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1 Abstract

Estimating the state of dynamically evolving systems is a fundamental challenge
across diverse fields such as robotics, navigation, economics, and environmental
monitoring. This thesis explores and compares three prominent state estimation
methods: the Kalman Filter (KF), the Extended Kalman Filter (EKF), and the
Unscented Kalman Filter (UKF), each tailored to handle specific complexities
encountered in real-world applications.

The foundational Kalman Filter is rigorously examined first, deriving its
algorithm through Bayesian inference and the fusion of multiple estimates. A
comparative analysis of these approaches highlights the KF’s robustness in linear
systems while acknowledging limitations in nonlinear environments.

The thesis then transitions to the Extended Kalman Filter, which extends
the KF to nonlinear systems by linearizing state equations. Detailed math-
ematical derivation and comparative studies underscore the EKF’s enhanced
capabilities in handling complex dynamics, yet reveal challenges in accuracy
and computational cost.

Moving further, the Unscented Kalman Filter is introduced as a non-linear
state estimation method utilizing the Unscented Transform. Detailed explo-
ration and mathematical formulation demonstrate its effectiveness in addressing
uncertainties, presenting a viable alternative to both KF and EKF in scenarios
where linearization proves inadequate.

To validate these methodologies, simulations are conducted using real-world
data from the KITTI dataset, comprising of GPS and IMU measurements.
Ground truth trajectories and non-linear variables such as yaw rates and for-
ward velocities are utilized, showcasing each filter’s ability to estimate and track
dynamic system states accurately.

Results from simulations are analyzed using performance metrics including
Normalized Estimation Error Squared (NEES) and Root Mean Squared Er-
ror (RMSE), providing quantitative insights into filter performance relative to
ground truth. These evaluations emphasize the strengths and limitations of
each method across various application domains, supporting informed decisions
on filter selection based on specific system dynamics and measurement charac-
teristics.

In conclusion, this thesis contributes to a comprehensive analysis and com-
parative study of state estimation methods essential for navigating the complex-
ities of dynamically evolving systems. By bridging theoretical advancements
with practical insights, it lays a foundation for future research and application
in fields requiring precise state estimation amidst dynamic change.
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2 Lay Summary

Imagine you’re driving with the GPS guiding you through unfamiliar streets.
The GPS is supposed to tell you where you are, but sometimes it’s not quite
right. Maybe it loses signal in a tunnel or gives confusing directions in a dense
city. In reality, there are many reasons why GPS measurements can be wrong
– bad connections, satellite positions or atmospheric conditions.

Now, imagine if you couldn’t trust the GPS at all times. What if it suddenly
tells you that you’re in another country, even though you know you’re not? This
is where the challenge lies: how do we accurately estimate where we are or where
we’re going, even when our measurements are noisy or incomplete?

This problem isn’t just about GPS in cars. It’s everywhere. In robotics,
economics, environmental monitoring – in almost every field, measurements
can be imprecise due to errors, noise, or unexpected events. Mathematicians
and scientists have developed tools called filters and estimators to tackle this
challenge.

For example, in your car, there are sensors like accelerometers that mea-
sure your car’s acceleration. Mathematicians can use these measurements in
filters and estimators to better provide a location estimate, even if the GPS
signal is lost or inaccurate. These tools help by combining predictions with
measurements to give accurate estimates of a system’s state.

This thesis explores one of the most widely used filters, called the Kalman
Filter. It’s a powerful tool that combines predictions with measurements to
give accurate estimates of a system’s state, even when the measurements are
flawed. By understanding and evaluating the Kalman Filter, we gain insights
into how to handle uncertainty and make better decisions based on imperfect
information.
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3 Introduction

3.1 Background

In many real-world applications, accurately estimating the state of a system
is crucial for effective decision-making, control, and analysis. Whether it is
tracking the position of a moving object, predicting financial market trends, or
controlling the dynamics of a robotic system, having a reliable estimate of the
system’s state is essential. However, obtaining precise measurements is often
challenged by noise, uncertainties, and incomplete information. This is where
filters and estimators come into play.

Filters and estimators are mathematical tools designed to extract useful
information from noisy and uncertain data. They aim to provide an accurate
estimate of the true state of a system by combining available measurements with
prior knowledge about the system’s dynamics. These tools are fundamental
in fields such as engineering, economics, and natural sciences, where dealing
with uncertainties and making predictions based on incomplete information are
common tasks.

Consider the everyday example of using a GPS navigation system while
driving. Most of us have experienced moments where the GPS signal becomes
unreliable due to factors such as tall buildings, tunnels, or atmospheric condi-
tions. Despite its occasional inaccuracies, GPS navigation generally helps us
navigate through unknown territories with reasonable accuracy. However, in
scenarios where GPS measurements fail or produce extreme outliers (like plac-
ing us on the wrong road), relying solely on GPS data can lead to erroneous
conclusions. This illustrates the broader challenge: how can we accurately esti-
mate the true position of a vehicle, or any system, in the presence of imperfect,
noisy, or incomplete information?

Modern vehicles are equipped with additional sensors such as accelerometers
and Inertial Measurement Units (IMUs). For instance, accelerometers measure
the car’s acceleration, and IMUs provide data on orientation and angular ve-
locities. By integrating these measurements with GPS data, we can improve
the accuracy of the vehicle’s location estimate. These sensors can help predict
the car’s position even when GPS data is unreliable or lost, demonstrating how
multiple sources of information can be combined to enhance estimation.

This is where mathematicians and engineers apply advanced estimation tech-
niques like the Kalman filter (KF). Introduced by Rudolf Kalman in 1960 [2], the
Kalman filter is a powerful tool that combines predictions and measurements to
estimate the state of a system, even in the presence of noise and uncertainty. It
iteratively refines its estimates through prediction and update steps, effectively
integrating prior knowledge with current measurements to provide optimal state
estimates.

This thesis provides an intuitive explanation of the Kalman filter (KF) and
its applications, followed by a mathematically rigorous exploration of its under-
lying Bayesian principles and the method of fusing estimates. In Section 4, we
delve into the Extended Kalman Filter (EKF), exploring its algorithm, mathe-
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matical derivation, and comparative analysis with the KF, while also examining
its limitations.

Next, Section 5 addresses the limitations of the EKF by introducing the
Unscented Kalman Filter (UKF). We provide a detailed explanation of its algo-
rithm, key mathematical formulations, and comparative analysis with the EKF,
highlighting its advantages and addressing its limitations.

Finally, in Section 6, we perform a comparative analysis of the KF, EKF,
and UKF using real-world data from the KITTI dataset. Performance metrics
such as Normalized Estimation Error Squared (NEES) and Mean Squared Error
(MSE) provide quantitative insights into the filters’ performance relative to
ground truth.

By understanding the principles and mechanics of the Kalman filter and its
variants, as well as their respective strengths and limitations, we gain valuable
insights into modern estimation theory and their applications across diverse
fields of science and engineering.

3.2 Prerequisites

In many scientific and engineering disciplines, accurately estimating the state
of a dynamic system is a fundamental task. A dynamic system is typically
represented by a set of equations that describe its evolution over time. However,
these systems are often subject to uncertainties and noise, making it challenging
to obtain precise measurements. Estimators and filters are used to mitigate the
effects of noise and provide accurate state estimates.

3.2.1 Problem Setup: State Space Model

A common framework for modeling dynamic systems is the state space model.
In this model, the system is described by two main equations: the state equation
and the measurement equation.

State Equation
The state equation describes how the state of the system evolves over time.

Ideally, from a deterministic standpoint, it can be represented as:

xk = Akxk−1, (1)

where xk is the state vector at time k, and Ak is the state transition matrix
that describes how the state evolves from time k − 1 to k.

From a physics perspective, Ak represents the idealized evolution encapsu-
lates the fundamental laws governing the system dynamics, assuming no external
influences or uncertainties.
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Example
Consider tracking the position of an object in motion where xk could repre-

sent the position and velocity at time k. Here, Ak would encapsulate the laws
of motion, such as constant velocity or acceleration.

In practice, however, real-world systems are subject to various influences
and uncertainties that are not accounted for in the idealized model. Therefore
noise must be added to the idealized model:

xk = Akxk−1 + (noise), (2)

To accurately reflect these complexities, we revise the state equation to in-
corporate additional factors:

xk = Akxk−1 +Bkuk + wk, (3)

where:

• Bkuk represents the impact of control inputs uk on the state evolution.
These inputs can include forces, commands, or interventions applied to
the system.

• wk denotes process noise, which accounts for unmodeled dynamics, dis-
turbances, or random fluctuations affecting the system. It is assumed to
follow a Gaussian distribution with zero mean and covariance matrix Qk.

Continuing with the vehicle tracking example, Bkuk could represent the in-
fluence of acceleration due to varying road conditions, while wk could account
for unpredictable factors like wind gusts or measurement inaccuracies from GPS
sensors.

Measurement Equation
The measurement equation relates the state of the system to the measure-

ments taken at time k:

yk = Ckxk + vk, (4)

where:

• yk is the measurement vector at time k, capturing observations or sensor
readings.

• Ck is the measurement matrix that maps the state vector to the measure-
ment vector. It defines how the state variables contribute to the observed
measurements.

• vk is the measurement noise, assumed to be Gaussian with zero mean
and covariance matrix Rk. It accounts for errors or disturbances in the
measurement process.
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The state space model, defined by equations (3) and (4), provide a com-
prehensive framework for modeling dynamic systems, accounting for both the
evolution of the system state and the relationship between the state and mea-
surements.

3.2.2 Intuitive Examples

To illustrate the state space model, consider the following examples:

• Tracking a Moving Vehicle: The state vector xk could represent the
position and velocity of a vehicle at time k. The control input uk might be
the acceleration, and the measurements yk could be obtained from GPS
sensors. The matrices Ak, Bk, and Ck would be determined based on the
physical laws of motion and the sensor characteristics.

• Economics: In an economic system, the state vector xk might include
variables such as GDP, inflation rate, and unemployment rate. The control
input uk could be government policies, and the measurements yk could
come from economic indicators. The state transition and measurement
matrices would be derived from economic models.

3.2.3 Mathematical Prerequisites

Understanding the Kalman filter and its derivations requires familiarity with
several mathematical concepts. Below are some key definitions and theorems:

Gaussian Distributions
A random variable x is said to be Gaussian distributed with mean µ and

covariance Σ, denoted as x ∼ N (µ,Σ), if its probability density function is given
by:

f(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (5)

Bayesian Inference
Bayesian inference is a method of statistical inference in which Bayes’ theo-

rem is used to update the probability distribution of a random variable as more
information becomes available. For a given set of measurements y, the posterior
distribution of the state x is given by:

f(x|y) = f(y|x)f(x)
f(y)

, (6)

where:

• f(x|y) is the posterior distribution.

• f(y|x) is the likelihood.
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• f(x) is the prior distribution.

• f(y) is the marginal likelihood.

Linear Algebra and Matrix Calculations
Several linear algebra concepts are essential for understanding the Kalman

filter, including:

• Matrix Multiplication: The product of two matrices A and B is de-
noted by AB and is defined if the number of columns in A matches the
number of rows in B.

• Transpose: The transpose of a matrix A, denoted AT , is obtained by
swapping its rows and columns.

• Inverse: The inverse of a square matrix A, denoted A−1, satisfies AA−1 =
A−1A = I, where I is the identity matrix.

• Covariance Matrices: A covariance matrix Σ is a symmetric, positive
semi-definite matrix that describes the covariance between elements of a
random vector.

3.2.4 Conclusion

By understanding the problem setup and the essential mathematical prereq-
uisites, a strong foundation is laid for comprehending the Kalman filter. The
Kalman filter leverages the state space model and Bayesian inference to provide
accurate state estimates from noisy measurements. In the subsequent section,
this thesis will delve deeper into the Kalman filter’s operations, including the
prediction and update steps, and explore its derivations and applications.
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4 Kalman Filter (KF)

The Kalman Filter is a powerful algorithm for estimating the state of a dynamic
system from noisy measurements. Originally developed for aerospace engineer-
ing applications, it has since found widespread use in various fields such as
robotics, finance, and signal processing.

To understand the Kalman Filter, consider the problem of tracking the po-
sition and velocity of a car over time using GPS measurements. The goal is
to estimate the position of the car over time given noisy measurements of its
position.

4.1 State Variables

Define the state and measurement variables as follows:

• State vector: xk =

[
xk

vk

]
, where xk is the position and vk is the velocity

at time k.

• Measurement vector: zk = zk, where zk is the measured position at
time k.

4.2 Model Parameters

The system is described using the following parameters:

• State transition matrix: A =

[
1 ∆t
0 1

]
, where ∆t is the time step

duration.

• Control input matrix: B =

[
0
0

]
(no control input in this example).

• Measurement matrix: H =
[
1 0

]
.

• Process noise covariance: Q =

[
σ2
w 0
0 σ2

v

]
, where σ2

w and σ2
v are the

variances of the process noise in position and velocity, respectively.

• Measurement noise covariance: R = σ2
z , where σ2

z is the variance of
the measurement noise.

• Initial state estimate: x̂0 =

[
x̂0

v̂0

]
.

• Initial estimate covariance: P0 =

[
σ2
x0

0
0 σ2

v0

]
, where σ2

x0
and σ2

v0 are

the variances of the initial state estimates.
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4.3 The Kalman Filter’s algorithm

The objective is to estimate the car’s position and velocity over time, given a
sequence of noisy GPS measurements. The Kalman Filter accomplishes this
through a two-step process: prediction and update.

4.3.1 Predict Step

In the predict step, the process model is used to forecast the state of the system
at the next time step. Given the current state estimate x̂k−1|k−1 and the process
model parameters, the predicted state is:

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk (7)

Since there is no control input in this example, Bkuk = 0.
Also predict the error covariance matrix to account for process noise:

Pk|k−1 = AkPk−1|k−1A
T
k +Qk (8)

4.3.2 Update Step

In the update step, the actual measurement zk is used to refine the state es-
timate. The innovation or residual, representing the discrepancy between the
predicted and actual measurements, is computed as:

ek = zk −Hkx̂k|k−1 (9)

Next, compute the Kalman gain Kk, which determines the weighting be-
tween the predicted state and the measurement:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (10)

Using the Kalman gain, update the state estimate:

x̂k|k = x̂k|k−1 +Kkek (11)

Finally, update the error covariance matrix to reflect the reduction in uncer-
tainty due to the new measurement:

Pk|k = (I−KkHk)Pk|k−1 (12)

These equations constitute the core of the Kalman Filter algorithm. The
filter iteratively performs the predict and update steps, continuously refining
the state estimate based on incoming measurements.
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4.4 Complete Mathematical Formulation

The Kalman filter can be derived using a Bayesian approach, which assumes
that the state of the system is a random variable with a prior distribution. The
measurement is also a random variable, and it is related to the state by a linear
equation. The goal is to update the estimate of the state using Bayes’ rule,
which states that the posterior distribution of the state is proportional to the
product of the prior distribution and the likelihood function of the measurement.
In the case of the Kalman filter, the likelihood function is Gaussian, and the
prior and posterior distributions are also Gaussian.

Theorem 1 (Prediction Step of the Kalman Filter). Given the state transition
model

xk = Fxk−1 +wk, (13)

where F is the state transition matrix and wk is the process noise, which is
Gaussian with zero mean and covariance Q, the predicted state estimate x̂k|k−1

and the predicted covariance Pk|k−1 are given by:

x̂k|k−1 = F x̂k−1|k−1, (14)

Pk|k−1 = FPk−1|k−1F
T +Q. (15)

Proof. The proof follows directly from the state transition model. Given the
prior state estimate x̂k−1|k−1 and its covariance Pk−1|k−1, the state prediction
is obtained by applying the state transition model. The process noise wk intro-
duces additional uncertainty, represented by its covariance matrix Q. Thus, the
predicted state estimate is:

x̂k|k−1 = F x̂k−1|k−1.

The predicted covariance is the sum of the transformed prior covariance and the
process noise covariance:

Pk|k−1 = FPk−1|k−1F
T +Q.

Theorem 2 (Update Step of the Kalman Filter). Given the measurement model

zk = Hxk + vk, (16)

where H is the measurement matrix and vk is the measurement noise, which is
Gaussian with zero mean and covariance R, the updated state estimate x̂k|k and
the updated covariance Pk|k are given by:

Pk|k = (HTR−1H + P−1
k|k−1)

−1, (17)

x̂k|k = Pk|k(H
TR−1zk + P−1

k|k−1x̂k|k−1). (18)
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Proof. Begin with Bayes’ theorem:

f(x|z) = f(z|x)f(x)
f(z)

, (19)

where x is the state, z are the measurements, f(x|z) is the posterior distribution,
f(z|x) is the likelihood, f(x) is the prior, and f(z) is the marginal likelihood.

The Kalman filter assumes Gaussian distributions for the state and mea-
surement noise:

f(z|x) = N (z;Hx, R), (20)

f(x) = N (x; x̂k|k−1, Pk|k−1). (21)

Substituting these into Bayes’ theorem:

f(x|z) =
N (z;Hx, R)N (x; x̂k|k−1, Pk|k−1)

f(z)
, (22)

where f(z) is the marginal likelihood of the measurements, which can be com-
puted using the law of total probability:

f(z) =

∫
f(z|x)f(x)dx. (23)

Substituting the likelihood and prior, it follows that:

f(z) =

∫
N (z;Hx, R)N (x; x̂k|k−1, Pk|k−1)dx. (24)

Expanding the Gaussian distributions:

f(z) =
1√

(2π)n|R|

∫
exp

[
−1

2
(z−Hx)TR−1(z−Hx)

]
1√

(2π)n|Pk|k−1|
exp

[
−1

2
(x− x̂k|k−1)

TP−1
k|k−1(x− x̂k|k−1)

]
dx. (25)

Simplifying the exponent, it follows that:

f(z) =
1√

(2π)n|R|

∫
exp

[
−1

2
(x− x̂k−1|k)

TR−1(x− x̂k−1|k)

]
exp

[
−1

2
(z−Hx)TQ−1(z−Hx)

]
dx. (26)

Expanding the exponent:

− 1

2
(x− x̂k−1|k)

TR−1(x− x̂k−1|k)−
1

2
(z−Hx)TQ−1(z−Hx)

= −1

2
xTR−1x+

1

2
x̂T
k−1|kR

−1x+
1

2
xTR−1x̂k−1|k − 1

2
x̂T
k−1|kR

−1x̂k−1|k

− 1

2
zTQ−1z+

1

2
zTQ−1Hx+

1

2
HxTQ−1z− 1

2
HxTQ−1Hx. (27)
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Complete the square for the quadratic terms involving x:

− 1

2
xTR−1x+

1

2
x̂T
k−1|kR

−1x+
1

2
xTR−1x̂k−1|k − 1

2
HxTQ−1Hx

+
1

2
zTQ−1Hx+

1

2
HxTQ−1z− 1

2
HxTQ−1Hx

= −1

2
(x−Kz)T (P−1

k|k−1 +HTR−1H)(x−Kz), (28)

where K is the Kalman gain given by:

K = Pk|k−1H
T (HPk|k−1H

T +R)−1. (29)

Thus, the posterior distribution is Gaussian with mean and covariance:

Pk|k = (HTR−1H + P−1
k|k−1)

−1, (30)

x̂k|k = Pk|k(H
TR−1zk + P−1

k|k−1x̂k|k−1). (31)

Thus, combining the prediction and update steps, the full Kalman filter
algorithm is derived.

4.5 Fusing Two Estimates

In some cases, it may be necessary to combine two estimates of the state that
are obtained from different sources. For example, in multi-sensor systems, each
sensor may provide an estimate of the state with its own error covariance matrix.
The task is to combine these estimates into a single estimate with a smaller error
covariance matrix. This can be done using the fusing two estimates method,
which is a non-Bayesian approach that does not assume that the state or the
measurements are Gaussian.

Suppose there are two estimates of the state, x̂1 and x̂2, with associated
error covariance matrices P1 and P2, respectively. The goal is to combine these
two estimates into a single estimate with a smaller error covariance matrix.

Definition 1 (Mahalanobis Distance). The Mahalanobis distance between two
estimates x̂1 and x̂2 is defined as:

D2(x̂1, x̂2) = (x̂1 − x̂2)
T (P1 + P2)

−1(x̂1 − x̂2). (32)

Definition 2 (Weights). The weights w1 and w2 are computed as:

w1 =
P2

P1 + P2
exp

(
−1

2
D2(x̂1, x̂2)

)
, (33)

w2 =
P1

P1 + P2
exp

(
−1

2
D2(x̂1, x̂2)

)
. (34)
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Theorem 3. Given two estimates x̂1 and x̂2 with error covariance matrices P1

and P2, the fused estimate x̂f and its error covariance matrix Pf are given by:

x̂f = w1x̂1 + w2x̂2, (35)

Pf = w1(P1 + (x̂1 − x̂f )(x̂1 − x̂f )
T ) + w2(P2 + (x̂2 − x̂f )(x̂2 − x̂f )

T ), (36)

where w1 and w2 are the weights defined above.

Proof. First, we establish the weights based on the Mahalanobis distance. The
Mahalanobis distance accounts for the relative error covariances of the estimates,
ensuring that the fused estimate minimizes the combined error covariance.

To find the fused estimate x̂f , we compute the weighted average:

x̂f = w1x̂1 + w2x̂2,

where the weights w1 and w2 are chosen such that they minimize the error
covariance of the fused estimate.

Next, we calculate the error covariance matrix Pf . The error covariance of
the fused estimate takes into account the individual error covariances P1 and
P2, as well as the deviation of the individual estimates from the fused estimate:

Pf = w1(P1 + (x̂1 − x̂f )(x̂1 − x̂f )
T ) + w2(P2 + (x̂2 − x̂f )(x̂2 − x̂f )

T ).

This accounts for the contribution of each estimate to the total error covariance,
ensuring that the fused estimate has a smaller error covariance than either
individual estimate.

The intuition behind these weights is that if the Mahalanobis distance be-
tween the two estimates is small relative to their error covariance matrices, then
the weights will be close to 0.5, indicating that the two estimates are equally
reliable. If the Mahalanobis distance is large relative to the error covariance ma-
trices, then one estimate will be given more weight than the other, depending
on which one is more reliable.

The fusing two estimates method can be viewed as a simplified version of
the Kalman filter, where the estimate of the state is obtained by fusing two
independent estimates. In this method, there is no explicit modeling of the
system dynamics or the measurement equations, and the weights are computed
based on the error covariance matrices and the Mahalanobis distance between
the estimates.

Theorem 4. If the error distributions of the estimates x̂1 and x̂2 are assumed to
be Gaussian, and the Mahalanobis distance between the estimates is small (which
is not always the case), then the fusing two estimates method is equivalent to
the Kalman filter.

Proof. Consider the update step of the Kalman filter. Recall that the update
step involves computing the Kalman gain Kk based on the predicted state esti-
mate x̂k|k−1 and predicted error covariance matrix Pk|k−1, and using it to update
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the state estimate and error covariance matrix based on the new measurement
zk:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1,

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1),

Pk|k = (I −KkHk)Pk|k−1.

In the fusing two estimates method, the update step can be seen as a
weighted average of the two estimates, where the weights are determined by
the error covariance matrices and the Mahalanobis distance:

w1 =
P2

P1 + P2
exp

(
−1

2
D2(x̂1, x̂2)

)
,

w2 =
P1

P1 + P2
exp

(
−1

2
D2(x̂1, x̂2)

)
,

x̂f = w1x̂1 + w2x̂2,

Pf = w1(P1 + (x̂1 − x̂f )(x̂1 − x̂f )
T ) + w2(P2 + (x̂2 − x̂f )(x̂2 − x̂f )

T ).

Comparing these equations to the update step of the Kalman filter, one can
see that the weights w1 and w2 play the role of the Kalman gain Kk, and the
fused estimate x̂f corresponds to the updated state estimate x̂k|k. Furthermore,
the error covariance matrix Pf can be seen as a weighted combination of the
predicted error covariance matrix Pk|k−1 and the measurement error covariance
matrix Rk.

Thus, under Gaussian assumptions and small Mahalanobis distance, the
fusing two estimates method and the Kalman filter are equivalent.

The predict step of the fusing two estimates method can be seen as a simple
weighted average of the two predicted state estimates:

x̂k|k−1 = w1x̂k−1|k−1 + w2x̂k−1|k−1. (37)

Thus, the predict step of the fusing two estimates method is equivalent to
the predict step of the Kalman filter, which simply propagates the state estimate
forward in time based on the system dynamics.

In summary, if the error distributions of the estimates are assumed to be
Gaussian and the Mahalanobis distance is small, the fusing two estimates method
is equivalent to the Kalman filter. The weights used in the fusing two estimates
method are similar to the Kalman gain matrix used in the Kalman filter. How-
ever, the fusing two estimates method does not require matrix inversions and
multiplications, making it computationally less expensive than the Kalman fil-
ter.

The fusing two estimates method can be seen as a simplified version of the
Kalman filter. The predict step in the fusing two estimates method corresponds
to the propagation of the state estimate and error covariance matrix using the
process model in the Kalman filter. The update step in the fusing two estimates
method corresponds to the correction of the state estimate and error covariance
matrix using the measurement and its associated error covariance matrix in the
Kalman filter.
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4.6 Comparison and Limitations

Both the Kalman filter and the fusing two estimates method are used for state
estimation, but they have different assumptions and properties. The Kalman
filter assumes that the state and the measurements are Gaussian and that the
system dynamics are linear. It provides a probabilistic interpretation of the
estimate, and it is optimal in the sense of minimizing the mean squared error.
However, it requires the computation of matrix inversions and multiplications,
which can be computationally expensive for large systems.

The fusing two estimates method does not assume that the state or the
measurements are Gaussian and does not require the computation of matrix
inversions and multiplications. It is computationally less expensive than the
Kalman filter, but it does not provide a probabilistic interpretation of the esti-
mate, and it is not optimal in the sense of minimizing the mean squared error.
It is useful when there are multiple estimates of the state from different sources
and the goal is to combine them into a single estimate.

In general, the choice between the Kalman filter and the fusing two estimates
method depends on the properties of the system and the requirements of the
application. If the system dynamics are linear and the state and measurements
are Gaussian, the Kalman filter is the appropriate method to use. If the system
dynamics are nonlinear or the state and measurements are non-Gaussian, other
methods such as the extended Kalman filter or particle filters may be more
appropriate. If the goal is to combine multiple estimates of the state, the fusing
two estimates method may be useful.

In conclusion, the Kalman filter is a powerful tool for state estimation in
linear systems with Gaussian noise. It provides a probabilistic interpretation
of the estimate and is optimal in the sense of minimizing the mean squared
error. However, it has limitations in its assumptions and can be computation-
ally expensive for large systems. The fusing two estimates method is a useful
alternative when there are multiple estimates of the state from different sources,
but it does not provide a probabilistic interpretation of the estimate and is not
optimal in the sense of minimizing the mean squared error.

In the following section the Extended Kalman Filter (EKF) will be explored,
which will address some key limitations of the KF, specifically its inability to
effectively estimate non-linear systems.
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5 Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF), introduced and formalized by Rudolf
Kalman in [2] and [3] is an algorithm that extends the Kalman filter to nonlin-
ear systems. The basic idea of the EKF is to linearize the nonlinear system by
taking a first-order Taylor expansion around the current estimate of the state.
The linearized system can then be used with the Kalman filter equations to
estimate the state.

5.1 EKF Algorithm

Consider a nonlinear system described by the following state-space model:

xk = f(xk−1, uk−1, wk−1)

yk = h(xk, vk)

where xk is the state of the system at time step k, uk is the input, wk is
the process noise, yk is the measurement, vk is the measurement noise, and
f and h are nonlinear functions. The EKF estimates the state xk using the
measurements y1:k.

To apply the Kalman filter to this nonlinear system, the system needs to be
linearized. The purpose of the Taylor expansion is to approximate the nonlinear
functions f and h by their first-order linear approximations around the current
estimate of the state. This linearization is necessary because the Kalman filter
is designed for linear systems, and by linearizing, it can be applied to nonlin-
ear systems. Linearizing around the current estimate helps in capturing the
local behavior of the nonlinear functions, making the problem tractable with
linear algebra. Without linearization, the nonlinearities would complicate the
estimation process, making it computationally infeasible.

Write the first-order Taylor expansion of f around x̂k−1 as:

f(xk−1, uk−1, wk−1) ≈ f(x̂k−1, uk−1,0) + Fk−1(xk−1 − x̂k−1)

where x̂k−1 is the estimate of the state at time step k−1, and Fk−1 is the Jaco-
bian matrix of f evaluated at x̂k−1. Similarly, the first-order Taylor expansion
of h around x̂k can be written as:

h(xk, vk) ≈ h(x̂k,0) +Hk(xk − x̂k)

where x̂k is the estimate of the state at time step k, and Hk is the Jacobian
matrix of h evaluated at x̂k.

The assumption of replacing the process and measurement noise with zero-
mean Gaussian random variables simplifies the mathematical treatment of the
noise, enabling the use of the Kalman filter framework, which is optimal for
linear systems with Gaussian noise. This assumption allows the derivation of
recursive equations for the mean and covariance of the state estimate. Gaussian
noise is used because it has desirable properties, such as being fully described
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by its mean and covariance, and because the Kalman filter is optimal for linear
systems with Gaussian noise.

The prediction step is given by:

x̂k|k−1 = f(x̂k−1|k−1, uk−1,0)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

where x̂k|k−1 is the predicted state, Pk|k−1 is the predicted error covariance,
and Qk−1 is the covariance of the process noise.

The update step is given by:

ỹk = yk − h(x̂k|k−1,0)

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S

−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkHk)Pk|k−1

where ỹk is the measurement residual, Rk is the covariance of the measurement
noise, Sk is the innovation covariance,Kk is the Kalman gain, x̂k|k is the updated
state, and Pk|k is the updated error covariance.

Each term in the update equation has a specific role:

- ỹk represents the difference between the actual measurement and the pre-
dicted measurement.

- Sk combines the predicted error covariance and the measurement noise co-
variance to determine the uncertainty in the innovation.

- Kk is the Kalman gain, which determines how much the predictions should
be corrected based on the new measurements. The Kalman gain balances the
uncertainty between the prediction and the measurement, ensuring that the up-
date is weighted appropriately. A higher Kalman gain implies a greater reliance
on the measurements, while a lower gain implies greater reliance on the model.

5.2 Mathematical Derivation of EKF

To derive the EKF mathematically, start with the nonlinear system described
by:

xk = f(xk−1, uk−1, wk−1),

yk = h(xk, vk).

The Kalman filter assumes that the system is linear and that the noise is
Gaussian. Therefore, first linearize the nonlinear functions around the current
estimate of the state.
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Theorem 5 (Linearization of Nonlinear Functions). Consider the nonlinear
functions f and h describing the system. The first-order Taylor expansion of f
around x̂k−1 is given by:

f(xk−1, uk−1, wk−1) ≈ f(x̂k−1, uk−1,0) + Fk−1(xk−1 − x̂k−1) +O((xk−1 − x̂k−1)
2),

where Fk−1 is the Jacobian matrix of f evaluated at x̂k−1. Similarly, the first-
order Taylor expansion of h around x̂k is:

h(xk, vk) ≈ h(x̂k,0) +Hk(xk − x̂k) +O((xk − x̂k)
2),

where Hk is the Jacobian matrix of h evaluated at x̂k.

Proof. The first-order Taylor expansion of a multivariable function f around a
point x̂ is given by:

f(x) ≈ f(x̂) +∇f(x̂)(x− x̂) +O((x− x̂)2).

Applying this to f(xk−1, uk−1, wk−1) around x̂k−1 and h(xk, vk) around x̂k, we
obtain the stated results.

To justify why higher-order terms are not needed, consider that the first-
order Taylor expansion provides a linear approximation which is sufficient if the
nonlinearity is not too strong. The conditions needed for the linear approxima-
tion to hold include:

• The state estimates must be close to the true states.

• The nonlinear functions f and h must be differentiable.

Theorem 6 (Linearized System Equations). Substituting the Taylor expansions
into the nonlinear system equations, we obtain:

xk = f(x̂k−1, uk−1,0) + Fk−1(xk−1 − x̂k−1) + wk−1,

yk = h(x̂k,0) +Hk(xk − x̂k) + vk.

Proof. Substitute the Taylor expansions derived in Theorem 5 into the original
nonlinear system equations.

Theorem 7 (EKF Prediction and Update Steps). Applying the standard Kalman
filter equations to the linearized system, the prediction step is given by:

x̂k|k−1 = f(x̂k−1|k−1, uk−1,0),

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1,

and the update step is given by:

ỹk = yk − h(x̂k|k−1,0),

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S

−1
k ,

x̂k|k = x̂k|k−1 +Kkỹk,

Pk|k = (I −KkHk)Pk|k−1.
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Proof. Given the linearized system:

xk = f(x̂k−1, uk−1,0) + Fk−1(xk−1 − x̂k−1) + wk−1,

yk = h(x̂k,0) +Hk(xk − x̂k) + vk,

the goal is to apply the Kalman filter to this system.

Prediction Step:

• Predict the state estimate:

x̂k|k−1 = E[xk|Yk−1]

= E[f(xk−1, uk−1, wk−1)|Yk−1]

≈ f(x̂k−1|k−1, uk−1,0),

where Yk−1 denotes the information set available at time k − 1.

• Predict the error covariance:

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |Yk−1]

= E[(Fk−1(xk−1 − x̂k−1) + wk−1)(Fk−1(xk−1 − x̂k−1) + wk−1)
T |Yk−1]

= Fk−1Pk−1|k−1F
T
k−1 +Qk−1,

assuming E[wk−1w
T
k−1] = Qk−1 and wk−1 is uncorrelated with xk−1.

Update Step:

• Compute the innovation (measurement residual):

ỹk = yk − E[yk|Yk−1]

= yk − h(x̂k|k−1,0).

• Compute the innovation covariance:

Sk = E[ỹkỹTk |Yk−1]

= E[(Hk(xk − x̂k|k−1) + vk)(Hk(xk − x̂k|k−1) + vk)
T |Yk−1]

= HkPk|k−1H
T
k +Rk,

assuming E[vkvTk ] = Rk and vk is uncorrelated with xk.

• Compute the Kalman gain:

Kk = Pk|k−1H
T
k S

−1
k .

• Update the state estimate:

x̂k|k = x̂k|k−1 +Kkỹk.

• Update the error covariance:

Pk|k = (I −KkHk)Pk|k−1.

Thus, the EKF prediction and update steps for the linearized system are rigor-
ously derived.
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5.2.1 Key Assumptions

Assumption 1 (Gaussian Noise Models). The process and measurement noise
are assumed to be Gaussian. This assumption is justified by the Central Limit
Theorem, which states that the sum of a large number of independent and identi-
cally distributed random variables tends towards a Gaussian distribution, regard-
less of the original distribution of the variables. In practical systems, process
and measurement noise can often be modeled as Gaussian due to the aggregation
of multiple independent noise sources.

Assumption 2 (Convergence Properties). The convergence of the EKF is more
challenging to prove than for the linear Kalman filter due to the nonlinearities.
However, under certain conditions, such as small nonlinearities and accurate
initial state estimates, the EKF can converge to the true state. Specifically, the
EKF converges if the system dynamics are sufficiently smooth (differentiable)
and the linearization errors are small.

5.3 Comparison to KF and Limitations of EKF

The Extended Kalman Filter (EKF) adapts the Kalman filter methodology to
nonlinear systems by linearizing the system dynamics using first-order Taylor
expansions. While the EKF approximates the true nonlinear system, its accu-
racy hinges on effective linearization and accurate modeling of noise.

1. Advantages of KF:

• Optimal Performance in Linear Systems: The Kalman Filter
excels in linear systems with Gaussian noise, delivering optimal state
estimates without the need for approximation. It ensures the best
possible estimate due to its direct application to linear models.

2. Advantages of EKF:

• Suitability for Nonlinear Systems: EKF shines in systems where
nonlinear dynamics can be adequately represented by a first-order
Taylor expansion. Unlike the KF, which falters in nonlinear scenar-
ios, the EKF provides more accurate state estimates by effectively
capturing nonlinear behavior.

3. Limitations of EKF:

• Impact of Strong Nonlinearities: When nonlinearities are pro-
nounced, the EKF’s linear approximation may introduce errors, lead-
ing to suboptimal state estimates. The Taylor expansion only accu-
rately approximates the system locally.

• Computational Demands: EKF requires the computation of Ja-
cobian matrices at each step, which can be computationally intensive,
particularly in high-dimensional systems.
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• Convergence Challenges: Convergence of the EKF depends on
accurate initial estimates and noise models. Inaccuracies can hinder
convergence, impacting the filter’s effectiveness.

In summary, while the EKF extends the Kalman Filter to nonlinear sys-
tems, offering enhanced applicability, it introduces complexities and limitations.
Careful consideration of system characteristics and trade-offs between accuracy,
computational complexity, and nonlinear effects guide the choice between KF
and EKF in practical applications.
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6 Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) is a recursive estimator designed for non-
linear systems, using a deterministic sampling technique to better capture the
true mean and covariance of the state distribution under nonlinear transforma-
tions. Unlike the Extended Kalman Filter (EKF), the UKF does not require
the explicit calculation of Jacobians, making it more robust in handling nonlin-
earities.

The UKF is based on the Unscented Transformation (UT), which is a method
for calculating the statistics of a random variable undergoing a nonlinear trans-
formation. The core idea is to use a set of carefully chosen sample points,
known as sigma points, to parameterize the mean and covariance of the state
distribution. This thesis utilizes the UKF’s formalization from [4].

6.1 UKF Algorithm

1. Sigma Point Generation:

For an n-dimensional state vector xk, generate 2n+ 1 sigma points X
[i]
k :

X
[0]
k = x̂k, (38)

X
[i]
k = x̂k +

√
(n+ λ)Pki, i = 1, . . . , n, (39)

X
[i+n]
k = x̂k −

√
(n+ λ)Pki, i = 1, . . . , n, (40)

where
√
(n+ λ)Pki

denotes the i-th column of the matrix square root of
(n+ λ)Pk, and λ = α2(n+ κ)− n is a scaling parameter.

2. Propagation of Sigma Points through the Process Model:

X
[i]
k+1|k = f(X

[i]
k ,uk), i = 0, . . . , 2n. (41)

3. Computation of Predicted Mean and Covariance:

x̂k+1|k =

2n∑
i=0

W
[m]
i X

[i]
k+1|k, (42)

Pk+1|k =

2n∑
i=0

W
[c]
i

(
X

[i]
k+1|k − x̂k+1|k

)(
X

[i]
k+1|k − x̂k+1|k

)T

+Qk, (43)

where W
[m]
i and W

[c]
i are weights for the mean and covariance, respec-

tively.
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4. Propagation of Sigma Points through the Measurement Model:

Y
[i]
k+1|k = h(X

[i]
k+1|k), i = 0, . . . , 2n. (44)

5. Computation of Predicted Measurement Mean and Covariance:

ŷk+1 =

2n∑
i=0

W
[m]
i Y

[i]
k+1|k, (45)

Pyy =

2n∑
i=0

W
[c]
i

(
Y

[i]
k+1|k − ŷk+1

)(
Y

[i]
k+1|k − ŷk+1

)T

+Rk, (46)

Pxy =

2n∑
i=0

W
[c]
i

(
X

[i]
k+1|k − x̂k+1|k

)(
Y

[i]
k+1|k − ŷk+1

)T

. (47)

6. Kalman Gain and State Update:

Kk = PxyP
−1
yy , (48)

x̂k+1 = x̂k+1|k +Kk(yk+1 − ŷk+1), (49)

Pk+1 = Pk+1|k −KkPyyK
T
k . (50)

6.1.1 Sigma Point Selection and Unscented Transformation

The choice of sigma points is crucial to the accuracy of the UKF. Sigma points
are chosen to capture the mean and covariance of the underlying distribution
accurately up to the second order. The selection is as follows:

X[0] = x̂, (51)

X[i] = x̂+
√
(n+ λ)Pi, i = 1, . . . , n, (52)

X[i+n] = x̂−
√
(n+ λ)Pi, i = 1, . . . , n, (53)

Common values for parameters are α = 10−3, κ = 0, and β = 2 for Gaussian
distributions.

6.1.2 Higher-Order Moments and Advanced Sigma Point Selection

1. Incorporating Higher-Order Moments: To capture skewness and kurtosis, use
higher-order sigma points.

X
[i]
k = x̂k + ηi

√
(n+ λ)Pk + γi(higher-order terms), i = 1, . . . , n, (54)
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6.2 Proofs of Mean and Covariance Propagation

The Unscented Transformation (UT) is a method to approximate the mean and
covariance of a random variable y = g(x), where x ∼ N (x̂,Px). This section
will present the detailed derivation of the mean and covariance propagation
using the UT.

Definition 3. The Unscented Transformation (UT) generates sigma points and
weights to approximate the mean and covariance of a transformed random vari-
able. Given x ∼ N (x̂,Px), the steps are:

1. Generate Sigma Points:

X[0] = x̂,

X[i] = x̂+
√
(n+ λ)Pxi, i = 1, . . . , n,

X[i+n] = x̂−
√

(n+ λ)Pxi, i = 1, . . . , n,

where
√
(n+ λ)Pxi

denotes the i-th column of the matrix square root of
(n+ λ)Px, and λ = α2(n+ κ)− n is a scaling parameter.

2. Propagate Sigma Points through Nonlinear Function:

Y[i] = g(X[i]), i = 0, . . . , 2n.

3. Calculate Mean:

ŷ =

2n∑
i=0

W
[m]
i Y[i],

where W
[m]
i are weights for the mean.

4. Calculate Covariance:

Py =

2n∑
i=0

W
[c]
i (Y[i] − ŷ)(Y[i] − ŷ)⊤,

where W
[c]
i are weights for the covariance.

6.2.1 Mean Propagation

Theorem 8. Given x ∼ N (x̂,Px) and a nonlinear function y = g(x), the mean
ŷ = E[y] can be approximated using the Unscented Transformation as:

ŷ ≈
2n∑
i=0

W
[m]
i Y[i],

where W
[m]
i are the weights for the mean.
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Proof. The mean of y is defined as:

ŷ = E[y] = E[g(x)].

Given x ∼ N (x̂,Px), we use the sigma points X[i] to approximate the expecta-
tion:

ŷ ≈
2n∑
i=0

W
[m]
i g(X[i]).

The weights W
[m]
i are defined as:

W
[m]
i =

{
λ

n+λ , for i = 0,
1

2(n+λ) , for i = 1, . . . , 2n.

These weights ensure that the approximation retains the properties of the mean
and covariance of the Gaussian distribution.

6.2.2 Covariance Propagation

Theorem 9. Given x ∼ N (x̂,Px) and a nonlinear function y = g(x), the
covariance Py can be approximated using the Unscented Transformation as:

Py ≈
2n∑
i=0

W
[c]
i (Y[i] − ŷ)(Y[i] − ŷ)⊤,

where W
[c]
i are the weights for the covariance.

Proof. The covariance of y is defined as:

Py = E[(y − ŷ)(y − ŷ)⊤] = E[(g(x)− ŷ)(g(x)− ŷ)⊤].

Given x ∼ N (x̂,Px), we use the sigma points X[i] and their transformations
Y[i] to approximate the expectation:

Py ≈
2n∑
i=0

W
[c]
i (Y[i] − ŷ)(Y[i] − ŷ)⊤.

The weights W
[c]
i are defined as:

W
[c]
i =

{
λ

n+λ + (1− α2 + β), for i = 0,
1

2(n+λ) , for i = 1, . . . , 2n.

These weights are chosen to ensure that the approximation maintains the prop-
erties of the covariance of the Gaussian distribution, including the incorporation
of higher-order moments through the terms (1− α2 + β).
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6.3 Comparison to EKF and Limitations of UKF

The UKF differs from the EKF in handling nonlinearities. The EKF linearizes
the nonlinear functions using Jacobians, while the UKF uses sigma points to
capture the mean and covariance directly.

1. EKF: Linearization via Jacobians

x̂k+1|k = f(x̂k,uk), (55)

Pk+1|k = FkPkF
T
k +Qk, (56)

where Fk is the Jacobian of f(·).

Kk = Pk+1|kH
T
k (HkPk+1|kH

T
k +Rk)

−1, (57)

x̂k+1 = x̂k+1|k +Kk(yk+1 − h(x̂k+1|k)), (58)

Pk+1 = (I−KkHk)Pk+1|k, (59)

Compared to the EKF, the UKF does not require the computation of the
Jacobian of the nonlinear functions, which can be a difficult and time-consuming
task. Instead, it approximates the mean and covariance of the state distribution
using a set of sigma points, which captures the nonlinearities in a more accurate
way.

However, the UKF can suffer from two main limitations: (1) the choice of
the scaling parameter λ can affect the performance of the filter, and (2) the
propagation of the sigma points through the nonlinear functions can introduce
numerical errors, especially if the functions are highly nonlinear or if the spread
of the sigma points is not properly chosen.

In summary, the EKF and the UKF are two widely used nonlinear filtering
techniques that can be used to estimate the state of a dynamic system. The
EKF is based on the linearization of the nonlinear functions around the current
estimate of the state, while the UKF approximates the mean and covariance of
the state distribution using a set of sigma points. Both filters have their own
strengths and weaknesses, and the choice between them depends on the specific
requirements of the application at hand.
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7 Performance Comparison of KF and EKF: A
Case Study Using KITTI Dataset

The KITTI dataset [1] is a benchmark for evaluating computer vision algo-
rithms, particularly those related to autonomous driving. It provides a diverse
range of sensor data, including high-resolution images, GPS, IMU measure-
ments, and ground truth annotations. For this study, the raw GPS and IMU
data from drive 71 on 29-09-2011 of the KITTI dataset is leveraged. The GPS
and IMU data are essential for estimating vehicle trajectories and dynamic
parameters using state estimation methods like the Kalman Filter (KF) and
Extended Kalman Filter (EKF).

7.1 Data Setup

This section describes the setup of ground truth and observed data from the
KITTI dataset, which forms the basis for the state estimation simulations. First,
the ground truth data will be discussed, which provides the benchmark for
evaluating the performance of these algorithms, followed by the observed data
that will be fed into the KF and EKF models.

7.1.1 Ground Truth Data

Figure 1 presents the ground truth trajectories derived from the KITTI dataset.
These trajectories serve as the baseline against which the performance of the
state estimation algorithms is evaluated.

(a) Longitude-Latitude ground truth
trajectory of the car

(b) Ground truth trajectory of the car
converted to Cartesian coordinates

Figure 1: Ground truth trajectories

• Figure 1a: This plot shows the ground truth trajectory of the vehicle
in longitude-latitude coordinates. It provides a precise path of the vehi-
cle’s movement over time, crucial for evaluating the accuracy of position
estimation.
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• Figure 1b: Here, the ground truth trajectory is converted to Cartesian
coordinates. This transformation facilitates easier integration with state
estimation algorithms like KF and EKF, which typically operate in Carte-
sian space.

In addition to the trajectory data, the ground truth yaw rates, yaw angles,
and forward velocities are also extracted from the KITTI dataset. These dy-
namic parameters are essential for the EKF, which can handle non-linear data
more effectively than the KF.

Figure 2: Ground truth yaw rates, yaw angles, forward velocities

Figure 2 presents the ground truth yaw angles, yaw rates, and forward veloc-
ities. This data is crucial for the EKF simulation as it incorporates non-linear
dynamics in its state estimation process. The KF, on the other hand, will
assume constant yaw rates, yaw angles, and forward velocities and will focus
primarily on estimating the vehicle’s trajectory.

7.1.2 Observed Data

The observed data is derived by adding noise to the ground truth data, simu-
lating real-world sensor measurements. This data will be used as inputs to the
KF and EKF models to test their performance in state estimation.
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(a) Observed trajectory (b) Observed yaw rates
(c) Observed forward ve-
locity

Figure 3: Observed data

• Figure 3a: This plot shows the observed trajectory, which includes noise
added to the ground truth positions. This simulates the real-world GPS
data that the KF and EKF will process.

• Figure 3b: The observed yaw rates, which are noisy measurements of
the ground truth yaw rates. These will be particularly important for the
EKF.

• Figure 3c: The observed forward velocity, also derived by adding noise
to the ground truth forward velocities. This will be used to simulate the
vehicle’s motion in both the KF and EKF.

The observed data provides a realistic input for testing the state estimation
algorithms. By comparing the estimated states from the KF and EKF with the
ground truth data, one can evaluate their performance in handling real-world
noise and non-linear dynamics.

7.2 KF results

The Kalman Filter (KF) is applied to estimate the trajectory of a moving object
using the KITTI dataset. The KF operates in two main steps: prediction and
update. In the prediction step, the filter predicts the state of the system based
on its previous state and a dynamic model. In the update step, it corrects this
prediction using noisy measurements. For the KITTI dataset, the state vector
includes position and velocity information, and the measurements come from
the GPS sensor. The non-linear IMU data for the yaw rates, yaw angles and
forward velocities was unable to be effectively integrated, and so those were
made constant, leaving the Kalman Filter to estimate solely on the x and y
position of the car.
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Figure 4: KF estimated trajectory

Figure 4 shows the estimated trajectory of the object obtained from the
Kalman Filter. The trajectory demonstrates how the filter tracks the object’s
position over time, incorporating both prediction and measurement updates.

(a) KF estimated x-trajectory (b) KF x-trajectory error

Figure 5: KF x-trajectory performance

Figure 5 presents the performance of the Kalman Filter in estimating the
X-coordinate of the object. Subfigure 5a shows the estimated X-trajectory,
demonstrating how accurately the filter tracks the X-position. Subfigure 5b
depicts the error in the X-trajectory estimation, highlighting deviations between
the estimated and ground truth X-coordinates.

Figure 6 illustrates the performance of the Kalman Filter in estimating the
Y-coordinate of the object. Subfigure 6a displays the estimated Y-trajectory,
showing how well the filter tracks the Y-position. Subfigure 6b portrays the error
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(a) KF estimated y-trajectory (b) KF y-trajectory error

Figure 6: KF y-trajectory performance

in the Y-trajectory estimation, indicating discrepancies between the estimated
and ground truth Y-coordinates.

These plots collectively demonstrate the effectiveness of the Kalman Filter
in accurately estimating the trajectory of a moving object using the KITTI
dataset, highlighting both the trajectory estimation and the associated errors.

7.3 EKF results

The Extended Kalman Filter (EKF) represents an advancement over the tradi-
tional Kalman Filter by accommodating nonlinearities in the system dynamics.
Unlike the KF, which assumes linear state transitions and measurements, the
EKF can handle nonlinearities by linearizing them around the current estimate.
This capability allows integration of additional sensor data such as IMU mea-
surements, including yaw rates, yaw angles, and forward velocities. By incorpo-
rating these IMU data, the EKF enhances the estimation process by modeling
not only the position but also the orientation (yaw angle). It can also use the
extra velocity dynamics information to better define and estimate the initial
state. In the EKF, the state vector includes position (x and y), orientation (θ).
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Figure 7: EKF estimated trajectory

Figure 7 shows the estimated trajectory obtained from the Extended Kalman
Filter. This trajectory reflects the enhanced capability of the EKF to track both
position and orientation (θ) of the moving object.

(a) EKF estimated x-trajectory (b) EKF x-trajectory error

Figure 8: EKF x-trajectory performance

Figure 8 presents the performance of the Extended Kalman Filter in esti-
mating the X-coordinate of the object. Subfigure 8a shows the estimated X-
trajectory, demonstrating how accurately the filter tracks the X-position. Sub-
figure 8b depicts the error in the X-trajectory estimation, highlighting deviations
between the estimated and ground truth X-coordinates.
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(a) EKF estimated y-trajectory (b) EKF y-trajectory error

Figure 9: EKF y-trajectory performance

Figure 9 illustrates the performance of the Extended Kalman Filter in es-
timating the Y-coordinate of the object. Subfigure 9a displays the estimated
Y-trajectory, showing how well the filter tracks the Y-position. Subfigure 9b
portrays the error in the Y-trajectory estimation, indicating discrepancies be-
tween the estimated and ground truth Y-coordinates.

(a) EKF estimated yaw-angles (b) EKF yaw error

Figure 10: EKF theta performance

Figure 10 depicts the performance of the Extended Kalman Filter in esti-
mating the yaw angles (θ) of the object. Subfigure 10a shows the estimated
yaw angles, demonstrating how well the filter tracks the orientation of the ob-
ject. Subfigure 10b portrays the error in the yaw angle estimation, indicating
discrepancies between the estimated and ground truth yaw angles.

These plots collectively demonstrate the effectiveness of the Extended Kalman
Filter in accurately estimating the trajectory of a moving object using the KITTI
dataset, showcasing the integration of IMU data to improve both position and
orientation estimates.
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7.4 Performance Comparison

In this section, the performance of the Kalman Filter (KF) and Extended
Kalman Filter (EKF) is rigorously analyzed using NEES (Normalized Estima-
tion Error Squared) and RMSE (Root Mean Square Error).

7.4.1 Normalized Estimation Error Squared (NEES)

NEES measures the consistency of a filter’s covariance predictions relative to
the actual measurement noise. For a state estimation x̂ with covariance P, and
true state x, NEES is defined as:

NEES = (x− x̂)TP−1(x− x̂)

• Mathematical Rigor: NEES follows a chi-squared distribution with de-
grees of freedom equal to the state dimension n when the filter is correctly
specified. This property makes NEES a robust measure of filter consis-
tency.

• Interpretation: A NEES value close to the state dimension n suggests
the filter is well-calibrated to the noise statistics. Values significantly
higher than n indicate overconfidence (underestimation of noise), while
values lower suggest underconfidence (overestimation of noise).

• KF vs EKF Expectations: In the simulation using KITTI data:

– KF: Expected NEES around 2, reflecting its assumptions of linear
state transitions and Gaussian noise.

– EKF: Expected NEES around 3 due to its ability to handle nonlin-
earities, albeit with higher computational complexity.

The following figure 11 illustrates the NEES plots for KF and EKF:

(a) KF NEES (b) EKF NEES

Figure 11: KF vs EKF NEES

In Figure 11a, KF’s NEES plot may show periods of higher values, indicat-
ing potential issues with noise estimation, specifically the position’s standard
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deviation which was used (in this case 5). For EKF in Figure 11b, NEES ini-
tially starts higher due to initial uncertainty propagation but stabilizes below
the state dimension as the filter adapts to nonlinearities. When lowering the
position’s standard deviation, the KF’s NEES immediately drops down. How-
ever unlike the EKF’s NEES which seems to stabilize quickly, the volatility of
the KF stays consistent no matter the initial standard deviation used. This
showcases how the inability to integrate the necessary non-linear data of the
KITTI drive causes the KF to remain volatile, even after several iterations of
the filter.

7.4.2 Root Mean Squared Error

RMSE provides an average measure of the deviation between estimated and
true values over time. It is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(x̂i − xi)2

• Mathematical Rigor: RMSE provides a straightforward metric to assess
overall estimation accuracy. Lower RMSE values indicate better estima-
tion performance.

• Utility in KITTI Dataset: With access to ground truth data, RMSE
allows direct comparison of estimated positions and velocities with actual
values.

• KF vs EKF Performance: In the analysis:

– KF: Exhibits higher RMSE values, particularly in x-direction (0-12.5)
due to limitations in handling nonlinearities and higher noise.

– EKF: Shows improved RMSE performance, with values lower and
more consistent across all dimensions (X,Y, θ), reflecting its ability
to model nonlinear dynamics more accurately.

Figure 12 displays the RMSE plots for KF and EKF:
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(a) KF RMSE (b) EKF RMSE

Figure 12: KF vs EKF RMSE

In Figure 12a, KF’s higher RMSE values suggest less accurate estimation,
especially evident in x-direction variability. EKF’s improved performance in
Figure 12b highlights its effectiveness in reducing estimation errors across all
evaluated dimensions.

These metrics collectively provide a comprehensive evaluation of KF and
EKF performance, highlighting the advantages of EKF in handling nonlinear
dynamics and improving overall estimation accuracy compared to KF.
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8 Discussion and Conclusion

8.1 Discussion

The comparison between the Kalman Filter (KF) and Extended Kalman Filter
(EKF) presented a nuanced evaluation of their performance in state estimation
using the KITTI dataset. The KF, operating under the assumption of linear
dynamics and Gaussian noise, demonstrated robust trajectory estimation capa-
bilities but exhibited limitations in handling non-linearities present in real-world
systems. Conversely, the EKF, through its linearization of non-linear dynamics,
provided enhanced trajectory and orientation estimates by incorporating IMU
data, showcasing its adaptability to more complex scenarios.

The metrics of Normalized Estimation Error Squared (NEES) and Root
Mean Squared Error (RMSE) were instrumental in quantifying the performance
of each filter. The KF, while effective in scenarios with linear dynamics, showed
occasional overconfidence due to its simplified noise model. This was reflected
in NEES values occasionally exceeding the expected range, indicating a poten-
tial underestimation of measurement noise variability. RMSE analysis further
underscored this, particularly in the X-direction, where deviations from ground
truth were more pronounced.

In contrast, the EKF’s NEES values aligned more closely with theoretical ex-
pectations, reflecting its ability to handle non-linearities more adeptly. RMSE
results consistently showed superior accuracy across all dimensions (X,Y, θ),
emphasizing its capability to mitigate errors arising from non-linear system dy-
namics and noisy measurements.

A logical extension of the simulation involves extending the simulation to
include the Unscented Kalman Filter (UKF) to provide a comprehensive com-
parison among the three major Kalman Filter variants. The UKF, which avoids
linearization by directly propagating the mean and covariance through a deter-
ministic set of points, could potentially offer a middle ground between compu-
tational complexity and accuracy, especially in scenarios with highly non-linear
dynamics or when accurate modeling of noise statistics is critical.

Moreover, expanding the simulation across multiple drives of the KITTI
dataset would validate the robustness and generalizability of conclusions drawn
from the current study. Variability across different driving conditions and en-
vironments could provide further insights into the filters’ performance under
diverse real-world scenarios.

Further enhancing the EKF by incorporating additional sensor modalities
such as LiDAR, which provides precise spatial information, could improve state
estimation accuracy. LiDAR’s ability to directly measure distance and reflectiv-
ity could complement GPS and IMU data, particularly in scenarios where GPS
signal may be degraded (e.g., urban canyons).

On the theoretical side, beyond the KF, EKF, and UKF, exploring other
Kalman Filter variants like the Particle Filter (PF) for non-linear and non-
Gaussian state estimation could offer insights into alternative methodologies.
PF’s ability to represent the posterior distribution using a set of particles could
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overcome limitations of linearization inherent in EKF and UKF, albeit at the
cost of increased computational complexity.

Theoretical research to enhance specific Kalman Filters could focus on im-
proving the EKF’s performance in scenarios with highly non-linear dynamics.
One potential approach involves integrating more sophisticated non-linear mod-
els directly into the state transition and measurement functions. For instance,
leveraging higher-order Taylor series expansions or Gaussian process models
could provide more accurate approximations of non-linear system behavior.

8.2 Conclusion

By providing a comprehensive and complete framework for the KF, EKF and
UKF, while also demonstrating the effectiveness of the KF vs EKF in a simu-
lation using the KITTI dataset, this thesis contributes to advancing the under-
standing and application of Kalman Filters in autonomous systems, paving the
way for more accurate and robust state estimation methodologies.
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