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Abstract
In this bachelor thesis we use a stochastic model to aspire to explain biodiversity patterns in different
ecosystems with selection advantage. The stochastic model we use is an extension of the mean­field
voter model [2] where we include a selection factor. In the model individuals with two different types
of alleles in two different ecosystems are considered. The model is a stochastic Markov process that
describes interactions of individuals with each­other over time. This means that the ratio of individuals
with certain alleles stochastically drifts over time. The main goal of this bachelor thesis is investigate
whether is it possible that individuals with two different types of alleles can coexist (a stable equi­
librium) in two populations. We do this by taking the limit of this Markov process such that we can
show convergence to ordinary differential equations. By studying these differential equations we ob­
tain results: vector fields with equilibrium points. We conclude that, under certain conditions and with
a selection advantage, coexistence of individuals with two different alleles in two different ecosystems
is possible (see Section 4.4) in the form of a stable equilibrium. Furthermore we claim that the typical
time to absorption, reaching an absorbing state where all the individuals have the same allele, of the
two­dimensional mean­field voter model with selection scales exponentially with the system size.
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1
Introduction

1.1. Introduction to the mean­field voter model
The whole bachelor thesis is based on the mean­field voter model (MFVM) as proposed in [2]. In this
Section we give a description of this exact model. Later in this thesis (Chapter 3 and 4) we will make
some variations, in the form of selection, on the basic model.

The state of the mean­field voter model is described by a vector of spins 𝜂 = (𝜂1, 𝜂2, ⋯ , 𝜂𝑁) ∈ {0, 1}𝑁.
Each 𝜂𝑖 ∈ {0, 1} represents, in this case, an individual that can have two different types of alleles. We
say that, if the spin of individual 𝑖 is 𝜂𝑖 = 1 then this individual has allele type A and if the spin of
individual 𝑖 is 𝜂𝑖 = 0, this individual has allele type B.

Next we fix, for each individual, the ecosystem, or population, they are located in. This is done by
labeling each individual 𝜂𝑖 ∈ 𝜂 with label ℎ𝑖 ∈ {0, 1} with 𝑖 ∈ {0, 1,⋯ ,𝑁}. Each ℎ𝑖 is identically dis­
tributed taking values 0 and 1 with probability, respectively, 1 − 𝑞 and 𝑞 with 𝑞 ∈ (0, 1). When ℎ𝑖 = 1
or ℎ𝑖 = 0 we say that individual 𝑖 is in ecosystem 1 or 0 respectively. We assume, without loss of
generality, that 𝑞 ≥ 1

2 .

We also have parameter 𝜌 ∈ [0, 1]. This parameter represents the chance of adapting the spin for
individual 𝑖 ∈ {1,⋯ ,𝑁} with respect to the populations. The population of individual 𝑖 and of an inter­
acting individual 𝑗 ∈ {1,⋯ ,𝑁} are both considered. The interaction of individuals and the change of
spin of each individual goes as follows [2]: each individual 𝑖 has an independent random waiting time
to change its spin. Each individual 𝑖, after waiting in accordance with an exponential distribution with
mean 1, chooses an individual 𝑗 with uniform probability. We now have two options:

– if 𝜂𝑗 = ℎ𝑖 then individual 𝑖 updates its spin 𝜂𝑖 to 𝜂𝑗
– if 𝜂𝑗 ≠ ℎ𝑖 then individual 𝑖 updates its spin 𝜂𝑖 to 𝜂𝑗 with probability 𝜌 and keeps its spin with
probability 1 − 𝜌.

We denote the change of spin of individual 𝑖 to the spin of individual 𝑗 as 𝜂𝑗→𝑖. One can see that
individual 𝑖 has a bigger chance to adapt the spin of another individual 𝑗 that is in the same population
ℎ𝑖. If 𝜌 = 1, we obtain the one­dimensional voter model; the fact that each individual 𝑖 is assigned
to population ℎ𝑖 does not play any role. Namely, each individual 𝑖 updates its spin to the spin of 𝜂𝑗
regardless of the fact that ℎ𝑖 = 0 or 1. Chapter 3 elaborates on the one­dimensional MFVM. If 𝜌 < 1
then the MFVM becomes two­dimensional (See Chapter 4).
One can see the process {𝜂𝑁(𝑡)}𝑡≥0 as a Markov process (see Definition 2.1.0.1 in Section 2.1) with
infinitesimal generator, simply generator, (see Definition 2.1.0.5 in Section 2.1):

𝐿𝑁𝑓(𝜂) =
𝑁

∑
𝑖=1

1
𝑁

𝑁

∑
𝑗=1
𝟙ℎ𝑖=𝜂𝑗[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] + 𝜌𝟙ℎ𝑖≠𝜂𝑗[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]. (1.1)
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2 1. Introduction

The derivation of the generator above can be found in Section 2.2.

One of the main goals in [2] was to show that the typical time to absorption of the mean­field voter
model in two dimensions was different than the typical time to absorption of the mean­field voter model
in one dimension. With the term ’time to absorption’ we mean the time it takes to reach a state in which
all the individuals have the same allele (A or B). For the stochastic proces {𝜂𝑁(𝑡)}𝑡≥0 of the mean­field
voter model in one dimension they proved that:

𝑇𝑁 = inf {𝑡 ∶ {𝜂𝑁(𝑡)} ∈ {0, 1}} = 𝒪(𝑁). (1.2)

This states that the typical time to absorption for the mean­field voter model in one dimension has order
𝒪(𝑁). This means that it takes linear time to reach an absorbing state with system size 𝑁. One of the
main findings of [2] was that, for the stochastic proces {𝜂𝑁(𝑡)}𝑡≥0 produced by the mean­field voter
model in two dimensions, they proved that:

𝑇𝑁 = inf {𝑡 ∶ {𝜂𝑁(𝑡)} ∈ {0, 1}} = 𝒪(𝑒𝑁𝐼) (1.3)

for certain 𝐼 > 0. This states that the order of the typical time to absorption in the two­dimensional mean­
field voter model is 𝒪(𝑒𝑁𝐼). Thus the typical time to reach an absorbing state scales exponentially with
the population size 𝑁. This indicates that, for large populations, individuals with two alleles can coexist
for a long time.

1.2. Selection in the mean­field voter model
Wewant to extend themodel, described in Section 1.1, with a selection factor. Without loss of generality
we assume that allele A (spin is equal to 1) has a selection advantage. In this thesis we choose fertility
selection [4] [1], or just selection, in the form of

(1 + 𝑆) (1.4)

with 𝑆 > 0. The selection factor plays a role when an individual adapts the spin of an individual with
allele A; therefore it is called fertility selection. We cannot add the selection factor to the generator of
the MFVM yet. That is because the generator has to be rewritten such that it is clear in which case
the spin of an individual with allele A is adapted. In Section 3.1 and in Section 4.1 the, respectively,
one­dimensional and two­dimensional generators are rewritten and the selection factor is added.

1.3. Outline
In Chapter 2 some mathematical background is provided for the reader. Chapter 3 considers the one­
dimensional (one population) case and Chapter 4 considers the two­dimensional (two populations)
case. Both Chapters 3 and 4 start off with an in depth mathematical derivation of a system of differential
equations from the stochastic Markov process of the MFVM including selection. The derivation of
starts by reshaping the generators in a preferable form and adding the selection factor (see Section
3.1 and 4.1). Subsequently, the limit of the generators is considered in Section 3.2 and 4.2. Then, the
convergence of this limit to differential equations is treated in Section 3.3 and 4.3. Both of the Chapters
end with results regarding coexistence of individuals with different alleles.



2
Mathematical Background

Before we take a look at the mean­field voter model with selection itself, it is needful to take a look
at some definitions and theorems about Markov processes as well as differential equations. These
definitions and theorems help the reader understand the following Chapters more easily.

2.1. Definitions Markov processes
Themain property of aMarkov process is that it is a random process without memory: its future depends
on its present, not on its past.

Definition 2.1.0.1 A random process whose future probabilities are determined by its most recent
values. A stochastic process 𝑥(𝑡) is called Markov if for every 𝑛 and 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 we have [6]:

𝑃(𝑋(𝑡𝑛) ≤ 𝑥𝑛|𝑥(𝑡𝑛−1),⋯ , 𝑥(𝑡1)) = 𝑃(𝑋(𝑡𝑛) ≤ 𝑥𝑛|𝑥(𝑡𝑛−1)). (2.1)

This is equivalent to:

𝑃(𝑋(𝑡𝑛) ≤ 𝑥𝑛|𝑥(𝑡) for all 𝑡 ≤ 𝑡𝑛−1) = 𝑃(𝑋(𝑡𝑛) ≤ 𝑥𝑛|𝑥(𝑡𝑛−1)). (2.2)

Definition 2.1.0.2 The state space of a Markov process is the set of al possible configurations (states)
of the Markov process.

Let 𝑥(𝑡)𝑡≥0 be a continuous time Markov chain on a state space 𝑆. Let 𝑥(0) = 𝑖 be given.

Definition 2.1.0.3 The transition probability is the probability to go from state 𝑖 at time 𝑡 = 0 to state 𝑗
at time 𝑡:

𝑃𝑡(𝑖𝑗) = 𝑃(𝑥(𝑡) = 𝑗|𝑥(0) = 𝑖). (2.3)

Definition 2.1.0.4 A time­homogeneous (continuous) Markov chain on a discrete state space is en­
coded by its Q­matrix, which describes the transition rate from one state to another [1]:

𝑞𝑖𝑗 = [
𝑑
𝑑𝑡𝑃(𝑥(𝑡) = 𝑗|𝑥(0) = 𝑖)] |𝑡=0

. (2.4)

The infinitesimal generator, or simply generator, of a random process contains information about the
process. As we aim to study the convergence of Markov processes that have varying state spaces, we
change our point of view to the evolution of expectation values. The infinitesimal generator codes the
derivative of this evolution and is defined as follows:

Definition 2.1.0.5 The infinitesimal generator 𝐿 of a random process 𝑥(𝑡) for certain 𝑓 is:

(𝐿𝑓)(𝑖) = [ 𝑑𝑑𝑡𝔼[𝑓(𝑥(𝑡)|𝑥(0) = 𝑖)]] |𝑡=0
. (2.5)

Here we let 𝑓 ∈ 𝐶2𝑏 .
In the next Section (Section 2.2.1) we relate Q­matrices (see Definition 2.1.0.4) to generators.
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4 2. Mathematical Background

2.2. Generator general Markov Process andmean­field votermodel
Generators play an important role in this thesis. Section 2.2.1 links the generator of a general Markov
process to Q­matrices (see Definition 2.1.0.4). In Section 2.2.2 we obtain the generator of the mean­
field voter model as in [2] (see Equation (1.1)) by adjusting the generator of a general Markov process.

2.2.1. Generator of a general Markov process
Let 𝑥(𝑡) be a continuous time Markov process with 𝑡 ≥ 0 on a countable state space 𝑆. We let 𝑓 ∈ 𝐶2𝑏
and the Markov process has initial state 𝑥(0) = 𝑖. Using Definition 2.1.0.5 in Section 2.1 we first define
the expectation of this process:

𝔼[𝑓(𝑥(𝑡))|𝑥(0) = 𝑖] =∑
𝑗∈𝑆
𝑃𝑡(𝑖𝑗)𝑓(𝑗) (2.6)

Now we take the derivative and evaluate at 𝑡 = 0 to obtain the following:

𝑑
𝑑𝑡𝔼[𝑓(𝑥(𝑡))|𝑥(0) = 𝑖]|𝑡=0 =

𝔼[𝑓(𝑥(𝑡))|𝑥(0) = 𝑖] − 𝔼[𝑓(𝑥(0))|𝑥(0) = 𝑖]
𝑡 (2.7)

= lim
𝑡→0

∑𝑗∈𝑆 𝑃𝑡(𝑖𝑗)𝑓(𝑗)
𝑡 − 𝑓(𝑖)𝑡 (2.8)

= lim
𝑡→0

∑𝑗∈𝑆 𝑃𝑡(𝑖𝑗)(𝑓(𝑗) − 𝑓(𝑖))
𝑡 . (2.9)

The reader can see that if 𝑖 = 𝑗, it follows that 𝑓(𝑗) − 𝑓(𝑖) = 0. Furthermore we have that 𝑃0(𝑖𝑗) = 0 for
all 𝑖, 𝑗. We continue with Equation (2.9) by subtracting 𝑃0(𝑖𝑗) since it equals 0:

= lim
𝑡→0

∑
𝑗≠𝑖

(𝑃𝑡(𝑖𝑗) − 𝑃0(𝑖𝑗))(𝑓(𝑗) − 𝑓(𝑖))
𝑡 (2.10)

=∑
𝑗≠𝑖

𝛿
𝛿𝑡𝑃𝑡(𝑖𝑗)|𝑡=0(𝑓(𝑗) − 𝑓(𝑖)) (2.11)

=∑
𝑗≠𝑖
𝑞𝑖𝑗(𝑓(𝑗) − 𝑓(𝑖)) (2.12)

=
𝑁

∑
𝑗=1
𝑞𝑖𝑗(𝑓(𝑗) − 𝑓(𝑖)). (2.13)

We see that our derivative in Equation (2.7) can be written as a function of transition rates. Thus our
generator of a certain Markov process 𝑥(𝑡), on a countable state space 𝑆 with |𝑆| = 𝑁 with certain
transition rates 𝑞𝑖𝑗 and initial state 𝑖 as in Definition 2.1.0.5, can be defined as an operator that acts on
a function 𝑓 ∶ 𝑆 → ℝ where 𝑓 ∈ 𝐶2𝑏 :

(𝐿𝑁𝑓)(𝑖) =
𝑁

∑
𝑗=1
𝑞𝑖𝑗(𝑓(𝑗) − 𝑓(𝑖)). (2.14)

2.2.2. Generator of the mean­field voter model without selection
Nowwe are going to derive the generator as in [2] that applies to our mean­field voter model by adjusting
the general generator of a Markov process (see Equation (2.14)). We let 𝜂 = (𝜂1, ⋯ , 𝜂𝑁) be the initial
configuration of spins where each 𝜂𝑗 ∈ {0, 1} and 𝑗 ∈ {1,⋯ ,𝑁}. Let 𝜂𝑗→𝑖 be the configuration after that
individual 𝑖 changes its spin to that of individual 𝑗 following the the model described in Section 1.1. We
can now see {𝜂𝑁(𝑡)}𝑡≥0 as the evolution of the stochastic process of the change of spins over time.
In Equation (2.14) 𝑖 is the initial condition and can be replaced by initial configuration 𝜂; in the same
equation state 𝑗 can be replaced by 𝜂𝑗→𝑖.
The general Markov generator (2.14) describes alle options to go from initial state 𝑖 to state 𝑗. Here 𝑖 is
fixed and we sum over 𝑗. In the generator of the mean­field voter model we still want to describe every
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combinatorial option to go from initial state 𝜂 to state 𝜂𝑗→𝑖. In the case of the MFVM 𝑖, 𝑗 are not states,
but indices of individuals. We now still fix the initial state 𝜂 and work out all options of the adapted
configuration 𝜂𝑗→𝑖. This is done by summing over all individuals 𝑖 and al individuals 𝑗; this is how all the
options of the adapted configuration 𝜂𝑗→𝑖 are considered. The transition rate 𝑞𝑖𝑗 is now redefined as
𝑟𝑖𝑗: the rate of flipping the spin of individual 𝑖 considering individual 𝑗. The general Markov generator is
now changed into the generator of the mean­field voter model:

(𝐿𝑁𝑓)(𝜂) =
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑟𝑖𝑗(𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)). (2.15)

Now we only have to find the right expression for 𝑟𝑖𝑗. In the article of Borile et al. [2] they defined the
following: assuming 𝜌 = 1, the rate that the spin of individual 𝑖 flips regardless of one specific 𝑗 is equal
to 1. This can be written as follows:

𝑁

∑
𝑗=1
𝑟𝑖𝑗 = 1. (2.16)

Now since an individual 𝑗 is uniformly chosen, as described in Section 1.1, one concludes that 𝑟𝑖𝑗 =
1
𝑁 .

Our generator of the MFVM now becomes:

𝐿𝑁𝑓(𝜂) =
𝑁

∑
𝑖=1

1
𝑁

𝑁

∑
𝑗=1
[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]. (2.17)

When 𝜌 < 1, the population individuals are located in does matter for the stochastic process; this is the
case where two populations are considered. We can distinguish two different cases (see Section 1.1)
regarding the population of each individual:

– when ℎ𝑖 = 𝜂𝑗, individual 𝑖 adapts the spin of 𝑗 with probability 1 such that the transition rate
becomes

𝑟𝑖𝑗 =
1
𝑁 ; (2.18)

– when ℎ𝑖 ≠ 𝜂𝑗, individual 𝑖 adapts the spin of 𝑗 with probability 𝜌 such that the transition rate
becomes:

𝑟𝑖𝑗 = 𝜌
1
𝑁 . (2.19)

Now we use the two equations above to rewrite the generator of the MFVM as in the article [2]:

𝐿𝑁𝑓(𝜂) =
𝑁

∑
𝑖=1

1
𝑁

𝑁

∑
𝑗=1
𝟙ℎ𝑖=𝜂𝑗[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] + 𝜌𝟙ℎ𝑖≠𝜂𝑗[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] (2.20)

2.3. Differential equations
Differential equations play an important role in this research. In this thesis we eventually want to show
convergence of a stochastic process to a solution of a differential equation. We do this by convergence
of operators which are, in this case, generators. Therefore we want to link generators to differential
equations. Therefore some definitions and theorems are given in this Section.

2.3.1. Definitions differential equations
In section 4.2 we take the limit of the two­dimensional generator of the MVFM with selection. We do
this with help of Taylor’s Theorem (Theorem 4.2.0.1). Taylors’s theorem uses a Hessian matrix.

Definition 2.3.1.1 AHessianmatrix is a squarematrix whose elements are second­order partial deriva­
tives of a given function. If one considers the two­dimensional case we have 𝑓 ∶ ℝ2 → ℝ is a function
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with continuous second­order partial derivatives the Hessian Matrix is [5]:

(
𝑑2𝑓
𝑑𝑥𝑑𝑥

𝑑2𝑓
𝑑𝑥𝑑𝑦

𝑑2𝑓
𝑑𝑦𝑑𝑥

𝑑2𝑓
𝑑𝑦𝑑𝑦

) . (2.21)

2.3.2. Convergence of a stochastic process to a differential equation
Definition 2.3.2.1 A stochastic process {𝑚𝑛(𝑡)}𝑡≥0 of real valued random­variables is said to converge
in distribution, or converge weakly, to 𝑥(𝑡), if ∀𝑡:

lim
𝑁→∞

𝔽𝑡,𝑛(𝜔) = 𝔽𝑡(𝜔) (2.22)

∀𝜔 ∈ ℝ, at which 𝔽𝑡(𝜔) is continuous. Here 𝔽𝑡,𝑛 and 𝔽𝑡 are the cumulative distribution functions of
random variables 𝑚𝑛(𝑡) and 𝑥(𝑡) respectively, where 𝑚𝑛(𝑡) → 𝑥(𝑡).

Theorem 2.3.2.1 [3] For a stochastic process {𝑚𝑛(𝑡)}𝑡≥0 the following are equivalent:

(i) ∀𝑡 ∶ 𝑚𝑛(𝑡) → 𝑥(𝑡) (weak convergence);

(ii) ∀𝑓 ∈ 𝐶2𝑏 , ∀𝑡 ∶ 𝔼[𝑓(𝑚𝑛(𝑡))] → 𝔼[𝑓(𝑥(𝑡))].

Theorem 2.3.2.2 The following are equivalent:

(i) 𝑥(𝑡) solves

{
𝑑𝑥
𝑑𝑡 = 𝐹(𝑥)
𝑥(0) = 𝑥0.

(2.23)

(ii) For all 𝑓 ∈ 𝐶2𝑏 :

{
𝑑
𝑑𝑡𝑓(𝑥(𝑡)) = ⟨∇𝑓(𝑥), 𝐹(𝑥)⟩
𝑥(0) = 𝑥0.

(2.24)

When one combines Theorem 2.3.2.1, 2.3.2.2 and a general theorem about convergence of Markov
processes (can be found in the book of S. N. Ethier and T. G. Kurtz [3] Section 4.8), we can formulate
Theorem 2.3.2.3:

Theorem 2.3.2.3 Suppose that 𝐴𝑛 is the generator of stochastic process {𝑚𝑛(𝑡)}𝑡≥0 and 𝐴𝑓(𝑥) =
⟨∇𝑓(𝑥), 𝐹(𝑥)⟩. Furthermore we suppose that

1. 𝑚𝑛(0) → 𝑥0 weakly;

2. lim
𝑛→∞

sup
𝑥
|𝐴𝑛𝑓(𝑥) − 𝐴𝑓(𝑥)| = 0, ∀𝑓 ∈ 𝐶2𝑏 .

Then 𝑚𝑛(𝑡) converges in distribution to 𝑥(𝑡) ∀𝑡, where 𝑥(𝑡) solves:

{
𝑑𝑥
𝑑𝑡 = 𝐹(𝑥)
𝑥(0) = 𝑥0.

(2.25)



3
One­dimensional mean­field voter model

with selection
In this Chapter we build up to a one­dimensional differential equation that represents the MFVM with
selection. With this differential equation we investigate the coexistence of individuals with two different
alleles in the same population where one allele has a selection advantage. In Section 3.1 we rewrite
our generator of the MFVM (Section 1.1) such that we can add a selection factor and take a limit. The
limit of the generator is worked out in Section 3.2. The convergence of this limit to a differential equation
can be found in Section 3.3. Eventually, in Section 3.4, we provide results.

3.1. Generator of the one­dimensional mean­field voter model with
selection

In this Section we will rewrite our generator. This is necessary to take a limit (see Section 3.2).

We define the following:

𝑥 ∶= 𝑚𝑁(𝜂) =
1
𝑁

𝑁

∑
𝑖=1
(𝜂𝑖). (3.1)

We are going to rewrite the generator with the function 𝑓 = 𝑔 ∘ 𝑚𝑁. Here 𝑔 ∈ 𝐶2𝑏 ∶ [0, 1] → ℝ since
𝑚𝑁 ∶ 𝜂 → [0, 1]. If we are working with 𝑚𝑁(𝜂) we can take a limit 𝑁 → ∞. 𝑚𝑁(𝜂) intuitively is a mean; if
we take the mean of the the configuration of spins of the stochastic process, the state space is in [0, 1].
In this case, the limit cannot go to infinity.
We now are going to show that {𝑚𝑁(𝜂)}𝑡≥0 is indeed Markovian. We fix 𝑚𝑁(𝜂) at a certain time 𝑡. Let
𝑚𝑁(𝜂𝑗→𝑖) be the mean of the vector of spins 𝜂 after individual 𝑖 has adapted the spin of individual 𝑗 at
time 𝑡2 > 𝑡. It is clear that

𝑚𝑁(𝜂𝑗→𝑖) = {
𝑚𝑁(𝜂) +

1
𝑁 , if 𝜂𝑖 = 0, 𝜂𝑗 = 1;

𝑚𝑁(𝜂), if 𝜂𝑖 = 𝜂𝑗;
𝑚𝑁(𝜂) −

1
𝑁 , if 𝜂𝑖 = 1, 𝜂𝑗 = 0.

(3.2)

As one can see from Equation (3.2) 𝑚𝑁(𝜂𝑗→𝑖) only depends on 𝑚𝑁(𝜂). We conclude that 𝑚𝑁(𝜂𝑗→𝑖)
is Markovian. We are going to rewrite the generator as follows with 𝑓 = 𝑔 ∘ 𝑚𝑁 such that we can
eventually obtain:

𝐿𝑁𝑓(𝜂) = 𝐿𝑁(𝑔 ∘ 𝑚𝑁)(𝜂) = 𝐴𝑁𝑔(𝑚𝑁(𝜂)). (3.3)

for some generator 𝐴𝑁.

We start off by taking the original generator of theMFVM (1.1) and set 𝜌 = 1 to obtain a one­dimensional

7
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model:

𝐿𝑁𝑓(𝜂) =
𝑁

∑
𝑖=1

1
𝑁

𝑁

∑
𝑗=1
[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]. (3.4)

Now we will rewrite the generator (3.4) into two compartments (double sums) such that we can add
fertility selection:

– The first sum represents every combinatorial combination such that, after flipping the spin of
individual 𝑖, the new configuration of all spins 𝜂𝑗→𝑖 has one more individual with allele A (and one
less with B). In this case we add a fertility selection factor (1 + 𝑆) with 𝑆 ≥ 0, 𝑆 ∈ ℝ (see Section
1.2).

– The second sum represents every combinatorial combination such that, after flipping the spin of
individual 𝑖, the new configuration of all spins 𝜂𝑗→𝑖 has one less individual with allele A (and one
more with B).

We do not have to consider the case when 𝜂𝑖 = 𝜂𝑗 since then the term that is inside the sum in Equation
(3.4) is 0. At last we rewrite 𝑓 as 𝑓(𝜂) = 𝑔 ∘ 𝑚𝑁(𝜂). Writing these steps out we obtain:

𝐿𝑁𝑓(𝜂) =
𝑁

∑
𝑖=1

1
𝑁

𝑁

∑
𝑗=1
[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] (3.5)

= (1 + 𝑆)[ ∑
𝑖|𝜂𝑖=0

1
𝑁 ∑
𝑗|𝜂𝑗=1

[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]] + [ ∑
𝑖|𝜂𝑖=1

1
𝑁 ∑
𝑗|𝜂𝑗=0

[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]] (3.6)

= (1 + 𝑆)[ ∑
𝑖|𝜂𝑖=0

1
𝑁 ∑
𝑗|𝜂𝑗=1

[𝑔(𝑚𝑁(𝜂𝑗→𝑖)) − 𝑔(𝑚𝑁)(𝜂)]] + [ ∑
𝑖|𝜂𝑖=1

1
𝑁 ∑
𝑗|𝜂𝑗=0

[𝑔(𝑚𝑁(𝜂𝑗→𝑖)) − 𝑔(𝑚𝑁)(𝜂)]].

(3.7)

With Equation (3.2) we rewrite the generator (Equation (3.7)) as follows:

𝐿𝑁𝑓(𝜂) = (1 + 𝑆)𝑅+(𝑁) [𝑔(𝑚𝑁(𝜂) +
1
𝑁) − 𝑔(𝑚𝑛(𝜂))] + 𝑅−(𝑁) [𝑔(𝑚𝑁(𝜂) −

1
𝑁) − 𝑔(𝑚𝑁(𝜂))] (3.8)

= 𝐴𝑁𝑔(𝑚𝑁(𝜂)). (3.9)

Here 𝐴𝑁 is the generator on a random walk on {0, 1𝑁 ,
2
𝑁 , ⋯ , 1} with jump rates 𝑅+(𝑁) and 𝑅−(𝑁) (we

define those jump rates a little bit later on). Note that we also take into account the fertility selection
(1+𝑆). For our own convenience we substitute𝑚𝑁(𝜂) for 𝑥 (Equation (3.1)). The generator now looks
like this:

𝐿𝑁𝑓(𝜂) = (1 + 𝑆)𝑅+(𝑁) [𝑔(𝑥 +
1
𝑁) − 𝑔(𝑥)] + 𝑅−(𝑁) [𝑔(𝑥 −

1
𝑁) − 𝑔(𝑥)] (3.10)

= 𝐴𝑁𝑔(𝑥). (3.11)

The final step in obtaining the final the generator is to calculate the jump rates. We fully calculate the
jump rate 𝑅+(𝑁) and give the result of 𝑅−(𝑁) since the calculations are very similar. The jump rate
𝑅+(𝑁) is

1
𝑁 times every combinatorial option of the pair 𝑖, 𝑗 such that 𝜂𝑖 = 0, 𝜂𝑗 = 1. This can be written

as:
𝑅+(𝑁) =

1
𝑁#{𝑖, 𝑗|𝜂𝑖 = 0; 𝜂𝑗 = 1} (3.12)

This can be written as two independent events: one considering 𝑖 and the other one considering 𝑗:

𝑅+(𝑁) =
1
𝑁#{𝑖|𝜂𝑖 = 0} ⋅ #{𝑗|𝜂𝑗 = 1}. (3.13)
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Our jump rate (3.13) is worked out as follows (using Equation (3.1)):

𝑅+(𝑁) =
1
𝑁

𝑁

∑
𝑗=1
𝜂𝑗

𝑁

∑
𝑖=1
1 − 𝜂𝑖 =

1
𝑁[𝑁𝑚𝑁][𝑁(1 − 𝑚𝑁)] = 𝑁𝑥(1 − 𝑥). (3.14)

Using the same calculation techniques for 𝑅−(𝑁) we obtain:

𝑅−(𝑁) = 𝑁𝑥(1 − 𝑥). (3.15)

Writing out the jump rates our final version of the one­dimensional generator of the mean­field voter
model with selection is:

𝐴𝑁𝑔(𝑥) = (1 + 𝑆)[𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 +
1
𝑁) − 𝑔(𝑥)] + [𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 −

1
𝑁) − 𝑔(𝑥)] . (3.16)

3.2. Limit of the generator of the one­dimensional mean­field voter
model with selection

We have found the expression of the generator of the one­dimensional mean­field voter model with
selection as in Equation (3.16). Therefore we are now able to take the limit:

lim
𝑁→∞

𝐴𝑁𝑔(𝑥) = lim
𝑁→∞

(1 + 𝑆)[𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 + 1
𝑁) − 𝑔(𝑥)]

+ lim
𝑁→∞

[𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 − 1
𝑁) − 𝑔(𝑥)] . (3.17)

We need Taylor’s theorem to, eventually, obtain the limit of the generator 𝐴𝑁.

Theorem 3.2.0.1 (Taylor’s theorem with remainder) Let 𝑓 ∈ 𝐶2𝑏[𝑎, 𝑏]. That is, 𝑓 is a continuous func­
tion and its continuous derivative 𝑓′ is defined on a closed interval [𝑎, 𝑏] and for all 𝑥 ∈ (𝑎, 𝑏) the second
derivative 𝑓(2)(𝑥) exists: There exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑏 − 𝑎) + 𝑅2 (3.18)

where:

𝑅2 =
𝑓(2)(𝑐)
2! (𝑏 − 𝑎)2. (3.19)

Before we are going to use Taylor’s theorem we have to check if our function 𝑔 satisfies the conditions
as given above. Note that for any individual 𝜂𝑖 ∈ 𝜂 we have that:

0 ≤ 𝜂𝑖 ≤ 1 ⟺ 0 ≤
𝑁

∑
𝑖=1
𝜂𝑖 ≤ 𝑁 ⟺ 0 ≤ 1

𝑁

𝑁

∑
𝑖=1
𝜂𝑖 ≤ 1. (3.20)

So therefore 0 ≤ 𝑚𝑁(𝜂) ≤ 1; this functions is continuous on [0, 1]. Now, since we have chosen, 𝑔 ∈ 𝐶2𝑏
it is easy to see that

𝑔 ∶ [0, 1] → ℝ (3.21)

is also continuous on the defined interval and the first and second derivatives exist. So indeed we are
allowed to use Taylor’s theorem (see Theorem 3.2.0.1).

We only analyse the first term of the generator (Equation (3.16))

(1 + 𝑆)[𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 + 1
𝑁) − 𝑔(𝑥)] (3.22)
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since the calculations of the second term are similar; we only give the result of the second term. We
start off by analysing the following part of the first term in Equation (3.22) and using Theorem 3.2.0.1:

𝑔(𝑥 + 1
𝑁) − 𝑔(𝑥) = 𝑔

′(𝑥)(𝑥 + 1
𝑁 − 𝑥) +

𝑔(2)(𝑐)
2 (𝑥 + 1

𝑁 − 𝑥)
2
= 𝑔′(𝑥)

𝑁 + 𝑔
(2)(𝑐)
2 ( 1𝑁)

2
(3.23)

Now we can rewrite the first term as follows following where 𝑐 ∈ (𝑥, 𝑥 + 1
𝑁):

(1 + 𝑆)[𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 + 1
𝑁) − 𝑔(𝑥)] = (3.24)

(1 + 𝑆)[𝑥(1 − 𝑥)]𝑁 [𝑔(𝑥 + 1
𝑁) − 𝑔(𝑥)] = (3.25)

(1 + 𝑆)[𝑥(1 − 𝑥)]𝑁 [𝑔
′(𝑥)
𝑁 + 𝑔

(2)(𝑐)
2 ( 1𝑁)

2
] = (3.26)

(1 + 𝑆)[𝑥(1 − 𝑥)] [𝑔′(𝑥) + 𝑔
(2)(𝑐)
2

1
𝑁] . (3.27)

Taking the limit we obtain:

lim
𝑁→∞

(1 + 𝑆)[𝑥(1 − 𝑥)] [𝑔′(𝑥) + 𝑔
(2)(𝑐)
2

1
𝑁] = (3.28)

(1 + 𝑆)[𝑥(1 − 𝑥)] lim
𝑁→∞

[𝑔′(𝑥) + 𝑔
(2)(𝑐)
2

1
𝑁] = (1 + 𝑆)[𝑥(1 − 𝑥)]𝑔

′(𝑥). (3.29)

The limit of the second term of Equation (3.16) is, using the same steps as the first term, as follows:

lim
𝑁→∞

[𝑁𝑥(1 − 𝑥)] [𝑔(𝑥 − 1
𝑁) − 𝑔(𝑥)] = −[𝑥(1 − 𝑥)]𝑔

′(𝑥). (3.30)

Combining the two terms above the limit of the generator of the mean­field voter model with selection
becomes:

lim
𝑁→∞

𝐴𝑁𝑔(𝑥) = (1 + 𝑆)[𝑥(1 − 𝑥)]𝑔′(𝑥) − [𝑥(1 − 𝑥)]𝑔′(𝑥) = 𝑆[𝑥(1 − 𝑥)]𝑔′(𝑥). (3.31)

We conclude that 𝐴𝑔(𝑥) = 𝑆[𝑥(1 − 𝑥)]𝑔′(𝑥) where 𝐴𝑔(𝑥) = lim𝑁→∞ 𝐴𝑁𝑔(𝑥). Thus our limit of the
generator in one dimension is

𝐴𝑔(𝑥) = 𝑆[𝑥(1 − 𝑥)]𝑔′(𝑥). (3.32)

3.3. The differential equation of the one­dimensionalmean­field voter
model with selection

Now that we have shown that lim𝑁→∞ 𝐴𝑁𝑔(𝑥) = 𝐴𝑔(𝑥) as in (3.32) we want to show convergence of
distribution of this generator to a differential equation. We will achieve this by using Theorem 2.3.2.3.
We have 𝐴𝑔(𝑥(𝑡)) = ⟨𝑔′(𝑥(𝑡)); 𝑆[𝑥(1 − 𝑥)]⟩ and 𝐺(𝑥(𝑡)) = 𝑆[𝑥(1 − 𝑥)]. So therefore, using Theorem
2.3.2.3, we will find that {𝑚𝑁(𝜂)}𝑡≥0 converges in distribution to 𝑥(𝑡). Here 𝑥(𝑡) solves the following
system:

{
𝑑𝑥
𝑑𝑡 = 𝑆[𝑥(𝑡)(1 − 𝑥(𝑡))]
𝑥(0) = 𝑥0.

(3.33)

Using our knowledge about differential equations we see that

𝑥(𝑡) = 𝑒𝑆𝑡+𝐶
1 + 𝑒𝑆𝑡+𝐶 , (3.34)

with 𝐶 a constant in ℝ, is the general solution of the our system (3.33) which represents the one­
dimensional mean­field voter model with selection. Here 𝐶 can be expressed in terms of 𝑥0 as follows:
𝑐 = ln ( 𝑥0

1−𝑥0
).
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3.4. Results of the one­dimensional mean­field voter model with
selection

In this section we are going to look into the differential equation as in (3.33) and what effects the
parameter 𝑆 has on this system. Before we change the paramater 𝑆 we are determining the equilibrium
points of this system. The equilibrium points are found by setting the derivative equal to 0. Note that
still 𝑥(𝑡) is the limit of 𝑚𝑁(𝜂) which represents the scaled amount of individuals with allele A. Thus we
have

𝑑𝑥
𝑑𝑡 = 0 ⟺ 𝑆[𝑥(𝑡)(1 − 𝑥(𝑡))] = 0. (3.35)

It is easy to see that 𝑥 = 0 and 𝑥 = 1 are the solutions. These are the absorbing states of the system.
This can be explained: when 𝑥 = 0 every individual has allele B so therefore they cannot reproduce
an individual with allele A; when 𝑥 = 1 every individual has allele A so similarly it stays this way. Since
we have that

𝑑𝑥
𝑑𝑡 > 0 (3.36)

for every initial condition 𝑥0 ∈ (1, 0) we can conclude that our solution converges to 1. Only for 𝑥0 = 0
we have that our solution stays at 𝑥 = 0. This can be explained by the fact that individuals with allele
A has a selection advantage over individuals with allele B. Based on Equation (3.34) (Also see Figure
3.1) we are now able to state the following conjecture: For the stochastic process {𝜂𝑁(𝑡)}𝑡≥0 of the
one­dimensional mean field voter model

𝑇𝑁 = inf {𝑡 ∶ {𝜂𝑁(𝑡)} ∈ {0, 1}, 𝑠 > 0} = 𝒪(1). (3.37)

In Equation (3.37) we claim that the typical time of absorption 𝑇𝑁 of the stochastic process, in one
dimension, hitting a state {0, 1}, a population with only individuals of the same allele, has order 𝒪(1).
This differs from the order of hitting an absorbing state in one dimension without selection; this is 𝒪(𝑁)
(see Equation (1.2) in Section 1.1). This can be explained by the selection advantage of allele A; the
solution always drifts, as long as there are individuals with allele A, to absorbing state 𝑥 = 1 due to the
selection factor 𝑆.
To obtain a better insight of this differential equation we provide a few graphs of the solution curve in
the next subsections.

3.4.1. Solution curve of the one­dimensional mean­field voter model with selec­
tion 𝑆 = 0.1

In this section we will show two graphs of the solution of the differential equation (see Equation (3.33))
with both 𝑆 = 0.1 but different initial conditions. We plot the solution (see (3.34)) of the one­dimensional
MFVM with selection with 𝑆 = 0.1 and initial condition 𝑥0 = 0.8 to obtain Figure 3.1. We see that in
Figure 3.1 at 𝑡 = 0 we have 𝑥(0) = 0.8 which means that 80 percent of the population has allele A.
We see that, very quickly, the solution converges to 1. In Figure 3.2 we start with 10 percent of the
individuals with allele A but still we converge to an equilibrium point with 100 percent of the individuals
with allele A (𝑥 = 1).
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Figure 3.1: Solution curve 𝑥(𝑡) (Equation (3.34)) with initial value 𝑥0 = 0.8 and 𝑆 = 0.1

Figure 3.2: Solution curve 𝑥(𝑡) (Equation (3.34)) with initial value 𝑥0 = 0.1 and 𝑆 = 0.1

3.4.2. Solution curve of the one­dimensional mean­field voter model with selec­
tion 𝑆 = 0.001

If the selection takes place with a slower pace it takes longer to reach the absorbing state 𝑥 = 1. We
now take 𝑆 = 0.001 and use the same initial conditions as in section 3.4.1: 𝑥0 = 0.8 and 𝑥0 = 0.1. We
obtain the figures 3.3 and 3.4. We see the same behaviour as in section 3.4.1 but only now the time
to absorption in Figure 3.3 and Figure 3.4 is longer than Figure 3.1 and 3.2. This is due to the fact that
selection factor 𝑆 is lower. We are also going to provide one more solution curve in Figure 3.5 with an
initial condition very close to 0: 𝑥0 = 0.001. The selection factor 𝑆 is still equal to 0.001. In Figure 3.5
we see that, in the beginning, the process goes slow. Then, in the middle, the process is at its fastest.
At the end the process slows down again.



3.4. Results of the one­dimensional mean­field voter model with selection 13

Figure 3.3: Solution curve 𝑥(𝑡) (Equation (3.34)) with initial value 𝑥0 = 0.8 and 𝑆 = 0.001

Figure 3.4: Solution curve 𝑥(𝑡) (Equation (3.34)) with initial value 𝑥0 = 0.1 and 𝑆 = 0.001
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Figure 3.5: Solution curve 𝑥(𝑡) (Equation (3.34)) with initial value 𝑥0 = 0.001 and 𝑆 = 0.001



4
Two­dimensional mean­field voter model

with selection
In this Chapter we build up to a two­dimensional system of differential equations that represents the
MFVM with selection. We investigate the coexistence of individuals with two different alleles in two
populations where one allele has a selection advantage. We do this the same way as in Chapter 3.
First, in Section 4.1, we rewrite our general generator of Section 1.1, considering two populations,
such that we can add a selection factor and take a limit. Then the limit of the generator is worked out in
Section 4.2. The convergence of this limit to a system of differential equations can be found in Section
4.3. Finally, in Section 4.4, we provide results.

4.1. Generator of two­dimensional mean­field voter model with se­
lection

In this Section a selection factor is added to the MFVM (see 1.1) and the generator of the MFVM,
considering two populations, is rewritten. We start of by defining the following:

𝑥 ∶= 𝑚+𝑁(𝜂) =
1
𝑁

𝑁

∑
𝑖=1
𝜂𝑖ℎ𝑖 (4.1)

𝑦 ∶= 𝑚−𝑁(𝜂) =
1
𝑁

𝑁

∑
𝑖=1
𝜂𝑖(1 − ℎ𝑖) (4.2)

𝑚𝑁(𝜂) = (𝑚+𝑁(𝜂),𝑚−𝑁(𝜂)) (4.3)

𝑞 ∶= 𝑁+(𝜂) = 1
𝑁

𝑁

∑
𝑖=1
ℎ𝑖 (4.4)

1 − 𝑞 ∶= 𝑁−(𝜂) = 1
𝑁

𝑁

∑
𝑖=1
(1 − ℎ𝑖). (4.5)

Here, the first two equations count the number of alleles A in population 1 and 2 respectively. The
fourth and fifth equation count the number of individuals in population 1 and 2 respectively. The fact
that we are working with averages 𝑚+𝑁(𝜂) and 𝑚−𝑁(𝜂) allows us to take a limit which is done in Section
4.2.
The generator will be rewritten, as in Section 3.1, with the function 𝑓 = 𝑔∘𝑚𝑁. We let 𝑔 ∈ 𝐶2𝑏 ∶ [0, 1]2 →
ℝ since 𝑚𝑁 ∶ 𝜂 → [0, 1]2. Again, 𝑚𝑁 is Markovian; this is proven the same way as we have done in
Section 3.1 but now in two dimensions. Using 𝑓 = 𝑔 ∘𝑚𝑁, we rewrite our generator (Equation (1.1)) so
that we can obtain

𝐿𝑁𝑓(𝜂) = 𝐿𝑁(𝑔 ∘ 𝑚𝑁)(𝜂) = 𝐴𝑁𝑔(𝑚𝑁(𝜂)) (4.6)

15
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for some generator 𝐴𝑁.

Our original generator of the MFVM, with 𝜌 < 1 since we consider the two­dimensional model, is:

𝐿𝑛𝑓(𝜂) =
𝑁

∑
𝑖=1

1
𝑁

𝑁

∑
𝑗=1
𝟙ℎ𝑖=𝜂𝑗[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] + 𝜌𝟙ℎ𝑖≠𝜂𝑗[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]. (4.7)

First we rewrite the generator into four compartments which are double sums: The first compartment
represents all combinatorial options of adding an individual with allele A (and losing an individual with
allele B) in population 1 where the second compartment represents all combinatorial options of adding
an individual with allele A (and losing an individual with allele B) in population 0. The second and fourth
do the same respectively but only now subtracting an individual with allele A (and adding an individual
with allele B) instead of adding. When an individual with allele A is added to a population we also take
into account the fertility selection 𝑆 > 0. This gives the following result:

𝐿𝑁𝑓(𝜂) = ∑
𝑖|𝜂𝑖=0,ℎ𝑖=1

1
𝑁 ∑
𝑗|𝜂𝑗=1

(1 + 𝑆)[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] + ∑
𝑖|𝜂𝑖=0,ℎ𝑖=0

1
𝑁 ∑
𝑗|𝜂𝑗=1

𝜌(1 + 𝑆)[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]+

∑
𝑖|𝜂𝑖=1,ℎ𝑖=1

1
𝑁 ∑
𝑗|𝜂𝑗=0

𝜌[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)] + ∑
𝑖|𝜂𝑖=1,ℎ𝑖=0

1
𝑁 ∑
𝑗|𝜂𝑗=0

[𝑓(𝜂𝑗→𝑖) − 𝑓(𝜂)]. (4.8)

The second double sum gets a factor 𝜌(1 + 𝑆) since there is an individual with allele A added (𝜂𝑖 =
0, 𝜂𝑗 = 1) which gives us the factor 1 + 𝑆 and also ℎ𝑖 ≠ 𝜂𝑗 such that we get the factor 𝜌. With the
same arguments the factors of each double sum are determined. For the next step we rewrite our
function 𝑓 as 𝑓 = 𝑔 ∘ 𝑚𝑁 where 𝑔 ∶ (0, 1)2 → ℝ, 𝑔 ∈ 𝐶2𝑏 . We have that 𝑚𝑁(𝜂) = (𝑚+𝑁(𝜂),𝑚−𝑁(𝜂)) where
𝑚𝑁 ∶ 𝜂 → (0, 1)2. We are now able to rewrite the generator in the following way:

𝐿𝑁𝑓(𝜂) = ∑
𝑖|𝜂𝑖=0,ℎ𝑖=1

1
𝑁 ∑
𝑗|𝜂𝑗=1

(1 + 𝑆)[𝑔(𝑚𝑁(𝜂𝑗→𝑖)) − 𝑔(𝑚𝑁(𝜂))]+

∑
𝑖|𝜂𝑖=0,ℎ𝑖=0

1
𝑁 ∑
𝑗|𝜂𝑗=1

𝜌(1 + 𝑆)[𝑔(𝑚𝑁(𝜂𝑗→𝑖)) − 𝑔(𝑚𝑁(𝜂))]+

∑
𝑖|𝜂𝑖=1,ℎ𝑖=1

1
𝑁 ∑
𝑗|𝜂𝑗=0

𝜌[𝑔(𝑚𝑁(𝜂𝑗→𝑖)) − 𝑔(𝑚𝑁(𝜂))]+

∑
𝑖|𝜂𝑖=1,ℎ𝑖=0

1
𝑁 ∑
𝑗|𝜂𝑗=0

[𝑔(𝑚𝑁(𝜂𝑗→𝑖)) − 𝑔(𝑚𝑁(𝜂))]. (4.9)

To help us find generator 𝐴𝑁 we investigate, just as in Section 3.1, the following:

𝑚𝑁(𝜂𝑗→𝑖) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑚𝑁(𝜂) + (
1
𝑁 , 0) if 𝜂𝑖 = 0, 𝜂𝑗 = 1, ℎ𝑖 = 1,

𝑚𝑁(𝜂) + (0,
1
𝑁 ) if 𝜂𝑖 = 0, 𝜂𝑗 = 1, ℎ𝑖 = 0,

𝑚𝑁(𝜂) if 𝜂𝑖 = 𝜂𝑗 ,
𝑚𝑁(𝜂) − (

1
𝑁 , 0) if 𝜂𝑖 = 1, 𝜂𝑗 = 0, ℎ𝑖 = 1,

𝑚𝑁(𝜂) − (0,
1
𝑁 ) if 𝜂𝑖 = 1, 𝜂𝑗 = 0, ℎ𝑖 = 0.

(4.10)
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With the equations above we can now rewrite the generator (4.9) further:

𝐿𝑁𝑓(𝜂) = 𝑅+(𝑁)ℎ+(1 + 𝑆) [𝑔(𝑚+𝑁(𝜂) +
1
𝑁 ,𝑚

−
𝑁(𝜂)) − 𝑔(𝑚+𝑁(𝜂),𝑚−𝑁(𝜂))]+

𝑅+(𝑁)ℎ−𝜌(1 + 𝑆) [𝑔(𝑚+𝑁(𝜂),𝑚−𝑁(𝜂) +
1
𝑁) − 𝑔(𝑚

+
𝑁(𝜂),𝑚−𝑁(𝜂))]+

𝑅−(𝑁)ℎ+𝜌 [𝑔(𝑚+𝑁(𝜂) −
1
𝑁 ,𝑚

−
𝑁(𝜂)) − 𝑔(𝑚+𝑁(𝜂),𝑚−𝑁(𝜂))]+

𝑅−(𝑁)ℎ− [𝑔(𝑚+𝑁(𝜂),𝑚−𝑁(𝜂) −
1
𝑁) − 𝑔(𝑚

+
𝑁(𝜂),𝑚−𝑁(𝜂))]

= 𝐴𝑁𝑔(𝑚𝑁)(𝜂). (4.11)

Here 𝐴𝑁 is the generator that describes a two­dimensional randomwalk on {0, 1𝑁 , ⋯ , 1}
2 with jump rates:

𝑅+(𝑁)ℎ+, 𝑅+(𝑁)ℎ−, 𝑅−(𝑁)ℎ+, 𝑅−(𝑁)ℎ− and additional factors regarding fertility selection (1+𝑆) and the
population 𝜌. For our own convenience we use 𝑥, 𝑦 as we defined in Equation (4.1) and Equation (4.2).
Substituting this 𝑥, 𝑦 notation the generator looks like this:

𝐴𝑁𝑔(𝑥, 𝑦)(𝜂) = 𝑅+(𝑁)ℎ+(1 + 𝑆) [𝑔(𝑥 +
1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)]+

𝑅+(𝑁)ℎ−𝜌(1 + 𝑆) [𝑔(𝑥, 𝑦 +
1
𝑁) − 𝑔(𝑥, 𝑦)]+

𝑅−(𝑁)ℎ+𝜌 [𝑔(𝑥 −
1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)]+

𝑅−(𝑁)ℎ− [𝑔(𝑥, 𝑦 −
1
𝑁) − 𝑔(𝑥, 𝑦)] . (4.12)

The last step in determining the two­dimensional generator of the mean­field voter model with selection
is to calculate the jump rates as mentioned above. We are going to fully work out the first jump rate
𝑅+(𝑁)ℎ+ as the calculations for the other three jump rates are very similar and therefore not needful.
We only provide the results of the three other jump rates at the end of this Section. The jump rate
𝑅+(𝑁)ℎ+ is 1

𝑁 times every combinatorial option of the pair 𝑖, 𝑗 such that 𝜂𝑖 = 0, ℎ𝑖 = 1; 𝜂𝑗 = 1. Written
out mathematically we obtain:

𝑅+(𝑁)ℎ+ =
1
𝑁#{𝑖, 𝑗|𝜂𝑖 = 0, ℎ𝑖 = 1; 𝜂𝑗 = 1}. (4.13)

Note that in the upcoming calculation of the jump rates we are using the 4 Equations defined in the
beginning of this Section: (4.1), (4.2), (4.4) and (4.5). We first calculate condition of (4.13) depending
on 𝑗:

#{𝑗|𝜂𝑗 = 1} =
𝑁

∑
𝑗=1
𝜂𝑗 =

𝑁

∑
𝑗=1
𝜂𝑗(ℎ𝑗 + (1 − ℎ𝑗)) = 𝑁(𝑚+𝑁 +𝑚−𝑁) = 𝑁(𝑥 + 𝑦). (4.14)

Now we calculate the other condition of (4.13) depending on 𝑖:

#{𝑖|𝜂𝑖 = 0, ℎ𝑖 = 1} =
𝑁

∑
𝑖=1
ℎ𝑖(1−𝜂𝑖) =

𝑁

∑
𝑖=1
ℎ𝑖−

𝑁

∑
𝑖=1
ℎ𝑖𝜂𝑖 = 𝑁(𝑁+)−𝑁(𝑚+𝑁) = 𝑁𝑞−𝑁𝑥 = 𝑁(𝑞−𝑥). (4.15)

Multiplicating the two events above, since they are independent, the jump rate 𝑅+(𝑁)ℎ+ becomes:

𝑅+(𝑁)ℎ+ =
1
𝑁𝑁(𝑥 + 𝑦)𝑁(𝑞 − 𝑥) = 𝑁(𝑞 − 𝑥)(𝑥 + 𝑦). (4.16)

Using the same way of calculating the first jump rate, the other three jump rates are as follows:

𝑅+(𝑁)ℎ− = 𝑁(1 − 𝑞 + 𝑦)(𝑥 + 𝑦) (4.17)
𝑅−(𝑁)ℎ+ = 𝑁𝑥(1 − (𝑥 + 𝑦)) (4.18)
𝑅−(𝑁)ℎ− = 𝑁𝑦(1 − (𝑥 + 𝑦)). (4.19)
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Our final expression of the generator of the two­dimensional MFVM with selection is:

𝐴𝑁𝑔(𝑥, 𝑦)(𝜂) = (1 + 𝑆)𝑁(𝑞 − 𝑥)(𝑥 + 𝑦) [𝑔(𝑥 +
1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)]+

𝜌(1 + 𝑆)𝑁(1 − 𝑞 + 𝑦)(𝑥 + 𝑦) [𝑔(𝑥, 𝑦 + 1
𝑁) − 𝑔(𝑥, 𝑦)]+

𝜌𝑁𝑥(1 − (𝑥 + 𝑦)) [𝑔(𝑥 − 1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)]+

𝑁𝑦(1 − (𝑥 + 𝑦)) [𝑔(𝑥, 𝑦 − 1
𝑁) − 𝑔(𝑥, 𝑦)] . (4.20)

4.2. Limit of the generator of the two­dimensional mean­field voter
model with selection

Now that we have found the generator of two­dimensional MFVM with selection we want to obtain the
limit of this mathematical object just as in Section 3.2. We want to find 𝐴𝑔(𝑥, 𝑦):

lim
𝑁→∞

𝐴𝑁𝑔(𝑥, 𝑦) = 𝐴𝑔(𝑥, 𝑦). (4.21)

with 𝐴𝑁𝑔(𝑥, 𝑦) as in Equation (4.20). Again, using the same tools as in Section 3.2, we need Taylor’s
theorem. Only now we are working with two dimensions:

Theorem 4.2.0.1 (Taylor’s theorem in two dimensions) Suppose that 𝑆 ⊂ ℝ𝑛 is an open set and
that 𝑓 ∶ 𝑆 → ℝ is a function of class 𝐶2 on 𝑆. Then, for a and b ∈ 𝑆, such that the line segment
connecting a and b is contained in 𝑆, there exists c ∈ (a,b) such that:

𝑓(b) = 𝑓(a) + ∇𝑓(b− a) + 12(b− a)𝑇𝐻(c)(b− a). (4.22)

Here 𝐻 is the Hessian matrix as in Definition 2.3.1.1.

We are going to compute, with the use of the two­dimensional theorem of Taylor, the first term of the
generator 𝐴𝑁 as in Equation (4.20):

(1 + 𝑆)𝑁(𝑞 − 𝑥)(𝑥 + 𝑦) [𝑔(𝑥 + 1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)] . (4.23)

The other three terms are computed similarly and therefore we only provide the results later in this
Section. We apply Theorem 4.2.0.1 to a = (𝑥, 𝑦),b = (𝑥 + 1

𝑁 , 𝑦) and 𝑐 = (𝑐1, 𝑐2). We observe the
following:

𝑔(𝑥 + 1
𝑁 , 𝑦) = 𝑔(𝑥, 𝑦) + ∇𝑔(𝑥, 𝑦)(

𝑥 + 1
𝑁 − 𝑥

𝑦 − 𝑦
) + (𝑥 + 1

𝑁 − 𝑥 𝑦 − 𝑦)𝐻(𝑔(c)) (
𝑥 + 1

𝑁 − 𝑥
𝑦 − 𝑦

) (4.24)

= 𝑔(𝑥, 𝑦) + ∇𝑔(𝑥, 𝑦)(
1
𝑁
0
) + ( 1

𝑁 0)𝐻(𝑔(c)) (
1
𝑁
0
) (4.25)

= 𝑔(𝑥, 𝑦) + (𝑑𝑥𝑔(𝑥, 𝑦) 𝑑𝑦𝑔(𝑥, 𝑦))(
1
𝑁
0
) + ( 1

𝑁 0) (𝑑𝑥𝑥𝑔(c) 𝑑𝑥𝑦𝑔(c)
𝑑𝑦𝑥𝑔(c) 𝑑𝑦𝑦𝑔(c))(

1
𝑁
0
) (4.26)

= 𝑔(𝑥, 𝑦) + 1
𝑁𝑑𝑥𝑔(𝑥, 𝑦) + (

1
𝑁)

2
𝑑𝑥𝑥𝑔(c). (4.27)

Shifting 𝑔(𝑥, 𝑦) to the left side of the equation we obtain:

𝑔(𝑥 + 1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦) =

1
𝑁𝑑𝑥𝑔(𝑥, 𝑦) + (

1
𝑁)

2
𝑑𝑥𝑥𝑔(c). (4.28)
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Now we are able to take the limit of the first term (4.23) (𝑆 is not dependent on 𝑁):

lim
𝑁→∞

(1 + 𝑆)𝑁(𝑞 − 𝑥)(𝑥 + 𝑦) [𝑔(𝑥 + 1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)] = (4.29)

lim
𝑁→∞

(1 + 𝑆)𝑁(𝑞 − 𝑥)(𝑥 + 𝑦) [ 1𝑁𝑑𝑥𝑔(𝑥, 𝑦) + (
1
𝑁)

2
𝑑𝑥𝑥𝑔(c)] = (4.30)

lim
𝑁→∞

(1 + 𝑆)(𝑞 − 𝑥)(𝑥 + 𝑦) [𝑑𝑥𝑔(𝑥, 𝑦) + (
1
𝑁)𝑑𝑥𝑥𝑔(c)] = (4.31)

(1 + 𝑆)(𝑞 − 𝑥)(𝑥 + 𝑦)𝑑𝑥𝑔(𝑥, 𝑦). (4.32)

For the three other terms of the generator as in (4.20) we have the following results:

lim
𝑁→∞

𝜌(1 + 𝑆)𝑁(1 − 𝑞 + 𝑦)(𝑥 + 𝑦) [𝑔(𝑥, 𝑦 + 1
𝑁) − 𝑔(𝑥, 𝑦)] = 𝜌(1 + 𝑆)(1 − 𝑞 − 𝑦)(𝑥 + 𝑦)𝑑𝑦𝑔(𝑥, 𝑦)

(4.33)

lim
𝑁→∞

𝜌𝑁𝑥(1 − (𝑥 + 𝑦)) [𝑔(𝑥 − 1
𝑁 , 𝑦) − 𝑔(𝑥, 𝑦)] = 𝜌𝑥(1 − (𝑥 + 𝑦)) ⋅ −𝑑𝑥𝑔(𝑥, 𝑦) (4.34)

lim
𝑁→∞

𝑁𝑦(1 − (𝑥 + 𝑦)) [𝑔(𝑥, 𝑦 − 1
𝑁) − 𝑔(𝑥, 𝑦)] = 𝑦(1 − (𝑥 + 𝑦) ⋅ −𝑑𝑦𝑔(𝑥, 𝑦). (4.35)

Combining the the limits of the different terms of the generator, the limit of the generator itself becomes:

lim
𝑁→∞

𝐴𝑁𝑔(𝑥, 𝑦) = (1 + 𝑆)(𝑞 − 𝑥)(𝑥 + 𝑦)𝑑𝑥𝑔(𝑥, 𝑦)+

𝜌(1 + 𝑆)(1 − 𝑞 − 𝑦)(𝑥 + 𝑦)𝑑𝑦𝑔(𝑥, 𝑦)+
𝜌𝑥(1 − (𝑥 + 𝑦)) ⋅ −𝑑𝑥𝑔(𝑥, 𝑦)+
𝑦(1 − (𝑥 + 𝑦)) ⋅ −𝑑𝑦𝑔(𝑥, 𝑦)
= 𝐴𝑔(𝑥, 𝑦). (4.36)

Using some simple algebra we rewrite the generator above:

𝐴𝑔(𝑥, 𝑦) = 𝑉+(𝑥, 𝑦)𝑑𝑔(𝑥, 𝑦)𝑑𝑥 + 𝑉−(𝑥, 𝑦)𝑑𝑔(𝑥, 𝑦)𝑑𝑦 . (4.37)

Where 𝑉+(𝑥, 𝑦) and 𝑉−(𝑥, 𝑦) are defined as follows:

𝑉+(𝑥, 𝑦) = [−𝜌𝑥(1 − 𝑥 − 𝑦) + (1 + 𝑆)(𝑞 − 𝑥)(𝑥 + 𝑦)] (4.38)
𝑉−(𝑥, 𝑦) = [−𝑦(1 − 𝑥 − 𝑦) + 𝜌(1 + 𝑆)(1 − 𝑞 − 𝑦)(𝑥 + 𝑦)] . (4.39)

The limit of the two­dimensional generator of the MFVM with selection as in Equation (4.37) is our final
expression.

4.3. The system of differential equations of the two­dimensional
mean­field voter model with selection

In Section 4.2 we have achieved the desired result: lim𝑁→∞ 𝐴𝑁𝑔(𝑥, 𝑦) = 𝐴𝑔(𝑥, 𝑦) with 𝐴𝑔(𝑥, 𝑦) as in
Equation (4.37). This Section shows how to show convergence of this generator to a system of dif­
ferential equations. Just as in Section 3.3 we will use Theorem 2.3.2.3 (convergence of generators to
differential equations, see Section 2.3) to obtain our system of differential equations.

Note that still (𝑥, 𝑦) ∶= (𝑚+𝑁(𝜂),𝑚−𝑁(𝜂)) is just notation. Since our generator

𝐴𝑔(𝑥(𝑡), 𝑦(𝑡)) = ⟨∇𝑔(𝑥(𝑡), 𝑦(𝑡)), (𝑉+ 𝑉−)⟩ (4.40)
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and 𝐺(𝑥(𝑡), 𝑦(𝑡)) = (𝑉+, 𝑉−) we can see that, using Theorem 2.3.2.3, our stochastic process
{𝑚+𝑁(𝜂),𝑚−𝑁(𝜂)}𝑡≥0 converges in distribution to the solution (𝑥(𝑡), 𝑦(𝑡)) of the system of differential equa­
tions:

⎧⎪
⎨⎪⎩

𝑑
𝑑𝑡𝑥 = 𝑉

+(𝑥, 𝑦)
𝑑
𝑑𝑡𝑦 = 𝑉

−(𝑥, 𝑦)

(𝑥(0), 𝑦(0)) = (𝑥0, 𝑦0).

(4.41)

Where 𝑉+ and 𝑉− are (also see Section 4.2):

𝑉+(𝑥, 𝑦) = [−𝜌𝑥(1 − 𝑥 − 𝑦) + (1 + 𝑆)(𝑞 − 𝑥)(𝑥 + 𝑦)] (4.42)
𝑉−(𝑥, 𝑦) = [−𝑦(1 − 𝑥 − 𝑦) + 𝜌(1 + 𝑆)(1 − 𝑞 − 𝑦)(𝑥 + 𝑦)] . (4.43)

4.4. Results of the two­dimensional mean­field voter model with
selection

To obtain insight in the system of differential equations we are going to look at vector field plots. This
will show how the solution will behave and if there are any equilibrium points. Eventually we want to
find out if it is possible that the two different alleles (A and B) can coexist in two different populations if
there is selection.
For the whole Section 4.4 we have that the vector fields are displayed with a sequential colourmap: the
colour yellow represents strong vectors and the colour black represents weak vectors; in­between we
have the colour red.

Note that 𝑥, 𝑦 still represent 𝑚+𝑁(𝜂),𝑚−𝑁(𝜂) respectively which are the scaled number of alleles A in
population 1 and 0 respectively. We have that:

0 ≤ 𝜂𝑖 ≤ 1 ⟺ 0 ≤
𝑁

∑
𝑖=1
𝜂𝑖 ≤ 𝑁 ⟺ 0 ≤ 1

𝑁

𝑁

∑
𝑖=1
𝜂𝑖 ≤ 1 ⟺ 0 ≤ 𝑥 ≤ 1. (4.44)

0 ≤ 1 − 𝜂𝑖 ≤ 1 ⟺ 0 ≤
𝑁

∑
𝑖=1
1 − 𝜂𝑖 ≤ 𝑁 ⟺ 0 ≤ 1

𝑁

𝑁

∑
𝑖=1
1 − 𝜂𝑖 ≤ 1 ⟺ 0 ≤ 𝑦 ≤ 1. (4.45)

We also have the fact that 𝑥 + 𝑦 can never be greater than 1 since, in that case, there would be more
individuals with allele A than there are individuals. This is, of course, impossible. Therefore we can
conclude that our stochastic process lies in the plane {(𝑎, 𝑏) ∈ [0, 1]2 ∶ 𝑎 + 𝑏 ≤ 1}. However we
can condition the boundaries of the plane even more because of the population for each individual
depending on 𝑞; as 𝑁 → ∞ we have that, by the law of large numbers [2]:

𝑥 = 1
𝑁

𝑁

∑
𝑖=1
𝜂𝑖ℎ𝑖 ≤

1
𝑁

𝑁

∑
𝑖=1
ℎ𝑖 → 𝑞 (4.46)

𝑦 = 1
𝑁

𝑁

∑
𝑖=1
𝜂𝑖(1 − ℎ𝑖) ≤

1
𝑁

𝑁

∑
𝑖=1
1 − ℎ𝑖 → 1 − 𝑞. (4.47)

Therefore the limit points of the sequence (𝑥, 𝑦) belong to the plane[0, 𝑞] × [0, 1 − 𝑞].

4.4.1. Vector field of the two­dimensional mean­field voter model with 𝑆 = 0,
𝜌 = 1

When start of considering the the most basic form; we do not consider any form of selection (𝑆 = 0) and
we let 𝜌 = 1 such that it does not matter for the stochastic process in which population an individual is.
This is the one­dimensional case without selection. When 𝜌 = 1 it takes little work to show that

𝑑𝑥
𝑑𝑡 +

𝑑𝑦
𝑑𝑡 = 0 (4.48)
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This means there is no movement over the diagonal of the vector field (see Figure 4.1). It is the
consequence of the fact that, without selection and with 𝜌 = 1, we are considering a symmetric random
walk𝑊𝑁 ∶= 𝑁(𝑥 + 𝑦) [2]. In this case any initial condition is attracted along the line (coloured in black)
𝑚 ∶= 𝑥+𝑦 to the fixed point manifold 𝑥 = 𝑦. One can interpret this as that the solution always converges
to a point where there are as many individuals with allele A in population 1 as there are in population
0. If you now look at sum of the two populations 𝑥+𝑦 as one population, since there is no difference in
both, you get back the one­dimensional case. This can be seen in the vector field in Figure 4.1 where,
without loss of generality, we choose 𝑞 = 1

2 . We can see that how closer we are to to equilibrium

Figure 4.1: Vector field two­dimensional mean­field voter model 𝑆 = 0, 𝜌 = 1, 𝑞 = 1
2 . The black line is the equilibrium solution in

the form of a line𝑚 ∶= 𝑥 + 𝑦. The colour black represents weak vectors.

solution, the slower we progress towards this solution since the vectors are black (see beginning of this
Section 4.4).

4.4.2. Vector field of the two­dimensional mean­field voter model with 𝑆 = 0,
𝜌 < 1

In this Section we will shortly evaluate the main results found by [2] in the case that 𝜌 < 1. In Section
4.4.3 we will add selection to our model to obtain new results. However it is very useful to go over the
results in the case 𝑆 = 0 and provide some clarification.

If 𝜌 < 0, 𝑆 = 0 the system (4.41) has the following equilibrium points:
1. (𝑥, 𝑦) = (𝑞, 1 − 𝑞) which represents a limiting behaviour where all the spins are equal to 1;

2. (𝑥, 𝑦) = (0, 0) which is the case with all spins equal to 0;

3. (𝑥, 𝑦) = ( 𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌) , 𝜌

𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌)).

We omit the algebraic calculations of these equilibrium points since they are very long and tedious.
One can see that equilibrium three lies inside [0, 𝑞] × [0, 1 − 𝑞] if and only if the condition

𝜌 < 1 − 𝑞
𝑞 (4.49)

holds by solving the inequality 𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌) < 𝑞 or the inequality 𝜌

𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌) < 1−𝑞 . When this condition

holds, the solution is admissible. We will now provide an admissible vector field (see Figure 4.2) with­
out selection but with dependency of the population of each individual; a vector field with 𝜌 < 1, 𝑆 = 0
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where condition (4.49) holds. We set 𝑞 = 1
2 as in Section 4.4.1 and choose 𝜌 = 1

2 . The three equilibria

Figure 4.2: Vector field two­dimensional mean­field voter model 𝑆 = 0, 𝜌 < 1−𝑞
𝑞 < 1, 𝑞 = 1

2 , 𝜌 =
1
2 . Here the equilibrium points

(𝑞, 1 − 𝑞), (0, 0) and ( 𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌) , 𝜌

𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌) ) are displayed as black dots. The colour black represents weak vectors.

as noted in the beginning of this Section are displayed as black dots. We see that the equilibria (0, 0)
and (𝑞, 1−𝑞) are unstable equilibria. If the initial conditions differ from those two equilibria the solution
will converge to the third equilibrium point (𝑥, 𝑦) = ( 𝑞(1+𝜌)−𝜌

(1+𝜌)(1−𝜌) , 𝜌
𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌)). One can see that the con­

vergence of the solution to the equilibrium point (𝑥, 𝑦) = ( 𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌) , 𝜌

𝑞(1+𝜌)−𝜌
(1+𝜌)(1−𝜌)) gets slower when the

solution gets closer to this point.

The third equilibria is stable and shows the two alleles A and B can coexist in both populations. In
the article of Borile et al. [2] they eventually prove that

𝑇𝑁 = inf {𝑡 ∶ {𝜂𝑁(𝑡)} ∈ {0, 1}} = 𝒪(𝑒𝑁𝐼). (4.50)

with 𝐼 > 0. This proof is out of our scope for this bachelor thesis; the interested reader can read the
article of Borile et al. [2]. The result of the proof, shown in Equation (4.50), tells us that the typical
time to absorption has order 𝒪(𝑒𝑁𝐼). With time to absorption 𝑇𝑁 we mean reaching an absorbing state
(𝑞, 1 − 𝑞) or (0, 0) which represents that all individuals in both populations have only allele A or only
allele B respectively (see Section 1.1). One can conclude that, with 𝑁 large, it takes a very long time
(exponentially growing with 𝑁) before all the individuals in both populations have the same allele; two
different alleles can coexist.

4.4.3. Vector field of the two­dimensional mean­field voter model with 𝑆 > 0,
𝜌 < 1

Now that we have considered the general cases in the previous Section we are now adding selection
by letting 𝑆 > 0. Also we have that 𝜌 < 1. Since, in this Section, the main results of this thesis are
obtained, we recall the system of differential equations of the MFVM with selection

{
𝑑
𝑑𝑡𝑥 = −𝜌𝑥(1 − 𝑥 − 𝑦) + (1 + 𝑆)(𝑞 − 𝑥)(𝑥 + 𝑦)
𝑑
𝑑𝑡𝑦 = −𝑦(1 − 𝑥 − 𝑦) + 𝜌(1 + 𝑆)(1 − 𝑞 − 𝑦)(𝑥 + 𝑦)

(4.51)

as in Equation (4.41)). The equilibrium points of this system, with 𝑆 > 0, 𝜌 < 1 are:
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1. (𝑥, 𝑦) = (𝑞, 1 − 𝑞) which represents a limiting behaviour where all the spins are equal to 1;

2. (𝑥, 𝑦) = (0, 0) which is the case with all spins equal to 0;

3. (𝑥3, 𝑦3) ∶= (𝑥, 𝑦) =

(𝜌 − (1 + 𝑆)𝜌
2 − (1 + 𝑆)𝑞 + (1 + 𝑆)𝜌2𝑞

(𝜌2 − 1)((1 + 𝑆) − 𝜌) , −𝜌(𝜌 − (1 + 𝑆)𝜌
2 − (1 + 𝑆)𝑞 + (1 + 𝑆)𝜌2𝑞)

(𝜌2 − 1)((1 + 𝑆)𝜌 − 1) ) . (4.52)

Again, as in Section 4.4.2, the algebraic calculations are excluded since they are not of particular
interest. For the third equilibrium point (𝑥3, 𝑦3) to be located in the admissible square [0, 𝑞] × [0, 1 − 𝑞]
we need to solve

𝑥3 < 𝑞 ⟺ (𝜌 − (1 + 𝑆)𝜌
2 − (1 + 𝑆)𝑞 + (1 + 𝑆)𝜌2𝑞

(𝜌2 − 1)((1 + 𝑆) − 𝜌) ) < 𝑞 (4.53)

or

𝑦3 < 1 − 𝑞 ⟺ (−𝜌(𝜌 − (1 + 𝑆)𝜌
2 − (1 + 𝑆)𝑞 + (1 + 𝑆)𝜌2𝑞)

(𝜌2 − 1)((1 + 𝑆)𝜌 − 1) ) < 1 − 𝑞. (4.54)

Both equations result in the same condition when solved where (1 + 𝑆) > 1, 0 < 𝜌 < 1 and 1
2 < 𝑞 < 1:

𝜌 <
(1 + 𝑆) − 𝑞√ (1+𝑆)2+4𝑞2−4𝑞

𝑞2

2𝑞 . (4.55)

For our own convenience we define

ℎ(𝑆, 𝑞) ∶=
(1 + 𝑆) − 𝑞√ (1+𝑆)2+4𝑞2−4𝑞

𝑞2

2𝑞 . (4.56)

When the condition in Equation (4.55) holds, the third equilibrium (𝑥3, 𝑦3) is admissible. Furthermore
one can see that if 𝑆 = 0 we obtain the condition as in Equation (4.49) without selection after simplifying
the expression in Equation (4.55).

In Figure 4.3 a vector field of the two­dimensional MFVM with selection (see Equation (4.51)), un­
der the mentioned condition, is given. Without loss of generality we set 𝜌 = 1

2 , 𝑞 =
1
2 and 𝑆 = 0.1. With

these parameters the condition holds. Now (0, 0) and (𝑞, 1−𝑞) are unstable equilibrium points; we see
that the equilibrium point (𝑥3, 𝑦3) is a stable equilibrium.
When the condition does not hold, the third equilibrium (𝑥3, 𝑦3) is not admissible. Then we only have
two equilibrium points in the vector field; in Figure 4.4 we set 𝑆 = 5 such that the condition does not
hold. We keep the rest of the parameters the same as in Figure 4.3. One observes that the equilibrium
point (𝑞, 1 − 𝑞) is now the only stable equilibrium point and all initial conditions are attracted to it.
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Figure 4.3: Vector field two­dimensional mean­field voter model 𝑆 = 0.1, 𝜌 < 1−𝑞
𝑞 < 1, 𝑞 = 1

2 , 𝜌 =
1
2 . Here the equilibrium points

(𝑞, 1 − 𝑞), (0, 0) and (𝑥3 , 𝑦3) (see Equation (4.52)) are displayed as black dots. The colour black represents weak vectors.

Figure 4.4: Vector field two­dimensional mean­field voter model 𝑆 = 5, 𝜌 < 1−𝑞
𝑞 < 1, 𝑞 = 1

2 , 𝜌 =
1
2 . Here the equilibrium points

(𝑞, 1 − 𝑞), (0, 0) are displayed as black dots. The colour black represents weak vectors.

Wewant find out for which values of the parameters 𝜌, 𝑆 and 𝑞 the third equilibrium (𝑥3, 𝑦3) is admissible.
Therefore we examine the surface plot of ℎ(𝑆, 𝑞) (Equation (4.56)) in Figure 4.5. In Figure 4.5 we see
that the value of ℎ(𝑆, 𝑞) is small for 𝑆 large; when 𝑆 is small, we see that the value of ℎ(𝑆, 𝑞) is small for
large values of 𝑞. When the value of ℎ(𝑆, 𝑞) is small, 𝜌 has to be even smaller to obtain an admissible
third stable equilibrium. Therefore, regarding the paramaters and the existence of the third stable
equilibrium (𝑥3, 𝑦3) with selection, we can state the following:

1. smaller 𝜌 with 0 < 𝜌 < 1 favours equilibrium (𝑥3, 𝑦3) (clear from Equation (4.55));

2. larger 𝑆 > 0 favours absorption on (𝑞, 1 − 𝑞);
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3. smaller 𝑞 with 1
2 < 𝑞 < 1 favours equilibrium (𝑥3, 𝑦3).

Figure 4.5: Surface plot of the function ℎ(𝑆, 𝑞) =
(1+𝑆)−𝑞√ (1+𝑆)

2+4𝑞2−4𝑞
𝑞2

2𝑞 (see Equation (4.55)). For large values of (1 + 𝑆) the
function value is small; fixing (1 + 𝑆), the function value is small for large values of 𝑞.

Taking all things into consideration, we see that the third equilibrium of the MFVM with selection is
stable (see Figure 4.3). This shows that the two alleles A and B can coexist in both populations even
when there is a selection factor. In the article of Borile et al. [2] they proved that the two­dimensional
MFVM has order 𝒪(𝑒𝑁𝐼) because of the third equilibrium (not (0, 0) or (𝑞, 1 − 𝑞)). Therefore we state
the following conjecture: For the two­dimensional MFVM with selection {𝜂𝑁(𝑡)}𝑡≥0 the typical time to
absorption 𝑇𝑁 has order 𝒪(𝑒𝑁𝐼) with 𝐼 > 0. That is:

. (4.57)

Note that this conjecture is not proven; we recommend further research to obtain a proof (see Chapter
6). As explained earlier, time to absorption is reaching an absorbing state (𝑞, 1 − 𝑞) or (0, 0). In an
absorbing state all individuals in both populations only have allele A or only allele B respectively (see
Section 1.1). With this conjecture one can conclude that, under certain conditions and with selection,
with 𝑁 large, it takes a very long time (exponentially growing with 𝑁) before all the individuals in both
populations have the same allele; two different alleles can coexist even when one allele has a selection
advantage.





5
Conclusion

In this thesis we extended the two­dimensional stochastic mean­field voter model (MFVM), as in the
article of Borile et al. [2], with a selection factor. Therefore wewere able to investigate wether individuals
with two different alleles can coexist in two populations when there is a selection advantage. We came
to the conclusion that, under the circumstance

𝜌 <
(1 + 𝑆) − 𝑞√ (1+𝑆)2+4𝑞2−4𝑞

𝑞2

2𝑞 , (5.1)

a stable equilibrium (𝑥3, 𝑦3) arises (see Figure 4.3 and Equation (4.52)) which is not (0, 0) or (𝑞, 1−𝑞).
This means that individuals with two different alles can coexist in two populations even when one
allele has a selection advantage. In the inequality in Equation (5.1) 𝑆 is selection factor and 𝜌 and
𝑞 are parameters of the MFVM (see Section 1.1). We concluded, regarding this admissible stable
equilibrium, that:

1. smaller 𝜌 with 0 < 𝜌 < 1 favours equilibrium (𝑥3, 𝑦3);

2. larger 𝑆 > 0 favours absorption on (𝑞, 1 − 𝑞);

3. smaller 𝑞 with 1
2 < 𝑞 < 1 favours equilibrium (𝑥3, 𝑦3).

Since we have found a stable equilibrium which is not an absorbing state (0, 0) or (𝑞, 1 − 𝑞), we stated
the following conjecture (see Section 4.4.3): For the stochastic process {𝜂𝑁(𝑡)}𝑡≥0, described by the
two­dimensional MFVM with selection, the typical time to absorption 𝑇𝑁 has order 𝒪(𝑒𝑁𝐼) with 𝐼 > 0.
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6
Discussion

When writing this thesis, the following questions and ideas came to mind.

– In this research we choose the selection factor 𝑆 ∈ ℝ. However 𝑆 can also be a function of
the population size 𝑁. In the work of Avena, da Costa and den Hollander [1] they propose 𝑆 =
𝑆(𝑁) = 𝜎

𝑁 with 𝜎 ∈ ℝ. This means that, as the population size gets larger, the selection advantage
becomes smaller. One can also choose other monotone decreasing functions. Since 𝑆 is a
function of 𝑁, the limit of the generator as in Section 3.2 and 4.2 is going to differ. Therefore the
differential equations as in Section 3.3 and 4.3 also are not the same; the vector fields will differ
as well. I recommend doing research in which type of selection factor 𝑆 is most preferable for
certain situations. Then one can also, with the same steps as in this thesis, find equilibrium points
of the new vector field.

– The goal of this thesis was to investigate wether it was possible that two individuals with different
alleles can coexist. However we did not try to match te model to reality; we only found conditions
such that the equilibrium was admissible. For further research I recommend to collect data of
numerous biological populations. Then one can try fitting the MFVMwith selection to the collected
data to obtain the best possible values of the parameters.

– During this bachelor thesis we worked with the MFVM in biological context. Is it possible to look
at the MFVM in a different setting? For example, as the name suggest, one can investigate the
behaviour of voters for a political party. For instance, the American two party system for different
states. In this case an individual with spin equal to 1 votes for the Republican Party and an
individual with spin equal to 0 votes for the Democratic Party.
Or maybe we could use the MFVM to describe the spread of a virus, as the Corona virus, in
different countries. Then an individual with spin equal to 1 is infected and an individual with spin
equal to 0 is not. Again, as in the previous point, data could be collected to fit the model and the
model could be adapted. If this succeeds the MFVM could predict biological diversity, the election
in the United States or the spread of the Corona virus between countries.

– We stated a conjecture claiming that the typical time to absorption of the two­dimensional MFVM
with selection has order 𝒪(𝑒𝑁𝐼). We stated this conjecture because of the resemblance to the
two­dimensional MFVM without selection. The proof of the model without selection is given in the
article of Borile et al. [2]. The resemblance we found is a third stable equilibrium under certain
conditions (see Section 4.4.3). However we have not proven the conjecture in this thesis since it
is out of our scope. Further research could provide a proof.
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