery_capacity_kwh": battery_capacity,
"energy_need_kwh": energy_need,
"energy_deficit_kwh": energy_need - battery_capacity,
"has_scs_access": t.origin_node in scs_nodes or t.dest_node in scs_nodes,
"has_ers_access": any(seg.edge_id in ers_edges for seg in getattr(t,
— 'segments', [1)),
"diesel_penalty": cost_detail.get('diesel_cost', 0),
"co2_penalty": cost_detail.get('co2_cost', 0),
"outsourcing_penalty": cost_detail.get('outsourcing_cost', 0),
"total_penalty": cost_detail.get('total_infeasible_penalty', 0)

}

infeasible_tours_info.append(infeasible_info)

# Accumulate penalties
for key in penalty_components:
if key in cost_detail:
penalty_components[key] += cost_detail [key]

infeasible_cnt = len(tours) - feasible_cnt
feasible_rate = feasible_cnt / max(1l, len(tours))
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# Calculate total OPEX and penalties
opex_feasible = opex_components["total_feasible_opex"]
pen_infeasible = penalty_components["total_infeasible_penalty"]

# CAPEX: infrastructure + battery (per vehicle)
capex_fac = len(scs_nodes) * self.cfg["capex_scs_eur"] +
— self._ers_capex_from_edges (ers_edges)

capex_batt = self._battery_capex_from_trucks(tours)
capex = capex_fac + capex_batt

# Omega * (#unserved tours)
omega = float(self.cfg.get("omega", 1e6))
omega_term = omega * infeasible_cnt

# Total objective
fitness = omega_term + capex + opex_feasible + pen_infeasible

# If still want to keep "feasibility rate threshold big penalty", optional:
if self.cfg.get(”min_feasible_rate”, None) is not None and feasible_rate <
— self.cfg["min_feasible_rate"]:

fitness += self.cfg.get("big_penalty_for_rate", 0.0)

return {
"fitness": fitness,
"capex": capex,
"capex_fac": capex_fac,
"capex_batt": capex_batt,
"opex": opex_feasible + pen_infeasible, # Report total operation + penalty
"opex_feasible": opex_feasible,
"pen_infeasible": pen_infeasible,
"feasible_rate": feasible_rate,
"infeasible_count": infeasible_cnt,
"omega_term": omega_term,

# New: detailed cost breakdown
"opex_breakdown": opex_components,
"penalty_breakdown": penalty_components,
"total_tours": len(tours),

# New: charging behavior classification statistics
"charging_behavior_stats": charging behavior_stats,

# New: infeasible tours detailed information
"infeasible_tours_info": infeasible_tours_info,

_ers_capex_from_edges(self, ers_edges: Set[str]) -> float:

per_km = self.cfg["capex_ers_eur_per_km"]

length_km = sum(float(self.edge_length_km.get(e, 1.0)) for e in ers_edges)
return per_km * length_km

_battery_capex_from_trucks(self, tours: List[Tour]) -> float:
# Only count battery CAPEX once for vehicles participating in tours
if not self.truck_batt_map:

return 0.0
used_trucks = {t.truck_id for t in tours if t.truck_id and t.truck_id in
< self.truck_batt_map}
per_kwh = self.cfg.get("battery_cost_eur_per_kwh", None)
class_prices = self.cfg.get("batt_class_capex_eur", None)
capex = 0.0
for tid in used_trucks:

Q = float(self.truck_batt_map[tid])

if per_kwh is not None:
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capex += Q * float(per_kwh)
elif class_prices:
if Q in class_prices:
capex += float(class_prices[Q])
else:
bigger = sorted([q for q in class_prices if q >= Q])
capex += float(class_prices[bigger[0]]) if bigger else
— float(class_prices[max(class_prices)])
return capex
# Compatibility alias, maintain backward compatibility
BilevelEvaluator = EnhancedBilevelEvaluator

A.4 Genetic Algorithm

# -*- coding: utf-8 -*-
from __future__ import annotations

import random
from typing import List, Tuple, Dict, Any, Set, Optional

class GroupedGeneticAlgorithm:
def __init__(self, evaluator, nodes: List[str], edges: List[str],

trucks: List[str], truck_groups: Dict[str, int], cfg: Dict[str, Any], seed:

— Optionall[int] = None):
self.evaluator = evaluator
self .nodes, self.edges, self.trucks = nodes, edges, trucks
self.truck_groups = truck_groups
self.cfg = cfg
self.n_nodes, self.n_edges = len(nodes), len(edges)

self.n_groups = len(set(truck_groups.values()))
self.group_to_trucks = {}
for truck_id, group_id in truck_groups.items():
if group_id not in self.group_to_trucks:
self.group_to_trucks[group_id] = []
self.group_to_trucks[group_id] .append(truck_id)

self.forbidden_nodes = {'544', '545'}

self.forbidden_edges = self._identify_forbidden_edges()

self .battery_classes = cfg["battery_classes_kwh"]

self .n_battery_classes = len(self.battery_classes)
self.battery_bits_per_group = 3

self.chrom_len = self.n_nodes + self.n_edges + self.n_groups *
— self.battery_bits_per_group

if seed is not None:
random. seed (seed)

def _identify_forbidden_edges(self) -> Set[str]:
try:
forbidden_edges = set()
for edge_id in self.edges:
if '|' in edge_id:
from_node, to_node = edge_id.split('["')

if from_node in self.forbidden_nodes or to_node in self.forbidden_nodes:

forbidden_edges.add(edge_id)

return forbidden_edges
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def

def

except Exception:
return set()

_decode(self, indiv: List[int]) -> Tuple[Set[str], Set[str], Dict[str, float]]:

"""Decode individual to SCS set, ERS set, truck battery mapping
scs = {self.nodes[i] for i, b in enumerate(indiv[:self.n_nodes])
if b == 1 and self.nodes[i] not in self.forbidden_nodes}
ers_start = self.n_nodes
ers_end = self.n_nodes + self.n_edges
ers = {self.edges[i] for i, b in enumerate(indiv[ers_start:ers_end])
if b == 1 and self.edges[i] not in self.forbidden_edges}

truck_batteries = {}
battery_start = self.n_nodes + self.n_edges

for group_id in range(self.n_groups):
start_bit = battery_start + group_id * self.battery_bits_per_group
end_bit = start_bit + self.battery_bits_per_group
battery_bits = indiv[start_bit:end_bit]

battery_idx = 0
for j, bit in enumerate(battery_bits):

battery_idx += bit * (2 ** (self.battery_bits_per_group - 1 - j))

battery_idx = min(battery_idx, self.n_battery_classes - 1)
group_battery_kwh = float(self.battery_classes[battery_idx])

if group_id in self.group_to_trucks:
for truck_id in self.group_to_trucks[group_id]:
truck_batteries[truck_id] = group_battery_kwh

return scs, ers, truck_batteries

_random_individual (self) -> List[int]:
"""Generate random individual with smart battery initialization
p_scs = self.cfg.get("init_prob_scs", 0.4)
p_ers = self.cfg.get("init_prob_ers", 0.1)
scs_bits = []
for i in range(self.n_nodes):
if self.nodes[i] in self.forbidden_nodes:
scs_bits.append(0)
else:

scs_bits.append(1 if random.random() < p_scs else 0)
ers_bits = []
for i in range(self.n_edges):
if self.edges[i] in self.forbidden_edges:
ers_bits.append(0)
else:
ers_bits.append(l if random.random() < p_ers else 0)
battery_bits = []
for group_id in range(self.n_groups):
if random.random() < 0.7:
battery_idx = random.randint(0, 2)
else:
battery_idx = random.randint(0, self.n_battery_classes - 1)
bits = []
temp_idx = battery_idx
for _ in range(self.battery_bits_per_group):
bits.append(temp_idx % 2)
temp_idx //= 2
bits.reverse()
battery_bits.extend(bits)
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return scs_bits + ers_bits + battery_bits

@staticmethod
def _hamming(a: List[int], b: List[int]) -> int:
return sum(x != y for x, y in zip(a, b))

def ensure_diversity(self, population: List[List[int]]) -> List[List[int]]:

def

def

def

def

min_ratio = self.cfg.get("min_hamming ratio", 0.15)
L = max(1, self.chrom_len)

need = set()

for i in range(len(population)):

for j in range(d

if self._hamming(population[i], population[j]l) / L < min_ratio:

)

need.add (i)

break
for i in need:
population[i] =
return population

fitness(self, indiv: List[int], tours) -> Tuple[float, Dict[str, Anyl]:

self._random_individual ()

scs, ers, truck_batteries = self._decode(indiv)
self.evaluator.truck_batt_map = truck_batteries

res = self.evaluator.evaluate_solution(tours, scs, ers)
return res["fitness"], res

select(self, population: List[List[int]], fits: List[float]) -> List[int]:

k = self.cfg.get("ga_tournament_k", 3)

idxs = random.sample(range(len(population)), min(k, len(population)))

idxs.sort(key=lambda i: fits[i])
return population[idxs[0]]

crossover(self, a: List[int], b: List[int]) -> Tuple[List[int], List[int]]:
if self.chrom_len < 2 or random.random() > self.cfg.get("ga_crossover_rate", 0.8):

return al:], b[:

]

cut_points = [self.n_nodes, self.n_nodes + self.n_edges]

cut = random.choice(cut_points + [random.randint(1l, self.chrom_len - 1)])

return al:cut] + blcut:], bl:cut] + alcut:]

mutate(self, indiv: List[int]) -> List[int]:
rate = self.cfg.get("ga_mutation_rate", 0.1)

out = indiv[:]

for i in range(self.chrom_len):
if random.random() < rate:
if self.n_nodes <= i < self.n_nodes + self.n_edges:

ers_idx
edge_id
if edge_
out [
else:
out [

id
i]

i]

i
se

- self.n_nodes
1f.edges[ers_idx]

in self.forbidden_edges:

0

1 - out[il

elif i < self.n_nodes:
node_id = self.nodes[i]
in self.forbidden_nodes:

if node_
out [

else:
out [

id
il

i]

elif i >= self.n

group_id

X

0

1 - out[il
_nodes + self.n_edges:
(i - self.n_nodes - self.n_edges) //

— self.battery_bits_per_group

bit_pos

(i

- self.n_nodes - self.n_edges) % self.battery_bits_per_group
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171

172

def

else

return out

evolve(self,
pop_s
elite
verbo

pop_size = p
generations
elite_size =

population =
population =

best = None
best_info =

if random.random() < 0.7:

start_bit = self.n_nodes + self.n_edges + group_idx *

— self.battery_bits_per_group

current_bits = out[start_bit:start_bit + self.battery_bits_per_group]

current_idx = 0
for j, bit in enumerate(current_bits):

current_idx += bit * (2 ** (self.battery_bits_per_group - 1 - j))
current_idx = min(current_idx, self.n_battery_classes - 1)

if current_idx > O:
new_idx = random.randint (0, current_idx)
else:

new_idx = random.randint(0, min(2, self.n_battery_classes - 1))

new_bits = []

temp_idx = new_idx

for _ in range(self.battery_bits_per_group):
new_bits.append(temp_idx 7 2)
temp_idx //= 2

new_bits.reverse()

for j, bit in enumerate(new_bits):
out[start_bit + j] = bit
else:
out[i] = 1 - out[i]

out[i] = 1 - out[i]

tours,

ize: int = None, generations: int = None,

_size: int = None, restart_every: int = 10,

se: bool = True) -> Tuple[List[int], Dict[str, Any]l]:

op_size or self.cfg.get("ga_pop_size", 30)
= generations or self.cfg.get("ga_generations", 25)
elite_size or self.cfg.get("ga_elite_size", 5)

[self._random_individual() for _
self.ensure_diversity(population)

in range(pop_size)]

None

generation_history = []

for g in ran

fits, infos = zip(x[self.fitness(ind, tours) for ind in population])

order =
populati
fits = [
infos =

if best
best

scs, ers

ge(generations):

sorted(range(pop_size), key=lambda i: fits[i])
on = [population[i] for i in order]

fits[i] for i in order]

[infos[i] for i in order]

is None or fits[0] < best:
, best_info = fits[0], infos[0]

, truck_batteries = self._decode(population[0])

group_battery_dist = {}
for group_id in range(self.n_groups):

if g

roup_id in self.group_to_trucks and self.group_to_trucks[group_id]:

sample_truck = self.group_to_trucks [group_id] [0]
battery_kwh = truck_batteries.get(sample_truck, 300.0)
group_battery_dist [£"Group{group_id}"] = battery_kwh
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generation_history.append ({
"generation": g,
"best_fitness": fits[0],
"feasible_rate": infos[0] ['feasible_rate'],
"capex": infos[0]['capex'],
"opex": infos[0] ['opex'],
"capex_fac": infos[0].get('capex_fac', 0),
"capex_batt": infos[0].get('capex_batt', 0),
"infeasible_count": infos[0].get('infeasible_count', 0),
"omega_term": infos[0].get('omega_term', 0),
"scs_count": len(scs),
"ers_count": len(ers),
"group_battery_distribution": group_battery_dist
1))

if verbose:
avg_battery = sum(truck_batteries.values()) / len(truck_batteries) if
— truck_batteries else 300

«— print(£"[Gen {g:02d}] fitness={fits[0]:.0f} FR={infos[0] ['feasible_rate']
f"CAPEX={infos[0] ['capex']:,.0f} Battery_avg={avg_battery:.O0f}kWh "
£"SCS={len(scs)} ERS={len(ers)}")

new_pop: List[List[int]] = population[:elite_size]

while len(new_pop) < pop_size:
pl = self.select(population, fits)
p2 = self.select(population, fits)
cl, c2 = self.crossover(pl, p2)
new_pop.append (self .mutate(cl))
if len(new_pop) < pop_size:
new_pop.append (self.mutate(c2))

population = self.ensure_diversity(new_popl[:pop_sizel)
if restart_every and (g + 1) % restart_every ==
keep = max(2, int(0.2 * pop_size))
survivors = population[:keep]
newcomers = [self._random_individual() for _ in range(pop_size - keep)]
population = self.ensure_diversity(survivors + newcomers)

fits, infos = zip(*[self.fitness(ind, tours) for ind in population])
i = min(range(len(population)), key=lambda k: fits[k])

final_info = dict(infos[i])
final_info['generation_history'] = generation_history

return population[i], final_info

A.5 truck grouping strategy

# -*x- coding: utf-8 -*-

from typing import List, Dict

from collections import defaultdict
import numpy as np

def group_trucks_by_distance_profile(tours: List, n_groups: int) -> Dict[str, int]:
"""Group trucks based on distance characteristics"""
truck_profiles = defaultdict(list)

for tour in tours:
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truck_id = getattr(tour, "truck_id", "")
if truck_id:
total_distance = 0
if hasattr(tour, 'segments') and tour.segments:

total_distance = sum(seg.dist_km for seg in tour.segments if hasattr(seg,

< 'dist_km'))
truck_profiles[truck_id] .append(total_distance)
if not truck_profiles:
estimated_trucks = max(1, len(tours) // 10)
truck_groups = {}
for i in range(estimated_trucks):
truck_id = f"virtual_truck_{i:04d}"
truck_groups [truck_id] = i % n_groups
return truck_groups
truck_features = {}
truck_ids = list(truck_profiles.keys())

for truck_id, distances in truck_profiles.items():

if distances:
avg_distance = np.mean(distances)
total_distance = sum(distances)
tour_count = len(distances)
max_distance = max(distances)
min_distance = min(distances)

else:

avg_distance = total_distance = tour_count = max_distance = min_distance

truck_features[truck_id] = [avg_distance, total_distance, tour_count, max_distance,

s min_distance]

if len(truck_features) <= n_groups:
return {truck_id: i for i, truck_id in enumerate(truck_ids)}
truck_groups = {}

sorted_trucks = sorted(truck_features.items(), key=lambda x: x[1][0])
trucks_per_group = len(sorted_trucks) // n_groups
remainder = len(sorted_trucks) 7 n_groups

current_idx = 0
for group_id in range(n_groups):
group_size = trucks_per_group + (1 if group_id < remainder else 0)

for i in range(group_size):
if current_idx < len(sorted_trucks):
truck_id = sorted_trucks[current_idx] [0]
truck_groups [truck_id] = group_id
current_idx += 1

return truck_groups

group_trucks_simple(truck_ids: List[str], n_groups: int) -> Dict[str, int]:
"""Simple truck grouping: Round-robin assignment"""

truck_groups = {}

for i, truck_id in enumerate(truck_ids):

truck_groups [truck_id] = i % n_groups

return truck_groups
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Integrated Optimization of Charging
Infrastructure for Battery-Electric Trucks Using
Tour-Based Freight Data

Mingyan Jin! , Léri Tavasszy? , Alessandro Bombelli®

Abstract

Heavy-duty road freight faces the dual challenge of limited driving range and insuffi-
cient charging infrastructure for battery-electric trucks (BETs). This study develops a
nationwide tour-based optimization framework to determine cost-effective deployment
strategies for stationary charging stations (SCS), electric road systems (ERS), and
heterogeneous truck battery capacities.

A Dbi-level mixed-integer model is combined with a Genetic Algorithm (GA) to
ensure scalability, evaluating more than 1.5 million truck tours in the Netherlands. The
framework captures cumulative energy requirements across linked trips and is validated
against exact MILP solutions for smaller instances.

The optimization increases feasibility from 58% to 89.9%, reducing infeasible tours
t0 10.1%. ERS emerges as the system backbone, with 12,792 km deployed (€25.7 billion,
65.6% of CAPEX), complemented by 251 low-cost SCS facilities (€50.2 million, <1%
of CAPEX). Battery adoption is heterogeneous (90-600 kWh), yielding an average
capacity of 357 kWh and reducing battery CAPEX by 19% compared to a uniform
baseline. Operating expenditures are dominated by ERS charging, while unserved
tours incur average penalties of €362.

Nationwide electrification of freight is thus feasible under a layered strategy: ERS
as the long-haul backbone, SCS for redundancy at regional hubs, and heterogeneous
batteries to optimize costs. The framework advances the literature by moving from trip-
based to tour-based modelling at national scale, explicitly quantifying infeasibility and
decomposing system costs. These findings provide actionable insights for policymakers
and industry stakeholders on cost-effective and operationally viable pathways to freight
decarbonization.

Keywords: freight electrification; battery-electric trucks; bi-level optimization;
genetic algorithm; electric road systems (ERS); stationary charging stations (SCS);
tour-based modelling; infrastructure planning

1 Introduction

The decarbonization of freight transport has become a pressing global priority, given that heavy-
duty trucks are responsible for a substantial share of greenhouse gas emissions. Battery-electric
trucks (BETS) represent one of the most promising solutions to this challenge, offering the potential
to significantly reduce emissions from road freight. However, large-scale electrification of the
trucking sector is hindered by two major obstacles. First, the high cost, weight, and energy
density limitations of current batteries make them impractical for long-haul operations when used
in large sizes. Second, the sparse and uneven deployment of charging infrastructure constrains the
operational feasibility of BETs and increases the risk of unmet freight demand. Addressing these
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2. Professor, Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands.
<L.A.TavasszyQtudelft.nl>.
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two barriers requires an integrated infrastructure planning approach that not only balances cost
and performance but also ensures service continuity for logistics operations.

Existing studies have primarily focused on either static charging stations (SCS), which provide
fixed-location charging opportunities, or dynamic charging systems such as Electric Road Systems
(ERS), which enable energy supply during driving. While each option has merits, planning
them in isolation neglects the potential synergies between the two. Moreover, most studies have
assumed uniform battery capacities across the fleet, an unrealistic simplification that ignores the
heterogeneity of operational needs and leads to either excessive investment or limited feasibility.
Another limitation is that infrastructure planning models have largely relied on trip-based demand
representations, where each trip is considered independently. This approach overlooks the fact
that freight carriers operate in tours, i.e., sequences of trips that must be feasible as a whole in
terms of energy requirements. Ignoring tour continuity can therefore lead to misrepresentation of
charging needs and an underestimation of feasibility issues.

To fill these gaps, this study proposes a nationwide integrated optimization framework that
jointly determines the deployment of SCS and ERS, along with heterogeneous battery allocations
across the truck fleet. The model is built on tour-based freight data from the Netherlands, enabling
a realistic representation of logistics operations. A bi-level optimization framework is designed:
the upper level selects infrastructure deployment and battery sizes, while the lower level evaluates
the energy feasibility of complete tours, accounting for charging opportunities, state-of-charge
dynamics, and penalties for unserved tours. Given the large scale of the problem—encompassing
over one million tours and millions of trips—a meta-heuristic genetic algorithm is developed to
efficiently solve the nationwide instance, with smaller test cases validated using a mixed-integer
linear programming (MILP) formulation.

The results demonstrate that the integrated approach substantially improves the feasibility of
BET operations, raising the share of feasible tours from 58% to nearly 90%. ERS emerges as
the dominant infrastructure in terms of cost-effectiveness, accounting for the majority of capital
expenditures, while SCS provides redundancy at a relatively small share of the budget. At the fleet
level, heterogeneous battery sizing proves crucial, with a wide distribution of battery capacities
across trucks resulting in 19% capital cost savings compared to uniform allocation. These findings
highlight the importance of considering infrastructure synergies, realistic freight operations, and
heterogeneous vehicle strategies when designing electrification pathways. Beyond the methodolog-
ical contributions, the study offers practical insights for policymakers and industry stakeholders
by quantifying trade-offs between capital investments, operational costs, and serviceability. The
framework thus provides a basis for informed decision-making on the future of freight electrification
at the national scale.

2 Literature Review

Electrifying heavy-duty road freight has advanced from a technological possibility to a system-level
planning challenge in which battery technology, charging infrastructure, and freight operations
must be co-designed. The literature converges on two complementary infrastructure paradigms.
Static charging stations (SCS) provide high-power refuelling at nodes and are comparatively easy
to deploy within existing grids, but they induce dwell time and typically presume large on-board
batteries to bridge between stations. In contrast, electric road systems (ERS) deliver energy
while driving and therefore relax battery sizing and time-loss constraints, albeit at the cost of
substantial corridor investments and the need for targeted coverage. Technology assessments con-
sistently classify ERS into overhead catenary, ground-level conductive rails, and wireless inductive
transfer, documenting heterogeneous maturity, efficiencies, and implementation footprints (Piedel
et al. 2024; Shoman, Karlsson, and Yeh 2022; Honda 2021). Comparative and policy-oriented
analyses find that, on high-volume corridors, ERS can cut required battery capacity and total
operating costs, but sustained utilisation hinges on corridor selection, traffic density, and policy
instruments; mis-targeted rollout risks stranded assets (Rogstadius et al. 2023, 2025; Decisio 2022).
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These insights motivate hybrid strategies that pair ERS on interurban spines with SCS at hubs
and logistics clusters to provide redundancy, last-mile coverage, and recovery options—an idea
increasingly explored in integrated models.

Methodologically, integrated planning has moved from single-technology facility location prob-
lems to frameworks that link investment to operating feasibility and costs. Bi-level formulations
are a natural scaffold: the upper level chooses siting and capacity (e.g., ERS segments and SCS
locations), while the lower level evaluates vehicle operations, charging decisions, state-of-charge
(SOC) dynamics, and generalised costs. This structure has been adapted to combine static and
dynamic charging and to capture behavioural or operational responses; scalability to national
instances often relies on metaheuristics such as genetic algorithms (GA) (Sun, Chen, and Yin
2020; Zeng and Zhang 2020; Akbari, Brenna, and Longo 2018; Cintrano, Toutouh, and Alba 2021;
Vazifeh et al. 2019; Seilabi and coauthors 2025). Evidence from corridor and national case studies
shows that integrated designs outperform siloed rollouts because the model can trade corridor
energy against node coverage and explicitly price dwell time, tolls, and electricity tariffs in the
operating layer (Sun, Chen, and Yin 2020; Decisio 2022). Yet, many existing studies retain strong
simplifications in fleet specification and demand representation, limiting realism when scaled up.

A second cross-cutting theme is battery sizing. For tractability, early infrastructure studies
commonly imposed a uniform battery capacity. That assumption obscures the diversity of duty
cycles, topography, and temporal charging opportunities that shape energy feasibility in practice.
More recent contributions permit heterogeneous battery classes and co-optimise them with infras-
tructure, showing that modest batteries can serve a large share of tours when supported by well-
placed ERS or frequent SCS, while a tail of long-haul missions justifies larger packs; the aggregate
effect is lower capital expenditure without sacrificing feasibility (Liao et al. 2024; Kunawong and
coauthors 2025; Saxe et al. 2023; Inez 2024). This reframes infrastructure versus battery investment
as partial substitutes (on corridors with ERS) and complements (around hubs facing peak demand),
underscoring the value of joint design.

Equally pivotal is how freight demand is represented. Most siting models are trip-based: each
movement is treated independently, which eases computation but severs the energy continuity that
operators confront during daily operations. Research in freight tour synthesis and urban goods
modelling shows that tour-based demand—sequences of chained trips executed by the same vehicle,
including empty returns and inter-stop dwell—captures SOC carry-over, headroom constraints, and
realistic charging windows. Ignoring tour continuity systematically underestimates charging needs,
overstates feasibility, and can misallocate infrastructure, especially where energy margins are tight
(Boerkamps and Binsbergen 1999; Sanchez-Diaz, Holguin-Veras, and Ban 2015; Thoen et al. 2020).
Incorporating tour-level physics into national planning remains rare but is essential for credible
evaluation of infeasibility and penalty mechanisms (e.g., outsourcing or diesel fallback), and for
diagnosing where corridor energy should be complemented by nodal redundancy.

Taken together, the literature points to three gaps that motivate the present study: (i) na-
tionwide hybrid SCS-ERS planning rather than single-technology optimisation, so that corridor
continuity and nodal accessibility are jointly targeted; (ii) explicit battery heterogeneity within
infrastructure co-optimisation to capture investment—feasibility trade-offs across diverse duties;
and (iii) scalable, tour-aware feasibility evaluation that preserves SOC continuity and charging op-
portunities at operational resolution. Addressing these gaps requires models that integrate strategic
siting with lower-level energy balance, price-consistent operating costs, and penalty structures for
unmet missions, solved with algorithms capable of handling national network sizes—an approach
increasingly advocated across recent technical and policy-facing contributions (Sun, Chen, and Yin
2020; Zeng and Zhang 2020; Decisio 2022; Rogstadius et al. 2025).

3 Methodology

This paper develops a nationwide, tour-based planning framework that jointly decides (i) which
road links to electrify with in-motion charging (electric road systems, ERS), (ii) which nodes to
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equip with static charging stations (SCS), and (iii) heterogeneous battery capacities at the vehicle
level. The model links long-run investment to day-to-day operating feasibility at the level of
complete tours—ordered chains of trips executed by the same truck—so that state-of-charge (SOC)
carry-over, empty returns, and realistic charging windows are preserved. The tour representation
is motivated by freight-tour synthesis and operations research showing that trip-wise abstractions
systematically understate energy needs and overstate feasibility (Boerkamps and Binsbergen 1999;
Sénchez-Diaz, Holguin-Veras, and Ban 2015; Thoen et al. 2020). Strategic-operational coupling
is handled through a bi-level structure: an upper level that chooses infrastructure and battery
assignments and a lower level that verifies tour feasibility and returns operating costs (Sun, Chen,
and Yin 2020; Zeng and Zhang 2020). To meet page limits, we present modeling principles and a
few illustrative equations in the main text; the complete mathematical program (sets, variables,
and constraints) is documented in the Appendix.

3.1 Network, demand, and decisions

Let G = (V, E) denote the corridor graph used for planning. Each observed tour ¢ € T is an
ordered sequence of legs on E obtained by assigning component trips to shortest paths; this yields
consistent mileage for both operations and infrastructure accounting. Strategic decisions comprise
binary ERS activation on links, . € {0,1}, binary SCS siting at nodes, y; € {0,1}, and one-of-
|B| battery-class assignment for each vehicle k, encoded by 0, € {0,1}. Battery classes b € B
have capacities Q; and specific costs c}fat. Electricity consumed on ERS and SCS is priced at p°*®
and p*=. Tours that cannot be feasibly electrified may be outsourced (or executed with diesel)
out

at cost c"'. A large scalar  is used as an internal penalty in the solver to discourage excessive
outsourcing; €2 is not included in the reported economic totals.

3.2 Upper-level principle (investment and system cost)

The upper level minimizes long-run system cost—CAPEX for ERS/SCS/batteries plus OPEX for
electricity and any outsourcing;:

min Y lexe+ > g+ > > ™ ohy + > (CPP(x,y,8) + CM), (1)
b

ecE i€V k teT
CAPEX OPEX + outsourcing
subject to the one-battery-per-vehicle rule
Z opp =1 Vk, ok € {0,1}, (2)

beB

and optional budget/policy constraints (e.g., caps on ERS length or SCS count). The lower-level
terms C;* and C"* are defined by tour-feasibility evaluation described next.

3.3 Lower-level principle (tour feasibility and operating cost)

Given (7,y,6), each tour is simulated leg by leg. Let k = r(t) denote the assigned vehicle and b
the chosen battery class with capacity Q. SOC evolves as

SOCt’O = Oé@b, SOCtﬁz = SOCt,efl — 776(2) de(g) + :L’e(g) ’ye(g) de(g) s 0 < SOCtyz < Qb, (3)
—— —_———

traction use ~ ERS in-motion charge

where e(¢) is the link used by leg ¢, d. its length, 7. the energy intensity (kWh/km), and . the
effective ERS charge per km (power-over-speed). At intermediate stops that coincide with SCS
nodes (y; = 1), a conditional top-up is permitted to secure forthcoming legs without excessive
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dwell; timing and power constraints are given in the Appendix. A binary variable s; € {0,1}
indicates whether tour ¢ is served electrically (s; = 1) or outsourced (s; = 0):

st =1 = SOC bounds respected under the SCS policy; CP™ = (1 — sp) . (4)
Operating cost aggregates priced energy purchased on ERS and SCS along feasible tours,
CP = s (Zpers Te(e) Ve(e) de(ey + Z p** ut,z>7 (5)
let SCS events

where uy ¢ is the SCS energy top-up taken at eligible stops. For search guidance, the solver’s fitness
augments (1) with an infeasibility penalty Q3% ,(1 — s¢).

3.4 Why tours and heterogeneous batteries

Preserving tour continuity allows the model to evaluate feasibility where energy margins are tight
and charging windows are sparse, addressing well-known shortcomings of trip-based siting models
(Boerkamps and Binsbergen 1999; Sénchez-Diaz, Holguin-Veras, and Ban 2015; Thoen et al. 2020).
Assigning exactly one battery class per vehicle (Eq. (2)) reflects fleet practice and captures the
substitution—complementarity ERS and battery investment: modest packs become viable on well-
electrified corridors while a minority of long-haul duties justifies larger capacities (Liao et al. 2024;
Saxe et al. 2023; Inez 2024).

3.5 Solution approach (bi-level with metaheuristics)

The decision vector concatenates three blocks—ERS links {z.}, SCS nodes {y;}, and battery
assignments {0y, }. We use a genetic algorithm (GA) for the upper level: chromosomes are block-
encoded; selection is elitist; two-point crossover is applied within blocks to preserve structure;
mutation uses sparsity-aware flips for {z.,y;} and local swaps for {d;}; and a lightweight repair
operator enforces (2). Each candidate layout is decoded and evaluated by the lower-level tour
simulation to compute feasibility and costs in (1). GA is a widely adopted choice for large-scale
facility siting and EV infrastructure planning when exact solvers become intractable (Akbari,
Brenna, and Longo 2018; Vazifeh et al. 2019; Cintrano, Toutouh, and Alba 2021; Seilabi and
coauthors 2025); the bi-level framing follows integrated static-dynamic charging studies (Sun,
Chen, and Yin 2020; Zeng and Zhang 2020). Practical run settings (population, generations,
operators, termination, and parallel evaluation strategy) are summarized in the Appendix together
with sensitivity checks.

3.6 Scope and appendix contents

Equations (1)—(5) are intentionally minimal and illustrative. The Appendix provides the complete
model: sets and indices; parameter definitions; all decision variables; the full upper-level objective
with policy/budget constraints; the detailed SOC and SCS timing/power constraints; optional
features (e.g., speed—power coupling on ERS, charger queueing abstractions); cost accounting; and
solver pseudocode with parameter values used in experiments. This separation keeps the main text
focused on design principles while maintaining full reproducibility off the critical path.

4 Case Study

This section documents the study area, the data pipeline that transforms micro-level freight records
into a corridor-consistent tour dataset, the construction of the nationwide corridor network used
for planning, and the implementation details of the heuristic solver. Figures reproduced below
visualize the data abstractions we rely on for the national case. The parameter table for the
Genetic Algorithm (GA) and key technology/cost inputs is reported in the Appendix to keep the
main text concise.
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4.1 Study Area and Data Overview

We use micro-level freight records that contain hierarchical identifiers (carrier, tour, trip), zonal
references (NRM, BG, VAM), RD coordinates, timestamps, vehicle/commodity descriptors, dis-
tances, and COs; measures. From these fields we retain only what is required for planning:
identifiers to reconstruct ordered tours, zonal/coordinate fields to embed tours in the corridor
network, temporal fields to detect charging opportunities, and distance/emission fields for energy
and penalty accounting. A compact list of variables and their roles is summarised in the data table
(see Appendix). This subset supplies the core inputs for the tour-based feasibility checks and the
investment—operation trade-off in our model.

Tour 981_285

= trip
®  node

Figure 1: Example tour illustration

Figure 1 (tour demo) shows how a single tour is visualised as an ordered chain of OD legs.
The raw data provide endpoints rather than path geometry; we therefore reconstruct routes on
the VAM corridor network to obtain a graph-consistent distance metric used consistently in both
operations and infrastructure accounting.

4.2 Zonal Framework and Flow Aggregation

For national-scale planning we operate at the level of the 542 Dutch VAM zones. Compared
with node-level siting, zoning exposes shared corridor structure, keeps the model size tractable,
and aligns with freight-demand practice. Figure 2 displays the spatial distribution of VAM zones
used as SCS candidates; Figure 3 contrasts the raw node-level trip mesh with zone-level corridor
flows used for planning. In the zonal abstraction, any SCS inside a zone is accessible to all tours
traversing that zone, while ERS is deployed on inter-zonal links.
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VAM zones Demo

Figure 2: VAM zoning across the study area

ZONE-LEVEL FLOW
all-or-nothing route

-
ERS 4
D

Figure 3: From node-level trips (left) to zone-level corridor flows (right)

NODE LEVEL TRIPS

4.3 Corridor Network Construction and Tour Routing

We construct a sparse, well-connected inter-zonal corridor graph G = (V,E) by a Delaunay
triangulation over VAM centroids (RD New, EPSG:28992). The resulting network has |V| = 542
nodes and |E| = 1613 links; link lengths are Euclidean centroid—centroid distances and serve as the
common metric for energy and costs. Compared with k-NN or radius graphs, Delaunay naturally
encodes proximate neighbours, avoids crisscrossing, and preserves single-component connectivity
with a compact number of links—well suited for corridor-level ERS on links and SCS on nodes.
Figure 4 shows the network.
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Delaunay VAM Network with Geographic Boundaries
1613 Links, 542 Nodes

le5

—— < 10km

84 = 10-30km
30-100km
> 100km

® VAM Nodes
Geographic Boundaries

Y Coordinate (meters)

6 -4 2 0 2 4 6 8
X Coordinate (meters) 1le5

Figure 4: Delaunay-based VAM corridor network (|V| = 542, |E| = 1613)

Because raw records contain only OD endpoints, every trip is re-routed by Dijkstra’s shortest
path on GG, and multi-leg paths are concatenated to form clean zone-by-zone tours; duplicates are
removed. Figure 5 shows one reconstructed tour path. The model consistently uses reconstructed
corridor length (sum of link lengths along the path) for energy/toll calculations, keeping operations
and infrastructure on a common graph metric.
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Before: Direct Trip Connections After: Shortest
Carrier 13, Tour 131 (4 trips) Carrier 13,

Zone Paths
Tour 131 (4 trips)

Figure 5: Example of a reconstructed tour on the VAM corridor network

Pipeline artefacts. The data pipeline outputs: (i) a tour table with ordered segments and
corridor links; (ii) a link table with canonical edge IDs and lengths for ERS siting and energy/cost
evaluation; (iii) a node table of VAM zones for SCS; and (iv) a truck catalogue mapping vehicles
to tours for per-vehicle battery assignment. These artefacts provide a clean handoff to the
optimisation layer.

4.4 Heuristic Solver and Workflow

The optimisation problem—jointly siting SCS, deploying ERS, and assigning heterogeneous battery
classes per vehicle under tour-feasibility checks—is NP-hard at national size. We therefore adopt
a tailored Genetic Algorithm (GA) with a three-segment chromosome (SCS / ERS / batteries),
tournament selection, block-aligned two-point crossover, sparsity-aware mutation (battery-biased
downward), elitism, diversity control by Hamming distance, and periodic restarts. Each chro-
mosome is decoded to decisions and evaluated by a deterministic tour-energy simulation aligned
with the corridor graph; the layered fitness prioritises feasibility (€2 penalty on unserved tours)
before infrastructure/battery CAPEX and then OPEX. Figure 6 summarises the workflow. (GA
hyperparameters and technology/cost scalars are reported in the Appendix.)
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Initialisation
Biased small-battery setup;
sparse SCS/ERS layout;
create initial population

l

Decode chromosome
Extract SCS sites, ERS links,
and grouped battery capacities

Fitness evaluation
Q- infeasible tours — CAPEXp, (SC-
S/ERS) — CAPEXy, (batteries) —
OPEX (energy, time, tolls) — Penalty

l

Genetic operators
Selection (tournament), crossover (aligned
with SCS/ERS/Battery segments), mu-
tation (battery-biased downward), elitism

l

Diversity control & restart
Monitor Hamming distance; replace low-
diversity individuals; periodic partial restart

l Output

Yes Best infrastructure & bat-
tery plan; feasible rate; cost
breakdown; evolution history

Terminate?

Figure 6: Workflow of the GA for the bi-level optimisation

Rationale and validation (concise). GA is suitable for mixed discrete decisions, nonlinear
feasibility checks, and multi-component costs, with embarrassingly parallel fitness evaluation. Prior
EV-infrastructure studies report strong performance of GA at city scale; our validation confirms
correctness on small instances by matching exact MILP optima and shows scalability on larger sets
where MILP is intractable. (Convergence and MILP-benchmark figures are placed in the Results
section; detailed settings and unified test parameters appear in the Appendix.)

4.5 What is reported where

To preserve readability and the page budget, this chapter presents (i) the data abstractions and
corridor construction with figures, and (ii) the solver workflow at a high level. All numerical
parameter values (GA hyperparameters, €, unit costs for ERS/SCS /batteries, energy prices, and
core energy-intensity assumptions) and the full GA parameter table are moved to the Appendix
(see Table 1).

5 Results

5.1 Convergence and overall performance

The nationwide optimisation converges rapidly under the tailored GA: the best fitness improves
sharply during the first dozen generations and then plateaus, while the electric service rate rises
from the initial baseline to a high, stable level (Fig. 7). Capital expenditure (CAPEX) increases
as the algorithm invests in corridor energy and nodal redundancy, whereas operating expenditure
(OPEX) declines as more tours are served electrically. The average assigned battery capacity
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stabilises rather than drifting upward, indicating that the search settles on a heterogeneous portfolio
instead of “max-battery everywhere” (Fig. 7).

5.2 National deployment pattern

The optimised layout exhibits a layered design that combines in-motion charging on high-volume
inter-urban corridors with static fast charging at strategically located hubs. ERS segments form
a long-haul backbone along major spines, while SCS sites cluster around distribution centres and
gateway nodes with dense tour interactions (Figs. 8a—8b). This pairing provides corridor continuity
and last-mile recovery without excessive dwell.

5.3 Residual infeasibility: locations and drivers

Despite large-scale deployment, a small share of tours remains infeasible. These residuals are
geographically concentrated: a limited set of nodes accounts for a disproportionate number of
infeasible tours (Fig. 9a), and a corresponding map view reveals clusters near peripheral and cross-
border areas where long legs and sparse siting options restrict energy headroom (Fig. 9b). These
locations are high-leverage targets for incremental corridor extensions or backup SCS.

5.4 Fleet battery portfolio and charging behaviour

The resulting fleet mix is bimodal, with sizable shares at a small-pack class and a large-pack class,
and the remainder spread across intermediate capacities (Fig. 10a). At the tour level, most missions
complete without en-route charging; when charging occurs, ERS is the dominant modality, with
SCS used sparingly as conditional top-ups to secure the next energy-critical legs (Fig. 10b). This
confirms the substitution—complementarity between corridor energy and on-board storage.

5.5 Operating cost composition

OPEX is dominated by ERS energy purchases among served tours; SCS energy costs are modest,
while ERS corridor fees and time costs remain secondary. Penalty costs for the residual infeasible
tours (diesel and outsourcing surcharge) are substantial on a per-tour basis and therefore mark the
value of targeted investments that convert those penalties into electric operating costs (Fig. 11).

5.6 Takeaways

The hybrid design—ERS on long spines, SCS at high-interaction nodes, and heterogeneous battery
assignment—achieves high electric service rates at competitive system cost. The joint trajectories
of feasibility, CAPEX, and OPEX (Fig. 7) demonstrate the underlying trade-off: higher upfront
corridor investment reduces recurring penalties and energy costs while avoiding blanket oversizing
of batteries. The residual infeasibility analysis (Figs. 9a-9b) provides a clear, actionable shortlist
for incremental expansion.
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Figure 10: Post-optimisation fleet composition and operating behaviour.
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Figure 11: Operating cost breakdown under the optimised layout

6 Discussion

6.1 Interpretation of Key Findings

The national-scale optimisation reveals a consistent mechanism linking investment, feasibility, and
cost. By expanding the ERS backbone and adding a limited number of SCS at high-interaction
hubs, the GA raises the electric service rate from 58.0% to 89.9% while improving the objective
by 34.7%. CAPEX increases to €39.1bn, with €25.7bn (65.6%) devoted to ERS and less than 1%
to SCS, indicating that corridor energy—not extensive nodal hardware—bears most of the capital
burden. Battery assignment converges to an average of 357 kWh, yet the fleet is intentionally
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heterogeneous: 25% of trucks operate with 90 kWh while 40% carry 600 kWh, and the remainder
populate intermediate classes. This mix confirms that corridor energy substitutes for on-board
storage on long spines, while selective upsizing covers ERS-sparse missions. Operating expenditures
are modest: feasible-tour OPEX is dominated by ERS energy and corridor fees, whereas penalties
for residual infeasible tours (10.1%) remain costly on a per-tour basis, marking the value of targeted
extensions at peripheral and cross-border bottlenecks. Together, these patterns show that higher
upfront CAPEX is traded for fewer infeasible tours and lower recurring costs, yielding a lower
long-run system cost.

6.2 Trade-offs Between Cost, Feasibility, and Investment

The joint trajectories of fitness, feasibility, and CAPEX demonstrate a clear trade-off (Fig. 7e).
Large-scale ERS investment reduces the number of tours that require very large batteries, thereby
lowering battery CAPEX relative to a homogeneous-pack baseline, while SCS provides low-cost
redundancy where SOC headroom would otherwise be binding. The persistence of a small infeasible
share concentrates in a handful of nodes that together account for more than 40% of all unserved
tours; incremental ERS links that shorten the longest (or second-longest) legs into these gateways,
or a single SCS near the top-ranked nodes, can convert penalties into operating cost at favourable
rates. In short, corridors buy systemic feasibility, hubs buy local robustness, and heterogeneous
batteries prevent over-investment.

6.3 Comparison with Literature

These findings align with and extend recent work on integrated charging strategies. Prior models
show that co-optimising static and dynamic charging can lower total cost and reduce the need for
oversized batteries (Sun, Chen, and Yin 2020). Corridor-focused studies indicate that ERS enables
substantial battery downsizing for long-haul missions, conditional on sufficient traffic density (Liao
et al. 2024). Our tour-based results corroborate both points while adding operational realism:
by preserving SOC continuity across chained legs, we identify a tail of duties that still needs
very large packs even with ERS, and we quantify cost components (CAPEX/OPEX/penalties)
at national scale. Methodologically, moving from trip-based to tour-based inputs addresses the
known optimism bias of trip-wise siting models and is consistent with the urban freight and tour-
synthesis literature (Boerkamps and Binsbergen 1999; Sdnchez-Diaz, Holguin-Veras, and Ban 2015;
Thoen et al. 2020). Policy-facing simulations similarly argue that ERS is a no-regrets lever when
used at scale; our evidence shows where it should be complemented by SCS to close residual gaps
(Rogstadius et al. 2025; Inez 2024).

6.4 Limitations

Several modelling choices trade realism for tractability. First, the corridor graph aggregates routes
to VAM links and uses shortest paths; geography outside the Netherlands is coarser, which inflates
single-leg distances on cross-border tours and partly explains residual infeasibility. Second, lower-
level operations use deterministic energy balances without explicit queueing, time windows, or
power-sharing; these effects are conservatively bounded rather than simulated. Third, prices
and tolls are applied as national averages; spatially differentiated tariffs could sharpen siting
priorities. Fourth, the GA provides heuristic solutions at full scale (validated against exact MILP
on small instances), so the national run is near-optimal rather than proven optimal. These caveats
are transparent and, in our tests, do not overturn the qualitative insights about corridor—node
complementarity and battery heterogeneity. :contentReference|oaicite:2])index=2

6.5 Future Work

Two extensions are most promising. (i) Operational realism: embed time windows, charger
capacity, and stochastic dwell into the lower level to quantify queueing-induced detours, and
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test simple congestion surrogates for peak periods. (ii) Dynamic planning: couple multi-
year investment with learning curves for batteries and ERS, and endogenise adoption so that
technology shares, duty allocation, and charging demand co-evolve. Additional priorities include
finer corridor resolution in peripheral regions, explicit grid connection costs for SCS/ERS, and
robust optimisation under energy-price and toll uncertainty. These steps would refine, rather than
overturn, the central conclusion: ERS as the long-haul backbone, SCS as nodal redundancy, and
heterogeneous batteries as cost optimisers at fleet level.

7 Conclusion

This paper develops a nationwide, tour-based planning framework that jointly optimises in-motion
ERS, SCS, and heterogeneous battery capacities at the vehicle level. By linking strategic invest-
ments to tour-level feasibility, the approach attains a high electric service rate at competitive
system cost and identifies where targeted expansions yield the largest marginal gains. In the
national case study, the optimised layout deploys approximately 12,792 km of ERS and 251 SCS
sites, serves 89.9% of tours electrically, and converges to an average assigned battery of 357 kWh
while reducing operating expenditure through greater reliance on ERS energy.

Main contributions

1. Tour-based electrification at national scale. The model evaluates feasibility on complete
tours rather than isolated trips, preserving state-of-charge continuity across chained legs and
empty returns. This closes the optimism gap of trip-based siting and reveals where energy
headroom is genuinely binding for operations.

2. Integrated design of ERS, SCS, and fleet batteries. Corridor energy, nodal redundancy, and
vehicle storage are co-optimised in a single problem, capturing their substitution and com-
plementarity. The solution uses ERS as the long-haul backbone, SCS as low-cost redundancy
at hubs and gateways, and a heterogeneous battery mix aligned with duty cycles.

3. Bi-level architecture with a full mathematical specification. Strategic siting and battery
assignment are coupled to a lower-level tour-feasibility and operating-cost evaluation. The
main text presents the modelling principles and illustrative equations, and the complete sets,
variables, objective, and constraints are documented in the appendix for reproducibility.

4. National-scale optimisation via a tailored genetic algorithm. A three-block chromosome
(ERS, SCS, batteries) with elitist selection, block-aligned crossover, sparsity-aware mutation,
light repair, and diversity maintenance enables efficient exploration. Fitness evaluation
is parallelised at the tour level, providing a practical recipe where exact methods are not
tractable at national size.

5. Validation and interpretability. On small instances, the heuristic matches exact MILP
optima, establishing correctness of the modelling stack. At full scale, convergence traces and
decomposed key performance indicators clarify how improvements arise rather than treating
the optimiser as a black box.

6. Actionable, map-based outputs. The results provide a layered national layout, a transparent
battery portfolio for procurement, and a shortlist of bottleneck nodes and corridors where
incremental links or single SCS sites convert penalty costs into electric operating expenditure.

7. Reproducibility and transfer. The pipeline delivers a clean handoff from data to optimisation:
tour reconstruction on a sparse corridor graph, canonical link and node tables for siting, and
figure-ready outputs. The framework is portable to other regions given tour data or credible
tour synthesis.
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Closing remark

Electrifying heavy freight at scale is a design problem that aligns corridor energy, nodal redundancy,
and fleet heterogeneity with how tours actually run. The framework and evidence presented here
offer a practical path for that alignment at national scale.
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Appendix A — Mathematical Model
A.1 Sets and Indices
N VAM zones / planning nodes (candidates for SCS), n € N.
L Undirected inter-zonal links (candidates for ERS), ¢ € L.
K Trucks, k € K.
T Tours (ordered chains of trips), t € T.
B Battery-capacity classes, b € B.
7Z: Ordered segments of tour ¢ along its reconstructed corridor path, i € Z;.
Auxiliary mappings for each tour ¢ and segment i € Z;:
k(t) € K (truck assigned to tour t), n(t,:) € N (start node of segment 3), £(¢,4) € £ (link traversed in i),

All routing is on the VAM corridor graph; distances d; ; are corridor (shortest-path) lengths used
consistently for operations and investment accounting.

A.2 Parameters

c3Cs CAPEX of an SCS at node n (€/site)

cERS CAPEX of ERS on link £ per km (€/km)

dy Length of link ¢ (km); d;; is the segment length (km)
cpat Battery CAPEX for class b (€/truck)

Qp Battery capacity of class b (kWh)

1o Initial SOC fraction at tour start (SOC¢ 1 = a Q)

Traction energy intensity (kWh/km)
pSes SCS charge power (kW); efficiency 155
PERS ERS in-motion power (kW) or per-km gain v, = PERS /u,,; efficiency n®RS
pstat pdyn Electricity prices at SCS / on ERS (€/kWh)
7SC8 | rERS SCS session fee (€/charge), ERS corridor fee per km (€/km)
ctime Value of time used for SCS dwell pricing (€/h) (optional)
Ddiesel, fdieset Diesel price (€/L), diesel intensity (L/km)
e§92, A\coa  Diesel CO, factor (g/L), carbon price (€/g)
® Additional outsourcing surcharge (€/km)
Q Feasibility weight on unserved tours (unitless; solver guidance)
Msoc, Mg Big-M constants (tight upper bounds; see A.7)

A.3 Decision Variables

Upper level

dt,i = (

zy, € {0,1} (build SCS at node n), y¢ € {0,1} (deploy ERS on link ¢), dxp € {0,1} (truck & uses battery class b).
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Lower level (per tour t, segment )

SO0C;; >0 state of charge at segment start (kWh)
esgs >0, eEZRS >0 charged energy on SCS/ERS (kWh)
Zts’?s’ zElRS € {0,1} activation of SCS/ERS at (¢,1)

st €{0,1}, r, € {0,1} served electrically vs. outsourced, with s; =1 — ry.

Define truck capacity Qr = > 3 Qb Ok p-

A.4 Objective Function

minZ = QY r 4 > E%w,+ Y e + 3N s + Y |5 OPEX, + 1 P,
teT neN el ke beB teT
——
service-first guidance facility CAPEX battery CAPEX
(6)
OPEX for served tours (priced energy, time, and corridor fees):
£5Cs
stat ,SCS | _dyn ERS , time ©t,i SCS ,SCS ERS ERS
OPEXt = Z (p et,i + D y et,i +c PSCS + 7 Zt,i + T@(t,i) dt,i Zt,i ) (7)

i€y

Penalty for unserved tours (outsourcing / diesel cost + carbon + surcharge):

Ctpen = ( Z dui) ' (pdieselfdiesel + )\CO2 e((iji(e)s%el + QO) ' (8)
i€Ty

A.5 Core Constraints
(B) Battery assignment (upper level)

Z 5;%(, =1 Vk e K, (9)
beB
5k,b € {Ov 1} Vka b7 (10)
Qr = Z Qb Okp Vk. (11)
beB

(S) Service—infeasibility link

(I) Initial SOC and bounds
SOCt1 = aQu Vi, (13)
0 < S0G;; < Q,Q(t) + Msoc i vt, Vie {1,...,|Z| + 1}. (14)

(E) Segment energy balance (gated by infeasibility)

—Msocr: < SOCyiq1 —SOCy;+ Bdp; —n> el T® —n™Sef® < Msocry, Vi, VieZ,. (15)



Journal Name, Vol. xx, No. xx (2025) 21

(C) Charging feasibility and headroom

SCS headroom/time: ets’gs < (Qﬁ(t) — SOCM) + Mg ry, Vt, i, (16)
efFS < PSOS . AGTS + Mgy, Vi,  (17)
ERS headroom /time: ef™S < (Quiy — SOC;) + Mgy, Vt, i, (18)
QEzRS < Ye(ti) dei + Me T, Vi, i. (19)

Here Atfgs is the available charging time at the stop (if queueing/windows are not modeled, one
may use a policy-driven upper bound in evaluation).

(A) Activation and siting consistency

efF8 < My 2595, effS < My 218 Vi, i, (20)
98 < Ty, 2D < Yo vt i, (21)
25, RS < 1—my vt i, (22)
755, 20 € {0,1}. (23)
(N) Non-negativity
5 >0, e >0 Vi (24)

A.7 Implementation Notes and Big-M Choices

e Service-first guidance: () is a solver-internal weight that discourages infeasibility (out-
sourcing). It steers the search but is not counted in reported economic totals.

« Tight Big-M bounds: choose Msoc = maxy, Qr, Mg = max{n°® Quax, %> (PR /ui4)-
dmax } to stabilize relaxations and avoid numerical issues.

o Consistent metric: all dy and d; ; are corridor (shortest-path) distances on the same graph
used for siting and for energy/cost evaluation.

e OPEX triggers: fees 7 may be triggered by activation indicators z; in implementation, one
may also trigger by positive energy e > 0 without extra binaries.
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Appendix B — Model Parameters

Table 1: Key parameters value used in the case study

Category Symbol  Base value Notes / Source

Feasibility weight Q 100,000 Solver-only guidance to discourage outsourcing; excluded from
reported economic totals.

ERS CAPEX cERS 2.0M EUR/km Within reported ERS cost ranges (1.7-3.1 M EUR/km for catenary;
0.4-2.7M EUR/km for other types) [Shoman, Karlsson, and Yeh
2022].

SCS CAPEX cSCs 200,000 EUR/site ~ 150kW DC hardware typically $75.6k-100k; full-site installs 3-5x
higher (RMI) [Nelder and Rogers 2019].

Battery CAPEX cBat 100 EUR/kWh Li-ion pack price around $115/kWh in 2024 with significant YoY
decline (adopt 100 EUR/kWh) [BloombergNEF 2025].

Energy intensity Ié] 1.6 kWh/km Heavy-duty BEVs reported 1.08-1.30kWh/km; urban/highway
1.2-1.8 kWh/km (choose 1.6) [Shoman, Karlsson, and Yeh 2022;
Shoman et al. 2023].

Static electricity price  pStat 0.73 EUR/kWh NL public-charging benchmarks; fast DC averages around
0.67-0.86 EUR/kWh, mean ~0.76 EUR/kWh [Tap Electric 2023;
NL Times 2024].

ERS electricity price pdyn 0.36 EUR/kWh Aligned with typical non-fast public-charging averages [Tap Electric
2023].

Road toll (static) ctolt 0.15 EUR/km Germany HGV toll (LKW-Maut) about 0.15 EUR/km; NL per-km
charging from 2026 similar [Wikipedia 2025b; PTV Logistics 2025].

Road toll (ERS) c&‘;lil 0.10 EUR/km Lower fee reflecting dynamic-charging efficiencies / marginal
infrastructure costs [PTV Logistics 2025].

SCS power PSCS 150 kW Typical continuous rating for ultra-fast DC stations (e.g., Heliox)
[Heliox Energy 2025].

ERS power (effective) PERS 200 kW Conservative dynamic-charging assumption; conductive overhead up
to 450kW in demos [Honda R&D Co., Ltd. 2021].

Average speed vave 80km/h European HGV legal/typical motorway speeds [European Transport
Safety Council (ETSC) 2024].

Value of driver time ctime 38EUR/h Converted from UK COBA values and adjusted for freight
operations [DG MOVE 2014].

Diesel price Pdiesel 1.60 EUR/L Representative EU retail prices (e.g., BE 1.603EUR/L; DK
1.797 EUR/L) [Cargopedia 2025].

Diesel use Sdiesel 0.35 L/km Slightly above ICCT long-haul average 0.326 L/km [International
Council on Clean Transportation (ICCT) 2018].

CO2 cost Aco2 0.00008 EUR/g EU-ETS benchmark around 100 EUR/ton CO2 (= 0.0001 EUR/g);
adopt 0.00008 EUR/g [Wikipedia 2025a].

Outsourcing surcharge ¢ 0.10 EUR/km Conservative per-km surcharge capturing marginal

external/operational costs.
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