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ABSTRACT
Turbomachinery blades characterized by highly-loaded,

slender profiles and operating under unsteady flow may suffer
from aeroelastic shortcomings, like forced response and flutter.
One of the ways to mitigate these aeroelastic effects is to re-
design the blade profiles, so as to increase aero-damping and de-
crease aero-forcing. Design optimization based on high-fidelity
aeroelastic analysis methods is a formidable task due to the in-
herent computational cost. This work presents an adjoint-based
aeroelastic shape-optimization framework based on reduced or-
der methods for flow analysis and forced response computation.
The flow analysis is carried out through a multi-frequency fully-
turbulent harmonic balance method, while the forced response is
computed by means of the energy method. The capability of the
design framework is demonstrated by optimizing two candidate
cascades, namely, i) a transonic compressor cascade and, ii) a
supersonic impulse turbine rotor operating with toluene as work-
ing fluid, initially designed by means of the method of waves.
The outcomes of the optimization show significant improvements
in terms of forced-response in both cases as a consequence of
aero-damping enhancement.

NOMENCLATURE
Symbols
A amplitude
F fixed point iteration operator

G grid movement operator
H harmonic-balance operator
I identity matrix
J objective function
J Jacobian
K stiffness matrix
k number of frequency
M mesh operator
N total number of instances
n̂ normal
p pressure
R residual operator
R rotation matrix
S surface operator
S surface
T transformation matrix
t time
U conservative variables
V volume operator
v velocity
W work-per-cycle
X mesh coordinates
x modal amplitude

Greek symbols
α design variable vector
∆ change in quantity
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θ rotation degree
φ flow angle
τ time period
Ω cell volume
ω angular velocity

Subscripts
alt alternating
avg average
base baseline
CAD computer aided design
CFD computational fluid dynamics
d damping
FR forced response
f forcing
grid mesh grid
i index
in inlet
n time instance index
opti optimum
out outlet
pitch pitching
surf surface
t time
tot total conditions
vol volume

Superscripts
∗ converged solution
+ plus
q physical time index
T transpose

INTRODUCTION
Forced response and flutter are recurrent aero-elastic lim-

iting factors for turbomachinery blades with slender profiles,
high-aspect ratio, and markedly unsteady loading. Blades of
this type are increasingly adopted in turbomachines of modern
aero-engines [1], as a consequence of the effort to abate emis-
sions by simultaneously increasing efficiency and reducing en-
gine weight. Forced response phenomena are of particular con-
cern in rotors of rocket engines and of supersonic turbines for
organic Rankine cycle (ORC) power systems [2], due to the very
high Mach numbers and associated strong shock waves, which
may induce blade excitations deriving from stator-rotor interac-
tion.

From a physical standpoint, both flutter and forced response
occur when the blade structure absorbs energy from the fluid and
reaches high vibration levels [1]. To mitigate this issue, one of
the solutions is to re-design the blade by increasing the aero-
damping, while maintaining aerodynamic performance. Usu-

ally, these design adjustments are performed downstream of the
detailed fluid dynamic design, if potential structural issues are
identified through comprehensive transient aero-mechanical cal-
culations. This process is computationally expensive and pre-
dominantly based on designers’ experience and, as such, it can
arguably lead to final blade designs that are sub-optimal with re-
spect to both aerodynamic and aeroelastic performance. Effi-
cient automated design optimization procedures which can con-
currently deal with the fluid-dynamic and the structural design
problem can therefore aid the development of new blade con-
cepts.

Adjoint-based design methods are suited for this purpose,
due to the possibility to perform gradient-based optimization ef-
ficiently. However, the cost of performing a single time-accurate
aero-elastic computation is still excessive, making adjoint opti-
mization a very demanding task. In the attempt to circumvent
this issue, reduced order models for aero-elastic turbomachinery
computations have been proposed [3, 4, 5, 6, 7], the vast majority
of them being based on the so-called energy method [8]. This
method enables flutter and forced response analysis with engi-
neering accuracy by means of unsteady fluid-dynamic simula-
tions. The method is based on the principle of energy conserva-
tion: the energy added by the flow-unsteadiness is equal to that
dissipated by the vibrating blade [4, 9]. It is an alternative to
the modal reduction method. The energy method can be used as
an efficient adjoint-based aero-elastic design optimization proce-
dure, if the cost involved in performing unsteady flow computa-
tions can be greatly decreased. This can be accomplished with
a time spectral or harmonic-balance method [10]. This approach
has already been documented in the literature. Reference [5],
for instance, documents the use of adjoint-based optimization to
concurrently improve the aero-elastic and aero-dynamic perfor-
mance of a transonic fan blade. Reference [6] presents the val-
idation of sensitivities for an aero-elastic objective function cal-
culated with the adjoint method and related to a 3D turbine test
case.

The harmonic balance implementations currently docu-
mented in the literature are based on a single-frequency trans-
formation for computational efficiency. As a result, flutter can-
not be studied because it is inherently a multi-frequency flow
problem [11]. Another limitation is the assumption of frozen
viscosity, which implies that the turbulence sensitivities are not
resolved during the adjoint computations.

This paper documents a cost-effective adjoint-based opti-
mization method and its application to aero-elastic design prob-
lems. The method is based on a multi-frequency harmonic bal-
ance solver for fully-turbulent flows [12, 13]. The method is
capable of treating flows of fluids in both ideal and non-ideal
thermodynamic states [14] and is implemented in the open-
source software SU2. In works which preceded the development
documented here, the FFD-box method was adopted for blade
parametrization [12,13], while a CAD-based surface method was
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ααα Xsurf = S(ααα) Xvol = V(Xsurf) Xvol,t = G(Xvol) Ut = F (Ut , Xvol,t) J

Surface Deformation Volume Deformation Grid Movement Flow Solver

FIGURE 1: Simplified block scheme of the implementation of the fluid dynamic design chain (direct solver).

conceived and implemented subsequently and it has been em-
ployed in this research [15].

The capability of the method is demonstrated by perform-
ing forced response minimization of two exemplary test cases,
i.e., i) a transonic compressor cascade, namely the tenth standard
configuration taken from Ref. [16], and ii) a supersonic impulse
turbine rotor operating with an organic working fluid, which is of
interest because this type of turbine is employed in ORC power
systems. The two test cases studied are characterized by slender
blade profiles and strong shock-waves in the flow-domain, hence,
are susceptible to aero-elastic effects.

METHOD
The methodology which was developed for this study can

be described in three parts, namely, the part related to the di-
rect solver, that related to the adjoint solver, and that related to
the optimization. The algorithm implemented in the direct solver
computes the solution of the flow equations and also morphs the
mesh, in order to obtain the objective function. The adjoint solver
provides the gradient of the objective function with respect to the
design variables. The optimization algorithm utilizes the solu-
tions and sensitivity values to obtain the result corresponding to
the optimum design of the blade shape.

Direct Solver
The computational procedure implementing the design

chain illustrated in Figure 1 uses the design variables vector ααα

as input and returns the objective function J . It consists of four
blocks, namely, surface deformation, volume deformation, grid
movement and flow solver.

Surface Deformation. In order to deform the blade sur-
face uniformly, a CAD-based parametrization method is used
and the details of the method can be found in Ref. [15]. The
parametrization algorithm is represented by the function SCAD
which operates on ααα , which is a vector made of blade design
parameters like metal angles, chord and thickness distribution.

Using the surface parametrizer, the change in the surface

grid (∆Xsurf) for the kth design step is computed as

∆Xk
surf = SCAD

(
ααα

k
)
−SCAD

(
ααα

k−1
)
. (1)

Subsequently, the surface coordinates (Xsurf) in the volumetric
mesh for the kth design step is given as

Xk
surf = S

(
ααα

k
)
= Xk−1

surf +∆Xk
surf. (2)

Volume Deformation. A mesh-deformation algorithm
manipulates the volumetric grid by means of a linear elasticity
method implemented in SU2. The linear system of equations to
be solved at optimization step k is given by

K∆Xk
vol = T∆Xk

surf, (3)

where K is the stiffness matrix, T is the transformation matrix
and ∆Xvol is the change in the volume mesh. The vector ∆Xsurf is
used as a Dirichelet boundary condition for the linear-elasticity
solver. The mesh coordinates (Xvol) corresponding to the kth

optimization step can be represented as

Xk
vol = V

(
Xk

surf

)
= Xk−1

vol +∆Xk
vol. (4)

Grid Movement. In order to simulate the unsteady mo-
tion of the blade due to vibrations, a deforming grid movement
algorithm displaces the surface and the volume grid. The algo-
rithm is the same as the one utilized for volume deformation.
However, the change in surface mesh is provided by the grid
movement procedure. More specifically, it is prescribed with a
surface pitching subroutine in the simulations performed for this
study. As a result, the linear system at time t for the kth design
step becomes
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K∆Xk
vol,t = T∆Xk

surf,pitch,t , (5)

and the volumetric mesh

Xk
vol,t = G (Xvol) = Xk

vol +∆Xk
vol,t . (6)

Flow Solver. The unsteady flow solution is computed by
using a time-domain Harmonic Balance (HB) solver. The final
form of the RANS equations, discretized using the HB method
described in Ref. [12], can be written as

(
ΩI
∆t

+J
)

∆Un =−R̃n
(
Uq,Uq−1) , n = 0,1, ...,N−1,(7)

in which Ω is the computational cell volume, ∆t is the pseudo-
time step [10], J is the flow Jacobian, q is the physical time index,
N is the number of resolved time instances, and R̃ is the residual
operator defined as

R̃n
(
Uq,Uq−1)=Rn (Uq)+Ω

N−1

∑
i=0

Hn,i∆Ui +Ω
N−1

∑
i=0

Hn,iUq
i . (8)

In (8), H is the harmonic balance operator, calculated for
a known set of k input frequencies corresponding to N =
2k + 1 time instances. U is the vector of conservative vari-
ables and it includes both laminar and turbulent quantities and
∆U = Uq − Uq−1.

Equation (7) is reformulated in terms of a fixed-point itera-
tion as

Uq+1
n = Fn (Uq) , (9)

where F is a fixed point iteration operator. According to the
Banach fixed-point theorem, Eqn. (9) admits a unique fixed-point
solution U∗ such that

R̃n
(
U∗,U∗−1)= 0 ⇐⇒ U∗ = Fn(U∗,X). (10)

Adjoint Solver

The design chain whose implementation is illustrated in Fig-
ure 1 corresponds to the minimization problem

min
α
J (Un (ααα) ,Xvol,n (ααα)) , (11)

s.t. Un(ααα) = Fn (U(ααα) ,Xvol (ααα)) , (12)
Xvol,n (ααα) =Mn (ααα) = G (V (S (ααα))) , (13)

where, M is a differentiable function [13] which includes sur-
face deformation, volume deformation and grid movement. The
application of the Lagrange Multipliers method to derive the ad-
joint equations gives the flow and mesh adjoint equations in the
form

Ūn =
∂J
∂Un

T

+
N−1

∑
i=0

∂Fi

∂Un

T

Ūi, (14)

X̄n =
∂J
∂Xn

T

+
∂Fn

∂Xn

T

Ūn, (15)

where Ūn and X̄n are the flow and mesh adjoint variables. Af-
ter solving the adjoint equations, the sensitivity of the objective
function with respect to the volume mesh can be written as

dJ
dααα

=

[
d

dααα
MT

n (ααα) X̄n

]
. (16)

Subsequently, the sensitivity of the volume mesh with respect to
ααα can be computed as

dMn

dααα
=

dXvol,n

dXvol

dXvol

dXsurf

dXsurf

dααα
, (17)

where, the term
dXvol,n

dXvol
and

dXvol

dXsurf
is obtained by means of algo-

rithmic differentiation, and
dXsurf

dααα
is obtained with the complex-

step method within the CAD-based surface parametrizer.

Optimization

The forced response amplitude is calculated with the en-
ergy method, which must be supplied with the value of work-
per-cycle obtained with two unsteady simulations, namely, the
one corresponding to aero-forcing and the one corresponding to
aero-damping.
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Test Case ω [rads/sec] Af [-] Ad [-] φin [◦] ptot,in [Pa] Ttot,in [K] pout [Pa]

Transonic Compressor Cascade 6.28 0.01 2.0 45 30e5 580.0 0.8e5

Supersonic Impulse Turbine rotor 62.83 0.001 1.0 60 1e5 288.1 0.8e5
TABLE 1: Unsteady variables and boundary conditions for the two test cases.

(a)

*

(b)

*

FIGURE 2: Discretized flow domain. The red asterisk indicates the intersection of the pitching axis with the flow domain, (a) transonic
compressor cascade, (b) supersonic impulse turbine rotor.

The aerodynamic work is computed as

W =
∫

t

∮

S
−p

(
n̂ · vgrid

)
dS dt, (18)

where, p is pressure, n̂ is normal and vgrid is grid velocity.

The unsteady aerodynamic forcing calculation is performed
on a non-vibrating blade under the influence of unsteady pres-
sure at the blades natural frequency (necessary condition for res-
onance), while the aerodynamic damping calculation is carried
out on a blade vibrating at its natural frequency with a modal
amplitude of xCFD in a uniform flow. In this study, a realistic
value of xCFD is used to simulate the vibrating blade at an inter
blade phase angle of 0.

The resulting solution from the two unsteady simulations are
used to compute the work-per-cycle using equation (18). The
work associated with aerodynamic forcing (Wf) is the energy
transferred to the blade structure due to the flow unsteadiness,
while the aerodynamic damping work (Wd) is the energy dis-
sipated by the vibrating blade. The forced response (xFR) of a
vibrating blade is defined, according to the energy method, as

xFR =
Wf

−Wd
. xCFD (19)

where, xCFD is the modal amplitude imposed on the CFD mesh

during damping calculation [4].

The forced response minimization problem can be written as

min
α
JFR = xFR, (20)

s.t. Wf > 0, (21)
Wd < 0, (22)

where, JFR is the displacement amplitude computed with equa-
tion (19). The inequality constraints are imposed to prevent the
inversion of signs during the optimization, which would change
the physics of the problem.

The sensitivity of the objective function is computed by dif-
ferentiating JFR with respect to the design variables ααα and its
expanded form is

dJFR

dααα
=

[
dJFR

dXsurf

]

CFD
˙
[

dXsurf

dααα

]

CAD
, (23)

which symbolize (16). The sensitivity of the objective function

with respect to the surface
dJFR

dXsurf
can be further expanded as

[
dJFR

dXsurf

]

CFD
=

[
− 1

Wd

∂Wf

∂Xsurf
+

Wf

W 2
d

∂Wd

∂Xsurf

]
· xCFD. (24)
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The right-hand side of equation (24) can be calculated once the
the direct and the adjoint solutions have been obtained.

CASE STUDIES
The described optimization framework is applied to two ex-

emplary test cases: a transonic compressor cascade, commonly
known as the tenth standard configuration of the AGARD Man-
ual [16], and an supersonic impulse turbine rotor designed with
the method of waves [17] and operating with toluene as the work-
ing fluid.

In the two cases, the aero-forcing calculation was performed
by modulating the inlet total pressure according to the equation

ptot,in,t = ptot,in [1+Af sin(ωt)] , (25)

where, Af is the amplitude of the pressure perturbation, ω is the
angular velocity corresponding to the natural frequency of the
blade and t is the time instance. Additionally, the aero-damping
calculation is performed by pitching the blade surface about the
defined axis, therefore the surface coordinates and the pitch angle
are

Xsurf,t = Xsurf R
(
θpitch,t

)
, (26)

θpitch,t = Ad sin(ωt) . (27)

where, R is the rotation matrix and Ad is the pitching amplitude.
The pitching axis chosen for the two test cases is indicated with
an asterisk in Figure 2.

To perform CFD calculations, the flow domain is discretized
using quadrilateral elements close to the blade surface so as
to maintain y+ < 1 and triangular elements in the rest of the
flow domain [18]. The discretized flow domain, consisting of
27,040 and 36,306 elements for transonic compressor and super-
sonic impulse turbine respectively, is shown in Figure 2. The
flow was modeled with the Reynolds Averaged Navier-Stokes
(RANS) equations and turbulence equations were closed using
the Spalart-Allmaras model [19]. The unsteady flow term is
solved using the HB method treated in Ref. [12].

The unsteady settings related to aero-forcing and -damping
calculations, along with the boundary conditions, are tabulated
in Table 1. A maximum of 10K iterations is set for both the
simulations to assure a convergence of three orders of magnitude.
For smooth convergence, mandatory for adjoint computations,
the Euler semi-implicit time marching scheme with a CFL of 1.0
is used. The CFD simulations were performed with workstation
equipped with an Intel Xeon Processor E5-2687W v3 (3.1 GHz,
20 cores).

RESULTS
The minimization problem defined by equation (20) was

solved for the two test cases using the SLSQP optimization al-
gorithm [20] available in the Python SciPy [21] library. In order
to enable smooth convergence, both the objective and the con-
strain sensitivities were under-relaxed by a factor of 5e-3 and for
simplicity only the thickness distribution is used as design vari-
able.

Transonic Compressor Cascade
The work-per-cycle sensitivity of eight design variables,

consisting of blade metal angles and thickness distribution, from
the aero-forcing and aero-damping simulations were validated
against gradients calculated with forward-finite-differences, us-
ing a step size of 0.001. Figure 4 illustrates the gradient vali-
dation for aero-forcing (•) and aero-damping (F). The adjoint-
based sensitivities are plotted on the x-axis while the ones ob-
tained using finite-differences on the y-axis. It can be observed
that the value of the sensitivities are in good agreement, suggest-
ing that the differentiation of the flow solver was performed cor-
rectly and that the adjoint-solver reached sufficient convergence.
Reaching convergence with the direct solver required 93 minutes
and 15 GB of RAM, while the adjoint solver required 366 min-
utes and 18 GB of RAM for one design step.

Figure 5 illustrates the optimization history of the forced re-
sponse minimization. The value of the objective function JFR
(�) was reduced by 70% in 16 design steps, as a consequence of
a reduction of the aero-forcing work (•) by more than 50% and
of an increase of the aero-damping by a factor of ∼2.5 (N).

The Mach number contours related to the flow around the
baseline geometry and to aero-forcing and -damping simulations
are illustrated in Figure 3. The flow accelerates from Mach 0.8,
close to the leading edge, to a maximum of 1.1 on the suction
side, triggering the formation of a shock in the front part of the
blade. It can be seen that in the aero-forcing simulations the posi-
tion and the strength of the shock varies in time (see Figure 3(a)).
This is due to the change in the velocity magnitude at the inflow
as a result of the fluctuating inlet total pressure.

Similar flow features can be observed in relation to the re-
sults of the aero-damping simulations (see Figure 3(b)). How-
ever, the change in the shock strength and position is due to the
change in the angle of attack induced by the pitching motion.

Figure 6 illustrates the baseline geometry and the optimized
geometry. The blade thickness increases along the blade in the
optimized geometry and the majority of the shape changes are
located close to the pitching axis, between chord-length 0.2 and
0.4.

Figure 7 shows the mean and the alternating surface pres-
sure, for the two aerodynamic simulations using the baseline and
the optimized geometry. In the figure, negative x-axis values
represent the pressure side. The sudden change in pressure at

6 Copyright © 2020 ASME



0.0 1.1Mach

t = 0 t = 1
3 τ t = 2

3 τ

(a) Aero-forcing

t = 0 t = 1
3 τ t = 2

3 τ

(b) Aero-damping
FIGURE 3: Mach number contours of the baseline geometry for transonic compressor cascade at three time slices, t = 0, τ/3, 2τ/3 from
left to right, (a) Aero-forcing, (b) Aero-damping.

chord length ∼0.25 is caused by the suction side shock-wave,
as depicted in Figure 3. Due to the unsteadiness deriving from
the pitching motion as well as from the total pressure variation,
the shock-wave induces a relatively high value of the alternating
pressure (Figure 7, bottom).

The highest variations of the mean and alternating pressure
in the optimized geometry for the aero-forcing and -damping are
confined between the leading edge and one-quarter of the chord
(see Figure 7, dash-lines overlap). Additionally, it can be ob-
served that the shock at chord-length∼0.25 in the baseline geom-
etry moves downstream in the optimized geometry. This is due
to the increase of the blade thickness, see Figure 6, which leads
to a smoother flow acceleration on the suction side. Furthermore,
the optimization process causes an attenuation of simulated flow
unsteadiness, which can be inferred from the reduction of the
alternating pressure, as depicted in Figure 7.

Figure 8 shows the work distribution for the baseline and the
optimized blade, as obtained with the aero-forcing and -damping
computations. It can be seen that the shock-wave causes signif-
icant deviation of the work distribution in the front part of the
blade. Moreover, the optimization leads to a flattening of the
aero-forcing work (see Figure 8, top), while enhancing the neg-
ative values of the aero-damping work (see Figure 8, bottom).

This is eventually beneficial for the aero-elastic behaviour of the
blade.

Supersonic impulse turbine rotor
The validation of the adjoint-based gradients was not re-

peated for this test case because the results related to the com-
pressor test case gave sufficient confidence about the accuracy
of the method implementation. In this case the direct solver re-
quired 66 minutes and 14 GB RAM, while the adjoint solver re-
quired 216 minutes and 18 GB RAM for one design step.

The Mach number contours related to the flow around the
blade obtained with the aero-forcing and -damping simulations
for three time-instances are illustrated in Figure 10. The flow
pattern indicates that the cascade is operating in the started flow
regime [22], which is characterized by a shock-wave originat-
ing at the leading edge. The shock wave is then reflected mul-
tiple times along the flow passage. In the aero-forcing simula-
tion, the variation of the total inlet pressure leads to a change
in shock-wave strength, angle and Mach contour. The same can
be observed in relation to the flow field computed with the aero-
damping simulation in Figure 10, (b) as a result of the change in
the incidence angle due to the pitching motion.
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FIGURE 4: Validation of the work-per-cycle for the transonic
compressor cascade; F indicates the damping work and • indi-
cates the forcing work.
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FIGURE 5: Optimization history of the forced response mini-
mization related to the transonic compressor cascade.

Figure 9 shows the optimization history. Note that JFR (�)
is reduced by almost 60% in 10 design steps, as a consequence
of an increase of Wd (N) by 4 times, which counterbalances the
increase of Wf (•) by 1.5 times.

The mean and the alternating surface pressure distribution
related to the two unsteady simulations is illustrated in Figure 11.
The x-axis represents the non-dimensional chord-length, with
x = 0 being the position of the leading edge and the positive and
negative values representing the suction and the pressure side,
respectively. In the mean pressure plot (see Figure 11, top) the
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FIGURE 6: Baseline (solid) and optimum (dashed) blade geom-
etry of transonic compressor cascade.
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FIGURE 7: Time averaged (top) and alternating surface pressure
(bottom) related to aero-forcing (red) and -damping (blue) sim-
ulations, for the baseline (solid) and the optimized (dashed) ge-
ometries. Negative and positive values of the chord length refer
to the pressure and the suction side, respectively.

abrupt pressure changes are due to the shock reflection. The
alternating pressure values are negligible close to leading edge
(see Figure 11), primarily due to the absence of unsteady effects
prior the first shock-wave impingement. In contrast, the rest of
the flow field and the alternating pressure distribution in the rear
part of the blade remarkably change. Moreover, the amplitude of
the alternating pressure is much lower for forcing calculations if
compared to that resulting from the damping calculations, due to
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FIGURE 8: Local work for aero-forcing and -damping aerody-
namic computations related to the transonic compressor cascade
test case.
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FIGURE 9: Optimization history of forced response minimiza-
tion for the supersonic impulse turbine rotor.

the choice of a rather conservative value of Af.
The mean pressure distribution of the optimized blade indi-

cates that the majority of the shape changes are located in the
mid part of the blade (see Figure 11, top). This can also be con-
firmed by looking at the baseline and optimized blade geometry
plotted in Figure 12. The net result is the variation of the shock-
wave pattern along the flow passage, which also influences the
alternating pressure distribution.

Additionally, it can be noticed that the alternating pressure
peaks shift upstream and increase in magnitude. This can be

deemed contradictory at first. However, the work is also a func-
tion of the grid velocity, which becomes lower close to the axis
of rotation. Consequently, a positive effect on the objective func-
tion can also be achieved at the expense of an increase of the
unsteady loading.

Figure 13 illustrates the work distribution along both the
baseline and the optimized blade. It can be seen that the forcing
work in the optimized geometry slightly increases (see Figure 13,
top). Nevertheless, such an increase is more than compensated
by the significant increase of the negative damping-work within
0.5-0.8 of the chord-length, which has a net stabilizing effect on
the blade vibrations, eventually making the impulsive airfoil less
prone to aero-elastic failure.

CONCLUSIONS
The objective of this work was the development of a cost-

effective adjoint-based forced response optimization framework.
The developed framework implements an uncoupled aero-elastic
analysis procedure based on the energy method, in conjunc-
tion with a multi-frequency harmonic-balance method for fully-
turbulent quasi periodic unsteady flows.

The capability of the method was assessed by performing
the numerical optimization of two exemplary turbomachinery
blades, namely, that of a transonic compressor cascade and that
of a supersonic impulse turbine rotor operating with toluene as
working fluid. The following conclusions can be drawn from the
outcomes of the study

1. The forced response is inherently dependent on both aero-
forcing and aero-damping. Therefore, performing an opti-
mization based only on one of the two phenomena does not
guarantee the attainment of an optimized blade shape with
superior aero-elastic performance.

2. Substantial improvements relate to forced response were ob-
tained in relation to both the considered test cases. In partic-
ular, for the transonic compressor case, a 70% improvement
in forced response was attained as a consequence of more
than 50% reduction in aero-forcing and ∼2.5 times increase
in aero-damping. For the supersonic impulse turbine, the op-
timization led to a reduction of the forced response by 60%
as a result of a 1.5 times increase in aero-forcing and a 4
times increase in aero-damping.

3. In spite of the aeroelastic performance improvement, the
entropy loss coefficient increased by 2 and 0.2 percentage
points for the compressor and the turbine rotor test cases,
respectively.

4. The computational cost of a single aero-elastic design itera-
tion was in the order of 7 hours for the transonic compressor
cascade test case (the cost of the adjoint solver being three
times that of the flow solver) with ∼17 GB of memory con-
sumption. Conversely, the cost for one design step for the
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supersonic impulse turbine rotor case took approximately 6
hours, with∼15 GB of corresponding memory requirement.
A similar study performed using a gradient-based optimiza-
tion based on finite-differences will take approximately 36
days per test case.

Future work will deal with the application of the proposed
optimization framework to three dimensional problems, where
the resonant frequencies, i.e., the frequencies at which forced re-
sponse can occur, will be identified by means of a modal analysis
method.
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