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Abstract
The training of diffusion-based models for im-
age generation is predominantly controlled by a
select few Big Tech companies, raising concerns
about privacy, copyright, and data authority due
to the lack of transparency regarding training data.
Hence, we propose a federated diffusion model
scheme that enables the independent and collabo-
rative training of diffusion models without expos-
ing local data. Our approach adapts the Federated
Averaging (FedAvg) algorithm to train a Denoising
Diffusion Model (DDPM). Through a novel utiliza-
tion of the underlying UNet backbone, we achieve a
significant reduction of up to 74% in the number of
parameters exchanged during training, compared to
the naive FedAvg approach, whilst simultaneously
maintaining image quality comparable to the cen-
tralized setting, as evaluated by the FID score. Our
implementation is publicly available.1

1 Introduction
Recently, there has been a surge in the popularity of diffusion-
based image generation models like Stable Diffusion [1], Im-
agen [2], and DALL-E [3], which have been praised for their
ability to generate synthetic images of exceptional quality and
realism. Effective training of these generative models, which
typically have hundreds of millions of parameters, requires
significant computing power, storage capacities, and a vast
amount of training data [4]. As a result, most state-of-the-art
models are produced by only a handful of Big Tech corpora-
tions that have the means to train and maintain them, leading
to further consolidation of power within Big Tech [4].

Furthermore, the lack of transparency surrounding the ori-
gin of their training data raises data authority, privacy, and
copyright concerns [5]. It is often difficult to determine own-
ership of data obtained from public sources and to ensure in-
formed consent for its use in training machine learning mod-
els [6]. The inclusion of such data in training processes is
problematic as the resulting models may produce outputs that
closely resemble copyrighted or sensitive inputs.

To address these issues, we strongly advocate a paradigm
shift to a more decentralized approach, where data providers
actively participate in training processes, remain in control
over their data and consciously share only the strictly required
data to produce joint models. This would enable smaller enti-
ties and open source communities to participate in the collab-
orative training of image generation models without compro-
mising their privacy and data authority, thereby decreasing
the data and power concentration within Big Tech. A tech-
nique that suits this idea is Federated Learning.

Federated Learning (FL) [7] is a distributed optimization
technique that allows multiple clients to collaboratively train
a model by leveraging local data. During each training round,
a subset of the clients is asked to perform model updates with
local data. The local model updates are sent to a central fed-
erator server, which performs a global model update based
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on the aggregated local updates. The updated model is then
broadcast to all clients. FL allows for a diverse range of data
among clients to be harnessed to build robust models with-
out directly sharing raw data with others, thereby ensuring
greater privacy and smaller communication overheads than
collaborative methods where raw data is exchanged.

Most of the FL applications today focus on classification
and regression tasks. For instance, banks use collaboratively
trained models to detect fraudulent transactions [8], whereas
healthcare providers jointly classify sensor data to enhance
hospital treatments [9]. Federated Learning has also proven
to be effective in training large language models across many
devices for next-word prediction [10].

In the domain of image generation, the use of Federated
Learning is still an active research area. Statistical hetero-
geneity across client datasets and large communication over-
heads are key challenges in FL [11] that must be overcome to
make federated image generation successful. Existing works
such as [12, 13] describe federated techniques based on Gen-
erative Adversarial Networks (GANs) [14]. However, to the
best of our knowledge, no federated algorithms have yet been
proposed for diffusion models.

Diffusion models are a type of probabilistic generative
models that use noise to gradually destruct training images
through multiple forward steps and then learn the reverse
denoising process with a neural network to generate new
images of the target distribution, given any input of random
noise [15]. Diffusion models are state-of-the-art for image
generation as they are more stable in convergence and
produce images with higher quality than GANs. However,
this comes at the cost of being significantly slower [16].

This paper aims to bring FL and diffusion models together.
More precisely, we address the following research question:

How can diffusion models for image generation be trained
using federated learning?

To answer this question, we design a Federated Diffusion
Model, FEDDIFF, based on a Denoising Diffusion Proba-
bilistic Model (DDPM) [17] that is trained using the Fed-
erated Averaging (FedAvg) algorithm [7]. Additionally, we
introduce three novel communication efficient training meth-
ods, USPLIT, ULATDEC, and UDEC, that take advantage of
the structure of the underlying UNet [18] architecture to re-
duce the number of communicated parameters during train-
ing, whilst maintaining comparable image quality as mea-
sured by the FID score [19]. In a nutshell, USPLIT splits pa-
rameter updates among clients every round, whereas ULAT-
DEC and UDEC limit the federated training of parameters
to specific parts of the network. To compare their effective-
ness, we evaluate the performance of FEDDIFF in combina-
tion with the different training methods. Finally, we study
FEDDIFF under different data distributions and client settings
to assess its robustness to statistical heterogeneity.

As a summary, we make the following contributions:

• We propose a novel algorithm to train diffusion models
in a federated way.
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• We describe and compare three novel communication-
efficient training methods that take advantage of the
model architecture to reduce the number of communi-
cated parameters during training. USPLIT decreases the
communication overhead by 25%, ULATDEC by 41% ,
and UDEC by 74%.

• We compare our models by evaluating the image quality
of the output images that they generate under different
data distributions and client settings. Our results show
comparable image quality to the centralized setting in
federated settings with up to ten clients and IID data.

This paper is structured as follows. Section 2 provides back-
ground information on federated learning and diffusion mod-
els, whereas Section 3 sheds light on related research. Section
4 explains our communication-efficient methods for federated
diffusion, which Section 5 tests and compares. Section 6 con-
cludes and provides future work suggestions. Finally, Section
7 elaborates on the ethical aspects of this research.

2 Background

In this section, we provide the necessary technical back-
ground on different types of diffusion models, with a focus
on the DDPM. Furthermore, we provide a formalization of
FL and its challenges with statistical heterogeneity.

Types of Diffusion Models. Among diffusion models, we
distinguish between three predominant formulations. First,
Denoising Diffusion Probabilistic Models (DDPMs) [17, 20]
estimate a probability distribution over image data using a
diffusion process over discrete timesteps, with both forward
and reverse processes represented as Markov chains. Sec-
ond, Score-based Generative Models (SGMs) [21, 22] learn
the Stein Score [23], which represents the gradient of the log-
density function of the image data. During sampling, noisy
inputs pass discrete timesteps in the reverse process at which
they are pushed in the direction in which the data density,
and thus sample likelihood grows the most. Third, Stochastic
Differential Equations (Score SDEs) [24] are the continuous-
time generalization of both SGMs and DDPMs that estimate
the score function at any time using differential equations.

We choose to focus on the DDPM formulation, mainly be-
cause of its simplicity and popularity. The loss-based objec-
tive function is easier to optimize than the score-based objec-
tives that SGMs and SDEs use. Once the transition kernels
are learned, no numerical methods are required to generate
samples, unlike with SDEs. The DDPM is also the most ex-
plored and widespread option out of the three [15].

Denoising Diffusion Models (DDPM). The DDPM intro-
duced by [17] models a probability distribution pθ(x0) :=∫
pθ(x0:T )dx1:T , over the pixel space through noisy latents

x1, ..., xT . Given training images x0 from a noiseless target
distribution q(x0), the latents x1, ..., xT are obtained follow-
ing a Markovian forward process q(x1:T ) that gradually adds
Gaussian noise according to a variance schedule β1, ..., βT ,

as given by equations 1 and 2.

q(x1:T ) :=

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Provided that the variance schedule is chosen so that ᾱT =∏T
s=1(1− βs) → 0, the distribution of xT is well approxi-

mated by the standard Gaussian (random noise) distribution
p(xT ) ≈ N (xT ; 0, I) [15]. In the reverse process, the goal is
to create a noiseless sample starting with a sample of random
noise. When the βt are sufficiently small, the reverse process
has the same functional form as the forward process. There-
fore, the reverse process can be defined by a Markov chain
pθ(x0:T ) with learned Gaussian transitions parameterized by
θ, as given by equations 3 and 4.

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

In [17], the variances of the denoising kernels are fixed to a
single value: Σθ(xt, t) = σ2

t I , where σ2
t = 1−ᾱt−1

1−ᾱt
βt and

ᾱt =
∏t

s=1(1− βs). However, they can also be learned dur-
ing training [25]. Instead of approximating µθ(xt, t) directly,
it is re-parameterized as a function of ϵθ(xt, t) to achieve bet-
ter sampling quality [17]. ϵθ(xt, t) approximates the noise ϵt
that is to be subtracted from samples xt at timestep t during
the reverse process:

µθ(xt, t) =
1√

1− βt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (5)

A special property of the forward process is that:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I) (6)

Using this, any noisy latent xt can be sampled via a single
step given the original image x0 and fixed variances βt:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt where ϵt ∼ N (0, I) (7)

The training objective can be formulated as minimizing the
distance between the real noise ϵt and the noise estimation
ϵθ(xt, t) by the model for each of the timesteps t:

Lsimple(θ) := Et∼[1,T ]Ex0∼p(x0)Eϵt∼N(0,I)∥ϵt − ϵθ(xt, t)∥22
(8)

Here, Lsimple is a simplified objective function derived from
the variational lower bound on the negative log-likelihood for
parameter θ (Lvlb) [17]. We can learn θ by using a neural net-
work trained on minimizing Lsimple using Stochastic Gradient
Descent (SGD), as shown in Algorithm 1.
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Algorithm 1 DDPM Training Algorithm
repeat
x0 ∼ q(x0)
t ∼ Uniform({1, ..., T})
ϵt ∼ N (0, I)
Take a gradient descent step on
∇θ∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥22

until converged

Once trained, a DDPM can generate images via Algorithm 2.

Algorithm 2 DDPM Sampling Algorithm

xT ∼ N (0, I)
for t = T down to 1 do

z ∼ N (0, I) if t > 1, else z = 0
xt−1 = µθ(xt, t) + σtz

end for
return x0

Figure 1 shows the intuition behind the DDPM model.
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Figure 1: Graphical representation of the intuition behind the
DDPM. The reverse denoising process uses Gaussian transition ker-
nels with fixed covariances Σθ(xt, t) and means µθ(xt, t) that are
learned using a neural network predicting the noise ϵθ(xt, t) to sub-
tract from samples xt at each timestep t.

Formalization of Federated Learning. A typical federated
learning problem can be formulated as a distributed optimiza-
tion problem involving K clients with the following objective
function to minimize [7]:

min
θ∈Rd

f(θ), where f(θ) :=
1

K

K∑
k=1

wkfk(θ) (9)

For a deep learning problem, fk(θ) typically represents the
loss incurred over a local client dataset Dk ⊂ D under global
model parameter vector θ. The impact wk that a client k has
on the global objective is often weighted by the relative size
of its dataset so that wk = |Dk|

|D| .

Statistical Heterogeneity in Federated Learning. If the
client datasets Dk are formed by distributing the training ex-
amples over the K clients uniformly at random, we say that
the data is Independent and Identically Distributed (IID). In
this case, we have that EDk

[fk(θ)] = f(θ) for all clients [7].
Cases where this does not hold are referred to as statistically
heterogeneous or non-IID. In such cases, there is no guaran-
tee that the fk estimate f well. Dealing with statistical het-
erogeneity is one of the main challenges within FL [11, 26].

Considering the federated diffusion scenario, we focus on
two causes for statistical heterogeneity. First, there can be
significant differences in the number of training images each
client contributed, referred to as quantity skew. To address
this, client model updates can be weighted based on their re-
spective dataset sizes [27]. Second, in the context of labeled
datasets, image label distributions may vary among clients,
which is known as label distribution skew. Handling la-
bel distribution skew can be challenging because each client
tends to adjust its local model toward its most dominant la-
bels, resulting in different update directions that need to be
combined [27].

3 Related Work
We have not been able to identify directly related work on
the combination of diffusion models and FL. However, a fed-
erated algorithm to train image segmentation models with a
similar architecture as diffusion models has been proposed
by [28]. Moreover, remarkable explorations have been made
regarding alternative solutions for federated image genera-
tion based on GANs [12, 13]. Additionally, numerous papers
focused on enhancing communication efficiency within the
context of FL [29–31]. Last, it is worth mentioning Latent
Diffusion Models (LDMs) [1], which perform the diffusion
process in a low dimensional latent space, resulting in fewer
parameters to optimize and exchange.

Federated UNet. The transition kernels for the reverse
process of diffusion models are usually learned using archi-
tectures that build upon the UNet [18] convolutional network
[1, 16, 17, 25]. As the UNet model was initially developed
for image segmentation, it is no surprise that the first feder-
ated solution centers around this task. Namely, [28] intro-
duces a federated UNet model to segment satellite images
based on land use. Aggregation of the local model updates
at the federator is performed using FedAvg [7]. The model
is shown to perform well on label-skewed datasets. How-
ever, the used datasets contain few images, which is typical
for image segmentation problems but differs from the image
generation scenario. The authors further claim spectacular
compression rates for both the number of parameters as well
as the memory taken by these parameters, although no further
details are provided.

Federated Image Generation. Generative Adversarial
Networks (GANs) [14] used to dominate the field of image
generation before diffusion models surpassed them in terms
of image fidelity and training stability [16]. GANs differ from
diffusion models in terms of their architectural approach. Dif-
fusion models utilize a single network to make noise pre-
dictions at each timestep of the denoising process, whereas
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GANs employ two networks: a generator that directly gener-
ates output images from noise, and a discriminator that classi-
fies the produced images as real or fake to steer the generator.

GANs have a rich research history that also includes the
cross-silo [26] federated setting. Specifically, [13] proposed
a federated GAN framework and tested different synchroniza-
tion strategies with up to six clients to determine whether
training either the generator or discriminator collaboratively
whilst training the other locally would yield comparable re-
sults to training both components in a federated manner,
which was found not to be the case. Additionally, the study
revealed that federated training of GANs becomes less effec-
tive when the data distribution is more skewed and that this
effect becomes more pronounced as the number of clients in-
creases. We pose a similar hypothesis for federated diffusion.

Alternatively, [12] proposes a communication-efficient
method where the discriminator and generator are trained
by averaging over the local parameter values only every K
rounds. They show that the model’s performance is robust
to increasing the synchronization interval K, in a setting with
five clients. Additionally, they provide a formal proof on the
convergence of the algorithm in non-IID scenarios.

Improving Communication Efficiency. Various works
have looked into compression and quantization methods to
reduce message size in FL [29–31]. With stochastic k-level
quantization, a limited number of log2 k bits is used to rep-
resent each of the coordinates within a gradient vector. Each
coordinate is rounded to one of the k evenly spread levels be-
tween the minimum and maximum value of the correspond-
ing coordinate. Variable length encodings for each of the co-
ordinates can subsequently be applied to further reduce the
number of bits transmitted to the federator [30].

Alternative methods include gradient sparsification, where
only a subset of the gradients is sent to the federator based
on absolute values, thresholds, or random bitmasks, and low-
rank decomposition, where a model update is represented as
the product of two low-rank matrices, out of which only one is
trained and sent to the federator, whilst the other is initialized
randomly every round [29].

More recently, [32] introduced correlated quantization,
which uses shared randomness to introduce correlation be-
tween the local quantizers at each client, improving error
bounds and speeding up convergence. The main intuition be-
hind correlated quantization is that if the first client rounds
up its value, the second client should round down its value to
reduce the mean squared error.

The research on compression and quantization methods is
mainly based on general statistical methods that could also be
applied to diffusion gradients. However, none of the methods
seems to take advantage of the underlying model architecture,
so that we consider them orthogonal to our work.

Latent Diffusion Models. A recent breakthrough in diffu-
sion research is the Latent Diffusion Model (LDM) [1], where
the diffusion process takes place in a latent space of reduced
dimensionality rather than the high dimensional RGB picture
space. It was found that most of the bits from input images
relate to perceptual rather than semantic or conceptual com-
position so that the images could aggressively be compressed
without losing information about the latter. A major benefit

of this approach is the reduced number of parameters to be
optimized in the UNet [18] to approximate the denoising pro-
cess. This is especially fruitful in a federated setting where
the weights have to be sent back and forth between clients and
the federator. A downside of this approach is that it requires
a separately trained encoder and decoder to convert between
the image and latent space.

4 Communication Efficient Federated
Diffusion

In this section, we explain our federated diffusion algorithm
FEDDIFF as well as the underlying UNet architecture and our
communication efficient training methods, USPLIT, UDEC,
and ULATDEC, which take advantage of this architecture.

Federated Diffusion. In our federated diffusion scenario,
we consider a cross-silo setting [26] with a small set of K
clients equipped with reasonable computing power and rela-
tively large datasets Dk ∈ D. We use the Federated Aver-
aging (FedAvg) algorithm [7] to optimize the objective from
Equation 9, as it has proven to be capable of training a wide
variety of deep neural networks using relatively few rounds
of communication between the federator and the clients.

Initially, we randomly initialize a global model with pa-
rameter vector θ0. We introduce R training rounds in which
all clients partake. They receive the latest model parameters
θr−1 from the federator at the start of each round r and per-
form SGD minimizing Lsimple over their local dataset Dk to
produce an updated parameter vector θkr , such as in Algo-
rithm 1. Specifically, we use mini-batch SGD with batch size
B, and fixed learning rate η. Parameter E regulates the num-
ber of local epochs that every client performs over its dataset
every round. At the end of every round, the clients send back
θkr to the federator, which takes a weighted sum over the client
vectors using the relative dataset size |Dk|

|D| to produce an up-
dated global model with parameters θr. Algorithm 3 details
FEDDIFF’s pseudocode.

Algorithm 3 Federated Diffusion (FEDDIFF)

Input: Number of clients K, number of communication
rounds R, number of local epochs E, local mini-batch size
B, local datasets Dk, learning rate η, number of diffusion
timesteps T and variance schedule β1, ..., βT .
Output: Global model parameters θR

Federator executes:
initialize θ0
|D| ←

∑K
k=1 |Dk|

for r = 1 to R do
for k = 1 to K do

θkr ← CLIENTUPDATE(k, θr−1)
end for
θr ← 1

|D|
∑K

k=1 θ
k
r · |Dk|

end for

Client executes:
function CLIENTUPDATE(k, θr−1):
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θkr ← θr−1

B ← (split Dk into batches of size B)
for e = 1 to E do

for b ∈ B do
θkr ← θkr − η · ∇θk

r
CALCULATELOSS(b; θkr )

end for
end for
return θkr

end function

function CALCULATELOSS(b; θkr ):
for i ∈ b do

t ∼ Uniform({1, .., T})
ϵt ∼ N (0, I)

ᾱt =
∏t

s=1(1− βt)
Li = ∥ϵt − ϵθk

r
(
√
ᾱti+

√
1− ᾱtϵt, t)∥22

end for
return 1

|b|
∑

i∈b Li

end function

UNet Architecture. For every client, we use an identical
UNet [18] convolutional neural network to approximate the
function ϵθ(xt, t). The name ”UNet” is derived from the net-
work’s U-shaped architecture, which consists of an encoder
and a decoder path with what is referred to as a latent bridge
or bottleneck in the middle. First, the encoder path gradually
downsamples the noisy input images to capture an increas-
ing number of higher-level but lower-resolution feature maps.
The bottleneck in the middle can then be leveraged to perform
feature selection, after which the decoder path performs up-
sampling to generate pixel-level predictions of the noise ϵt.
Skip connections inspired by [33] are employed to bridge the
gap between the encoder and decoder, allowing the network
to combine both low-level and high-level features effectively.

In our version, the Wide ResNet Blocks [33] used by [17]
are replaced by more state-of-the-art ConvNeXt Blocks [34].
Another difference is that we apply three rather than four
levels of downsampling because we aim at generating small
28x28 images. Our bottleneck preserves spatial dimensional-
ity and feature map count to allow a smooth gradient flow be-
tween the encoder and decoder and straightforward concate-
nation via the skip connections in the layers above. Param-
eter sharing over time is accommodated by leveraging trans-
former sinusoidal position embeddings [35] for the diffusion
timesteps t, as in [36]. A graphical representation of our UNet
model, showing the feature map dimensions and counts re-
sulting from the operations in the encoder, bottleneck, and
decoder can be found in Figure 2.

Communication Efficient Training Methods. By default
FEDDIFF uses what we refer to as the FULL training method,
which consists of the federator sending the full parameter
vector θ to each of the K clients and receiving the updated pa-
rameter vectors θk from each of the clients during each of the
R communication rounds. Let θenc, θbot, θdec be the parame-
ter vectors associated with the UNets encoder, bottleneck and
decoder respectively so that θ = θenc ⌢ θbot ⌢ θdec, where
the ⌢ operator denotes vector concatenation. The total com-
munication overhead of FULL is now O(R ·K · 2|θ|).

We propose two alternative types of training techniques that
exploit the structure of the UNet to reduce the total commu-
nication overhead incurred during the training process.

USPLIT decreases the communication overhead by split-
ting parameter updates complementarily amongst the clients.
The federator initiates each communication round again by
sending the full parameter vector θ to each of the clients so
that these can initialize their local model identically. How-
ever, each client is assigned a specific subset of the param-
eters, which can include θenc, θbot and/or θdec, to report the
updates for that round. The global model is then updated us-
ing an adapted version of FEDDIFF that only considers the
updates from the responsible clients for each network part.

In more detail, tasks are assigned as follows: Every round,
we divide the set of clients into random pairs. In each pair,
one client reports about the encoder and the other about the
decoder. The task of reporting about the bottleneck is ran-
domly assigned to one of the two. If the number of clients is
odd, the last client is assigned either the encoder or decoder
task randomly, in addition to the bottleneck task.

This task assignment method mimics selecting a random
fraction C = 0.5 of the clients every round to perform model
updates, like in [7]. However, this is now done for each of the
network parts independently. By assigning new tasks every
round, the federator still gathers information regarding each
of the network parts for each of the clients over time, whilst
reducing the communication overhead of the client updates
by a factor of two. As the communication overhead intro-
duced by the federator remains the same, this results in an
overall overhead in O(R ·K · 32 |θ|).

Alternatively, UDEC and ULATDEC limit the federated
training of the model to a subset of the parameters, and leave
the training of the other parameters up to the clients them-
selves. This results in every client having a composed model
with both globally trained as well as locally trained parame-
ters, much like in Transfer Learning [37].

The intuition behind both methods is that the denoising ca-
pacity of the UNet can mainly be attributed to the decoder,
which creates the noise estimations based on the features ex-
tracted and selected by the encoder and bottleneck respec-
tively. Hence, UDEC collaboratively trains (and thus ex-
changes) only the decoder parameters. As a result, clients
have the freedom to utilize their locally trained encoder and
bottleneck to extract and select features. This might result
in mismatches between the locally selected features and the
features expected as inputs to the decoder. ULATDEC aims
to mitigate this issue by training the bottleneck collabora-
tively too, so that the feature selection is more unified. As
the bottleneck in our UNet does not perform explicit feature
selection by reducing the number of feature maps, we expect
little difference in model performance between both meth-
ods. UDEC and ULATDEC have a communication overhead
ofO(R·K ·2|θdec|) andO(R·K ·2|θdec ⌢ θbot|) respectively.

5 Experimental Setup and Results
In this section, we first describe our experimental setup and
evaluation metrics. Then we describe the different experi-
ments that we carried out to quantitatively evaluate our meth-
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Figure 2: UNet depiction showing the widths, heights, and counts for the feature maps resulting from the different operations in the encoder,
bottleneck, and decoder. For each network part, the training methods that consider it for federated training are indicated within the brackets.

ods in different federated settings and discuss their results.
Experimental Details. All models were implemented us-

ing the PyTorch framework. We used the Fashion-MNIST
dataset [38], which consists of 60,000 training and 10,000
test images of 10 different fashion items in grayscale, each
having 28x28 pixels. The diffusion parameters from [17]
were adopted, specifically T = 1000 and the linear diffusion
schedule ranging from β1 = 10−4 to βT = 0.02. Our model
of choice was the UNet, as discussed in Section 4, which con-
tained a total of 2,996,315 parameters. For the SGD opti-
mizer, we used local batch size B = 128 and learning rate
η = 10−4. To damp out gradient oscillations, we employed
the Adam optimizer [39]. All experiments were conducted on
a single NVIDIA GeForce RTX 3090 GPU with CUDA 11.7.
We performed 5 runs per experiment and reported averages.

Evaluation Metrics. To evaluate the communication ef-
ficiency of our models, we reported the cumulative number
of communicated parameters between the federator and all
clients during model training (N ). To measure image qual-
ity, we used the widespread Fréchet Inception Distance (FID)
[19], which measures the distance between a target distribu-
tion and a distribution of generated samples based on mean
vectors and covariance matrices extracted by a pre-trained In-
ception V3 model [40]. The lower the FID, the better the im-
age quality. Usually, 50.000 images per distribution are used
to extract the required statistics, but given the slow diffusion
sampling and the fact that our global test set only contained
10,000 images, we decided to use 5,000 images instead. We
measured the FIDs on client level, given that the federator
only had access to partial models with ULATDEC and UDEC.

Establishing a Centralized Baseline. We first considered
the centralized setting where K = 1 and trained models with
R = 30. We visually estimated the quality of the output im-
ages and found this to be sufficient after 10 rounds of training.
Hence, we set the corresponding mean FID of 72 as the image
artifact threshold, below which quality was deemed accept-
able. We further established that there was little improvement
from round 15 onwards. Hence, we set the corresponding
mean FID of 43 as the centralized baseline and fixed R = 15
for the federated setting to compare with.

Testing the Federated Setting. Next, we conducted exper-
iments in the FULL federated setting, testing different num-
bers of clients K ∈ {2, 5, 10} on IID data using R = 15 and

E = 1. Figure 3 demonstrates that the FID scores quickly
surpassed the artifact threshold as the number of clients in-
creased. To achieve better FID scores without increasing
the number of communication rounds, we explored different
numbers of local epochs E ∈ {2, 3, 5, 8} per communication
round. As shown in Figure 3, increasing E significantly im-
proved the FID scores. The higher the number of clients K,
the more local epochs E were required to bring the FID scores
under the artifact threshold. However, the training time lin-
early increased with E. To strike a balance between training
time and output quality, we opted for E = 5, which yielded
FID scores that were comparable with the centralized base-
line, whilst maintaining reasonable maximum training times
at around 30 minutes per model.
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Figure 3: Mean FID scores with error bounds for different number
of clients K and local epochs E with R = 15 in the FULL federated
setting on IID data.

Comparison of the Training Methods. With the number of
epochs E = 5 and global communication rounds R = 15
fixed, we compared the FULL federated training with US-
PLIT, ULATDEC and UDEC in terms of the cumulative num-
ber of communicated parameters N and the resulting FIDs
for different number of clients K ∈ {2, 5, 10} with IID data.

Figure 4 shows the linear development of N over the train-
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ing rounds for each of the methods with K = 5, whereas
Table 1 shows N for each of the settings. On average, US-
PLIT achieved a 25% reduction over FULL, where ULATDEC
and UDEC achieved a 41% and 74% reduction respectively.
These are in correspondence with the Big-O bounds for com-
munication overhead established in Section 4.
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Figure 4: Cumulative number of communicated parameters (·108)
during training for the different training methods with K = 5.

Table 1 shows comparable FID scores for USPLIT and FULL
in the IID setting, where UDEC and ULATDEC have higher
FID scores. There is little difference between the latter two,
which is in line with our hypothesis that training the latent
bridge in a federated manner would not significantly improve
the image quality for our version of the UNet. In future work,
we plan to explore different bottleneck configurations to in-
vestigate their effect on both training methods.

Another noteworthy observation concerns the higher stan-
dard deviations for UDEC and ULATDEC, in comparison to
FULL and USPLIT. These can be attributed to performance
variations across local client models resulting from partial
federated training, as elucidated in Table 2. For instance, the
FID scores of Client 3 are twice as high as those of Client
1, indicating that Client 1 was strikingly more successful in
training the encoder and bottleneck locally than Client 3, even
though their training data was IID.

Lastly, we can see that for K ∈ {2, 5}, the mean FID
scores are below the image artifact threshold for each of the
methods. Together with the actual outputs shown in Figure 5,
this proves that even with a 74% reduction in N , images with
quality comparable to the centralized baseline can be gener-
ated in a federated setting with IID data. FULL and USPLIT
are also able to deal with K = 10, although the FID scores
are significantly worse than for K = 2 and K = 5. UDEC
and ULATDEC fail to produce images of sufficient quality
with K = 10.

In general, the FID scores tend to rise as the number of
clients increases, suggesting the need to increase either R or
E in scenarios involving a larger number of clients. In future

work, we therefore plan to plot the FID scores over differ-
ent higher round numbers, which will require more time than
currently available (to give an indication: completing the ex-
periments that gave rise to Table 1 took an entire week).

Table 1: FID scores and number of communicated parameters N for
different training methods, numbers of clients K and data distribu-
tions, using R = 15 and E = 5. The baseline uses E = 1. The *
denotes that the FID scores have been averaged over all local client
models. Scores that exceed the artifact threshold of 72 within one
standard deviation are marked in orange.

Method K N (·106) FID
IID l-skew q-skew

BASELINE 1 0 43± 1 n/a n/a

FULL

2 179.78 39± 2 33± 1 33± 3
5 449.45 39± 4 43± 4 23± 5

10 898.89 61± 2 64± 3 76± 11

USPLIT

2 134.83 37± 3 38± 4 55± 4
5 343.73 41± 5 61± 5 39± 9

10 674.17 62± 3 70± 8 87± 19

ULATDEC*

2 105.50 45± 13 49± 4 54± 24
5 263.75 53± 15 72± 30 122± 138

10 527.51 70± 14 101± 83 137± 125

UDEC*

2 47.54 49± 16 49± 5 78± 48
5 118.85 51± 15 75± 31 139± 135

10 237.69 72± 20 98± 67 147± 119

Table 2: Averaged FID scores for the local client models resulting
from UDEC and ULATDEC training on IID data with K = 5.

Local Model UDEC ULATDEC
Client 0 44 44
Client 1 35 36
Client 2 46 55
Client 3 71 68
Client 4 58 60

Figure 5: Fashion-MNIST samples generated with the baseline
model (first row) and FEDDIFF models trained using the FULL (sec-
ond row), USPLIT (third row), ULATDEC (fourth row), and UDEC
(fifth row) methods with K = 5, R = 15 and E = 5.

Testing with non-IID data. To evaluate the robustness of the
training methods with respect to statistical heterogeneity, we
simulated label distribution skew (l-skew) and quantity skew
(q-skew) in our data, using a Dirichlet distribution [41,42]. To
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mimic l-skew, we sampled pj ∼ DirK(β) for every label j
and allocated a pj,k proportion of the instances to each client
k. To mimic q-skew, we sampled q ∼ DirK(β) and allocated
a qk proportion of the total training dataset to each client k.
Parameter β is the concentration parameter. When β → ∞,
the result is an IID distribution. The closer β is to 0, the
more skewed the distribution. We fixed β = 0.5 as in [41].
Figure 6 shows and example of a l-skewed data partition when
K = 5, where every client has a few major classes with many
samples, as well as minor classes with relatively few samples.
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Figure 6: An example of l-skew on the Fashion-MNIST dataset for
K = 5 using β = 0.5. Each cell yields the number of images of a
certain label assigned to a certain client.

We ran five experiments with l-skew and q-skew for all train-
ing methods with K ∈ {2, 5, 10} and reported the averaged
FID scores in Table 1. The combination of a large num-
ber of clients K = 10 together with q-skew or l-skew ap-
peared problematic for most training methods (except FULL),
which is in line with our hypothesis based on GAN results
from Section 3. Where FULL and USPLIT were able to cope
with q-skew in combination with fewer clients, UDEC and
ULATDEC failed to cope with it at all. Interestingly, FULL
performed extremely well on q-skewed data with K = 5,
outperforming the IID scenario by far without an explainable
reason. FULL appeared robust against l-skew, which is in line
with findings by [28] and resulted in similar FID scores as
in the IID setting. However, all other methods seem to be
affected by l-skew starting from K = 5, leading to notable
drops in image quality compared to the IID setting.

Testing with other Datasets. The choice for the Fashion-
MNIST dataset allowed for fast training and evaluation.
However, training diffusion models using low-resolution
grayscale images forms a drastic simplification of real-world
diffusion training tasks. Hence, we were interested in experi-
menting with higher dimension colored images too. We chose
the CelebA dataset [43], which contains over 200k images of
celebrities for this purpose. We resized the images to 64x64
and to facilitate the creation of different data distributions,
we created 16 different classes among the images based on
the combination of sex (male, female), age (young, old) and
hair color (black, brown, blond, gray). As some images were
not annotated properly, we ended up with a usable dataset

comprising of 162,770 training images and 19,962 test im-
ages. Using FEDDIFF, we trained a 14,892,477 parameter
model over an IID dataset with K = 5, R = 30, E = 5 and
B = 64, which took over 37 hours. We were able to deter-
mine a FID score of 53 after a 5 hour sampling process. The
federated model demonstrated its ability to generate realistic
faces, as depicted in Figure 7. Regrettably, due to the exten-
sive time required for training and evaluation, we were unable
to conduct further experiments.

Figure 7: CelebA samples generated with a FEDDIFF model trained
using the FULL method on IID data with K = 5.

6 Conclusions and Future Work
We have demonstrated that diffusion models can be trained
using federated learning by utilizing an adapted Federated
Averaging (FedAvg) algorithm to train a UNet-based De-
noising Diffusion Probabilistic Model (DPPM). Moreover,
we have shown that the images generated by our federated
model exhibit comparable quality to those generated by their
non-federated counterparts, as evaluated by the FID score.
We have also shown our method’s robustness to label and
quantity-skewed data distributions.

Furthermore, we discovered that complementarily splitting
the parameter updates for the encoder, decoder, and bottle-
neck parts of the UNet among clients every round can en-
hance communication efficiency during training. This ap-
proach led to a 25% reduction in the number of exchanged pa-
rameters whilst maintaining image quality comparable to the
naive approach, where all parameters are exchanged between
the federator and clients every round. However, this method
demonstrated limited resilience against label and quantity
skew in a federated setting with few clients.

Additionally, we found that training the encoder and bottle-
neck locally resulted in a significant reduction in communica-
tion by up to 74% compared to the naive approach. However,
this approach exhibited variations in image quality among the
local client models and was only effective when applied to a
limited number of clients in conjunction with IID data.

Lastly, we identify several directions for future work. First,
our work is limited to the DDPM formulation so that feder-
ated solutions for SDEs and SGMs are still to be explored.
Second, we believe robustness against non-IID data distribu-
tions could be improved by experimenting with alternative
aggregation methods beyond FedAvg. Third, one could estab-
lish theoretical bounds for the convergence of our proposed
methods. Finally, our methods could be combined with La-
tent Diffusion Models (LDMs) to work with more challeng-
ing and higher-resolution datasets.
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7 Responsible Research
Our research adheres to responsible and ethical practices, pri-
oritizing reproducibility and transparency. We made our re-
search fully reproducible by providing the complete source
code, parameters, and techniques used in our experiments.
This allows others to replicate, validate, and build upon our
work. Additionally, we maintained transparency by saving
all intermediate models generated during the research pro-
cess. Lastly, we followed ethical guidelines to ensure that no
sensitive or private data was used during our research.

The significant impact of generative AI on society high-
lights the need to anticipate and address potential ethical im-
plications. The accessibility of pre-trained diffusion models
capable of generating highly realistic outputs has facilitated
the creation of deceptive and malicious content resembling
real images. Our research contributes to enabling the general
public to not only use but also train these models, which raises
concerns about amplifying these risks. For example, clients
could deliberately manipulate their local dataset to promote
the creation of malicious content by a global model. It is im-
portant to conduct further research into such byzantine behav-
iors and introduce regulations before deploying large-scale
federated generative models in practice.

However, we believe that the benefits of federated train-
ing for diffusion models, such as improved privacy, data au-
thority, and reduced dependence on Big Tech companies will
eventually outweigh the aforementioned risks. That is, when
the generation and spread of disinformation through federated
learning can effectively be detected and legally penalized.
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C. Szepesvári, G. Niu, and S. Sabato, Eds., vol. 162.
PMLR, 2022, pp. 20 856–20 876. [Online]. Available:
https://proceedings.mlr.press/v162/suresh22a.html

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern
Recognition, ser. CVPR ’16. IEEE, Jun. 2016, pp.
770–778. [Online]. Available: http://ieeexplore.ieee.
org/document/7780459

[34] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and
S. Xie, “A convnet for the 2020s,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.
IEEE, 2022, pp. 11 966–11 976. [Online]. Available:
https://doi.org/10.1109/CVPR52688.2022.01167

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30.
Curran Associates, Inc., 2017. [Online]. Available:
https://proceedings.neurips.cc/paper files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[36] N. Rogge and K. Rasul, “The annotated diffusion
model,” Jun 2022. [Online]. Available: https://
huggingface.co/blog/annotated-diffusion

[37] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey
of transfer learning,” Journal of Big data, vol. 3, no. 1,
p. 9, 2016.

[38] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” ArXiv, vol. abs/1708.07747, 2017.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 2015.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens,
and Z. Wojna, “Rethinking the inception architecture
for computer vision,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 2818–2826. [Online].
Available: https://doi.org/10.1109/CVPR.2016.308

[41] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald,
N. Hoang, and Y. Khazaeni, “Bayesian nonparametric
federated learning of neural networks,” in Proceedings
of the 36th International Conference on Machine
Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 7252–7261.
[Online]. Available: https://proceedings.mlr.press/v97/
yurochkin19a.html

[42] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learn-
ing on non-iid data silos: An experimental study,” 2022
IEEE 38th International Conference on Data Engineer-
ing (ICDE), pp. 965–978, 2021.

[43] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learn-
ing face attributes in the wild,” in 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015,
pp. 3730–3738.

11

https://arxiv.org/abs/1611.00429
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.mlr.press/v162/suresh22a.html
http://ieeexplore.ieee.org/document/7780459
http://ieeexplore.ieee.org/document/7780459
https://doi.org/10.1109/CVPR52688.2022.01167
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://huggingface.co/blog/annotated-diffusion
https://huggingface.co/blog/annotated-diffusion
https://doi.org/10.1109/CVPR.2016.308
https://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.mlr.press/v97/yurochkin19a.html

	Introduction
	Background
	Related Work
	Communication Efficient Federated Diffusion
	Experimental Setup and Results
	Conclusions and Future Work
	Responsible Research

