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Summary: This paper presents the design of a light and robust temporary emergency shelter with a triangulated polyhedral grid to transfer the lateral 
and vertical loads efficiently. To simplify the construction the variety of the elements is minimized, only two sizes of elements are applied. For the 
structural grid alternatives are designed using varying materials as cardboard, aluminum, steel and timber. The dimensions of the elements are 
validated. The alternatives are compared and ranked to minimize the environmental load due to the production, assemblage and transport. 
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1. INTRODUCTION 

Every year many people become homeless due to storms, floods, 
earthquakes  or other disasters. Generally national and international 
organizations, as for example the Red Cross, offer help by sending for 
example food, medicine and shelters. It takes time to repair and rebuilt 
homes, often the victims have to live for months in a temporary shelter. 
To be useful temporary shelters have to fulfill specifics and demands. 
The area of the plan has to be at least 9,29 m2 [1]. The climate conditions 
are not specified before and can vary much, nevertheless the shelters 
must offer some protection to extreme temperatures, rain, snow and 
wind. Further the shelters must be assembled quickly on the site. The 
conditions of the site concerning the foundation can vary too, the soil 
can be of rock, sand or clay. The shelters must be shipped by planes and 
trucks over long distances to the site, so the weight and volume must be 
minimal. Fabric structures are the lightest structures of all [2] and can be 
transported easily. For light shelters the wind loads are often decisive for 
the design of the structure. To reduce the wind load acting on the 
structure the form and surface must be smooth and the height of the 
shelter must be rather small, so the wind can stream easily along and 
over it and does not lift the shelter from the foundation. Half spherical 
domes, with a height equal to the radius, do not turn over easily during a 
storm. Further a spherical dome is the most efficient way to enclose 
volume and to cover a surface [3]. The structure of a dome can be 
composed of small rigid bars. The most widely publicized are the 
geodesic domes associated with Buckminster Fuller [4]. A polyhedron 
with a triangulated grid is stiff, stable and strong, so these structures can 
resist horizontal and vertical loads quite well. Generally the grid of a 
geodesic is constructed by subdivision the edges of an regular 
polyhedron, mostly an icosahedron or an dodecahedron, in smaller parts 
and projecting the vertices on the circumscribing sphere. Unfortunately 
increasing the frequency of the partition increases the variation of the 
elements too. For an emergency shelter the variation of the elements has 
to be small, so the frequency of the partition has to be small too.  
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Fig. 1. View of the hexagonal  roof of the shelter with a radius R. 

For a half spherical dome the frequency of the partition has to be at least 
two if the grid is based on a icosahedron, dodecahedron, octahedron or 
any other polyhedron, so the edges are halved and the number of 
elements is doubled. To reduce the number and variety of the elements a 
polyhedral grid is developed with 18 and 6 identical edges. The shelter 
is composed of a hexagonal roof with six triangular faces, see figure 1, 
and a drum with twelve triangular faces. The vertices of the polyhedron 

touch the circumscribing half sphere, see figure 2. Using mathematics 
the vertex of the ring beam, between the roof and drum, are positioned 
nearly halfway the top and foundation, so that the edges of the roof, 
running from the top to the ring beam, and the edges of the drum,  
running from the ring beam to the foundation, are equal of length. 
Consequently the six congruent triangular faces of the roof are 
congruent to the six adjacent faces of the drum.  
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Fig 2. Façade of the shelter with the circumscribing sphere. 

This paper concentrates on the design of a structural grid of a light and 
robust emergency shelter to be transported and constructed easily. The 
structure is designed with a triangulated polyhedral grid to transfer the 
lateral and vertical loads efficiently. Due to the spherical form the wind 
load is minimal. To simplify the construction the variety of the elements 
is minimized, only two sizes of elements, varying in length, are applied. 
For the structural grid alternatives are evaluated using varying materials, 
aluminum, steel, timber and even cardboard, just as for the paper dome 
[5]. The dimensions of elements are validated concerning strength and 
stiffness. The alternatives are compared and ranked to minimize the 
weight and environmental load due to the production, assemblage and 
transport. 

2. DESIGN  

A design can be considered as a response to the demands and wishes of 
the users and owners, so any process of design starts with an analysis of 
the demands.  

2.1. Demands 

For emergency shelters we can distinguish varying demands concerning 
use, comfort, cost, construction and transport.  

• To accommodate the homeless during some months the area 
of the shelter must be at least 9,29 m2 [1]. 

• The funds are provided by donators and limited, to help as 
many victims as possible, the cost of production, transport, 
construction and assemblage must be minimal.  

• The materials are shipped to the site by planes and trucks, so 
the weight of the shelter must be minimal and the sizes of 
elements must be small enough to be transported easily.  
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• The shelters must be erected quickly using simple equipment. 
To simplify the construction the elements must be easy to 
handle. The weight of an element has to be smaller than 20 
kg so one person can lift it. To simplify the assemblage the 
structure has to be composed of identical elements connected 
by preference with hinges above fixed joints.   

• The disaster can happen everywhere, thus the climate 
conditions can varying much. Nevertheless the shelter must 
protect the inhabitants for rain, sun, wind, snow and extreme 
temperatures. On forehand the site is not specified, the 
ground can be of sand, clay, rock or another material. Still 
the foundation must be able to prevent the shelter to be lifted 
upward by an average wind load.  

• According to the worldwide demand to reduce the emission 
of CO2  the embodied energy and environmental load due to 
the production, transport and assembling of the elements 
must be minimal. 

2.2. Loads 

The structure has to resist varying loads for example the wind, snow and 
dead load. To facility transport and construction the dead weight of the 
structure has to be minimal. Probably in the tropics and subtropics the 
wind load will be decisive. Near the artic and in mountainous regions 
the snow loads can be quite large. For a  region with extreme snowfall 
the structural resistance of the shelter has to be increased.  

2.3. Materials 

To reduce the dead weight and environmental load of the structure the 
shelter has to be composed of light materials so the elements can be 
transported well and constructed easily. For the enveloping skin we can 
use panels of paperboard, polypropylene or any other light and 
economic material. Nevertheless mostly a fabric is chosen to simplify 
the construction and minimize the weight. For the frame we can use 
elements of timber, aluminum, steel, cardboard or any other light, stiff 
and cost effective material [1]. The properties of cardboard vary much 
and depend on the direction of the fabrication, with: MD = machine 
direction, CD = cross machine direction [6]. Due to the variety of the 
properties the quality of cardboard elements must be put to extended test 
before use. Table 1 shows mechanical properties used for the design of 
the structures [6]. 

Table 1. Mass, stress and Young’s modulus to compare steel, timber, 
cardboard and aluminum 

  Mass                            
[kg/m3] 

 Tensile 
stress 
[MPa] 

Compres
s. stress     
[MPa] 

Shear 
stress 
[MPa] 

Young’s 
modulus 
[MPa] 

Steel  7800 235 235 134 210.103 

Timber   500 11,5 16,8    1,89   11,6.103 

Cardboard 
tubes CD 

  800 5 – 15 2,5 – 7,5     1,34.103 

Aluminum 2700 90 90 54  70.103 

3. FORM CONCEPT  

To reduce the dead weight of a structure a form-active structure or a 
surface active structure seems quite effective. With cable structures large 
spans are made with a minimal dead weight. By preference temporary 
buildings are supported by a simple foundation. A simple foundation can 
resist upward forces if the weight of the building is larger than the uplift. 
The weight of a light shelter is often to small to resist the uplift caused 
by a storm, so most tents are pinned to the ground. The pins must be 
pushed or drilled in the ground, but probably heavy equipment, as used 
for pile foundations, is not available if the infrastructure is destroyed. By 
preference  the structure of the shelter is designed in such a way that the 
foundation is not subjected by huge upward forces. Consequently arches 

are preferred above suspended structures with cables pulling at the 
foundation. Due to a vertical load the supports of an arch are subjected 
to a vertical force acting downward and a horizontal force, the thrust, 
acting outward. Often the thrust can be resisted by the foundation, but if 
the ground is to soft to resist the thrust then ties can be constructed 
between the supports. For structures with a circular plan the thrust can 
be taken with a circular ring. Nevertheless arches and domes must be 
able to resist upward wind loads. Every year many buildings are 
destroyed by tornados, so it will be very hard to protect a light shelter to 
extreme winds. To resist a huge wind load it can be necessary to 
increase the resistance against uplift with ballast, for example bags filled 
with earth and stones or any other material available at the side. The 
uplift acting at the shelter due to the wind load can be reduced 
substantially by designing the shelter in such a way that wind is mostly 
blowing over instead of against the shelter, so the form follows the 
loads. We can learn much from nomads who live in tents in harsh 
conditions. In the past the nomadic Indians, living on the prairies of the 
United States, built conical tents [2]. Due to the form, decreasing from 
the bottom to the top, the wind load is pretty small and acting just above 
the foundation so the over turning moment is small. In Mongolia 
nomads built yurts with a conical roof and a cylindrical base. The wind 
forces acting on a spherical dome are rather small too. For a spherical 
dome the surface starts perpendicular to the ground face so the 
usefulness of the interior is larger than for a conical shelter with an 
inclined surface.  

3.1. Grid 

Domes can be constructed with radial arches connected with a ring at the 
top and a ring the footing. Triangulating the surface gives a stiffer and 
stronger structure. To compose a spherical dome of triangular faces 
Walter Bauersfeld constructed the first  geodesic dome in Jena in 1922. 
Later Buckminster Fuller got a patent for the principal of subdividing. 
Geodesic domes are made by projecting the nodes and edges of a 
polyhedron on the circumscribing sphere. Generally an icosahedron or a 
dodecahedron is chosen.  
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Fig. 3: Icosahedron truncated at the base, the height is about 1,45 times 
the radius. 

Nevertheless geodesic domes can be created too by projecting the nodes 
and edges of a tetrahedron, octahedron or cube on the circumscribing 
sphere. For large geodesic domes the faces of the polyhedron will be 
subdivided into small triangles. The number of the subdivision of the 
edges is called the frequency. Increasing the number of the frequency 
increases the variation of the elements and increases the complexity as 
well. Especially for small emergency shelters it is advisable to decrease 
the number of elements as much as possible. The  variation of the edges 
and vertices is minimal in case the edges are not subdivided in parts, so 
by preference the frequency is minimal.  A tetrahedron gives a very 
simple grid, but the triangular ground plan is not very efficient. To 
create a useful interior the height of the tetrahedron must be quite large 
with respect to the plan. A cube composed of square faces  is very 
efficient but not stable unless the faces are stiffened with diagonals. Also 
the dodecahedron needs diagonals for stability. The icosahedron is 
composed of triangular faces and stable. To create a useful plan the 
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icosahedron must be truncated. Two possibilities arise: the structure is 
made of 15 faces or the structure is halved thorough the center. The 
height of a truncated icosahedron composed of 15 faces is rather large. 
Halving the icosahedron gives 10 halved faces. The  height of the halved 
triangular faces is too small to make an opening for a door. To create a 
door the grid has to be adapted and this will increase the variation.  

3.2. Hexagonal drum 

To fulfill the demands a new polyhedron is designed with a pyramidal 
roof composed of six identical triangular faces, resting on a drum with 
twelve faces. Using identical elements simplifies the construction of the 
structure much. Symmetry is a sine qua non for the design. Using the 
symmetry of a sphere the vertices of the polyhedron are positioned on 
the half sphere with radius R. Further the vertices are positioned  in such 
a way that six faces of the roof are congruent to six adjacent faces of the 
drum. Actually the drum is composed of twelve faces, six faces of the 
drum are identically to the faces of the roof, the other six faces of the 
drum are congruent too, but vary from the faces of the roof, see figure 4.     
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Fig. 4: Facetted dome with hexagonal plan and radius R 

4. GEOMETRY 

The polyhedron with a hexagonal plan is composed of a low rise 
pyramidal roof with six triangular faces, supported by a drum with 
twelve faces. The vertices of the polyhedron are situated on the 
circumscribing sphere with radius R. To decrease the variety of the 
elements the adjacent faces of the roof and drum are designed 
identically. The six faces of the drum and six adjacent faces of the roof 
have a common edge situated in a hexagonal face parallel to the ground 
face. The length of the edge in the ground face is larger than the edge in 
the ring between the six congruent faces of the roof and the identical 
adjacent faces of the drum, consequently the six faces of the drum 
standing on the ground face are larger than the other faces. The  six 
triangles of the roof are congruent to the six adjacent triangles of the 
drum, thus the length of the edges of the faces of the roof must be equal 
to the length of the edges of the adjacent faces of drum. The length of 
the edges of the polyhedron is defined mathematically.  

The two bisector lines of the identical triangles, named bs, are cords of a 
grand circle of the dome with radius R and cut the horizontal edge 
between the triangular face of the roof and the adjacent face of the drum, 
named rs, into two equal parts. The edges rs are situated on a horizontal 

hexagonal face with a radius r composed of six congruent faces, 
consequently the length of the edge rs is equal to r. This hexagonal face 
is positioned on a distance t of the top, the distance of the hexagon to the 
ground plan is equal to z = R – t. 

 

 

   t                                    e 
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Fig. 5: Section over the grand circles of the polyhedron along edge e and 
the median of the chord of the hexagon on the ground face.  
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 Fig. 6: Section over grand circles of the polyhedron along the bisector 
bs and the median rc. 

Two vertical sections are drawn over the grand arches of the sphere. The 
first section  is drawn over the edge e of the triangular face of the roof, 
see figure 5. The second section is made over the bisector bs of the face 
of the roof splitting rs into two equal parts, see figure 6. 

From the section over the edge e, see figure 5, follows:  

 R2 = (R-t)2 + r2  →      t = R – √(R2-r2)  (1) 

From the section over the bisector bs, see figure 6, follows:  

 R - t = r.cos (π/6)   →     t = R – r.cos (π/6)    (2) 

Substituting t according to (2)  into (1) to calculate r:   

       √(R2-r2) = r.cos (π/6)   →  r = R/√[1+ cos2 (π/6)] = 0,756.R  (3) 

Substitute r into (1) to calculate t:  

 t = R – r.cos (π/6) = 0,345.R  (4) 

The edge e follows from: 

 e2 = t2 + r2   →      e = 0,831.R  (5) 

The pairs of identical adjacent faces are joined with cords of the circle 
with radius r at a height of R - t. The length of the cords of the ring is 
equal to r. The angle α at the top of the triangular roof face follows 
from:  

    sin α = ½. rs/e = ½.0,756/0,831 = 0,455  → α = 27,05o    (6) 

The height of the first ring is found for:  

 z = R - t = 0,655.R  (7) 
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The length of the bisector of the face from the top T to the chord is equal 
too:   

 bs = e. cos (α) = 0,740.R  (8) 

The area of a face of the roof is equal to:  

 A1 = ½ * e * cos (α). rs = 0,288. R2 (9)  

The distance from the center of gravity of the face to the edge e is equal 
to:   

 ce = 2/3 . bs.sin (α) = 0,2244.R   (10)  (11) 

The angle ψ between bisector of the roof face and the horizontal face 
follows from: 

 cos (ψ) = rc/bs = r.cos (π/6) / bs (11) 

Substituting  bs = 0,740.R  and r = 0,756.R gives:  

 ψ = 27,8o  (12) 

Next the features of the other triangular faces standing on the ground 
plan are defined. These triangular faces have two sides equal to e, with: 
e = 0,831.R (5). The third side is positioned on the ground face, this face 
is a hexagon, so the length of the cord in the plan is equal to R. The 
angle β  at the top of the triangular face of the drum follows from:  

 sin (β) = ½.R/e = 0,602  →  β = 36,990  (13)  

The length of the bisector bs' running from the vertex of the ring to the 
chord of the ground face is equal too:   

 bs' = e. cos (β) = 0,664.R (14)  (14) 

The area of the face on the ground is equal to:  

 A2 = ½ * bs' * R = 0,332.R2   (15)  

The angle γ between bisector of the face of the drum and the vertical Z-
axis follows from: 

 cos (γ) = z/bs'  (16) 

Substituting  bs' = 0,664.R  and z = 0,655.R gives:  

 γ = 9,55o  (17) 

The results are checked with the following approach. Vertex 7 has to be 
at an equal distance from the top, vertex 13, and the vertex 1. The 
Cartesian coordinates of vertex 7 are:  

 x = R.cos (π/6). cos (φ) ; y = R.sin (π/6). cos (φ) ; z = R.sin (φ)  (18) 

The length of the vector between vertices 7 and 13 is equal to: 

 [{R.cos (π/6).cos (φ)}2+{R.sin (π/6).cos (φ)}2+{R.sin (φ)  - R}2 ]0,5 (19) 

The length of the vector between vertices 1 and 7 is equal to: 

 [{R.cos (π/6). cos (φ) −  R}2+{R.sin (π/6). cos (φ)}2 +{R.sin (φ)}2]0,5 (20) 

Both lengths are equal: 

[cos (π/6).cos (φ)]2 + [sin (π/6).cos (φ)]2 + [sin (φ) −1]2  =           

 [cos (π/6).cos (φ) −1]2  + [sin (π/6).cos (φ)]2 + [sin (φ)]2         (21) 

With this equation the angle φ of the vector pointing to the vertices of 
the ring is calculated as follows:    

 2.cos (φ). cos (π/6) = 2.sin (φ)    →   φ = 40,890   (22) 

The Cartesian coordinates of the vertices can be calculated easily using 
polar coordinates. With the radius R, the horizontal angle θ and the 
angle φ the Cartesian coordinates of the vertices are calculated with: 
  

 x = R.cos (θ). cos (φ); y = R.sin (θ). cos (φ); z = R.sin (φ)  (23) 

Table 2 shows the Cartesian coordinates for a radius R = 1,0 m. The 
center of the coordinates X,Y,Z is positioned at the center of the plan of 
the dome, the Z-axis points upward. The angle θ is equal to θ = n.π/6. 
For the ground plan n = 0, 2, 4 , 8 , 10 and 12 and for the ring n = 1, 3, 5, 

7, 9 and 11. For the top to θ = 0.  For the vertices on the ring the angle φ 
is equal to: φ = 40,890 . 

                             5  
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Fig. 7. Numbering of the vertices of the grid, X-axis and Y-axis on the 
plan, the Z-axis points upward.  

Table 2: Cartesian coordinates for a dome with radius R = 1 m, the Z-
axis is taken upward  

 X Y Z 

1  1  0 0 

2 ½  ½ √3 0 

3 -½ ½ √3 0 

4 -1 0 0 

5 -½ -½ √3 0 

6 ½ -½ √3 0 

7 0,655 0,378 0,6547 

8 0 0,756 0,6547 

9 -0,655 0,378 0,6547 

10 -0,655 -0,378 0,6547 

11 0 -0,756 0,6547 

12 0,655 -0,378 0,6547 

13 0 0 1 

 

4.1. The radius of the dome 

The area of the plan of the shelter has to be at least 10 m2.  the area of 
the ground plan is equal to: 

 A = 6 * 2 * ½ * R sin (π/6). R cos (π/6) = 3/2. √3.R2.  (24) 

For R = 2,0 m the area is equal to:   

 A = 10,39 > 9,29 m2  (25) 

Next the length of the edges and chords are calculated by multiplying 
the lengths with the required radius R = 2,0 m. 

 

4.2. The length of the edges and the Cartesian coordinates of the 
vertices 

For a radius of R = 2,0 m the table 3 shows the length of the elements of  
the face of the roof and the identical face of the façade. Table 3 shows 
the length of the elements of the face of the façade standing on the 
ground face. Table 5 shows the area of the faces of the roof and facade. 
Table 6 shows the Cartesian coordinates of the vertices. 
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Table 3. Lengths of the face of the roof and identical face of the façade 

 Length [m] 

edge  e = 0,831.R = 1,662 

Height of the first ring z = R-t  0,655.R = 1,309 

Radius of the ring r = 0,756.R = 1,512 

Cords of the ring rs = r = 0,756.R = 1,512 

the bisector from the top to the ring bs = 
e.cos α = 

0,740.R = 1,480 

Table 4. Lengths of the face of the façade standing on the ground face 

 Length [m] 

edge e = 0,831.R = 1,662 

Cords of the ground plan c = r  1,0 .R = 2,0 

Bisector from the top to the chord radius 
of the ring bs =  

0,664.R = 1,328   

Table 5.The area of the roof and facade 

  Area [m2] 

Roof face Af1 = 0,27976.R2 = 1,119  

Identical face of the façade A1  = 0,2796.R2 = 1,119  

Face standing on the ground face A2 = 0,3319.R2 = 1,328 

Table 6: Cartesian coordinates for R = 2,0 m, the Z axis points upward 
according to the FEM program 

Node X Y Z 

1  2  0  0 

2  1  1,732  0 

3 -1  1,732  0 

4 -2  0  0 

5 -1 -1,732  0 

6  1 -1,732  0 

7 1,309  0,756 -1,309 

8 0  1,512 -1,309 

9 -1,309 0,756 -1,309 

10 -1,309 -0,756 -1,309 

11 -0 -1,512 -1,309 

12  1,309 -0,756 -1,309 

13 0  0 -2 

 

5. LOADS 

 The shelter is subjected to the permanent load and the live loads. 

 

5.1.1. Permanent load 

The envelope can be made of a fabric or of panels of cardboard. The 
grid can be made of cardboard, aluminum or steel. The self weight of the 
structure is rather small. The load of the fabric is equal to p = 0,1 kN/m2. 
The vertices are subjected to a force F = p.ΣAi/3 with Ai according to 
table 7. 

Table 7. Vertical forces due to the permanent load, p = 0,1 kN/m2 

Vertex  Fi  [kN] 

F13  = p.6. A1/3 = 0,224  

F7 = F8 = F9 = F10 = F11 = F12 = p. (4.A1  + A2)/3= 0,193  

 

5.1.2. Snow load 

The snow load acting on the ground face according to the Euro code 
NEN 1991-1-3, 2005 [7]  follows from:  

 se  = u1.sk  (26) 

For a dome u1 = 0,8. As reference the snow load is calculated for the 
Netherlands with sk = 0,7 kN/m2. For an arctic area or a height of more 
than 1000 m above sea level, the load has to be increased. The snow 
load acting on a face of a inclined roof with an angle φ the distributed 
load acting on the roof face follows from: 

 ps = u1.sk . cos φ  = 0,495 kN/m2 (27) 

The vertices are subjected to a force F = ps.ΣAi/3 with Ai according to 
table 8. 

Table 8. Vertical forces due to the permanent load, p = 0,495 kN/m2 

Vertices  Fi  [kN] 

F13  = ps.6. A1/3 = 1,11  

F7=F8=F9=F10=F11=F12 = ps. 2.A1 /3= 0,37  

 

5.1.3. Wind Load 

According to the Euro code NEN 1991-1-4, 2005 [8] the wind load is 
calculated with:  

 we  = cpe.q(z)  (28) 

With: cpe is coefficient depending on the form of the structure and 
direction of the wind and q(z) is the wind load depending on the height 
and the region. 

The wind load depends on the location. By preference the shelters will 
be built at a side protected for severe storms. To limit the cost the shelter 
is designed to resist a reasonable load. As reference is chosen the 
maximum wind load acting on the coast of The Netherlands with a 
velocity equal to 28,5 m/s. Of course the shelters will not be able to 
resist the forces of a twister or hurricane. It will be better to replace the 
shelters then to design the shelters hurricane proof. The height of the 
structure is equal to R = 2,0 m. For a height of z = 2,0 m, the extreme 
pressure is respectively: q(z=2) = 1,11 kN/m2. 

 

5.1.4. Coefficients internal over and under pressure: 

The coefficient for an internal over pressure acting to the exterior is 
equal to cpe =  + 0,2.The coefficient for an internal under pressure acting 
inward is equal to cpe = - 0,3. The sign is positive for a pressure acting 
on the face and negative for a pressure acting in the direction from the 
face (sucking). 

 

5.1.5. Coefficients pressure and sucking 

For domes the pressure coefficients depend on the position of the face to 
the direction of the wind, the diameter of the dome d and the height f. 
For a half spherical dome the diameter d is equal to 2* R and the height f 
is equal to the radius f = R. The wind load is acting perpendicular to the 
faces. For a dome the wind loads are acting radial. The coefficients are 
given into table 9. The wind load acting at a face is assumed to be 
constant. 
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Table 9: Coefficients for a spherical dome, with height R and diameter d 
= 2.R  

Area   Coefficient c  

A Pressure windward side    0,8 

C Sucking leeward side - 0,4 

B Sucking, perpendicular to the wind direction - 1,2 
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Figure 8: The faces of the facades subjected to wind load and the zones 
with a constant pressure coefficient A,B and C.  

 

The wind load, acting perpendicular to the faces, is calculated with:  

 F = Area * p  (29) 

 The area of a regular face is equal to A1 = 1,119 m2 . The area of a face 
at the ground plan is equal to A2 = 1,328 m2. The vertex at the top is 
connected to 6 faces. For the triangular faces the load acting at the 
surface is distributed over the vertices with F = p.A/3.  

The angle between the normal of a roof face and the Z axis is equal to ψ 
= 27,80, see (12). The angle between the normal of a congruent face of 
the drum and the X –axis is also equal to ψ = 27,80 degrees. For the face 
on the ground plan the angle between the normal and the X-axis is equal 
to γ = 9,550. The loads acting on the faces are solved into components 
parallel to the axis X,Y and Z, see table 10. 

 

 

 

Table 10. Components of the wind load acting at the vertices 

Faces Fx Fx Fz 
Roof face:   p.A1.sin ψ .cos θ  p.A1.sin ψ.sin θ   p.A1.cos ψ  
Adjacent face p.A1.cos ψ.cos θ  p.A1.cos ψ.sin θ; p.A1.sin ψ 
Face on ground 
plan 

p.A2.cos γ .cos θ p.A2.cos γ .sin θ p.A2.sin γ 
 

The load acting on the faces is taken by the vertices, Every vertex of the 
face takes 1/3 of the load. A vertex of the ring at height R-t is connected 
with four faces. The vertex of the top is connected with 6 faces. The 
force acting on a vertex is calculated by summarizing the forces acting 
on the jointed faces: F = Σ 1/3 F. The following tables show the wind 
loads calculated with: p = c.q(z), with q(z) = 1,11 kN/m2. The coefficient 
c depends on the wind direction For zone A c = 0,8, for zone B c = 1,2 
and for zone C c = 0,4.  The following tables show the forces acting at 
the vertices due to the overpressure, under pressure and a wind load 
acting parallel to the X-axis. 

Table 11: Loads acting at the vertices due to the overpressure c = 0,2 

Node X Y Z 

7 0,252 0,145 -0,24 

8 0 0,291 -0,24 

9 -0,252 0,145 -0,24 

10 -0,252 -0,145 -0,24 

11 0 -0,291 -0,24 

12 0,252 -0,145 -0,24 

13 0 0 -0,769 

Table 12: Loads acting at the vertices due to the under pressure c = - 0,3 

Node X Y Z 

7 -0,378 -0,218 0,36 

8 0 -0,436 0,36 

9 0,378 -0,218 0,36 

10 0,378 0,218 0,36 

11 0 0,436 0,36 

12 -0,378 0,218 0,36 

13 0 0 1,15 

Table 13: Loads acting at the vertices due to the wind load parallel to the 
X-axis 

Node X Y Z 

7  0,882  0,678 -1,22 

8  0  1,744 -1,44 

9 -0,061  0,007 -0,89 

10 -0,061 -0,007 -0,89 

11  0 -1,744 -1,22 

12        0,882 -0,678 -1,22 

13 0 0 -4,61 

 

6. OUTPUT MATRIX FRAME 

With a fine element program the normal forces acting at the members 
are calculated for the varying loads. 
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Table 14: Forces acting at the members due to the permanent load p = 
0,1 kN/m2 ↓ and the snow load p = 0,495 kN/m2↓ 
 Member Ng   [kN] Nsn  [kN] 

Roof  S7-13,S8-13,S9-13,S10-13,S11-13,S12-13 -0,09 -0,45 

Ring S7-8,S8-9,S9-10,S10-11,S11-12,S12-7 -0,02 -0,31 

Façade S1-7,S2-7,S2-8,S3-8,S3-9,S4-9,S4-

10,S5-10,S5-11,S6-11,S6-12,S1-12 
-0,23 -0,35  

Table 15: Forces acting at the members due to overpressure p = 0,2 
*1,11 kN/m2↑ and under pressure p = 0,3 * 1,11 kN/m2↓ 
 Member Now  [kN] Nwu  [kN] 

Roof  S7-13,S8-13,S9-13,S10-13,S11-13,S12-13 0,31 -0,46 

Ring S7-8,S8-9,S9-10,S10-11,S11-12,S12-7 0,07 -0,11 

Façade  S1-7,S2-7,S2-8,S3-8,S3-9,S4-9,S4-

10,S5-10,S5-11,S6-11,S6-12,S1-12 
0,24 -0,35  

 

Fig. 9. View from above 

 

Fig. 10. The frame of the shelter 

 

Table 16 Normal forces due to wind acting parallel X-axis p = c * 1,11 
kN/m2 
 Member Nw  [kN] 

Roof  S7-13,S8-13,S9-13,S10-13,S11-13,S12-13 +2,79 

Ring S7-8 , S11-12 -0,07 

Ring S8-9 , S10-11 -0,84 

Ring S9-10   -1,45 

Ring S7-12 +0,19 

Façade S1-7,S1-12, +1,07 

Façade S2-7,S6-12, +1,20 

Façade S2-8,S6-11, +1,10 

Façade S3-8,S5-11, +2,20 

Façade S3-9,S5-10, +0,46 

Façade S4-9,S4-10, +1,40 

7. BENDING MOMENTS  

The faces of the dome are subjected to  normal forces and bending 
moments. The faces are subjected to an equally distributed load p. Due 
to this load the edges supporting the face are subjected to triangular 
distributed load q = ce.p. Due to this load the bending moment acting on 
an edge with length e is equal to:   

  M = q.e2/12  (30) 

For a triangular face of the roof and the identical face of the façade the 
distance from the centre of the face to the edge is equal to:   

 ce = 2/3 * 1,48 * sin 27,065 = 0,45 m  (31) 

For a triangular face of the facade standing on the ground face the 
distance from the centre of the face to the edge is equal to:   

 ce = 2/3 * 1,33 * sin 36,99 = 0,53 m  (32) 

Due to the permanent load the edges of the roof are subjected to a load 
equal to p = 0,1 kN/m2. With (28) the bending moment is equal to: 

 M = 2* 0,45 * 0,1 * 1,6622/12 = 0,021 kNm  (33) 

Due to the snow load the edges of the roof are subjected to a load equal 
to p = 0,495 kN/m2. With (28) the bending moment is equal to: 

 M = 2* 0,45 * 0,495 * 1,6622/12 = 0,103 kNm  (34) 

The surface is made of a fabric connected at the vertices of the grid. An 
edge is subjected to a maximal bending moment in case the wind presses 
on the face. The maximal load due to wind pressure and an internal 
under pressure is equal to: 

  pwe  = cpe.q(z) = (0,8 + 0,3) * 1,11 = 1,21 kN/m2 (35) 

Due to this load the bending moment acting on an edge of the façade 
with length e is equal to:   

  M = (0,45 + 0,53) * 1,21.1,6622/12= 0,273 kNm  (36) 

8. STIFFNESS 

The structure must be stiff, strong and stable. The stiffness of the 
elements must fulfill some demands so the structure does not fail due to 
buckling or deforms to much. For the design of the structure the 
buckling ratio has to be by preference larger than 5. 

  n = π2.EI/(Nd.lc
2)   > 5 (37) 

With this equation the minimal second moment of the area can be 
defined for elements of steel, timber, cardboard or aluminum.  For the 
ring, with an edge equal to 1,51 [m], the maximal normal force due to 
the permanent load, internal under pressure and wind load parallel X-
axis is equal to:  

 Nd = γg.N + γe.N    (38) 

For the permanent load  the load factor is equal to γg = 1,2 (not 
favorable). For the live load  the load factor is equal to γ = 1,5. For the 
elements of the  ring, length 1,51 m, the maximal normal force due to 
the permanent load, under pressure and wind load is equal to:  

 Nd = 1,2 * 0,02 + 1,5 * (0,11 + 1,36) = 2,23 kN  (39) 

Substituting this force into (37) gives the requited stiffness of the 
elements: 

 EI > 5.Nd.lc
2/π2 = 5 * 2,23.103*15102/π2 = 2,58.109 Nmm2  (40) 

The deformation of an edge subjected by a distributed load increasing to 
the middle of the span is equal to: 

 w =   q.l 4/(120.EI)   (41) 

The deformation of an edge is by preference smaller than 0,004.l. 
Substituting this demand into (370 gives an equation for the stiffness: 

 EI > q.l3/0,48  (42) 

Due to the wind pressure and the under pressure the maximal load acting 
on an edge is equal to q = (0,45 + 0,53) * 1,21 kN/m. Substituting the 
load and length into (42) gives the minimal needed stiffness EI: 
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 EI >  (0,45+0,53)*1,21*16623/0,48 = 11,34.109 Nmm2  (43)  

The stiffness required to limit the deformation is larger than the stiffness 
needed to prevent buckling. With the calculated stiffness the minimal 
magnitude of second moment of the area of the elements can be defined 
for the varying materials, see table 17. 

Table 17 minimal second moment of the area 

 Young’s modulus  
[MPa] 

Second moment of the area   
[mm4] 

Steel 210.103 0,054.106 

Timber  11,6.103 0,98.106 

Cardboard    1,34.103 8,46.106 

Aluminum  70.103 0,16.106 

9.  STRESSES  

According to the Theory of Linear Elasticity the stresses are calculated 
for the preliminary design of the structure with:  

   σ = γg. N/A +/- γe. M/W   <  fmax  (44) 

For the permanent load  the load factor is equal to γg = 0,9 (favorable) or 
1,2 (not favorable). For the live load  the load factor is equal to γe = 1,5. 

The bending moment is maximal for the load combination wind pressure 
parallel X-axis and internal under pressure, see (32), M =  0,273 kNm. 
The ultimate bending moment is equal to:  

 Md = γe.Md = 1,5 * 0,273 = 0,41 kNm (45) 

The normal force acting in this element due to the permanent load is 
equal to N = -0,23 kN. The normal force due to the internal under 
pressure is equal to N = -0,35 kN. The normal load due to the wind load 
acting parallel the X-axis is equal to +0,46 kN. Thus the maximal 
normal load is equal to: 

 Nd = -1,2 * 0,23 –1,5 * 0,35 + 1,5 * 0,46 = -0,11 kN  (46) 

Next the stresses are validated with equation (40) for the following 
elements of steel, timber, cardboard and aluminum.  

Table 18:  Area and second moment of the area 

  Area [mm2] Second moment of the area 
[mm4] 

  π.[D2-d2)/4  π.[D4-d4)/64  

Steel Ǿ40-4 452 0,074.106  

Timber Ǿ65 3318 0,88.106  

Cardboard Ǿ130-20 6912 10,8.106  

Aluminum  Ǿ50-4 578 0,154.106  

Table 19:  Normal and bending stress 

 Section Normal 
stress 
[MPa] 

Bending 
stress 
[MPa] 

Maximal 
stress 
[MPa] 

Ultimate 
stress fmax 

[MPa] 

  −γg.N/A ±γe.M/W      

Steel ∅40-4 -0,24 ±110,8 -111 235 

Timber ∅65 -0,03 ± 15,14 - 15,2  16,0 

Cardboard ∅130-20 -0,02 ±   2,47   - 2,5    2,5 

Aluminum ∅50-4 -0,19 ± 66,6 - 67  90    

 

 

10. JOINTS 

For space frames of steel, timber and aluminium several types of joints 
are designed [9]. The architect Shiguru Ban designed with the Dutch 
firm Octatube, Delft, a geodetic dome, the Paper Dome, composed of 
cardboard tubes ∅200-20 [5]. This dome was built in Amsterdam, 2003, 
rebuilt in Utrecht, 2004, and deconstructed last year, 2013. The 
cardboard tubes were post tensioned with steel bars to transfer tensile 
forces from the joints to the tubes. Recently Octatube developed a 
system to joint the cardboard tubes with spherical joint  for a space 
frame supporting the roof of a sport accommodation in Delft. Probably it 
is possible to glue wooden tabs into the tubes to transfer the tensile loads 
to the joints. These joints with glued tabs must be researched further.   

 

 

Fig.12. Removing the fabric from the grid of the Paper Dome, 2012. 

11. EVALUATION 

Table 20 shows the volume and weight of the elements. The volume of 
the steel and aluminum tubes is much smaller than the volume of the 
timber and card board tubes. The weight of the timber and aluminum 
tubes is much smaller than the weight of the steel and cardboard tubes. 
The total length of the edges of this shelter is about 29 m, The weight of 
the structure exclusive joints and fabric varies from 45 kg to 160 kg. 
Reduction of the weight is quite important in case the shelter is shipped 
by plane, then light aluminum tubes are favorable. Concerning the 
sustainability the timber elements are favorable. Table 21 shows the 
embodied energy and CO2 emission described by  Ashby [10]. Wood 
stores CO2 so the emission is negative, of course later the stored CO2 
will be released back into the environment.  For cardboard Ashby does 
not give any data. Generally cardboard is made of waste materials. The 
fibers are glued and the production of the glue will use some energy. 
The embodied energy to produce cardboard is about 20% more than 
timber [11]. Table 22 shows the embodied energy calculated for the 
given sections. The embodied energy is for timber minimal. 

Table 20:  Mass, volume and weight of the elements  

 Section Mass Volume Weight 

   [kg/m3] [m3/m]   [kg/m] 

Steel ∅40-4 7800 0,45.10-3 3,53 

Timber ∅65 500 3,32.10-3 1,66 

Cardboard ∅130-20 800 6,91.10-3 5,53 

Aluminum ∅50-4 2700 0,58.10-3 1,56 

Table 21: Embodied energy and CO2 emission [10] 

 Embodied energy [MJ/kg] CO2 emission  [kg/kg]   

Steel   22,4 - 22,8    1,9  -    2,1 

Timber   14,4 –15,9  -1,2  –   -1,0  

Aluminum 184 – 203          11,6   -  12,8 
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Table 22:  Embodied energy for the elements with a length of 1 m 

 Section Weight 
[kg/m] 

Average 
embodied energy 
[MJ/kg] 

Embodied 
energy 
[MJ] 

Steel ∅40-4 3,53   22,6   79 

Timber ∅65 1,66   14,6   24 

Cardboard ∅130-20 5,53   17,5   97 

Aluminum ∅50-4 1,56 190  296 

12. CONCLUSIONS 

The emergency shelter is quite robust, due to the spherical form the 
structure can resist heavy loads. The variety of the faces, edges and 
vertices is minimal, the structure is composed of two types of faces and 
two types of  edges varying in length only.   

For temporary structures cardboard is efficient and sustainable, but for 
emergency shelters which have to be shipped fast by planes to the site 
the weight of the elements has to be reduced further. The strength of the 
elements varies much. Controlling the production, increasing the 
strength and stiffness, reducing the deviation of the features will  
decrease the weight of the elements.  

At the present a half spherical dome with a structure composed of timber 
elements fulfills the demands well. The timber poles are light and the 
volume, embodied energy and CO2 emission is minimal. This frame is 
light, strong, stiff, sustainable, transportable and easy to erect. Further 
research is needed to develop and optimize the structure, to create a low 
cost, robust and sustainable emergency shelter. 
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