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Abstract

Turbulence is a ubiquitous phenomenon in nature, characterized by complex and unpredictable fluid
motion that is challenging to simulate. Turbulence modelling aims to create mathematical models that
can predict turbulent flow behaviour in a given system, and there are various types of models avail-
able, including Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and Direct
Numerical Simulation (DNS). LES provides high-fidelity predictions of turbulent flow phenomena by re-
solving most of the energetic scales of turbulence, making it a promising candidate for accurate predic-
tions. However, LES has limitations, particularly in capturing near-wall phenomena, necessitating fine
meshes to resolve these regions. Deep learning, a sub-field of machine learning, has been actively
used to improve the shortcomings of traditional LES models, particularly in predicting subgrid-scale
(SGS) terms. This thesis aims to explore the extension of existing multilayer perceptron (MLP) from
previous studies to the case of 3D turbulent channel flow and compare net hyperparameters, feature
sets, and training data to find the most compact model that can accurately reproduce the closure terms.
The study will build on previous work at TU Delft on LES-VMM and focus on developing an effective
network with a simple architecture.
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1
Introduction

Turbulence is a complex phenomenon characterised by chaotic and unpredictable motion. It occurs
nearly everywhere in nature, from the airflow around an aircraft to cumulus clouds, rivers, oceans
(Sreenivasan (1991)), and even the flow of blood in arteries (Ghalichi et al. (1998)). It is highly non-
linear and involves energy transfer across various scales, from large-scale motions of eddies to small-
scale turbulent fluctuations, making it challenging to simulate.

1.1. Turbulence Models
Turbulence modelling refers to creating mathematical models by developing equations and algorithms
to predict the behaviour of turbulent flows in a given system. There are various types of turbulencemod-
els, including Reynolds-Averaged Navier-Stokes (RANS) models, large-eddy simulation (LES) models,
and direct numerical simulation (DNS) models.

Reynolds-Averaged Navier-Stokes (RANS) equations are a set of partial differential equations describ-
ing the motion of time or ensemble-averaged mean flow. They are obtained by decomposing all in-
stantaneous quantities into averaged and fluctuating components in a turbulent flow field (Breuer et al.
(1995)). The solution of the RANS equations helps predict the mean flow properties, such as velocity,
pressure, and temperature. However, the RANS models do not adequately represent the effects of
the unsteady and turbulent flow phenomena, such as vortex shedding and flow separation, which can
be important in many engineering applications. Therefore, advanced turbulence modelling techniques,
such as LES and DNS, are used to account for these effects.

Direct Numerical Simulation (DNS) is a computational method used to numerically solve the Navier-
Stokes equations (Equation 3.1), which describe the motion of a fluid (Besson & Laydi (1992)). It
attempts to solve the equations directly without making any assumptions. However, it is computationally
expensive because it requires resolving all the scales of motion associated with turbulence, down to
the Kolmogorov scale (Georgiadis & DeBonis (2006)).

Large Eddy Simulations (LES), on the other hand, is a CFD technique that provides high-fidelity pre-
dictions of turbulent flow phenomena by resolving most of the energetic scales of turbulence (Feng
et al. (2020)). Furthermore, it directly computes the large-scale motions (large eddies) of turbulent flow
and models only the small-scale (sub-grid scale (SGS)) motions (Zhiyin (2015)). LES bridges the gap
between RANS and DNS compared to the other CFD methods.

1.2. LES and SGS models
LES models are based on phenomenological assumptions because the physical equations that govern
fluid flow are not entirely solvable. Therefore, numerical methods are used to solve the equations,
and assumptions such as equilibrium in turbulent scales and isotropy in smaller scales are often made

1



1.3. Deep Learning 2

to simplify the modelling process. The resulting models provide closure for the equations governing
large-scale structures and allow for accurate predictions.

One of the limitations of LES is that it requires a fine mesh in certain areas, like near-wall regions.
This is because the turbulent structures are anisotropic and strongly influenced by viscous forces,
which models often fail to capture accurately. Fine meshes capture the sharp velocity gradients and
accurately represent the wall shear stress. Similarly, capturing laminar-turbulent transition requires
high-resolution meshes, especially near the wall, where the initial instabilities and subsequent turbulent
structures form.

In addition to phenomenological assumptions, existing SGS models also come with their own set of
shortcomings. For instance, the Smagorinsky (Smagorinsky (1963)) and Dynamic Smagorinsky (Ger-
mano et al. (1991)) models are stable but have low correlation with exact subgrid-scale stresses. While
the Scale Similarity (Bardina et al. (1980)) and Approximate Deconvolution (Stolz et al. (1999)) Models
have higher correlation but are unstable as they do not drain an adequate amount of energy from the
resolved scales.

The mathematical requirements of the commutation of filtering and differentiation must be satisfied in
the LES approach. When these conditions are not met, LES accuracy is compromised, which led to
the development of the Variational Multiscale Method (VMM). The concept of VMM was introduced by
Hughes (1995), and it involves the a prior division of the velocity field (u) into resolved and unresolved
scale velocities (𝑢̄ and u’). Unlike traditional LES, the VMM does not use an explicit filtering scheme but
uses a projector (P) instead. VMM considers the discretisation error and representation of unresolved
(SGS) scales as the same. It thus avoids having separate sources of model and discretisation error
and considers only the approximate model of unresolved scales.

1.3. Deep Learning
Deep learning is a sub-field of machine learning and artificial intelligence that encompasses training
artificial neural networks in tasks that typically involve recognising patterns in data and learning the
correlation among two or more variables (Chassagnon et al. (2020)). Neural networks carry out the
data processing in these algorithms and form the backbone of deep learning (Jindal et al. (2022)). Deep
refers to neural networks used in deep learning, typically having many layers of interconnected nodes
that allow them to model complex relationships and hierarchies in the data.

Figure 1.1: A simple Neural Network (Tracey et al. (2015))

ANNs are actively used to improve the shortcomings of traditional LES models. Studies like Guan et
al. (2022) and Yuan et al. (2022) show data-driven SGS models outperforming traditional models with
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higher correlation to exact SGS and reconstructing the velocity spectra and kinetic energy flux. Non-
linear function approximation capabilities and studies indicating that data-driven turbulence models are
a promising alternative to conventional models are vital motivations for this study.

1.4. Previous work at TU Delft
Much work has been done at TU Delft concerning neural networks and turbulence modelling, particu-
larly in the field of LES-VMM (section 3.3). Most of it revolves around either predicting model coeffi-
cients for turbulence (Durieux (2015) and Kurian (2019)) or finding the underlying correlation between
resolved and unresolved scales (Robijns (2019)).

Recently, the focus in this area has been to have the neural network predict subgrid scale terms for an
LES in an online setting. With research revolving around the stabilisation techniques, including Lagged
Feature Set (LFS) and Backscatter Limitting (BL), to help stabilise the VMM-ANN combine (Janssens
(2019),Pusuluri (2020), and Rajampeta (2021)). More of which shall be covered in detail in chapter 4.
Most recent work, including that of Rajampeta (2021), focuses on a 1D model of turbulent channel flow.
It would be of great interest to expand this VMM-ANN technique to 3D flow and understand how difficult
it is to reproduce the closure terms.

1.5. Research Objective
Despite the recent developments and contributions of neural networks in turbulence seen in chapter 2,
using neural networks in turbulence modelling remains computationally expensive. Building a simple
architecture for our application would be particularly interesting in this context. Therefore, the focus of
the study would be to find the simplest ANN architecture which could reproduce the closure terms with
a correlation of approximately 99%.

A standard multi-layer perceptron (MLP) architecture with a sequential model was considered for our
analysis. Furthermore, a low courant number was chosen for the flow. This meant the time step used
in the simulation was relatively small compared to grid spacing and flow velocity, which minimised the
influence of the specific time march chosen. The network will be trained offline as it is cost-effective
with low memory and computational cost. Therefore the objective of the thesis is:

To design and compare feature sets to find the most compact model which can accurately
reproduce the correction terms for 3D turbulent channel flow.

1.6. Research Questions
1. Can the neural network (structure and hyper-parameters) used for the 1D turbulent channel flow

model (Rajampeta (2021)) be applied to the three-dimensional case?

2. How does the network structure affect the ANN’s accuracy?

2.1 What is the effect of widening the network?

2.2 What is the effect of deepening the network?

3. Can the basic, macroscopic properties of the flow (velocity, pressure, and their gradients) be used
as features to find the subgrid-scale terms?

3.1 Which of the features are most important for high correlation?

4. What is the simplest ANN architecture which can accurately ( 99%) reproduce the closure terms?

1.7. Thesis Outline
chapter 2 will review developments and contributions to neural networks in turbulence modelling. chap-
ter 3 will elucidate upon the necessary theory for our study, including basic information related to LES,
subgrid-scale modelling, and VMM. chapter 4 will discuss the previous work within TU Delft related to
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our study and give context to our work. chapter 5 will describe the methodology followed to set up the
baseline neural network for our analysis. chapter 6 covers the results obtained with the neural network
and further steps undertaken to improve its performance. While chapter 7 talks of the conclusions from
the network results and future recommendations.



2
ANN in Turbulence Modelling

The previous chapter outlined key concepts along with the research objective. This chapter will cover
recent developments of neural networks in turbulence modelling as a literature review.

2.1. Neural Networks in Turbulence
One of the first attempts to use neural networks in turbulence was that of Lee et al. (1997) to control
turbulence for drag reduction. The aim was to have wall actuation through distributed blowing and
suction on the surface to change wall shear and reduce drag. The neural network was tasked with
finding the correlation between wall-shear stress and wall actuation. The network was initially trained
offline with high-fidelity controlled turbulence channel flow data and applied to a regular channel flow,
resulting in an 18% reduction in skin friction. Later, the network was trained online with an adaptive
inverse model control, and a simple control scheme with similar drag reduction was derived.

Figure 2.1: Reduction in wall-shear stress for various control schemes, ⋅⋅⋅ offline trained control scheme,
— online trained (Lee et al. (1997))

The procedure resulted in a visible reduction of drag yet fell short in capturing activity across the tur-
bulent spectrum. Additionally, as the study did not test the control scheme’s generalizability, its appli-
cability to higher flow regimes was unknown. Another significant milestone for data-driven turbulence
modelling was the study of Milano & Koumoutsakos (2002), which aimed to find the viscous sublayer
velocity profile using a neural network trained on wall-only information provided by DNS. The perfor-
mances of linear and non-linear Principal Component Analyses (PCA) were compared to a Proper
Orthogonal Decomposition (POD) for reconstructing and predicting a near-wall field. It was found that

5
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the non-linear PCA performed better than its linear counterpart and that, in general, the neural network
was a better option for the task than POD. The author concludes by saying that neural networks may
be helpful for flow solvers using RANS or LES due to their compression capabilities and that
any wall model should include large-scale information.

Figure 2.2: Reconstruction performance. From left to right: original sample, linear reconstruction, and
neural net reconstruction (Milano & Koumoutsakos (2002))

In recent years, there has been a ”Cambrian explosion” in deep learning technology (Aggarwal (2018)),
boosting efforts by researchers to create an ideal, generalisable data-driven turbulence model. This
study has categorised these efforts into deep learning for RANS, LES, and other approaches.

2.2. Deep Learning for RANS
Duraisamy & Durbin (2014), Duraisamy et al. (2015) modelled bypass transition by multiplying the
production term in the turbulence kinetic energy (k) equation of the k-𝜔 model (Wilcox (1998)), with
an intermittency factor (𝛾). The factor followed the condition that it shall be absent for laminar flow
and increase with the degree of turbulence until unity, indicating turbulent flow. Inverse modelling and
machine learning were used to predict the source term (𝑆𝛾(𝜁)) and skin friction coefficient (𝐶𝑓), and
their performances were compared with the bypass transition model proposed by Ge et al. (2014). The
studies established the potential of inverse modelling and machine learning in transition modelling,
which gave rise to Field Inversion Machine Learning (FIML).

Further, in Parish & Duraisamy (2016), as a part of the FIML framework, a correction factor was added
to the production term in the k equation of the k-𝜔 model. Point-wise corrections were then made to the
factor based on observational DNS data from several problems, and a generalised factor was derived
using machine learning. Finally, comparing the velocity profile’s machine learning predictions with the
prior distribution in different flow regions, it was observed that the ML model performed well only in the
inner layer.
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1
(a) Inferred term (b) Predicted term

Figure 2.3: Comparison of source terms; inferred vs neural network prediction (Duraisamy & Durbin (2014))

Figure 2.4: Prediction; Skin Friction (Duraisamy & Durbin (2014))

The poor performance in the outer layer can be attributed to the high variance of the machine learning
approach, leading to an overestimation of eddy viscosity and an underestimation of velocity. Tracey
et al. (2015) used the methodology of field inversion to predict the source terms of the Spalart-Allmaras
model. The neural network was trained with DNS, LES, and experimental data to learn the underlying
relation between the unresolved and source terms. Even for new cases, the model gave promising
results, accurately predicting the 𝐶𝑓 of a NACA 0012 airfoil in flat plate flow. Singh et al. (2017) also
used the FIML framework to develop NN-enhanced corrections to the S-A model.

2.3. Deep Learning for LES
Völker et al. (2002) explored creating an ideal or optimal LES using ”stochastic estimation”. The test
case considered for developing the ideal LES was turbulent flow in a channel, and the idea was to
create a model applicable to various test cases. The proposed model was non-generalisable in flow
regimes outside the Re used in the DNS training data and hence unfit for LES applications. Though the
study could not meet its primary objective, it effectively pointed out the various criterion to be considered
for developing subgrid-scale models for wall-bounded turbulence.
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1
(a) DNS (b) Filtered DNS (fDNS) (c) LES3 (Data-driven)

Figure 2.5: Contours of velocity (u) fluctuations (Völker et al. (2002))

There are two approaches to deep learning research in LES; the first is to use the ANN to predict the
model coefficients for a specific case, and the second is to discover the underlying relationship between
the resolved and unresolved scales. Sarghini et al. (2003) was one of the first papers to inspire the
use of ANNs in LES and is an example of the former approach. The model used was Bardina’s scale
similarity model (Bardina et al. (1980)) and the coefficient of interest, the turbulent eddy viscosity 𝑐𝑠.
The test case was 2D turbulent channel flow at a Re of 180. The study succeeded in creating a model
generalisable to other Re with the help of ANN re-training and suggested that higher fidelity data like
DNS be used for training.

Figure 2.6: turbulent viscosity coefficient (𝑐𝑠) at 𝑦+ = 10
(a) Neural Network (b) Bardina SSM (c)u’w’ component of Reynolds stress tensor (Sarghini et al. (2003))

More recently, Vollant et al. (2017) focused on performing an LES for the concentration of a chemical
species while ANNs produced the subgrid-scale model for the simulation. Two approaches were ex-
plored in the study for developing the subgrid-scale model. The first was to use the ANN as a surrogate
model constrained by the least square error cost function, and the other was to find the coefficients of
Noll’s formula (Noll (2009)). The first approach produced SGS models that were only accurate within
the realm of the training data, while the second approach proved incrementally better in creating a gen-
eralisable model. The key takeaway from the study was that the performance of ANNs depended on
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their application.

Kurz & Beck (2021) used an ANN with Multilayer perceptron (MLP) and Gated recurrent units (GRU)
architecture to predict the filtered DNS divergence 𝑅(𝐹(𝑈)) using the coarse-scale solution 𝑈 as the
input for Decaying Homogenous Isotropic Turbulence (DHIT). Three distinct LES filters, including two
based on the solution representation of Discontinuous Galerkin (DG) and Finite Volume (FV) schemes,
and one global Fourier cutoff filter were employed to understand the effect of filter selection on the
closure terms. Though the GRU and the MLP were able to learn the unknown closure terms, the GRU
outperformed the MLP in accuracy and showed excellent agreement with the exact closure terms.

GRU networks trained with one particular filter were tested on unseen-training data from the two other
filters to gauge the generalisation ability of the networks. The LES filter width was changed as a part of
this attempt and proved that the networks were generalisable. Additionally, the ANN-predicted closure
terms were used to compute the full closure term 𝑅̃(𝑈) − 𝑅(𝐹(𝑈)) and compared with the predictions
of the common gradient model (CGM) and smagorinsky model (SSM). The results showed that the
predictions by the ANN were higher in accuracy than CGM and SMM and that the DG filter was the
best choice among the filters.

Guan et al. (2022) used a Convolutional Neural Network (CNN) trained with Filtered DNS (FDNS) data
to estimate the SGS forcing term for the case of 2D Decaying Homogenous Isotropic Turbulence. The
study further compared the results of CNN with DSM, DMM, and ANN. A priori analysis of the correla-
tion between the models’ SGS terms, inter-scale transfer predictions, and FDNS data showed that the
CNN-based data-driven SGS model outperformed the rest of the models. Furthermore, the CNN cou-
pled with a numerical LES solver outperformed the other models in a posteriori analysis by capturing
backscatter, forecasting short-term spatiotemporal evolution, and reproducing long-term statistics such
as TKE spectrum and probability density function (PDF) of vorticity, yet failed to generalise to higher
Re. The study overcame this problem using transfer learning. The last two layers of the network, al-
ready trained for low Re distribution, were re-trained with a small amount of data from the higher Re
distribution. While for cases requiring generalisation to higher numerical resolution, the study included
encoder-decoder layers in the transfer learning architecture.

Figure 2.7: CNN with transfer learning and encoder-decoder (Guan et al. (2022))

Yuan et al. (2022) followed a deconvolutional artificial neural network (D-ANN) approach to model
subfilter-scale (SFS) terms; subfilter stress 𝜏𝑖𝑗 and heat flux 𝑄𝑖𝑗 of compressible turbulent flow. Filtered
variables such as density, momentum, and pressure at the neighbouring locations were input by the
network to predict unfiltered variables at the local point, further inserted in scale-similarity form to recon-
struct the SFS terms. A priori analysis of SFS predictions revealed that the D-ANN showed a far more
significant correlation than the velocity-gradient model (VGM) and approximate-deconvolution method
(ADM) while accurately reconstructing the velocity spectra and kinetic energy flux. Furthermore, in
a posteriori investigation, the D-ANN-LES coupling outperformed the implicit LES (ILES), DSM, and
DMM in the reproduction of velocity spectra, SFS-kinetic energy and thus came closest to the actual
filtered DNS. Finally, the a priori and a posteriori analyses were conducted in two Mach numbers of
0.4 and 0.8, proving that compressibility does not affect the results.
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Figure 2.8: Architeture of D-ANN (Yuan et al. (2022))

The neural networks emerged as viable alternatives in both investigations by outperforming traditional
LES models like DSM, DMM, VGM, and ADM.

2.4. Other Approaches
Another approach that utilised deep learning in turbulence modelling was that of Physics Informed
Neural Networks (PINNS), an idea floated in 2017 by Raissi et al. (2017). As the name suggests, the
neural networks were physically informed by regularisers in the loss function in the form of initial and
boundary conditions that limit search space scope to physically viable solutions. The proposed model
used the runge kutta time-stepping scheme and did well in solving the burgers equation with acceptable
results. The success of the architecture has given way to further research in PINNS and successor
models such as the Parareal PINS or PPINS introduced by Meng et al. (2020). The idea behind the
PPINNS was that it would divide significant integration problems into more minor, independent prob-
lems, thus reducing the burden of training on the neural networks. According to the study, this was an
improvement over PINNS as it argued that PINNS was unsuitable for large-time steps. In the end, the
PPINS solved the 1-D burgers equation more efficiently than the PINNS and proved an improvement.
Providing physical information improves the prediction capabilities of the neural network.
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Figure 2.9: Schematic of PINNMeng et al. (2020)

2.5. Reflection
This chapter reviews recent developments in neural networks in turbulence modelling. Lee et al. (1997)
used a neural network for drag reduction and achieved an 18% reduction in skin friction. Milano &
Koumoutsakos (2002) found that neural networks outperformed linear and non-linear PCA and POD in
predicting the viscous sublayer velocity profile. The chapter further discusses deep learning for RANS,
highlighting the work of Duraisamy & Durbin (2014) and Parish & Duraisamy (2016) on Field Inversion
Machine Learning (FIML). It also covers deep learning for LES, focusing on the work of Völker et al.
(2002),Sarghini et al. (2003),Vollant et al. (2017),Kurz & Beck (2021),Guan et al. (2022), and Yuan
et al. (2022), along with an alternate approach involving PINNs.

The literature review showed that using neural networks for large eddy simulation (LES) was advan-
tageous as ANN predictions were superior to traditional subgrid-scale (SGS) models. Furthermore,
neural networks should be trained with higher fidelity data such as DNS and provided with physical
information to improve their prediction capabilities..



3
Theory

3.1. Large Eddy Simulations (LES)
The fundamental principle behind LES is decomposing the velocity field into large-scale and small-scale
contributions (Talstra (2011)). In the classical approach, resolved flow represents large-scale motion
which can be obtained by filtering the velocity field using a filter function. On the other hand, unresolved
flow represents small-scale motion obtained by subtracting the resolved flow from the original velocity
field (Adrian et al. (2000)). It is modelled using a subgrid-scale (SGS) model, which accounts for the
effects of the small-scale turbulent motion on the large-scale motion.

LES only simulates the larger turbulence scales while modelling the smaller scales’ effects. Classical
LES methodology comprises the following steps: filtering, discretization, modelling, and solving. The
first step in LES is to filter the Navier-Stokes equations, which describe the conservation of mass,
momentum, and energy in a fluid. The filter width is typically chosen to be larger than the grid spacing
but smaller than the characteristic size of the turbulent structures in the flow. This helps to remove
small-scale fluctuations. Explicit filtering allows the filter size to be chosen independently of the mesh
spacing (Vasilyev & Lund (1997)). However, it is also possible to perform LES without an explicit filter
operation, i.e. implicit filtering (Klein (2005)). In this case, the mesh would filter by eliminating all
wavelengths shorter than twice the mesh spacing.

The incompressible Navier-Stokes equations can be written as:

𝜕𝑢
𝜕𝑡 + ∇ ⋅ (𝑢 ⊗ 𝑢) + ∇𝑝 − ∇ ⋅ 2𝜈∇𝑠𝑢 = 𝑓 in Ω

∇ ⋅ 𝑢 = 0 in Ω (3.1)

Considering we apply a filtering operation that is strictly commutative with differentiation, Equation 3.1
can be written as:

𝜕𝑢̄𝑖
𝜕𝑥𝑖

= 0

𝜌𝜕𝑢̄𝑖𝜕𝑡 + 𝜌
𝜕
𝜕𝑥𝑗

(𝑢̄𝑖𝑢̄𝑗) = −
𝜕𝑝̄
𝜕𝑥 +

𝜕
𝜕𝑥𝑗

(𝜏̄𝑖𝑗 − 𝜌 (𝑢𝑖𝑢𝑗 − 𝑢̄𝑖𝑢̄𝑗))
(3.2)

The additional term (𝑇𝑖𝑗 ≡ (𝑢𝑖𝑢𝑗 − 𝑢̄𝑖𝑢̄𝑗)) that appears after the filtering operation, is referred to as
the subgrid-stress (SGS) tensor. The SGS tensor arises as a result of the non-linear convection term
(∇⋅(𝑢⊗𝑢)) in Equation 3.1, and signifies the effect of the small, unresolved scales on the large resolved
scales. However, Equation 3.2 cannot be solved directly due to the lack of an expression for the SGS
tensor. This is known as the closure problem in LES. Hence, it is necessary to use subgrid-scale
models to model the term 𝑇𝑖𝑗 to solve and close the system of equations.

12
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The decomposition of velocity into large and small-scale contributions can be represented as:

𝑢𝑖 = 𝑢̄𝑖 + 𝑢″𝑖 (3.3)

Substituting Equation 3.3 into Equation 3.2, we get the following expression:

𝜏𝑖𝑗 = 𝑢̄𝑖𝑢̄𝑗 − 𝑢̄𝑖𝑢̄𝑗⏝⎵⎵⏟⎵⎵⏝
𝐿

+ 𝑢̄𝑖𝑢′′𝑗 + 𝑢′′𝑖 𝑢̄𝑗⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝐶

+𝑢′′𝑖 𝑢′′𝑗⏝⏟⏝
𝑅

(3.4)

Where L stands for the Leonard stress tensor:

𝐿𝑖𝑗 = 𝑢̄𝑖𝑢̄𝑗 − 𝑢̄𝑖𝑢̄𝑗 (3.5)

The Leonard stress tensor can be computed exactly and shows the difference in the product of velocities
as we filter them twice. C stands for the Cross stress tensor:

𝐶𝑖𝑗 = 𝑢̄𝑖𝑢′′𝑗 + 𝑢′′𝑖 𝑢̄𝑗 (3.6)

The Cross stress tensor term shows that the fluctuations do not disappear and is the summation of
products of filtered and unfiltered quantities. R stands for the Reynolds stress tensor:

𝑅𝑖𝑗 = 𝑢′′𝑖 𝑢′′𝑗 (3.7)

Once the equations are filtered, the next step is discretization, which involves the division of the calcu-
lation domain into a grid of elements of specific geometric shapes (Baliga & Patankar (1983)), such as
cells or volumes, and approximating the equations at discrete points within each element. Finally, the
Reynolds stress tensor term needs to be modelled. As the exact reconstruction of the subgrid scales
is difficult, subgrid-scale models aim to model the effect of the subgrid-scale turbulence on the large,
resolved scales. The SGS models must accurately estimate the energy drain from the resolved scales
in the cascade.

3.1.1. Subgrid-scale Modelling

One of the first andmost widely used subgrid-scalemodels in LES is the Smagorinskymodel (Smagorin-
sky (1963)). It is based on the assumption that the subgrid-scale turbulent eddies behave like viscous
eddies and that the energy dissipation rate of the subgrid-scale turbulence is proportional to the local
strain rate. Furthermore, the model assumes that the small-scale eddies have a universal behaviour
and that an eddy viscosity term can represent their effects. The eddy viscosity term can be represented
as (Prof.Dr.ir. S. Hickel (2020)):

𝜏𝑖𝑗 =
1
3𝜏𝑘𝑘𝛿𝑖𝑗 − 2𝑣𝑆𝐺𝑆𝑆̄𝑖𝑗 (3.8)

Where 𝑆̄𝑖𝑗 is the strain rate tensor and can be written as:

𝑆̄𝑖𝑗 =
1
2 (

𝜕𝑢̄𝑖
𝜕𝑥𝑗

+
𝜕𝑢̄𝑗
𝜕𝑥𝑖

) (3.9)

Following the principles of dimensional consistency and Galilean invariance, the subgrid-scale viscosity
𝑣𝑆𝐺𝑆 can be further expressed as:

𝜈𝑆𝐺𝑆 = (𝐶𝑠Δ)
2√2𝑆̄𝑖𝑗𝑆̄𝑖𝑗 = (𝐶𝑠Δ)

2 |S| (3.10)
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Where the filter width Δ̄ = 3√ cell volume and |S| is the suitable norm of the strain rate tensor. Overall,
the Smagorinsky model for the subgrid-stress tensor is:

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢̄𝑖𝑢̄𝑗 =
1
3𝜏𝑘𝑘𝛿𝑖𝑗 − 2 (𝐶𝑠Δ)

2 |S|𝑆̄𝑖𝑗 (3.11)

The Smagorinsky model is relatively simple and computationally efficient as it does not require addi-
tional PDEs. It drains a sufficient amount of energy and is stable. It has only one adjustable parameter,
the Smagorinsky constant, which can be set to a value that gives good agreement with experimental
data. However, it is low in correlation with the exact SGS DNS data (Vreman et al. (1995)) and performs
poorly in complex flows and near the wall.

Furthermore, the Smagorinsky model is based on the idea that small-scale eddies are isotropic, mean-
ing they have the same behaviour in all directions. However, this assumption is only sometimes accu-
rate, as small-scale eddies can be anisotropic. More advancedmodels, such as the dynamic Smagorin-
sky model (Germano et al. (1991)), have been developed to account for this.

Another commonly used SGS model is the dynamic mixed model. This model combines the Smagorin-
sky model with a scale-similarity model (Bardina et al., 1980), which assumes that the small scales
have a behaviour similar to the large scales. The dynamic mixed model adjusts the balance between
the Smagorinsky and scale-similarity models based on the local flow properties, resulting in a more
accurate representation of the subgrid scales.

3.2. Weak Form of the Navier-Stokes Equation
An alternate approach to LES, the (VMM) is based on the weak form of the Navier-Stokes Equation,
which is first presented below.

3.2.1. Starting Point

Recalling the incompressible Navier-Stokes equations:

𝜕𝑢
𝜕𝑡 + ∇ ⋅ (𝑢 ⊗ 𝑢) + ∇𝑝 − ∇ ⋅ 2𝜈∇𝑠𝑢 = 𝑓 in Ω

∇ ⋅ 𝑢 = 0 in Ω (3.12)

Note that⊗ denotes the dyadic product. The symmetric velocity gradient (∇𝑠) is defined as:

∇𝑠𝑢 = 1
2 (∇𝑢 + ∇𝑢

𝑇) (3.13)

After applying the incompressibility constraint, the momentum equation in the convective form can be
written as:

𝜕𝑢
𝜕𝑡 + 𝑢 ⋅ ∇𝑢 + ∇𝑝 − 𝜈Δ𝑢 − 𝑓 = 0 in Ω (3.14)

Equation 3.14 is known as the strong form of the Navier-Stokes equation, and it is also represented as
ℛ(𝑢). Additional boundary conditions applied are:
Homogeneous boundary conditions for the velocity:

𝑢 = 0 on Γ = 𝜕Ω (3.15)

Zero mean condition for the pressure:

∫
Ω
𝑝𝑑Ω = 0 ∀𝑡 ∈ ]0, 𝑇[ (3.16)
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It is possible to define another form of the governing equation, known as the weak form, by requir-
ing weighted integrals of the governing equation’s residual ℛ(𝑢) to be zero for all suitable weighting
functions, w:

∫
1

0
𝑤ℛ(𝑢)𝑑Ω = 0 (3.17)

Equation 3.17 can be further written as (𝑤,ℛ(𝑢))Ω. The variational formulation of the incompressible
Navier-Stokes equations can be stated as follows:

𝐵(𝑤, 𝑞; 𝑢, 𝑝) = 𝐹(𝑤, 𝑞) ∀{𝑤, 𝑞} ∈ [𝐻10 (Ω)]
3 × 𝐿20(Ω) (3.18)

Where the functional spaces are defined as:

𝐿20(Ω) ∶= {𝑞 ∈ 𝐿2(Ω) ∶ ∫
Ω
𝑞𝑑Ω = 0}

𝐻10 (Ω) ∶= {𝑤 ∈ 𝐻1(Ω) ∶ 𝑢 = 0 on 𝜕Ω}
(3.19)

Hence, the weak form of the Navier stokes equation that we consider is:

𝐵(𝑤, 𝑞; 𝑢, 𝑝) =(𝑤, 𝜕𝑢𝜕𝑡 ) − (∇𝑤, 𝑢 ⊗ 𝑢) + (𝑞, ∇ ⋅ 𝑢)

− (∇ ⋅ 𝑤, 𝑝) + (∇𝑠𝑤, 2𝜈∇𝑠𝑢)
𝐹(𝑤, 𝑞) =(𝑤, 𝑓)

(3.20)

Where F is the forcing term.

3.3. Variational Multiscale Modelling (VMM)
The Variational Multiscale Method (VMM) was first conceptualized by Hughes (1995). VMM directly
separates the resolved discrete solution 𝑢̄ from the unresolved solution u’, where 𝑢̄ is the desired
projection of u onto the discrete space:

u = 𝒫(u) (3.21)

u′ = u− 𝒫(u) (3.22)

This is typically the 𝐻′0 projector but could be L2 or nodal. Now let us consider a homogeneous Dirichlet
boundary condition as an example. Let ℒ be any arbitrary operator, either linear or non-linear.

ℒ(u) = 𝑓 in Ω (3.23)

u = 0 on Γ (3.24)

Taking the Galerkin weak form of Equation 3.23 with weighting function w we get:

(w, ℒ(u+ u′))Ω = (w, f)Ω (3.25)

(w′, ℒ(u+ u′))Ω = (w
′, f)Ω (3.26)

Where Equation 3.25 and Equation 3.26 are known as the resolved and unresolved scale equations.
The unresolved scale equation can be further written as:
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(w′, ℒ(u′) +𝒩(u,u′))Ω = (w
′, f− ℒ(u))Ω = −(w

′, ℛ(u))Ω (3.27)

Where𝒩 is a non-linear operator and ℛ(u) is the residual of the residual scale velocity component.
The significance of Equation 3.27 is that it shows that the unresolved velocity term can be written in
terms of the residual of the resolved scales. As discussed previously, this avoids creating commutative
errors. This remains the most significant advantage of using VMM compared to conventional LES
models.

In addition to this, Hughes (1995) also presents an analytical representation of u′ in terms of intrinsic
time scale 𝜏 and ℛ(u):

u′ = −𝜏ℛ(u) (3.28)

The intrinsic time scale 𝜏 is defined as:

𝜏 = 1
𝑚𝑒𝑎𝑠(Ω𝑒) ∫Ω𝑒

∫
Ω𝑒
𝑔(𝑥, 𝑦)𝑑Ω𝑥𝑑Ω𝑦 (3.29)

Where Ω𝑒 and 𝑚𝑒𝑎𝑠(Ω𝑒 are the spatial limit and volume of the element, respectively. Later, Hughes
et al. (1998) further applied the VMM framework to an abstract Dirichlet problem and examined ways
to widen the applications of VMM.

3.3.1. VMM in LES

Bazilevs et al. (2007) introduced the concept of residual-based turbulence modelling. Firstly, a cutoff
wavelength was defined to divide the energy spectrum into resolved and unresolved scales. The cutoff
wavelength was assumed to be situated in the inertial sub-range of the energy spectrum. The unre-
solved fine scale equation was divided into parts; linear and non-linear. An infinite perturbation series
expansion approximated the non-linear part, while the remaining linear part was ”inverted” with the help
of a matrix greens function. Considering only first-order terms, the non-linear expansion was simplified
into Equation 3.28, and 𝜏ℛ(u) was calculated for every element. Finally, the study showed that for
the case of forced isotropic turbulence in channel flow (𝑅𝑒𝜏=395), results produced by residual-based
modelling were in close agreement with DNS data.

While the previous study by Bazilevs et al. (2007) inverted the linear part of the unresolved fine scale
equation, Shakib et al. (1991) used the orthogonality of the resolved and unresolved spaces and for-
mulated 𝜏 for a linear advection-diffusion operator as follows:

𝜏𝑙𝑖𝑛𝐴𝐷 = [(
2𝑎
𝑥 )

2
+ ( 4𝜈Δ𝑥2)

2
] (3.30)

It is important to note here that the Navier-Stokes equation requires more than one 𝜏, out of which the
formulation mentioned above is only for the linear advection part of the diffusion operator.

3.4. Formulation of the closure terms
3.4.1. Residual Based LES

The system of equations for the large scales are:

𝐵 (𝑤ℎ , 𝑞ℎ; 𝑢ℎ + 𝑢′, 𝑝ℎ + 𝑝′) = 𝐹 (𝑤ℎ , 𝑞ℎ) ∀ {𝑤ℎ , 𝑞ℎ} ∈ [𝑉ℎ]3 × 𝑄ℎ (3.31)

𝑉ℎ is the space of velocity approximations and 𝑄ℎ is the space of pressure approximations. The su-
perscripts h and ’ indicate the large and small scales, respectively.
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Substituting Equation 3.20 in Equation 3.31 gives us the following formulation:

(𝑤ℎ , 𝜕𝑢
ℎ

𝜕𝑡 ) − (∇𝑤
ℎ , 𝑢ℎ⊗𝑢ℎ) + (𝑞ℎ , ∇ ⋅ 𝑢ℎ)

− (∇ ⋅ 𝑤ℎ , 𝑝ℎ) + (∇𝑠𝑤ℎ , 2𝜈∇𝑠𝑢ℎ)

+(𝑤ℎ , 𝜕𝑢
′

𝜕𝑡 ) − (∇𝑤
ℎ , 𝑢ℎ⊗𝑢′) − (∇𝑤ℎ , 𝑢′⊗𝑢ℎ)

− (∇𝑤ℎ , 𝑢′⊗𝑢′) + (𝑞ℎ , ∇ ⋅ 𝑢′)
− (∇ ⋅ 𝑤ℎ , 𝑝′) + (∇𝑠𝑤ℎ , 2𝜈∇𝑠𝑢′) = (𝑤ℎ , 𝑓)

(3.32)

The closure terms are marked blue to differentiate them from the large-scale terms. Equation 3.32 in
the non-vector notation for the x,y,z momentum and continuity equations can be written as:

X-momentum equation

q is the weight function

(𝑞ℎ , 𝑢ℎ𝑡 ) + (𝑞ℎ , 𝑢ℎ𝑢ℎ𝑥) + (𝑞ℎ , 𝑣ℎ𝑢ℎ𝑦) + (𝑞ℎ , 𝑤ℎ𝑢ℎ𝑧 ) + (𝑞ℎ , 𝑝ℎ𝑥 ) − 2𝜈(𝑞ℎ , 𝑢ℎ𝑥𝑥) − 𝜈(𝑞ℎ , 𝑣ℎ𝑥𝑦) − 𝜈(𝑞ℎ , 𝑤ℎ𝑥𝑧)

−𝜈(𝑞ℎ , 𝑢ℎ𝑦𝑦) − 𝜈(𝑞ℎ , 𝑢ℎ𝑧𝑧)+(𝑞ℎ , 𝑢′𝑡) − (𝑞ℎ𝑥 , 𝑢ℎ𝑢′) − (𝑞ℎ𝑥 ,
𝑢′𝑢′
2 )

+ [−(𝑞ℎ𝑦 , 𝑣ℎ𝑢′) − (𝑞ℎ , 𝑣ℎ𝑦𝑢′) + (𝑞ℎ , 𝑣′𝑢ℎ𝑦) − (𝑞ℎ𝑦 , 𝑣′𝑢′) − (𝑞ℎ , 𝑣′𝑦𝑢′)]
+ [−(𝑞ℎ𝑧 , 𝑤ℎ𝑢′) − (𝑞ℎ , 𝑤ℎ𝑧 𝑢′) + (𝑞ℎ , 𝑤′𝑢ℎ𝑧 ) − (𝑞ℎ𝑧 , 𝑤′𝑢′) − (𝑞ℎ , 𝑤′𝑧𝑢′)]

−(𝑞ℎ𝑥 , 𝑝′) + 2𝜈(𝑞ℎ𝑥 , 𝑢′𝑥) + 𝜈(𝑞ℎ𝑥 , 𝑣′𝑦) + 𝜈(𝑞ℎ𝑥 , 𝑤′𝑧) + 𝜈(𝑞ℎ𝑦 , 𝑢′𝑦) + 𝜈(𝑞ℎ𝑧 , 𝑢′𝑧) = (𝑞ℎ , 𝑓𝑥)
(3.33)

Y-momentum equation

r is the weight function

(𝑟ℎ , 𝑣ℎ𝑡 ) + (𝑟ℎ , 𝑢ℎ𝑣ℎ𝑥 ) + (𝑟ℎ , 𝑣ℎ𝑣ℎ𝑦 ) + (𝑟ℎ , 𝑤ℎ𝑣ℎ𝑧 ) + (𝑟ℎ , 𝑝ℎ𝑦) − 𝜈(𝑟ℎ , 𝑣ℎ𝑥𝑥) − 𝜈(𝑟ℎ , 𝑢ℎ𝑦𝑥) − 2𝜈(𝑟ℎ , 𝑣ℎ𝑦𝑦)
−𝜈(𝑟ℎ , 𝑤ℎ𝑦𝑧) − 𝜈(𝑟ℎ , 𝑣ℎ𝑧𝑧)+(𝑟ℎ , 𝑣′𝑡) + [−(𝑟ℎ𝑥 , 𝑢ℎ𝑣′) − (𝑟ℎ , 𝑢ℎ𝑥𝑣′) + (𝑟ℎ , 𝑢′𝑣ℎ𝑥 ) − (𝑟ℎ𝑥 , 𝑢′𝑣′) − (𝑟ℎ , 𝑢′𝑥𝑣′)]

−(𝑟ℎ𝑦 , 𝑣ℎ𝑣′) − (𝑟ℎ𝑦 ,
𝑣′𝑣′
2 ) + [−(𝑟ℎ𝑧 , 𝑤ℎ𝑣′) − (𝑟ℎ , 𝑤ℎ𝑧 𝑣′) + (𝑟ℎ , 𝑤′𝑣ℎ𝑧 ) − (𝑟ℎ𝑧 , 𝑤′𝑣′) − (𝑟ℎ , 𝑤′𝑧𝑣′)]

−(𝑟ℎ𝑦 , 𝑝′) + 𝜈(𝑟ℎ𝑥 , 𝑣′𝑥) + 𝜈(𝑟ℎ𝑦 , 𝑢′𝑥) + 2𝜈(𝑟ℎ𝑦 , 𝑣′𝑦) + 𝜈(𝑟ℎ𝑦 , 𝑤′𝑧) + 𝜈(𝑟ℎ𝑧 , 𝑣′𝑧) = (𝑟ℎ , 𝑓𝑦)
(3.34)

Z-momentum equation

m is the weight function

(𝑚ℎ , 𝑤ℎ𝑡 ) + (𝑚ℎ , 𝑢ℎ𝑤ℎ𝑥 ) + (𝑚ℎ , 𝑣ℎ𝑤ℎ𝑦 ) + (𝑚ℎ , 𝑤ℎ𝑤ℎ𝑧 ) + (𝑚ℎ , 𝑝ℎ𝑧 ) − 𝜈(𝑚ℎ , 𝑤ℎ𝑥𝑥) − 𝜈(𝑚ℎ , 𝑤ℎ𝑦𝑦) − 𝜈(𝑚ℎ , 𝑢ℎ𝑧𝑥)
−𝜈(𝑚ℎ , 𝑣ℎ𝑧𝑦) − 2𝜈(𝑚ℎ , 𝑤ℎ𝑧𝑧)+(𝑚ℎ , 𝑤′𝑡) + [−(𝑚ℎ𝑥 , 𝑢ℎ𝑤′) − (𝑚ℎ , 𝑢ℎ𝑥𝑤′) + (𝑚ℎ , 𝑢′𝑤ℎ𝑥 ) − (𝑚ℎ𝑥 , 𝑢′𝑤′) − (𝑚ℎ , 𝑢′𝑥𝑤′)]

+ [−(𝑚ℎ𝑦 , 𝑣ℎ𝑤′) − (𝑚ℎ , 𝑣ℎ𝑦𝑤′) + (𝑚ℎ , 𝑣′𝑤ℎ𝑦 ) − (𝑚ℎ𝑦 , 𝑣′𝑤′) − (𝑚ℎ , 𝑣′𝑦𝑤′)] − (𝑚ℎ𝑧 , 𝑤ℎ𝑤′) − (𝑚ℎ𝑧 ,
𝑤′𝑤′
2 )

−(𝑚ℎ𝑧 , 𝑝′) + 𝜈(𝑚ℎ𝑥 , 𝑤′𝑥) + 𝜈(𝑚ℎ𝑦 , 𝑤′𝑦) + 𝜈(𝑚ℎ𝑧 , 𝑢′𝑥) + 𝜈(𝑚ℎ𝑧 , 𝑣′𝑦) + 2𝜈(𝑚ℎ𝑧 , 𝑤′𝑧) = (𝑚ℎ , 𝑓𝑧)
(3.35)

continuity equation

l is the weight function

(𝑙ℎ , 𝑢ℎ𝑥) + (𝑙ℎ , 𝑣ℎ𝑦 ) + (𝑙ℎ , 𝑤ℎ𝑧 ) + (𝑙ℎ , 𝑢′𝑥) + (𝑙ℎ , 𝑣′𝑦) + (𝑙ℎ , 𝑤′𝑧) = 0 (3.36)

The derivation of Equation 3.33-Equation 3.35 are given in Appendix A.
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3.4.2. DNS reference data notation

The resolved and closure terms in Equation 3.33-Equation 3.36 can be grouped into:

1. Time derivative terms (wU_t)
2. Convection terms (wConvU)
3. Pressure Gradient terms (wGradP)
4. Diffusion terms (wDifU)
5. Divergence / Continuity terms (wDivU)

The additional ’h’ at the end of the terms will denote the resolved terms, while the unresolved terms will
be denoted by ’. Take the x-momentum equation (Equation 3.33) for consideration:

(𝑞ℎ , 𝑢ℎ𝑡 ) + (𝑞ℎ , 𝑢ℎ𝑢ℎ𝑥) + (𝑞ℎ , 𝑣ℎ𝑢ℎ𝑦) + (𝑞ℎ , 𝑤ℎ𝑢ℎ𝑧 ) + (𝑞ℎ , 𝑝ℎ𝑥 ) − 2𝜈(𝑞ℎ , 𝑢ℎ𝑥𝑥) − 𝜈(𝑞ℎ , 𝑣ℎ𝑥𝑦) − 𝜈(𝑞ℎ , 𝑤ℎ𝑥𝑧)

−𝜈(𝑞ℎ , 𝑢ℎ𝑦𝑦) − 𝜈(𝑞ℎ , 𝑢ℎ𝑧𝑧)+(𝑞ℎ , 𝑢′𝑡) − (𝑞ℎ𝑥 , 𝑢ℎ𝑢′) − (𝑞ℎ𝑥 ,
𝑢′𝑢′
2 )

+ [−(𝑞ℎ𝑦 , 𝑣ℎ𝑢′) − (𝑞ℎ , 𝑣ℎ𝑦𝑢′) + (𝑞ℎ , 𝑣′𝑢ℎ𝑦) − (𝑞ℎ𝑦 , 𝑣′𝑢′) − (𝑞ℎ , 𝑣′𝑦𝑢′)]
+ [−(𝑞ℎ𝑧 , 𝑤ℎ𝑢′) − (𝑞ℎ , 𝑤ℎ𝑧 𝑢′) + (𝑞ℎ , 𝑤′𝑢ℎ𝑧 ) − (𝑞ℎ𝑧 , 𝑤′𝑢′) − (𝑞ℎ , 𝑤′𝑧𝑢′)]

−(𝑞ℎ𝑥 , 𝑝′) + 2𝜈(𝑞ℎ𝑥 , 𝑢′𝑥) + 𝜈(𝑞ℎ𝑥 , 𝑣′𝑦) + 𝜈(𝑞ℎ𝑥 , 𝑤′𝑧) + 𝜈(𝑞ℎ𝑦 , 𝑢′𝑦) + 𝜈(𝑞ℎ𝑧 , 𝑢′𝑧) = (𝑞ℎ , 𝑓𝑥)

The DNS data extraction code outputs the closure terms, which are then grouped as:

(𝑞ℎ , 𝑢ℎ𝑡 )⎵⎵⎵⎵⎵⎵
wUh_t

+ ((𝑞ℎ , 𝑢ℎ𝑢ℎ𝑥) + (𝑞ℎ , 𝑣ℎ𝑢ℎ𝑦) + (𝑞ℎ , 𝑤ℎ𝑢ℎ𝑧 ))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
wConvUh

+ (𝑞ℎ , 𝑝ℎ𝑥 )⎵⎵⎵⎵⎵⎵
wGradPh

+ (−2𝜈(𝑞ℎ , 𝑢ℎ𝑥𝑥) − 𝜈(𝑞ℎ , 𝑣ℎ𝑥𝑦) − 𝜈(𝑞ℎ , 𝑤ℎ𝑥𝑧) − 𝜈(𝑞ℎ , 𝑢ℎ𝑦𝑦) − 𝜈(𝑞ℎ , 𝑢ℎ𝑧𝑧))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
wDifUh

+(𝑞ℎ , 𝑢′𝑡)⎵⎵⎵⎵⎵
wU′_t

+ (−(𝑞ℎ𝑥 , 𝑢ℎ𝑢′) − (𝑞ℎ𝑥 ,
𝑢′𝑢′
2 ) + [−(𝑞ℎ𝑦 , 𝑣ℎ𝑢′) − (𝑞ℎ , 𝑣ℎ𝑦𝑢′) + (𝑞ℎ , 𝑣′𝑢ℎ𝑦) − (𝑞ℎ𝑦 , 𝑣′𝑢′) − (𝑞ℎ , 𝑣′𝑦𝑢′)])

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
wConvU′(1/2)

+ [−(𝑞ℎ𝑧 , 𝑤ℎ𝑢′) − (𝑞ℎ , 𝑤ℎ𝑧 𝑢′) + (𝑞ℎ , 𝑤′𝑢ℎ𝑧 ) − (𝑞ℎ𝑧 , 𝑤′𝑢′) − (𝑞ℎ , 𝑤′𝑧𝑢′)]⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
wConvU′(2/2)

+ (−(𝑞ℎ𝑥 , 𝑝′))⎵⎵⎵⎵⎵⎵⎵⎵
wGradP′

+ (2𝜈(𝑞ℎ𝑥 , 𝑢′𝑥) + 𝜈(𝑞ℎ𝑥 , 𝑣′𝑦) + 𝜈(𝑞ℎ𝑥 , 𝑤′𝑧) + 𝜈(𝑞ℎ𝑦 , 𝑢′𝑦) + 𝜈(𝑞ℎ𝑧 , 𝑢′𝑧))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
wDifU′

= (𝑞ℎ , 𝑓𝑥)

(3.37)

This can be generalized to all three momentum equations (X, Y, and Z). The closure terms along an
axis are summed up into one term. Hence, there will be only one term per equation, each in the X, Y,
and Z directions.

(wUh_t+wConvUh+wGradPh+wDifUh)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Resolved terms

+ (wU′_t+wConvU′ +wGradP′ +wDifU′)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Closure term

= 0

(3.38)

The continuity equation Equation 3.36 can be simplified and represented as:

wDivUh+wDivU′ = 0 (3.39)

There will be a total of 4 ((1 × 3(𝑋/𝑌/𝑍) + 1)) closure terms per weighting function. Through trilinear
interpolation, each closure term is stored in the element as the weighted average of the values of the
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eight weighting functions. There are four closure terms and eight weighting functions in total. The
weights of only one weighting function are considered for our present analysis. The network needs to
predict the four closure terms as a function of the resolved scale terms: velocity (u,v,w), pressure and
their spatiotemporal derivatives.



4
Previous work at TU Delft

Work at TU Delft could be divided based on the approach taken. One approach was to train the neural
networks to predict model coefficients for essential parameters. While the other was to use neural net-
works to find the underlying relation between resolved and unresolved scales. Durieux (2015) modelled
the stabilization parameter 𝜏 (Hughes et al. (1998)) for the burgers and advection-diffusion equations
using neural networks. Though a strategy for an effective loss measure was formulated, its applications
were limited to the 1D Burgers equation. Beekman (2016) improved upon this and created a more gen-
eralized SGS model using neural networks and the open-source library OpenNN. Later, Kurian (2019)
found the coefficients of the stabilization parameter 𝜏 for both subgrid scales and subgrid-scale clo-
sures using neural networks. The work discussed thus far constitutes the former approach, i.e. using
neural networks to model coefficients.

The latter approach makes optimum use of the non-linear modelling capabilities of the ANNs. Robijns
(2019) focused on the relation between the large resolved scales and the interaction terms. The neural
network was well-trained with flows of different Reynold’s numbers, time steps, and forcing but could
not achieve stability. A 99% limiting scheme was implemented on the network outputs and managed
to bring stability to the ANN. However, the underlying cause of instability was not determined.

Janssens (2019) tackled similar stability issues in the context of global climate simulations. The ANN
was trained offline with a high-resolution data set but made predictions online. The approach used
byJanssens (2019) to train the network offline and integrate it into an online simulation led to errors
and instability. Upon examining the instabilities, it was seen that they could be categorized into two
types. The first type was because the ANN added additional roots to the residual space, leading to
convergence at the wrong estimates and, eventually, divergence. This instability was identified and
called the Corrector Pass Instability (CPI). The second type of instability was due to an accumulation
of errors and was called Long Term Instability (LTI).

Janssens (2019) attempted to train the ANN with the complete evolution history of the simulation.
This method made the simulation stable yet led to an exponential increase in training data size and
computational cost. In addition, a quadratic coefficient ANN model was tested, where the ANN makes
predictions at the start and keeps them constant throughout the time step. CPI was eliminated, yet
only at grid refinements close to DNS data. Several other techniques were tried, with only a slight
improvement in stability.

The data enrichment approach for the CPI was extended to LTI by Pusuluri (2020), with the augmen-
tation of the neural network’s training data with the noise of different types. Gaussian noise worked
best for the 1D Burgers equation, and it was explicitly added near the walls, as the magnitude of the
interaction terms was highest near the walls. The study proved that adding noise improved stability,
but its generalizability and applicability were unclear.

In contrast, Rajampeta (2021) considered strategies like Lagged Feature Set (LFS), Energy Transfer
Regularization (ETR), three-scale discretization, and Backscatter Limiting (BL) to address Corrector
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Pass Instability (CPI) and Long Term Instability (LTI) for a 1D model driven by turbulent channel forcing
data. LFS aimed to decouple the ANN and the time march by removing terms in the feature set at
the next time level (i.e. n+1). The ANN made predictions based on data from the previous time step.
LFS efficiently eliminated CPI but not LTI. The following strategy, ETR, aimed to reduce the Long Term
Instability. In ETR, an element-wise unresolved scales energy transfer (𝑈𝐸𝑇𝑒𝑖) was calculated, along
with a corresponding Energy Transfer Loss. The energy transfer MSE loss was to be added with the
MSE of ANN predictions to embed the ANN with more physical information and keep it more informed.
ETR was implemented along with LFS, and the combination proved effective only on CPI. The third
strategy of three-scale discretization made the simulation more robust but was ineffective with LTI. The
last strategy was Backscatter Limiting (BL), and the backscatter was set to a limit of zero to keep the
simulation stable. BL was a great enforcer of stability, irrespective of CPI or LTI. The only concern
was that it affected the overall accuracy of the simulation. Hence, it was decided that though BL was
effective in increasing the stability of the simulation, it should be tried in addition to the other strategies.
Finally, LFS and BLwere tried together, and the combination successfully brought stability and accuracy
to the simulation.

The latest studies, such as thework done byRajampeta (2021), have concentrated on a one-dimensional
model of turbulent channel flow. However, extending this VMM-ANN method to a three-dimensional
flow and determining the difficulty in replicating the closure terms would be highly beneficial. Therefore,
the focus of the study would be to find the simplest ANN architecture which can accurately, i.e. with a
correlation of approximately 99%, reproduce the closure terms.



5
Methodology

5.1. Main Test Case
The flow of interest is 3D turbulent channel flow at a Reynolds Number (𝑅𝑒𝜏) of 180 along with a courant
number of 0.1. The initial discretisation of interest is 32 elements per direction, which brings the total
number of elements to (32 × 32 × 32), i.e. 32768. There is one weighting function and four closure
terms in total. We will discretise with piecewise linear functions for which 323 is a very coarse mesh.
Therefore, it will rely heavily on the closure model to obtain good results. The geometry of the fluid
domain of interest can be depicted as:

Figure 5.1: 3D Turbulent Channel Flow

As there are 32 elements in each direction, the total number of elements per XY plane is 1024 (32×32),
and 32 of these planes are along the Z direction. Therefore, the X, Y, and Z directions are denoted i,j,
and k, respectively, with numbering for the planes 0 to 31.

5.2. Training Data

22
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5.2.1. Closure

The output is from a dedicated spectral/finite volume TCFDNS code fromwhich 𝑢̄=P(u), and the closure
terms were calculated. The closure terms were computed as u’= 𝑢𝐷𝑁𝑆 − 𝑃(𝑢̄), and four closure terms
per element form the output. The output files were arranged such that each file represented one LES
time step and contained element-wise information on the closure terms. The output read from these
files was shaped into an array of sizes (32768, 4). The final shape of the output (32768×𝑛, 4) depends
on the number of time steps/files (n) being considered for that particular run. Each output file contained
information related to the LES time, time-step, discretisation, total number of elements, and dimensions,
along with element-wise information, as can be seen below:

Figure 5.2: Output File

In the picture above, the closure terms along an axis are summed up into one term. Hence, there will
be only one term per equation, each in the X, Y, and Z directions.

5.2.2. Feature Set

The input of the ANN was provided in a total of five files per LES time step; velocity (U), time gradient
(Ut), and the three spatial gradient files (Ux, Uy, and Uz). Each file contained the following element-wise
contribution:
File Contribution
Velocity file (U) ū,v̄,w̄, and p̄
Time gradient (Ut) ū𝑡,v̄𝑡,w̄𝑡, and p̄𝑡
Spatial gradient-X (Ux) ū𝑥,v̄𝑥,w̄𝑥, and p̄𝑥
Spatial gradient-Y (Uy) ū𝑦,v̄𝑦,w̄𝑦, and p̄𝑦
Spatial gradient-Z (Uz) ū𝑧,v̄𝑧,w̄𝑧, and p̄𝑧

The information from each file is read into an array of shapes (32768,4). The combined shape of the
input array formed from information read from all five files is (32768,20), i.e. 20 features per element.
Similar to the output, the final shape of the input (32768 × n, 20) depends on the number of time
steps/files (n) being considered for that particular run.

The input and output arrays were normalised immediately after reading the information from the files.
At this point, the requirement from the network is to map the correlation between the four input features
and the 20 closure terms. The number of time steps/files (n) will ultimately dictate the number of training
examples (32768 × n) the network has to train on.

5.2.3. Stencil

A stencil was created which included the neighbours of the element of interest in its feature set. First,
the immediate neighbours in all three spatial directions were considered, namely the elements from the
left, right, top, bottom, front and back. The analysis details about the different possible combinations
of stencils considered shall be seen later in subsection 6.3.3
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Figure 5.3: Visualisation of the element stencil

The element of interest is shown in blue in the figure above, with its centroid marked in red. The
six neighbouring elements and their respective centroids are shown in grey and black, respectively.
Including the neighbouring elements in the stencil effectively increases the number of input features to
140 (20×(6+1))

5.2.4. Boundary Conditions

The stencil described in the previous section gives rise to the challenge that elements at the boundary
planes have stencil members that cross the bounds of the defined geometry. As we dealt with turbulent
channel flow, a periodic boundary condition was applied in the i and j directions. In the k-direction, a
wall condition was imposed by setting the bottom stencil members of the k=0 plane elements and the
top stencil members of the k=31 plane elements to zero.



6
Results

The preceding chapters have presented the recent advancements and contributions of neural networks
in turbulence, as discussed in chapter 2. The initial section covered the theory behind LES, VMM, and
the input provided to the neural network. This was followed by a discussion of the previous work at TU
Delft and the potential for expanding the framework to three dimensions, as outlined in chapter 4. In
chapter 5, the study’s primary objective was introduced, which involved examining turbulent channel
flow and the methodology used to accomplish this. The primary aim of the analysis is to identify the
requirements for a neural network to reproduce the closure terms with a correlation of approximately
99%, as well as to determine the smallest network that can achieve this goal.

6.1. Baseline Network
The entire code written to train and evaluate the network was run on a GPU for faster performance.
Tensorflow and Keras of version 2.10 were used in our analysis. The overall specifications considered
for the network can be seen below:

6.1.1. Network Hyperparameters

The structure and hyperparameters were taken from Rajampeta (2021).

Category Specification
Number of Hidden Layers 4

Number of Neurons 256
Batch Size 32

Activation Function ReLU
Optimizer Nadam

The number of input and output units of the network are:

Input 140
Output 4

6.1.2. Network Structure

The number of neurons for each hidden layer is kept constant. The structure chosen for the ANN is:

25
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Layer Neurons Activation
Input Layer 140 ReLU
Layer 1 256 ReLU
Layer 2 256 ReLU
Layer 3 256 ReLU
Layer 4 256 ReLU

Output Layer 104 ReLU

6.1.3. Training and Validation

The initial number of time steps considered is one. The total number of samples provided to the network
is 32768. 25% of these samples have been split to be used as test data. Out of the 75% data that is
kept for training, 15% is used to validate the data. Normalisation was performed over the entire dataset.
The entire time step was used to compute the normalisation parameters, such as mean and standard
deviation, which were then used to scale the input features.

The data is normalized as a whole
Category Specification

Number of Time Step(s) 1
Number of Training Samples 32768

Test Split 0.25
Validation Split 0.15
Learning Rate 0.001

Epochs 100

The training and validation losses and the network’s performance on unseen test data are seen below.

Figure 6.1: Training and Validation loss (Baseline Network)
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(a) X (b) Y

Figure 6.2: X and Y Momentum Terms (Baseline Network)

(a) Z (b) Cont.

Figure 6.3: Z Momentum and Continuity Terms (Baseline Network)

Train Loss Test Loss X-Mom
(Sum.)

Y-Mom
(Sum.)

Z-Mom
(Sum.)

Cont.

0.2816 0.5064 0.0130 0.0208 0.0147 0.0047

The training loss kept decreasing while the validation loss increased. The massive gap between graphs
and fluctuations in the validation plot indicate instability in the training process and the occurrence of
overfitting. As the amount of training data is limited relative to the complexity of the model, the network
has memorised the training data and performed poorly on new, unseen test data.

The low correlation for the closure terms indicated that the ANN predicts the same repeated answer
for different inputs. The ANN is not accurately capturing the relationship between the input and output
variables. The first step to tackle overfitting and instability in the training process was to increase the
training data.

6.2. Increasing the training data
In the previous section, overfitting was observed in the neural network training due to insufficient training
data. Only one time step or 32768 training samples was considered. In this section, double the training
data, 65536 samples were considered for training. The training and validation losses and the network’s
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performance on unseen test data are seen below.

Figure 6.4: Training and Validation loss (Baseline – 2 Time Steps)

(a) X (b) Y

Figure 6.5: X and Y Momentum Terms (Baseline – 2 Time Steps)
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(a) Z (b) Cont.

Figure 6.6: Z Momentum and Continuity Terms (Baseline – 2 Time Steps)

Train Loss Test Loss X-Mom
(Sum.)

Y-Mom
(Sum.)

Z-Mom
(Sum.)

Cont.

0.2356 0.3341 0.3541 0.2763 0.3111 0.5680

No. of
Time Steps

Train Loss Test Loss X-Mom
(Sum.)

Y-Mom
(Sum.)

Z-Mom
(Sum.)

Cont.

4 0.5245 1.0590 0.8327 0.8222 0.8134 0.6947
5 0.4222 0.8974 0.8728 0.8471 0.8484 0.7039
6 0.4657 0.8974 0.8711 0.8495 0.8537 0.6827
8 0.5708 0.9608 0.8630 0.8388 0.8402 0.6176
21 1.0162 1.3368 0.8161 0.7557 0.7717 0.3210

It was observed that an increase in training data failed to increase the correlation of the network after
a certain number of time steps. Giving the network access to more information did not help it capture
the underlying patterns in the data. The decrease in network correlation with increased training data
can be seen below:

(a) 4 Time Steps (b) 21 Time Steps

Figure 6.7: Continuity Terms (Baseline Network)
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(a) 4 Time Steps (b) 21 Time Steps

Figure 6.8: Z Momentum Terms (Baseline Network)

It was observed in the correlation graphs given above that most points in the distribution were approx-
imately 5-10 standard deviations away from the mean value of the data. Furthermore, many points
could be seen 10-15 standard deviations away. This meant a discrepancy in the normalisation of the
data, propagated, and led to incorrect predictions.

For the baseline network, normalisation was performed over the entire dataset. When data were nor-
malised, the entire time step was used to compute the normalisation parameters, such as mean and
standard deviation, which were then used to scale the input features. This led to the loss of spatial
information and the introduction of biases into the model.

In turbulent channel flow, the elements that are located along a plane are similar due to homogeneity
and isotropy. Each plane has its own unique mean and standard deviation, and normalising each plane
individually can help preserve the spatial information in the data. Normalising data as a whole leads
to inconsistent normalisation across different planes. The normalisation discrepancy was fixed by nor-
malising the dataset plane by plane and using an automated normalisation function StandardScalar().

SS() Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

Before 0.5245 1.0590 0.8327 0.8222 0.8134 0.6947
After 0.1230 0.3055 0.8337 0.8276 0.8401 0.8521

(a) Normalization – Whole (b) Plane-by-Plane Normalization

Figure 6.9: Fixing Normalization (Baseline Network – 4 Time Steps)
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(a) Normalization – Whole (b) Plane-by-Plane Normalization

Figure 6.10: Change in Loss graph (Baseline Network – 4 Time Steps)

Change in the normalisation procedure led to a visible decrease in the presence of ANN prediction
points equal to zero (zero points). Along with zero points, the difference between the losses and the
number of standard deviations of the data distribution also decreased. Proper normalisation ensured
that each input feature was scaled to a similar range or distribution, thus reducing the variability in the
correlation coefficients and noise and outliers.

6.2.1. Reflection

This section implemented the ANN used by Rajampeta (2021) for 3D turbulent channel flow. First,
it showed deficiencies in the training process due to overfitting, leading to poor performance on new
test data. Then, the training data size was increased to reduce overfitting, which proved successful
as the ANN’s performance improved, and the gap between the training and validation loss decreased.
However, further increasing the training data did not improve the ANN’s accuracy, indicating that the
network could not capture the underlying patterns in the data. A discrepancy was then identified in the
normalisation of the data, which led to the loss of spatial information and biases in the model. This
was rectified by normalising the data plane by plane using an automated normalisation function, and
the ANN’s performance significantly improved. The results demonstrate the effectiveness of increas-
ing the training data to reduce overfitting and the importance of preserving spatial information during
the normalisation process. The following section will further concentrate on increasing the network
predictions’ correlation.

6.3. Phase II: Post-Normalization Correction
6.3.1. Neuron-Hidden Layer Analysis

In the previous section, improvements were realised, but the training data size was varied, and its
relation to the network’s performance was analysed. The results showed that directly adopting the
structure and hyper-parameters used in Rajampeta (2021) is not sufficient for the current analysis.
This necessitates further analysis to find the network capable of reproducing the 3D turbulent channel
flow closure terms. Therefore, this section studies the impact of the network’s structure on its accuracy.

In Figure 6.10, the difference in training and validation loss had decreased, but not completely. Many
hidden layers increased the model’s complexity and made it prone to overfitting. To combat overfitting,
the number of hidden layers was reduced to a minimum (one or two layers), and the number of neurons
was varied. The number of time steps considered for training remained at 4.

Single Hidden Layer
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The structure of the network was limited to one hidden layer. However, a single hidden layer could
still capture the essential features of the input data and learn relevant patterns without the added com-
plexity and potential overfitting of deeper networks.

Neurons Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

1000 0.1100 0.3004 0.8458 0.8399 0.845 0.8514
1500 0.0825 0.2510 0.87 0.8649 0.871 0.8786
2000 0.0727 0.2234 0.8833 0.8834 0.8868 0.8924
3000 0.0644 0.2035 0.8965 0.8925 0.8968 0.9038
4500 0.0604 0.1918 0.904 0.8956 0.9051 0.9081
6000 0.0584 0.1822 0.9075 0.9025 0.9108 0.9132
9000 0.0575 0.1784 0.9108 0.9045 0.9119 0.9177
15000 0.0573 0.1700 0.9135 0.9087 0.9153 0.9191
20000 0.0576 0.1680 0.9153 0.9084 0.9152 0.9174

Increasing the number of neurons improved the network’s ability to capture complex patterns in the
input data. A significant number of neurons allowed the network to identify more features and combi-
nations, leading to better correlations between the input and output. There was a considerable increase
in correlation until 15000 neurons, after which the network performance decreased slightly. Adding too
many neurons led to overfitting, as seen by the decrease in performance from 15000 neurons to 20000.
As the structure of the network was not optimised, increased network complexity led to a degradation in
performance. A hidden layer was added to reduce the number of neurons while retaining the network’s
performance.

Two Hidden Layers

The peak performance of the single hidden-layer neural network was kept as the benchmark for the
double-layer network. The result of the analysis can be seen below.

Neurons Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

500 0.0794 0.2248 0.8826 0.8792 0.8832 0.891
1000 0.0637 0.1759 0.9108 0.906 0.9104 0.9174
2000 0.0653 0.1694 0.9153 0.9085 0.9134 0.9214
3000 0.0692 0.1702 0.9129 0.9068 0.9161 0.9207

In the case of the double-layer network, there was a considerable increase in correlation until 2000
neurons, after which the network performance decreased slightly. The highest correlation achieved
by both networks was the same. The peak performance of the single-layer network was matched by
the double-layer network, with a significantly lower amount of neurons being required. This meant
that the added complexity of the significantly high number of neurons of the single-layer network did
not contribute to the network’s performance. The 13000 additional neurons did not provide information
that the 2000 neurons could not capture in two layers. Thus the model with fewer neurons was selected
due to its lower complexity. The performance of the network before and after the analysis is compared
below:
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(a) Four Hidden Layers, 256
Neurons (Baseline Network)

(b) Two Hidden Layers, 2000
Neurons

Figure 6.11: Effect of network structure optimization: Training and Validation Loss – 4 Time Steps

(a) Four Hidden Layers, 256
Neurons (Baseline Network)

(b) Two Hidden Layers, 2000
Neurons

Figure 6.12: Effect of network structure optimization: X-Momentum Terms – 4 Time Steps

Optimising the network structure led to a visible decrease in the difference between the losses and
hence overfitting.

6.3.2. Feature Set (NO U, Ut)

The feature set affects the ability of the network to learn and generalise patterns in data. Optimising
identifies features relevant to the problem, while irrelevant or redundant features that add to the noise
in the data are removed, making the model more interpretable.

Feature
Removed

Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

- 0.0653 0.1694 0.9153 0.9085 0.9134 0.9214
U 0.0562 0.1648 0.9176 0.9129 0.9193 0.9231

U, Ut 0.0459 0.1511 0.9246 0.9192 0.9257 0.9285

Removing velocity from the feature set increased the prediction accuracy, so it appeared to be a re-
dundant feature. However, the feature set already contained information related to the velocity of the
elements through the spatial gradients of velocity. When different features in the input data are highly
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correlated, removing one improves the network’s performance. Redundant features providing the same
information to the neural network can otherwise lead to overfitting.

It was also seen that removing the time derivative from the feature set increased prediction accuracy.
The analysis was carried out on a flowwith a low courant number indicating that the time step used in the
simulation was relatively small compared to grid spacing and flow velocity. This implied that unresolved
spatial components of the solution would be more relevant than unresolved temporal components.
Thus, a small Δ𝑡 was considered to minimise the influence of the specific time march chosen. This
may also reduce the relevance of Ut to the prediction of the closure terms. The feature set is thus
comprised of only spatial gradient terms to streamline the required features and make the model more
interpretable.

6.3.3. Stencil Studies

The choice of stencil is crucial because it determines the set of input features to which the neural
network has access. In Figure 5.3, only the immediate (I) neighbouring elements were initially included
in the stencil. This section investigates the effect of a change in the stencil. A stencil with extra elements
along either side of the x-direction and alternatively extending the stencil to include two immediate
neighbours (6×2 elements in stencil) instead of one (6 elements) was tested.

Stencil
Change

Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

X-direction
(X + 1)

0.0634 0.1699 0.9122 0.9109 0.9166 0.9157

I + 1 0.0779 0.1852 0.9059 0.9003 0.9068 0.9126

Including extra elements in the x-direction or doubling the stencil does not have any noticeable impact
on the correlations of the network. This means the additional stencil points could not provide any new
relevant information that could improve the network’s ability to predict the outcome. The additional
stencil points are highly correlated with the existing stencil points. The network is already optimised
and has reached its peak performance with the current stencil size. Hence the initial stencil with six
elements is continued.

6.3.4. Batch Size Variation

This part of the analysis deals with the batch size of the neural network or the number of training
examples utilised in one pass of the network. In neural network training, the data is typically divided
into batches, and the network processes each batch before updating its parameters. Therefore, the
choice of batch size is a crucial hyper-parameter that can affect the training process and the model’s
performance. The batch size was initially increased from 32 to 250. Subsequent variations in batch
size can be seen below:
Batch Size Train Loss Test Loss X-Mom

(Avg.)
Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

250 0.0125 0.0509 0.9746 0.9748 0.9752 0.9766
500 0.0094 0.0469 0.9767 0.9766 0.9768 0.9789
750 0.0082 0.0469 0.9759 0.9774 0.977 0.9787
1000 0.0080 0.0489 0.9758 0.9763 0.9766 0.978

Raising the batch size in a neural network resulted in the enhancement of the network’s performance.
Once the batch size of the network was increased from 32 to 250, the network’s performance improved
drastically. The large batch meant that each update to the weights and biases of the network was based
on a larger sample of the training data, which provided a more accurate estimate of the actual gradient.
This reduced the gradient estimate’s variance and helped reduce noise in the optimisation process.
In addition, a larger batch size allows the model to take more steps toward the actual gradient before
updating the weights. This results in faster convergence during training and reduced computational
expense.

However, a larger batch size also means the model cannot generalise to new data. This is because
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the batch provides a snapshot of the training data, and a larger batch size means that the model sees
fewer unique examples during each training step. Therefore, the network’s performance is maximum at
the batch size of 750. The training and validation loss graph, along with the correlation of the network
for a batch size of 750, are compared below with the network performance after structure optimisation
at the beginning of this section:

(a) Batch Size – 32 (b) Batch Size – 750

Figure 6.13: Effect of batch size variation: Training and Validation Loss – 4 Time Steps, Two Hidden Layers, 2000 Neurons

(a) Batch Size – 32 (b) Batch Size – 750

Figure 6.14: Effect of batch size variation: X-Momentum Terms – 4 Time Steps, Two Hidden Layers, 2000 Neurons

An increase in the batch size led to a visible decrease in the difference between losses, and hence
overfitting. With larger batch sizes, the gradient updates became more stable and less affected by the
noise in individual samples, which can help the network to learn more robust representations of the
input data.

6.3.5. Reflection

The section started with a study analysing the impact of a neural network’s structure on its accuracy.
A single hidden layer network was first tested, which could capture the essential features of input data
without the added complexity and potential overfitting of deeper networks. The study showed that in-
creasing the number of neurons improved the network’s ability to capture complex patterns, with a
considerable increase in correlation until 15000 neurons. However, adding too many neurons led to
overfitting, which reduced performance (seen from 15000 neurons to 20000). Increased network com-
plexity led to a degradation in performance. Therefore, a hidden layer was added to reduce the number
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of neurons and retain the performance of the network. The double-layer network’s peak performance
was kept as a benchmark for comparison to the single-layer network, which required fewer neurons.
The analysis showed that the highest correlation achieved by both networks was the same. Thus the
model with the lower number of neurons because the added complexity of the single-layer network did
not contribute to its performance.

Next, feature set optimisation was carried out, and it was seen that removing velocity from the feature
set increased the prediction accuracy because it was a redundant feature. The feature set already
contained information related to the velocity of the elements. Additionally, it was found that the time
derivative feature was irrelevant to the feature set. Therefore, the feature set comprised only spatial
gradient terms to streamline the required features and make the model more interpretable.

Next, the effect of a change in the stencil used for the neural network was investigated. First, a stencil
with extra elements along either side of the x-direction and extending the stencil to include two imme-
diate neighbours were tried. However, the analysis showed that doubling the stencil size or including
extra elements in the x-direction had no noticeable impact on the network’s correlations. Hence, the
initial stencil had six elements continued.

Lastly, it was seen that increasing the batch size from 32 to 250 decreased the difference between
training and validation losses, indicating less overfitting. In addition, the study showed that increasing
the batch size allowed the model to generalise better by limiting the model’s ability to fit noise in the
data.

6.4. Phase III: Post-Batch Size Correction
The previous section discussed the importance of optimising a neural network’s structure, feature set,
stencil size, and batch size to reduce overfitting and improve performance. The correlation network
predictions are nearing the target of 99%. Hence, this section focuses on understanding the minimum
network needed to achieve this benchmark computationally inexpensively.

6.4.1. Neuron-Hidden Layer Analysis

The present network has two hidden layers and 2000 neurons. The number of neurons and hidden
layers was varied to understand the computational expense of the network structure.

Two Hidden Layers

The network structure was limited to two hidden layers, and the number of neurons was varied. It
was observed that the performance of the network plateaued at around 2000 neurons. Decreasing the
number of neurons beyond 2000 decreased the network’s performance. A decrease in the number
of neurons in a network reduces the complexity, making it easier and faster to train. However, it also
reduced the representational capacity of the network, making it less able to capture complex patterns in
the data. Conversely, configurations with neurons greater than 2000 came at the cost of network com-
plexity yet did not give any significant increase in correlation. Finally, the structure with 2000 neurons
was selected as it was the right balance between performance and network complexity.

Neurons Train Loss Test Loss X-Mom
(Sum.)

Y-Mom
(Sum.)

Z-Mom
(Sum.)

Cont.

100 0.6117 0.7499 0.4696 0.4416 0.5223 0.6061
500 0.0513 0.1700 0.9148 0.9115 0.9143 0.9177
1000 0.0130 0.0688 0.9646 0.9651 0.966 0.9682
1500 0.0090 0.0505 0.9737 0.9741 0.9751 0.9766
2000 0.0082 0.0469 0 .9759 0.9774 0.977 0.9787
2500 0.0078 0.0443 0.9776 0.9782 0.9781 0.9793
3000 0.0077 0.0443 0.9783 0.9781 0.9789 0.9799

Three Hidden Layers
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The network’s performance with two hidden layers and 2000 neurons was kept as a benchmark for
the following analysis. With three hidden layers, the network performance converged at around 2000
neurons. The network’s performance was very similar to that of two hidden layers but at an increased
complexity. This indicated that the network architecture with three hidden layers was not optimised for
the given task. The extra hidden layer did not provide any additional helpful information to the network to
benefit from the added complexity. Increasing the hidden layers also comes with the risk of overfitting.
Hence the network with 2000 neurons and two hidden layers was chosen for the subsequent analyses.

Neurons Train Loss Test Loss X-Mom
(Sum.)

Y-Mom
(Sum.)

Z-Mom
(Sum.)

Cont.

100 0.5231 0.6866 0.5395 0.5217 0.5775 0.6369
500 0.0213 0.1070 0.9443 0.9431 0.9453 0.9492
1000 0.0094 0.0592 0.9698 0.9704 0.9706 0.9726
1500 0.0074 0.0499 0.9739 0.9756 0.9758 0.9776
2000 0.0066 0. 438 0.9784 0.9787 0.9795 0.9805
2500 0.0062 0.0414 0.9792 0.9796 0.9796 0.9816

6.4.2. Data-Set Size Variation

Previously, the structure of the network and its complexity were considered to find the minimum network
that would produce the target correlation above 99%. Now the amount of training data required to
produce the desired correlation is analysed.

No. of
Time Steps

Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

8 0.0082 0.0469 0.9759 0.9774 0.977 0.9787
9 0.0082 0.0427 0.9796 0.9792 0.9798 0.9808
10 0.0077 0.0387 0.9814 0.9804 0.9806 0.9814
11 0.0078 0.0369 0.9822 0.9813 0.9813 0.9821
12 0.0079 0.0349 0.9826 0.9825 0.9821 0.9834
13 0.0079 0.033 0.984 0.9831 0.9833 0.9846
14 0.0076 0.0307 0.9849 0.9843 0.9847 0.9856
15 0.0076 0.0291 0.9854 0.9846 0.9854 0.986
16 0.0078 0.0292 0.9858 0.985 0.9853 0.9864
17 0.0078 0.0287 0.9861 0.9856 0.9861 0.9865
18 0.0078 0.0274 0.9864 0.9859 0.9864 0.987
19 0.0079 0.0273 0.9864 0.985 0.9866 0.9868
20 0.0082 0.0269 0.9868 0.9859 0.9864 0.9872

An increase in training data did not improve the network’s performance by a considerable margin. The
network has reached the saturation of learning. It has learnt all the essential features and patterns in
the data and can no longer improve its performance significantly with additional data. As a result, the
network’s accuracy plateaued, even with the addition of more training data. The highest performance
of the network observed with 20 time steps can be seen below:
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Figure 6.15: Training and Validation loss – 20 Time Steps, Two Hidden
Layers, 2000 Neurons, Batch Size–750

(a) X (b) Y

Figure 6.16: X and Y Momentum Terms – 20 Time Steps, Two Hidden Layers, 2000 Neurons, Batch Size–750

(a) Z (b) Cont.

Figure 6.17: Z Momentum and Continuity Terms – 20 Time Steps, Two Hidden Layers, 2000 Neurons, Batch Size–750
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An increase in the training data size led to a visible decrease in the difference between losses and
hence overfitting. The network observed saturation of learning. This can be tackled by increasing the
number of training epochs. Hence, a study on the correlation between the number of training epochs
and network performance will also be conducted.

6.4.3. Epochs

An increase in epochs does increase the correlation of the network predictions. As the network was
not overfitting, the increase in epochs led to an increase in the correlation between the predicted and
actual output. In addition, an increase in epochs allowed the model to continue learning and refining its
weights and biases to capture the underlying patterns in the data better. As the model got closer to the
optimal set of weights and biases, the correlation between the predicted and actual output increased.
Moreover, the target correlation of 99% was achieved at 300 epochs.

Epochs Train Loss Test Loss X-Mom
(Avg.)

Y-Mom
(Avg.)

Z-Mom
(Avg.)

Cont.

100 0.0089 0.0242 0.988 0.9868 0.9874 0.9884
300 0.005 0.0186 0.9909 0.99 0.9906 0.9911
400 0.0046 0.0175 0.9913 0.9903 0.9909 0.9915
1000 0.0039 0.0166 0.9917 0.9909 0.9918 0.9921

The training and validation loss graphs, along with the network correlations, are seen below:

Figure 6.18: Training and Validation loss – 20 Time Steps, Two Hidden
Layers, 2000 Neurons, Batch Size – 750, – 1000 Epochs
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(a) X (b) Y

Figure 6.19: X and Y Momentum Terms – 20 Time Steps, Two Hidden Layers, 2000 Neurons, Batch Size – 750, – 1000 Epochs

(a) Z (b) Cont.

Figure 6.20: Z Momentum and Continuity Terms – 20 Time Steps, Two Hidden Layers, 2000 Neurons, Batch Size – 750, –
1000 Epochs

6.4.4. Reflection

This analysis section discussed the third phase of neural network optimisation, i.e., post-batch size
correction, and focused on understanding the minimum network required to achieve a benchmark of
99% correlation. The number of neurons and hidden layers of the present network were varied to
find the minimum network structure required. It was observed that the network’s performance with
two hidden layers plateaued at 2000 neurons, making it the right balance between performance and
computational complexity. Further, the network’s performance with three hidden layers was similar to
that of two hidden layers but at an increased complexity. Hence, the network with 2000 neurons and
two hidden layers was chosen for subsequent analyses.

Next, the amount of training data required to produce the desired correlation was analysed. An increase
in training data did not improve the network’s performance by a considerable margin. The network
was observed to have reached saturation of learning, having learned all the essential features and
patterns in the data. Thus, the network’s accuracy plateaued, even with the addition of more training
data. Therefore, increasing the number of training epochs was the solution to tackle the saturation of
learning.

Finally, an increase in the number of epochs increased the correlation of the network predictions. As
the network was not overfitting, an increase in the number of epochs led to an increase in the correlation
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between the predicted and actual output. Hence, a study on the correlation between the number of
training epochs and network performance was also conducted. Overall, the analysis emphasises the
importance of optimising a neural network’s structure, training data size, and training epoch size to
reduce overfitting and improve performance.



7
Conclusions

The analysis focused on building a simple neural network to predict the interaction terms for 3D turbulent
channel flow. Previous work by Rajampeta (2021) focused on one-dimensional flow. Hence, it was
essential to ascertain the accuracy of the methodology in three dimensions. A multi-layer perception
(MLP) architecture was used to try the methodology. The feature set comprised basic macroscopic flow
properties like velocity, pressure, and spatial-temporal gradients. In addition, the correlation between
the ANN predictions and actual DNS data was used as a parameter to measure the neural network’s
performance.

Initial results using the same architecture used by Rajampeta (2021) showed that overfitting was a
significant issue with the ANN, leading to poor performance on new test data. To address this, the
size of the training data set was increased, which improved the ANN’s performance and decreased the
gap between the training and validation loss. However, further increasing the training data set did not
improve the accuracy of the ANN, indicating that the network could not capture the underlying patterns
in the data. In addition, a discrepancy with the normalisation of the data used in the ANN was identified,
which led to the loss of spatial information and biases in the model. This was rectified by normalising
the data plane by plane using an automated normalisation function, significantly improving the ANN’s
performance.

Next, the impact of the neural network’s structure on its accuracy was studied. It was found that a
single hidden layer network could capture the essential features of input data without the added com-
plexity and potential overfitting of deeper networks. Increasing the number of neurons improved the
network’s ability to capture complex patterns, but too many neurons led to overfitting, reducing perfor-
mance. Therefore, a hidden layer was added to reduce the number of neurons and retain the network’s
performance. Furthermore, optimisation of the feature set was also carried out. It found that removing
redundant features and focusing on spatial gradient terms increased the prediction accuracy and made
the model more interpretable. Next, changing the stencil used in the neural network found that increas-
ing the stencil size had no noticeable impact on the network’s correlations. Increasing the batch size
from 32 to 250 decreased the difference between training and validation losses, indicating less overfit-
ting and better generalisation. Finally, it was seen that the network’s performance plateaued with two
hidden layers and 2000 neurons, making it the right balance between performance and complexity.

The amount of training data required to achieve the desired correlation was analysed. It was seen that
an increase in training data did not improve the network’s performance significantly, and the network
had reached saturation of learning, having learned all the essential features and patterns in the data.
Therefore, increasing the number of training epochs was the solution to tackle the saturation of learning.
Finally, an increase in the number of epochs led to an increase in the correlation between the predicted
and actual output.

Overall, the study shows the importance of optimising the ANN’s structure, training data size, and
training epoch size to reduce overfitting and improve performance computationally inexpensively. In
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addition, the study highlights the importance of preserving spatial information during the normalisation
process.

7.1. Research Questions and Answers
The research questions posed in section 1.6 are now answered:

1. Can the neural network (structure and hyper-parameters) used in 1D turbulent channel flow (Ra-
jampeta (2021)) be adapted to three dimensions?

It was seen in section 6.1 that directly adopting the structure and hyper-parameters used in Ra-
jampeta (2021) is insufficient for the current analysis. Furthermore, the ANN used by Rajampeta
(2021) applied to 3D turbulent channel flow showed overfitting, leading to poor performance in
new test data. This necessitated an analysis of the network capable of reproducing the closure
terms for 3D turbulent channel flow.

2. How does the network structure affect the ANN’s accuracy?

2.1 What is the effect of widening the network?

In subsection 6.3.1, the number of hidden layers was kept to one, and the number of neurons
was increased. A single hidden layer could still capture the critical features of the input data
and learn relevant patterns without the added complexity and potential overfitting of deeper
networks. However, increasing the number of neurons improved the network’s ability to
capture complex patterns in the input data. In addition, a more significant number of neurons
allowed the network to identify more features and combinations, leading to better correlations
between the input and output.

2.2 What is the effect of deepening the network?

In subsection 6.3.1, a hidden layer was added to reduce the number of neurons while retain-
ing the performance of the network. The inclusion of another hidden layer did help reduce
the number of neurons necessary to achieve peak performance.

3. Can the basic, macroscopic properties of the flow (velocity, pressure, and their gradients) be used
as features to find the subgrid-scale terms?

Basic macroscopic properties such as velocity, pressure and spatiotemporal gradients were used
as the network features and produced excellent correlations.

3.1 Which of the features are most important for high correlation?

A small Δ𝑡 was considered to minimise the influence of the specific time march chosen.
Velocity in the feature set turned out to be a redundant feature. The feature set already
contained information related to the velocity of the elements through the spatial gradients of
velocity.

4. What is the simplest ANN structure which can accurately ( 99%) reproduce the closure terms?

The ANN performs well in the present analysis at a low courant number. The number of time
steps required is 20, i.e. 600000 training samples.

Final Architecture

Layer Neurons Activation
Input Layer 140 –
Layer 1 2000 ReLU
Layer 2 2000 ReLU
Output 4 ReLU

In subsection 6.4.3, it was seen that the network took 300 epochs at 9/10s per epoch and an evaluation
time of 9s to produce the closure term with a correlation of 99%.
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7.2. Recommendations
Since we focused on low CFL, the effects of the time discretisation were not significant. Further stud-
ies on this subject would be recommended to increase CFL number first and analyse whether MLP
architecture is sufficient for the analysis. Otherwise, network architectures with more inherent tem-
poral capabilities, such as a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
type RNNs, are recommended as they selectively remember or forget previous inputs to improve per-
formance on sequence tasks. A more significant amount of data and a more complex architecture may
be required to process the data.

Using the Grid-Search algorithm to choose the best-performing architecture efficiently is recommended.
As explained earlier, the network’s feature set comprises essential macroscopic properties such as
velocity, pressure, and gradients. This enabled us to get a primitive understanding of the most critical
parameters required. However, further analysis can be done with more specific terms of the variational
formulation, such as the tri-linear and bi-linear terms, to investigate the correlations and interactions of
the resolved, unresolved terms.



A
Derivation of the closure terms

The x,y,and z components of Equation 3.14 in the convective form (retaining the symmetric velocity
gradient) can be written as:

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 + 𝑤

𝜕𝑢
𝜕𝑧 +

𝜕𝑝
𝜕𝑥 − 𝜈[2

𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 +

𝜕2𝑢
𝜕𝑧2 +

𝜕2𝑣
𝜕𝑥𝜕𝑦 +

𝜕2𝑤
𝜕𝑥𝜕𝑧 ] = 𝑓𝑥 (A.1)

𝜕𝑣
𝜕𝑡 + 𝑢

𝜕𝑣
𝜕𝑥 + 𝑣

𝜕𝑣
𝜕𝑦 + 𝑤

𝜕𝑣
𝜕𝑧 +

𝜕𝑝
𝜕𝑦 − 𝜈[

𝜕2𝑣
𝜕𝑥2 + 2

𝜕2𝑣
𝜕𝑦2 +

𝜕2𝑣
𝜕𝑧2 +

𝜕2𝑢
𝜕𝑥𝜕𝑦 +

𝜕2𝑤
𝜕𝑦𝜕𝑧 ] = 𝑓𝑦 (A.2)

𝜕𝑤
𝜕𝑡 + 𝑢

𝜕𝑤
𝜕𝑥 + 𝑣

𝜕𝑤
𝜕𝑦 + 𝑤

𝜕𝑤
𝜕𝑧 +

𝜕𝑝
𝜕𝑧 − 𝜈[

𝜕2𝑤
𝜕𝑥2 +

𝜕2𝑤
𝜕𝑦2 + 2

𝜕2𝑤
𝜕𝑧2 +

𝜕2𝑢
𝜕𝑥𝜕𝑧 +

𝜕2𝑣
𝜕𝑦𝜕𝑧 ] = 𝑓𝑧 (A.3)

Let us consider the x-component for our derivation:

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 + 𝑤

𝜕𝑢
𝜕𝑧 +

𝜕𝑝
𝜕𝑥 − 𝜈[2

𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 +

𝜕2𝑢
𝜕𝑧2 +

𝜕2𝑣
𝜕𝑥𝜕𝑦 +

𝜕2𝑤
𝜕𝑥𝜕𝑧 ] = 𝑓𝑥 (A.4)

With reference to Equation 3.31, the weak form of the x-momentum equation above can be written as:

(𝑞, 𝑢𝑡)+(𝑞, 𝑢𝑢𝑥)+(𝑞, 𝑣𝑢𝑦)+(𝑞, 𝑤𝑢𝑧)+(𝑞, 𝑝𝑥)−2𝜈 (𝑞, 𝑢𝑥𝑥)−𝜈 (𝑞, 𝑢𝑦𝑦)−𝜈 (𝑞, 𝑢𝑧𝑧)−𝜈 (𝑞, 𝑣𝑥𝑦)−𝜈 (𝑞, 𝑤𝑥𝑧) = (𝑞, 𝑓𝑥)
(A.5)

(𝑞, (𝑢ℎ𝑡 + 𝑢′𝑡))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
1

+ (𝑞, (𝑢ℎ + 𝑢′)(𝑢ℎ𝑥 + 𝑢′𝑥))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
2

+ (𝑞, (𝑣ℎ + 𝑣′)(𝑢ℎ𝑦 + 𝑢′𝑦))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
3

+ (𝑞, (𝑤ℎ +𝑤′)(𝑢ℎ𝑧 + 𝑢′𝑧))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
4

+ (𝑞, (𝑝ℎ𝑥 + 𝑝′𝑥))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
5

−2𝜈 (𝑞, (𝑢ℎ𝑥𝑥 + 𝑢′𝑥𝑥))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
6

−𝜈 (𝑞, (𝑢ℎ𝑦𝑦 + 𝑢′𝑦𝑦))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
7

−𝜈 (𝑞, (𝑢ℎ𝑧𝑧 + 𝑢′𝑧𝑧))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
8

−𝜈 (𝑞, (𝑣ℎ𝑥𝑦 + 𝑣′𝑥𝑦))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
9

−𝜈 (𝑞, (𝑤ℎ𝑥𝑧 +𝑤′𝑥𝑧))⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
10

= (𝑞ℎ , 𝑓𝑥)⎵⎵⎵⎵⎵⎵
11

(A.6)

The term-wise expansion of the terms is given. For the sake of brevity, the h and ’ symbols denoting
the scale of the terms have been omitted during the derivation:
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1. (𝑞, 𝑢ℎ𝑡 ) + (𝑞, 𝑢′𝑡)

2. (𝑞, 𝑢ℎ𝑢ℎ𝑥) + (𝑞, 𝑢ℎ𝑢′𝑥) + (𝑞, 𝑢′𝑢ℎ𝑥) + (𝑞, 𝑢′𝑢′𝑥)

Applying integration by parts (IBP) we get: (𝑞, 𝑢ℎ𝑢ℎ𝑥) − (𝑞𝑥 , 𝑢ℎ𝑢′) − (𝑞𝑥 ,
𝑢′𝑢′
2 )

3. (𝑞, 𝑣ℎ𝑢ℎ𝑦) + (𝑞, 𝑣ℎ𝑢′𝑦) + (𝑞, 𝑣′𝑢ℎ𝑦) + (𝑞, 𝑣′𝑢′𝑦)
IBP: (𝑞, 𝑣ℎ𝑢ℎ𝑦) − (𝑞𝑦 , 𝑣ℎ𝑢′) − (𝑞, 𝑣ℎ𝑦𝑢′) + (𝑞, 𝑣′𝑢ℎ𝑦) − (𝑞𝑦 , 𝑣′𝑢′) − (𝑞, 𝑣′𝑦𝑢′)

4. (𝑞, 𝑤ℎ𝑢ℎ𝑧 ) + (𝑞, 𝑤ℎ𝑢′𝑧) + (𝑞, 𝑤′𝑢ℎ𝑧 ) + (𝑞, 𝑤′𝑢′𝑧)
IBP: (𝑞, 𝑤ℎ𝑢ℎ𝑧 ) − (𝑞𝑧 , 𝑤ℎ𝑢′) − (𝑞, 𝑤ℎ𝑧 𝑢′) + (𝑞, 𝑤′𝑢ℎ𝑧 ) − (𝑞𝑧 , 𝑤′𝑢′) − (𝑞, 𝑤′𝑧𝑢′)

5. (𝑞, 𝑝ℎ𝑥 ) + (𝑞, 𝑝′𝑥), IBP: (𝑞, 𝑝ℎ𝑥 ) − (𝑞𝑥 , 𝑝′)
Similarly...

6. −2𝜈(𝑞, 𝑢ℎ𝑥𝑥) + 2𝜈(𝑞𝑥 , 𝑢′𝑥)
7. −𝜈(𝑞, 𝑢ℎ𝑦𝑦) + 𝜈(𝑞𝑦 , 𝑢′𝑦)
8. −𝜈(𝑞, 𝑢ℎ𝑧𝑧) + 𝜈(𝑞𝑧 , 𝑢′𝑧)
9. −𝜈(𝑞, 𝑣ℎ𝑥𝑦) + 𝜈(𝑞𝑥 , 𝑣′𝑦)
10. −𝜈(𝑞, 𝑤ℎ𝑥𝑧) + 𝜈(𝑞𝑥 , 𝑤′𝑧)

Finally we have:

x-momentum equation
q is the weight constant

(𝑞ℎ , 𝑢ℎ𝑡 ) + (𝑞ℎ , 𝑢ℎ𝑢ℎ𝑥) + (𝑞ℎ , 𝑣ℎ𝑢ℎ𝑦) + (𝑞ℎ , 𝑤ℎ𝑢ℎ𝑧 ) + (𝑞ℎ , 𝑝ℎ𝑥 ) − 2𝜈(𝑞ℎ , 𝑢ℎ𝑥𝑥) − 𝜈(𝑞ℎ , 𝑣ℎ𝑥𝑦) − 𝜈(𝑞ℎ , 𝑤ℎ𝑥𝑧)

−𝜈(𝑞ℎ , 𝑢ℎ𝑦𝑦) − 𝜈(𝑞ℎ , 𝑢ℎ𝑧𝑧)+(𝑞ℎ , 𝑢′𝑡) − (𝑞ℎ𝑥 , 𝑢ℎ𝑢′) − (𝑞ℎ𝑥 ,
𝑢′𝑢′
2 )

+ [−(𝑞ℎ𝑦 , 𝑣ℎ𝑢′) − (𝑞ℎ , 𝑣ℎ𝑦𝑢′) + (𝑞ℎ , 𝑣′𝑢ℎ𝑦) − (𝑞ℎ𝑦 , 𝑣′𝑢′) − (𝑞ℎ , 𝑣′𝑦𝑢′)]
+ [−(𝑞ℎ𝑧 , 𝑤ℎ𝑢′) − (𝑞ℎ , 𝑤ℎ𝑧 𝑢′) + (𝑞ℎ , 𝑤′𝑢ℎ𝑧 ) − (𝑞ℎ𝑧 , 𝑤′𝑢′) − (𝑞ℎ , 𝑤′𝑧𝑢′)]

−(𝑞ℎ𝑥 , 𝑝′) + 2𝜈(𝑞ℎ𝑥 , 𝑢′𝑥) + 𝜈(𝑞ℎ𝑥 , 𝑣′𝑦) + 𝜈(𝑞ℎ𝑥 , 𝑤′𝑧) + 𝜈(𝑞ℎ𝑦 , 𝑢′𝑦) + 𝜈(𝑞ℎ𝑧 , 𝑢′𝑧) = (𝑞ℎ , 𝑓𝑥)
(A.7)

y-momentum equation
r is the weight constant

(𝑟ℎ , 𝑣ℎ𝑡 ) + (𝑟ℎ , 𝑢ℎ𝑣ℎ𝑥 ) + (𝑟ℎ , 𝑣ℎ𝑣ℎ𝑦 ) + (𝑟ℎ , 𝑤ℎ𝑣ℎ𝑧 ) + (𝑟ℎ , 𝑝ℎ𝑦) − 𝜈(𝑟ℎ , 𝑣ℎ𝑥𝑥) − 𝜈(𝑟ℎ , 𝑢ℎ𝑦𝑥) − 2𝜈(𝑟ℎ , 𝑣ℎ𝑦𝑦)
−𝜈(𝑟ℎ , 𝑤ℎ𝑦𝑧) − 𝜈(𝑟ℎ , 𝑣ℎ𝑧𝑧)+(𝑟ℎ , 𝑣′𝑡) + [−(𝑟ℎ𝑥 , 𝑢ℎ𝑣′) − (𝑟ℎ , 𝑢ℎ𝑥𝑣′) + (𝑟ℎ , 𝑢′𝑣ℎ𝑥 ) − (𝑟ℎ𝑥 , 𝑢′𝑣′) − (𝑟ℎ , 𝑢′𝑥𝑣′)]

−(𝑟ℎ𝑦 , 𝑣ℎ𝑣′) − (𝑟ℎ𝑦 ,
𝑣′𝑣′
2 ) + [−(𝑟ℎ𝑧 , 𝑤ℎ𝑣′) − (𝑟ℎ , 𝑤ℎ𝑧 𝑣′) + (𝑟ℎ , 𝑤′𝑣ℎ𝑧 ) − (𝑟ℎ𝑧 , 𝑤′𝑣′) − (𝑟ℎ , 𝑤′𝑧𝑣′)]

−(𝑟ℎ𝑦 , 𝑝′) + 𝜈(𝑟ℎ𝑥 , 𝑣′𝑥) + 𝜈(𝑟ℎ𝑦 , 𝑢′𝑥) + 2𝜈(𝑟ℎ𝑦 , 𝑣′𝑦) + 𝜈(𝑟ℎ𝑦 , 𝑤′𝑧) + 𝜈(𝑟ℎ𝑧 , 𝑣′𝑧) = (𝑟ℎ , 𝑓𝑦)
(A.8)
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z-momentum equation
m is the weight constant

(𝑚ℎ , 𝑤ℎ𝑡 ) + (𝑚ℎ , 𝑢ℎ𝑤ℎ𝑥 ) + (𝑚ℎ , 𝑣ℎ𝑤ℎ𝑦 ) + (𝑚ℎ , 𝑤ℎ𝑤ℎ𝑧 ) + (𝑚ℎ , 𝑝ℎ𝑧 ) − 𝜈(𝑚ℎ , 𝑤ℎ𝑥𝑥) − 𝜈(𝑚ℎ , 𝑤ℎ𝑦𝑦) − 𝜈(𝑚ℎ , 𝑢ℎ𝑧𝑥)
−𝜈(𝑚ℎ , 𝑣ℎ𝑧𝑦) − 2𝜈(𝑚ℎ , 𝑤ℎ𝑧𝑧)+(𝑚ℎ , 𝑤′𝑡) + [−(𝑚ℎ𝑥 , 𝑢ℎ𝑤′) − (𝑚ℎ , 𝑢ℎ𝑥𝑤′) + (𝑚ℎ , 𝑢′𝑤ℎ𝑥 ) − (𝑚ℎ𝑥 , 𝑢′𝑤′) − (𝑚ℎ , 𝑢′𝑥𝑤′)]

+ [−(𝑚ℎ𝑦 , 𝑣ℎ𝑤′) − (𝑚ℎ , 𝑣ℎ𝑦𝑤′) + (𝑚ℎ , 𝑣′𝑤ℎ𝑦 ) − (𝑚ℎ𝑦 , 𝑣′𝑤′) − (𝑚ℎ , 𝑣′𝑦𝑤′)] − (𝑚ℎ𝑧 , 𝑤ℎ𝑤′) − (𝑚ℎ𝑧 ,
𝑤′𝑤′
2 )

−(𝑚ℎ𝑧 , 𝑝′) + 𝜈(𝑚ℎ𝑥 , 𝑤′𝑥) + 𝜈(𝑚ℎ𝑦 , 𝑤′𝑦) + 𝜈(𝑚ℎ𝑧 , 𝑢′𝑥) + 𝜈(𝑚ℎ𝑧 , 𝑣′𝑦) + 2𝜈(𝑚ℎ𝑧 , 𝑤′𝑧) = (𝑚ℎ , 𝑓𝑧)
(A.9)

continuity equation
l is the weight constant

(𝑙ℎ , 𝑢ℎ𝑥) + (𝑙ℎ , 𝑣ℎ𝑦 ) + (𝑙ℎ , 𝑤ℎ𝑧 ) + (𝑙ℎ , 𝑢′𝑥) + (𝑙ℎ , 𝑣′𝑦) + (𝑙ℎ , 𝑤′𝑧) = 0 (A.10)
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