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Executive Summary

Introduction
Bus systems are used all over the world and, compared to the public transport (PT) modes of train, tram and
metro, they are more flexible by nature. This mainly stems from the fact that they do not need dedicated
infrastructure. This flexibility is one of the benefits of bus systems, but it has a downside too. The downside of
not having dedicated infrastructure is that bus systems are often affected by external conditions such as traffic
conditions. Additionally, the passenger travel demand for bus systems affects the operational speed of the
busses, since the number of boarders and alighters determines the dwell time of busses per stop. The passenger
travel demand can vary through time, and with that the operational speed of the busses. This means that when
the busses are in operation it can be beneficial to coordinate the system as a whole to make sure the fluctuating
external conditions do not result in big disruptions of the bus system. Such disruptions usually come in the
form of bus bunching, i.e. two busses of the same line driving very close together, followed by a large gap until
the next bus.

To avert small disruptions from building up to large disruptions, coordination among the busses is needed,
referred to as bus management in this study. This can be done in various ways, for example: skipping stops,
temporarily adding / removing busses in / from the system, adjusting driving behaviour through communication
with the bus drivers, manipulating traffic signals on the bus routes and possibly demand steering. In this study
adjusting driving behaviour and manipulating traffic signals are chosen since (if the necessary (digital) infras-
tructure is in place) they are less intrusive measures than other possible measures. It is thus focused on the PT
side of intelligent transport system (ITS), specifically intelligent bus systems. Moreover, the proposed solutions
are drawn from the field of reinforcement learning (RL), specifically multi-agent reinforcement learning (MARL).

Abdulhai et al. [5] present several different topics RL could be used for in the transport sector, among
them are intersection control and traffic management. They suspect that RL can play an essential role in an
ITS. This is a result of the many intelligent entities in such a system, which have to communicate in a manner
that takes the objective of both the individual entity and the system into account. In RL, such entities are
called agents and MARL provides a framework to find effective behaviour for all the agents. RL frameworks
have proven to be effective in many single-agent settings [48], [38], [47]. For multi-agent settings it is harder to
find good policies since the interactions between agents create many different solutions and often cooperation
is needed for good solutions.

RL is already extensively used in the development of self driving cars and it would be a big loss for the PT
industry if RL would not be adopted to benefit them as well. This research aims to provide knowledge and
inspiration for one possible application of RL in the PT industry: real-time bus service management.

The potential of applying RL in ITS has been identified [5] and has also already been applied to headway
management [56]. Yet, the implementations so far have been relatively simple, and as a result they do not pro-
vide sufficient information about the applicability of an RL framework for bus management in real day-to-day
scenarios. This study builds on previous studies by increasing the realism in the scenarios that are investigated
and adding agents to the MARL algorithm that control the traffic lights. From this research, the understanding
of RL frameworks in the bus management setting can grow and thereby the field can come one step closer to
the actual implementation for operators of an RL framework for bus management.

As mentioned before, the current state-of-the-art [56] uses an idealised simulation environment to train the
MARL algorithm in for headway management. This is not a realistic setting and this study aims to progress
to a more realistic setting by adding stochasticity and route heterogeneity to the problem. There are several
aspects that can be added to the simulation environment of an idealised bus route (currently used by the state-
of-the-art) to make it more realistic. Yet, these aspects will make the route also more complex. Therefore, they
are referred to as environmental extension. Besides the possible additions to the route, the number of possible
actions in a control algorithm can be expanded beyond holding only as well. In this study traffic light control
is added to further manipulate the bus system. The route extensions that can be introduced are listed below:

1. Route sections with different lengths

2. Stochastic driving times

3. Stochastic boarding and alighting
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4. Stochastic dwell times

5. Introducing traffic lights to route sections

Main research question

With the goal to investigate the potential of a MARL algorithm in a simulation setup that resembles real world
bus operations, the following research questions are defined.

The main research question of this research is: How does a MARL algorithm perform under different
types of (combinations of) environmental and control complexity?

Here, the environmental and control complexities are combinations of the extensions mentioned above.

Research Sub Questions

The following sub research questions are drawn up to support the main research question:

1. What is the current state-of-the-art of applying MARL systems to both headway management and inter-
section control?

2. What are valuable extensions to the current state-of-the-art in terms of simulation environment and control
complexity?

3. For which (combinations) of the above mentioned extensions is it feasible to implement them in a simu-
lation environment?

4. What is the performance of a MARL algorithm under the above mentioned environment complexities?

5. What is the benefit of using a MARL system for the problem of bus management compared with rule
based management?

6. To what extent is the used implementation transferable to other situations?

7. To what extent can the used implementation be translated from a model environment to the real world?

Literature Review
Several lessons can be drawn from the literature review. First of all, it is clear that using RL for headway
management is a fruitful concept that has already been implemented with promising results. However, the
current state of the art is not yet ready for real world implementation since the studies done use rather idealised
settings to train their algorithms in. It is a valuable extension to these studies to train an RL algorithm in a
more realistic, and thus complex environment.

The second lesson drawn is that RL algorithms are a suitable fit for intersection control as well. In this field
the implementations are somewhat further developed compared to the headway management implementations.

These two lessons combined appear to be a good first step in the direction of an ITS that uses RL since
the behaviour of the traffic lights on route can improve or hinder the performance of a bus system. Further-
more, traffic lights are very common on bus routes which makes a solution using them applicable in many regions.

The third lesson concerns the RL implementations used for headway management. From previous studies
that incorporate a MARL algorithm it appears to be beneficial to include the forward and backward headway
into the observation as local information. Moreover, the research from Cats et al. [10] shows that the best
performing holding scheme is based on the mean of the preceding and succeeding busses.

Lastly, in terms of the algorithmic setup Proximal Policy Optimisation (PPO), Actor Critic (A2C) and
Deep Q-Learning (DQN) have provided good results in the past. Furthermore, it is important to incorporate
an incentive into the algorithm to make sure the agents strive for the system optimum. This can be done by
trying to approximate the system state and its value and reward based on that. Another option is to create a
reward function based on a global system metric such as the passenger travel times.
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Research Methods
A simulation model is developed to be able to investigate the performance of a MARL algorithm under different
circumstances. This simulation model simulates a one-directional circular bus line. There are many configura-
tion possibilities in the simulation model, but for this study a bus route of 12 stops is created with 6 busses.
The busses have an unlimited capacity, the passengers arrive at the stops according to a Poisson distribution
and their destination is uniformly distributed over the coming 10 stops. The dwell time of the busses is the
maximum of the boarding and alighting time of the passengers. The dwell time function can be deterministic
or stochastic. The travel times on the route sections can be changed per section and can be either deterministic
or stochastic. Further, the demand per stop can be specified and each section can contain a traffic light or not.
Lastly, the traffic lights follow a predefined cycle which may result in a delay for the busses passing. This delay
can be increased, decreased or kept the same by the RL agent controlling the traffic light. For the experiments of
this study five scenarios are created with these variables. An overview of the scenarios and their configurations
is given in table 1.

Table 1: An overview of the scenarios used for the experiments.

Name Travel time Route sections Demand stops Dwell time Traffic lights

Idealised (ID) Deterministic Identical Identical Deterministic No
Stochastic (ST) Stochastic Identical Identical Stochastic Yes - Uncontrolled

Stochastic -Traffic
Light control (TL) Stochastic Identical Identical Stochastic Yes - Controlled

Deterministic -
Heterogeneous (DH) Deterministic Different Different Deterministic No

Realistic (RE) Stochastic Different Different Stochastic Yes - Controlled

These scenarios in the simulation model are used as the environment to train the MARL algorithm in. The
Proximal Policy Optimisation (PPO) implementation from RLlib [1] is used for the MARL algorithm. For the
observation of the RL agents the difference between their forward and backward headway is provided. After
receiving their observation the bus agents can select an action from the following action space: they can hold
for 0, 30, 60, 90, 120, 150 or 180 seconds after the boarding and alighting process is completed. For the traf-
fic light agents the action space is described above; increase or decrease the bus delay by 10 seconds or do nothing.

For each of the five scenarios, ten policies are trained with an unique seed and the five best performing are
selected for analysis. The analysis is done by executing these five policies in the simulation environment. Of
the resulting simulation runs, the averages of the following metrics are stored: the holding time per stop, the
passenger waiting time at the stop, the passenger travel time, the experienced crowding, the excess waiting time
and the coefficient of variation of the headways.

With the metric scores the performance of the MARL algorithm is compared with two benchmarks; a no
control benchmark and a holding control benchmark. The holding control is based on the difference between
the forward and backward headway. When the forward headway is more than 15 seconds shorter than the
backward headway, the bus will hold for 30 seconds. When it is shorter than 45, 75, 105, 135 or 165 seconds
shorter than the backward headway, a holding action of 60, 90, 120, 150 or 180 seconds is applied respectively.
This holding strategy is selected because it uses the same information as the MARL algorithm. Furthermore,
it performs well on headway equalisation.

Results
The learning process is stable and converged for most seeds. All the policies that converged have learned an
effective policy, i.e. they outperform the no control baseline. However, as the scenarios increase with complexity
so does the number of seeds that does not converge; from the ten different seeds used, 10, 8, 7, 7 and 6 of them
converged for scenario 1 to 5 respectively.
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Figure 1 compares the performance of the best policy of each scenario with the holding benchmark. From
this figure it is clear that the MARL algorithm manages to outperform the holding benchmark in most sce-
narios and on most metrics. The obvious exception to this is the deterministic - heterogeneous scenario, with
a deterministic and heterogeneous route. Another interesting aspect of these results is that the MARL algo-
rithm keeps the headway very well equalised in the deterministic scenarios (one and four), but not so much
in the stochastic ones. In the stochastic scenarios the improvements in performance stem from shorter head-
ways, instead of more reliable headways. From the other results it is also clear that the stochasticity is not
a problem for the MARL algorithm, in fact the stability of the performance between policies increases. The
heterogeneity of the bus route does add extra difficulty to the problem for the algorithm, as seen in scenario four.

Figure 1: The average metric scores in all five scenarios of the best MARL policy (blue) and the benchmark
(red). The total travel time consists of waiting time (blue / red) and in vehicle time (green / yellow).

In all but the deterministic - heterogeneous scenario, the MARL policy manages to use less holding time.
In combination with its effective use, this results in a large improvement on the average excess waiting time.
Finally, from the difference between scenario two and three it is clear that the traffic light agents are able to
add value to the system by improving the average coefficient of variation of the headways, while maintaining
equal performance on the other metrics. Even though the traffic lights were able to improve the performance,
learning a policy that cooperates well between the busses and the traffic lights proved to be hard, as only a few
of the seeds manage to achieve this.

Discussion & Conclusions
The work from Wang et al. [56], where they build a MARL framework to avoid bus bunching in an idealised
simulation environment, can be seen as the starting point for this study. The main contributions from this
study are expanding the simulation environment in which the MARL algorithm is trained to a more realistic
environment. This is done by making several of the processes in the simulation stochastic and creating a het-
erogeneous bus route.

From the results of the experiments it is clear that a MARL algorithm is able to deal with more com-
plex and realistic bus simulation environments. Specifically, stochastic processes are not a problem for the
MARL algorithm, but a heterogeneous bus route does increase the difficulty. Yet, even when both the stochas-
ticity and the heterogeneity are combined, the MARL algorithm manages to outperform the holding benchmark.
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It is also clear from the results that the MARL algorithm opts for a different control strategy in stochastic
scenarios than it does in deterministic ones. This shows that adding the stochasticity and heterogeneity to the
simulation model are useful extensions since they have an impact on the performance and the behaviour of the
MARL algorithm. Furthermore, the addition of the traffic light agents turns out to be useful as well, since the
performance of the system as a whole is improved.

Additionally, this research shows that using the passenger travel time as the basis for the reward function
can be effective with a simulation length around twice the average travel time. This has two main advantages:
it is a global variable, which means the agents are inclined to optimise the system as a whole. The second is that
this reward function eliminates the need to find a good balance between headway equalisation and driving speed.

Furthermore, the results of this study indicate that training on multiple seeds is useful since the performance
and the behaviour is not exactly the same. Especially when more types of agents have to cooperate, like in
scenario three and five, the cooperation strategy may develop differently in each learning trajectory.

These results are promising for the use of a MARL algorithm in real world cases. However, there is still more
research needed to achieve this goal. With the simulation model used in this study it is possible to simulate a
wide variety of bus routes and train a MARL algorithm in this environment. In future research this could be
extended to a simulation that can simulate a whole network. This could potentially improve the performance of
a bus network since coordination between lines is possible. Yet, modelling and controlling a whole bus network
is a challenging task since it is more complex than a single line. Additionally, the action space, the observation
space and the number of different actors could be extended as well. Such a study could go more in depth into
one scenario instead of exploring different scenarios like this study.

Other topics that should be investigated in future research are the performance of a MARL algorithm on
resilience and the robustness of such an algorithm. Robustness concerns the quantitative relation between a
disruption of the bus system and its effect on the passengers. While resilience concerns the recovery of such a
disruption. Furthermore, the behaviour of the policy should be reliable before it can be implemented in practice,
which means that this should be incorporated into the design of the training procedure or be checked after the
training procedure.

Together with these research topics, a case study could be executed to discover and solve the practical issues
that arise when a MARL algorithm is implemented in practice. Some of the possible issues are already taken into
account in this study i.e. the step size is set to 15 seconds to prevent data overload and be robust to data latency.
Also, the actions are clear and easy to execute and the information needed for the observation is widely available.

If these obstacles can be overcome and MARL can be used for bus management in practice it has the po-
tential to improve the performance of the bus system. This can be achieved by making the objective of the
system the objective of the algorithm, which eliminates the need for heuristics. Additionally, a MARL algo-
rithm can potentially take more information into account than conventional control strategies. Furthermore,
due to the learning characteristic of MARL a control policy can be easily updated and adjusted to new situations.
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1 Introduction

1.1 Problem Description
Bus systems are used all over the world and, compared to the PT modes of train, tram and metro, they are more
flexible by nature. This mainly stems from the fact that they do not need dedicated infrastructure. This means
that bus systems can easily change routes on a day-to-day time scale as well as on a concession-to-concession
time scale. Furthermore, frequencies can be changed on both time scales as well. The downside of not having
dedicated infrastructure is that bus systems are often affected by external conditions such as traffic conditions.
Additionally, the passenger travel demand for bus systems affects the operational speed of the busses, since the
number of boarders and alighters determines the dwell time of busses per stop. The passenger travel demand
can vary through time, and with that the operational speed of the busses. This means that when the busses
are in operation it can be beneficial to coordinate the system as a whole to make sure the fluctuating external
conditions do not result in big disruptions of the bus system. Such disruptions usually come in the form of bus
bunching, i.e. two busses of the same line driving very close together. The phenomenon of bus bunching is
further explained in section 1.1.1. To avert small disruptions from building up to large disruptions, coordination
among the busses is needed, referred to as bus management in this study. This can be done in various ways,
for example: skipping stops, temporarily adding / removing busses in / from the system, adjusting driving
behaviour through communication with the bus drivers, manipulating traffic signals on the bus routes and
possibly demand steering. In this study adjusting driving behaviour and manipulating traffic signals are chosen
since (if the necessary (digital) infrastructure is in place) they are less intrusive measures than other possible
measures. This study is thus focused on the PT side of ITS, specifically intelligent bus systems. In the coming
sections the scientific research related to these measures will be discussed.

1.1.1 Headway Management

Adjusting driving behaviour in bus systems can be done with the aim of maintaining the headways between
busses from the same line as even as possible. This is called headway management. Headway management is a
problem that has been studied extensively. This is done to avoid the problem of bus bunching. Bus bunching
occurs when a bus is delayed and, as a result of its delay, encounters more passengers at its bus stops, which in
turn increases its delay due to the longer dwell times. For the following bus on the line the opposite is true: the
delay of the first bus results in a smaller time interval between both busses, which means fewer passengers have
accumulated at the bus stop, this leads to shorter dwell times. The result of bus bunching is that two busses
of the same line drive very close to each other, followed by a large gap, and then, again, two busses close together.

As discussed in [16], headway control can lead to a more reliable PT system and shorter travel times. The
shorter travel times are achieved by shorter average waiting times. For example, when a bus line has a frequency
of six busses per hour and passengers arrive at a constant rate at the bus stops, the average waiting time would
be five minutes when the headways are perfectly even. However, in a completely bunched, system the average
waiting time would be ten minutes, since the busses are driving in pairs of two and thus the effective frequency
is reduced to three busses per hour. Furthermore, with even headways, the occupancy of the busses is also
better spread out [49]. This means fewer passengers will experience an overcrowded bus.

The research field of headway management aims to minimise bus bunching and in this way increase the
reliability, quality and comfort of bus systems.

1.1.2 Intersection Control

The manipulation of traffic signals at intersections fits in the field of intersection control and, similarly to head-
way management, intersection control is not a novel topic. It has been studied for a long time with the general
goal of improving traffic flow. This research field started out with optimising the traffic flow around a single
intersection [30] and optimising the flow of a whole network based on static origin destination (OD) patterns
[60] or link flows [11]. Over time it has evolved to more complicated settings such as dynamic and cooperating
controllers [59] and the current state-of-the-art treats topics like intersection control with AV’s and without
traffic lights [21] [18].

If so desired, a specific role can be created for PT in intersection control. This traditionally comes in the
form of transit priority [36], but more complex settings have also been studied where PT only gets priority when
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it facilitates sticking to the timetable of the PT system in place [12] [14].

The incentive behind these studies has remained the same over the years: if the traffic flow can be improved,
it means less time spent in the transport system for its users. Combined with a value of time (VoT) of the
transport system users, this can be converted to a decrease in economical loss for a society.

1.2 Reinforcement Learning
In this study the proposed solutions are drawn from the field of RL, more specifically multi-agent. Even though
the RL framework has been around for a while, recently it gained momentum due to advances in the amount
of data and computation power available. Abdulhai et al. [5] present several different topics RL could be used
for in the transport sector, among them are intersection control and traffic management. They suspect that RL
can play an essential role in an ITS. This is a result of the many intelligent entities in such a system, which have
to communicate in a manner that takes the objective of both the individual entity and the system into account.
In RL, such entities are called agents and MARL provides a framework of coming up with effective behaviour
of all the agents. The basic idea behind RL is to train an agent that learns what to do given a situation, called
the state, by letting the agent interact with an environment [53]. The agent is thus learning to map states to
an action. The agent can interact with the environment in steps. This means that it can select an action, then
it has to wait a certain amount of time before it gets a new observation of the environment and can select its
new action. This step size determines the frequency of the interaction between the environment and the agent;
the environment is continuously evolving and at every step size interval the agent can selects its action. For
every action it takes, it is rewarded or punished based on the so called reward function. The reward function
has to be designed in such a way that the agent optimises the objective when it tries to obtain as much reward
as possible. The resulting mapping of situations to actions for an agent is called the policy of the agent. This
RL framework has proven to be effective in many single-agent settings [48], [38], [47]. For multi-agent settings
it is harder to find good policies since the interactions between agents create many different solutions and often
cooperating is needed for good solutions. The research on MARL systems is ongoing and more research is still
needed to put the many different possibilities into practice.

RL is already extensively used in the development of self driving cars and it would be a big loss for the PT
industry if RL would not be adopted to benefit them as well. This research aims to provide knowledge and
inspiration for one possible application of RL in the PT industry: real-time bus management.

In the real-time bus management setting, every bus is an agent and this can be extended with other agents.
All agents will have to be trained to learn what behaviour is good for the system.

1.3 Societal Relevance
The potential of applying RL in ITS has been identified [5] and has also already been applied to headway
management [56]. Yet, the implementations thus far have been relatively simple, and as a result they do not
provide sufficient information about the applicability of an RL framework for bus management in real day-to-day
scenarios. This study builds on previous studies and increases the realism in the scenarios that are investigated.
From this research, the understanding of RL frameworks in the bus management setting can grow and thereby
the field can come one step closer to the actual implementation for operators of an RL framework for bus
management.

An RL framework that is ready for real world deployment can potentially yield various benefits for society.
The most evident one is increased reliability of a bus system and a decreased passenger travel time. Other
traffic can also profit from this solution when the traffic lights are included in the RL framework. This profit
comes as a result of the potential improvement in the way the traffic lights can ’guide’ the busses through the
remaining traffic. Another promising benefit is the learning aspect of RL, which can yield better long-term
performance with less ’maintenance’ in the form of redesigning the best solution. This can save valuable time
for those constructing the bus management algorithm.

A less work intensive long-term solution can bring the costs of a bus management system down. In turn,
the decreased costs can translate to a broader affordability of such a system. This results in a larger share of
society that can benefit from an improved bus system.
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Along with the potential benefits for bus systems, the acquired knowledge in the field of applied MARL can
aid society in a more general sense, as it can be applied in other future cases as well. For example, Abdulhai et
al. [5] regard RL as a key ingredient for multiple aspects of an ITS, not just bus management.

This study thus aims to bring the benefits of a future proof, well managed bus system one step closer to
reality. While the focus is on bus systems, it can provide inspiration for various other PT systems, such as
tram, train, metro or on-demand transport systems.

1.4 Research Questions
1.4.1 Objective

As described in section 1.3, the goal of this study is to improve the reliability and travel time of a bus system
in a future proof manner. This could potentially be done by using a MARL framework for bus management.
As Wang et al. [56] have shown, such a framework can outperform commonly used benchmarks in an idealised
environment; a circular bus line where all the stops and trip sections have the same characteristics and the
driving and dwell times are deterministic. This is not a realistic setting and this study aims to progress to a
more realistic setting by adding stochasticity and route heterogeneity to the problem. However, it is not clear
whether a MARL framework still performs well in more realistic environments, since these tend to be more
complex. In this study the intention is to get an idea whether a MARL framework is also a promising solution
in more realistic environments or that this is still too complex to be able to train a MARL algorithm with better
performance than the current state-of-the-art.

There are several aspects that can be added to the current state-of-the-art of an idealised bus route to make
it more realistic. Yet, these aspects will make the route also more complex. Therefore, they are referred to
as environmental extension. Besides the possible additions to the route, the number of possible actions in a
control algorithm can be expanded beyond holding only as well. These are referred to as control extensions.
The aspects that can be introduced are listed below:

• Route extensions

1. Route sections with different lengths
2. Stochastic driving times
3. Stochastic boarding and alighting functions
4. Stochastic dwell time functions
5. Introducing traffic lights to route sections

• Control extensions

1. Traffic light control
2. Speed control

This means it is possible to create a scenario where not all stops and sections will have the same characteris-
tics. In this way it can provide a more realistic setting and thus should come closer to a useful MARL algorithm
for the problem.

Every aspect listed above can be either added or left out to create a unique scenario for the MARL framework
to operate in. Next, for each of these unique scenarios the MARL framework can be configured as well. Some
of the most important aspects of the configuration are:

• The MARL algorithm used

• The reward function used

• The observation available to the agents

• The action set available to the agents

• The step size (i.e. the frequency of interaction between the agents and the environment, as explained in
section 1.2)
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Investigating a non-ideal bus line will be the research gap of this study and therefore other research topics
surrounding a MARL framework are left for future research. One of such aspects is the performance under
disruptions. This study focuses on bus management under daily stochastic variations, with the aim to improve
the reliability of the bus system. The performance of the MARL algorithm under disruptions is not investigated,
meaning that improving aspects like the robustness and resilience of the system are still open research topics.
Considering that these aspects are not investigated, it is evident that the result of this study can not be used as
a standalone controller on a real-world system. It should rather be used as an advisory system for the people
or system in place. Another option would be that it is used directly, but it is overruled by a different controller
system when a disruption occurs.

Moreover, the focus in this study is not on finding novel RL algorithm, but rather on creating methods
to make RL applicable for bus control. This relates better to the expertise of civil engineering. Furthermore,
finding novel MARL algorithms is a less relevant research gap since a lot of research effort is already focused
on this. However, for future research it may be interesting to investigate tailor made (MA)RL algorithms for
transport applications. The objective of this study is thus the following:

To investigate the potential of a MARL algorithm in a simulation setup that resembles real world bus oper-
ations.

1.4.2 Main Research Question

The main research question of this research is: How does a MARL algorithm perform under different
types of (combinations of) environmental and control complexity?

Here, the environmental and control complexities are combinations of the extensions brought forward in
section 1.4.1.

1.4.3 Research Sub Questions

The following sub research questions are drawn up to support the main research question:

1. What is the current state-of-the-art of applying MARL systems to both headway management and inter-
section control?

2. What are valuable extensions to the current state-of-the-art in terms of simulation environment and control
complexity?

3. For which (combinations) of the above mentioned extensions is it feasible to implement them in a simu-
lation environment?

4. What is the performance of a MARL algorithm under the above mentioned environment complexities?

5. What is the benefit of using a MARL system for the problem of bus management compared with rule
based management?

6. To what extent is the used implementation transferable to other situations?

7. To what extent can the used implementation be translated from a model environment to the real world?

In this sense, the aim of this study is to first find the current state-of-the-art in terms of MARL application
for bus management. Then, this state-of-the-art is extended with the most promising, widely applicable and
feasible control extensions. Next to this extension, the learning environment is made more realistic by introduc-
ing more realism into vital processes of the bus system. The first addition yields a more elaborate MARL bus
management implementation than currently used in the literature. The second addition moves from an idealised
simulation environment to a more realistic one. This is done to get a better indication of the usefulness of a
MARL algorithm for bus management in real world scenarios. The performance of the used MARL setup is
analysed along with the transferability of the setup. The outcome of this analysis is used to identify topics for
future research that should be covered in order to make real world MARL bus management a reality.
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2 Literature Review
A literature review is conducted to be able to do research that aligns well with the current state-of-the-art. This
literature review is done to answer the first two research sub questions as formulated in section 1.4. This thus
comprises of the state-of-the-art of the use of MARL in headway management and intersection control and the
most valuable extensions to this in terms of the environment and the control measures used. Additionally, the
design choices for the simulation environment are discussed since this has an indirect impact on the performance
of the MARL algorithm. Lastly, the topic of MARL is discussed to give an intuition for the decision that have
to be made in this research.

2.1 Modelling Bus Systems
Simulation models are often used to train and test both intersection control and headway management algo-
rithms. In this study the this is also the case. Therefore it is paramount that this model simulates the aspects
of the bus system that are important for the problem appropriately. Furthermore, the simulation model should
be fast since it will be evaluated many times when training the algorithm. Due to these requirements the model
should adhere to a famous quote of Albert Einstein: "Everything should be made as simple as possible, but no
simpler".

Two important aspects for the simulation model of this study are the passenger arrival function and the dwell
time function. Without a proper implementation of these two, bunching will not be observed. Furthermore, to
come to a complete simulation model, proper driving times should be implemented for all the sections on the
bus route and realistic green time restrictions (e.g. a minimal green time per direction) should be used for the
intersections.

In high-frequent PT systems the passenger arrival function is often assumed to be a homogeneous Poisson
process [45], [31]. This assumption is based on the idea that the passengers do not consult the timetable of
the PT service due to the high frequency of the system. There are numerous variations on this, such as the
non-homogeneous Poisson process used in [31], which improve the accuracy or the computation time. These
variations become more relevant when there are reasons to believe that the passengers do not arrive at random
at the stops. This could be the case when the frequency of the system is not high enough or when the bus
system is is fed by another low frequent PT system.

The dwell time function is often assumed to be linear with the number of boarders and alighters [4]. This
function contains a constant that represents the time needed for stopping, opening and closing the doors and
driving away, [4] recommends to choose this constant between 10 and 15 seconds. In the study by [51] they
used a modification to the linear function by creating two separate functions; one for boarding and one for
alighting, the dwell time function is then the maximum of the two. Evidently, such dwell time functions remain
an approximation of reality and the dwell time of busses in a bus system is influenced by multiple factors.

Driving times of the busses on their different route sections can be modelled in numerous ways. Since there
are several factors that influence the driving times (e.g. road conditions, hour of the day, weather, etc...) it is
important to define which of these factors are held constant in the model and which are variables that influence
the driving times. The choices made in this regard will determine how the driving times are distributed. The
work of Uno et al. [54], Srinivasan et al. [50] and Li et al. [34] has shown that the distribution of driving times
along a route section often be approximated by a log normal distribution.

2.2 Control Measures
2.2.1 Headway Management

As discussed in section 1.1.1, headway management in bus systems aims to increase the quality of the system
by improving the reliability and comfort. Generally this is achieved by keeping the headways between busses
equally distributed and thus addressing the problem of bus bunching.

The characteristics of a bus system that lead to bunching are the characteristics of a high frequency and
high demand bus system [19]. Only in these circumstances the passengers will arrive at random at the bus
stops and only with large amount of passengers will the dwell time be significantly influenced by the passengers.
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It is not exactly defined when a system can be called a high frequency system, but passengers only start to
arrive randomly at the stops when the headway is 10 minutes or smaller according to [24]. Yet, Ingvardson
et al. [29] finds that with headways of 5 minutes 43% of the passengers still arrive in a timely manner at the stops.

There is a variety of methods to achieve regular headways. Some of them focus on specific settings, such as
long headway services [55]. However, most of them focus on high frequency and high demand systems, since
these are most prone to bus bunching. The basic idea behind many state-of-the-art headway regularisation
methods today is laid out by Daganzo et al. [17]. These methods are often mainly based on holding; the
idea to hold a bus at a given location to make sure its following bus does not get too far behind. Or, put in
other words, to hold a bus at a given location to make sure it does not get too close to its preceding bus. As
brought up in [17] and [49], with holding schemes it is paramount to keep the holding to a minimum. Too much
holding can lead to a low average driving speed and thus "this medicine (slack) is sometimes worse than the
illness (irregular headways)" [17]. Moreover, low average driving speeds also increase the operating costs and
the required fleet size [49]. An example of a holding scheme implementation is given in [58] by Xuan et al. Cats
et al. test several different holding schemes in [10] and they conclude that the best performing strategy is the
one that is based on the mean of the preceding and succeeding busses.

This type of headway regularisation is currently most used in literature and is based on simple or complex
rules. Further, most holding schemes are station based and thus only allow for control decisions on a subset of
the bus stops. A disadvantage of station control methods is "that decisions can be taken only at stops, result-
ing in a significant time lag between observations and control actions. This can play a vital role if the system
experiences various uncertainties both in time and space, which is the case en route (congestion heterogeneity)
and at stops (passenger demand heterogeneity)" [49]. Despite being rule based, several of these methods allow
the optimal headway to "emerge" by itself, thus not needing a pre-specified headway [8].

In addition to holding schemes, headway regularisation can also be achieved by speed control (e.g. [7]) or
stop skipping. They are not as common as holding, since their implementation is not as straightforward as
with holding. Speed control for example, is easy to implement when a bus-only lane is in place, but on shared
infrastructure it becomes harder. Stop skipping on the other hand is simple to implement, but the difficulty
lies in effective communication to the passengers. As expected, all these methods can also be combined in more
complex headway management schemes (e.g. [23]).

One flaw in many of the regularisation studies is that they are tested in ideal simulation environments, when
the reality is far from ideal. Congestion and traffic lights (often negatively) influence the headways of a bus
system as demonstrated by Hans et al. [28]. Studies such as [20], who take this into account, yield a more
realistic picture of the performance of a regularisation scheme.

2.2.2 Intersection Control

IC has been an active research field for many years and is being transformed by emerging technologies such as
smart vehicles, as discussed in section 1.1.2.

Classically intersection control was the science of creating a good static traffic light controller for one or
more intersections in a road network. This was done by simulating the observed or projected traffic demand
in a simulation model of the road network and optimise the traffic controllers in this simulation model. The
optimal controllers are then thus based on link flows and OD patterns, such as in [11] and [60]. This can also
done on the scale of one intersection to investigate different types of intersections, an example of such a study
is [30].

With the advent of road sensors and other forms of traffic data, it was possible to move away from static
controllers and move towards dynamic ones [39]. With dynamic controllers it is possible to optimise an inter-
section controller better with respect to the current conditions, which often fluctuate throughout the day.

The next development that will change the field of intersection control is the arrival of intelligent vehicle
(IV)’s. intersection control in a setting with IV’s does not need physical traffic lights anymore [21]; whether or
not a car is allowed to cross an intersection can be communicated to the car directly by the controller in place.
Even in the transition period, when not all of the cars on the road are intelligent, it would be possible to use
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such systems to improve the physical traffic light systems [59].

In traffic scenario’s where (most of the) vehicles are intelligent it is possible to use more complex objectives
for the intersection controller than the traffic flow only. An example of such an additional objective is the driver
experience or comfort, which is taken into account by [18]. With intelligent controllers in place it becomes more
accessible to give PT a special role in the intersection control. Examples of special PT roles are investigated by
[14], [23], [25], where busses get priority at the intersections based on several different aspects like their delay
and the capacity at the succeeding bus stops. MARL is a commonly used framework for intelligent intersection
control, especially when cooperation between different intersections becomes important [26].

2.2.3 Connecting Intersection Control to Headway Management

Given the extensive research on intersection control and on headway management, it is interesting to investigate
whether these two topics can strengthen each other. After all, waiting for a red light at an intersection can be
seen as randomised holding for busses. For a PT system it is advantageous if this randomised holding can be
transformed to optimised holding. Moreover, when all the busses of a bus line have equal headways, the line
is in a fragile equilibrium. This equilibrium can easily be disturbed by a red light at an intersection, causing
bunching [23].

Early attempts in this direction have been done by Liu et al. [36] and Chandrasekar et al. [12]. In [36]
they concentrate on transit priority at intersection control, [12] takes this a step further by explicitly taking
the headways into account. Chow et al. [14] extend this, they incorporate a kinematic wave model to simulate
the traffic situation and minimise the deviation of busses from their desired headway, while trying to minimise
the delay of the regular traffic as well. In the work from Estrada et al. [23] this concept is taken even further,
in their research intersection control is combined with speed control and holding to optimise headways and
system costs. They propose a solution where some slack is built into the bus schedules and additional measures
can be taken real-time with green light extension (at intersections) and speed control. Additionally, they note
that real time control is especially useful when the vehicle departures are not synchronised with the traffic light
settings, since this is a more unstable setting. This unveils the potential benefit of coordinating bus schedules
with intersection control. The research of Estrada et al. [23] is not done with the aid of RL, but, given the vast
amount of control options in such a system, it seems probable an RL based controller could outperform a rule
based controller.

2.3 Reinforcement learning
2.3.1 Key Concepts of Reinforcement Learning

The environment in which line busses have to operate is a complex one, namely a PT system on the (urban)
road. This environment has many influencing factors like the other traffic, the weather, traffic lights and the
passengers in the PT system. Furthermore, the influencing factors do not influence the environment indepen-
dently, they may have correlations. Previous headway management studies came up with rule based algorithms
to be able to control busses in an effective manner is this complex environment. However, these rule based
algorithms are essentially a heuristic for the true optimal behaviour of the busses in this complex environment.
With the advent of massive computing power and big data it is now possible to search for the true optimal
solution for every specific situation, not a heuristic. The problem then becomes finding the optimal solution
in the enormous set of possible solutions. RL can provide a framework to find and continuously update the
(locally) optimal solution for every specific situation.

It is important to have an idea of what the term RL entails since the solutions of this research are drawn from
the field of RL. With an understanding of the key aspects of RL it will be easier to see the discussed problems
from the perspective of RL and the transition towards the creation of the RL framework will be smoother. There-
fore, RL will be shortly introduced in the this section and the choices within an RL framework will be discussed.

As mentioned in section 1.2, RL, like most machine learning (ML) methods, RL is gaining attention due
to the continuous improvements in computing power and the increasing availability of data. However, RL is
different from other machine learning methods in the sense that it is interactive [53]. RL will learn by trying,
similar to the way humans learn. Given a ’world’ or environment and a set of possible actions, an RL agent
will try an action, observe the resulting state of its environment and then try a new action. The RL agent will
then learn from its past experience and converge to better behaviour. An RL agent will thus create its own
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experience by interacting with an environment. This is not the case in most machine learning methods where the
experience is a given and is usually static. The environment of an RL agent can be the real world; for example,
a robot can be taught to clean a floor. This can work well since the robot in this situation would be free to make
errors and clean the floor badly during training. However, making errors and exhibiting inefficient behaviour
becomes expensive and possibly dangerous when the RL agent is not a floor-cleaning robot but a bus managing
controller. Therefore, a simulation environment is usually used for the training of the RL agent and the RL
agent is only used in the real world when it is fully trained and exhibits reliable behaviour. Another benefit
of training in a simulation environment is that it can be much faster than the real world. For example, the
duration of modelling a full day of bus operations can be on the scale of seconds or minutes using a simulation
model. This means that an RL agent can gain experience faster when using a simulation model as environment
instead of the real world. It is evident that this simulation model should be an appropriate representation of
the world if the RL is to be used in the real world at a later stage. This is where big data sets come into play:
they can help a modeller calibrate the model by making it data driven. In this way data drives the learning of
an RL agent, but in an indirect way, which is different from most ML methods.

A simulation environment or the real world can thus be used for training an RL agent. This training pro-
cess consists of two types of behaviour: exploratory and greedy behaviour [53]. The exploratory behaviour is
characterised by trying new actions irrespective of the other possible actions given the state. Greedy behaviour
on the other hand is characterised by behaviour according to the agents policy: the agent will thus choose the
action that he considers to be the best given the state. In general, exploration is necessary during training, but
the percentage of exploratory actions taken is slowly decreased. When a trained agent is deployed in the real
world it is often programmed to exhibit greedy behaviour only. However, this is case dependent and it may
be important to keep exploring, especially when the environment will change over time. The option to keep
exploring during deployment can be an advantage of RL solutions since it means the agent continuously adapts
its behaviour to a changing environment. Nonetheless, in the case of a bus system it is probably more useful
to update the simulation environment with new data than to train an RL agent in the real world. The main
reason for this is the speed of learning; in a simulation environment a full day of operations can be modelled on
a much smaller time scale.

To be able to judge what is good, an RL agent needs a reward function [53]: a function that rewards the
agent for every action according to how good or bad it was. Defining the reward function is thus a paramount
part of RL, since it will steer the behaviour of the RL agent. For example, when a bus gets rewarded for every
transported passenger, it will learn to optimise its efficiency with respect to transporting passengers to get as
much reward as possible. Without the incentive of rewards (positive or negative) an RL agent will not learn a
meaningful policy.

By using this reward function it becomes unnecessary to define what the desired behaviour looks like, only
the end goal of the behaviour needs to be defined. This goal can usually be defined exactly and rule based
heuristics are thus no longer required. This means that an RL agent will look for the optimal behaviour for
every situation, not just for the optimal behaviour in the majority of the situations, which is the case with a
heuristic.

When a transport system transitions from a regular transport system to an ITS, more aspects of the system
become controllable in real time. This means more aspects are optimisable in real time. Finding a good heuristic
when there are many factors in play can be a challenging task. Therefore, there is a growing need to move away
from solutions based on heuristics and towards solutions driven by the end goal.

Humans are able to come up with very good solutions (desired behaviour of busses) when the problem of
bus management is relatively simple e.g. headway management on a ideal bus line with homogeneous demand,
without intersections and where the action space consists of holding or not holding a bus at a stop. However,
when the action space becomes larger (e.g. adding speeding up / slowing down of the busses, traffic light con-
trol, continuous feedback, etc...) or the environment becomes more complex (e.g. intersections, heterogeneous
demand, interactions with other traffic, etc...) it becomes hard for humans to define the desired behaviour of
a bus for every given situation. This is the case because the solution space is enormous and the dynamics of
the problem are generally not fully understood. In such a situation it is usually still relatively straight forward
what is desired of the busses (e.g. minimise overall travel time), but is has become unclear what behaviour will
lead to achieving this. RL is essentially a framework to move through this solution space, try solutions, learn
and eventually converge to (locally) optimal behaviour. When RL is combined with function approximation,
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it can even relate new states of the environment to states it has already seen and use the experience from the
similar states to exhibit appropriate behaviour.

In this study the performance of the RL algorithm is investigated under different types of environmental
complexity. The less complex environments are used to see if RL is a suitable framework for the bus management
problem, while the more complex environments are used to see if RL can be an asset in real life bus management.
In these environments several busses, and in the complex environments traffic lights as well, have to interact
and cooperate with each other. This means the environment has multiple actors. Therefore, a MARL algorithm
is chosen to tackle the bus management problem.

2.3.2 Multi-Agent Reinforcement Learning

The RL concepts explained in section 2.3.1 are explained from the angle of single agent RL since this is a
less complicated setting than the MARL setting. This is also the reason that the field of single agent RL is
further developed than MARL. Single agent RL has seen many successes [48], [38], [47] and is already used in
production on several products like self driving vehicles [57]. MARL on the other hand is not as far developed
since it quickly becomes more complex than the single agent setting. In this section several MARL frameworks
are explored and their pro’s and cons are discussed. Important to note is that the focus here is on the possible
methods to get multiple RL agents to cooperate given a task they have to execute as a team. The algorithms
that enable the individual agents to learn are thus not discussed since this does not contribute to the understand-
ing of the problems dealt with in this study. Furthermore, in this section a new term is used: ’learner’ which
represents an RL agent in a MARL setting. The term ’agent’ is not used here since in an environment there may
be multiple acting agents that are all controlled by the same RL agent which may lead to confusing descriptions.

MARL can be seen as a subsection of the research field of multi-agent systems (MAS). The field of MAS has
influences from various other fields and concepts like graph theory, game theory, control theory, swarm intelli-
gence and MDP [44]. Here the focus is on MARL, but MARL too is influenced by the other fields just mentioned.

In MAS there are several difficult problems that arise. The major problem is making sure that the perfor-
mance of the team comes before the individual performance. This involves cooperation, which is often hard to
incorporate in a MARL framework. One of the reasons this is difficult is due to the predictability vs. exploita-
tion dilemma. Here predictability can be explained as ’stick to the plan’, making sure the other learners in the
system know what to expect from you. Exploitation on the other hand is explained by using the knowledge
that a learner has at the moment to get as much reward for him self as possible given the current situation.
The latter is local optimal behaviour, but the former is often, but not always, globally better. This dilemma
holds for every learner in the system.

A straightforward implementation of a MAS using RL is to use team learning [41]. In team learning there is
one learner in the system that controls all the agents. The central learner is the only RL agent in this case and
operates like a ’puppet master’. This central learner is rewarded according to the team performance, this means
the performance of the team as a whole matters, not the performance of the individual agents in the system.
This is a considerable advantage of team learning. However, the downside is that the action space of the central
learner and the state space of the environment can become prohibitively large [41]. This is because the size of
the action space of the central learner is equal to the size of the action space of the individual agents to the
power of the number of individual agents. Furthermore, when a team learning system is deployed there should
be a central point of communication, due to the presence of the central learner. All the necessary data has
to be available in this central point, which can create numerous challenges. "Moreover, in the sensor-network
applications, in which the information is observed across a large number of scattered centers, collecting all this
local information to a centralized unit, under some limitations such as energy limitation, privacy constraints,
geographical limitations, and hardware failures, is often a formidable task" [40]. Additionally, this can make a
system vulnerable since there is a single point of failure.

For these reasons it is desirable to have a distributed system. A way to do this is by creating a learner
for every agent in the system. This setup can solve some of the challenges that come with team learning, but
provides a new challenge; a non-stationary environment. In a single learner setting, the learner learns the ’rules’
of the environment, meaning every time a learner is in state A and takes action B, the probability of ending up
in state C is the same. [40] The environment is thus stationary. This is not the case with MARL, because there
are other learners in the environment whose behaviour is non-stationary. This makes it harder for a learner to
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converge to a good policy.

Nonetheless, this method is used in some settings and is called ’independent learners’. With this method
the other learners are thus modelled as the environment. A variation on the independent learners method is
one where all the learners use and update the same policy. By using this ’shared policy’ the learning goes
faster because all the agents contribute their learning to the same policy. Another method that can be used
to speed up learning is transfer learning [15]. With transfer learning the knowledge learned by one agent can
be (partially) transferred to another agent. This method can speed up the learning process in situations where
training an individual agent takes a lot of computational power. However, the problem remains with these
methods that it is hard to learn to cooperate for the individual learners. Additionally, due to the non-stationary
environment, there is no guarantee that the learners will converge to a locally optimal policy [43]. One of the
algorithms that has proven to be able to handle these difficulties well is the proximal policy optimisation (PPO)
algorithm [46]. PPO uses "multiple epochs of stochastic gradient ascent to perform each policy update" [46].
Furthermore, each update is done within a "trust region"; i.e. each step can only change the current policy
within the predefined trust region around the current policy.

The problem of a non-stationary environment is addressed by a method called ’fully observable critic’ [40].
In this method there is a central entity called the critic, which observes all observations and actions of the
learners in the system. The observation of the central critic, or an approximation of the observation is available
to all the learners. Because the global information of the critic is added to the observation of the individual
learners, the environment becomes stationary for the individual learners; given observation of state A and action
B the probability of ending up in state C is always the same. Nonetheless, the global observation makes the
observation space very large and therefore it becomes difficult to find the best action. This issue is often referred
to as ’hard greedification’, since it is hard to find the greedy action.

An alternative MARL framework has been developed to address the difficulty of cooperation and hard greed-
ification: ’actor critic’. In this framework there is a central critic that learns to approximate the value of a global
state given the current state, the selected actions of the individual learners and possibly other inputs. This
is similar to the fully observable critic framework, but the key difference is that in an actor critic framework
the central critic is not only approximating the global state, it is also learning to approximate its value. Every
individual learner has an actor that takes decisions based on its observation and after taking the decision it is
criticised or rewarded by the central critic. The central critic should thus learn to assess the value of an action
of an individual learner for the system as a whole, and reward him accordingly. The decision making process
for the individual actor is uncomplicated in this framework since it is only based on its own (local) observation,
yet it is rewarded on its value for the system as a whole.

The actor critic framework has proven its worth [27], but, similar to several other methods, an important
challenge that comes with the framework is an accurate approximation of the global value function. It is hard
to define the value of a state accurately since there are many factors contributing to it. The approximation
can be made easier by breaking the global value function up into a set of local value functions. This is done
by learning a value function for a subset of the agents and combining the value functions of all subsets to form
the joint value function of the global state. This technique is called value function factorisation [40]. By using
value function factorisation less parameters have to be learned, which makes the learning easier. Furthermore,
if the set of parameters of the local value function is small enough, it becomes possible to find the maximum
and the argmax of it, similar to single agent settings. This in turn allows to find the maximum and the argmax
of the joint value function, since the joint value function is simply the sum of all the local value functions. The
downside to this approach is that it can oversimplify the situation in the real world since the value function
factorisation assumes that all the local value functions are independent of each other. Often this is not a real-
istic assumption. This property can block interactions, and thus cooperation, between agents that optimise a
different local value function.

An extreme example of value function factorisation is given by [52], where they come up with value decom-
position network (VDN). In this study the joint value function is split up into local value functions containing
only one learner. Hence the joint value function is a sum of the value functions of all the individual learners.
The argmax of the joint value function then becomes the greedy action for every learner on its own value func-
tion. This is a very useful property since it makes the learning more straightforward. However, this extreme
factorisation means that this method assumes that all agents are independent. Due to this assumption the
learners are no longer incentivised to coordinate their actions.
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A variant on VDN is QMIX [43]. The difference with VDN is that in QMIX the value of the joint value
function is not simply the sum of the local value functions. The local value functions are mixed together to
form the joint value function. This means that all the values of the local value functions are multiplied by a
specific factor to form the joint value function. This factor depends on the current state of the system, but not
on the actions chosen by the learners.

QMIX mixes the values of the local value functions under the condition that the derivative of the joint value
function with respect to each local value function is positive. This comes down to the condition that ∂Qtot

∂Qa
≥ 0,

where Qtot stands for the global value function and Qa for the value function of an individual learner [43].

VDN has to make sure that the joint value function is a strict sum of the local value functions. As a result
of this limited flexibility of VDN, it makes errors in approximating the joint value function or the local value
function or both if the true joint value function is non-linear.

Due to the mixing, QMIX can better approximate non-linear joint value functions than VDN. Making an
error in the value function approximation is not a big problem; as long as the learners choose the right action,
the reward yielded will be the same no matter the approximation of that value. However, an error in the esti-
mation of the joint value function can have negative consequences in the preceding states. The actions chosen
in the preceding states are based on the value estimation of their following states. An over- or underestimation
can thus lead to erroneous choices by the learners. QMIX does not have this problem with non-linear value
functions. An example of a joint value function that QMIX can learn and VDN cannot, is given in table 2.

Table 2: Joint value function, reward depends on the actions taken by both agents. [43]

Agent 2

A B

A
ge
nt

1 A 0 1

B 1 8

Yet, due to the condition ∂Qtot

∂Qa
≥ 0, QMIX still has the advantageous property of VDN that the argmax

of the joint value function is given by the argmax of all the local value functions. This keeps the learning
straightforward while the action selection is improved due to the added flexibility of making the joint value
function more than simply the sum of all local value functions. QMIX can thus better represent the added
value of coordination among the learners. Using the quote of Aristotle "the whole is greater than the sum of
its parts". This is better reflected by QMIX than by VDN.

Methods like QMIX and actor critic, decentralise the learners of the MAS system to an extent, but there is
still a central entity (the mixing network and the central critic respectively) in the system. This central entity is
necessary while learning, yet, when all learners have learned a good policy the central entity can be discarded.
This means the agents can be trained in a setting where the central entity is available to all agents, but they
can act decentralised in an execution phase. This property is valuable since it can solve the earlier discussed
problems of real time central data storage and the system having a single point of failure.

Another approach to the MARL problem is to let the learners not only cooperate, but communicate too. This
strategy is used in the ’consensus’ and ’learn to communicate’ methods [40]. In the consensus method a learner
can communicate with its neighbouring learners during training and execution. The information exchanged can
be observations or policy weights/gradients or both. In this way each learner only uses its own observations
and information from its neighbours, hence the problem is still tractable. The consensus method can be used
with different learning schemes like actor critic or Q-learning [40]. The effectiveness of the consensus method
depends on the problem setting. For the ’learn to communicate’ method the communication is less rigid. With
learn to communicate the learners learn during training to send effective messages among each other. In this
manner they learn what to send, when to send it and to whom to send it. The resulting communication policies
are then used during execution.
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2.4 The Prospects of Multi-Agent Reinforcement Learning for Bus Management
With an idea of the key concepts and challenges of RL and MARL it is interesting to see how these concepts can
be applied in the fields of intersection control and headway management or combinations of both. As discussed
in section 2.3, the use of RL or MARL can be a benefit to these fields since they pose problems that should be
looked at from the system point of view and both usually have a large solution space.

Evidently, this is not the first study that aims to apply the concepts of RL and MARL to intersection control
and headway management. Therefore, in the coming sections the preceding research on the combination of these
fields will be explored.

2.4.1 RL for Intersection Control

For this research topic RL can provide an alternative to rule based intersection control. With the RL frame-
work the agent that controls the intersection is able to learn an effective control policy based on its experience.
Furthermore, the control policy can be state dependent if there is real-time data available like the number of
waiting cars for every traffic light. Such implementations have been developed in [36], [32] and several others.
Moreover, the controller implementation by Liu et al. [36] also contains transit priority. Some of these RL
implementations were developed almost 20 years ago. Nevertheless, the research in this area is still active due
to the successes booked.

One of these successes is shown by El-Tantawy et al. [22], who used RL for their intersection control so-
lution. They reduced congestion and further improved their controller systems by making several controller
systems cooperate. "The results show unprecedented reduction in the average intersection delay ranging from
27% in mode 1 [non-cooperative controllers] to 39% in mode 2 [cooperative controllers] at the network level and
travel-time savings of 15% in mode 1 and 26% in mode 2, along the busiest routes in Downtown Toronto" [22].

These are satisfying results that demonstrate the potential of RL for this field. The performance can probably
be improved further as the field of RL develops.

2.4.2 RL for Headway Management

As discussed in section 2.3.1, it can be difficult to come up with a rule based headway regulation system that is
robust in small and big disruptions and that is able to take the heterogeneous traffic conditions, traffic lights,
intersections and demand heterogeneity into account. To this extent RL can be of benefit: with RL one has to
define what should be optimised without defining how to attain the optimal value for every specific situation.
This benefit is highlighted in [56], an RL agent can take all the details into account that are relevant while
keeping the focus on optimising the system as a whole. The RL agent will thus choose which headway is best for
the system and may in some cases not steer the busses towards equal headways if that is better for the overall
performance of the system.

Several implementations of MARL for headway management are investigated by Alisiani et al. [6], Chen et
al. [13] and Wang et al. [56]. From these studies it is evident that there are various algorithmic setups that
can be effective for MARL in headway management and that the research on MARL algorithms is continuously
evolving. While all of them take the multi-agent approach, the learning algorithms applied vary among them.
As examined in section 2.3.2, each MARL algorithm comes with its own pros and cons. In the observation
space all three studies incorporate the forward headway or at least the information to calculate the forward
headway. Chen et al. also incorporates the number of onboard passengers, whereas Wang et al. incorporate the
number of passengers at the coming stop. All observations are thus local. To achieve global cooperation Alisiani
et al. created a reward function that is based on global metrics. Wang et al. aimed for global cooperation
through a centralised joint action tracker. It is hard to compare the performance of each configuration with the
other one. Yet, it is clear that a MARL algorithm should aim for global cooperation to outperform the current
state-of-the-art.

2.4.3 Investigating More Complicated Environments

As mentioned in section 2.2.1, many of the headway management studies have been tested in a fairly idealised
setting. This also applies for the studies that used RL methods to address the headway management problem
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([6], [13] and [56]). This raises a clean and clear test environment with easy to understand results. However,
in reality, bus lines with these ideal routes are very rare. It is more common for a bus route to encounter het-
erogeneous traffic conditions, traffic lights and heterogeneous demand. Additionally, busses often drive through
different types of environments. This is because bus systems are often applied in moderately densely popu-
lated areas and rural areas. In very densely populated areas metro, tram or train systems are often in favour.
However, many bus lines start and terminate at big transport hubs, which are often located in very densely
populated areas.

The transitions along the bus route call for distinct bus management on the diverse route sections. While
equal headways are relevant no matter the characteristics of the route, the level of control needed to attain this
may differ throughout the bus route. For example: in rural areas or on a separate bus lane it may be easy for a
bus to speed up or slow down in order to stick to its desired headway, yet in a city centre this may prove to be
more difficult. Along the same lines: around a big bus station in a city centre it may be worthwhile to control
the traffic lights in the area to optimise the traffic flow, while in a rural setting this may be less likely to be
economically feasible.

Nevertheless, the control of the dense urban area and the other parts of the route are not two separate prob-
lems, they depend on each other. For example, when a bus station in the dense urban area is at full capacity
and no more busses can enter the station area, then this will affect the optimal policy on the route section
before the station area. This relation and the best way to optimise the two sections together are investigated
in this research. A bus route that goes through dense urban areas and rural areas as well, is not exceptional,
meaning results from this research have many applications. A previous study going in this direction is done by
Gao et al. [25], where they use intersection and speed control to minimise delay at intersections and bus stops.
Accompanying this, they make sure the capacity of the bus stops is never exceeded.

Rule based headway management is generally based on one rule for the whole system. This means it will
use the same regulating rule in rural areas as in dense urban areas and during on-peak and off-peak periods. It
would be a laborious task to define specific rules for every type of environment along a bus route, yet with RL
this is a given. With RL the objective is defined and is the same along the route, but the optimal behaviour is
not predefined and will be discovered by the MARL framework. The RL agents are not inclined to use static
rules and will try to find the best behaviour for every specific situation. Therefore investigating an RL control
algorithm is especially interesting in more complex environments such as a heterogeneous bus route.

On top of a more complex simulation environment, it can be interesting to give the MARL agents more
information. As suggested in [56], real-time information or predictions on the number of passengers that are
waiting at bus stops may improve the performance of the controller. This is confirmed by Berrebi et al. [9],
where they find that busses need less holding time when this information is available.

2.5 Synthesis
Several lessons can be drawn from the literature review. First of all, it is clear that using RL for headway
management is a fruitful concept that has already been implemented with promising results. However, the cur-
rent state of the art is not yet ready for real world implementation, since the studies done use rather idealised
settings to train their algorithms in. It is a valuable extension to these studies to train an RL algorithm in a
more realistic, and thus complex environment.

The second lesson drawn is that RL algorithms are a suitable fit for intersection control as well. In this field
the implementations are somewhat further developed compared to the headway management implementations.

These two lessons combined appear to be a good first step in the direction of an ITS that uses RL since
the behaviour of the traffic lights on route can improve or hinder the performance of a bus system. Further-
more, traffic lights are very common on bus routes which makes a solution using them applicable in many regions.

The third lessons concerns the RL implementations used for headway management. From previous studies
that incorporate a MARL algorithm it appears to be beneficial to include the forward and backward headway
into the observation as local information. Moreover, the research from Cats et al. [10] shows that the best
performing holding scheme is based on the mean of the preceding and succeeding busses.
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Lastly, in terms of the algorithmic setup PPO, A2C and DQN have provided good results in the past.
Additionally, QMIX may be an interesting option since it is specifically created for multi agent scenarios. Fur-
thermore, it is important to incorporate something into the algorithm to make sure the agents strive for the
system optimum. This can be done by trying to approximate the system state and its value and reward based
on that. Another option is to create a reward function based on a global system metric such as the passenger
travel times.
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3 Model
With the information from the literature in mind, a simulation model is developed on which several configura-
tions of a MARL framework are tested. The simulation model is build from scratch, for this reason the first
research effort is dedicated to investigating whether a MARL framework is be able to use it as an learning
environment. In the coming sections the decisions on the type of model are discussed along side with all the
aspects of the simulation model that can be configured for a specific scenario.

3.1 Environment Simulation Model
3.1.1 Modelling Choices

Like discussed in section 1.4, in this study multiple extensions are considered to the base simulation model
of an ideal bus model. Based on the complexity of such MARL problems, as mentioned in section 2.3.2, the
algorithm is first tested on the base scenario without extensions. From that starting point the complexity of the
simulation model is increased to see if the algorithm is still able to learn and converge to reasonable behaviour
in this environment. In this section the choices made with respect to the modelling framework and the type of
model are described, in the next sections the possible configurations and extensions are discussed.

As mentioned, a custom built environment is created for the experiments in this study. This environment
should simulate the busses in operation. As found in the literature study, it is paramount that the simulation
model has all the necessary properties to simulate the bunching effects of busses in a realistic manner. This
means the dwell time should have a component that depends on the number of passengers that board or alight
the bus. Additionally, the dwell time should have a constant for stopping as discussed in section 2.1. Further-
more, the passenger arrival functions and the travel times of the busses should be realistic.

There are numerous ways to model such a system e.g. with an agent based model or event based model.
In this study an event based model is selected because the focus of this research is on the busses, not the
passengers. The busses are the focus of this research since they are the controllable factor in the system, not
the passengers; they are modelled as a given. The busses are few in number and their behaviour is controlled
by the MARL algorithm. This is not a typical use case for an agent based model, where the behaviour of one
agent is usually known, but the behaviour of a group of such agents is not well understood. Therefore, an event
based model is selected.

Furthermore, the model is dynamic because the interaction between the busses is important. The events in
the simulation can be both deterministic or stochastic, depending on the scenario created. This holds for the
events like travelling along a route section between stops and dwelling at the stops. Regarding the level of detail
in the simulation model; every passenger and every bus in the simulation is of importance and is thus simulated
microscopically. However, the other traffic on the road has only a secondary effect on the busses; namely the
maximum driving speed attainable on a route section. Therefore, the other road traffic is not simulated, but
the driving times of the busses can be adjusted and made stochastic per section to be able to reflect the true
conditions on a specific route section. As mentioned in section 1.4, this study is focused on improving the
reliability of a bus system, not its robustness or resilience. This means that, even though several elements in
the simulation model can be stochastic, large disruptions of the system are not simulated.

There are many tools to create such a simulation environment, in this study SimPy [2] is selected. "SimPy
is a process-based discrete-event simulation framework based on standard Python" [2]. This has the direct
advantage that it is written in the same programming language as the RLlib [1] framework, which is used for
the MARL algorithms in this study. This makes it easier to connect the two frameworks. Another advantage
of SimPy is the level of freedom in the framework, since it is a low level simulation framework.

3.1.2 Base Environment

A circular bus line is taken as the basis of the simulation model. This is done because it provides freedom in
terms of the simulation duration; the busses can run perpetually, but a short simulation run is also possible.
Furthermore, on a circular line there is no first bus nor a last bus which simplifies policies or calculations that
incorporate the headways of the busses. When re-creating a non-circular bus line in the simulation model, it
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is assumed that the busses turn over and the end points of the line. This creates the possibility to model a
non-circular line in a circular fashion, since the busses are essentially driving in circles between the two "end
points". An example of this is given in figure 2.

As discussed above, the simulation model consists of a circular topology. This topology is built up like a
network; there are several nodes (the bus stops), connected by edges (route sections). The number of nodes and
edges and their characteristics are needed as an input to the simulation model. The same holds for the number
of busses, their capacity and their start position. Lastly, an end trigger for the simulation has to be defined.
This trigger determines when the simulation run is finished. The trigger can be set at a certain point in time,
but can also depend on the state of the simulation e.g. when all headways are equal or when all passengers are
processed. With this input the simulation model is initialised and the simulation starts.

When the simulation starts, all busses start driving in the same direction (note that two-directional lines
are modelled as a circular line). The simulation is used to model only a single bus line, this means all busses
will attend to all stops. The travel time of each edge (a route section) is a property of each edge and can thus
differ between edges. Also, edges can contain traffic lights which can create additional travel time for the bus.
When a bus is finished travelling across an edge, it will arrive at a node (a bus stop). The bus is able to ’enter’
the stop if there is still an unoccupied platform at the stop. At the bus stop all passengers with that stop
as destination will alight the bus. Additionally, all passengers at the stop will try to board the bus, if this is
possible or not depends on the capacity of the bus. The number of passengers waiting at the stop depend on the
passenger arrival function of that stop and the time passed since the last bus stopped there. The destinations
that the waiting passengers have also depends on the destination distribution of the stop. Two simplifications
are made in the model that concern the stopping process. The first is that a bus will always stop at a stop,
even if no passenger wants to board or alight the bus. The second simplification is that the passengers that
arrive at a stop when the boarding and alighting process has already started cannot board the bus anymore.
The simulation will run in time steps of a predetermined size until the simulation is finished. At every start
of a step there is a possibility for information exchange between the simulation and the RL agents (an obser-
vation, action or reward). A conceptual framework of the operations in the simulation model is given in figure 2.

Figure 2: Conceptual framework of the simulation model.

3.1.3 Simulation Configurability

As mentioned in section 3.1.2, several aspects of the simulation model are configurable. In the coming section,
all the configurable settings are discussed in detail. An overview of all these settings can be found in table 3 and 4.

First off, the size of the bus line can be adjusted, meaning the number of nodes and edges that compose the
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Table 3: An overview of all the settings in the simulation environment that can be configured to create a specific
scenario.

Setting Options

Length bus line Set the number of nodes and edges can be set.
Number of busses Set the number of busses that drive on the bus line.

Travel time edges Set the driving time or the driving time distribution
characteristics for every edge.

Passenger arrival rate stops Set the average passenger arrival rate for every stop.
Destination distribution

passengers stops Set the destination distribution for every stop.

Number of platforms stops Set the number of platforms that every stop has.

Dwell time function Select whether the dwell time is based on the sum of
boarding and alighting time or the maximum of the two.

Capacity busses Set the passenger capacity for every bus.
Including traffic lights Select if there are traffic lights in the simulation.
Edges with traffic lights For every edge set whether or not it has a traffic light.

Traffic lights are controllable Select whether the traffic lights are random
or controlled by an RL agent

line. As long as it is a circular line, it will work. Secondly, the travel time along each edge can be configured.
This can be a deterministic travel time, but it can also be a stochastic one. The stochastic travel times are
drawn from a distribution. This travel time distribution is a predefined property of an edge. As a result, every
edge can have the same travel time distribution, but they can also differ between edges. It is also possible to cap
the used distribution at certain values to make sure extreme events are not modelled. Furthermore, each edge
can have a traffic light, with a configurable red and green phase cycle. Busses have to wait until the traffic light
is green before they can continue their journey. In the scenarios where the traffic lights are controllable by RL
agents, the green phase can be extended or shortened by the RL agents to improve the performance of the bus
system. Thirdly, the nodes (stops) have several properties that need configuration as well. Their first property
is the arrival function. The passenger arrivals are assumed to be independent of each other and therefore their
arrival is assumed to follow a Poisson distribution for every bus stop. The average arrival rate is not assumed to
be the same for every bus stop, this parameter has to be set for every stop. The second property of the nodes
is the destination distribution. This distribution gives the probability that a certain stop on the bus line is the
destination of a passenger starting at the current stop (the probability for the current stop is always 0). The
last property of the nodes is the number of platforms they have. In this study all nodes have just one platform,
but this feature could be used to model larger stations. The number of platforms determines how many busses
can board and alight at the same time at the node in question. If all platforms are in use, a bus has to wait
until one of them becomes available.

There is one more property that has to be defined for the network as a whole: the dwell time function. The
dwell time is a function of the number of boarding and alighting passengers and can, again, be deterministic or
stochastic. Another configuration option of the dwell time function is whether it depends on the total number
of boarders and alighters combined or that it is the maximum of the expected boarding and expected alighting
time. For this last functionality, both the boarding rate and alighting rate need to be specified.

Apart from the possible configurations on the bus line, there are also several properties on the busses and
the passengers that need to be set. The busses are initialised at the start of the simulation and have a route
that they are following. Furthermore, they have a maximum passenger capacity and a start node (the node that
they are initialised on). The passengers are initialised at the nodes continuously as the simulation progresses
and only need a start node and a destination.

The final setting that has to be defined for the simulation model to run properly is the end trigger, as
is brought up in section 3.1.2. The end trigger defines the end of a simulation run. This is needed for an RL
learning process. Some problems already have a natural end trigger e.g. an RL agent that has to find the exit
of a maze has the natural end trigger when it has found the exit. However, for the bus management problem
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this is less obvious, since it is not clear when the problem is ’solved’. One option to frame a headway manage-
ment problem is to start with a state of the environment that is sub optimal, i.e. the headways are not well
distributed. The MARL agents can then interact with the system to reach a better state of the environment.
The problem is then ’solved’ when the headways are well distributed. This way of addressing the problem suits
RL well; there is a clear task that the agent should try to solve in as little steps as possible. However, this way
of addressing the problem is not the most logical when looking at the headway management problem; once the
headways are well distributed they should be kept that way, because they can be disturbed at any moment.
From the perspective of the bus management problem, the MARL agents should be able to manage the busses
continuously, irrespective of the end of the problem. This is because the end of the problem (the end of the day
in practice, but the end of the simulation when learning) has nothing to do with the performance of the MARL
agents; the problem is not ’solved’, it has simply ceased to exist. Reasoning this way makes a predefined end
time a logical choice for the end trigger. When a specific timetable is simulated, the stop moment will be the end
of the timetable. Yet, such a setup brings one difficulty to the table: with each simulation run the MARL agents
will think that they solved the problem with their last action even though this is not the case. This means the
value estimation of the agents of the last action of the simulation run will be very bad since no more rewards /
punishments follow after this action. This gives the agents the idea that the expected future reward of this action
is zero, but this was only the case by coincidence. With enough training this effect should eventually vanish,
but initially it is a disturbance in the learning process. A way to counter this issue is by making the agents ’time
aware’ as discussed by Pardo et al. [42]. Time aware agents know how much time they have left in the current
simulation run, which means they will learn that when the time runs out, the simulation will stop, irrespective
of their actions. Making an agent time aware as suggested by Pardo et al., is done by adding a normalised time
value to the observation of the agents between -1 and 1, where -1 stands for the start of the simulation and 1 for
the end. Evidently, many more options are possible when it comes to creating an end trigger for the simulation.
However, the discussed two methods are tested in the preliminary experiments of this study and the predefined
end trigger is used for the final experiments as it fits the problem of headway management the best. Further-
more, the time awareness is not added in the final experiments since there was no positive effect visible. Further,
the ’warming up’ phase, discussed in section 4.1, alleviates the disturbance that the end of the simulation causes.

The length of a simulation run is set to roughly twice the length of an average total travel time. This is
done because the RL agents are rewarded at the end of the simulation based on the average travel time of the
passengers, as discussed later in this section. Twice the average passenger travel time is a balance between too
short simulation lengths and too long simulation lengths. Too short simulation lengths are unfavourable, since
only a few passengers have arrived, which yields unreliable results. On the other hand, too long simulation
lengths are not useful since it becomes hard to distinguish the good from the bad behaviour within one run for
the agents, due to one reward at the last step. This may lead to slower learning or not learning at all.

The discussed factors determine the functioning of the simulation model, but they have no influence on what
the RL agents in the simulation can see, do and how they are rewarded. These aspects are important for the
performance of the MARL algorithm in the simulation environment and they have to be configured in the simu-
lation environment. In the coming paragraphs the options related to the observation space, the action space and
the reward function for the RL agents are discussed. It is important to note that on each of these three aspects
the number of possible configurations is infinite. Clearly, not all options are considered. Instead, the configu-
rations often used in literature are discussed along with a few other configurations that appear to have potential.

First off, the observation space; as mentioned in 1.2, the observation of an RL agent is the information
it receives on the current state of its environment. Based on this information, the agent will take its decision
as to what action to take. A good observation provides the RL agent with all the information that it needs to
select the right action, but contains no redundant information. Redundant information only introduces noise
in the learning process, may slow down learning and possibly decrease the final performance. Constructing a
good observation is more art than science, yet, some basic intuitions can help design a good observation space.
First of all, the essential information should be presented in such a way that it is compact and easy to interpret
for the RL agent. For example, in a headway problem it may be better to provide a bus agent with its forward
and backward headway instead of providing its own location and the ones of the busses behind and in front of
him. This saves the RL agent the time of deducing the headways, if that is the most relevant information for
him and it means it has only two variables to observe instead of three. Secondly, if it is possible, it is helpful to
the RL agent if the observation space aligns well with its action space and its reward function. In the case of
the headway problem, this could mean that the bus agents can observe their forward and backward headway,
can decide to hold, to increase and decrease their forward and backward headway respectively and are rewarded
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Table 4: An overview of all the settings in the simulation environment that can be configured, relating the RL
capabilities.

Setting Options

Observation traffic lights
Set the observation space for the RL agents that control the traffic
lights. I.e. include or exclude bus positions, headways, number of

passengers at stops, number of passengers in the busses, etc.

Action space traffic lights
Set the action space for RL agents that control the traffic lights.

I.e. decide what they can alter in the green phase time
and whether they have discrete or continuous options.

End trigger
Select the moment when the simulation environment will return

that the simulation is done. I.e. based on simulation time,
rewards or state of the system.

Observation busses
Set the observation space for the RL agents that control the busses.

I.e. include or exclude bus positions, headways, number of
passengers at stops, number of passengers in the busses, etc.

Action space busses
Set the action space for RL agents that control the busses.

I.e. decide what discrete holding options they have or
what the range is of the continuous holding.

Reward function busses
Set the reward function for the busses. I.e. when will they receive

their rewards and what are the rewards based on
(headways, passenger travel times, etc.).

based on their forward and backward headway. In this situation it is clear that the RL agents has influence on
the state that he observes and the relation between the observed state and its received reward is also clear. If
instead, the bus agents would be rewarded based on the waiting time of the passengers at the stop, it would
be less clear for the bus agents what states, and thus what behaviour, is desirable and what is not, since the
reward is also dependent on the behaviour of the preceding bus. However, aligning the reward function with
the action and observation space is not always the best choice. The downside with rewarding an agent directly
is reward shaping, this is discussed more in depth in the reward function paragraph.

Apart from the information that the bus agents need to select the right action, general state information may
also be needed. For example, as mentioned above, a time observation can be added to help the agent understand
that when the time runs out, the simulation ends. In this study different observation spaces are tested; these
are combinations of the forward headway, the backward headway, the difference between the forward and the
backward headway, time awareness, position on the route and the number of passengers at the stops. After some
preliminary experiments the difference between the forward and the backward headway is selected to be the only
information available to the bus agents. This choice is motivated by the research from Cats et al. [10], which
indicates that the best performing holding scheme is based on the mean of the preceding and succeeding busses.
Moreover, this observation space gave the best results in terms of learning stability and performance. Addition-
ally, this information is easy to obtain in real world bus systems. The observations space is continuous to allow
for enough detail. A discrete observation space is also tested in the preliminary experiments, but this results in
either too course information to be useful or too many options to yield the benefits of a discrete observation.
For the experiments where the route is heterogeneous, the position of the bus is added to the observation as well.

The calculation of the forward and backward headway is done at each stop. The elapsed time since the
previous arrival is set as the forward headway for the arriving bus and as backward headway for the preceding
bus. This way of calculating the forward and backward headway is chosen since it is often used in the PT
industry and therefore adds realism to the experiments. The position of the bus is represented by a discrete
observation that has a value between 0 and 45. Here 0 means the bus is waiting to enter stop 0, 1 means it is
boarding and alighting at stop 0, 2 means the bus left stop 0, 3 means the bus is waiting to enter stop 1 etc.

For the action space there are often fewer sensible options than for the observation space. Still, some
choices have to be made. For the case of the holding action of the bus agents the first element that has to be
set is the moment of choice, i.e. when can the bus agents decide to hold or not? This is not part of the action
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space, but influences the performance of the algorithm. The second element that has to be chosen is whether
the action space is discrete or continuous. Most often, a discrete action space leaves the RL agent with fewer
options, which may lead to an easier learning process. However, the relation between actions can get lost with
discrete actions. For example, if a bus is given the option to hold either 0, 30, 60 or 120 seconds, this will be
represented as action 0, 1, 2 or 3. For the RL agent it is not clear that all actions are holding actions and
that they differ only in duration. Neither does the RL agent know how much bigger or smaller the actions are
compared to the others. It has to be learned by the RL agent that these four actions are essentially a different
value for the same parameter. In a continuous action space the RL agent is free to chose any value within a
given range and therefore immediately knows that all possible values affect the same parameter. Additionally,
the relation in magnitude between the possible values is also more obvious. In this study the busses can hold
after the boarding and alighting process is finished. A discrete action space is used since this binds the MARL
algorithm to realistic actions: 0, 30, 60, 90, 120, 150 or 180 seconds of holding time. Whereas with a contin-
uous action space it would be possible to hold for a few seconds only, This may be difficult to implement in
reality. Furthermore, a continuous action space led to less stable learning curves in the preliminary experiments.

The last factor is the reward function, which determines how the agents are steered towards desirable
behaviour. Again, there are numerous elements to base the reward function on. In this study it is based on
either the headways of the busses or the travel times of the passengers. For the final experiments the average
travel time of the passengers is selected as the basis for the reward function of the busses and the traffic lights.

The passenger travel times are selected because, in the end, this is what a bus system should do: transport
passengers from A to B as fast as possible (within some boundaries). The idea behind this is that the shorter
the average travel time is, the better the behaviour of the agents was. This gives the agents a lot of freedom
to find the best behaviour. Naturally, the average travel time may not be the only important performance
indicator, but since the bus routes are predefined and circular, it is assumed to be a good approximator of
the performance. A benefit of this reward function is that there is no need to find a good balance between
the speed of the busses and the headway distribution. The RL agents will have to find this balance by themselves.

After selecting the basis of the reward function, the moment of the reward should be selected. It is possible
to reward the agents for every step they take, so they have continuous rewards during the training episodes.
Another option is to reward the agents only at the end of an episode based on their overall performance. For
the first option it has to be clear what behaviour or what intermediate states of the environment are desirable.
This tends to lead to reward shaping: shaping the behaviour of an agent with continuous rewards. This is not
necessarily bad, but it takes away a key advantage of RL; only defining the desired outcome, not the desired
behaviour. With reward shaping the RL agents are thus no longer incentivised to find the optimal behaviour
themselves, instead they are pushed to follow the behaviour predefined by the reward function. This predefined
behaviour may be suboptimal. This disadvantage is not present when the RL are rewarded at the end of the
episode based on their overall performance. However, with only a reward on the end, it may be hard for the
RL agents to trace back the good and the bad behaviour of an episode. Depending on the rest of the setup of
the simulation one method may be favorable over the other. For example, when the passenger travel times are
used as the basis of the reward function it makes more sense to reward the bus agents at the end of the episode.
This is because it takes a while until the first passengers have arrived at their destination and the travel times
depend on the OD of the passengers as well, which means the learning is more stable when rewarding with the
average travel time of the episode. On the other hand, when the headways are the basis of the reward function,
it makes more sense to reward continuously. At every moment it is clear how well the headways are distributed,
so a continuous reward can be calculated.

It is also possible to construct a reward function that is a combination of continuous rewards and a final
reward. An example of this is the case where the bus agents are rewarded based on passenger travel times,
but every time they bunch, they get a negative reward. This may speed up learning without restricting the
freedom of the RL agents too much. However, the downside is that policies that lead to bunching are actively
discouraged without looking at the effect on the system as a whole. Nevertheless, this approach is used in the
reward functions for the agents in the final experiments.

Finally, a completely different angle could be used when the end trigger of the simulation is set on well
distributed headways. In this case the agents have to ’solve’ the headway problem as fast as possible i.e. get to
a state where the headways are well distributed instead of the uneven distribution of the start state. This means
giving a negative reward for every step the agents need, with a possible positive reward when they succeed can
be an effective reward function.
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Considering the options of the end trigger, observation space, action space and reward function, it becomes
clear that these elements should not be configured independently. It is important to make sure all four elements
fit together, yet, it can be a challenging task to do so.

3.2 RL Implementation
3.2.1 RLlib

In this study the Python library RLlib [1] is used for the implementation of the MARL algorithms. This
means all the learning is done within this library, only the environment in which the agents should learn has
to be provided. There are several environments available online, and these are often used to benchmark new
algorithms. However, in this study a novel, custom build environment is used, as introduced in section 3.1.2.

3.2.2 Interaction RLlib and Simulation Environment

RLlib can handle any type of environment as long as it meets the following requirements: the environment
class has a reset and step function, than can be called and returns the right values. Both functions will be
called by RLlib with no arguments and the agent actions respectively. The reset function resets the simulation
environment to its begin state and returns an observation for all agents that need to take an action in the first
step. The step function ’takes a step in the simulation environment’, in this study this comes down to running
the simulation environment for a certain amount of time. After this time the necessary observation and rewards
are returned. The argument of the step function contains actions for (a subset of) the agents in the system.
Consequently, it is not necessary that all agents in the system take an action in each step. For each action
that is taken, a reward should be returned to the agent afterwards (this can be in the next step function call).
Finally, the step function returns a boolean for each agent with the information whether this agents is done or
not. If an agent is done, it means it will no longer need to take an action during that episode. When all agents
are done, it means the end of the episode and the simulation will no longer continue. All agents have an agent
ID to identify which observation, action and reward belong to which agent.

3.2.3 Configurations

The way of communication between RLlib and the simulation environment is predefined, but there are several
parameters to be set on the side of RLlib. With the observation space, the action space, the reward function
and the end of each episode as input, the RL agents will try to learn the optimal policy. The parameters on
the RLlib side influence the process of going towards that optimal policy.

Apart from a set of hyperparameters there are two to make in RLlib: which algorithm is used to improve the
policy and which agents will use which policy. For the first choice, there are numerous algorithms implemented
in RLlib and a subset of them is also available in multi agent mode. All these algorithms serve the same general
goal of improving the policies of the agents, but there are differences between them as explained in section 2.3.2.
In this study for every scenario the following algorithms are considered: PPO, actor critic and QMIX. PPO
and actor critic are selected because of their popularity which stems from the fact that they have proven to be
effective in many cases. QMIX is selected since it may provide an advantage in the more complicated scenarios
since it is specifically developed for multi-agent settings.

For the second point of choice, the most straightforward option is that there is only one policy for each
RL agent type, i.e. an RL bus agent or an RL traffic light agent. This means all the agents of one type use
parameter sharing, this means they all learn on and draw from the same policy, as discussed in 2.3.2. The other
option is to give each individual agent its own policy.

Aside from the choices on the algorithm and the policies, there are a number of hyperparamters that need
to be set. An overview of the hyperparameters that have to be set for every algorithm is given in table 5. These
hyperparameters mainly influence the stochastic gradient descent (SGD) process of the algorithms. SGD is used
by the algorithms to find out in which direction the parameters of the neural network (NN) should be adjusted
to get to a policy with higher rewards.
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Table 5: An overview of the hyperparameters in RLlib and their functionality.

Hyperparameter Functionality

Learning rate This defines the learning rate of the algorithm, affecting the ‘step size’ the
algorithm takes in SGD toward new policies.

Model This determines the architecture of the NN that has to learn the policy.

Train batch size The number of training steps that defines a training batch. This defines
the size of each SGD epoch.

SGD
mini batch size

The number of training steps that defines the size of the mini batches in
SGD.

Number of
SGD iterations

The number of SGD iterations in each outer loop, i.e. the number of epochs
to execute per train batch.
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4 Experimental setup
To answer the main research question, as proposed in 1.4.2, several scenarios are designed in the simulation
model. The approach taken with the scenario design is elaborated on in the coming sections. Furthermore, the
procedure to analyse the experiments in these scenarios is discussed. Lastly, a case study is discussed with an
analysis of the observed driving time data.

4.1 Experiment Options
As brought forward in section 3.1.3, there are many things in the simulation environment that can be configured
to create the environment that is desired. In this research such a configuration of simulation environment settings
is called a scenario. The full list of configurable settings that describe a scenario can be seen in table 3. The
configuration of such a scenario determines the complexity of the scenario for the MARL algorithm. The amount
of change in the difficulty for the MARL algorithm when a parameter is changed is unknown. Yet, it is clear
that some parameters effect the complexity of the RL problem, whereas others have a limited effect on the
complexity. The interaction between the different parameters and the scenario is shown in figure 3.

Figure 3: An overview of the relation between the scenario parameters in the simulation environment and the
effect on the RL problem.

It is not possible to quantify the change in difficulty for the MARL algorithm when a parameter is changed.
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Next to these scenario settings there is also a number of settings in the simulation environment that relate
to the RL capabilities in the environment. These are also explained in section 3.1.3 and an overview of all of
them can be found in table 4.

Lastly, there are a number of settings in the MARL algorithm itself. These hyperparameters do not affect
the simulation environment in any way, but they determine how the gained experiences in the simulation envi-
ronment lead to policy improvements. These hyperparameters are examined in section 3.2 and an overview of
the most important ones can be found in table 5.

All these settings create an extensive set of possible configurations that can be experimented on. This is
broken down to a manageable set with the most interesting combinations. These scenario designs are based on
previous research (the current state-of-the-art) and the day-to-day reality of bus systems (the end goal). Next,
the RL settings (in the simulation and in RLlib) are selected that are believed to be most effective. In this
selection process several of the possible configurations are tested, but far from all, due to the finite amount
of time and computation power available. This means insight is needed to select the most interesting combi-
nations. As an illustration: when a scenario is designed where a large observation space is deemed necessary,
but the NN in the algorithm that is expected to learn from these large observations is small, it will never be
able to consider all the given information in its decisions. A sufficiently large NN is needed in a scenario like
this, eliminating all possible configurations with small NN’s since they are unfit. Another example could be a
scenario where all the agents are meant to learn their own unique behaviour to achieve the best solution. In
such a scenario it is fruitless to use parameter sharing, since this, by definition, prohibits unique behaviour per
agent. It is a complicated task to put such insight onto paper, but figure 4 attempts to do this, giving the main
correlations between parameters and their effect within the framework. With this as a guide, the most suitable
configurations are selected per scenario.

For the final experiments the PPO algorithm is selected with a shared policy for the bus agents and a shared
policy for the traffic lights. The choice for separate bus and traffic light policies instead of one central policy is
made since this is a more scalable setup. If, for example in a future research or application, the action space,
observation space, the bus line or the bus network are extended, one central policy may no longer be a feasible
option. Additionally, the found literature all used decentralised options. Moreover, this setup performed best
in the preliminary experiments. The hyperparameters shown in table 5 are tested for several values that are
commonly used.

The learning rate adheres to a learning rate schedule that starts at 0 for a warm-up phase. After 200.000
steps the learning rate increases linearly to 5× 10−4 at 600.000 steps after which it declines linearly to 5× 10−5

at 1.000.000 steps. The learning rate is then held constant. The warm-up phase is incorporated to make sure
the learning starts from a batch that represents the training data well and to prevent the algorithm from giving
too much weight to the first steps. For the train batch size, a value of 3000 is chosen after experimentation as
a balance between learning stability and learning speed. For the SGD mini batch size and the number of SGD
iterations, the common values of 32 and 10 are used respectively. The NN’s architecture is set to a single hidden
layer containing 256 nodes.

The configuration of the simulation parameters (see table 4) are chosen based on experimentation. Firstly,
a discreet action space is selected of 0, 30, 60, 90, 120, 150 or 180 seconds holding time for the busses. This
is done because it results in faster learning than a continuous action space and because it assumed to have
more practical value. This assumption is based on the fact that agents in a continuous action space often use
very small holding times, which may be hard to execute for a bus driver. Secondly, the observation space of
the busses and the traffic lights the difference between the forward and backward headway is used. This is the
most simple observation space option and it gives the best results in the experiments executed. Thirdly, the
reward function selected is one based on the travel times of the passengers. This reward function rewards the
agents only at the end of the simulation. This reward function not only gives the best results, it also gives
the most freedom to the agents to learn the optimal policy. The only exception to this is when the forward
and backward headway of a bus differ a lot, then a bus receives a small negative reward. This is thus the
only reward shaping in this reward function. Lastly, the end trigger option selected is a predefined duration
of the simulation. This option is chosen since the it reflects the continuous nature of the bus management
problem well. As discussed in 3.1.3, a long duration with only a final reward means it is hard for the RL
agents to identify which behaviour was good and which was bad. Whereas a short duration does not reflect
the continuous nature of the problem well. The duration chosen is selected as a balance between these two cases.
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Figure 4: An overview of the correlations between parameters in the simulation environment, in RLlib and their
effect on the learning process. A green arrow represents a positive correlation, whereas a red arrow represents
a negative correlation. The dashed arrow indicates an indirect relation.

In section 4.3 the selected scenario designs are discussed in detail.

4.2 Performance analysis
As described in section 1.4, this study focuses on using MARL for the problem of bus management, not on
improving MARL algorithms. This means most of the research effort is invested in testing configurations of
the simulation environment. To get the optimal performance in each scenario an extensive parameter study
should be executed. However, due to the exploratory nature of this study, optimal performance is not a crucial
aspect. Therefore, the scope in this aspect is limited in this study. Several configurations are tested on the base
scenario. Following this, the best performing configuration is used to assess the other scenarios.
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For each scenario the performance of the MARL algorithm will be compared with two benchmarks; a no
control benchmark and a holding control benchmark. The holding control is based on the difference between
the forward and backward headway. The headways are calculated at each stop and the actions are executed at
stop level as well. When the forward headway is more than 15 seconds shorter than the backward headway, the
bus will hold for 30 seconds. When it is less than 45, 75, 105, 135 or 165 seconds shorter than the backward
headway, a holding action of 60, 90, 120, 150 or 180 seconds is applied respectively. This holding strategy
is selected because it uses the same information as the MARL algorithm. Furthermore, it performs well on
headway equalisation.

There are five different scenarios that are used in the experiments. Each of the scenarios is discussed in
detail in section 4.3. For every scenario the process of training and evaluating is the same. This process starts
with setting the simulation environment to the settings that correspond with the concerning scenario. Next,
the MARL configuration is set and the learning is started. For every scenario the learning is done ten times,
each with a different seed. Using ten seeds gives a good impression of the spread in performance, at the same
time the computing time needed is still manageable. The ten seeds used are the same for every scenario to
make comparison possible. Each of these ten runs will produce its own unique learning trajectory, which means
the resulting policies will also differ. When the training is done, the performance of the policy throughout the
learning process is assessed based on the minimum, the maximum and the mean reward of the policy in each
training iteration. Each training iteration consists of multiple simulation runs with each their own reward. The
mean, minimum and maximum reward give an indication of the performance and the spread in performance of
the used policy. Based on this information, the moment is selected when the policy was at its best. This is often
the last iteration, but not always. The minimal, mean and maximal reward of an example learning process are
shown in figure 5.

The result of this selection process is a set of ten policies, each from a different learning trajectory. Not
every learning trajectory converges, which means not every learning trajectory yields a useful policy. From the
learning trajectories that converged, the five best are selected based on the mean reward. This selection thus
excludes the learning trajectories that did not converge, but still gives an idea of the spread in performance
between learning trajectories. This spread is interesting, since it gives a more reliable indication of the difficulty
of a scenario than a single learning trajectory. These five policies are then executed greedily for several runs,
meaning they are no longer trying to learn at this stage. Running the policy multiple times is done to get an
accurate estimate of the performance of the policies. The results are then analyses based on several metrics,
show in table 6. With these metrics the performance of the MARL algorithm can be compared with the bench-
marks in each scenario.
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Figure 5: An example of a learning curve. The minimal (red), mean (blue) and maximal (green) reward per
episode are plotted for every step in the learning process of the MARL algorithm.

Table 6: An overview of the metrics used to evaluate performance per scenario.

Metric Explanation

Average holding time The average holding time of the busses, including the zero second holding actions.
Average holding time

per stop The average holding time of the busses per stop, including the zero second holding actions.

Average waiting time
passengers The average waiting time of the passengers until they can board a bus.

Average in vehicle time
passengers

The average in vehicle time of the passengers, from boarding the bus until the arrival at
their destination.

Experienced crowding The average crowding in the busses weighted by the number of passengers in each bus.
See equation 1

Excess waiting time The difference between the actual waiting time an the scheduled waiting time.
See equation 4

Coefficient of variation
headways per stop The standard deviation of the headways per stop divided by the mean.

The experienced crowding metric is calculated using the following formula:

Experienced Crowding =
1

P
×

∑
B

C2
b (1)

Where P is the total number of passengers, B the total number of busses and Cb the crowding of bus b.

The excess waiting time metric is calculated as done by Leong et al. [33], which is by subtracting the
scheduled waiting time from the actual waiting time, see equations below.

Scheduled Waiting T ime (SWT ) =

∑
N scheduled headway2n

2×
∑

N scheduled headwayn
(2)

Actual Waiting T ime (AWT ) =

∑
N actual headway2n

2×
∑

N actual headwayn
(3)
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Excess Waiting T ime (EWT ) = AWT − SWT (4)

Where N is the total number of busses in the system.

The calculation of the metrics for comparison with the benchmarks is as follows:

1. Per simulation run the average value for each metric is calculated.

2. Each of the five different policies per scenario is evaluated during approximately 35 simulation runs.

3. The average values over these 35 are calculated for each policy and each metric.

4. For each policy and each metric the score is compared with the holding benchmark.

4.3 Scenario design
In the coming paragraphs the details of, and motivation behind the design all five scenarios that are used for
the experiments are explained. A general overview of the scenarios with their properties is given in table 7. An
exact overview of the scenarios with all their settings is given in appendix A. Note that since all scenarios are
based on the same simulation model, the only difference between the scenarios will be in the settings that are
discussed in section 3.1.3.

The most idealised scenario, called ’Idealised’ (ID), used in this study is inspired by the study done by
Wang and Sun [56]. This means there is nothing stochastic in the environment except for the arrival pattern
of passengers at the stops, which follows a Poisson distribution. The destinations of the passengers are evenly
distributed over the ten stops following the origin stop. The travel times along the edges, the number of stops,
the number of busses, the boarding rate and the alighting rate are all the same as in the study by Wang and
Sun. This means the travel time between stops is 4 minutes, there are 12 stops, 6 busses, the boarding rate is
3 s/pax and the alighting rate is 1.8 s/pax.

In contrast to Wang and Sun the arrival rate is the same at each stop along the way and is set at 1 pax/min.
This is done to make the route as ’simple’ as possible. Evidently, there are some other differences since the sce-
nario is created in a different simulation environment than used by Wang and Sun. The most notable difference
here is the resolution (one step) of the simulator: 15 seconds instead of 1. This is done because this is assumed
to reflect reality better. If the MARL were to be implemented, the communication between the busses would
likely be less frequent than every second.

The experiment in the base scenario serves two main purposes: to see if the MARL algorithm is able to
learn in the given setup and to get a reference point for the performance.

The second scenario, ’Stochastic’ (ST), brings more stochasticity into the simulation environment. The sce-
nario is identical to the idealised scenario except for three stochastic elements. In this scenario the travel times
along the edges are stochastic: they are drawn from a predefined log normal distribution with a given mean,
standard deviation, minimum value and maximum value. The reason for selecting a log normal distribution
is explained in section 4.4. The log normal distribution used is the same for every route section. The second
stochastic element is the dwell time. First the dwell time is calculated as is done in the deterministic setting,
then the stochastic dwell time is drawn from a normal distribution with the deterministic dwell time as the
mean and a standard deviation of 1. The maximum of the stochastic dwell time is set to twice the duration
of what the deterministic dwell time was. These values are assumed to be realistic, yet they are not based on
research. The last stochastic element in this scenario are the traffic lights. The traffic light have a fixed cycle
which takes 75 seconds. This cycle length is chosen since an optimal cycle length should be between 60 and 90
seconds according to the National Association of City Transportation Officials [3]. The first 40 seconds of the
cycle the busses will have a red light, the last 35 seconds they have a green light. This represents an intersection
where the busses drive on the main artery. The experiment in the ’Stochastic’ scenario gives an idea of how
well the MARL algorithm can handle stochasticity.

The third scenario, called ’Stochastic - Traffic Light control’ (TL), introduces agents for the traffic lights.
This means the MARL algorithm has some control over the traffic lights. The cycle with the red and green phase
is still in place, but when a bus arrives, the agent controlling the traffic light can decide on increasing the red
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or green phase with 10 seconds. In this way the traffic lights can have some influence on the headways between
the busses, yet their influence is bounded by the predefined cycle of the red and green phase. Aside from the
traffic light agents, all properties of this scenario are identical to scenario 2 (ST). The experiment in this sce-
nario gives insight into the performance gain when the traffic lights are also part of the MARL control algorithm.

While these three scenarios vary on several aspects, they have one thing in common: they are homogeneous
in nature. Meaning that along the route the properties of all the route sections and stops are the same. This
is not the case in the fourth scenario: ’Deterministic - Heterogeneous’ (DH). In this scenario the edges have
different lengths, i.e. the travel time along the different route sections is not equal. The route lengths are shown
in figure 6. These lengths are chosen to replicate a bus route with a rural section (the long route sections) and
a section through a more densily populated area (the short route sections). Additionally, the stops have uneven
demand, with the same values as in the work of Wang et al. [56], which is shown in figure 7. Apart from the
heterogeneity, all the properties of this scenario are equal to that of the idealised scenario. In this scenario the
performance of the agents will depend on their ability to deal with the changing conditions along the route.

Figure 6: The route lengths in minutes for all the route sections.
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Figure 7: The average demand per stop in passengers per minute for every stop.

In the last scenario everything comes together. The bus route in this scenario will be both heterogeneous
and will have stochastic processes. The demand per stop and the length of the route sections is the same as
in the ’Deterministic - Heterogeneous’ scenario. Furthermore, the traffic lights in this scenario are controlled
by the MARL algorithm. This should represent the most realistic scenario possible with the simulation model
used, therefore it is titled ’Realistic’ (RE). This scenario gives an idea of the performance of a MARL control
algorithm in daily operations.

Table 7: An overview of the scenarios used for the experiments.

Name Travel time Route sections Demand stops Dwell time Traffic lights

Idealised (ID) Deterministic Identical Identical Deterministic No
Stochastic (ST) Stochastic Identical Identical Stochastic Yes - Uncontrolled

Stochastic -Traffic
Light Control (TL) Stochastic Identical Identical Stochastic Yes - Controlled

Deterministic -
Heterogeneous (DH) Deterministic Different Different Deterministic No

Realistic (RE) Stochastic Different Different Stochastic Yes - Controlled

4.4 Application
The model used in this study is created to reflect the real world operations of busses on a high frequent line.
However, due to time and computation power restrictions, several assumptions are made in the model. Fur-
thermore, the scenarios created are synthetic to be able to test the performance of the MARL algorithm under
specific conditions. This means it is easy to create a simulation scenario that does not reflect the reality. To
make sure the scenarios are as realistic as possible it is paramount to simulate the vital processes of the opera-
tions in a realistic manner. If this is successful, then the simulation model can appropriately simulate any bus
line, given the right settings.

This means that the stochasticity in the processes of the model should be represented correctly. As seen
in table 7, there are several stochastic processes in the simulation model. Firstly, the dwell time can be set as
a stochastic function of the number of passengers. As described in section 4.3, this stochasticity is created by
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drawing the dwell time from a normal distribution around the deterministic dwell time. This is implemented
this way due to the natural nature of this process and it is similar to the implementation in VISSIM (a pop-
ular simulation tool) [35]. The second stochastic process is the passenger arrival at the stops. This process is
commonly modelled by a Poisson distribution [45] and this is also used in the simulation model of this study.
The second stochastic component of the simulation model is the traffic light implementation. Modelling traffic
lights realistic is a difficult feat, especially without modelling all the traffic on the road. Another difficulty is
the diversity in the settings for traffic lights; they may differ between main and secondary roads and between
different regions. Therefore, in this simulation model the assumption is made to use predefined cycles for the
traffic lights, as explained in section 4.3. The last stochastic process is the travel time along the route sections.
This process is the biggest stochastic factor in most scenarios. The distribution that best represents the travel
times can alter between route sections since each section can have disparate properties (chance on congestion,
tidal traffic etc.). Still, in this study it is chosen to take the same distribution for all route sections for the sake
of simplicity. The distribution chosen is the log normal distribution, similar as in the work of Uno et al. [54],
Srinivasan et al. [50] and Li et al. [34]. This is done for two reasons: the first is that a log normal distribution
has a finite left tail, meaning it is possible to make sure that negative travel times are not modelled. The second
reason is that the log normal distribution fits the observed data quite well. The match between the log normal
distribution and observed data is shown in the coming sections.

4.5 Case Study Data
For this research a data set was made avaible of 6 months of data from one bus line, from September first up
until the first of April. Since the data set is from the Netherlands, this means the summer holiday is not included
in the data. The data used for this purpose comes from a high frequent bus line in the Netherlands; line 300.
This is a bi-directional bus line between Haarlem station and Amsterdam Bijlmer ArenA, with a frequency of
10 times per hour. The bus line has several properties that make it interesting for this study. The first is the
high frequency, which is essential for bunching studies. The second is the combination of several low demand
stops with some high demand stops around Schiphol Airport and the end stops of the route. The third is that
some route sections are on public road, while others have dedicated infrastructure. The route of the bus line is
shown in figure 8.

Figure 8: Route of bus line 300 [37]

The data used from bus line 300 is the planned and the realised arrival and departure time for each stop.

The data is processed to be able to visualise and analyse it. Firstly, the planned and realised driving times
between stops are calculated by using the planned and realised departure and arrival times. Next, for each
route section the results are aggregated. This yields the distribution of the driving times for each route section.
However, in this distribution there are still some outliers. These outliers could be generated by a disruption in
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the system or by an error in the data generation. All these outliers are filtered out of the data, irrespective of
the cause of the outlier. This is done because disruptions are not meant to be modelled in the simulation used
in this study and thus they should not be represented in the used distributions. The threshold for the outlier
filter is three standard deviations from the median of the data. This is calculated per route section.

The last filter that is applied to the data is based on the time of day. The conditions on a route section can
differ throughout the day, e.g. around 11:00 the conditions on the road are usually different from 8:00. This
means the driving time distributions shift throughout the day. In this study only static distributions are used,
i.e. either a peak conditions are modelled or off-peak conditions. In the analysis the afternoon peak is selected
since peak conditions are expected to be more stochastic and the afternoon peak is usually more spread out
than the morning peak. A more spread out peak means, more hours can be selected that are expected to fall
within the same distribution and more data means a better estimate of the true distribution. The data selected
are the driving times between 16:00 and 19:00.

4.6 Case Study Specifications
As discussed in section 4.5 the driving time distribution during the afternoon peak is analysed for every route
section of line 300. In appendix B all the results can be found. One of these distributions is plotted in figure 9.
As is visible in this figure, the distribution of the observed driving times for this route section is plotted along
with the corresponding log normal fit. Lastly, the planned driving time of the route section by the operator is
plotted in the same figure.

Figure 9: The driving time distribution of the 22nd route section during the afternoon peak. Besides the
observed distribution, a log normal fit and the planned driving time are plotted.

The observed distribution from figure 9 fits the log normal distribution well, this also holds for many of
the other route sections. This indicates that a log normal distribution is an appropriate distribution to model
the driving times in the simulation. Additionally, it provides input for realistic standard deviations of the log
normal distributions used in the simulation environment. Yet, there are some route sections where the observed
distribution resembles the log normal distribution less. An example is given in figure 10.
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Figure 10: The driving time distribution of the 30th route section during the afternoon peak. Besides the
observed distribution, a log normal fit and the planned driving time are plotted.

On this route section the driving time distribution is rather narrow, yet with long tails. This is less well
approximated with a log normal distribution. To find the cause for this different shape, the route section and
its characteristics should be analysed.

Even though some of the of the observed driving time distributions may be better approximated by another
distribution than log normal, the log normal distribution appears to be a good choice for most of the observed
distributions, as can be seen in appendix B.

Another interesting point to take away from this data analysis is that the observed driving times are often
quite far from what was planned. In this study there is no planned timetable, therefore a discrepancy between
the planned and observed driving times is not an issue. However, when MARL is applied in a timetable setting,
it could become a problem. Yet, an RL agent will adjust to this discrepancy automatically when it is trained
on such a route.
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5 Results
Following the main research question (1.4.2), the most important aspect of this study is to investigate the
performance of the selected MARL algorithm under different circumstances. The selected MARL algorithm
and the selected circumstances are described in section 4.1 and 4.3 respectively.

As is evident from the preceding sections, the algorithm, the observation space, action space and reward
function are not thoroughly optimised to get the best performance out of the MARL algorithm. This is not the
point of this study. The most interesting point is the difference of performance of the MARL algorithm under
different circumstances. This is also the reason that in this section, not only the results of the best performing
policy is shown, but the results of the best five policies. This gives insight in the variance among the learned
policies in a given scenario, and how easy it is to learn a good policy in the concerning scenario. The best
performing policies give an estimate of the performance that could be obtained with a MARL algorithm if it
were to be optimised for a given scenario.

In the coming sections the results of the experiments are discussed. There are three aspects to look at in
the results: the learning process, the performance and the behaviour of the MARL policies. In section 5.1, the
learning process is discussed. This entails whether or not the MARL algorithm converged to a reasonably good
policy, and if so, how much time it needed. The performance of the MARL algorithm and how it compares with
the benchmarks is discussed in section 5.2. Lastly, the behaviour of the learned policies is discussed in section
5.3.

5.1 Learning Process
There are five learning trajectories per scenario, as discussed in section 4.2. Each of these trajectories has
a unique seed and therefore a unique learning curve. The learning curves of all these runs are analysed, as
described in section 4.2. These learning curves show how quickly the policies improved and how stable the
learning process was. The reward function is based on the average travel time of the passengers, meaning that
as the reward increases, the average travel time decreases.

Evidently, every learning curve is unique, yet some patterns are visible. The learning curves for all scenarios
are shown in figure 11.
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Figure 11: An overview of the learning curves of the training process in all five scenarios. The minimal (red),
the mean (blue) and the maximal (green) total reward throughout the learning process are shown. For each
scenario there are five selected policies. The clear lines are the average minimal, mean and maximal rewards
of these five policies. The transparent lines are the individual minimal, mean and maximal rewards of the five
different policies and give an idea of the spread in the rewards.

From figure 11 it is evident that the learning curves in all scenarios roughly have the same shape; a flat start,
followed by a clear linear increase in reward and then topping of at its maximum. The flat start of the learning
curve is explained by the warming-up phase (4.1) of the algorithm; it is collecting data, but the learning has
not started yet. Then the algorithm starts to learn and converges to its maximum reward. In figure 11 the total
reward is displayed, this is the sum of the individual rewards of all the bus and traffic light agents. The maximal
total reward reached differs between the scenarios since the number of traffic light agents is not the same in
every scenario. As discussed in section 3.1.3 the bus and traffic light agents share the same reward function and
the reward is based on the global state of the system, the individual learning curves are thus identical to the
total learning curve.

Interestingly, the gap between the average maximum and minimum reward is not of the same proportion
in every scenario. The scenarios ’Deterministic - Heterogeneous’ and ’Realistic’ show a larger gap between the
maximum and the minimum reward than the other scenarios. Specifically, the minimum reward is quite a bit
lower than the mean and maximum reward. This indicates that in these scenarios it is harder for the MARL
algorithm to learn a policy that always performs well. This is also reflected by the number of converged policies.
From the ten different seeds used, 10, 8, 7, 7 and 6 of them converged for the scenario 1 to 5 respectively.
Judging from these numbers, the stochasticity, the traffic light agents and the heterogeneity all increase the
difficulty of the learning process for the algorithm.

The training is done on a Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz with usage around 40% and
training one single policy takes around 25 minutes with this hardware.

5.2 Performance
In this section the performance of the learned MARL policies is evaluated based on the metrics explained in
section 4.2. Additionally, the performance is compared with the benchmarks as described in section 4.2.
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First, a performance comparison is given between the best policy of the MARL algorithm and the holding
benchmark for every scenario. Afterwards, the performance per scenario is discussed and compared with the
benchmarks.

5.2.1 Performance Overview

As mentioned in section 1.4.1, the objective of this study is to investigate the potential of MARL for more
realistic settings than the idealised one, which is tested by Wang et al. [56]. In this idealised setting Wang
et al. succeed in outperforming all their rule based benchmarks, but it remains unclear if such a performance
would also be achievable in a more realistic (and thus more complex) setting. Moreover, it is unclear which ad-
ditional complexities are difficult to handle for a MARL algorithm and which are easily incorporated in a policy.

The first of the five scenarios in this study is very similar to the simulation environment used by Wang et al.
and the performance in this scenario is compared with the performance in the other four scenarios to see if the
MARL algorithm has the same potential in these scenarios. All of this is done with an ’off the shelve’ MARL
algorithm and with a simple observation space, which most likely leads to sub optimal absolute performance.
Although the absolute performance of the MARL algorithm may be sub optimal, the performance difference
between the scenarios can be used to assess the potential of such an algorithm in each scenario.

The performance of the best policy is compared with the performance of the benchmark for every scenario
in figure 12. In figure 13 the average holding time per stop of the best MARL policy is compared with the
average holding time per stop of the benchmark. Figure 12 shows that the average total travel time, expe-
rienced crowding and excess waiting time are lower under the MARL algorithm than under the benchmark.
The only exception to this is the deterministic - heterogeneous scenario. In the deterministic - heterogeneous
scenario, the MARL algorithm scores very well on the coefficient of variation. Arguably this policy is too fo-
cused on the headway equalisation since it does not lead to shorter travel times or a lower experienced crowding.

In the other scenarios the MARL algorithm manages to outperform the benchmark on the average waiting
time as well as the average in vehicle time. How this improvement is achieved differs between the scenarios.
In the idealised scenario the MARL algorithm is able to realise better equalised headways than the bench-
mark with less holding, see figure 13. This leads to a small improvement in the experienced crowding as well
and a large improvement in the average excess waiting time due to the higher bus speeds. For the stochastic
and the stochastic - traffic light control scenario, the coefficient of variation is higher than in the benchmark.
This, in combination with the shorter average holding time (13) means the MARL algorithm opts for a ’looser’
bus management here. This leads to higher bus speeds which in turn leads to lower experienced crowding,
shorter waiting times, shorter in vehicle times and a big drop in the excess waiting time. In these scenarios
the performance gain is thus achieved by shorter headways instead of more reliable headways. Interestingly,
the added control over the traffic lights in the TL scenario is mostly used by the MARL algorithm to improve
the headway equalisation, not to increase the bus speeds. This means the traffic light agents add value to the
system by improving the headway equalisation. The fifth scenario is a combination of the stochastic - traffic
light control and the deterministic - heterogeneous scenario in terms of characteristics and this translates to
the results. The MARL algorithm is still able to outperform the benchmark, similar to scenario three. How-
ever, the improvement in average holding time and excess waiting time is not as big as in the first three scenarios.

These results indicate that stochasticity is not a problem for the MARL algorithm, but that the hetero-
geneity does increase the difficulty. In the heterogeneous scenarios the agents have to learn the best behaviour
per section; i.e. they have to combine the headway observation with the location observation to make the best
decision. This added difficulty is visible in the results. Furthermore, it is clear that the traffic light agents
do add value to the system. What stands out from the coefficient of variation is that the MARL algorithm
equalised the headways very strict in the deterministic scenarios, but much looser in the stochastic scenarios.
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Figure 12: The average metric scores in all five scenarios of the best MARL policy (blue) and the benchmark
(red). The total travel time consists of waiting time (blue / red) and in vehicle time (green / yellow).

Figure 13: The average holding time per stop in all five scenarios. The scores are displayed for the best MARL
policy as well as the holding benchmark.

Note that in some cases the holding benchmark or the MARL policies use a lot of holding time, as apparent
from figure 13. In this study this is allowed since there is no predefined schedule or headway a bus has to stick
to. The pros and cons of this decision are discussed in section 6.
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5.2.2 Idealised Scenario

For every scenario ten different policies are trained. From these ten the best five are selected for comparison
with the benchmark, as explained in section 4.2. In this section the five best policies of the idealised scenario
are compared with both the holding and no control benchmark.

In figure 14 the average holding times per stop are shown. Only two of the five policies manage to improve
on the benchmark performance and the relative differences between the policies are rather large. From figure
15 it is clear that the differences in performance between the policies are also significant. The third policy is
best overall, with the best scores on all metrics except the coefficient of variation of the headways. Whereas the
first policy performs poorly on all metrics and uses a lot of holding too.

Figure 14: The average holding times per stop of the five best policies of the MARL algorithm compared with
the holding benchmark (horizontal line). (idealised scenario)
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Figure 15: The average metric scores of the five best MARL policies and the holding benchmark (horizontal
lines). (idealised scenario)

In table 8 the scores of the best MARL policy, the holding benchmark and the no control benchmark are
shown. From this figure it is clear that the MARL policy performs far better than the no control benchmark.
The MARL algorithm has thus succeeded to learn a useful policy.

Table 8: An overview of the performance in the idealised scenario of the best MARL policy and the two
benchmarks for several metrics.

Metric MARL Holding Benchmark No Control Benchmark

Average holding time 26 44 0
Average total travel time 2024 2146 5133
Average waiting time 312 340 2367
Average in vehicle time 1712 1805 2766
Experienced crowding 58 60 418
Coefficient of variation

headways 0.12 0.21 2.11

Excess waiting time 53 82 2145

5.2.3 Stochastic Scenario

In the stochastic scenario all the MARL policies use less holding than the holding benchmark. The difference
between the two is substantial as is visible in figure 16. This is a different pattern than the one visible in the
idealised scenario.
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Figure 16: The average holding times per stop of the five best MARL policies and the holding benchmark
(horizontal line). (stochastic scenario)

The performance on all metrics is also more constant than in the idealised scenario, see figure 17. It out-
performs the benchmark on all metrics except the coefficient of variation. As discussed, this indicates a ’looser’
control strategy than the benchmark.

Figure 17: The average metric scores of the five best MARL policies and the holding benchmark (horizontal
line). (stochastic scenario)

Similar to the idealised scenario the MARL policies have learned a useful policy that easily outperforms the
no holding control benchmark, as can be seen in table 9.

52



Table 9: An overview of the performance in the stochastic scenario of the best MARL policy and the two
benchmarks for several metrics.

Metric MARL Holding Benchmark No Control Benchmark

Average holding time 20 53 0
Average total travel time 2061 2285 5161
Average waiting time 332 366 2360
Average in vehicle time 1728 1919 2800
Experienced crowding 60 65 416
Coefficient of variation

headways 0.25 0.22 2.08

Excess waiting time 61 95 2140

5.2.4 Stochastic Scenario - Traffic Light Control

Like the stochastic scenario the MARL policies in the this scenario use less holding time than the holding
benchmark, see figure 18. Additionally, the policies have roughly the same score, analogous to scenario two.

Figure 18: The average holding times per stop of the five best MARL policies and the holding benchmark
(horizontal line). (stochastic traffic light control scenario)

Judging from figure 19 and 17, the only policy in this scenario that really manages to reap the benefits of the
traffic light agents is policy five. The other policies score more or less the same as the policies in scenario 2 (ST).
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Figure 19: The average metric scores of the five best MARL policies and the holding benchmark (horizontal
line). (stochastic traffic light control scenario)

Lastly, table 10 shows the scores of the best MARL policy, the holding benchmark and the no control bench-
mark. From this figure it is evident that the MARL policies have learned something useful.

Table 10: An overview of the performance in the stochastic - traffic light control scenario of the best MARL
policy and the two benchmarks for several metrics.

Metric MARL Holding Benchmark No Control Benchmark

Average holding time 22 53 0
Average total travel time 2053 2285 5161
Average waiting time 328 366 2360
Average in vehicle time 1725 1919 2800
Experienced crowding 59 65 416
Coefficient of variation

headways 0.23 0.22 2.08

Excess waiting time 57 95 2140

5.2.5 Deterministic - Heterogeneous Scenario

When looking at the holding time used by the MARL policies in this scenario (figure 20), it stands out that
they all use more holding time than the holding benchmark. Interestingly, the amount of holding used does not
correlate with the coefficient of variation of the policy, see figure 21. This shows that some policies (1, 2 and 4)
did not manage to use the holding actions effectively.
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Figure 20: The average holding times per stop of the five best MARL policies and the holding benchmark
(horizontal line). (deterministic - heterogeneous scenario)

Figure 21 also shows that the MARL algorithm does not find its way to an effective policy in this scenario
as easy as in scenario two and three. Similar to the idealised scenario, the policies differ significantly in their
performance characteristics. It is possible that the fact that both scenarios are deterministic plays a role in this.

Figure 21: The average metric scores of the five best MARL policies and the holding benchmark (horizontal
line). (deterministic - heterogeneous scenario)

The exact scores on all the metrics of the best MARL policy and both benchmarks are shown in table 11.
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Clearly the MARL policy is better than no control.

Table 11: An overview of the performance in the deterministic - heterogeneous scenario of the best MARL
policy and the two benchmarks for several metrics.

Metric MARL Holding Benchmark No Control Benchmark

Average holding time 58 47 0
Average total travel time 2333 2246 6949
Average waiting time 367 363 2985
Average in vehicle time 1966 1882 3964
Experienced crowding 93 90 721
Coefficient of variation

headways 0.13 0.20 2.21

Excess waiting time 100 95 3095

5.2.6 Realistic Scenario

Figure 22 shows a pattern that is similar to that of scenario two and three, the other stochastic scenarios. All
the policies use less holding time than the holding benchmark. Interestingly, this does not necessarily lead to
worse headway equalisation as seen in figure 23.

Figure 22: The average holding times per stop of the five best MARL policies and the holding benchmark
(horizontal line). (realistic scenario)

The mix of characteristics of this scenario appears to be visible in the performance as well. All the poli-
cies are reasonably good, similar to the pattern in the other stochastic scenarios. However, there is no clear
difference with the benchmark on a specific metric, the average coefficient of variation of the headways is not
clearly larger as in the other stochastic scenarios and the average excess waiting time is not that much better
than the benchmark. What is clear from these results is that the addition of the stochasticity leads to a more
consistent learning process between the different policies. Furthermore, the added traffic lights create more
opportunity for the MARL to reach a better performance, making it easier to outperform the benchmark than
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in the deterministic - heterogeneous scenario.

Figure 23: The average metric scores of the five best MARL policies and the holding benchmark (horizontal
line). (realistic scenario)

Lastly, table 12 compares the performance of both the best MARL policy and the holding benchmark with
the no control benchmark. Once again the no control benchmark yields results that are far worse than those
of the MARL policy and the holding benchmark. This shows that even in more complicated scenarios like this
one, the MARL algorithm is able to learn a well performing policy.

Table 12: An overview of the performance in the realistic scenario of the best MARL policy and the two
benchmarks for several metrics.

Metric MARL Holding Benchmark No Control Benchmark

Average holding time 36 56 0
Average total travel time 2194 2353 7192
Average waiting time 359 388 3115
Average in vehicle time 1835 1965 4077
Experienced crowding 90 96 750
Coefficient of variation

headways 0.24 0.24 2.22

Excess waiting time 87 114 3235

5.3 Policy Analysis
To get an outline of the policies learned by the MARL algorithm, the observation-action pairs of the simulation
are stored during the evaluation runs. This means that a data set is stored with all the received observations
the bus agents got when they took a certain action. This data is displayed in figure 24, which shows the median
observation for each of the possible action for the bus agents. Around the median the 15th and 85th percentile
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values are shown. This bandwidth shows the range of observations that led to a specific action. This gives
insight into the policy learned by the MARL agents. Note that the MARL algorithm does not necessarily use
all available actions, which can lead to a larger bandwidth than observed in the holding benchmark. Naturally,
the shortest and the longest holding action can have a bigger bandwidth and the median can be different than
expected since these are ’end points’ of the action space. For example, when the forward headway is 200 or
300 seconds shorter than the backward headway, the bus will probably hold for 180 seconds, yielding a large
bandwidth for this action.

The y-axis here is the backward headway minus the forward headway in seconds. A positive value on the
y-axis thus means that the concerning bus is closer to the bus in front of him than the one behind. For every sce-
nario a positive correlation between the action taken and the observation can be observed, which is unsurprising.

One observation that can be made from this figure is that the MARL lines are above the benchmark line
for the longer holding actions. This holds for all scenarios but the deterministic heterogeneous scenario and
the outlier in the stochastic - traffic light control scenario. This means the MARL policies allow a larger gap
between the forward and backward headway before they use a long holding action. Furthermore, figure 24 shows
that the MARL policies never use the 180 seconds holding action.

The outlier in the stochastic - traffic light control scenario shows the need for checking the learned policies
on unexpected behaviour before such a policy can be deployed. Even though this policy is effective, as seen in
5.2.1, a holding action of 90 seconds is most probably undesired when the forward headway is already greater
than the backward headway.

Figure 24: A visualisation of the policies learned by the best MARL policy per scenarios. For each action the
median headway observation is shown along with a bandwidth between the 15th and 85th percentiles. Note that
for the scenarios DH and RE the observation received by the agents also contains the current position of the
agent on the route, this observation is not displayed in this visualisation.

Besides the bus agents, scenario ’Stochastic - Traffic Light Control’ and ’Realistic’ also have traffic light
agents. These agents have three choices; do nothing, reduces or increase the delay of the bus by 10 seconds.
Figure 25 shows how often each of these actions are selected by these agents.

It is immediately clear that the agents controlling the traffic lights do not simply decrease the delay of the
busses to aid their objective of minimal travel time. Strikingly, the -10 seconds delay action is not used at all
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in the stochastic - traffic light control scenario and barely used in the realistic scenario. This seems to indicate
that in these policies the busses overestimate the speeds of the bus in front of them, which, if the preceding
bus is indeed slower than hoped, can be neutralised by the traffic lights. This is speculation, and it is very well
possible that other seeds may have lead to a different strategy.

Figure 25: The fractions of the actions chosen by the traffic light agents of the best MARL policy for both
scenarios with traffic lights.

This sums up the analysis of the MARL algorithm. In section 5.1 the learning process is analysed, showing
the reward obtained during the many learning episodes. In sections 5.2 and 5.3 the best performing policy of
the learning process is executed greedily (i.e. without learning) in a number of simulation runs to assess the
performance.
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6 Conclusions
The goal of this study is to investigate the potential of a MARL algorithm for real world bus management.
As a first step to achieve this goal, a literature review is executed. With the information from the literature
review, a simulation model is developed which is connected to the RL framework RLlib. Within this simulation
model, five different scenarios are designed for experiments. Lastly, the learning process, the performance and
the behaviour of the MARL algorithm is analysed. In the coming sections the key findings, contributions and
limitations of this study are discussed along with several recommendations for future work.

6.1 Key Findings
This study aims to investigate the performance and potential of a MARL algorithm under different types of
(combinations of) environmental and control complexity, as posed in the main research question in section 1.4.
In this section the research sub questions are put forward to support the answer to the main research question.
An answer is provided to all the research sub questions and the main research.

The first research sub question is: What is the current state-of-the-art of applying MARL systems to both
headway management and intersection control?

For intersection control there are numerous studies done with the use of MARL and the performance of
these implementations promises to outperform the current control algorithms. The use of MARL for headway
management is not as mature as for intersection control. Wang et al. [56] successfully implemented a MARL
algorithm for headway management in an idealised setting. The results of this study are promising, but there
are still several hurdles to take before such an implementation can be implemented in practice. A combination
of both intersection control and headway management in an MARL is not found in the literature.

The second research sub question is: What are valuable extensions to the current state-of-the-art in terms
of simulation environment and control complexity?

The starting point for this question is again the work done by Wang et al. [56]. Several possible extensions
to their simulation environment are identified in section 1.4.1. All the identified route extensions (simulation
environment) are implemented in the simulation used in this study. For the control extensions the traffic light
control is implemented, but the speed control is not. The traffic lights are selected because controlling traffic
lights on route seems widely applicable whereas speed control is usually only possible on routes with dedicated
infrastructure. They were not both selected to limit the scope of the study.

The third research sub question is: For which (combinations) of the above mentioned extensions is it feasible
to implement them in a simulation environment?

This question combines with the previous question. All identified extensions can be implemented in the
simulation due to the freedom of the selected simulation framework. Yet, to limit the scope of the study and
the time needed for building the simulation framework, not all extensions are implemented.

The fourth research sub question is: What is the performance of a MARL algorithm under the above men-
tioned environment complexities?

The answer to this question is built upon the work done by Wang et al. [56], where they manage to out-
perform their benchmarks with their MARL algorithm. The extensions to their work are introduced in section
1.4.1 and the final experiment scenarios are described in 4.3. The absolute performance of the MARL algorithm
in these scenarios is not optimised thoroughly. Therefore a scenario similar to the configuration from Wang et
al. [56] is implemented to have a point of reference in terms of performance relative to the used benchmarks.

The expectation before the experiments was that the performance of the MARL algorithm would be the best
in the idealised scenario. For the stochastic scenario the expectation was that the learning could be less stable,
but that the MARL algorithm may be able to find a better balance between headway equalisation and opera-
tional speed than the holding benchmark. When the traffic light agents are introduced, like in the traffic light
control scenario, the expectation was that the learning process becomes less stable again. In fact, the expectation
was that converging to good behaviour could be hard in this scenario, since the bus and traffic light agents have
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to cooperate. This same expectation holds for the last two scenarios; deterministic - heterogeneous and realistic.

Some of these expectations turned out to be true, yet some results turned out different than expected. In
the idealised scenario all of the ten seeds converge, this number then decreases with each scenario and in the
realistic scenario only six of the ten policies converge. This confirms the expectation that the scenarios are
increasingly complex for the MARL algorithm. However, this does not reflect the performance of the converged
policies.

In the idealised reference scenario the performance of the MARL algorithm outperforms the holding bench-
mark in terms of travel time, as shown in figure 12. This is also the case for the stochastic, the stochastic -
traffic light control and the realistic scenario. Meaning that these scenarios are not too complex to be handled
by a MARL algorithm. The performance in the stochastic and the stochastic - traffic light control scenario
indicates that stochasticity is not a problem at all for the MARL algorithm since the performance gap with the
benchmark increases compared with the idealised scenario. On the contrary, all five policies in the stochastic
and the stochastic - traffic light control scenario perform well, which is not the case in the idealised scenario.
Another aspect that stands out in the stochastic and the stochastic - traffic light control scenario is that the
MARL algorithm exhibits a ’looser’ headway equalisation strategy; the average coefficient of variation is higher
than the one of the benchmark. In the deterministic scenarios, i.e. the idealised and the deterministic - hetero-
geneous, the MARL algorithm does the opposite: the average coefficient of variation is lower than the one of
the benchmark. When looking at all scenarios together it is clear that on average the MARL algorithm uses less
holding than the benchmark. Meaning that the performance gain largely stems from shorter headways, instead
of more reliable headways. This pattern implies that in a stochastic setting a ’looser’ headway management
strategy can be beneficial for the average total travel time of the passengers. This is also reflected by the analysis
of the policies in figure 24, where the policies allow for a bigger difference between the forward and backward
headway before they use a long holding action.

From a comparison between the stochastic and the stochastic - traffic light control scenario it stands out
that the traffic light agents are able to add value to the system. Even though it seems to be hard to reach
a good cooporation between the busses and the traffic lights (only one of the five policies manages to achieve
this), the result is a lower average coefficient of variation with similar performance on the other metrics, see
figure 12.

The deterministic - heterogeneous scenario is the only one where the MARL algorithm was not able to out-
perform the benchmark, which implies that it is significantly harder to learn a good policy for a heterogeneous
route than for a homogeneous one. When both the heterogeneity and the stochasticity are combined (scenario
five), the MARL algorithm was able to outperform the benchmark. One possible cause of the improved per-
formance in the realistic scenario is the stochasticity. It is possible that the stochasticity yields a more robust
learning process since the feedback from the environment is not exactly the same every time for the same
observation-action pair. Yet, the difficulty of the heterogeneity in the realistic scenario is still reflected by the
lower minimal reward of the learning curve, see figure 11.

These results are very promising and it is likely that if more effort is spent on the optimisation of the algo-
rithm in these scenarios, that they will be able to perform even better. This means there is potential for MARL
algorithms in the field of bus management.

The fifth research sub question is: What is the benefit of using a MARL system for the problem of bus
management compared with rule based management?

By definition MARL has several advantages over rule based bus management. The possibility to learn con-
stantly and update the policy is one of these benefits. Another benefit is that a MARL policy can theoretically
use a lot of information in its decision making, which can lead to better performance. However, this comes
with the practical challenge of designing and tuning a stable learning process. Lastly, a benefit of a MARL
algorithm is that the objective of the systems can be the objective of the algorithm. This eliminates the need
for heuristics and possibly the tuning of their parameters. In this study the average passenger travel time is
chosen as the objective of the algorithm. This is also the objective of the bus systems and eliminates the need
to find the right balance between headway equalisation and driving speed.

Yet, it also has some disadvantages; one should check a trained policy for unexpected behaviour. An ex-
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ample of such behaviour is shown in figure 24, where the policy in the stochastic - traffic light control scenario
learned to hold for 90 seconds when the forward headway is already bigger than the backward headway. Another
disadvantage is that currently the implementation of a MARL bus management system will likely take more
effort than a rule based system since it is a novel technology.

The sixth research sub question is: To what extent is the used implementation transferable to other situa-
tions?

With the simulation model created in this study it is possible to recreate bus routes with various lengths
and characteristics. Additionally, the MARL training setup used can be applied in all possible configurations
of the simulation environment. Therefore, the used implementation is transferable to many different situations.
However, if a scenario is created with very different characteristics than the ones used in this study it may be
beneficial to use a different observation space and different hyperparameter settings. In scenarios with different
characteristics the performance may also be different. Furthermore, it is not possible to simulate a bus network
containing multiple bus lines with the used simulation model.

The last research sub question is: To what extent can the used implementation be translated from a model
environment to the real world?

The answer to this question depends on the specific situation to which ’real world’ refers. There are many
technical issues to be addressed when a MARL bus management system is implemented, but they are not
addressed in this study. However, several choices made in the training setup are made with real world deployment
in mind. These are the following characteristics:

• The step size in the training setup is 15 seconds. This allows for some data latency since the bus agents
have 15 seconds to receive their action after sending their observation.

• The 15 second step size also means that the observation frequency is limited which is less likely to lead to
a data overload.

• The action space of the bus agents consists of realistic holding actions that are simple enough to implement.

• The used information for the observation (the headways) is often available in bus systems.

In terms of realism of the simulation environment, the used simulation model captures some of the most
important dynamics of the bus management problem and uses stochastic processes for many of these. This can
reflect a real world scenario well, but a simulation model always lacks some details and interactions found in
the real world.

Therefore, a reasonable performance is expected if the used implementation is implemented in the real
world. However, the technical details of the implementation are not investigated yet. There are many possible
restrictions that one can encounter when implementing such a MARL solution in a real world scenario. One of
the biggest ones could be an underlying timetable the busses have to stick to, this would restrict their action
freedom. A similar issue could be restrictions in the action selection for the traffic lights due to constraints
from the authorities. Furthermore, other (technical) issues could arise like a delay in the data (observations)
connection, a full data outage or drivers that do not follow the prescribed actions. Such issues need solutions
that are tailored to the specific situation since the constraints can vary between different real world implemen-
tations. A more general topic that is paramount for real world implementation is that the used policies should
be thoroughly checked for unexpected behaviour. These points indicate that a real world implementation of a
MARL bus management system still needs additional research.

6.2 Contributions & Limitations
As mentioned before, the work from Wang et al. [56] can be seen as the starting point for this study. The
main contributions from this study are expanding the simulation environment in which the MARL algorithm
is trained to a more realistic environment. This is done by making several of the processes in the simulation
stochastic and creating a heterogeneous bus route. As discussed in the previous section, the behaviour of the
MARL algorithm is notably different in the stochastic scenarios compared with the deterministic scenarios.
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This indicates that the conclusions drawn from deterministic simulation settings have limited value.

Further, as this is an exploratory study the performance of multiple seeds is shown per scenario. The dif-
ference between the seeds shows the relevance of investigating multiple seeds. Also, the difference between the
performance of the policies from the different seeds was not of the same magnitude in all scenarios; in the
idealised and the deterministic - heterogeneous the differences are substantial, while in the stochastic and the
stochastic - traffic light control they are not. The differences of the realistic scenario are somewhere in between.

Another contribution is the fact that the agents of the MARL algorithm are not rewarded for their headway
equalisation, but for the average total travel time of the passengers. By choosing a simulation length around
the value of twice the average passenger travel time, this reward function becomes effective, as discussed in
section 3.1.3. With a shorter simulation length it is possible that the MARL agents will optimise their actions
for the passengers with short journeys only, giving results with limited value. With longer simulation lengths,
it becomes increasingly difficult to dissect the good behaviour from the bad behaviour in a run, since only one
reward is given. This may lead to slower learning or not learning at all. By selecting this reward function,
the problem is no longer headway management, since the headways are not a direct objective, but a broader
concept which is called bus management in this study. The added traffic light control contributes to this broader
concept as well.

The potential for performance gain in bus management is greater than in headway management only, since
headway management is a subset of bus management. Additionally, the results show that the more complex
scenarios are not too difficult for a MARL algorithm, showing that a MARL algorithm has potential outside
idealised scenarios as well. The absolute performance in the experiment scenarios is probably still sub optimal
due to a lack of thorough optimisation. However, this remains uncertain until the needed optimisation is done
and the corresponding results are analysed. This marks the biggest limitation of this study; it is exploratory
and does not execute an in depth analysis per scenario to optimise the performance.

A different limitation of this study is that the scenarios in this study do not use a timetable or a predefined
headway, instead the headway emerges. This is not the standard in many regions around the world. If the sim-
ulation environment would have to simulate a scenario with a timetable, the bus agents will have less freedom
in choosing their holding actions. Nonetheless, the experiments done in this study may provide useful input for
creating timetables since it shows the optimal holding actions when there are no constraints.

Finally, the choices made in the design of the scenarios have impact on the results. One of these choices is
the capacity of the busses, which is infinite in the created scenarios. This affects the potential for bunching in
the system since the difference in occupancy between the busses can get larger than with a limited capacity.
Therefore, this choice affects the performance of the no control benchmark, but its effect on the holding bench-
mark and the MARL control is probably limited.

6.3 Recommendations for Future Work
This study shows that there is potential for MARL in the field of bus management. Nevertheless, there is still
a lot that should be investigated before this can become a reality.

One of the most essential topics for future research would be assessing the final learned policy. It is im-
portant that a policy that is used outside a simulation environment does not exhibit unexpected behaviour in
certain situations. Another option is to detect unexpected behaviour and create a safety system that takes over
in these situations and executes default behaviour. The more influence the actions of the MARL agents have,
the more important this becomes. Another aspect of real world deployment could be retraining the MARL
agents when the conditions have changed. Retraining can be done from scratch, i.e. change the configuration
of the simulation model and train a new policy. Another option is to start with the legacy policy and train it
for a number of episodes in a simulation model with a different configuration. Evidently, data from the bus
network is needed to be able to configure the simulation model correctly. The best practices for retraining are
an interesting and essential topic for future research.

As indicated in section 6.2, one of the big limitations of this study is that it does not optimise for each
scenario to obtain the maximal performance achievable. It is interesting to see if a bigger observation space and
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a more extensive hyperparameter optimisation can lead to better performance. From the results of this study it
is clear that this is especially the case for the deterministic - heterogeneous and the realistic scenario due to their
heterogeneity. In these scenarios it can be an advantageous for the bus agents to have information about the
amount of passengers at stops, the amount of passengers in the busses and the actions of the other busses. The
more these factors fluctuate along the route and with time, the more useful this information becomes. There-
fore, a larger observation space becomes more interesting in complex scenarios. Yet, this also adds challenges;
the learning process becomes increasingly complex and the availability of the used information in a real world
setting can become a problem. Since this type of research is highly scenario dependent, it is probably only
worth while with a specific case study in mind. Such a study could be done with a similar configurable simu-
lation environment as used in this study, this allows for adjustments to new input data our a change in the route.

One of the benefits of MARL is the automated decision process. In this study this benefit is not fully
utilised since the actions are only taken on a stop level. It could be beneficial for the performance of the MARL
algorithm to add more decision moments to the environment. This approach could lead to a near continuous
observation and action cycle. Even though this could improve the performance, the challenge with such an al-
gorithm will be to translate it to a setup that can be used in the real world; continuous actions and observations
do not align well with the limitations of bus drivers and data connections.

As mentioned in section 6.2, the main contribution of this study is the added realism to the simulation
environment. Even though big steps are made from the idealised scenario towards more realistic scenarios,
there are still some possible additions that could be investigated in future research. One of these is to introduce
changing conditions of the route as a function of the time of day. Another one could be to introduce route
sections where the busses have dedicated infrastructure. This could combine well with introducing a speed up
/ slow down action for the bus agents. Similar to the previous topic, such a study would probably make more
sense with a specific case study in mind.

A less essential, but still interesting, topic would be to investigate the behaviour of the agents in the system
further when the observation space is extended. If the average travel time is used as the objective function, new
insights may be found when the behaviour of the agents is examined in specific situations.

Another topic that is not directly essential, but that may yield interesting insights in both the MARL train-
ing process and the best bus management strategies, is cross evaluation. Cross evaluation in this case would
mean to evaluate a policy on a different scenario than on which it is trained. It is unclear what this will yield in
terms of performance, but the analysis may provide new ideas for bus management strategies and the MARL
training process.

Another possible future addition, besides extending the observation space, can be to add more actors to the
system. This can be especially interesting when a whole network is modelled. In this study traffic lights are
added, but, with an ITS in mind, more actors could be included. These actors could be on-route actors like
traffic lights, but they could also be demand steering actors, like a mobile travel application.

When MARL is successfully used for bus lines, it is interesting to expand the simulation from one line to
a complete network. This would introduce a new set of interactions in the simulation model, which in turn
introduces new challenges to the learning process. This topic has potential in terms of system optimisation,
but the state-of-the-art is currently not yet sufficiently developed. If such a study is to be executed, using a
global variable like the average passenger travel time seems a good fit for finding the system optimum. Yet,
some boundary conditions may have to be introduced to make sure each line gets the priority it should have.
Additionally, intermediate rewards may be necessary since there is a chance that some lines in such a network
have trips that are too long to reward at the end of the simulation only. Also, the observation function should
be reconsidered in this case since the agents should take more information into account. To limit the complexity
for the agents an actor critic algorithm may be the best fit since this could work with a simple observation
space for the actors and a critic who can assess the global state of the system. Moreover, using an exploratory
setup like this study may prove to be infeasible since the number of possible configurations of a network are
larger than on a single line. An option could be to recreate an existing network in a simulation. Again, for
such a simulation model a similar configurable setup could be used as in this study to be able to try many
configurations of the network.

Lastly, in section 1.4.1 the topics of resilience and robustness are introduced. These topics are not a focus
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of this study since the focus is on the day-to-day operations on a bus line, but they are interesting to investi-
gate. Disturbances of the bus system are handled well by a MARL algorithm, but it is appealing to investigate
whether a MARL algorithm could handle major disruptions as well. These studies are vital when a MARL
algorithm is used continuously, but when a backup system is still in place this is not the case. In that case
they should be viewed as exploratory studies for wider application of MARL. Using a MARL algorithm to solve
disruptions of the system could save time that is needed to come up with contingency plans for all possible
disruption scenarios. Instead, the MARL algorithm could learn what to do in each of these scenarios through
a simulation setup. Yet, keeping a human in the loop seems to be a wise option here, since it is hard to check
such a policy on unexpected behaviour. In terms of the simulation setup for robustness and resilience studies, a
disrupted simulation start state can be used with a negative reward for every time step it is in a disrupted state.
The goal of the MARL algorithm would then be to ’solve’ the disruption as quick as possible and get the system
back to its normal state. Variants of such a reward function could be explored as well, for example taking the
impact of the used actions into account. New disruptions have to be added to the simulation environment to
make sure it is realistic and that it covers more than delays only, i.e. a malfunctioning bus etc. Proper input
data is needed to model disruptions like this.
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Appendices
A Scenario Setups

A.1 Scenario 1 - Idealised

Table 13: An overview of the settings used for scenario 1 (ID).

Property Value

Number of bus agents 6
Capacity busses Infinite
Capacity stops 1

Edges with traffic lights None
Arrival function nodes Poisson

Destination distribution nodes 10% for the coming 10 stops
Passenger arrival rate 1 passenger per minute for all stops

Boarding rate 3 seconds per passenger
Alighting rate 1.8 seconds per passenger

Dwell time function nodes Maximum boarding and alighting time
Deterministic

Travel time edges Type: Deterministic
Length: 240 seconds

Observation space bus agents Size: 1
Value: [backward headway - forward headway]

Observation space traffic light agents Not present

Action space bus agents
Size: 7

Affects: Holding time
Value: [0, 30, 60, 90, 120, 150, 180] seconds

Action space traffic light agents Not present
End trigger t = 4000 seconds

Reward function Moment: End of simulation
Based on: Average travel time
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A.2 Scenario 2 - Stochastic

Table 14: An overview of the settings used for scenario 2 (ST).

Property Value

Number of bus agents 6
Capacity busses Infinite
Capacity stops 1

Edges with traffic lights All
Arrival function nodes Poisson

Destination distribution nodes 10% for the coming 10 stops
Passenger arrival rate 1 passenger per minute for all stops

Boarding rate 3 seconds per passenger
Alighting rate 1.8 seconds per passenger

Dwell time function nodes Maximum boarding and alighting time
Stochastic

Travel time edges

Type: Lognormal
Min: 120 seconds
Mean: 240 seconds
Max: 480 seconds

Observation space bus agents Size: 1
Value: [backward headway - forward headway]

Observation space traffic light agents Size:1
Value: [backward headway - forward headway]

Action space bus agents
Size: 7

Affects: Holding time
Value: [0, 30, 60, 90, 120, 150, 180] seconds

Action space traffic light agents
Size: 1

Affects: Delay bus at traffic lights
Value: [+0] seconds

End trigger t = 4000 seconds

Reward function Moment: End of simulation
Based on: Average travel time
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A.3 Scenario 3 - Stochastic - Traffic Light Control

Table 15: An overview of the settings used for scenario 3 (TL).

Property Value

Number of bus agents 6
Capacity busses Infinite
Capacity stops 1

Edges with traffic lights All
Arrival function nodes Poisson

Destination distribution nodes 10% for the coming 10 stops
Passenger arrival rate 1 passenger per minute for all stops

Boarding rate 3 seconds per passenger
Alighting rate 1.8 seconds per passenger

Dwell time function nodes Maximum boarding and alighting time
Stochastic

Travel time edges

Type: Lognormal
Min: 120 seconds
Mean: 240 seconds
Max: 480 seconds

Observation space bus agents Size: 1
Value: [backward headway - forward headway]

Observation space traffic light agents Size:1
Value: [backward headway - forward headway]

Action space bus agents
Size: 7

Affects: Holding time
Value: [0, 30, 60, 90, 120, 150, 180] seconds

Action space traffic light agents
Size: 1

Affects: Delay bus at traffic lights
Value: [-10, +0, +10] seconds

End trigger t = 4000 seconds

Reward function Moment: End of simulation
Based on: Average travel time
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A.4 Scenario 4 - Deterministic - Heterogeneous

Table 16: An overview of the settings used for scenario 4 (DH).

Property Value

Number of bus agents 6
Capacity busses Infinite
Capacity stops 1

Edges with traffic lights None
Arrival function nodes Poisson

Destination distribution nodes 10% for the coming 10 stops

Passenger arrival rate stops Unit: Passengers per minute
[0.5, 0.5, 0.8, 1, 1, 3, 4, 2, 1, 0.75, 0.6, 0.5]

Boarding rate 3 seconds per passenger
Alighting rate 1.8 seconds per passenger

Dwell time function nodes Maximum boarding and alighting time
Deterministic

Travel time edges Type: Deterministic
Length: [360, 360, 300, 240, 240, 120, 90, 150, 240, 240, 240, 300] seconds

Observation space bus agents Size: 2
Value: [backward headway - forward headway, position]

Observation space traffic light agents Not present

Action space bus agents
Size: 7

Affects: Holding time
Value: [0, 30, 60, 90, 120, 150, 180] seconds

Action space traffic light agents Not present
End trigger t = 4000 seconds

Reward function Moment: End of simulation
Based on: Average travel time

72



A.5 Scenario 5 - Realistic

Table 17: An overview of the settings used for scenario 5 (RE).

Property Value

Number of bus agents 6
Capacity busses Infinite
Capacity stops 1

Edges with traffic lights [0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0]
Arrival function nodes Poisson

Destination distribution nodes 10% for the coming 10 stops

Passenger arrival rate stops Unit: Passengers per minute
[0.5, 0.5, 0.8, 1, 1, 3, 4, 2, 1, 0.75, 0.6, 0.5]

Boarding rate 3 seconds per passenger
Alighting rate 1.8 seconds per passenger

Dwell time function nodes Maximum boarding and alighting time
Stochastic

Travel time edges

Type: Lognormal
Min: [180, 180, 150, 120, 120, 60, 45, 75, 120, 120, 120, 150] seconds

Mean: [360, 360, 300, 240, 240, 120, 90, 150, 240, 240, 240, 300] seconds
Max: [720, 720, 600, 480, 480, 240, 180, 300, 480, 480, 480, 600] seconds

Observation space bus agents Size: 2
Value: [backward headway - forward headway, position]

Observation space traffic light agents Size:1
Value: [backward headway - forward headway]

Action space bus agents
Size: 7

Affects: Holding time
Value: [0, 30, 60, 90, 120, 150, 180] seconds

Action space traffic light agents
Size: 1

Affects: Delay bus at traffic lights
Value: [-10, +0, +10] seconds

End trigger t = 4000 seconds

Reward function Moment: End of simulation
Based on: Average travel time

73



B Data Analysis

Figure 26: The observed driving time distribution on route segments 0 to 5 plotted with a log normal fit and
the planned driving time by the operator.
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Figure 27: The observed driving time distribution on route segments 6 to 11 plotted with a log normal fit and
the planned driving time by the operator.
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Figure 28: The observed driving time distribution on route segments 12 to 17 plotted with a log normal fit and
the planned driving time by the operator.
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Figure 29: The observed driving time distribution on route segments 18 to 23 plotted with a log normal fit and
the planned driving time by the operator.
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Figure 30: The observed driving time distribution on route segments 24 to 29 plotted with a log normal fit and
the planned driving time by the operator.
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Figure 31: The observed driving time distribution on route segments 30 to 35 plotted with a log normal fit and
the planned driving time by the operator.
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