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Real-Time Relighting of Human Faces with a Low-Cost Setup

NEJC MAČEK, Delft University of Technology, The Netherlands
BARAN USTA, Delft University of Technology, The Netherlands
ELMAR EISEMANN, Delft University of Technology, The Netherlands
RICARDO MARROQUIM, Delft University of Technology, The Netherlands

Fig. 1. Two faces acquired with our method, relit (middle and bottom row) with different lighting environments
(top row).

Video-streaming services usually feature post-processing effects to replace the background. However, these
often yield inconsistent lighting. Machine-learning-based relighting methods can address this problem, but, at
real-time rates, are restricted to a low resolution and can result in an unrealistic skin appearance. Physically-
based rendering techniques require complex skin models that can only be acquired using specialised equipment.
Our method is lightweight and uses only a standard smartphone. By correcting imperfections during capture,
we extract a convincing physically-based skin model. In combination with suitable acceleration techniques,
we achieve real-time rates on commodity hardware.
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1 INTRODUCTION
The appearance of a face can vary drastically depending on the lighting conditions. Modifying
the illumination of an image or video after its acquisition is known as relighting, which requires
predicting the light transport. Albeit a challenge, many applications such as photo/video editing and
online video streaming could greatly benefit from it. For instance, virtual backgrounds are widely
used but the viewer’s experience is undermined by the physical lighting often being disassociated
from the backgrounds. Our work aims at narrowing this gap.

There are two main trends for performing face relighting: image-based and learning-based. The
first relies on sampling the light transport function by capturing the appearance of the face under
various view and/or light directions. With enough samples it is possible to reconstruct a 3D face
model and use the sampled information to simulate novel lighting conditions. High-end devices,
such as light stages, use many cameras and hundreds of light sources in a dome-like structure. These
custom-made devices serve as benchmarks but target professional users, such as the movie industry,
and not the general public. Learning-based approaches are a recent alternative to tackle portrait
relighting and have gained popularity. Nevertheless, many methods require training data from
Light Stage-like devices and do not easily generalise. The other methods rely on pre-processing
large datasets of facial images for training but produce results that lack the visual richness of
natural portraits.

We propose a method that considerably lowers the requirements of image-based approaches. We
want to bring such acquisition methods to the masses by relying only on a cellphone flash, a camera
(possible another cellphone) and a reflecting sphere. The acquisition process is manually performed
by moving the flashing cellphone around the subject, and it lasts no longer than one minute. The
rest of the process requires minimal user intervention. Our method produces reflectance maps per
pixel that can be used for relighting, as illustrated in Figure 1. Furthermore, we demonstrate how
our method can be applied for real-time relighting applications, such as video streaming.
Our contributions can be summarised as follows:

• A simple acquisition for human-face reflectance (Sec. 3.1);
• A reflectance reconstruction via sparse samples (Sec. 3.2);
• A proof of concept for real-time use during video-streaming.

2 RELATEDWORK
A direct way to perform relighting is by sampling, interpolating and extrapolating the light trans-
port function. Image-based acquisition methods have been successful in this task by carefully
sampling the function in a controlled lighting environment in a One-Light-at-A-Time (OLAT)
manner [Debevec et al. 2000; Garg et al. 2006; Hawkins et al. 2001, 2004; Weyrich et al. 2006].

Debevec et al. [Debevec et al. 2000] proposed the first Light Stage to extract reflectance fields for
faces. Two fixed cameras and a light source attached to a gantry that rotates around the subject’s
face are used for capture. Moreover, polarising filters separate diffuse and specular components. A
reflectance map is created per vertex to perform relighting. Newer Light-Stage versions involve
more cameras and a larger number of fixed light sources in a dome-like structure, allowing for
increasingly denser and precise capturing of human faces [Debevec 2012]. Such dome-based
setups are commonly used in the entertainment industry and can be extended to performance
capture [Peers et al. 2007] and the full human body [Einarsson et al. 2006].
Lighter versions of the Light Stage lower the setup requirements by focusing on diffuse and

specular maps instead of reflectance fields. Multiview single-shot or quasi-instantaneous methods
are particularly attractive since they avoid the issues of head movement [Fyffe and Debevec
2015; Fyffe et al. 2016; Ghosh et al. 2011; Gotardo et al. 2018; Ma et al. 2007; Riviere et al. 2020].
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Nevertheless, such systems still require complex setups where each multiview shot needs to be
taken by several synchronised cameras or under special lighting, such as polarised illumination
patterns and filters. We aim at a wide-spread use of face appearance capture, mostly relying only
on common devices, such as a pair of cellphones, and simple lightning conditions.

Reflectance fields, even when acquired with such domes are considered sparse for many applica-
tions and require interpolation [Fuchs et al. 2007]. Recently, multi-view OLAT data has been used as
training sets for many machine learning-based approaches to increase the lighting resolution [Sun
et al. 2020; Zhang et al. 2021]. Xu et al.’s deep neural network for relighting requires only five images
with different light directions as input [Xu et al. 2018]. Yet, their training is based on renderings
with pre-defined BRDFs, which cannot capture the complexity and broad variation of human faces.

Using a neural-network trained with Light-Stage data, Meka et al. [Meka et al. 2019] proposed a
method that only requires two images per subject, but these two images need to be acquired under
special gradient lights. Other methods use such data to train a network that accepts a single portrait
as input [Legendre et al. 2020; Nestmeyer et al. 2020; Pandey et al. 2021; Sun et al. 2019; Wang et al.
2020; Yamaguchi et al. 2018]. While some of these methods produce convincing results, the training
data is complex. It is often difficult to acquire and, therefore, scarce. In consequence, extrapolation
is needed and some networks exhibit issues in this regard. Geng et al. [Geng et al. 2021] found
ways of improving their results using a loss function that compares extrapolated results to the
original portrait directly, however, their method does not generalise well to arbitrary environmental
lightning.
To lower training-data requirements, one can fit a 3D mesh to single portraits to synthesise

data [Sengupta et al. 2018; Zhou et al. 2019] or perform relighting between two portraits [Shu et al.
2017]. Nevertheless, such methods cannot generalise illumination conditions and mostly rely on a
simple Lambertian model for the face, which cannot match the quality of directly sampling the
light transport function.

Our method relates to Polynomial Texture Maps (PTM) [Malzbender et al. 2001], another OLAT
method, targeting relief-type surfaces. Widely used in Cultural Heritage, PTMs rely on a single
fixed camera and sampling the light source on a hemisphere around an object. We use a similar
acquisition method adapted to low-cost environments and human faces. While PTMs encode
spatially-varying reflectance information as biquadratic polynomials stored per-texel, we instead
encode this information in a discrete spatial reflectance map, inspired by Debevec et al. [Debevec
et al. 2000]. This enables us to store complete spacial reflectance information and enables simple
filtering and rendering.

3 OUR METHOD
We target a simple acquisition process of no longer than one minute (Sec. 3.1). The subject sits
down facing a fixed video camera (e.g., cellphone), while a second person moves a flashing light
source approximating a hemisphere in front of the subject. The flash blinks at a lower frequency
than the camera is recording. We do not require synchronisation between flash and camera but we
extract dark frames (no-flash) for face tracking that register the bright frames (flash).
Flash frames are used to build reflectance maps per pixel (Sec.3.2). Since the light-direction

sampling is sparse, we employ an interpolation scheme. We fit a 3D model to one of the frames to
extract a normal map and to compute self-shadowing areas for each light direction. We construct
a triangulation over the acquired light directions and use spherical barycentric coordinates to
interpolate the corresponding reflectance map, while respecting shadow boundaries.

For relighting (Sec. 3.3), one can multiply the pixels of an environment map with the correspond-
ing reflectance maps and sum the contributions. For dynamic relighting of a video, we perform gaze
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estimation to retrieve the head rotation. We then relight the static face with the rotated environment
map and warp it to the video frame using reenactment approaches.

3.1 Acquisition process
Face capture. For simplicity, instead of a special gantry, we manually move a light source (in

form of a cellphone with blinking flash) around the subject, while capturing the face from a single
front facing camera (again using a simple camera without special polarising filters). The distance
between the light source and the face is kept roughly constant at about 1.5 metres, leading to an
approximate sampling on a hemisphere (Figure 2, left). The acquisition takes around one minute,
during which the light is typically moved in a zig-zag motion. Light directions are retrieved via a
reflecting sphere (Figure 2, right).

Fig. 2. Left: Schematic acquisition setup. A camera captures the subject’s face at 30FPS while a flashing light
source at 5Hz is manually moved around the subject. A simple reflecting sphere is placed near the subject to
retrieve the light direction from the images. Right: Studio acquisition setup. We placed two reflecting spheres
for testing purposes, but we only require one.

As we cannot guarantee that the subject’s head will not move during the acquisition and even
small movements can lead to blur artefacts, we need to align the face in all captured images. Even
though many face-tracking and image registration methods, such as optical flow, exist, they suffer
severely under illumination changes [Singh and Arora 2016]. To this extent, we separate flash from
no-flash images. The no-flash frames are used for face tracking and, by interpolation, we determine
the face in the flash image. Meka et al. [Meka et al. 2019] used similar "tracking frames" but required
more controlled conditions with multiple synchronised cameras and light sources. We cover the
details in the following.

Flash/No-Flash Frame Extraction. In our method, we acquire videos at 30Hz, while the flash
oscillates at 5Hz. Note that there might be fluctuations on the flashing frequency since we rely on
simple cellphone applications and there might be lags in-between flashes.
Frames captured with the flash show strong directional lighting cues, contrary to in-between

frames mostly lit by weak ambient illumination. While we have approximately three bright and
three dark frames per flash, the camera shutter and the flashing light are not synchronised, hence,
not all frames are completely lit or dark. Yet, among the three bright and dark frames, at least one
should be close to the flash peak and one without any residual light by the flash.

Since we do not have a perfect synchronisation and the brightness of a frame may vary depending
on the face illumination, we use a sliding window of size 𝑠 frames over the video sequence, where 𝑠
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is the expected number of frames between flash and no-flash frames. Here, 𝑠 = 30
2∗5 = 3. We now

look for local minima and maxima of the average grayscale value of the frames. If a frame is a
maximum, we classify it as a flash frame. Likewise, we determine the non-flash frames. Figure 3
shows an example.

Fig. 3. A sequence of extracted flash and no-flash frames with the frame numbers below. Note how the
spacing between flash and no-flash images is not constant.

For robustness, we filter out flash images whose grayscale average differs from neighbouring
no-flash frames by less than a set threshold. We assume in these cases that the flash did not
sufficiently light the face because it was ill-positioned. An experimentally-determined threshold of
0.002 worked well for our cases where the captured face’s height and width spanned around 1/3 of
the uncropped captured images’ dimensions. This may need to be adjusted in setups with brighter
or darker ambient and flash light, and where the apparent brightness of faces varies due to diversity
of subjects or face size due to proximity to the camera. Additionally, we compute the average
period between consecutive local minima and maxima, which should be close to 2𝑠 . Deviating by
> 𝑠/2 from the expected period indicates an outlier and the frame is removed. In total, we typically
extract around 150-200 flash frames.

Face registration. Related work typically opts for a fast acquisition to minimise head move-
ments [Fyffe and Debevec 2015; Fyffe et al. 2016; Ghosh et al. 2011; Gotardo et al. 2018; Ma et al.
2007; Riviere et al. 2020] and even OLAT rapidly flicker LED lights to keep acquisition time low and
benefit from the absence of mechanical light movement. Some work claims that subjects can avoid
head motion but they were often capturing them at very low resolutions, hiding small movements.
We observed that using a head rest mitigates the issue significantly, however, we want to avoid
needing one. Without a proper head rest, we observed noticeable head movement, which requires
post processing. Nevertheless, since large head movements are uncommon, we approximate the 3D
motion by a rigid transformation in image-space.

We start by detecting the face [Viola and Jones 2004] and its landmarks [Shi et al. 1994] in the first
no-flash frame and use a sparse optical-flow tracker [Bouguet et al. 2001] to track the landmarks to
subsequent no-flash frames. We remove outliers using RANSAC, and compute the rigid alignment
in a least-squares sense using SVD with the remaining points. Due to the high noise rate of the dark
frames and inconsistency in brightness due to non-synchronisation, experiments with dense optical
flow, as applied by Meka et al. [Meka et al. 2019]), were less successful. In their setup multiple lights
could be simultaneously flashed to achieve high-quality tracking frames, which we cannot during
our deliberately simple acquisition. Figure 4 illustrates our alignment result.
Once all no-flash frames are aligned, we can use the derived transformations to deform the

in-between flash frames. Given the minimal head movements, linear interpolation works sufficiently
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Fig. 4. Left: Average of all the dark frames obtained during acquisition. Right: Average of the same images
after registration, significantly removing blur artefacts caused by misalignments (insets).

well. In practice, translation is typically below one pixel and never larger than three, while rotation
is around 0.1𝑜 and never exceeded 0.35𝑜 , for a 960 × 540 video.

3.2 Building Reflectance Maps
With the registered flash frames, it is possible to describe the appearance of the face under different
incoming light directions. The latter are derived using a reflecting sphere placed next to the subject
during acquisition. Its shape is marked for a single frame. In this circle, the light’s reflection indicates
the incoming light direction. The highlight is detected with sub-pixel precision by thresholding by
0.85 and then averaging the detected pixels using their brightness values. Further processing like
normal and albedo extraction could be possible using multiple spheres [Liao et al. 2017], but we
limit ourselves to a single sphere to facilitate simplicity of the setup.

The flash frames sample the face BRDF as well as all effects of indirect illumination such as am-
bient illumination, self-shadowing, subsurface scattering and other global illumination effects [De-
bevec et al. 2000]. We construct a set of 64 × 32 reflectance maps, each representing the reflectance
of one point on the face, i.e., one pixel. Pixels in the reflectance map represent light directions. More
specifically, we use an equirectangular projection to map image-space pixel locations to 3D light
directions. In our case, the maps are sparsely sampled (typically around 150-200 light directions)
and capture only directions in the frontal hemisphere. The pixels of sampled light directions in
reflectance maps are populated with colours from the captured flash frames.

To estimate the missing samples in the reflectance maps, we apply four steps. First, a triangulation-
based interpolation to populate the missing samples. Second, Visibility Maps that help us make
self-cast shadows sharper where, otherwise, there would be a smooth transition from a lit pixel
to one in shadow. Next, Light Adaptation is employed where we utilise surface normals on the
face to smooth and correct the interpolated colours. Finally, we apply some additional adjustments
to accommodate for the effects of the chosen encoding. The remainder of this section covers the
details of the four steps.

Triangulation. To colour the missing samples in the reflectance maps, we resort to interpolation
over a Delaunay triangulation. Since we do not capture the light’s direction from behind the face,
we do not have to worry about triangles wrapping around the map’s borders. To compensate for the
planar interpolation, we use Spherical Barycentric Interpolation [Cabral et al. 1999]. Furthermore,
we add virtual "black" light directions to fade out the light contributions beyond the convex hull of
the captured light directions.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 14. Publication date: May 2022.



Real-Time Relighting of Human Faces with a Low-Cost Setup 14:7

Visibility Maps. Pure barycentric interpolation exhibits visible artefacts in form of ghost shad-
ows [Xu et al. 2018]. It is smooth but occlusions can actually cause sharp transitions. To address
this issue, we fit a 3D model to the face [Guo et al. 2018, 2020] and compute a visibility map for each
reflectance map. It contains a one if the light directions corresponding to the pixel are completely
visible, a zero if they are blocked, and in-between values for partial visibility.

This allows us to improve the interpolation when one or two of the triangle vertices are not
visible. To simplify, we first consider a binary visibility map - one can imagine thresholding the
values with 0.5. Without loss of generality, we consider that 𝑣0 represents the direction of a non
visible light source while lights at 𝑣1 and 𝑣2 are visible. For every pixel inside the triangle that
represents a non-visible light direction, we use the value of 𝑣0, while visible directions interpolate
between 𝑣1 and 𝑣2 using spherical barycentric coordinates. This process is depicted in Figure 5, left.

Fig. 5. Using visibility to interpolate inside triangles. Visible, not visible, and partial visible directions are
marked as white, dark gray, and intermediate gray values, respectively. Left: Reflectance map with five visible
light directions (blue vertices) and five invisible (red vertices). The yellow triangle uses regular interpolation.
For the red triangle, white pixels will mostly rely on blue vertices, while gray pixels rely on the red vertex.
Right: In practice, we use a smoothed visibility map and generalise this interpolation scheme.

This approach assumes that the 3D model perfectly matches the face. However, since it is just an
approximate model, we expect some light directions to be wrongly classified. Considering Figure 5,
left, if direction 𝑣0 was wrongly classified as being visible, the red triangle would be interpolated
ignoring the visibility map and lose the sharp transition. If a neighbouring reflectance map would
classify the samples correctly, this issue would be accentuated.

To mitigate this problem, we smooth the original non-binary visibility map with a 3× 3 box filter.
Further, we propose an interpolation between both interpolation modes: not using the visibility
map (regular barycentric interpolation) and taking the visibility map into account as described
above. If all vertex visibilities are the same, we just use regular interpolation, while a large difference
of visibility on the vertices implies that we resort to the visibility map. Specifically, we use the
difference between the minimum and maximum vertex values as interpolation weight between
the two methods. Please note that working with the difference means that in some cases there
might not be any vertex with a visibility below 0.5. Instead, we always assume that the minimal
vertex value indicates that it is in shadow, the maximum lit. Any other pixel in the visibility map,
including the one containing the third vertex is declared lit/shadowed depending on how close
its value is to the other two vertex values. Figure 5 illustrates this concept, and Figure 6 shows an
example of a real reflectance map and the visibility maps.
Smoothing the visibility map leads to a smoother interpolation but also prevents some sharp

shadows from being detected. Nevertheless, since we cannot fully solve the misclassifications with
an approximated 3D model, a trade-off remains.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 1, Article 14. Publication date: May 2022.
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Fig. 6. Left: Sampled light directions. Middle: triangulation and interpolation. Right: visibility map with some
misclassifications.

Light Adaptation. The 3D model can be used to also estimate surface normals. Since the model
does not span the whole captured face, we smooth the contribution of the model on the borders to
avoid visible seams. For the points on the face, where normals are known, we adjust the interpolation
within the reflectance map by compensating for the cosine factor due to foreshortening of the
projected solid angle, i.e., we divide the value by the corresponding cosine contribution at each
vertex, interpolate, and then multiply by the cosine factor of the interpolated position.

We do assume that the direct illumination is dominant. This also holds for ambient light, since
the natural solution of subtracting the no-flash from the flash frame was not successful. Many
cellphone cameras lack white balance control and perform auto-adjustments (Figure 7). We did
not want to make higher-end devices a requirement, but the resulting error when using a darker
environment during capture were negligible.

Fig. 7. The difference between a no-flash (centre) and a flash (left) frame does not approximate well the
contributions of direct/indirect illumination due to uncontrollable self-adjustments of the cellphone camera
under rapid illumination variation.

The previous solution requires a refinement for when any of the cosine factors is negative
(or clamped to zero), i.e., the light direction is behind the surface. Here, the correction would be
meaningless. Nevertheless, it does not mean that the captured colour is necessarily black, as indirect
illumination is recorded as well. Such local occlusions are important to handle because realistic
skin appearance requires capturing subsurface scattering effects. Still, if we use a similar approach
as described for the visibility map, we could obtain negative values and even cause discontinuity
artefacts. Instead, we distinguish three separate cases. First, if all three vertices have a negative
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cosine factor, we just perform interpolation as described before. The second case covers two vertices
with negative cosine factor. The third will be one negative cosine factor. As these cases are complex,
we start with the intuition.

The idea is to use the value at the vertex with negative cosine factor to approximate the indirect
contribution at the other vertices. Specifically, we remove the indirect illumination, perform the
cosine correction for the direct illumination, and then add back the indirect component that is slowly
faded out towards the two lit vertices. To simplify, let us consider a 1D case of interpolating between
vertex 𝑣0 with only indirect illumination and 𝑣1 that has both direct and indirect contributions. We
use the colour at 𝑣0 as an approximation of the indirect component at 𝑣1. Hence the contribution of
the direct component to a point 𝑝 becomes:

𝑐dir = (𝑐1 −𝑤0𝑐0)
𝛿𝑝

𝛿1
+𝑤0𝑐0, (1)

where 𝑐𝑖 ,𝑤𝑖 and 𝛿𝑖 are, respectively, the colour, barycentric weight, and cosine factor at vertex 𝑖 .
Finally, we can compute the colour at point 𝑝 as 𝑐𝑝 = 𝑤1𝑐dir +𝑤0𝑐0,
We can now extend this idea to 2D to interpolate inside the triangles. If two vertices have

negative cosine factors, say 𝑣0 and 𝑣1, we can first interpolate their indirect contributions as
𝑐ind = (𝑤0𝑐0 +𝑤1𝑐1) and their combined weight as𝑤ind = 𝑤0 +𝑤1. The contribution of the direct
illumination can then be defined similarly to Eq. 1, with 𝑐𝑝 computed as before:

𝑐dir = (𝑐2 −𝑤ind𝑐ind)
𝛿𝑝

𝛿2
+𝑤ind𝑐ind. (2)

For the final case of 𝑣0 and 𝑣1 having a positive cosine factor, we first interpolate between 𝑣1 and
𝑣2 and compute 𝑐𝑝 = (𝑤1 +𝑤2)𝑐dir + 𝑐0𝑤0, where the direct contribution 𝑐dir is given by:

𝑐dir =

[
𝑤1 (𝑐1 −𝑤0𝑐0)

𝛿1
+ 𝑤2 (𝑐2 −𝑤0𝑐0)

𝛿2

]
𝛿𝑝

𝑤1 +𝑤2
+𝑤0𝑐0. (3)

Figure 8 shows a reflectance map created using the described interpolation methods and a
comparison with ground truth data for a synthetic example.

Fig. 8. Reflectance map of one vertex of the synthetic face. Top row (left to right): spherical barycentric
interpolation, added sharp visibility maps, added light adaptation. Bottom row (left to right): visualisation of
cosine weights, visibility map, ground truth.
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Adjustments. We apply gamma correction and all calculations are done in linear sRGB space.
Similar to Debevec et al. [Debevec et al. 2000], we normalise reflectance maps after they are
computed. Normalisation accounts for the fact that in an equirectangular projection, pixels at the
poles represent smaller areas. We multiply the pixel intensity by the sine of its corresponding
latitudinal coordinate, such that values at the poles are close to zero, whereas the values at the
equator remain mostly unchanged (Figure 9).

Fig. 9. Left: Triangulated light source samples. Other images: Reflectance maps for different positions on the
face (right).

3.3 Relighting
With a reflectance map per pixel, we can perform relighting on a static image by convolving the
reflectance map by a given environment map, i.e., multiplying corresponding pixels and summing
their values. We perform these steps on the GPU in real-time enabling interactive illumination
changes.

To support head rotation, we observe that for the relighting, it has the same effect as rotating the
environment map in the opposite direction. Therefore, we perform relighting on the static frontal
image using the rotated environment map, and finally transfer the relit face to the video frame
using a reenactment approach [Siarohin et al. 2019] (Fig 13). The rotation angle is determined using
an estimation of the gaze direction [Guo et al. 2018, 2020]. The resulting image quality is limited by
the reenactment algorithm but it shows, in form of a proof of concept, that our acquisition method
can be used for applications like video streaming.

4 RESULTS
We have captured several faces with the setup illustrated in Fig 2 and two more were captured inde-
pendently in a home setup. Figures 10 and 1 illustrate relighting results with different environment
maps. For these results we have adjusted the contrast of the final images in order to make them
more visible (Figure 15). Figure 11 shows results for an environment map simulating a single light
source at different positions.
Figure 12 shows the sampled light directions for three different acquisitions. Note how our

method is robust to very different sampling patterns and densities.
In order to have a ground-truth comparison, we applied our method to synthetic data [McGuire

2017]. We simulated the entire acquisition using a 3D head model, including reconstructing a new
approximate 3D model. Figure 14 illustrates two comparative examples. We used one of the original
sampling patterns that have sparser samples for the sides. Consequently, the relit model fails to
capture light coming from behind or directly from the side of the head.
For a more quantitative comparison, we rendered an error heat map of the face. The error for

each point on the face is computed by averaging squared RGB distances between all corresponding
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pairs of pixels in the ground truth and recreated reflectance maps, weighted by the sine of their
latitudinal coordinate.

Limiting the error computation to the area of the convex hull of sampled light directions shows
which areas suffer most from an approximate interpolation. We notice three distinct areas. First, on
the forehead due to lack of coverage of the 3D model. Second, around the nose due to incorrect
self-cast shadows caused by inaccurate shadow border. Finally, on the dorsal of the nose as an effect
of the lack of interpolation support where a lot of subsurface scattering effects are present when
the light is placed on the side. In all, we see that most differences come from inaccuracies of the
reconstructed 3D model.
We further compared our results to learning-based methods with publicly available code [Xu

et al. 2018; Zhou et al. 2019]. As Zhou et al. [Zhou et al. 2019] only support a Spherical-Harmonics
illumination model and gray scale maps, we have converted a high dynamic range (HDR) envi-
ronment map to this representation and then produced an equirectangular map and a light probe
(Mirror ball) from the SH representation to account for the loss of high-frequencies in that method
to enable a fair comparison. We also compared the results using the LDR illumination examples
provided directly by Zhou et al [Zhou et al. 2019]. Regarding the method of Xu et al. [Xu et al.
2018], it requires a set of input images, where the associated incident illumination angles have a
tolerance error of at the most 10 degrees, we used our incident angle extraction method to specify
the input images for their model.

Figure 16 shows that the method of Zhou et al. produced visible artefacts for the LDR illumination
and failed to produce a consistent relit image for HDR. While, the method from Xu et al. produced
comparable results to our method for the synthetic case, it resulted in some artefacts on the forehead
(centre column) and background (left column). We suspect that the noise present in the real images
might disturb their model.

Figure 17 compares our results against the method from Xu et al. and the ground truth using an
HDRI map. While both methods were able to reproduce the shadow on the left side of the face, we
notice that Xu et al. produces an exaggerated specular appearance that can be seen on the cheek
and forehead. In addition, their method produces a bluish appearance due to the dominant sky
colour in the map, while ours is able to better reproduce the colours.

5 LIMITATIONS
Without synchronisation, we need to consider a margin to ensure at least one dark frame without
residual flash light. This imposes a limit on the flash frequency and, thus, acquisition time. Never-
theless, the current acquisition time of approximately one minute was not considered an issue by
the subjects. A faster flash frequency and higher camera frame rate could be used but this goes
against our goal of acquisition simplicity, which includes the reflectance sphere. While it is not
something that is found in every home, we successfully tested our system with cheap stainless
steel garden decoration spheres and Christmas balls that can easily be purchased.

Our setup does make acquiring images from the back hemisphere challenging. While the actual
back of the head is usually not interesting for relighting, we miss scattering effects on the ears and
the side of the face. Moreover, our shadow boundary interpolation and normal estimation rely on a
3D model approximation. The current method is still coarse and does not reconstruct the whole
face. As can be noted from the result, some seams remain visible in some images. Nevertheless,
we were able to produce convincing relighting results with our extremely simplified acquisition
method.

Finally, sincewe need some amount of ambient light to use the dark frames for tracking, we cannot
reproduce very strong directional lighting. On the other hand, requiring a very dark environment
for acquisition also makes its usage less attractive for general users. Again, given the trade-off,
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we opt for the easiest acquisition scenario. This problem would benefit from future research on
mitigating camera self-balancing issues and utilising the difference between flash and no-flash
frames to equalise and extract the contrast between them. Currently, this results in brighter or
darker relighting results.

6 CONCLUSIONS
We have presented an end-to-end relighting method for the masses. Our acquisition approach is
distinct from existing approaches in that it requires no special equipment and enables capturing a
subject’s face within one minute using only a manually-displaced flashing light and a cellphone
camera. We have addressed three main issues that this low-cost setup presented. First, we mitigated
the possibility of facial movements with a stabilisation algorithm. Second, we resolved sparse
sampling using a smart interpolation technique. And finally, there are camera self-adjustments
, which require further research to resolve, but would help normalise flash/no-flash brightness
variation. The final per-pixel reflectance maps can be readily used for real-time relighting. As a
proof of concept, we have presented an extension of our method to videos, which can be of benefit
when using virtual backgrounds.

There are several future directions to explore. The interpolation could benefit from an advanced
3D-face model matching and robust reenactment methods would improve video performance.
Nevertheless, since our method does not depend on any particular algorithm, these are exchangeable.
Given the acquisition time and flashing light, many subjects prefer to keep their eyes closed

during acquisition. A natural improvement would be to use one image of the subject with eyes
open, and transfer the relighting data to this image to act as the based relighting image for video
sequences.
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Fig. 10. Left column shows a captured bright frame. The other columns show relighting results with the
respective environment maps on top. The last two rows show results for home-made acquisitions.
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Fig. 11. Results with an environment map simulating a single small light source.

Fig. 12. Light-direction sampling for three different acquisitions, including a frame and extracted normal
map.
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Fig. 13. Exemplary frames of a relit video using different environment maps. Relighting was transferred from
the original image (leftmost column) using the reenactment approach from Siarohin et al. [Siarohin et al.
2019].

Fig. 14. Ground truth comparison. First two columns: ground truth in the bottom row, relit counterparts
in the top row. Last column: normalised error heat map computed over the whole area of reflectance maps
(top) and only over the area of the convex hull of the sampled light directions (bottom). The heat maps were
normalised separately.
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Fig. 15. Without (middle) and with contrast adjustment (right).

Fig. 16. Top three rows are the relit images using an LDR illumination map for the front hemisphere of the SH
based illumination, as in [Zhou et al. 2019]. The bottom two rows are results using an equirectangular HDRI
map obtained by converting an HDRI to its SH representation and back to an environment map. Results from
Zhou et al. for the HDRI map were discarded since it failed to produce convincing results.
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Fig. 17. Top row shows the Illumination maps in the format used by Xu et al. (Mirror ball based light probe)
and the equirectangular map used in our method. Bottom row shows relighting results of a synthetic model
using Xu et al. and our approach compared to the ground truth.
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