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Abstract 

The optimization of ship energy consumption is attracting a great deal of attention, as societies 

seek to save energy and reduce emissions. Shipping companies are more concerned with the energy 

consumption of a ship fleet, as opposed to that of a single ship. Because the energy consumption of a 

fleet is influenced by multiple factors including environmental factors, port operations and transport 

demands, an improvement in a single ship’s energy consumption does not necessarily mean that the 

overall energy consumption of a fleet is good. In addition, those factors are usually varying over time, 

making it hard to optimize the fleet’s energy consumption by methods that do not consider these 

time-varying factors. Therefore, a bi-level distributed dynamic optimization method based on 

distributed model predictive control is proposed. Moreover, an upper-level optimization model for 

fleet operational decision-making and a lower-level dynamic optimization model of fleet energy 

consumption are established. Based on these, a control algorithm for the dynamic optimization of 

fleet energy consumption is developed. Finally, a case study is carried out to demonstrate the 

effectiveness of the method. It can further reduce the energy consumption of each ship by at least 1.1% 

and about 6.8% for the whole fleet. 

Keywords: Fleet energy consumption; EEOI; speed dynamic optimization; distributed model 

predictive control 
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Nomenclature 

k The serial number of time steps h  Average wave height (m) 

j# The serial number of ships gmain Fuel consumption rate (g/kWh) 

t Time at different time step (h) Ttotal Total operational time of a voyage (d) 

Vg Sailing speed to ground (m/s) Tnav Sailing time (d) 

Vs Sailing speed to water (m/s) Tlimit Limit of the sailing time of the ship (d) 

Sleg Distance of the different legs (m) Vw Water speed (m/s) 

RT Calm water resistance (N) Twait Waiting time in the port (d) 

RF Frictional resistance (N) Tload Cargo loading and unloading time (d) 

RAPP Appendage resistance (N) S Distance of the whole voyage (m) 

RW Resistance for breaking waves (N) L  Loading efficiency (t/d) 

RB Resistance due to bulbous bow (N) U  Unloading efficiency (t/d) 

RTR Resistance of stern leaching (N) qaux Fuel consumption of auxiliary engines (t) 

RA Ship related resistance (N) gaux Fuel consumption per unit of time (t/d) 

k1 Viscous resistance factor of the ship N Number of ships in the fleet 

Rwave Wave adding resistance (N) Ttotal, limit Limit of the total fleet operational time (d) 

Fr Froude number (Dimensionless) Wload, total Total cargo mass of the fleet (t) 

h Height of wave (m) Wload Cargo mass of the ship (t) 

Lwl Length of waterline (m) nmin Minimum engine speed (r/min) 

ρ Water density (kg/m^3) nmax Maximum engine speed (r/min) 

SW Wet area of the ship (m^2) Vmin Minimum sailing speed (m/s) 

Rwind Wind resistance (N) Vmax Maximum sailing speed (m/s) 

Cwind Coefficient of wind resistance Vwater Water speed (m/s) 

ρair Air density (kg/m^3) Vwind Wind speed (m/s) 

AT Windward area (m^2) H Water depth (m) 

Vwind Relative wind speed (m/s) h Wave height (m) 

Rshallow Resistance as for shallow water (N) M The number of steps 

Rdeep Resistance as for deep water (N) Qtotal Total energy consumption (t) 

fs Conversion coefficient τ Current iteration times 

H Water depth (m) X  Position of the particle 

d Ship draft (m) best
p  The previous optimum 

R Total resistance of the ship (N) best
g  The global optimum 

PB Power of the main engine (kW) r1, r2 Random numbers between 0 and 1 

K Number of the propellers c1, c2 Learning factors (Dimensionless) 

KQ Coefficient of torque V  The updating speed (Dimensionless) 

w Wake coefficient w Weight of inertia (Dimensionless) 

ηS Shaft transfer efficiency wmax Maximal inertia factor 

ηG Gearbox efficiency wmin Minimal inertia factor 

ηR Efficiency of rotation itercurrent Current number of iteration times 

KT Thrust coefficient itermax Maximal number of iteration times 

J Propeller advance coefficient Dt_j Deadweight of the j# ship (t) 

t Coefficient of thrust deduction Ccarbon CO2 conversion rate of the fuel 

qmain Fuel consumption of main engine (g/m) MCO2 Amount of CO2 emissions (t) 

Wload Cargo mass (t) s( )Y k  System state at time step k 

wV
 

Average water speed (m/s) total( )S k  Total sailing distance at time step k (m) 

windV  Average wind speed (m/s) s( )d k  Disturbance of the system at time step k 

H  Average water depth (m) s( )u k  Control input at time step k 
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1. Introduction 

 Waterway transportation, as the most fuel-efficient and economic way of shipping goods, has 

undergone great developments in recent years (Zheng et al., 2019). The worldwide seaborne 

transportation volume was about 10 billion tons in 2015 (UNCTAD/RMT, 2016). For the inland 

waterway transport, taking Yangtze River as an example, the amount of cargo transport was about 

1.92 billion tons in 2013 (Tang, 2014). Apparently, Waterway transportation plays an important role 

in both nationwide and worldwide trades. However, the shipping industry is now obliged to reduce 

emissions of greenhouse gases and pollutants. A research conducted by IMO showed that more than 

900 million tons of CO2 is emitted by maritime transport in 2012, accounting for 2.6% of the total 

emissions over the world (MEPC, 2014). These emissions would increase about twice by 2050 if 

actions were taken (MEPC, 2014). Among others, the total emissions from all ships on the Yangtze 

River would be more than 5 million tons (Cai, 2010). Meanwhile, confronted with the depressed 

market, shipping companies are making every effort to control the fuel cost, the main component of 

their operating costs (Lützen et al., 2017; Johnson et al., 2014). Therefore, there is an increasing need 

to reduce the fuel consumption and CO2 emissions (Poulsen and Johnson, 2016). 

In recent years, some research has been done on the fleet energy consumption optimization and 

management (Ronen, 2011; Andersson et al., 2015; Song and Yue, 2016; Wang et al., 2013b; Coraddu 

et al., 2014; Song et al., 2015; Wang and Meng, 2012a; Wen et al., 2017; Xia et al., 2015). 

Frangopoulos (2018) carried out a detailed analysis of the optimization of energy systems, including 

static optimization and dynamic optimization method, and optimization in modeling of energy 

systems and modeling for optimization and so on. It is important for the research and development of 

the modeling and optimization of energy systems. In addition, Sakalis and Frangopoulos (2018) 

proposed a novel intertemporal modeling and optimization approach for the integrated energy 

systems in order to achieve the analysis and optimization of energy systems. Lindstad et al. (2011) 

investigated the influence of speed on the emissions of greenhouse gases and operating costs for 

different kind of ships. Their results indicate that maritime industry can achieve a significant 

reduction in CO2 emissions. Cepeda et al. (2017) studied the impact of speed reduction on fleet 

economy and emissions by establishing a simulation model of a fleet. The result shows that the fleet 

can operate with higher efficiency when the speed reduction strategy is adopted. Although sailing 

speed is the major factor for ship energy consumption, other factors such as the environmental 

conditions and port operations also make an influence. Wang and Meng (2012b) suggested that 
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energy consumption could be different even with the same speed due to the different environmental 

conditions, and established a non-linear model, in order to achieve speed optimization for container 

ships. Qi and Song (2012) studied on the design optimization of vessel schedule by accounting for 

the stochastic port time and frequency requirement, for reductions in both total energy consumption 

and emissions. Meng et al. (2016) proposed an effective optimization method based on a study on the 

interrelation between energy consumption and its influencing factors (speed, environmental 

conditions, and displacement) by analyzing shipping log data. Fleet energy consumption is not only 

related to speed and navigational environment, but also to ship loading, engine speed, sailing time, 

port operation time and market transport demand. In general, the above-mentioned optimization 

methods only considered one or a few influencing factors on the sea-going fleet energy consumption 

from the point of view of maritime logistics. Few studies, however, have addressed the 

comprehensive impact of multiple factors. In addition, these factors are usually dynamic with a high 

degree of randomness. In this regard, however, research is still lacking on the dynamic optimization 

of fleet energy consumption. 

In addition, compared with sea-going ship fleets, the sailing speeds for inland ship fleets are 

harder to optimize, due to the more complicated environmental conditions of the inland waterway 

and the uncertainty in the port operations (Wang et al., 2015). Sun et al. (2013) studied the energy 

consumption of an inland river ship in various sailing states and identified the influence of 

navigational environment and speed on the fuel consumed by an inland river ship. Yan et al. (2015) 

analyzed the sensitivity of the weather factors on affecting the ship energy consumption using a 

machine learning method. Wang et al. (2017b) investigated a sailing speed optimization method 

based on route division through big data analysis that further promoted the development of the 

energy consumption optimization of inland river ships accounting for multiple environmental factors. 

Despite the fruitful achievements on energy consumption optimization for a single inland river ship, 

there has been little study on the inland river ship fleets, let alone the dynamic optimization method 

considering multiple time-varying influencing factors. This paper aims to fill this gap. The integrated 

models we established could be used for the strategic optimization managements for the inland river 

ship fleet. 

 In support of this approach on the dynamic optimization method considering multiple 

time-varying influencing factors, we develop a bi-level optimization model incorporating a high-level 

optimization model for operational decision-making and a low-level dynamic optimization model for 
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energy consumption. For the dynamic optimization and control problem, the model predictive control 

(MPC) has attracted extensive research, because of its better dynamic control performance and the 

ability of compensating for disturbances caused by dynamic factors (Negenborn et al., 2008; Xin et 

al., 2015; Zheng et al., 2016; Liu et al., 2015). In the practical operation, it is difficult to 

communicate effectively between ships and to achieve the centralized control from the shipping 

company. Therefore, we propose to adopt DMPC to optimize the energy consumption for each ship in 

the fleet. DMPC is a control strategy that can deal with control problems in large-scale systems 

caused by organizational couplings between different parties, limited control access and 

communication ability of different parties (Li et al., 2016). DMPC strategies have been adopted in 

many different controlled systems and applications, giving good performances (Spudić et al., 2015; 

Christofides et al., 2013; Zheng et al., 2017; Souza et al., 2015; Real et al., 2013; Negenborn and 

Maestre, 2014). To the best of our knowledge, no one has applied DMPC strategies in the operation 

optimization of ship fleets for reducing energy consumption and CO2 emissions. In this paper, this 

approach is proposed to take for the dynamic optimization for inland river ship fleets. 

 This paper is an extension to the authors’ earlier work Wang et al. (2016, 2018). The contribution 

of this paper is twofold. From theoretical perspective, we established a fleet energy consumption 

model accounting for multiple varying influencing factors. The established model can illustrate the 

fleet energy consumption under different operational states effectively. From the practical viewpoint, 

we generalized the optimization method for a single ship to a system-level distributed dynamic 

optimization for a fleet by adopting the DMPC strategy based on the updated operational information. 

Our control algorithm and controller can obtain the dynamic optimization for fleet energy 

consumption under continuously changing conditions. The proposed bi-level distributed dynamic 

optimization method could assist ship owners in fleet-wide energy consumption optimization, with 

the capability of decision-making for operation optimization and energy saving. 

 This paper is organized as follows. The method proposed in this paper is briefly illustrated in 

Section 2. Then, a bi-level optimization model incorporating a fleet operational decision-making 

model and energy consumption optimization under time-varying operational conditions is established 

in Section 3. Subsequently, the dynamic optimization algorithm and controller based on DMPC 

strategy are designed in Section 4. Afterwards, a case study is carried out to validate the proposed 

dynamic method for fleet energy consumption optimization in Section 5. Finally, conclusions and the 

future research work are detailed in Section 6. 
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2. Method 

 The energy consumed by a fleet is related to multiple influencing factors, such as transport 

demands, environmental factors, port information and ship operational conditions. These factors are 

usually continuously varying over time. Moreover, the management of fleet energy consumption 

involves fleet operation optimization decision-making by the shipping company and single-ship 

navigation optimization by the controller on each ship. Only by overall management and 

optimization can we optimize the energy consumption, meanwhile meeting the transport demands of 

the fleet. Therefore, a bi-level distributed dynamic optimization method for fleet energy consumption 

is proposed in this paper, as showed in Fig. 1. It mainly includes an upper-level optimization model 

for the fleet operational decision-making, and a lower-level dynamic optimization model for the fleet 

energy consumption considering multiple influencing factors. 
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Fig. 1  The bi-level distributed dynamic optimization for the fleet energy consumption 
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2. 1 Upper-level optimization method for the fleet operation decision-making 

 The upper-level optimization method of fleet operation refers to the decisions made by the 

shipping company to increase revenue and reduce energy cost. As shown in Fig. 2, given the certain 

transport demand of fleet, shipping company could achieve the fleet operation optimization through 

the established fleet operation decision-making model considering multiple influencing factors. 

Those factors include port information (waiting time, loading and unloading efficiency in the port), 

navigational environment, total time requirement and specific parameters of each ship. Finally, the 

optimal cargo mass as well as sailing speed of each ship would be determined to improve economy 

and energy consumption of the fleet, meanwhile ensuring the completion of cargo transport tasks 

within the scheduled time. In this level, the sailing speed optimization is based on the constant 

environmental factors and port information, not considering the dynamics of these factors. Therefore, 

the decided sailing speeds are constant along the entire voyage, and there are still potentials for better 

fleet energy efficiency when considering the dynamics of those influencing factors. In order to 

complete the transportation task within the scheduled time, the sailing time under the decided sailing 

speed would be set as the time constraint of each ship for the lower-level navigation optimization 

model. 

Navigational 

environment

Ship 

parameters

Port 

information

L
o
ad

in
g
 an

d
 d

ra
ft o

f sh
ip

s

S
h
ip

 sailin
g

 sp
eed

Sailing time 

requirements

Total transport 

demands

1# ship

2# ship

N # ship

Decision-making model for 

fleet operation optimization 

considering multiple factors

Reduce 

energy 

consumption

&

Increase 

revenue of 

the 

compamy

 

Fig. 2  Illustration of the fleet operation optimization method 

2. 2 Lower-level dynamic optimization method for the fleet energy consumption 

 In the lower-level dynamic optimization method, the dynamics of environmental factors and port 

information are both considered, thus to reach the high potential of energy consumption optimization. 

A route could be divided into different segments according to the k time steps. As shown in Fig. 3, at 

step 1, the optimal sailing speeds under the current operational conditions can be determined by the 

constructed optimization model and solving method, utilizing the information on navigational 
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environment and port operation. The j# ship will be operated at this optimal speed Vg, j (1, 1) in the 

first leg within this step. Afterwards, the updated environmental conditions and port information 

would be available again before the ship arrives at position A1. Then, the optimal sailing speeds 

corresponding to the updated information for the left n-1 sailing legs will be obtained by re-running 

the optimization model and solution method. When the j# ship reaches position A1, it would be 

controlled to sail at the optimized sailing speed Vg, j (2, 1) in the second leg within the second step. 

Similarly, continuous optimizations and controlling will be carried out until the ship arrives at the 

destination. In this way, from the time-varying information on the navigational environment and port 

operation, a dynamic optimization in the energy consumption can be achieved. The DMPC strategy 

based dynamic optimization can keep the optimal solutions at each step, namely, each ship could 

operate at the optimal speeds during each step. 

Vg, j(1, 1) Vg, j(1, 2) Vg, j(1, 3) …… Vg, j(1, k)

Sleg, j(1, 1) Sleg, j(1, 2) Sleg, j(1, 3) Sleg, j(1, k)t1 t2 t3 tktn-1t0

Disturbance including environment and port information between A and B

A1 A2 A3 An-1

Vg, j(2, 1) Vg, j(2, 2) Vg, j(2, k-1 )

……

Vg, j(k, 1)

Step 2

……

……

……

……

Step k

A B

Vg, j(k-1, 1)Step k-1 Vg, j(k-1, 2)

……

tk-2

Vg, j(1, k-1)An-2

…… ……

…… ……

Sleg, j(1, k-1)

Step 1

Step 3

Vg, j(2, k-2 )

 

Fig. 3  The dynamic optimization process for fleet energy consumption 

 Through the above-mentioned bi-level distributed dynamic optimization method, the full 

potential of energy consumption optimization for the fleet can be realized. The fleet operational 

decisions can be made, taking various influencing factors into account. In addition, the dynamic 

energy consumption optimization for each ship can be achieved in a distributed way, according to the 

updated weather conditions and port operational information. These two models, among others, are 

the key to the dynamic optimization for the fleet energy consumption. 
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3. Dynamic optimization Model of fleet energy consumption 

3. 1 Fleet operational decision-making model considering multiple influencing factors 

The fleet operational decision-making model is aimed at reducing the energy consumption by 

determining the optimal sailing speeds and cargo loads. The operational conditions including the 

navigational environment and port operation have a huge influence on the speed optimization results 

and thus the fuel consumption. The effect of operational conditions is mainly due to their impact on 

the ship resistance. The fuel consumption can be obtained through the energy conversion analysis 

among hull-propeller-engine by analyzing the resistance of the ship under specific sailing speeds and 

navigational conditions. The total resistance, including the resistance in calm water (Holtrop and 

Mennen, 1982), resistance of wave and wind (Kwon, 2008), resistance in shallow water (Hu, 1986), 

can be expressed as follows: 

T F 1 APP W B TR A
(1 )R R k R R R R R                                                     (1) 
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2 ( )
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                                                               (5) 

T wave wind shallow
R R R RR                                                              (6) 

 As for a given sailing speed, the generated power and related energy consumption of the main 

diesel engine is expressed as (Wang et al., 2018): 

  Q,

B,

S, G , R , T,

g, w, 2 (1 )

(1 )

j j

j

j j j j

j j j

j j j

R V K w
P

K K J t
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                                  (7) 
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j j j j j
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j j j j j
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In addition, under a specific sailing speed, the total operational time of the ship for a voyage can 

be expressed as: 

L U

total, nav, wait, load, g, wait, load, load,/ / 3600 / /j j j j j j j j j jT T T T S V T W W                      (9) 

Moreover, the energy consumption of the auxiliary engines can be expressed as: 

aux, total, aux,j j jq T g                                                         (10) 

 Above all, the upper-level optimization is nonlinear with the minimum total fuel consumption of 

the ship fleet as the objective, as shown: 

  q, load, g,total w, wind, main, aux,

1

, , , , , ,min  
j j j

N

j j j j j j

j

W V V V HFQ h g S q


                       (11) 

 Subject to the following constraints: 

g, nav,j jV T S                                                              (12) 

 total total, limit,total

1

T
N

j

j

T T


                                                   (13) 

load, load,total

1

N

j

j

W W


                                                        (14) 

 g, w,min, engine_speed max,j jj jV Vn f n  
   

                                       (15) 

g, w,min, max,j jj jV VV V  
 
                                                   (16) 

 In Eq. (11), the cargo loading and sailing speeds of each ship are the decision variables. Fq, j() 

means the energy consumption function that take the cargo mass, ship sailing speed, water and wind 

speed, water depth and wave height as the input variables, and take the energy consumption of the 

main diesel engine as the output variable. Constraints (12)–(14) ensure that the j# ship could 

complete its entire voyage and transport demands within the scheduled time. Constraints (15) and 

(16) are the physical constraints for the engine speed and sailing speed of the j# ship respectively, in 

order to avoid overloading.  

3. 2 Dynamic optimization model of fleet energy consumption under time-varying conditions 

According to Eq. (7), the main engine output power of the j# ship at time step k can be obtained 

as: 
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On this basis, the consumed fuel of the main diesel engine per unit of distance for the j# ship 

at time step k is shown as: 
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                               (18) 

In addition, the total energy consumption of the auxiliary engine of the j# ship can be expressed 

as: 

, lim , ,aux j it j aux jq T g                                                         (19) 

Then, the remaining navigational time of the j# ship at time step k is: 

nav, limit, wait, load, load, nav, 

1
L U

1

/ / / ( 1)( )
jk j jk j j ji

k

jk jk

i

T T T W W T M k 




                     (20) 

Above all, the dynamic optimization of the fleet energy consumption is also nonlinear with the 

minimal total energy consumption as the objective, as expressed by: 
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 Subject to the following constraints: 

g,

- +1
nav,

total ( -1)

1 1
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S S

- k +

 
   

 
                                          (22) 

 g,min, engine_speed w, max,jkj jk jVN f V N  
                                      (23) 

g,min, w, max,jkj jk jVV V V  
 
                                                (24) 

 For this optimization model, the optimization variables are the sailing speeds of each ship at each 

time step. Constraint (22) ensures the ship reaches the destination within the scheduled time. 

Constraints (23) and (24) are the physical constraints for the main diesel engine and navigation 

speed of the j# ship respectively, which can avoid overloading. 
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The adopted DMPC strategy can be used to predict the results of the energy consumption system 

according to the historical data, including the current state, and the current and future inputs and 

disturbance of the system. For the dynamic optimization of fleet energy consumption in this paper, 

the current state mainly includes the distance of sailing and weather information as well as port 

operational information, which can be expressed as: 

nav, ( 1)

s, total, g, ( 1)

1

( ) ( )
k

j k i

j j j k i

i M

T
Y k S k V

- k +i

 

 



  
 
 
 


  

                                    (25) 

 g,s, ( 1) w, ( 1) wind, ( 1) ( 1) ( 1) , ( 1) 1,  2,  ...,( ) { , , , , , },  
jj k i j k i j k i j k i j k i wait j k iV Md k V V H h T i                   (26) 

Thus, the dynamics of the energy consumption optimization system at step k can be represented 

as follows: 

 s, s, s, s s,
( 1) F ( ), ( ), ( )

j j j , j j
Y k Y k u k d k                                         (27) 

4. Distributed control algorithm and controller design 

4. 1 Control algorithm 

 The DMPC based control algorithm for dynamic optimization of fleet energy consumption is 

developed, as shown in the Algorithm 1. 

Algorithm 1 

1. Initialize the state of fleet operation decision-making system (including the transport 

demands, navigational environment and the port operation information); 

2. Solve the established upper-level optimization model of fleet operation considering 

multiple factors, in order to obtain the cargo loading mass and sailing speed of each 

ship. Meanwhile determine the sailing time constraint for the lower-level optimization; 

3. for j=1:N   do 

4. When the time step is k=0, the state and disturbance of the system are initialized 

(including navigational environment, port operation information and sailing time 

constraints); 

5. while k≤M   do 

6. Obtain the current state Ys, j(k) and disturbance ds, j(k) of the system at time step k, and 

obtain the optimal solutions (Vg, jk ,…, Vg, jM) as the input of the system (us, j(k),…, 

us,j(M)); 

7. Only adopt the optimal decision us, j(k), leading to the new system state Ys, j(k+1); 



13 
 

8. k←k+1 and return to the Step 5; 

9. end while 

10. end for 

As shown in Fig. 4, the solving process of the upper-level nonlinear optimization model based 

on the modified Particle Swarm Optimization (PSO) mainly includes: 

Step 1: Initialize NS particles in 2N dimensions, and obtain the optimal values of individual and 

group by Eq. (11); 

Step 2: Update the speed and location of the particle. These particles’ positions are updated based 

on their speeds, giving: 

 
1

best max1 1 2 2best 1,  2,  ,  1( ) ( )   X XV w V c r p c r g
    

 


         
           

   (28) 

 
1 1

max   1,  2,  ,  1X X V
  

 
 

                                     (29) 

In order to guarantee optimality of the results, the method of linear decreasing inertia weight is 

adopted in this paper, as shown in Eq. (30). At the beginning of iteration, the larger inertia weight is 

adopted to guarantee the strong global search ability of the algorithm, and in later iterations, the 

lower inertia weight is used to ensure the accurate local search of the algorithm, thus improving the 

accuracy of the algorithm. 

max max min current max( ) /w w w w iter iter                                             (30) 

Step 3: Calculate the fitness values of the particles that meet the Constraints (12)-(16), and then 

obtain the updated optimal values of individual and population; 

Step 4: Go to Step 2 and repeat until the preset threshold or iteration times are reached. In this 

way, the optimal sailing speeds along the route and the loading weight of each ship can be achieved. 
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Fig. 4  The solving process of the nonlinear optimization model based on PSO 

Similarly, the process of solving the lower-level nonlinear optimization model mainly includes 

the following steps: 

Step 1: Initialize Nx particles in M-k+1 dimensions, and obtain the individual and group optimal 

values by calculating the fitness values of the particles through Eq. (21); 

Step 2: Update speeds and positions of the particles by Eq. (28) and Eq. (29) at each time step; 

Step 3: Calculate the fitness values of the particles that meet the constraints (22)–(24), and then 

obtain the updated optimal values of individual and population; 

Step 4: Go to Step 2 and repeat until the algorithm reaches the preset threshold or iteration times. 

In this way, the optimal speeds are achieved as (Vg, jk, …, Vg, jM), which are also the system’s inputs 

(us(k), …, us(M)). 

4. 2 Controller design 

 According to the above-mentioned algorithms, a DMPC-based dynamic optimization method 

and controller for fleet energy consumption is proposed, as shown in Fig. 5. It includes a central 

decision-making optimizer and a dynamic optimization of fleet energy consumption (DOFEC) 
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controller. Firstly, the central decision-making optimizer determines the optimal sailing speeds and 

load weights for each ship, thus to improve the economy under the sailing time and transport 

demands constraints. Then the upper-level optimal solutions are taken as the inputs of the controller 

for each ship. The controller achieves the optimal solutions at each step through the low-level 

optimization model, and then executes the first decision through the optimization system. This 

DOFEC controller can make up for disturbances resulting from the constantly changing weather 

conditions and port operations. Consequently, the dynamic optimization can be achieved, realizing 

the dynamic optimization of fleet energy consumption. 
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DOFEC controller
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Fig. 5  The dynamic optimization controller for the fleet energy consumption optimization 

5. Case study 

5. 1 Numerical experiment 
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 This paper takes as the research target a fleet consisting of five cargo ships from a major Chinese 

marine shipping company, sailing on the Yangtze River. The basic parameters of those ships are 

illustrated in Table 1. 

The ship fleet sails from Shanghai port to Wuhan port along the Yangtze River, as shown in Fig. 

6. The voyage time constraint is 38 days and the total transport amount is 20672 tons from the 

practical point of view. Under the normal weather condition, it usually takes about 8 hours for the 

weather to change at a certain extent according to the weather analysis and so the total number of 

time steps is set as nine with about 8 hours for each time step. In addition, based on the characteristic 

analysis on the environment and port operation data, the updated information on the navigational 

environment and port operation information at different time steps are shown in Table 2. This 

numerical study aims to demonstrate the validity of the dynamic optimization method. 

Table 1.  Parameters of the target fleet 

Parameters Ship 1# Ship 2# Ship 3# Ship 4# Ship 5# 

Length (m) 77 85.88 85.88 90 99.8 

Width (m) 15.8 15.84 15.84 16.2 16.25 

Depth (m) 5.6 6 6 6 5 

Deadweight (t) 3600 4830 4830 5130 4579 

Engine power (kW) 528×2 600×2 600×2 720×2 528×2 

Engine speed (r/min) 1200 1500 1500 1450 1200 

P_Shaft
Fuel Consumption

Chongqing

Fengjie

Yichang Wuhan

Jiujiang

Tongling

Nanjing

Shanghai

Upper reach Middle reach Lower reach

Wanzhou

The sailing route of the fleet

 

Fig. 6  The sailing route of the fleet 
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5. 2 Optimization result 

5.2.1 Upper-level optimization result of fleet operation decision-making 

The parameters required for the upper-level optimization in terms of the fleet operation decision 

making are shown in Table 3. By adopting the above-established model and solving method, we 

obtained the optimal sailing speeds along the entire route and the optimal cargo loading weights for 

each ship, as shown in Figs. 7 and 8, respectively. 

 

Fig. 7  The sailing speed of each ship along the entire route 

  

Fig. 8  The weight of cargo loading for each ship 
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Table 2.  Navigational environment information and port operation information at different time steps 

Time 
 

steps 

Navigational environment information at different positions Port operation information 

121.3169 E;  31.5706 N                                                                                                          121.3159 E;  31.5716 N 

… 

114.8045 E;  30.6127 N Waiting time (d) 

Vwind 

(m/s) 

Dwind 

(deg) 

Hw 

(m) 

Vw 

(m/s) 

H 

(m) 

Vwind 

(m/s) 

Dwind 

(deg) 

Hw 

(m) 

Vw 

(m/s) 

H 

(m) 

Vwind 

(m/s) 

Dwind 

(deg) 

Hw 

(m) 

Vw 

(m/s) 

H 

(m) 
1 # 2 # 3 # 4 # 5 # 

1 7.5 88 13 0.0 0.6 8.1 97 13 0.0 0.3 … 6.5 61 14 0.0 0.7 0.6 0.6 0.6 0.6 0.6 

2 0.9 137 70 0.4 0.7 1.1 289 98 1.3 0.6 … 13.0 346 29 1.4 0.3 0.4 0.4 0.5 0.5 0.5 

3 10.7 116 11 1.5 0.5 10.8 317 21 0.1 0.8 … 10.7 90 37 0.7 0.8 0.5 0.6 0.5 0.5 0.4 

4 7.3 324 94 0.9 0.9 6.5 358 121 0.5 0.7 … 11.4 246 124 1.3 0.9 0.5 0.4 0.6 0.5 0.5 

5 6.9 163 24 1.1 0.2 0.3 244 89 0.5 0.8 … 6.3 219 75 0.7 0.2 0.5 0.6 0.5 0.6 0.5 

6 10.0 81 81 1.4 0.4 10.3 14 58 0.8 0.3 … 7.3 236 92 1.4 0.9 0.5 0.5 0.4 0.4 0.5 

7 9.9 189 54 0.0 0.5 9.2 64 139 0.4 0.5 … 4.2 314 101 1.6 0.8 0.6 0.4 0.5 0.4 0.4 

8 2.2 245 133 1.8 0.2 12.6 125 106 1.5 0.2 … 7.1 73 65 0.3 0.8 0.5 0.4 0.6 0.5 0.5 

9 4.5 302 63 1.4 0.1 4.0 313 72 1.3 0.2 … 0.8 53 99 1.6 0.7 0.5 0.5 0.5 0.5 0.4 

Table 3.  Parameters for the upper-level operational decision-making model 

Parameters c1 c2 wmax wmin itermax 
U/L

j (t/d) Twait,j (d) 

Values 2 2 0.9 0.4 150 5000 0.5 

Parameters Dt_1 (t) Dt_2 (t) Dt_3 (t) Dt_4 (t) Dt_5 (t) S (km) Wload, total (t) 

Values 3600 4830 4830 5130 4579 1124.78 20672 
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5.2.2 Lower-level dynamic optimization result of fleet energy consumption 

 The operation time for each ship, obtained from the upper-level optimization, is used as the 

time constraint for the dynamic optimization of the lower-level fleet energy consumption, as 

shown in Table 4. In addition, other parameters required for dynamic optimization of the fleet 

energy consumption in the lower level are showed in Table 5. By adopting the above model and 

solving method, we get the optimal results including the optimal sailing speeds and energy 

consumption. In addition, the EEOIs (energy efficiency operational index of single ship) for each 

ship can be obtained by Eq. (31), in which, Ccarbon means CO2 conversion rate of the fuel and it is 

3.206 for the diesel oil (Burel et al., 2013). 

total carbon

load

Q C
EEOI

W S





                                               (31) 

The obtained optimal sailing speeds, energy consumption, and EEOIs of different ships by 

the bi-level dynamic optimization method are shown in Figs. 9-13. In addition, in order to 

demonstrate the validity of the dynamic optimization method for fleet energy consumption, we 

also obtain the optimization results in terms of the speeds, fuel consumption and EEOIs for each 

ship at different steps by the static method, as shown in Figs. 9-13. The static optimization in this 

paper means that it does not consider the time-varying environment at different time steps, and 

assumed that the environment at the same location is unchanged over the time. Therefore, the 

optimization process for a whole voyage before starting the voyage is only carried out once. 

Table 4.  The voyage time in the upper level and time constraint for the lower level 

Item Ship1# Ship 2# Ship 3# Ship 4# Ship 5# 

Voyage time 

in the upper level (d) 
6.183 8.227 7.752 8.392 7.447 

Time constraint 

for the lower level (d) 
6.183 8.227 7.752 8.392 7.447 

Table 5.  Parameters for the lower-level fleet energy consumption optimization 

Parameters c1 c2 wmax wmin itermax 

Values 2 2 0.9 0.4 100 
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Fig. 9  The navigation optimization results of the 1# ship 

 

Fig. 10  The navigation optimization results of the 2# ship 

 

Fig. 11  The navigation optimization results of the 3# ship 
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Fig. 12  The navigation optimization results of the 4# ship 

 

Fig. 13  The navigation optimization results of the 5# ship 

5. 3 Results analysis and discussion 

5.3.1 Comparative analysis 

As can be seen from Figs. 9-13, the optimized speeds at each time step are different due to 

the differences in the navigational environment and port operation time. The time-varying 

environment and port operation time can add to the optimization potentials for the fleet energy 

consumption. In addition, the energy consumption, CO2 emissions and EEOIs for each ship 

adopting the dynamic and static optimization methods are shown in Table 6. Among others, the 

CO2 emission is obtained by: 

2CO total carbonM Q C 
                                                   (32) 

By comparing the data in this table, we can see that the dynamic optimization can further 
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improve the fleet energy efficiency than the static method that does not consider the time-varying 

environment. The maximum reduction is 2.03% (2# ship) and the minimum reduction is 1.13% 

(3# ship). What’s more, we can reduce the energy consumption of the 1#, 4# and 5# ships by 

1.69%, 1.42% and 1.93% respectively. Therefore, the proposed dynamic optimization method of 

fleet energy consumption can help to effectively abate the fuel consumption and CO2 emissions, 

and thus improve the fleet energy efficiency. 

Table 6.  A comparison between the dynamic and static optimization results 

Items 
Ship 

1# 

Ship 

2# 

Ship 

3# 

Ship 

4# 

Ship 

5# 

Static 

optimization 

Fuel consumption (t) 8.33 9.41 9.17 9.16 8.26 

CO2 emissions (t) 26.71 30.16 29.41 29.37 26.47 

EEOIs [g/(t·n mile)] 12.68 11.38 13.15 10.09 9.98 

Dynamic 

optimization 

Fuel consumption (t) 8.19 9.22 9.07 9.03 8.10 

CO2 emissions (t) 26.26 29.55 29.07 28.95 25.96 

EEOIs [g/(t·n mile)] 12.46 11.15 13.00 9.95 9.79 

Reduced percent (%) 1.69 2.03 1.13 1.42 1.93 

In addition, the proposed dynamic optimization method considers the time-varying 

environment and external factors, making it can reflect the actual situation and have more 

accurate optimization results than the static optimization method. Therefore, it can be concluded 

that the larger the change in the environment with time, the more the result of the static 

optimization deviates from the optimal value, and the dynamic optimization method will have a 

better optimization effect than the static optimization method. From the optimization results, we 

can see that for the 2# ship, the largest differences occur between the dynamic optimization 

speed and the static optimization speed due to the time-varying navigational environment. 

Therefore, it has the largest optimization percent of energy consumption compared with other 

ships. On the contrary, for the 3# ship, the least differences are found between the dynamic 

optimization speed and the static optimization speed. The optimization results show that it has 

lowest optimization percent of energy consumption compared with other ships. 

5.3.2 Analysis of the optimization results of the fleet energy consumption 

The total energy consumption, CO2 emissions and EEOIf (energy efficiency operational 

index of ship fleet) by adopting the traditional operational decision-making method (the only 

upper-level optimization method for the fleet operational decision-making. It means that the 

influence of the environmental conditions on fleet’s fuel consumption is not considered and the 

speed optimization under different environmental conditions is not carried out.), and the bi-level 
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dynamic optimization method are illustrated in Table 7. The bi-level dynamic optimization could 

further reduce the total energy consumption and emissions by about 6.82% than the traditional 

fleet operational decision-making method. Therefore, the bi-level distributed dynamic 

optimization can improve the energy efficiency of the fleet effectively. 

Table 7.  A comparison between the optimization results of the fleet energy consumption 

Item 
Traditional operation 

decision-making method 

Bi-level dynamic 

optimization method 

Reduced percent 

(%) 

Total fuel consumption (t) 46.80 43.61 6.82 

Total CO2 emissions (t) 150.03 139.80 6.82 

EEOIf [g/(t·n mile)] 11.95 11.14 6.82 

5.4 Sensitivity analysis 

In order to analyze the effects of various parameters on the fleet’s energy consumption and 

to identify the robustness and effectiveness of the optimization results, a sensitivity analysis of 

the fleet’s energy consumption under different total fleet’s operational time and different total 

cargo mass of the fleet is carried out. Sensitivity analysis is to study how the uncertainties of a 

mathematical model or system output are affected by the uncertainties of the different input 

sources. The sensitivity analysis of output results under different inputs can contribute to know 

the influence of the variables on the outputs. For models with multi-input variables, sensitivity 

analysis is an important part of model building and its quality (Wang et al., 2017a). 

Before the sensitivity analysis, the fleet’s energy consumption under different total fleet 

operational time and different total fleet’s cargo mass is analyzed and the results are shown in 

Figs. 14 and 15, respectively. As can be seen from Fig. 14, a longer fleet operational time will 

result in lower energy consumption, which is due to the greater optimization potential for ships 

to slow down for a longer operational period. However, the longer operational time will fail to 

meet the transport demands within the specified time. In addition, as can be seen from Fig. 15, 

the fleet’s energy consumption increases with the increase of the fleet’s cargo mass. This is 

because the increase of the cargo mass increases the ship’s draft and thus increases its resistance. 
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Fig. 14  The fleet’s energy consumption under different total fleet operational time 

 

Fig. 15  The fleet’s energy consumption under different total cargo mass of the fleet 
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Table 8.  The statistics of the sensitivity analysis at different levels 

Levels 

Fleet’s 

operational 

time /d 

Fleet’s fuel 

consumption 

/t 

Sensitivity 

value 

Fleet’s 

cargo mass 

/t 

Fleet’s fuel 

consumption 

/t 

Sensitivity 

value 

1 37 44.11 0.392 19524 42.98 0.268 

2 37.5 43.88 0.481 20098 43.31 0.246 

3 38 43.61 -- 20672 43.61 -- 

4 38.5 43.32 0.504 21246 43.94 0.278 

5 39 43.06 0.450 21821 44.90 0.794 

Based on the statistics of the sensitivity analysis at different levels, the calculated sensitivity 

discriminant coefficient of the fleet’s operational time and cargo mass is 0.46 and 0.40, 

respectively. As can be seen, the sensitivity discriminant coefficient of the fleet’s operational 

time is larger than the fleet’s cargo mass. Therefore, it can be concluded that the voyage’s 

operational time has a more significant influence on the fleet’s energy consumption than the 

fleet’s cargo mass, and the fleet’s energy efficiency can be improved by prolonging the voyage’s 

operational time. 

6. Conclusions and discussions 

Considering the uncertainty of the fleet operational conditions and the multitude of 

influencing factors, a dynamic optimization method is proposed for the fleet energy consumption. 

A bi-level optimization model, including an upper-level operational decision-making model and 

a lower-level distributed navigation optimization model, is established, to improve economy and 

reduce energy consumption of the fleet. The DMPC-based dynamic optimization is investigated 

for the decisions on the optimal speeds under the updated weather conditions and port operation 

information. Based on the designed dynamic optimization algorithm, we developed the DOFEC 

controller, which can compensate for disturbances resulting from the constantly changing 

environments and port operation information during the entire voyage. The case study shows that 

we can obtain better fleet energy efficiency using the proposed method by considering a multiple 

of time-varying influencing factors. We find that this proposed bi-level distributed energy 

consumption dynamic optimization method can reduce the total energy consumption and 

emissions of the fleet effectively. Compared with the method that does not consider the 

time-varying environment, we can further reduce the energy consumption of each ship by at least 

1.1%. From the perspective of system-level fleet energy consumption, we can reduce the energy 

consumption by as much as 6.8%. It means that about 3.2 tons fuel could be saved for a single 
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eight-day voyage. It is undoubtedly a good benefit for the shipping corporations. In addition, 

from the sensitivity analysis, we find the proposed dynamic optimization method can obtain the 

optimization results under different conditions, and the voyage operational time has a more 

significant influence on the fleet’s energy consumption than the fleet’s cargo mass 

 The proposed bi-level dynamic method can also be extended to other kinds of ship fleet 

when the relevant information is available. It should be noted that there are differences in the 

operational modes for different ship fleets, e.g., service frequency requirements, transport modes. 

Therefore, an extension of this study to different kinds of operational modes and ship fleets 

would be our future study. With increasingly stringent emission regulations, shipping companies 

should explore novel effective methods to reduce energy consumption and CO2 emissions. This 

paper proposed a novel dynamic optimization method based on the DMPC strategy. It can 

provide a new way for the fleet managers to improve economy and reduce CO2 emissions by the 

system-level optimization of fleet energy consumption. 
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