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Abstract. Due to train load and aging, the dynamic properties of railway tracks
degrade over time and deviate over space, which should be monitored to facili-
tate track maintenance decisions. A train-borne laser Doppler vibrometer (LDV)
can directly measure track vibrations in response to the moving train load, which
can be potentially applied to large-scale rail infrastructure monitoring. This paper
characterizes track structures as a distributed system by estimating transfer func-
tions between the wheel-rail force and the response of each sleeper measured by
a train-borne LDV. A challenge with this technique is that a train-borne LDV
measures only a fragment of the response for each sleeper while the train load is
moving. To investigate the feasibility of this technique and the influence of key fac-
tors, we perform numerical simulations using a vehicle-track model and analyze
the estimation performance through comparison with simulated impact hammer
tests. We find that the transfer function estimated under a moving excitation is
close to but noisier than that estimated under an impact load. Partial measurement
affects the estimation performance significantly, and a wider sleeper provides a
better estimate and a higher frequency resolution. Train speed is a crucial fac-
tor for a train-borne LDV system. As the vehicle speed increases, the estimation
performance gets better at high frequencies but worse at low frequencies.

Keywords: Transfer Function Estimation · Railway Tracks · Vibration
Measurement ·Moving Load · Laser Doppler Vibrometer

1 Introduction

The dynamic properties of railway tracks affect the interaction between trains and tracks
and the safety of operation. Due to train load and aging, these properties degrade over
time and deviate over space. Monitoring the track dynamic properties can facilitate the
decision-making of trackmaintenance. Transfer functions are an effective representation
of such properties in the frequency domain [1–3].

For models of railway tracks, transfer functions can be calculated analytically or
numerically, while for railway tracks in real life, transfer functions are usually measured
through impact hammer tests [4–6]. In such a test, the excitation is usually generated
manually and measured by the hammer, and the track response is usually measured by
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accelerometers. It has the advantages of low noise or interference, high repeatability,
and high coherence. However, it requires human workload, long experiment time, and
temporary operation shutdowns [6], so it is mostly applied only at hot spots.

Alternatively, track dynamic properties can be identified from track vibrations under
operational conditions [7]. Laser Doppler vibrometer (LDV) is a laser-based sensing
instrument thatmeasures the vibration velocity of a target basedon theDoppler frequency
shift. It has the advantage of non-contact sensing and has been applied to the modal
identification and damage detection of many engineering structures [8, 9], while in most
applications, an LDV stands statically and measures at discrete points or along a closed
path [10]. A train-borne LDV is a novel setup that targets the laser spot on tracks and
measures the track vibration in response to the moving train. It has the potential to be
used for railway monitoring. In a simulation study [11], train-borne LDVs are used to
identify the mode shapes of a bridge. In an experimental study [12], a train-borne LDV
is used to identify the rail bending modes.

A train-borne LDV measures the response of railway tracks under the dynamic train
load. When wheel-rail contact forces are measured or identified, the transfer function
of railway tracks can be estimated. For example, a railway track can be characterized as
a distributed system where a transfer function can be calculated for each sleeper using
the wheel-rail force and the sleeper response. However, a challenge associated with this
technique is that a train-borne LDV measures only a fragment of the response for each
sleeper when the train load is moving. To the best of our knowledge, no research has
been published on such applications.

In this paper, we conduct a simulation study on the feasibility of transfer function
estimation using a train-borne LDV and the influence of its key factors. It should be noted
that, in this paper, we assume that wheel-rail forces are directly available. However,
in practice, the accurate measurement or identification of wheel-rail forces remains a
challenging topic [13, 14].

The remainder of this paper is organized as follows. In Sect. 2, the simulation model
and the transfer function estimation method are introduced. In Sect. 3, the influence of
several key factors is studied, including the moving excitation and partial measurement.
In Sect. 4, some conclusions are summarized.

2 Modeling and Simulation

2.1 A Vehicle-Track Model

We use a vertical vehicle-track model to simulate sleeper vibration measurement using
a train-borne LDV, as shown in Fig. 1. The vehicle is represented by a quarter car with
two rigid bodies as follows,

m1z̈1(t) + ks[z1(t) − z2(t)]+ cs[ż1(t) − ż2(t)] = 0 (1)

m2z̈2(t) − ks[z1(t) − z2(t)]− cs[ż1(t) − ż2(t)]+ fc(t) = 0 (2)

where m1 and m2 are the two masses, respectively, ks and cs are the suspension stiffness
and damping, respectively, z1 and z2 are the vertical displacements of the two bodies,
respectively, and f c is the wheel-rail contact force.
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Fig. 1. A vehicle-track model.

In this model, sleepers are also characterized by rigid bodies, and the equation of
motion of the i-th sleeper (i = 1,.., ns) is:

msz̈si(t) − kr[zr(xsi, t) − zsi(t)]− cr[żr(xsi, t) − żsi(t)]+ kbzsi(t) + cbżsi(t) = 0 (3)

where ms is the sleeper mass, zsi is the displacement of the i-th sleeper, kr and cr are
the rail pad stiffness and damping, respectively, kb and cb are the ballast stiffness and
damping, respectively, xsi is the position of the i-th sleeper, i.e., xsi = (i–1/2)ds with ds
the sleeper spacing, and zr(xsi, t) is the displacement of the rail at position xsi.

The rail is modeled as a simply-supported Euler-Bernoulli beam of length l = ns
× ds. Considering the discrete support of the sleepers, the displacement of the beam at
position x and time t is characterized as follows [15],

EI
∂4zr(x, t)

∂x4
+ mr

∂2zr(x, t)

∂t2
= fc(t)δ(x − xc(t))−

ns∑

i=1

kr[zr(xsi, t) − zsi(t)]δ(x − xsi) −
ns∑

i=1

cr[żr(xsi, t) − żsi(t)]δ(x − xsi)
(4)

where E is the elastic modulus of the rail, I is the second area moment of the rail, mr is
the mass of the rail per unit length, δ(:) is the Dirac function, xc is the wheel position,
i.e., xc(t) = x0 + vt with v the vehicle speed and x0 the initial position.

According to the Ritz method, the k-th modal coordinate is denoted as qk(t), and the
k-th modal function is defined as follows [15].

Zk(x) =
√

2

mrl
sin

kπx

l
(5)

The displacement of the rail is expressed as follows,

zr(x, t) =
nm∑

h=1

Zh(x)qh(t) (6)
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where nm is the truncated order of modes. Then, Eq. (4) can be converted into the
following second-order ordinary differential equations.

q̈k(t) +
ns∑

i=1

crZk(xsi)
nm∑

h=1

Zh(xsi)q̇h(t) + EI

mr

(
kπ

l

)4

qk(t)

+
ns∑

i=1

krZk(xsi)
nm∑

h=1

Zh(xsi)qh(t) −
ns∑

i=1

krzsi(t)Zk(xsi)

−
ns∑

i=1

crżsi(t)Zk(xsi) = fc(t)Zk(xc(t)) k = 1, ..., nm

(7)

The contact force is calculated based on Hertz theory as follows [15],

fc(t) =
{( 1

G [z2(t) − zr(xc, t) − ze(xc)]
)3/2

z2(t) − zr(xc, t) − ze(xc) > 0
0 z2(t) − zr(xc, t) − ze(xc) < 0

(8)

where ze is the rail roughness, G is a contact coefficient for a conical wheel, i.e., G =
4.57rw–0.149 × 10–8 m/N2/3 with rw the wheel radius. The rail roughness ze is generated
(spatially spaced by�xN) by applying a low-pass Butterworth infinite impulse response
filter to Gaussian white noise. As shown in Fig. 2, the spectrum of such artificial spatial
noise is smoothly monotonic and maximally flat in the passband, which resembles the
decay pattern of rail roughness spectra in real life and enables the wheel-rail force to
cover a broad frequency range.

To perform numerical simulations of the vehicle-track model, Eqs. (1)~(3) and (7)
are solved using the explicit integration algorithm proposed by Zhai [15], while the
contact force is updated at each step according to Eq. (8).

Fig. 2. Spectrum of rail roughness.

The limitations of the above model are discussed as follows.

(1) The vehicle and track are considered linear, so changes in track dynamics due to
nonlinearities under a train load cannot be reflected.

(2) The track components are simplified, and the torsion of the rail, the elasticity of the
sleepers, and the vibration of the ballast cannot be reflected.
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(3) Only a quarter car and half of a track are considered, so the influence of multiple
wheels (excitations) cannot be reflected.

Nevertheless, the model is useful and computationally cheap for simulating rigid-
body vibrations of sleepers in a multi-layer track structure under a moving vehicle.

2.2 Transfer Function Estimation

A transfer function describes in the frequency domain how a structure at a certain output
position responds to an excitation at a certain input position. Railway tracks consist of
a continuous rail layer, a discrete sleeper layer, and a continuous ballast layer, and their
dynamic properties vary from sleeper to sleeper. Therefore, we define a transfer function
for each sleeper as follows, i.e., its frequency response under an excitation on the rail.

Hsi(f ) = Zsi(f )

Fc(f )
(9)

where Zsi( f ) denotes the spectrum of the i-th sleeper displacement zsi(t) and Fc( f )
denotes the spectrum of the wheel-rail contact force f c(t).

As shown in Fig. 1, an LDV is mounted on the upper mass with the laser spot
shifting from the wheel-rail contact point by �x, referred to as ‘wheel-laser shift’ in
this paper. As the vehicle moves, the laser spot scans along a continuous trajectory, and
the vibration of a sleeper can only be measured when the laser spot is on the sleeper.
Therefore, assuming that the LDV measurement is free of noise and interference, the
LDV signal for measuring the i-th sleeper (of width d) is expressed as follows.

ysi(t) = żsi(t) when xsi − d
2 < vt + �x < xsi + d

2 (10)

Meanwhile, the excitation from the wheel moves continuously along the rail. In
this paper, we assume that the contact force is measured synchronously and accurately.
Therefore, the contact force when measuring the i-th sleeper is expressed below.

fci(t) = fc(t) when xsi − d
2 < vt + �x < xsi + d

2 (11)

Further, the transfer function of the i-th sleeper can be estimated (the so-called H1
estimate) using the contact force f ci(t) and the LDV signal ysi(t) as follows [16],

Ĥsi(f ) = Pysfci(f )

2π f · Pfcfci(f )
(12)

where Pycfci(f ) is the cross PSD of f ci(t) and ysi(t) and Pfcfci(f ) is the auto PSD of f ci(t).

2.3 Model Parameters

A typical ballast track structure is selected from [17] as a reference simulation case in
this paper, and the parameters are listed in Table 1.
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Table 1. Parameters of a reference case.

Symbol Parameter Value Symbol Parameter Value

m1 Upper mass 9000 kg ks Suspension
stiffness

100 kN/m

m2 Lower mass 2700 kg cs Suspension
damping

5 kN/(m/s)

rw Wheel radius 0.45 m E Elastic modulus of
rail

210 GPa

mr Rail mass per unit
length

56 kg/m nm Number of rail
modes

25

I Second area
moment of rail

2.231 × 10–5 m4 ns Number of sleepers 25

kr Rail pad stiffness 90 MN/m ms Sleeper mass 149 kg

cr Rail pad damping 16 kN/(m/s) d Sleeper width 0.2 m

kb Ballast stiffness 85 MN/m ds Sleeper spacing 0.65 m

cb Ballast damping 27.5 kN/(m/s) �x Wheel-laser shift 0 m

λpass Passband
wavelength of rail
roughness

2 m Pr Power of Gaussian
white noise for rail
roughness

−75 dBW

λstop Stopband
wavelength of rail
roughness

5 mm �t Integration step
size

1 × 10–5 s

3 Result and Discussion

This section aims to investigate how various factors in the train-borne LDV system affect
the performance of transfer function estimation.

3.1 Influence of Moving Excitation

In contrast to hammer tests with fixed impact locations, a train-borne LDVmeasures the
track response when the wheel (excitation) is moving. The influence of such a moving
excitation on transfer function estimation is therefore studied.

First, on the established track model (without the vehicle), we apply an impact load
in themiddle of the rail, which is just on top of the central sleeper, denoted as on-support.
This simulates an impact hammer test, and the resulting transfer function is plotted in
Fig. 3a. A dominant peak can be observed at 105 Hz, corresponding to the resonance
of the sleeper (and the rail) on the ballast. Several peaks can be observed at higher
frequencies, corresponding to the resonance and bending of the rail.

Then, we apply a constant moving load superposed with Gaussian white noise along
the rail at different speeds. A transfer function is estimated using the applied load and
the sleeper vibration when the load is within one sleeper spacing ds from the central
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sleeper. Figure 3a shows that although the transfer functions estimated under the moving
load are noisier, they are very close to the one under the impact load.

Further, based on the vehicle-track model, we estimate the transfer function of the
central sleeper using the contact force and the sleeper vibration when the wheel is within
one sleeper spacing ds from the sleeper. Figure 3b demonstrates that the transfer function
can be well estimated when the vehicle is moving at various speeds.

Fig. 3. Influence of moving excitation. (a) Comparison between an impact load and a moving
load. (b) Comparison between an impact load and a moving vehicle.

3.2 Influence of Partial Measurement

In Sect. 3.1, the sleeper vibration when the wheel is within one sleeper spacing ds is
used for transfer function estimation. However, for a train-borne LDV, the vibration of
a sleeper can only be measured partially, according to Eq. (10), and the signal length
of each sleeper depends on the vehicle speed v and the sleeper width d. Therefore,
we estimate the transfer function of the central sleeper for different speeds and sleeper
widths according to Eqs. (10)~(12), as shown in Fig. 4.

By comparing Fig. 4 with Fig. 3b, we can see that the estimation performance
degrades significantly due to the partial measurement, and deviations can be observed
near the resonance peak and at high frequencies. The measurements on the wider sleeper
provide better estimates and higher frequency resolution than those on the narrow sleeper
as a result of longer signal lengths.

For a defined sleeper width, the measurements at low speeds provide good estimates
of the resonance peak but quite noisy spectra at high frequencies. Conversely, the mea-
surements at high speeds provide good estimates at high frequencies, but the resonance
peak is not well characterized. Two main reasons contribute to this phenomenon: first,
for defined track geometry, the frequency of the wheel-rail contact force increases as the
speed increases, which excites the high-frequency response of the sleeper more effec-
tively; second, the signal length becomes shorter, and the frequency resolution of the
spectrum becomes lower as the speed increases, which makes it more difficult to capture
the low-frequency response. The result highlights the significant influence of train speed
on the transfer function estimation using a train-borne LDV.
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Fig. 4. Influence of partial measurement. ‘Wide sleeper’ represents a sleeper that is twice as wide
as a ‘Narrow sleeper’ (the reference case).

3.3 Influence of Wheel-Laser Shift

In Sect. 3.2, we assume that the wheel-laser shift �x is zero, i.e., the LDV measures
the track vibration directly below the wheel. Varying the wheel-laser shift �x affects
the excitation position of the sleeper response, which further affects the behavior of the
transfer function. Figure 5 shows the transfer functions simulated under impact loads at
two different locations, in which�x= ds/2 represents exciting the rail at half the sleeper
spacing ds/2 from the central sleeper (known as middle-span) and �x = ds represents
exciting the rail on top of an adjacent sleeper. Then, the estimated transfer functions
from train-borne measurements with different �x are also plotted. It can be seen that
the results are similar to those shown in Fig. 4, indicating that the influence of different
excitation positions is not significant.

Fig. 5. Influence of wheel-laser shift. (a) �x = ds/2. (b) �x = ds.

3.4 Performance on a New Case

The above simulations are performed based on the reference parameters in Table 1.
To further test the performance of transfer function estimation, some parameters are
changed to Table 2 based on the parameters in [17]. The key property of this track
structure is that the rail pad stiffness kr is significantly higher than the reference case.
As a consequence, the transfer function plotted in Fig. 6 has higher magnitudes at high
frequencies, and the resonance frequency is slightly lower. It shows that the transfer
function can be estimated with a performance similar to the one shown above.
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Table 2. Parameters of a new case.

Symbol Parameter Value Symbol Parameter Value

kr Rail pad stiffness 1300 MN/m mr Rail mass per
unit length

54.77 kg/m

cr Rail pad damping 67.5 kN/(m/s) I Second area
moment of rail

2.337 × 10–5 m4

kb Ballast stiffness 45 MN/m ms Sleeper mass 138.7 kg

cb Ballast damping 32 kN/(m/s) ds Sleeper spacing 0.6 m

Fig. 6. Transfer function estimation for the new case.

4 Conclusion

This paper investigates the feasibility of transfer function estimation using a train-borne
LDV and the influence of several key factors. The main conclusions are drawn below.

(1) The transfer function estimated under the moving excitation is close to but noisier
than that estimated under an impact load.

(2) Partial measurement affects the estimation performance significantly. A wider
sleeper provides a better estimate and a higher frequency resolution.

(3) As the vehicle speed increases, the estimation performance gets better at high fre-
quencies but worse at low frequencies. This is related to the variation of the contact
force frequency and frequency resolution with speed.

(4) Changing the wheel-laser shift and the track stiffness does not affect the estimation
performance significantly.

For future research, wewill investigate the noise characteristics in a train-borne LDV
system based on this preliminary work. Meanwhile, experiments will be performed to
further demonstrate this technique.
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