
Final Report

Scansistant

an android application on behalf of the TU Delft to test the
feasibility of Near Field Communication in mobile learning

Version 1.2

Delft University of Technology
TU Delft Library

Authors:
Dino K.L. Hensen 1367412
Tim M. Ypeij 1386174

August 6, 2013

Company Supervisor:
Karin Clavel

Supervisors:
Dr.ir. Koen Bertels

ir. A.T. Nelson

Coordinators:
Dr. Martha A. Larson

Dr. Hans-Gerdhard Gross

Summary

Nowadays a lot of students have smart-phones that can be put to use for mobile
learning. The TU Delft Library has come up with an idea for this which also
incorporates the use of a modern technology called Near Field Communication.
It is already available on the market but immature so experience has to be
gained in combination with mobile learning to see if it is worth to pursue further
developments on this area.

The TU Delft Library has the idea of using a mobile application to scan
machinery on the campus as a way to get instructional videos and information
to perform a feasibility study and to gain experience on the aforementioned area
of interest. From the wishes of the client and our own acquired computer science
skills the requirements came forth and as a start of the software development.

For the requirements of the final delivered prototype application we carefully
looked if the features could help to perform the feasibility study and are able to
answer the questions for the this study. From these requirements we conclude
that more than a simple Android application has to be built: a central server to
house all video and data was also required and a way to provide communication
between this server and android client application. For this we defined an API
so that many clients can get information from the server.

The software subsystems consist of a back-end, front-end and client appli-
cation. They are developed in Java, building upon the Android SDK and in
PHP, building upon the Zend Framework 2. For the NFC technology libraries
are available so that tags could be successfully scanned after which the machine
data could be downloaded. For development of all subsystems we used Eclipse
and associated plugins to enable for Android and ZF2 development.

The design of the subsystems was done in parallel and on-demand so that
features required by the android application that needed an API method that
was not yet there was immediately implemented when needed. It started with
a global database design after which we could both focus individually on the
platform specific details. The user interface design was important because that
is the level at which the feasibility study will be performed when the end-user
gets to use the application. The design focus was on smart-phones, but because
tablets are widely used also we made it compatible making use of its bigger
screen.

Because of an agile and feature driven development methodology we used
exploratory testing for the largest part of the project. After we had a stable
system we started writing tests because we now had gained enough knowledge
of the development platform to efficiently write tests. At the end we managed
to have tested the Android application by unit testing the models and the API
was tested by a controller testcase to test the responses of critical API methods.

3

For the scope of our project we did not need to perform the feasibility study
ourselves, but we did ran some user evaluation trials to get a first reaction on
the application before delivering a final prototype. The feedback that we got
from these user evaluations allowed us to increase the chances at success because
the first issues we got from users could solved before delivering a prototype.

The final prototype meets all requirements we planned to have and executes
its task to scan a machine and show an instructional video very well. The
application works on Android phones with the 4.0 version or higher and we
think is a good platform to further develop. The Software Improvement Group
evaluated our code and rated it at 4 out of 5 stars on their maintainability
model, which means the maintainability of our total software system is above
average.

4

Preface

This report describes the development of a mobile application made for the TU
Delft Library to perform a feasibility study and gain experience with mobile
learning. It is the final report for the TI3800 - Bachelor project which is part of
the bachelors curriculum of Computer Science at Delft University of Technology.
The project lasted 14 weeks starting from April 22, 2013 until August 7, 2012.

We would like to thank the following people for their time, support and contri-
bution throughout the project:

� Karin Clavel (TU Delft Library), for giving us the opportunity to do this
project and helping us to set everything up and finish the project with a
good feeling.

� Koen Bertels (Computer Engineering), for taking on our project .

� Martha A. Larson and Hans-Gerdhard Gross (Software Engineering), for
coordinating the bachelor project.

� Andrew Nelson (Computer Engineering), for guiding us through much of
our report writing and giving us lots of tips about what we should do and
should not do.

� Eric Bouwers (SIG), for reviewing our source code and giving us feedback
on how to further improve the quality and maintainability of our software.

� Gerard van Vliet (IWS 3ME), for helping to record an instruction video
for the laser cutter at IWS.

� Don and Roel (PMB IO), for helping to record an instruction video for
the disk sander at PMB.

Dino Hensen
Tim Ypeij

Delft, August 1, 2013

5

Contents

Summary 4

Preface 5

1 Introduction 9
1.1 TU Delft Library . 9
1.2 Problem Description . 9
1.3 Outline . 10

2 Requirements Analysis 11
2.1 Domain Analysis . 11
2.2 Functional Requirements . 12
2.3 Quality Requirements . 13
2.4 Platform Requirements . 13
2.5 Security Requirements . 13
2.6 Process Requirements . 13

3 Methodology 15
3.1 Scan technologies . 15

3.1.1 Near Field Communication 15
3.1.2 QR-code . 16
3.1.3 Our choice . 17

3.2 Libraries . 17
3.2.1 Android Framework . 17
3.2.2 Zend Framework 2 . 17

3.3 Tools . 18
3.3.1 Eclipse . 18
3.3.2 Pivotal Tracker . 19
3.3.3 Development Server . 20

4 Design & Implementation 21
4.1 Global Design . 21
4.2 Android Client Application . 22

4.2.1 Graphical User Interface 22
4.2.2 Activities and Fragments 25
4.2.3 Modeling and network . 27

4.3 Back-end Application . 29
4.3.1 Modeling . 29

7

4.3.2 Implementation . 31
4.3.3 Front-end . 36
4.3.4 API . 38

5 Testing 45
5.1 JUnit 3 . 45
5.2 PHPUnit . 46

6 Process 48
6.1 Feature Driven Development . 48
6.2 Planning . 49
6.3 Weekly progress . 49
6.4 Workplace . 51
6.5 Accompaniment . 51

7 Evaluation 52
7.1 User evaluation . 52
7.2 Usability report . 54
7.3 Code evaluation through SIG . 54

8 Conclusion 55
8.1 Result . 55
8.2 Recommendations . 56

8.2.1 Adjustments of existing features 56
8.2.2 Missing features . 57
8.2.3 How to make our product a success 58

A Preliminary Report 60

B Project plan 81

C Project Proposal 92

D Code Evalutation SIG 94

E Usability report 96

8

Chapter 1

Introduction

In this chapter we will explain the problem we want to solve during this bachelor
project, as well as some background information. We also state our proposed
solution here. Finally, a global outline of our report is given.

1.1 TU Delft Library

The TU Delft has got a department called the ICTO (ICT in Onderwijs) that
comes up with all kind of ideas on how to improve mobile learning for students
[1]. They would like to gain more experience with using smart-phones and
they have come up with an idea of an application that uses the Near Field
Communication technology.

They have also noticed that there are a lot machines on the campus that are
difficult to operate and require an instruction before usage. At TU Delft many
courses have a laboratory component or require the use of machine workshops
in which we can find those machines that are hard to operate. So the ICTO
wants to run a feasibility study with a mobile application on a smart-phone
that has NFC capabilities to see what happens when students can just scan a
machine with their phone and get an instructional video. The TU Delft Library
facilitates our project by assigning our company client (Karin Clavel) to us as
well as giving us a working place.

1.2 Problem Description

This brings us to the problem description of our project, which is to design and
implement an application suitable for the TU Delft to perform a feasibility study.
The main questions that need to be solved in the feasibility study performed by
the ICTO when the application is done are:

� What if students could use their smart-phones to scan the equipment,
watch an instructional video, click through the steps one by one and learn
from tips & tricks by other students?

� What if we could upload and share pictures or a video from our experiment
or the prototype we made with the machine?

9

� What elements need to be added in order to make mobile learning a suc-
cess?

� Is mobile learning an interesting area to further explore, or is it not worth
the time and resources?

Our task is develop a prototype of a mobile application. With developing a
mobile application for a specific purpose we hope to create the platform that is
necessary to have in order to answer the main questions. Answers to these ques-
tions can be gained by releasing our mobile application at the TU Delft campus
for students of faculties like Industrial Design or Mechanical Engineering. Espe-
cially these student groups are required to use machines that are at first difficult
to operate. These machines require instructions that can be provided by our
application. After releasing a simple survey can be held to actually get feedback
from the students as to whether a mobile learning solution like ours is feasible
or not.

For our project we will not be releasing and surveying to such a large au-
dience, because this is not in the scope of our bachelor project. Instead, we
will evaluate it on a smaller scale at the TU Library office and instruction labs
around the campus such as IWS (InloopWerkplaats Studenten), which is a work-
shop where students have access to machines for metal and plastics processing.
By doing this on a small scale, we can still get some early feedback to filter out
the some issues on the road in order to increase chances of success in the future.

1.3 Outline

We will discuss some methodologies we used during our project in chapter 3.
After that, we will give our reader a closer look into the design and implemen-
tation of our prototype in chapter 4. An overview of our testing methods is
given in chapter 5, while the process of our project is described in chapter 6.
Several parts of our project are evaluated by others and that is described in
chapter 7. Finally, in chapter 8 we will recap on the problem statement and
conclude if our prototype will fulfill the questions, as well as give our client some
recommendations.

10

Chapter 2

Requirements Analysis

In the following sections we describe the requirements of our project. We com-
posed these requirements out of many sources. First of all, our client adviser
had drawn up a proposal for us. We had weekly meetings with her were she gave
us more requirements or advices. Our project supervisors gave us some useful
tips as well. Also, we brainstormed a lot about the requirements ourselves about
many additional functions. We also conducted a field study around the campus
were we asked lab instructors and students about what they would expect out of
a mobile learning application. We documented those findings in the preliminary
report (Appendix A).

2.1 Domain Analysis

The domain on which the analysis is performed is mobile learning. In this
domain, the end-user or customer will be the students that are required to learn
how to operate specific machines on the campus. The environment for this
analysis is the Delft University of Technology Campus, because that is where
the machines are located. Because the focus of this domain is all about mobile
learning, which means that the end-user will not be sitting at a desk, but instead
will be in the context of the subject under study, it is required to look at devices
that are mobile phones. Because it was made specific in the project proposal, the
use of NFC gets a central role here. The only currently available platform with
NFC capabilities is Android, so we will target Android devices. We will focus
on users with smart-phones, but our application will run on Android tablets as
well. In the current situation when students want to know how to operate a
machine they have a few options to gain knowledge:

� Consult the manual if there is one available

� Follow the special lab instruction lectures

� Ask the workshop instructor for guidelines or instructions

� Search for themselves on the Internet: usually through a popular search
engine or using YouTube for a video instruction.

11

There are already many software solutions for watching a video to gain
knowledge about some subject, but have not yet seen one where you can retrieve
it while you are in the context where you would like to use it.

2.2 Functional Requirements

Each requirement is assigned a priority according to the MoSCoW-model. The
M indicates a must have requirement, S indicates C a could have and W indi-
cates that the requirement will not be fulfilled.

Client application Requirements Priority
F1 Capability to scan a machine via NFC technology. M
F2 Capability to manually enter the machine code. C
F3 Capability to scan a QR code attached to a machine C
F4 Capability to authenticate through OAuth provided by TU Delft

API
W

F5 Capability to register a user account. S
F6 Capability to login. M
F7 Capability to see an instructional video. M
F8 Capability to see information on a machine if available. M
F9 Capability to view and leave comments. M
F10 Capability to add a machine to a favorite list. C
F11 Capability to upload an image. M
F12 Capability to upload a video. M
F13 Capability to have chapters that guide the user to a point in a

video.
S

From the requirements above we can immediately see that a client-server
model is required to create the application. (See chapter 4 for more information).
The server will provide the videos and machine information data to the client.

At the time of developing, the TU Delft API for OAuth authentication was
unfortunately not ready yet. Due to this we decided to implement our own
registration model.

Server application Requirements Priority
F14 Capability to serve information for a specific machine. M
F15 Capability to add comments on a machine. M
F16 Capability to serve comments made for a specific machine. M
F17 Capability to serve video data for specific machine. M
F18 Capability to serve chapter data for specific machine. M
F19 Capability to serve a video. M
F20 Capability to provide user registration. M
F21 Capability to authenticate a user. M
F22 Capability to manage machines. S
F23 Capability to add/edit/delete videos. S
F24 Capability to add/edit/delete locations. C
F25 Capability to add/edit/delete departments. C
F26 Capability to add/edit/delete chapters. C
F27 Capability to serve favorites machines for a user. C
F28 Capability to upload media files for a comment. M

12

2.3 Quality Requirements

These quality requirements should ensure that the user experience of our appli-
cation is of decent quality.

Requirement
Q1 The server should be able to provide information data and video to the user

in a few seconds to have the best user experience
Q2 The server should be able to serve video’s to multiple clients at once. (Because

the deliverable is a prototype we won’t focus on scalability too much.)

2.4 Platform Requirements

The server application is supplying the client with information and must always
run in order for users to use the client application. We have chosen to use a
LAMP stack and therefore the server software requires the following system to
run on: see table.

Requirement
Client
P1 The platform to run the client software is an Android device(So either a smart-

phone or a tablet that runs Android).
P2 The minimal Android version is 4.0 (API 14), because the most NFC phones are

equipped with at least this version and this was the last fundamental Android
update.

P3 The phone must be connected to the Internet.
Server
P4 Server application depends on: Apache 2.2.22, PHP 5.3.10, MySQL 5.5.31 on

Ubuntu 12.04.2 LTS.

2.5 Security Requirements

These requirements should prevent any abuse of our application, server and
database.

Requirement
S1 The user must be authenticated before adding data such as comments, media

uploads and favorites
S2 The password the user provides when registering and logging in should be

encrypted.
S3 When a user is not logged in, he should not be able to post comments.
S4 A tutorial video could be prevented from streaming when not accessed from

the application (but i.e. from a browser)

2.6 Process Requirements

At the start of this project we were determined to use Test Driven Development,
but in the first weeks we came to the conclusion that it did not fit this project.
The reasons were that we did not have that much knowledge of the frameworks

13

we were building upon. These frameworks (described in chapter 3) have a lot of
classes and patterns ready to use out of the box, but in order to do a test-driven
approach, we should have had a deeper understanding of the frameworks we
used in order to write tests up front.

Requirement
PR1 As development process or methodology we will use a feature driven develop-

ment in an agile manner. You can read more about this in chapter 6.

14

Chapter 3

Methodology

In this chapter we describe the technologies, libraries and tools we have used
during our bachelor project.

3.1 Scan technologies

Currently there are two different methods of scan-identifying objects. One
method, called Near Field Communication, is relatively new. The other one,
QR-code, is widely used already. We will discuss them both and explain why
and which one we chose to focus on. Also we included here how to use both
technologies to make them compatible to our mobile application.

3.1.1 Near Field Communication

There are many NFC-chips standards. We chose the NTAG203 NFC standard,
because it is suitable for the latest Android versions, the versions that we are de-
veloping for. At some webshops (i.e. 123NFC.nl [2]), there are special NTAG203
sold that are suitable for placing on metal. When normal NFC tags are placed
on a metal surface, the conduction causes errors in reading the tags. These
special on-metal NTAG203 tags, have a special coating that prevents the con-
duction. Because of the fact that many machines at the TU Delft are made of
metal, these special on-metal tags come in handy to prevent the communication
between the phone and tag from malfunctioning.

To make a NTAG203 (or other NDEF format) ready for our application, we
use an Android NFC capable phone with the NFC Developers application [3].
With this application, you can scan a QR-code and the content of the QR code
can then be burned onto a NFC tag. These QR-codes can be generated on a
website called NDEF Editor [4]. A short instruction of how you make your tag
ready for your machine follows:

1. Go to http://www.ndefeditor.com

2. Add a text record with your machine code (in the format UUU-DD-###,
where UUU is a three letter abbreviation for the University, DD a two
letter abbreviation for the Department and ### a three digits code).

3. Add a Android Application Record with package name: com.scansistant.

15

4. Open or download the NFC Developers application, and scan the gener-
ated QR-code with this application.

5. Scan the tag you want to store your machine code on (You can activate
Burn modus to prevent other people overwriting your tag).

When a tag is prepared for use, it can be stuck onto a machine. It is recom-
mended to write or print the machine code on the tag for users with Android
phones without NFC capabilities. When the machine with corresponding code
exists in the database, the tag can now be scanned and will force the Scansistant
application to open and loads the machine data from the server. Also with the
application already opened, a tag can be scanned and the user will be directed
to this certain machine.

One of the benefits of using NFC technologies is the possibility to protect the
data that is stored on a chip. Anoher one is that the material is robust so it is
sufficient for lab environment. A final advantage is that it is a new technology
that has not been widely used by now, so our application will contribute to
the study of a relatively new field. On the contrary, NFC chips are relatively
expensive, and not every (Android) phone is capable of reading the NFC tags.

3.1.2 QR-code

A QR-code is a two dimensional bar-code that is capable of carrying data with
itself. It is mostly used for containing URLs with it. We already use it to
burn our NFC-tags as described above. We also built in the functionality to
scan a QR-code, containing mostly the same information as our NFC-tag, with
an external QR-code scanner and launch our application and load the machine
that corresponds with the machine-code that is contained in the QR-code. It is
unfortunately not possible at this moment to use the same QR-code as we gen-
erated above, because this QR-code contains meta-data for the NFC-developer
application. You can generate a QR-code as follows:

1. Go to http://goqr.me/

2. Click on the tab URL

3. Give the URL: scansistantQR://<machine-code> where <machine-code>
is in the format UUU-DD-###.

4. Download or open the QR-code.

When a QR-code is prepared for use, it can be stuck onto a machine. Now,
aside from NFC-scanning, a phone can scan this code and this launches Scan-
sistant with the machine data. This is useful for older phones which are not
equipped with NFC capabilities yet.

The advantages of using QR-codes are that they are relatively cheap to
make. Also every Android phone with a camera on the market is capable of
reading QR-codes. A big disadvantage is that it is susceptible to abuse because
everyone can print out a malicious QR-code and stick it onto the original QR-
code. Another disadvantage is that a QR-sticker in lab environments could
easily wear off and become too dirty or damaged to be read.

16

3.1.3 Our choice

We chose to focus on the NFC technology because we want to discover the
opportunities of a relatively unexplored market. We built the NFC scan tech-
nologies into our application. We also think that it is important that NFC-tags
are more reliable in terms of susceptibility to damage and misuse, because we
are developing an application in the field of mobile learning. To reach owners
of a phone without NFC capabilities, we also will support QR-code data that
has to be read with an external QR-code scanner.

3.2 Libraries

The libraries that we have used are the Android framework for the client side
of our project, and Zend Framework 2 for the server side of our project. Those
two important libraries are discussed here.

3.2.1 Android Framework

The Android framework is a framework for developing mobile applications,
based on the Java programming language and XML markup language. XML is
used for defining constants and the graphical user interface elements and Java
is used for every dynamic element. There are many different classes that are
specifically for Android and not in Java that a programmer must understand
before developing an Android application. Some important examples:

� Activity: an Activity is the main process that is running in an application
and it interacts with the user. Usually the GUI elements are loaded in the
Activity

� Intent: the description of an action the application is intended to do. For
example, it can contain an Activity as well as data. Different applications
can send each other Intents back and forth.

� Context: An abstract class that is mostly extended as an Activity and it
is containing the global information about the application’s environment.

� Asynctask: an abstract class that represents a task that is running on a
separate thread. Mostly this class is extended for networking issues.

While these are a few important examples, it takes worth a while for an expe-
rienced Java programmer to understand the whole Android framework. During
this final report, we will further explain some of the Android framework features
especially in chapter 4.

3.2.2 Zend Framework 2

Zend Framework 2 (ZF2) is the industry standard development framework for
enterprise PHP development. The first stable release (2.0.0) was on 5 September
2012 and year later the framework has matured and evolved to version 2.2.x
which we are using for the development of the back-end. The ZF2 is completely
object oriented and uses a lot of different design patterns to increase the re-
usability and maintainability. The framework offers a huge amount of reusable

17

components from which we will only use a few. The reason we chose to use
the ZF2 framework is because it is a modern industry standard and it provides
us with a lot of useful components. We took the components we thought we
required for this project and took them as criteria for deciding whether use ZF2
or to write our own small framework:

� Modular design

� MVC layer

� Form filtering and validation

� Database object pattern

� Authentication mechanism

Because ZF2 has all the above components we chose to use it as it would save
us time to write it all ourselves. The reason that we did not choose another
frameworks is that it was important for the maintainability. It is easy to find
certified Zend engineers, also there is a large community that offers supports
and all code and manuals are documented very well.

3.3 Tools

We have used different essential tools during the development of our project.

3.3.1 Eclipse

Eclipse is a open-source IDE originally designed for developing Java code. When
equipped with the ADT (Android Development Tools) plugin, it is ready for
developing Java code on the Android framework. We also use Eclipse to program
the server application subsystems in PHP for which a plugin is also available.

Eclipse is our coding environment of choice because we have much experience
with it throughout our study and work, and it makes the life of a programmer
so much easier. It has so many convenient hot-keys as well as code highlighting.
It also compiles your code while typing and alerts you of syntax or other errors.
Another important motivation for using Eclipse is that we don’t need several
editors: because of all the plugins we can simultaneously edit PHP and Java in
the same instance of Eclipse.

Android Development Tools

The ADT plugin for Eclipse is a very useful plugin for developing Android apps.
First of all, when starting a new Android project with Eclipse, it automatically
adds all the Android framework classes (from the target API of Android you
are developing for) to the classpath.

Aside of that, the graphical user interfaces (GUIs), predefined data such as
strings and color codes and the important Android Manifest files in Android
applications are defined with XML. The ADT plugin makes Eclipse capable
of developing this XML code. Also regarding the GUI, the ADT Plugin can
gives a actual preview of XML defined user interfaces. The other way round is
also possible, when dragging and dropping several different graphical items into

18

the preview windows the XML code is automatically generated. When XML
items are defined, you sometimes want to access these items in the Java code.
Id names can be defined in the XML elements and then the ADT plugin puts
them as a constant into a special R (resources) file. From then on, these items
can be referred from the Java code.

Another great functionality of the plugin is that it adds an emulator to your
environment. For example, emulators can be used to test applications with older
versions of Android than the target version or to check how it looks on a tablet
when there is no tablet to test on. There are more functionalities for testing
more automatically in this plugin but these are discussed in chapter 5.

A final useful functionality of the ADT plugin that we want to highlight
here is the LogCat. The LogCat is capable of getting the console output out
of a phone or emulator. It is possible to let the LogCat print out any output
(much like the system.out.println() function in standard Java), but supply
them with a tag and filter on these tags. This comes in handy when debugging
a specific issue. Also, different priority levels on the output and also filter on
these levels. When the highest level occurs, the application closes immediately.
These are often implemented in ’dangerous’ errors in try/catch statements.

PHP Development Tools

For the subsystems that are programmed using PHP we installed another plu-
gin called PDT (PHP Development Tools). This plugin ensures that Eclipse
is capable of working with PHP code as well. PDT offers php syntax high-
lighting, code hyperlinking, autocomplete and also supports namespaces and
automatically adds a use namespace line whenever using a new class in the
source-code.

3.3.2 Pivotal Tracker

Our agile development requires a project tool that allows for an agile work-flow.
We did not wanted to use a full Scrum methodology, but our own flavor of
it. That means that we would not have strict roles and daily scrum meetings.
Doing this would yield too much overhead since we were with two persons only.
Therefore we chose to use Pivotal Tracker(PT) to put our project tasks into
without being constrained in any way. Pivotal Tracker allows a task to have
an point estimate assigned to it. A point estimate is a relative measure of
complexity and risk, so it does not per se say anything about the hours spent
on a task. PT works with iterations in which each iteration is defined a one
week. It also estimated the projects point velocity, which is the rate at burning
points. When starting an initial velocity can be set , but it soon finds out how
much points per iteration you are able to burn. There is the ability to have a
backlog full of tasks with points assigned to it. Because the backlog is prioritized
Pivotal Tracker will automatically move a task from the backlog to the current
iteration when there is room left to fit a task in the estimated available points
according to the velocity. This way each week the velocity is averaged according
to the points are burned that week.

19

3.3.3 Development Server

The back-end of the application will be developed in PHP, so it requires some
webserver to run on. For data storage we also had to pick a database server. We
simply chose the LAMP stack: A linux, apache, MySQL and PHP installation
on a single server computer. It was possible to request a virtual private server
(VPS) within the ICT department of the TU Delft Library, which we made use
of.

Subversion

To manage our code base, we used Subversion (SVN) as our version control
system. Both of us were already familiar with SVN and the installation on
the server was also simple and not very time consuming. We did not use the
TU Delft SVN repository, because we wanted more flexibility. The project
management tool Pivotal Tracker had an option of using post-commit-hooks
to automatically process commit messages and update story statuses. Unfor-
tunately the Eclipse plugin that was necessary to accomplish this contained a
bug that rendered it useless. So we might as well have used the TU Delft SVN
repository after all.

Video Streaming Plugin

An requirement of our application is that it must be able to serve a video(requirement
F19). A way to stream a video had to be found, which at first seemed easier
than it was. Experiments with FFmpeg lead to nothing, a lot of confusion and
a waste of time was the result of a fighting FFmpeg team leaving us with two
versions of FFmpeg: the real FFmpeg and the Libav fork. The decision to
skip these all together lead us to a successful solution. We installed an apache
module called: apache_mod_h264_streaming-2.2.7. This allowed us to simply
upload a video in the right format (.mp4 h264 encoded) to the webserver and
play the video by visiting the URL.

20

Chapter 4

Design & Implementation

This chapter describes the design of the subsystems of Scansistant. The require-
ments from chapter 2 will be referenced to in this chapter to show how they have
influenced design choices. It will consist of design and implementation details
of all subsystems that are developed. In the first section we will explain what
are the actual subsystems of our bachelor project.

4.1 Global Design

From section 2.2 : Functional Requirements, it is clear that several subsystems
are to be developed. This situation is depicted by Figure 4.1.

Figure 4.1: Diagram of the back-end, front-end and client and the interaction
with administrator and end-user.

The subsystems that will be developed are:

21

� Client The client subsystem depends on the API provided by the back-
end, without it it can not function. The client is the only subsystem that
the end-user is going to use. The client will be an Android application
developed in Java.

� Back-end The back-end subsystem provides an API (application pro-
gramming interface) for the Client subsystem. It also has the models
and controllers to be used by the front-end subsystem. It connects to a
database to persist the model data. The back-end will be a ZF2 applica-
tion developed in PHP.

� Front-end The front-end provides management functionality for admin-
istrators to manage the contents of the software. Every content change in
the front-end results in a change in content in the client, through media-
tion of the back-end that provides the API to the client. The front-end will
be a ZF2 application developed in PHP and will live next to the back-end.

The design and implementation will be explained from a user interface per-
spective in the next sections.

4.2 Android Client Application

For the user it is important to have a user interface that is intuitive and easy
to understand. We designed the user interface with the use-case-diagram in
mind. Figure 4.2 depicts the use-case-diagram for the end-user of the client
application.

Figure 4.2: Use-case-diagram showing the end-user and actions

4.2.1 Graphical User Interface

The user interface is depicted by figure 4.3.

22

Figure 4.3: User interface flow

We chose a minimalistic design so that it is easy to use for everyone, even
on phones with a small screen. The TU Delft corporate colors are used [5].

If we take a look at figure 4.3 we see the big green arrow. This represents
the action that a user has either scanned an NFC tag, scanned a QR code or
launched the application from the Android launcher home screen. In the first

23

two cases, the application automatically extract the Tag Code from the NFC
tag or from the QR code. In the third case the user can manually enter the
machine code and press OK when done. When OK is pressed or automated
through the scanning action the Tag Code is identified on the server and all
required data is being pre-fetched. This process is shown as in the following
activity diagram in figure 4.4 (without the QR code action).

Figure 4.4: Activity diagram showing

From the activity diagram you can see that the Tag Data is fetched first.
This contains the machine identifier after which the machine data can be asked.
When the machine data is know, all the other model data can be fetched through
the API. So here we already used 7 API methods:
API URL Action Meets Req.
/api/scan get Tag data F14
/api/machine/<machine id> get Machine data F14
/api/department/<department id> get Department data F14
/api/location/<location id> get Location data F14
/api/machine/<machine id>/video get Videos F17
/api/machine/<machine id>/chapter get Chapters F18
/api/machine/<machine id>/comment get Comments F16

For a more detailed description of the API see section 4.3.4 and appendix
F. At the end of section 4.2.3 the classes from the com.scansistant.network

that perform these API calls are described in detail.

24

4.2.2 Activities and Fragments

From figure 4.3 we see transitioning arrows that represent user interface flow.
The first class diagram (figure 4.5) shows the relationship between the Main-
Activitiy, the GUI package, the detail package and the account package. Here
also the orange arrows indicate that it is possible to navigate between the ac-
tivity classes that each hold a user interface. describe that there is a button or
function in the application that navigates back and forth between two activities.

Figure 4.5: Flow between Activities is indicated by orange arrows

User interface flow between Activities is not the only flow that is present.
An activity can be designed to hold fragments, so there is also flow between
Fragments. This fragment structure is important because on devices with bigger
screens, such as tablets or in the future phones with bigger screens, several
fragments can be displayed at the same time. The GridMenuActivity is designed
to permanently show us the GridMenuFragment on the left while showing a
BaseDetailFragment on the right side when displayed on a device with a larger
screen. This important fact makes our application ready for the future. On a
normal sized Android device, only one fragment is displayed at a time. The
next four paragraphs describe all extensions of BaseDetailFragment. Next we
will explain each transition from figure 4.3 in terms of user interface flow.

MainActivity The MainActivity class is the core Activity of the Scansistant
application. When the application is launched from the Android Launcher this
is the starting screen from where the user can login, check his favorite machines
or manually enter a machine code. MainActivity is also the activity that handles

25

the intents from the phone’s NFC communicator as well as intents from QR-
barcode scanners. An intent is a description of an action performed by an
Android application. It can contain activities to launch or data to be processed.
In the AndroidManifest.xml file, the core XML file where essential information
such as version numbers and permissions are described, are intent-filters defined.
These filters send QR-code intents which contain scansistantQR:// or NFC
intents which contain a combination of plain text and the com.scansistant

data directly to the MainActivity, where the data of the intent is processed.
The machine code in the MainActivity is extracted using a regular expression
which must be met in the data of the intent. In the MainActivity, requirements
F1, F2 and F3 are met.

The Login and Signup Activities For example, there is a button in the
MainActivity that directs the user to the LoginActivity, corresponding with
arrow 1. When the user successfully logs in he will be directed back to the
MainActivity. This meets requirement F6. When the user does not have an
account, he can register through the SignupActivity, which will be started when
clicked on the button in the LoginActivity (arrow 2). In the SignupActivity the
requirement F5 is fulfilled.

The Menu and Fragment structure When the GridMenuActivity is launched,
corresponding with arrow 3, a menu appears where each button guides the user
to one of the four main features (Video, Info, Feedback and Favorites) of our
application. When pressing a one of the menu buttons the associated Detail-
Fragment is loaded into the GridMenuActivity in case of a big tablet screen or
by launching a new DetailActivity in case of a normal size screen. These buttons
correspond with the arrows 4, 5, 6 and 7 in figure 4.3. These DetailsFragments
each have their own special purpose user interface defined in the android XML
format. Some of these DetailFragments contain a customized ArrayAdapter,
which manages the data that an Android ListView should display. The Ar-
rayAdapter is used because of the smart design of a ListView which reuses item
views, so that the viewport is covered by an amount of views and a few extra are
just outside of the viewport. The item views that are outside of the viewport
are then recycled so that no new item views should ever be made when scrolling
a ListView. This improves memory usage and performance. So the customized
ArrayAdapter delivers the right list view with the right data when scrolling the
list.

VideoDetailFragment The VideoDetailFragment launches a tutorial video
uploaded by one of the administrators, instructors or teachers. If available, a
list of chapters is loaded in a ListView using a ChapterAdapter and shown to
the user. The user can navigate through the chapters by clicking on them. The
chapters can be several points in one video, or can represent different videos.
This decision is up to the one that uploads the videos. In this fragment, re-
quirements F7 and F13 are met.

InfoDetailFragment The InfoDetailFragment shows the user the most es-
sential information of a machine, for example the location and faculty. Also,
the administrator should include a wiki page or manual which can be included

26

here in a WebView. A WebView is a View within an Application that acts like
a browser. The user can hold the WebView for a few seconds to load the page
fullscreen in his system browser. In this fragment, requirement F8 is met.

FeedbackDetailFragment This fragment is the feedback section of the ap-
plication. Here, the users can discuss about a certain machine. When the
FeedbackDetailFragment is launched, the CommentAdapter will display all com-
ments belonging to the certain machine in a scrollable list view. When logged
in, a user can leave a comment and/or upload his own video or photo material.
This section of the application meets requirements F9, F11 and F12.

FavoritesDetailFragment This fragment is only visible when a user has
logged in. The favorites of this user are loaded here in a FavoritesAdapter.
When the machine that is scanned most recently is not already in this list, the
user can add this machine to his favorites list. This is stored both local and on
the server. Requirement F10 is met here.

4.2.3 Modeling and network

Figure 4.6: The model and database packages with their relations

In the second class diagram (figure 4.6) the local database is defined, and how
it communicates with the application. The design of this database model is
also implemented in the back-end more extensively. In the client application
the database is less extensive because not all data from the back-end has to
be saved in the client application. For the modeling of the database see sec-
tion 4.3.1. The local database functions as a buffer between the application and
the central database, which is called only a few times. The connection to the
central database is described further on in this section.

DbHelper and the DataSources In the DbHelper class, the SQLiteHelper
class from the Android framework is extended and the tables are defined. For
every table defined in the DbHelper, there is a DataSource class (generalized
for the same functions of each DataSource class in the BaseDataSource class)
defined. These DataSource classes can put a given object into the corresponding

27

table. The model objects that the DataSource classes can take and return are
defined in the model package.

Models The model package contains model objects such as Machine, Video,
User, Chapter and so on. All these model classes contain the fields that are
needed for such a type of object and getters and setters to access those fields. For
example, a Machine object contains its database id, a name, a code (part of the
Scan code), a content website address, a Department (id) and a Location (id).
When such an object is constructed, it can be passed to the MachineDataSource.
This class will insert the object into the associated table as an single row/entry.
Also, the MachineDataSource can be called with a specified machine id and
then returns or deletes this specific machine.

Figure 4.7: Extending AsyncTask to execute networking operations without
blocking the UI thread

The network classes A detailed class diagram of the network package is
shown in figure 4.7. The classes in this package are extended classes of the
Android framework’s AsyncTask. These AsyncTasks have the ability to run
actions on a separate thread. This separate thread is called the network thread,
because this thread is only used in Scansistant to perform actions to connect
with the server. To prevent the application continuing on the UI thread without
data that is essential for the application to continue, a new object is defined
and an extra function, called onPostExecute(result) is defined at that place
in the code. The most common example is that an object has to be loaded on

28

the network thread and inserted into the database and the application cannot
continue without it. In this method, which runs on the UI thread, the following
actions of the application after the data is successfully loaded or posted are
described here. Also, there is room to inform the user when a load or post
operation has failed. Finally, some of the tasks implemented in the network
classes will provide a loading screen on the UI thread for the user, when the
data is essential for continuing.

4.3 Back-end Application

This section describes how the server application back-end is designed. The
API and front-end are built upon the back-end, that is why the latter two are
explained in subsections. (If the difference between front-and-back-end is un-
clear, take another look at section 4.1) The server application will be developed
on top of the Zend Framework 2 written in PHP. ZF2 has a modular design
philosophy in which you can define an application that uses modules. It should
then be able to quickly turn modules on or off, but also to add existing mod-
ules providing more functionality created by other developers on the web. This
works because ZF2 conventions have a strict module definition convention that
must be followed in order to have a valid ZF2-module.

For the back-end, front-end and API only two modules have been defined:

� Scansistant This module provides the back-end and front-end and can
be used as standalone module.

� ScansistantApi This module provides the API and is dependent of the
Scansistant module.

4.3.1 Modeling

We began the modeling process by thinking about logical objects and the data
that each object should hold. The following entities were discovered:

User An end-user should be able to register for a user account. This is mod-
eled by a user object, that should hold a user name, e-mail and password. This
information will be used to authenticate an end-user when he/she want to login
after registering.

Machine In the client application the machine is going to be scanned or man-
ually entered, so this is modeled as a machine. A machine has a name, code and
belongs to one department and has got a location. It must also have a multi-
purpose content field that can be used to hold the instruction data in HTML
format or a HTTP URL that points to a web page giving the instructions of
the machine.

Video A video is going to be displayed to the end-user. A video should have
a name and a path. The path is the location on the file-system where the video-
file itself is stored. This way the actual video-file can be retrieved and replaced
without creating a new video object.

29

Chapter Each machine can have chapters that will link to a point in a video.
A chapter is meant to explain a single aspect of an instructional video. For
instance: one chapter could explain how a machine is turned on and another
chapter could explain how it is turned off again. Both of these chapters can
reference the same or a different video allowing for flexibility in video editing.
So videos can be shot separately but one can also choose to use one big video.
In both cases the chapter model also has a start time in a video. Of course a
chapter must have a name, and chapter order is also important, because users
need to follow the instructions step by step in the right order.

Department A department model is defined by a name and a code. A de-
partment can also have a parent department. This parent department would
then be called an institute. We chose not to create a separate model for in-
stitute because this was solvable by reusing department. An institute can be
seen as a large department. This also came forth out of the full machine code.
For instance: TUD-LI-001 is a code consisting of three parts: an institute, a
department and a machine code. Now the institute is the parent department of
the second part.

Figure 4.8: Code format depicts: department - department - machine

Location A location model stores information on the location of another
model. The only model that uses a location is a machine. A location con-
sists of a name, building and room. For future improvements we also included
latitude and longitude. This would allow for GPS coordinate usage in statistical
reports or integration with Google Maps.

Comment A user can make a comment on a machine, so the comment model
consists of a reference to a machine and the user that made the comment. It
also has a value containing the words spoken by the user. A comment can also
hold a media content, which will be stored in the form of a HTTP URL pointing
to the media content.

Rating Users could rate a comment by increasing or decreasing a point. A
user must be able to only do this once per comment.

User has favorite Machine A user can store a machine in a favorite list. A
favorite model has a reference to a user and a machine. These two references
ensure the uniqueness of this model.

Machine has Video A machine can have zero or more videos. Several videos
can be attached to a machine in a user defined order and with a video start time.

30

By designing this relationship, it is possible to have multiple videos attached to
a machine and make it play as a single long video in the client application.

Because we knew beforehand that we wanted to use an object relationship map-
ping technique, we skipped the simple UML class diagram and went straight to
the database design. From the modeling process we came to the database model
as depicted in figure 4.9

comment

comment_id INT

comment_value VARCHAR(300)

comment_fk_user_id INT

comment_fk_machine_id INT

comment_media VARCHAR(300)

comment_created DATETIME

Indexes

machine

machine_id INT

machine_name VARCHAR(45)

machine_code VARCHAR(3)

machine_fk_department_id INT

machine_content LONGTEXT

machine_fk_location_id INT

Indexes

department

department_id INT

department_name VARCHAR(45)

department_code VARCHAR(45)

department_fk_parent_id INT

Indexes

user

user_id INT

user_name VARCHAR(45)

user_email VARCHAR(300)

user_password VARCHAR(45)

user_created DATETIME

user_modified DATETIME

Indexes

video

video_id INT

video_name VARCHAR(45)

video_path VARCHAR(300)

Indexes

machine_has_video

machine_id INT

video_id INT

machine_has_video_order INT

machine_has_video_start_time TIME

Indexes

location

location_id INT

location_name VARCHAR(45)

location_latitude VARCHAR(45)

location_longitude VARCHAR(45)

location_building VARCHAR(45)

location_room VARCHAR(45)

Indexes

favorite

favorite_fk_user_id INT

favorite_fk_machine_id INT

favorite_created DATETIME

Indexes

rating

rating_id INT

rating_value INT

rating_fk_user_id INT

rating_fk_comment_id INT

rating_created DATETIME

Indexes

chapter

chapter_id INT

chapter_fk_video_id INT

chapter_fk_machine_id INT

chapter_name VARCHAR(45)

chapter_start_time_in_video TIME

chapter_order INT

Indexes

token

token_id INT

token_value VARCHAR(45)

token_fk_user_id INT

token_expiration_time INT

token_created DATETIME

token_salt VARCHAR(45)

Indexes

Figure 4.9: Database model

The implementation based on the database model is described in the next
section.

4.3.2 Implementation

The back-end implementation begins by creating the model classes according to
the database model. This can be done in a very straightforward way because we
chose to use object relationship mapping technique. This technique means that

31

an object corresponds to one row in a database table. Thus several different
instances of a model class represent several rows in the table corresponding
to the model class. This is depicted by figure 4.10 from which you can see
that there is an abstract class Model that all other classes in the diagram are
extending from. To keep the size of figure 4.10 small the model classes’ methods
are omitted.

Models The Model abstract class shows the two methods that are obligated
to be implemented by each class that extends Model :

� The method getId is to get an identifier corresponding to the primary
key in the table that the object is mapped to.

� The method getArrayForJson is to create an array describing the model
data that is ready to be converted to Json. Json is a data a lightweight
data format. In comparison to XML it is lightweight, because all data can
be defined more compactly, but the disadvantage is that Json lacks schema
and namespace support. We don’t need those features, so we choose to use
Json because of the compact data representation. Because we are going
to use Json the getArrayForJson method is important for defining the
API which will be described in section 4.3.4 in greater detail.

Also the Model implements ArraySerialiableInterface which will require all
model classes to implement the exchangeArray and getArrayCopy methods.
The exchangeArray takes an array and exchanges the internal values from the
provided array. This simply means that an object implementing this method
can be populated by a simple array which in PHP is an ordered map with
values to keys. The getArrayCopy on the other hand returns an array rep-
resentation of the object. So basically when we have a model object and we
would call getArrayCopy and store the returned array data and after that call
exchangeArray with the stored array data from the previous call, we would end
up having the same object if implemented properly. With this pattern imple-
mented we can now easily map data from any datasource to the model and from
any model to any datasource(database, textfile, etc.).

Mapping a table data to a model The implementation of ArraySeriali-
ableInterface allows for easy mapping to the model and can now be connected
to any datasource. To persist a model we are going to make use of the ZF2
TableGateway which in the end implements TableGateWayInterface that defines
table manipulation methods: select, insert, update, delete. As you might
suspect these methods query the database model. So these methods serve as a
high level wrapper for executing SQL statements, because we are using MySQL
as a database. To access a database table with a TableGateWay an instance of it
needs to be constructed for each different table. It also needs a database adapter
to access a database and finally a ResultSetPrototype must be given to the in-
stance. This ResultSetPrototype can hold an ArrayObject. This ArrayObject is
essentially our Model, because the ZF2 engineers made the ArraySerializableIn-
terface which ensures that the exchangeArray and getArrayCopy methods are
implemented. The ArrayObject also requires one to implement those two meth-
ods. So as a prototype we can now insert any of our models in a ResultSet for

32

Figure 4.10: Model class diagram

a TableGateway. The code for creating one table specific TableGateway looks
like this:

33

Listing 4.1: Constructing a TableGateway for the MachineTable

1 $dbAdapter = $sm ->get('Zend\Db\Adapter\Adapter ');

2 $resultSetPrototype = new ResultSet ();

3 $resultSetPrototype ->setArrayObjectPrototype(new Machine ());

4 $tableGateway = new TableGateway('machine ', $dbAdapter , null ,

5 $resultSetPrototype);

So now that we have a TableGateway we can use this to access the underlying
database model and execute queries on it, but we do not want to manually
use select, insert, update, delete each time we need to access model data.
Instead we design an abstract BaseTable that holds a TableGateway. This way
the TableGateway can get a model object by its primary key. Figure 4.11 depicts
the implementation of a MachineTable extending the BaseTable to illustrate
how to use the it.

Figure 4.11: abstract class BaseTable holds a TableGateway instance

Figure 4.11 shows that MachineTable has a method called getMachine. This
method calls the parent method getObject with an appropriate where-clause
which uses the TableGateway to execute a select statement via the DbAdapter.
The ResultSet which was injected during construction of the machine-specific
TableGateway has a Machine instance as its arrayObjectPrototype. A Result-
Set can contain multiple rows of a queried database table and can be iterated so
that when the current is called on the ResultSet, the arrayObjectPrototype

object is cloned(in this case the Machine instance) and then exchangeArray is
called on it with the data from the row that the iterator is currently pointing
to. The resulting object that is returned is a populated Machine object ready
to use by the MVC-layer.

This same pattern can be applied to all model classes, which we have done
by creating extending BaseTable for all model classes. Of course some of these
extended classes have more advanced methods than a simple getObject wrapper
for getting the model class. You should think of joining tables and getting model

34

objects by other fields than the primary key but also preparing for conversion
to Json.

A new problem now arises which will be more clear if we take another look at
listing 4.1. This shows how to construct a TableGateway for only one database
table for one specific model, but now we need to do it for each extended class
of BaseTable. Because of the dependencies between all the classes needed to
form one TableGateway we want to use Dependency Injection(DI). The ZF2
Module class comes with a factory pattern supported by PHP closures which
allows us to use DI. A closure in PHP is an anonymous function that is defined
in-line and can be used as the value of a variable. In the Module class a method
getServiceConfig is defined which will be called when the Module is loaded
and the service configuration is requested. This method must return an array
containing amongst others a key-value-pair in which the key is ‘factories’ and
the value is again a key-value-pair. Listing 4.2 shows the code so the sketched
situation is made more clear:

Listing 4.2: The Scansistant Module service configuration showing the factories
definition

1 public function getServiceConfig ()

2 {

3 return array(

4 'factories ' => array(

5 'MachineTableGateway ' => function ($sm) {

6 $dbAdapter = $sm ->get('Zend\Db\Adapter\Adapter ');

7 $resultSetPrototype = new ResultSet ();

8 $resultSetPrototype

9 ->setArrayObjectPrototype(new Machine ());

10 return new TableGateway('machine ', $dbAdapter ,

11 null , $resultSetPrototype);

12 },

13 'Scansistant\Model\MachineTable ' => function($sm) {

14 $tableGateway = $sm ->get('MachineTableGateway ');

15 $table = new MachineTable($tableGateway);

16 return $table;

17 },

18 'DepartmentTableGateway ' => function ($sm) {

19 $dbAdapter = $sm ->get('Zend\Db\Adapter\Adapter ');

20 $resultSetPrototype = new ResultSet ();

21 $resultSetPrototype

22 ->setArrayObjectPrototype(new Department ());

23 return new TableGateway('department ', $dbAdapter ,

24 null , $resultSetPrototype);

25 },

26 'Scansistant\Model\DepartmentTable ' => function($sm) {

27 $tableGateway = $sm ->get('DepartmentTableGateway ');

28 $table = new DepartmentTable($tableGateway);

29 return $table;

30 },

31 /* other tables and gateways are left out ... */

32)

33);

34 }

35

The factories definition allows the designer to construct the object one time
in a factory closure method. When the ZF2 application loads its Module all
the factory definitions are registered with the ServiceManager so that when for
instance a DepartmentTableGateway is needed, it can be requested like shown
in line 27 of listing 4.2. The ServiceManager is passed as an argument to the
closure as variable $sm.

4.3.3 Front-end

The front-end provides a user interface for administrators in which they can
manage aspects of the content provided to the android client application via
the API. The administrator can login and do some of the following:

� Manage machines (meets req. F22)

� Manage locations (meets req. F24)

� Manage departments (meets req. F25)

� Manage videos (meets req. F23)

� Manage chapters for machines (meets req. F26)

The word manage means the administrator can execute some actions: add,
edit, delete and view each of model specific content.

Controllers & Routing Because we are using the ZF2 MVC-layer we can let
our custom controllers extend from the AbstractActionController. The advan-
tage of doing this is that we use the ZF2 Routing system to dispatch the right
controller for a certain URL. The URL can be defined by using segments so that
we can easily extract the controller, action and id and dispatch the controller
by invoking the right method with the right parameters. An example of a route
definition is as follows:
/[:controller][:action][/:id]
This means that the default path / is accessible, but also an optional controller
segment can be recognized. The action and id are also optional. Now we can
define our controller classes as follows:

� MachineController

� LocationController

� DepartmentController

� VideoController

� ChapterController

All of the above defined controllers implement the indexAction method, so the
default action of the route can be set to ‘index’. The AbstractActionController
takes care of checking if a controller has a public method <action-value>Action
and if it does, it calls the function and eventually gives the output as response
to the request. So it is now possible to call http://scansistant.nl/machine,
because the Routing system will recognize the controller segment to be ‘ma-
chine’ which maps to the MachineController and the default index action is

36

implemented. When we implemented more action methods we automatically
increase the amount of URLs that are possible to call. An overview of the
controllers for the front-end is depicted in figure 4.12

Figure 4.12: Front-end controllers extending AbstractActionController

The figure shows that a all controllers except for the LoginController and
IndexController have addAction, viewAction, editAction and deleteAction

methods. In the MachineController case, this makes the following URL routes
available:

� http://scansistant.nl/machine/add

� http://scansistant.nl/machine/view

� http://scansistant.nl/machine/edit

� http://scansistant.nl/machine/delete

For the view, edit and delete actions the controller also requires an id, because
without one the controller will not know on what machine to operate on. This
is handled in the MachineController logic, but could have also been handled by
the Routing System. We chose to handle this in the MachineController to avoid
overly complex route definitions. Other controllers follow the same structure,
but to avoid repetition we use the as a leading example MachineController.

37

View With these front-end controllers and the model introduced the Model
and Controller of MVC are explained, but what about the View? ZF2 uses view
scripts, which are individual files with a .phtml extension instead of .php that
contains code in a procedural style. So this file does not contain class definition,
but only executes existing methods of existing classes. This works because the
ZF2 PhpRenderer [6] includes the view script and executes it inside of the scope
of the PhpRenderer giving it access to all its member variables through the use
of $this.

All of the front-end controllers’ action methods will return a ViewModel
class. This class can have variables assigned to it that will be parsed in the
view-script/template that is being fed with this ViewModel. By default the Ab-
stractActionController will know where to find the view-script for a controller
action by searching in the module folder for a folder with the controller name
in which the file with the actionname and the extension .phtml prepended to
it are found. For instance the machine overview template is: ’scansistant/ma-
chine/view’, which resolves to a view.phtml file to be found in the ../scansistan-
t/machine folder.

The result is shown in figure 4.13, 4.14 and 4.15 where some of the views are
shown.

Figure 4.13: Figure showing front-end login and adding of a video

4.3.4 API

In the previous section we have seen that the MVC layer was used to create
output generated by view-scripts that return HTML and are perceived as a web
application by the administrator. For the API we do not want a HTML output,
but instead we want to form Json. ZF2 allows for this very easily by exchanging
the ViewModel with a JsonModel. Also the view_strategy has to be changed
to ViewJsonStrategy so that the instead of the PhpRenderer a JsonRenderer is
now used to create the final output for a response to a controller. The JsonModel
extends the ViewModel and has some methods to encode array data to Json. It
is now clear why we needed a getArrayForJson method in the abstract Model
as shown in paragraph 4.3.2. The array produces by getArrayForJson will be
fed to the JsonModel, that can take an array and encodes it to Json and returns

38

Figure 4.14: Figure showing a machine overview and editing of a machine

Figure 4.15: Figure showing a chapter overview for a machine and the editing
of one of them

it as a response to a HTTP request with the right headers so a HTTP-client can
detect that Json data is returned. This is done all automatically done by the
JsonModel, which puts Content-Type:application/json; charset=utf-8 in
the HTTP response headers.

Like we did before with the front-end we can now define API controllers
that allows us to build all of the URLs and make up the API definition. The
following figure shows a class diagram of all API controllers:

The API provides URLs that can be called by the client to retrieve infor-
mation. The API has publicly accessible methods, but also some methods that
require a user to authenticate and retrieve a token that must be stored and used
in the HTTP headers to access the protected API methods.

Public access

The following API actions can be issued without being an authenticated user.

39

Figure 4.16: API controllers extending AbstractActionController

◦ Registering a user
URL /api/user/register
Type POST
Parameters username, password, email
Response success:

{"code":1,"message":"succesfully saved test"}
user already exists:
{"code":-1,"message":"This user already exists:

test"}
missing parameter data:
{"code":-2,"message":"username, password and email may

not be empty!"}
Requirement F20

40

◦ Authenticating a user
URL /api/authenticate
Type POST
Parameters username, password
Response success:

{"code":1,"message":"You are now logged in as

dhensen","token":"42e66ac2e5ec52f9caa56b6b066c55e4aaaf6838"}
identity not found:
{"code":-1,"message":"You have entered an invalid

password or username, please try again."}
invalid credentials:
{"code":-3,"message":"You have entered an invalid

password or username, please try again."}
Comments The response codes correspond to the

Zend\Authentication\Result response codes.
Requirement F21

◦ Scanning a Tag
URL /api/scan/<tag>
Example /api/scan/TUD-LI-001
Type GET
Parameters tag as segment of the URL
Response success:

{"status":"0","tag":"TUD-LI-001","machine_id":"1"}
Requirement F1, F14

◦ Retrieving machine data
URL /api/machine/<machine id>
Type GET
Parameters machine id as segment of the URL
Response success:

{"machine":{"id":"1","name":"Coffeemachine",
"code":"001","content":"Insert a

cup and press the button to get

coffee","departmentId":"2","locationId":"3"}}
error:
{"errors":["please provide a machine id to request

data for"]}
Requirement F14

41

◦ Retrieving location data
URL /api/location/<location id>
Type GET
Parameters location id as segment of the URL
Response success:

{"location":{"id":"1","name":"Koffiehok 2de

verdieping","latitude":null,"longitude":null,

"building":"library","room":"342343"}}
error:
{"errors":["please provide a location id to request

data for"]}
Requirement F14

◦ Retrieving a department data
URL /api/department/<department id>
Type GET
Parameters department id as segment of the URL
Response success:

{"department":{"id":"1","name":"Technische
Universiteit Delft","code":"TUD","parentId":null}}
error:
{"errors":["please provide a department id to request

data for"]}
Requirement F14

◦ Retrieving chapters data for a machine
URL /api/machine/<machine id>/chapter
Type GET
Parameters machine id as segment of the URL
Response success:

{"chapters":[{"id":"1", "videoId":"1",

"machineId":"1", "name":"Koffie

zetten", "startTimeInVideo":"00:00:00",

"chapterOrder":"0"},{"id":"2", "videoId":"1",

"machineId":"1", "name":"tweede

hoofdstukjea", "startTimeInVideo":"00:00:00",

"chapterOrder":"2"},...more chapters...]}
Requirement F18

42

◦ Retrieving comments data for a machine
URL /api/machine/<machine id>/comment
Type GET
Parameters machine id as segment of the URL
Response success:

{"comments":[{"id":"1", "value":"praatjesmaker",

"media":null, "created":"2013-07-29 10:24:20",

"userId":"1", "username":"dhensen", "rating":null,

"machineId":"1"},{"id":"2", "value":"praatjesmaker",

"media":null, "created":"2013-07-29 10:26:37",

"userId":"1", "username":"dhensen", "rating":null,

"machineId":"1"},...more comments...]}
Requirement F16

◦ Retrieving video data for a machine
URL /api/machine/<machine id>/video
Type GET
Parameters machine id as segment of the URL
Response success:

{"videos":[{"id":"1", "name":"installing the material

in the machine", "path":"http:\/\/www.scansistant.nl\

/videos\/install material.mp4", "machineId":"1"},...more
videos...]}

Requirement F17

Protected access

The following API actions can only be issued when being an authenticated user.
The token that is served by the authentication API method must be stored and
sent in the HTTP Authorization header of each request that is done to the pro-
tected API methods defined below. The format of the Authorization header is
as follows:
Authorization:SCANSISTANT-TOKEN token=2eb0d808317bad2b16590ea6aeb03512c855854a

Where the token is a hash of a secret combination of login credentials and a
generated salt.

• Retrieving favorites for a user
URL /api/favorites
Type GET
Parameters -
Response success:

{"favorites":[{"machine id":"1", "created":"2013-07-08

17:22:41"},{"machine id":"2", "created":"2013-07-29

10:23:10"},...more favorites...]}
Requirement F27

43

• Adding comment for a machine
URL /api/comments/<machine id>/add
Type POST
Parameters comment value, comment media
Response success:

{"code":1, "message":"comment successfully added"}
error:
{"code":0, "message":"Statement could not be

executed"}
Requirement F27

• Adding a favorite for a machine
URL /api/favorites/add/<machine id>
Type GET
Parameters -
Response success:

{"code":1, "message":"favorite successfully added"}
missing parameter data:
{"code":0, "message":"favorite already added"}

Requirement F27

• Uploading a media file
URL /api/upload
Type POST
Parameters upload type = {image, video}, upload file
Response success:

{"code":1, "message":"successfully saved test"}
user already exists:
{"code":-1, "message":"This user already exists:

test"}
missing parameter data:
{"code":-2, "message":"username, password and email

may not be empty!"}
Requirement F28

44

Chapter 5

Testing

Because we made the choice to develop our application with the Feature-Driven
Development (explained in section 6.1) methodology, it was easy for us to do the
most testing by hand (exploratory testing) when we finished the implementation
of one feature. We admit that we could have used more automated testing using
Unit Tests and Instrumentation testing, but the implementation of these tests
would have too much time overhead. So most of the time we decided to test
the feature by hand and move on to the design and implementation of the next
feature. In some of the cases we had the time to write Unit tests and therefore
we will explain some of the technologies behind it.

5.1 JUnit 3

Android supports JUnit 3 for Unit and Instrumentation testing. The developers
of the ADT-plugin tuned the JUnit 3 functionality for use with the Android
Framework, to handle and eventually mock objects such as Contexts, Activities
and generating test databases. To run JUnit for an Android project, you’ll have
to run the test packages on an Android device or emulator. For the remainder,
JUnit testing on Android projects goes pretty much the same as on other Java
projects.

Currently, we use JUnit testing for our MainActivity. Several functions in
the MainActiviy that have nothing to do with the GUI are tested here. For
example, the regular expression and login functions are tested here. This also
applies to the Login and Signup activities where for example the encryption and
the input fields are checked.

The model package is tested with the normal JUnit 3 test cases without
making the use of the Android framework, as the model classes are not directly
related to Android. All the getters and setters are tested here on normal and
extraordinary input just to make sure that is free of strange errors.

The last package that is tested is the datasource package. Here the database
is tested and how the datasource classes communicates with the database.

The reason that we did not test the GUI and the detail packages is that
we found out that writing tests for the proper working of it is time consuming
and is actually easy to test by hand. We also did not test the network classes
because it would ask a lot of our time while we were far towards the last deadline

45

of the project. Another argument to not test these classes is that they act like
a broker between the application’s DataSource classes and the API and both of
these sections are already unit tested.

5.2 PHPUnit

For the server side part of the application we only tested the API. This was the
most logical choice because the API is a critical part of the whole system: if
provides the client application with data. So in order to know if the API still
functions well we tested all API methods and aimed at full code coverage for
the API Controllers.

To test the PHP code we used PHPUnit 3.7.22 on our local development
computer. After that some configuration files were created to start the first
tests. We noticed that the API has methods that require to be authenticated
but also some that do not. Also every API method returns Json response, so
we made use of these facts to design abstract test cases that provided easy Json
extraction and Authentication.

Figure 5.1: API Controller inheritance from special purpose abstract testcases.
Controller testcases that require authentication are colored orange.

One major drawback of the API controller testing is that we did not define
a test dataset. So the tests need at least three machines in the database and a
user register. Also a first department needs to be made. If the project will be
continued it will definitely be recommended that a test dataset it made or that

46

everything is mocked.

Coverage PHPUnit can also generate a coverage report. Our aim was to
reach a 100% coverage and that is what we have accomplished. In the figure
below you can see the results:

Figure 5.2: This coverage overview that the ScansistantApi module containing
all API controllers is totally covered by tests.

Figure 5.3: This coverage overview shows that all API controllers are 100%
covered

If in the future the API is extended or changed and the coverage report is
ran again, a developer will be able to instantly see which methods or lines are
not covered anymore and an appropriate action can be taken to write more tests
or leave it alone. Of course coverage says nothing about the quality of tests but
it at least shows that all parts of the controllers have been reached and that
there is no dead code.

47

Chapter 6

Process

This chapter is about our development method and the reason why we chose
it. Also we describe our planning and weekly realization. Finally our workplace
and accompaniment is described.

6.1 Feature Driven Development

As stated before in the requirements section, as a definitive choice during the
first week of the implementation phase, we decided to switch from Test-Driven
Development to Feature-Driven Development. We found out that that we had
insufficient knowledge of the frameworks we were using at that time to plan
ahead what features were testable and what features were not. So we decided
to take our requirements as a guideline and try to complete as many features
stated in those requirements each week rather than take each feature and write
extensive use-cases and associated tests before actually starting to implement
the feature itself. We changed our work flow in the following way [7]:

1. Develop an overall model We designed a prototype workflow of our appli-
cation with some essential (Activity) classes on paper.

2. Build a features list Our features more or less follow from our list of re-
quirements.

3. Plan by Feature For this we used Pivotal Tracker

4. The following steps are repeated for each planned feature:

(a) Design by feature We designed each planned feature more detailed
with use case diagrams and class diagrams when needed.

(b) Build by feature When a design was clear enough, or sometimes the
feature was trivial enough to build immediately, the feature was im-
plemented. After a working (exploratory or unit tested) feature, we
re-factored the code to make it more understandable and thus main-
tainable.

48

6.2 Planning

In our Project Plan we composed a week to week planning in terms of working
hours and deadlines. Because we did not have the time to work full-time on this
bachelor project, we decided to work 32 hours a week and spread the required
420 hours (15 ECTS) over more weeks. After all we think that working 32 hours
a week on this final project was enough to put decent time in it, while still
following remaining subjects and/or have a part-time job aside of this project.
In section 6.3 we describe what we did week by week. We did not plan this
beforehand because of our agile way of implementing. We had assimilated a list
of requirements, but there was not a fixed order of implementing these features,
we started to design one feature and implement it when we felt that we needed
it at that certain point.

6.3 Weekly progress

In this section we describe from week to week which milestones we reached and
which requirements have been met.

Week 1, 22-4-2013

� Started and finished the Project Plan Document

Week 2, 29-04-2013

� Started with Preliminary report.

� Conducted a field study in several labs.

� Decided to do an agile development methodology (requirement PR1).

Week 3, 06-05-2013

� Finished first draft of the preliminary report.

� Settled with the definitive name of our project : Scansistant.

� Prototyped some example applications and decided the phone’s platform
requirements (P1, P2, P3).

Week 4, 13-05-2013

� First menu structure finished.

� Determined code conventions.

� Requirements F2, F7 and F13 are met.

Week 5, 20-05-2013

� Decided to split up into an Android client application, API and back-end.

� Requirement F8 and F9 are met.

� Server has been set up (requirement Q1, Q2 and P4).

49

Week 6, 27-05-2013

� Requirements F1, F10 and F27 are met.

� Finished final version of the Preliminary report.

Week 7, 03-06-2013

� Requirements F16, F17, F18 and F19 are met.

Week 8, 10-06-2013

� Requirements F23, F24, F25 and F26 are met.

Week 9, 17-06-2013

� Requirements F5, F6 and F22 are met.

Week 10, 24-06-2013

� All work on Scansistant was paused because of the exam period.

Week 11, 01-07-2013

� Started with final report.

Week 12, 08-07-2013

� First code submittal to the Software Improvement Group.

� Requirements F15, F20, F21 are met.

� All completed client’s functional requirements are made compatible with
all completed server’s functional requirements.

Week 13, 15-07-2013

� Planned deadline of second code submittal and final report.

� Planned final presentation date.

� Started on writing unit tests.

� Requirements F11, F12 and F28 are met.

Week 14, 22-07-2013

� Processed SIG’s first feedback.

� Finished Unit tests.

� Delivered first draft of Final Report to our advisers.

� Requirement F3 is met.

50

Week 15, 29-07-2013

� Processed feedback on first draft.

� Finished and delivered Final Report.

� Submitted code for the second time to the SIG.

Week 16, 05-08-2013

� Included SIG’s second feedback in the Final Report.

� Final presentation and evaluation.

6.4 Workplace

Our daily workplace was at the office section of the Library building at the TU
Delft campus. At the second floor, there almost always was a office for the two
of us available. The facilities were excellent and available for us each working
day between 8.00-24.00, but usually we were at work between 9.30 - 17.30. Also,
our company mentor approved that we sometimes worked at home or elsewhere
at the TU Delft campus, so we were able to plan our working hours in a flexible
way.

6.5 Accompaniment

Both our faculty and company coaches have given us the freedom to take full
responsibility to work out our own plan. They were willing to adjust our process
when we asked them to or when they saw us going in the wrong direction at any
given time. We met them weekly and the conversations were always agreeable.
Our company coach composed a professional usability report for us to help us
improving our application. Also the project coordinators always answered in
a timely manner when we communicated with them about any information.
Finally, the SIG gave us very useful feedback twice and on schedule.

51

Chapter 7

Evaluation

This chapter describes all evaluation moments during the project. First we
describe the user evaluation. The professional usability report by our client
advisor is also described. Finally we discuss the code evaluation by the Software
Improvement Group (SIG).

7.1 User evaluation

We have performed a small scale user evaluation at the TU Library offices, In-
drustrial Design PMB workshop and Mechanical Engineering IWS workshop.
This subsection describes the machines that we made a movie for at the previ-
ously mentioned places around the TU campus.

Figure 7.1: The coffee machine equiped with NFC tag and instructions for
demonstrating purposes

TU Library offices At the TU Library offices we used the coffee-machine
to demonstrate Scansistant for the first time. Co-workers at the second floor

52

tested the application for the first time and gave us some useful feedback.
Feedback for improvement given by the co-workers are:

� Multi language support

� Show in the application which chapter is currently viewed

� Choice for extra text with instructions

� Sound volume not hard enough

We incorporated some of these features in the recommendations in chapter 8.2.

Figure 7.2: The NFC tag with instructions placed in front of the laser cutter at
IWS

3ME IWS Workshop After we processed the feedback and improved Scan-
sistant we went to the IWS workshop at the faculty of Mechanical, Maritime and
Materials Engineering. Together with Gerard van Vliet we recorded an instruc-
tional video for the control of the laser cutter. After uploading the movie we
demonstrated the application to Gerard van Vliet to show the proof of concept.
He was positive about it and will encourage students to take note of our appli-
cation. Unfortunately while writing this report we did not yet receive feedback
from users at the IWS.

IO PMB Workshop To increase our chances, we also went to PMB work-
shop, because the industrial design students think different and are more open
to innovation than anybody else. We recorded an instruction video with Roel
about the disk sander. We also left an instruction note with a NFC tag there,
but unfortunately while writing this report we did not yet receive feedback from
users at the PMB either. This instructor however gave us a very useful tip to
make our application compatible with QR code as well, so we added this feature
the next day. We also learned that we need to be more explicit to note what
kind of platform the application uses, because the iPhone owners wanted to
download the application, but of course the application only works on Android.

53

Figure 7.3: The NFC tag with instructions placed aside of the disk sander at
PMB

7.2 Usability report

Our client advisor wrote a professional usability report for us. This is in ap-
pendix E. From this usability report only some minor improvements will be
done in the software, others will be stated in the recommendation section of the
next chapter. It was very useful to get a third party to look at the usability of
both the back-end and the client application from a professional perspective.

7.3 Code evaluation through SIG

During our bachelor project we had the opportunity to send our code twice to
the Software Improvement Group (SIG). The SIG measures the code in terms
of maintainability and rates it from 1 to 5 stars. They gave us also some useful
feedback and recommendations to further improve our code. The exact feedback
of the two submittals (in Dutch) is included in Appendix D.

The first submittal got rated 4 out of 5 stars. That means that our code
maintainability is above average. They told us that the highest possible score
is not reached yet because of a lower score in the Unit Size and Duplication
sections of their measurements. Concerning the Unit Size they look at the size
of our methods and functions. After we received this feedback, we had split up
the larger methods/functions into smaller more understandable pieces. With
regard to the duplication in our code, we tried to join our most redundant code
and to prevent this appearance in the future. They also told us that there were
many ‘TODO’ comments in our code. At the time of the second submittal, we
fixed all code that was marked by this type of comment and removed all these
comments as well. Finally, they gave us a strong recommendation to include
(more) test-code during our development phase. In the meantime we developed
tests for the most important parts of our implementation.

Because we improved our code on all aspects the SIG recommended us,
we expect that our rating will be improved after the second submittal. The
feedback of the second submittal is included in Appendix D.

54

Chapter 8

Conclusion

This is the final chapter of this report and concludes the work that has been
done to get to a prototype application ready for a feasibility study. The first
section explains the results after which a recommendation section describes how
to improve the software system in the future.

8.1 Result

This section will revisit the problem description defined in chapter 1, which
was to create an application for the TU Delft to perform a feasibility study.
Looking at the main questions for the feasibility study we will summarize how
each question can be studies by using our application:

� What if students could use their smart-phones to scan the equipment,
watch an instructional video, click through the steps one by one and learn
from tips & tricks by other students?

With Scansistant it is possible to give each end-user, the students of the
TU Delft, the possibility to scan equipment and watch an instructional
video. They can browse the steps by using the chapters and in that way
get the information they need at the right moment. This allows them also
to view the instruction step by step. If one step was not clear or hard to
understand they can simple press on the chapter again and immediately
review the step. Users are also able to leave comments or start a discussion
on a machine from within the application.

� What if we could upload and share pictures or a video from our experiment
or the prototype we made with the machine?

Students can also make a photo or video of their experiment or prototype
and share them in the comment section. This allows other students to
learn from or get inspired by the ideas of other students.

� What elements need to be added in order to make mobile learning a suc-
cess?

Because we created a front-end administration system, a teacher could
easily add a machine and notify students so that they can use Scansistant

55

to see the instruction. This makes it possible for teachers and instruc-
tors to add machines without notifying the developers or administrators
of the application. This makes the process of adding more machines to
the database more dynamic and therefore increases the chances that our
system will be widely spread around the campus and maybe other insti-
tutes.

Also, we included the ability for the users of adding a machine to your
favorites, so the user could access the instructions and comments of his
favorite machine at any place at any given time. This is important for
making mobile learning a success, because users use their phone all the
time. The chances that they will use our application and therefore perform
mobile learning when not in the lab increases with this functionality.

� Is mobile learning an interesting area to further explore, or is it not worth
the time and resources?

This last question is beyond the scope of our bachelor project, but we
mostly experienced positive feedback from potential users. Even most
instructors were positive about the application, except for a few where
usage of the application would form a dangerous situation for the students,
for example during welding instructions.

8.2 Recommendations

This last section contains three elements. First of all, there are some existing
features in Scansistant that need some improvement in the future. There is also
room for new features we thought about during the development and that is
secondly described. Finally we give our opinion about how the project should
be continued from now on.

8.2.1 Adjustments of existing features

Concerning the tutorial video subsection, in the future the application should
cache the video. Also, the chapter list should show which of the chapters are
playing at that time. The final recommendation for this subsection is to optimize
the layout (the chapter/video ratio), especially in landscape mode.

The information subsection should load mobile phone friendly websites. with
written instructions. Because of the small applications concerning mobile learn-
ing at the time of writing, none of the lab instructors had mobile phone friendly
websites ready for us yet. Another recommendation is to add more useful in-
formation or maybe hide them when not requested by the user.

In the feedback subsection the uploaded media should be shown inside the
application instead of a button that opens the browser. Also a user should be
able to edit or delete his own comments.

In the favorites subsection, the user should be able to delete one of his
machines out of this list.

An adjustment of the application in general would be to optimize the lay-
out for landscape mode and for tablets. Also the application could be made
compatible with older versions of Android (lower than API 14 / Android 4.0).

56

Adjustments for the front-end administration would be to have a chapter
editor where the video is previewed within the browser, so that administrators
can immediately create the chapters on the go without leaving the front-end for
a second. This increases the workflow and gives a better user experience. In
the machine overview the full machine code should be display and a QR code
could be shown. This saves a lot of time, because the administrator would then
be able to instantly use the NFC Developer application [3] to write the tags.

8.2.2 Missing features

However these features were nor in our requirements nor our formal proposal,
we we recommend adding the following features in the future:

Android Application

� Usage statistics

� Social media integration

� Google maps integration

� An internal QR-code scanner

� An internal administrator function for burning NFC-tags

� The ability to rate comments

� OAuth authentication via TU Delft NetID

Back-end/Front-end/API

� Usage statistics

� Independent QR-code generator(s)

� OAuth authentication integration

� Logging functionality

� Map showing all machine locations

� Manage comments: remove (explicit) comments

� Manage users: banish abusive users

� Automatic spam detection system

� Video transcoding queue: update any video format and it will automati-
cally be converted to the right format

� Support for multiple video quality: low, medium, high, etc.

� Caching mechanism in the API to let the Android client application know
if data is changed or not. This prevents reloading of non-changed data.

57

8.2.3 How to make our product a success

We recommend our client to promote our application to all of the lab instructors
inside the TU Delft. The application should also be promoted to the potential
user. Also we recommend that our client publishes the application to the Google
Play Store to make it easier for users to install it. The (read-only!) NFC-tags
should be placed on a prominent place onto the machine, and we advice to
place a sticker on top of it with the alphanumeric machine-code and/or the
corresponding QR-code to make it backwards-compatible with older (non-NFC)
phones. The existing tutorial videos should be replaced with more professional
recorded videos. Finally, we advice our client to assign students or co-workers
to make similar applications for other phone platforms than Android to reach
even more potential users.

58

Bibliography

[1] Karin Clavel. Mobiel leren. URL: http://www.icto.tudelft.nl/

projecten/mobiel-leren/.

[2] 123nfc.nl. 123nfc.nl snel nfc tags kopen. URL: http://www.123nfc.nl/.

[3] Thomas Rorvik Skjolberg. Nfc developer app. URL: https://play.google.
com/store/apps/details?id=com.antares.nfc.

[4] Adrian Stabiszewski. Ndef editor. URL: http://www.ndefeditor.com.

[5] TU Delft. Corporate colors. URL: https://intranet.tudelft.

nl/en/services/communication/communication-mc/manuals/

tu-delft-corporate-design/toepassing-huisstijl-2/colour/.

[6] Zend Framework 2. Phprenderer view scripts. URL: http://framework.
zend.com/manual/2.2/en/modules/zend.view.php-renderer.scripts.

html.

[7] Scott W. Ambler. Feature driven development and agile modeling. URL:
http://www.agilemodeling.com/essays/fdd.htm.

59

http://www.icto.tudelft.nl/projecten/mobiel-leren/
http://www.icto.tudelft.nl/projecten/mobiel-leren/
http://www.123nfc.nl/
https://play.google.com/store/apps/details?id=com.antares.nfc
https://play.google.com/store/apps/details?id=com.antares.nfc
http://www.ndefeditor.com
https://intranet.tudelft.nl/en/services/communication/communication-mc/manuals/tu-delft-corporate-design/toepassing-huisstijl-2/colour/
https://intranet.tudelft.nl/en/services/communication/communication-mc/manuals/tu-delft-corporate-design/toepassing-huisstijl-2/colour/
https://intranet.tudelft.nl/en/services/communication/communication-mc/manuals/tu-delft-corporate-design/toepassing-huisstijl-2/colour/
http://framework.zend.com/manual/2.2/en/modules/zend.view.php-renderer.scripts.html
http://framework.zend.com/manual/2.2/en/modules/zend.view.php-renderer.scripts.html
http://framework.zend.com/manual/2.2/en/modules/zend.view.php-renderer.scripts.html
http://www.agilemodeling.com/essays/fdd.htm

Appendix A

Preliminary Report

60

Preliminary Report
Version 1.0

Dino Hensen Tim Ypeij

May 2013

Appendix A: Preliminary report

Contents

1 Introduction 3

2 Project Description 4
2.1 Problem Identification . 4

3 Development Methodology 6
3.1 Project Management . 6
3.2 Test Driven Development . 6

3.2.1 Unit testing . 7
3.2.2 Instrumentation . 7

4 Technologies and Tools 8
4.1 Development Setup . 8
4.2 Code versioning using SVN 8
4.3 Android devices . 9
4.4 Near Field Communication . 9

4.4.1 NFC Support . 9
4.5 Device Requirements . 10
4.6 Development Devices . 10

5 Hosting & Administration 11
5.1 Backend & Web Service . 11
5.2 LAMP Environment . 12

5.2.1 Linux . 12
5.2.2 Apache . 12
5.2.3 MySQL . 12
5.2.4 PHP . 12
5.2.5 Security . 12

6 Our observations around the campus 14
6.1 Industrial Design . 14

1

Appendix A: Preliminary report

6.2 3ME . 15

7 Conclusion 17

2

Appendix A: Preliminary report

Chapter 1

Introduction

The subject of this project is to develop an application for TU Delft’s ICT in
Education group (ICTO). ICTO wants to gain experience with using smart-
phones for mobile learning by creating an application which students can use
in context, that is: accessing information when and where they need it. An
example of where this could come in handy is for many courses that have
a laboratory component or require the use of machine workshops. At the
moment all instructions are given to large groups of students in a lecture hall
without the presence of the machine that is discussed. A solution could be
to give more lectures to smaller groups, but then the costs would increase
because the instructor has to show up several times instead of just one time.
Also more planning needs to be done in order to schedule all groups to get an
instruction but this yields more overhead. So an application where students
can get their information ”in context” might be a good idea, but has yet to
be proven in terms of effectiveness and user satisfaction.

ICTO’s research objective is to find out if an application as shortly de-
scribed above can be done effectively and with high user satisfaction within
one or more study programs at the TU Delft. In other words, a feasibility
study needs to be done to evaluate the potential for success of an application.
This brings forth our project: to create mobile software for ICTO to use in
a feasibility study.

We will therefore be developing an application that provides a way to
gain experience on this topic. This report is about the preliminary research
on the application development for the educational application for ICTO and
will describe some of the background research we have done on the topic of
mobile software development.

3

Appendix A: Preliminary report

Chapter 2

Project Description

For ICTO to be able to perform a feasibility study they need to have mobile
software to perform a study on. So our project is narrowed down to create
mobile software to get a video instruction of equipment and machines used in
the lab courses followed by students that need to know how those machines
are operated.

One requirement, that is imposed by our client, is the use of NFC (Near
Field Communication), which is a short-range communication technology
useful for quick scanning purposes (see chapter 4.4 for more information).
Another immediate requirement is that the mobile software is being devel-
oped for the Android platform, because it is the largest platform with the
most NFC phone’s available. BlackBerry and Windows platform also have
some NFC phone’s, but the market and phones are less popular than Android
giving it a disadvantage to be developing an application for at the moment.
When the market for these other platforms grow and more phones within
their own platform come equipped with NFC, then it will be worth recon-
sidering to also develop the same application for these platforms, but this is
beyond the scope of this project. Also the iOS (iPhone and iPad) platform
don’t come equipped with NFC at all yet, so this is leaves Android as the
best platform to be developing on.

ICTO does not require the Android application to be published to the
Google Play Market. Instead a proof of concept application suffices for the
scope of this project.

2.1 Problem Identification

We identified some problems that occur when an instruction on a particular
device is given at the moment:

4

Appendix A: Preliminary report

• Instructions given in one lecture hall to many students at once can
cause unintelligibility

• Instructions given without the device nearby can be unclear

• Time-cost (instruction usually are always the same)

• Absent students miss the instruction

In the evaluation we will test to see if the above mentioned problems are
solved by the application that will be made.

5

Appendix A: Preliminary report

Chapter 3

Development Methodology

3.1 Project Management

To manage the software design and implementation we will apply our own
flavor of agile development. We will use Pivotal Tracker [1] as our project
management tool. This provides us with a user interface where we can create
a backlog containing tasks that need to be done. we can then create an
ordering in iterations, where each iteration equals one week and every task
is assigned a number of points.

This way we can see how much points we ”burn” every iteration and this
gives us an indication of our total progress and might also indicate when
we have to work a little harder, or even tell us when we have time left to
implement a should/could have feature. This software allows us to work in
an agile way prioritizing tasks the way we like it to and shift things around
when necessary and still being able to work towards a goal defined at the
beginning of an iteration.

We are planning to integrate SVN with Pivotal Tracker by using a post-
commit-hook so that we can feed the Task-ID in the SVN commit message
which automatically reached Pivotal Tracker and adds data to the task when
the commit is being done. This also allows us to change the state of the task
through the commit message enabling us to work more efficient.

3.2 Test Driven Development

The requirements document contains use cases that are perfect to implement
as test-cases. These test cases can be implemented before and in parallel to
the application implementation providing early automated testing to verify
the functional behavior of our application [2].

6

Appendix A: Preliminary report

We will use two testing methods: Unit testing and Instrumentation [3].
Both methods are briefly explained in the following sections.

3.2.1 Unit testing

The Android testing API supports JUnit3, so we will be using this feature to
test our unit classes. We will write some use cases and translate them into
test cases. Then we will write our code until it passes all the unit tests, not
looking after efficiency or style. After that, there is time for optimization.

3.2.2 Instrumentation

Android instrumentation allows the control of components independently
of it’s normal life cycle. Normally the system controls the life cycle of an
activity(an Android component representing a single focused thing a user
can do) but with the instrumentation you can gain control of the application
yourself. You can for instance start the application, then stop it and then
start it again to check if some changes persisted. This also allows you to
check application variables before the application is even started. It also
allows us to mock system objects which are used by the activity under test.
Furthermore we can send keystrokes and touch events to the user interface
of the activity under test.

7

Appendix A: Preliminary report

Chapter 4

Technologies and Tools

4.1 Development Setup

To develop our android application we will need a development setup which
allows us to write code, test it on devices manually (real phones or emula-
tors) and run automated test-cases (JUnit for example). We will develop
using Windows as our operating system with Eclipse as our IDE (Integrated
Development Environment). Because Eclipse is a Java cross-platform appli-
cation we could easily switch to another operating system for which Java is
available. Because we will be developing an Android App using Java, we
need to have the Android SDK in order to build upon the Android frame-
work. Google’s Android Developers have created a plug-in for Eclipse that
simplifies android programming. The plug-in is logically called the Android
Development Tools (ADT) plug-in, which of course requires the Android
SDK to be installed.

4.2 Code versioning using SVN

As our code versioning system we choose to use SVN above Git because we
only only work in a team of two persons and will be working together much
of the time. We both already know our way around with SVN and this will
give us a head start. If we would have chosen Git we would have a lot of
overhead in the start and in the end maybe not even use all exotic features
that Git offers, which makes using it a waste of time for this specific setting.

The Subclipse Eclipse plug-in provides an SVN connector so that we can
perform all SVN operations from within Eclipse. This is good because this
way we never have to leave Eclipse in order to commit/update which increases
our productivity.

8

Appendix A: Preliminary report

4.3 Android devices

As we ourselves are Android users we already own a lot of phones to test
on. (See section 4.6 for more information about the devices we use) We will
also use the Android Emulator to test the functionality that does not include
NFC scanning, because this is not supported by the emulator. For the NFC
functionality testing we will use our Android phones.

4.4 Near Field Communication

Near Field Communication is the ability to communicate between devices
on a short distance. It is a subset in the High Frequency (HF) band of the
RFID standard [4]. The RFID standard is a widely used standard in the
world and was originally intended to communicate in one way. NFC however
is designed to communicate both ways, at a maximum speed of 424 kb/s and
a maximum distance of 10cm.

There are some useful things you can do with the NFC technologies. For
example, money transactions with your mobile phone using NFC will be a
widely accepted method in the future. Another application is the use of NFC
to gain access to certain buildings, for example the office you work at [5].

In our application, NFC is going to be used by two kinds of users. At
end-user level, the application will read NFC-chips called tags to identify the
target machine. At the administrator level, the administrator of the system
will write information on the tags to be identified by the smart-phones owned
by end-users. It is possible to protect the tag from overwriting with certain
software, such as NFC Tag Writer [6].

The use of Near Field Communication technologies in Android Appli-
cation Development is supported from API level 9. This means that only
Android 2.3 or higher will support these features [7].

4.4.1 NFC Support

Even though NFC is supported since Android 2.3 (API 10), we will only
support Android 4.0 (API 14) or higher because of software maturity. The
newer API’s are implemented with lot of fundamental changes in comparison
to older versions. Because we are developing a prototype in a relatively short
amount of time, we are not able to provide support for such a wide range of
API’s to make the application compatible with devices running older versions
of Android. Aside of that, most NFC capable phones already run Android 4.0
or higher, for example all our phones we are going to test our application on (

9

Appendix A: Preliminary report

mentioned in 4.6) do run Android 4.x.x. so developing for lower API versions
would also require us to get hold of older development phone’s. For a proof
of concept application, this is just not feasible to do. New mobile phone’s are
released with increasing speed which is another reason not to focus on older
phone’s but instead focus on modern implementation’s of NFC that will last
a little longer.

4.5 Device Requirements

In this section we provide a small list of device requirements for our Android
application being able to run:

• NFC capable Android phone or tablet

• At least API 14, Android 4.0 [8] (see 4.4.1)

• Fast Internet connection for high quality video

• Slower Internet connection for low quality video

For an optimal experience the phone has to be NFC capable. However,
we will provide a way for phones that don’t have NFC so that they can still
benefit from our application by manually starting the application and typing
in the machine code themselves.

Because of the widely known instability of the TU Delft Wifi-network
called Eduroam network we will provide both high and low quality videos for
fast and slow Internet connections. In the event that the wifi network is not
working that well, users don’t have to stream large high quality videos that
affect their phone charges that much.

4.6 Development Devices

We will test our applications on different emulators and phones. The NFC-
capable phones that we have access to are:

• Samsung Nexus S, API 16, Android 4.1.x

• Samsung Galaxy Nexus, API 17, Android 4.2.x

• Samsung Galaxy S4, API 17, Android 4.2.x

• HTC One X, API 16, Android 4.1.x

We will also use an emulator in the API range from 14(see 4.4.1) to 17
to test parts of our application that do not require the use of NFC.

10

Appendix A: Preliminary report

Chapter 5

Hosting & Administration

We will be creating an Android application that is able to retrieve data in the
form of text and video to instruct the end-user on how to operate a machine.
This data has to stored somewhere and needs to be accessible by the Android
application. One option would be to store all information about all machines
in the Android application that is distributed to the end-user’s phones. This
would be a very bad solution, because the video files take a lot of storage
space which would make the size of the distributable application so big, that
it would be a problem to download and store it on a phone. Also it would
require us, the developers, to update the Android application each time a
new machine is added or info or videos are updated. This is not a feasible
solutions and therefore we require the use of a central server following the
Client-Server model. We will call this server the application server.

In a nutshell the application server needs to be able to provide data about
a machine that is scanned by the android application. This data can a video
stream or a textual representation information that can help the user to
understand the machine that he wants to operate.

5.1 Backend & Web Service

To present data(except for the video stream) to our Android application we
will implement a web service. Implementing a web service on a server adds
another piece of software to be made during our project. Together with
this web service we also need a backend for an administrator to manage the
application data. We are using the term backend because it is invisible to the
end-user, but we could have also called it a frontend for the administrator.

11

Appendix A: Preliminary report

5.2 LAMP Environment

Because this assignment is commissioned by ICTO we try to use as much
of the available facilities that ICTO has. SSS ICT offers preconfigured
LAMP(Linux, Apache, MySQL, PHP) environment, but they can also pro-
vide a server with a lot more freedom. We have chosen to use an Ubuntu
Linux server that SSS ICT provides for us.

5.2.1 Linux

An Ubuntu Linux server is what we are going to develop on. Ubuntu provides
an easy way to install open source software without too much configuration
in comparison with other Linux distributions. It is also very stable.

5.2.2 Apache

Apache will be used as our web server. It can be extended by modules to add
additional functionality. PHP(see 5.2.4) is one example of such an extended
module. Another one is the mod ssl module, which adds SSL and TLS(see
5.2.5) support for security.

5.2.3 MySQL

MySQL is a database implementation of the Standard Query Language. We
will use this database for our model data storage.

5.2.4 PHP

PHP is a scripting language that is especially used for web development. In
this language we will create the backend web service.

We need a Linux server because of the many available open source libraries
and it’s ease of installing new applications. The back-end software will be
developed in PHP in combination with a MySQL database to host the data.
Video files can be uploaded to a folder and encoded in the right format.

5.2.5 Security

For security HTTPS can be used with a server and client certificate.
For authentication between the android application and backend service

we will use Oauth2 authentication to check if a user has the right to access

12

Appendix A: Preliminary report

data provided by the back-end service. The user can log in on the app with
his TU Delft Net-ID to post feedback or media.

13

Appendix A: Preliminary report

Chapter 6

Our observations around the
campus

We decided to interview students around the campus, on different faculties.
Until now, we went to the Industrial Design faculty and the 3ME (Mechani-
cal, Maritime and Material Engineering) faculty. On our trip, we also came
in conversation with some instructors and lab coordinators. We included our
interview form in Appendix A (although it is Dutch). When we constructed
this form, it was meant to be a guide to a conversation with students in par-
ticular. At our second location (the PMB lab of IO) we started conversations
with instructors and thought these interviews were useful too, but did not
have a special interview form for them. So we decided to have a conversation
while taking some notes.

6.1 Industrial Design

We first went to a lab in the basement of the Industrial Design faculty. That
lab had two simple machines: a drill and a jig saw. We spoke with two second
year students there. They told us that in the case of these simple machines
you get a live instruction at the beginning of your study. If you were not
present at that time, you could try asking one of the lab coordinators to
explain how to use these machines, but they usually are not happy to do
that. These two students thought our application idea was very useful for
this kind of machines. We asked about some more complicated lab equipment
and they directed us to the PMB lab of the same faculty.

Arrived at this lab we first spoke to two fifth year students. They sup-
ported our idea, however they had very little time for us because they were
in a hurry. They seem to skip a lot of instruction sessions, so our application

14

Appendix A: Preliminary report

offers a quite handy solution for them. These students thought the cutter
was the hardest to use here and the 3D-printer the easiest. They also gave
us a tip about dividing the video in chapters and the ability to check the
videos at home. They only would use the feedback system to show their end
product, not to give tips to other students.

After this conversation we started a dialog with one of the instructors.
He seemed a little bit afraid that he would become superfluous, but he would
like the fact that not everybody would ask him about basic knowledge stuff
all the time. He promised us that he would corporate with us to make a
video for our application. However, he told us that for some lab equipment,
a live instruction is a prerequisite before students are allowed to work with
this equipment. This measure is for safety reasons, so a video cannot replace
this instruction for this reason. We also spoke to the lab coordinator and he
confirmed this. He only likes our idea in the case of equipment that don’t
need safety instructions, like the drill, jig saw and 3D printer.

As we stepped outside the faculty, we concluded that we need to focus
on the so called safer to use machines. The potentially dangerous equipment
need a live instruction anyway for safety reasons, so our application will be
a bit superfluous in that case.

6.2 3ME

When we arrived at the 3ME faculty, we first stepped inside the IWS (Inloop
Werkplaats Studenten, walk in workshop for students in Dutch). We decided
to talk to the coordinator here as well, as the students were very busy here.
He was very happy, as he claimed that he came up with our idea (with QR
instead of NFC) as well a few years ago. He already administers a wiki/pdf
page with instructions and pictures, but not specified for mobile application.
He also had made some instruction videos, but they aren’t posted on-line yet.
We exchanged our contact information and went further to the next lab.

The next lab we visited was the welding hall. Here we spoke to two
lab instructors. They rejected our idea because of safety reasons. During
the practical sessions, you always have to wear special goggles, and through
that goggles you cannot check your phone at all. To unequip these goggles
during the welding sessions is also not a good idea because other people can
be welding at the same time in the same hall and this will damage your
eyes. Your phone would not be safe either, with the sparks flying around
sometimes. They also told that many welding skills are much more a feeling
thing rather than a theoretical thing, and this is hard to show in a video.
However they were not interested in our idea, they invited us to observe a

15

Appendix A: Preliminary report

practical session when we want to, so we can see for ourselves our application
will be quite useless in this setting.

We concluded that regarding this faculty, we will limit ourselves to the
IWS lab. We will not use our application for the welding hall, because of the
obvious security reasons. We will contact the IWS coordinator soon, because
he has already some videos for us.

16

Appendix A: Preliminary report

Chapter 7

Conclusion

We already feel that there is a lot involved in our bachelor project. We have
chosen to work with software and programming languages we are familiar
with. Furthermore we want to apply all the relevant knowledge we gained
during our study, especially the software engineering and testing part. It is
interesting to involve NFC technologies in our mobile application because
they have a promising future but nowadays we almost never use them. We
did some research about the requirements of both the Android application
and the server for hosting the back-end software. We are going deeper into
this in our following requirements deliverable. Finally we did some research
around the campus of how people involved with lab equipment think about
our idea in practice. Most of them were positive about our idea and therefore
we are very motivated to continue with our project.

17

Appendix A: Preliminary report

Bibliography

[1] Pivotal Labs. Pivotal tracker features. URL: http://www.

pivotaltracker.com/features.

[2] M.Young M.Pezze. Software testing and analysis. Wiley, 2008.

[3] Google. Android testing fundamentals. URL: http://developer.

android.com/tools/testing/testing_android.html.

[4] Roy Want. Near field communication. Pervasive Computing, IEEE,
10(3):4 – 7, 2011.

[5] Kevin Curran et al. Near field communication. International Journal of
Electrical and Computer Engineering (IJECE), 2(3):371 – 382, 2012.

[6] NXP Semiconductors. Nfc tagwriter by nxp. URL: https:

//play.google.com/store/apps/details?id=com.nxp.nfc.

tagwriter&hl=nl.

[7] Google. Api android.nfc. URL: http://developer.android.com/

reference/android/nfc/package-summary.html.

[8] Google. Requesting nfc access in the android manifest. URL:
http://developer.android.com/guide/topics/connectivity/nfc/

nfc.html#manifest.

18

Appendix A: Preliminary report

Appendix A: Interview form

Studierichting en studiejaar:

1. Heb je weleens een apparaat gebruikt?

Ja

Ga door naar vraag 2

Nee

Ga door naar vraag 5

2. Hoeveel verschillende apparaten heb je gebruikt?

3. Welk apparaat was het moeilijkst te bedienen?

Apparaatnaam

Hoe beoordeel je de begeleiding/instructies/handleiding?

Welke manier werden de instructies gegeven?

4. Welk apparaat was het makkelijkst te bedienen?

Apparaatnaam

Hoe beoordeel je de begeleiding/instructies/handleiding?

Welke manier werden de instructies gegeven?

5. Wat zou je ervan vinden om via een app ter plekke een instructievideo
te kunnen zien?

6. Zou je dit prefereren boven een instructie in college?

7. Zou je via de app feedback achterlaten voor anderen in de vorm van
video, foto of geschreven tekst?

8. Wat kwam er nog meer te sprake?

19

Appendix A: Preliminary report

Appendix B

Project plan

81

Project plan
version 1.0

Dino Hensen Tim Ypeij

April 2013

Appendix B: Project Plan

Preface

This is the first step in our last phase of the Bachelor study in Computer Science.
We are Dino Hensen and Tim Ypeij and we are going to develop an mobile ap-
plication for the TU Delft. In the following months we are doing this traineeship
in supervision of our company supervisor Karin Clavel and faculty supervisors
Koen Bertels and Andrew Nelson (PhD student). Therefore we want to thank
them for giving us this opportunity.

1

Appendix B: Project Plan

Chapter 1

Introduction

Applications for mobile phones, or in short apps, are a booming business nowa-
days. The Android platform is one of the biggest platforms available on the
newer generation smartphones. Android is based on the programming language
Java, a language we have great experience in. While we both have an Android
phone ourselves, we already were interested in developing an app before this
project.

As our last phase of our Bachelor study in Computer Science we had to
choose a project from a list or approach a company ourselves. The project
we chose was already on that list and the company is the ICT department of
the TU Delft Library. It got our attention because it was about developing an
application for Android smartphones.

The assignment is to develop an application for students so they can use their
smartphone for mobile learning. The application has to support lab courses by
showing tutorials at the right place and time for devices that one has to get
instructions about before being able to operate the device. We want to use
Near Field Communication to determine the right place. The student scans a
chip on some machine to use in his or her lab cours even when he feels he could
need some help (the right time). Then the student can view an instruction
video, user pictures, user videos and user feedback. He also has to be able to
leave some feedback as well as upload pictures or videos. We included the exact
proposal in this document (Appendix A).

In this project plan, we describe our project assignment and project estab-
lishment. We also include how we are going to protect the quality.

2

Appendix B: Project Plan

Chapter 2

Project assignment

2.1 Project environment

The TU Delft ICT in Education Group (ICTO) are constantly doing research
in how to support the education role of the TU Delft with ICT solutions. They
think that the current way of giving instructions of lab classes in front of hun-
dreds of students during lectures is a bit outdated. They want to investigate if
the current trend of smartphones comes in handdy.

2.2 Objectives of the project

The ICTO want us to develop a prototype of an application for the TU Delft
where students can scan a chip on lab equipment with their mobile phone
equiped with NFC technology. Then the student can choose to see an instruction
video or read/leave feedback for this piece of lab equipment.

2.3 Project description

The way we want to accomplish the objectives of our assignment is to apply
many of the knowledge we gained during our Bachelor study(See 4.2 for more
information about the knowledge domains we plan to use). We will be working
in a flexible work environment which means that we can sit in a different room
everyday meeting new people. This makes more knowledge and information
from coworkers available for us. We plan to be at the office of the ICTO during
3 days of the week. The rest of the time we work at home or at other TU
Delft facilities. We will meet with our company supervisor every Wednesday
afternoon. Our faculty supervisor is available for us at Mondays, Wednesdays
and Thursdays.

3

Appendix B: Project Plan

2.4 Deliverables

The delivered end product will be an mobile (Android) application for students
who are the end-user. With this application the student can quickly get in-
formation about the operation of a complicated device in one of the many TU
Delft practical rooms or labs. Aside of the implementation, we have to deliver a
number of reports. First of all, this is the first report and it is named the project
plan. The next report will be a research report of our findings in the orientation
phase. Parallel to the implementation we will work on the final report. One
important section in the final report will be about the requirements. Because
a Requirement Document can be seen as a contract between the developer and
client, therefore we also deliver a requirements document. We will offer this
section to our company for review soon after the orientation phase. After all
the deliverables are finished, we will give an end presentation.

2.5 Requirements and constraints

The requirements are a working prototype of the application on an Android
phone. The application has to be stable and able to play video. Also the end-
user has to be able to leave comments and feedback and add their own videos
or pictures. One of our big constraints are that only new Android phones
are capable of NFC communication. Maybe in the future if our prototype is a
success, the TU Delft wants to develop this application for other phones (iPhone,
Windows, Blackberry, older Android phones), for example with QR-tags.

4

Appendix B: Project Plan

Chapter 3

Planning

Table 3.1: Planning

Weeknr. Date Hours a week Hours total Deliverables

Week 1 22-04-2013 32 32 Project Plan

Week 2 29-04-2013 32 64

Week 3 6-05-2013 32 96 Research report

Week 4 13-05-2013 32 128

Week 5 20-05-2013 32 160

Week 6 27-05-2013 32 192

Week 7 3-06-2013 32 224

Week 8 10-06-2013 32 256

Week 9 17-06-2013 20 276

Week 10 24-06-2013 0 276

Week 11 1-07-2013 16 292 First SIG code submit

Week 12 8-07-2013 32 324

Week 13 15-07-2013 32 356

Week 14 22-07-2013 32 388

Week 15 29-07-2013 32 420 Final Report & Code submit

Week 16 5-08-2013 additional 420 Presentation

Week 17 12-08-2013 additional 420

In table 3.1 we outlined a global planning with soft deadlines of various
deliverables. We chose to plan 2 additional weeks because we still have subjects
to pass this quarter. Our planning is to finish this project in 420 hours each

5

Appendix B: Project Plan

person according to 15 ECTS. We will be present at the TU Delft Library office
for at least 3 working days a week. The rest of the time we will work at home
or at other facilities of the TU Delft.

6

Appendix B: Project Plan

Chapter 4

Project establishment

4.1 Organization

The work that is needed to complete the project is equally devided between us.
We will both design and implement and write the reports. We will meet weekly
with our supervisors, just as specified in section 2.3.

4.2 Staff

The requirements on the staff (on us) are that we are proficient to develop an
app. Not only the implementation has to be stable, also the idea behind the
design has to be good. We both think that we have gained enough experience to
complete our job during the previous projects in the university, various subjects
we followed and experience gained during jobs. In this project we are planning
to use knowledge gained about the following domains:

• Software Engineering

• Test Driver Development

• Database Design (SQL)

• Java programming

Also it is required to spend enough time. We plan to spend 32 hours a week
(average) except during our exams. For our planning see the previous chapter.

4.3 Administrative procedures

To monitor the project we will use Pivotal tracker, which is project management
software providing the tools to collaborate and communicate with all parties
involved in the project. This software is designed for agile development, a

7

Appendix B: Project Plan

method of software designing we want to apply in this project. Pivotal tracker
also provides a file sharing feature which can be integrated with Google Drive.
We will use this feature for easy file sharing with team members. For the
implementation we will use SVN as our version control system.

4.4 Reporting

We will write the reports using the LaTeX format, so the reports will be in an
acedemic report style. We will use the BibTeX format to manage our references.
We will send all the reports on time to our direct supervisors so they can review
our work.

4.5 Resources

The hardware resources we will use are our laptops and NFC capable phones to
test our application on. Also we will have to buy some NFC tags to test and
place on the lab equipment when the prototype is ready. For the software part
we will use Java as our implementation language with some SDKs (Software
Development Kits) of which the Android SDK is the most important. As our
IDE (Integrated Development Environment) we will use Eclipse with the ADT
plugin(Android Development Tools), which provides an easy way to create vir-
tual android devices and connects to external android devices for debugging and
testing purposes. Finally if we need a database we will use the SQL format.

8

Appendix B: Project Plan

Chapter 5

Quality

We want to secure the quality of our end project by making strict agreements
with eachother and to the supervisors from week to week. We will control
our versions and collaboration with SVN and Pivotal tracker, so we can work
together separately on the same project without corruption or loss of data. Also
we want to apply the knowledge and experiences we learned in past projects and
subjects, especially Software Engineering and Software Testing. We want to
develop by a methodology called Test Driven Development (TDD) as much as
possible, because we can base our tests on the use cases and requirements which
we will gather in the requirements elicitation phase. This means that we first
will write scenarios and implement complementary testcases, before we start
implementing the functional code. Then we will adapt our code just as good
until our code passes all our tests. Finally, we are going to test our prototype
on various real phones and emulators to explore several bugs and inefficiencies.
Next to TDD we would like to use an agile software development method which
is supported in Pivotal tracker. We want to take some elements of a method
called Scrum, essentially creating our own flavour of Scrum so that is suites our
needs without having too much overhead because Scrum has roles for more then
two persons.

9

Appendix B: Project Plan

Appendix C

Project Proposal

Project description

Smart phones and tablets are more and more part of our daily life. More than
80% of TU Delft’s students use a smart phone 1. TU Delft’s ICT in Education
group (ICTO) wants to gain experience with using smart phones for mobile
learning. In some cases mobile learning can be more effective than traditional
learning, for example when learning in context. This means that you can access
information when and where you need it.

At TU Delft, many courses have a laboratory component or require the
use of machine workshops. Instructions for use and safety are often given in
a lecture instead of in close proximity (place & time) to the equipment and
machines. What if we could use our smart phones to scan the equipment, watch
an instructional video, click through the steps one by one and learn from tips
& tricks by others students? What if we could upload and share pictures or a
video from our experiment or the prototype we made?

This project is about finding out if this can be done effectively and with high
user satisfaction within one or more study programmes at TU Delft. The end
product should be a demonstrator Android app (it doesn’t have to be deployed
in an app store) that can be used as a proof of concept. It should at least con-
tain the following functionality: scan, launch machine/equipment information
(including an instructional video), sign in (with an existing account) and add a
comment, picture or user video. The demonstrator should work for at least one
machine and one laboratory setting of choice, preferably from different faculties
or study programmes.

Auxiliary Information

This project will be carried out within the context of the project ’Mobile’ within
the University Corporate Office Education & Student Affairs (O&S). The aim
of this project is to gain, combine and share expertise in mobile learning. This
project is coordinated by Karin Clavel of TU Delft Library. Students are eligible
for a placement fee.

1http://www.e-learn.nl/2011/09/09/results-of-tu-delft-mobile-survey-2011

92

Project team

Supervision

Karin Clavel, c.l.clavel@tudelft.nl , 015-2787631
Koen Bertels, k.l.m.bertels@tudelft.nl, 015-2781632
Andrew Nelson, a.t.nelson@tudelft.nl, 015-2783644

Student team

Tim Ypeij, 1386174, tim.ypeij@gmail.com, 06-23063275
Dino Hensen, 1367412, dino.hensen@gmail.com, 06-24730860

Appendix D

Code Evalutation SIG

First review

18-07-2013

De code van het systeem scoort 4 sterren op ons onderhoudbaarheidsmodel,
wat betekent dat de code bovengemiddeld onderhoudbaar is. De hoogste score
is niet behaald door een lagere score voor Unit Size en Duplication.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemid-
deld lang is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt er-
voor dat elk onderdeel makkelijker te begrijpen, te testen en daardoor eenvoudi-
ger te onderhouden wordt. Binnen de langere methodes in dit systeem, zoals bi-
jvoorbeeld de ’attachOnTouchListener’-methode in de ’FeedbackAdapter’-class
(of the functie ’authenticateAction’ in de ’ApiAuthenticationController’), zijn
aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar
aparte methodes. Commentaarregels zoals bijvoorbeeld ’//change color’ en
’//set color back and change rating’ zijn een goede indicatie dat er een au-
tonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch te
kijken naar de langere methodes binnen dit systeem en deze waar mogelijk op
te splitsen.

Voor Duplicatie wordt er gekeken naar het percentage van de code welke
redundant is, oftewel de code die meerdere keren in het systeem voorkomt en
in principe verwijderd zou kunnen worden. Vanuit het oogpunt van onder-
houdbaarheid is het wenselijk om een laag percentage redundantie te hebben
omdat aanpassingen aan deze stukken code doorgaans op meerdere plaatsen
moet gebeuren. In dit systeem is er duplicatie te vinden in bijvoorbeeld de ver-
schillende ’post*’ methoden binnen de ’HttpPoster’. Hier zou bijvoorbeeld het
afhandelen van de response-code in een aparte functie gestopt kunnen worden
zodat deze functionaliteit hergebruikt kan worden. Het is aan te raden dit type
duplicatie goed in de gaten te houden en dit waar mogelijk op te ruimen.

Wat verder opvalt is dat de code vrij veel ’TODO’-commentaren bevat, 47
commentaren verspreid over 23 bestanden. Door issues in de code te docu-
menteren is het lastiger om het overzicht op het aantal op te lossen issues te
behouden. Het is aan te raden deze issues te documenteren in (bijvoorbeeld)
een issue-tracker om dit overzicht te bewaken.

94

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit
niveau te behouden tijdens de rest van de ontwikkelfase. Als laatste nog de op-
merking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk
aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit
automatische tests gedefinieerd te hebben om ervoor te zorgen dat eventuele
aanpassingen niet voor ongewenst gedrag zorgen.

Second review

In de tweede upload zien we dat het codevolume in omvang is verdubbeld. Dit
komt voornamelijk door uitbreiding van de PHP code, de Android app is slechts
licht gegroeid. De score voor onderhoudbaarheid is ongeveer gelijk gebleven.

Bij Unit Size zien we dat een aantal langere methodes inmiddels is opgeknipt.
De meeste moeilijk leesbare methodes uit de eerste upload, zoals Feedback-
Adapter.attachOnTouchListener met een switch-in-een-anonymous-inner-class,
zijn hierdoor een stuk overzichtelijker geworden. Bij duplicatie zien we dat de
suggesties uit de eerste analyse zijn opgevolgd, maar omdat er op andere plaat-
sen weer wat duplicatie is toegevoegd is de deelscore er niet op vooruit gegaan.

Het is positief dat er inmiddels testcode is geschreven, al geldt dit vooralsnog
alleen voor de Java-code en niet voor PHP. Ondanks dat unit testen voor PHP
(nog) niet zo ingeburgerd is, heeft het alsnog toegevoegde waarde om ook die
code te testen.

Tot slot is het goed om te zien dat het aantal TODOs in de code sterk is
gedaald, van 47 in de vorige upload tot 2 nu.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de
vorige evaluatie zijn meegenomen in het ontwikkeltraject.

PHP Test code not detected

SIG’s analysis tool did not detect our PHP test cases:

“Onze analyse-tooling heeft de PHP-testcode niet automatisch herk-
end”

This fact did not influence the code maintainability score of 4 out of 5 stars.

Appendix E

Usability report

96

Usability Review Scansistant
24 July 2013, Karin Clavel

Heuristic evaluation
The review was done based on the ten heuristics recommended by Nielsen (1995). Ideally, 3-
5 different evaluators carry out this kind of review. In this case, only one evaluator was
available.

Back-end
The back-end is used to add machines and videos to the app. It is available from
http://scansistant.nl. An administrator login was provided to carry out the test.

1. Show system status
The system status was visible and clear in most screens of the back-end. The menu always
shows in which section the user is and a breadcrumb path supports this for underlying
pages/screens. A progress bar was visible when uploading videos.
Problems / opportunities for improvement found:

 Disable the Add button when uploading a video.
 The progress bar during upload is somewhat hidden.

2. Familiar metaphors and language
This can be improved, as sometimes the terms used are not explained or self-explanatory.

 Content: when adding a machine, the field content is too abstract. It is not clear
what should be entered here. In the examples a URL was used. A better name for
this field would be “URL” or “URL or Extra Information” if it is also possible to type in
information.

 Building: this field is used in both Location and Department. It is in fact possible for a
machine to belong to a department, which has a different location than the machine,
but the field seems to be used in a different way, in one case with a code (LI, TUD)
and in the other case as a name (Library office). For TU Delft, buildings are most
often referred to by Building number. This would be more familiar to users.

3. User freedom & control
The back-end offers enough freedom to explore, without users having to worry about getting
lost or damaging something. For all options, cancel buttons are available.

4. Consistency & standards
The back-end seems consistent. Links are blue, except in the menu, which makes it easy to
identify the clickable text. The different forms all work the same.
Consistency issue:

 When choosing to edit a video, the file field says: ”No file chosen”. This seems
strange, because in the file was uploaded earlier and the path is visible in the table
where all the videos are listed.

5. Error prevention
Fields are checked when saved. When deleting something, a warning is issued with a clear
dialogue to prevent data loss from clicking the wrong button.
Improvements:

 All fields in the various forms seem to be mandatory; this could be made visible
somehow.

1

 It is not clear which video format is expected. The open file dialogue could specify
which file types are allowed.

 Maybe the system could also specify other criteria for the video’s, such as maximum
size or minimum resolution.

 The machine code does not appear to be unique, only in combination with
Department and Location. This does not seem to be enforced by the system.

 The format for starting time of a chapter is not specified.

6. Recognition over recall
Overall, users don’t have to remember data from one screen to the next. Earlier data entries
are visible and selectable in dropdown boxes. Some exceptions:

 Add machine -> Code: there is no way to see which codes are already in use, except
for remembering the code.

 When adding chapters to a video, the number is presented. This should be the (user-
entered) name instead. The number does not trigger any recognition as the name
would.

 Building: see also Consistency & Standards. When you want to enter the same
Building in both Department and Location, you have to remember exactly how you
entered it the first time (or copy/paste).

7. Flexibility & efficiency.
The flow of the back-end could be designed better, as some forms depend on other forms to
be filled in first.

 When entering a machine, it would be nice to have “Add location” and “Add
department” and “Upload video” as side steps.

 In a next version, it would be nice to add a feature in to add machines by uploading
videos in batches and information by xml or CVS files for expert users.

8. Aesthetic & minimalist design
No complaints here! The design is plain and functional. No superfluous elements or
decorations.

9. Help users recognize, diagnose, and recover from errors
See also section 5.

 When adding chapters to a video, a start time is required. The format for this is not
specified. The error message could suggest a solution.

 A video preview would be nice; to be able to check whether the video works and the
chapters are as intended.

 When deleting a machine that is used in a favourites list, a system error occurs.
 When deleting a Department or Location that is used in Machine, the system updates

the fields in Machine without notifying the user.

10. Help, documentation
Not present. Could be added in a future version.

Scansistant App

1. Show system status
The system status is generally visible. After scanning and logging in, a progress bar & counter
is visible. A welcome message is present when signed in and an invitation to login is present
when not signed in. When in a subsection, the top bar has a link to the machines with a
“back”-arrow.
Problems with system status:

 The Tutorial Video section does not show which video is currently active or playing.
 Also use the top bar with a link back and “back”-arrow in the Login and Sign up

screens.
 When making a mistake logging in, the error message is hidden in the keyboard.

2

2. Familiar metaphors and language
Familiar icons are used. The style of these icons is well adapted to the graphical design, but
the meaning is still clear. There is very little text in the app. The terms used are easy to
understand for the intended audience.

3. User freedom & control
Inherent to the app’s functionality, the user is limited in exploring the app by encountering
the machines or machine codes. Users do not have to log in to use the app for the instruction
videos. Logging in only provides – useful – extra functionality for which the user’s identity is
needed.
Improvement:

 The Log out is only available from the home screen.
 In a future version, it should be possible to delete favourites and comments.
 The landscape view works, but should be optimised.

4. Consistency & standards
The app works according to Android standards. For example: links to outside content open in
a browser when using tap-hold and video controls appear when tapping the video. The
intention was to use the NetIQ to sign in. This would make it consistent with other TU Delft
applications. Unfortunately, TU Delft’s ICT department did not have the necessary client
software up and running at the time of implementation of the scansistant app. In a future
version it should be possible to use a NetID login.

 More consistent use of terminology: Sign in / Sign up / Sign out
or Login / Register / Log out

5. Error prevention
When trying to add a duplicate to favourites, the app responds with a clear message. In a
future version, it should be possible to remove items from favourites and remove comments.

6. Recognition over recall
The user does not have to remember anything. The last used code is remembered on the
home screen. The login information is stored for future use. The favourites list also supports
recall. Adding a thumbnail image to the favourite list would be nice. Icons also have a text.

7. Flexibility & efficiency.
The app is flexible and efficient for the intended use.

8. Aesthetic & minimalist design
The app is visually pleasing in TU Delft blue. The design is minimalist with no unnecessary
clutter.

9. Help users recognize, diagnose, and recover from errors
No problems or issues found.

10. Help, documentation
No help or documentation is currently available.

References
Nielsen, J. (1995, January 1). 10 heuristics for user interface design. Retrieved from
http://www.nngroup.com/articles/ten-usability-heuristics/

3

	Summary
	Preface
	Introduction
	TU Delft Library
	Problem Description
	Outline

	Requirements Analysis
	Domain Analysis
	Functional Requirements
	Quality Requirements
	Platform Requirements
	Security Requirements
	Process Requirements

	Methodology
	Scan technologies
	Near Field Communication
	QR-code
	Our choice

	Libraries
	Android Framework
	Zend Framework 2

	Tools
	Eclipse
	Pivotal Tracker
	Development Server

	Design & Implementation
	Global Design
	Android Client Application
	Graphical User Interface
	Activities and Fragments
	Modeling and network

	Back-end Application
	Modeling
	Implementation
	Front-end
	API

	Testing
	JUnit 3
	PHPUnit

	Process
	Feature Driven Development
	Planning
	Weekly progress
	Workplace
	Accompaniment

	Evaluation
	User evaluation
	Usability report
	Code evaluation through SIG

	Conclusion
	Result
	Recommendations
	Adjustments of existing features
	Missing features
	How to make our product a success

	Preliminary Report
	Project plan
	Project Proposal
	Code Evalutation SIG
	Usability report

