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A B S T R A C T

We employed atomic layer deposition (ALD) to deposit ultrathin SiO2 layers on P25 TiO2 nanoparticles to
fabricate TiO2/SiO2 core/shell nanostructures. The ALD process was carried out in a fluidized bed reactor
working at atmospheric pressure using SiCl4 and H2O as precursors, enabling the deposition of SiO2 at 100 °C
with the ability to control the thickness at the sub-nanometer level. By controlling the thickness of the SiO2 in a
very narrow range, i.e., below 2 nm, the photocatalytic activity of TiO2 can be tuned. In particular, an en-
hancement was obtained for the SiO2 layers with a thickness below 1.4 nm, in which the layer with a thickness of
about 0.7 nm exhibited the highest photocatalytic activity; for SiO2 layers thicker than 1.4 nm, the photo-
catalytic activity was strongly suppressed. The photocatalytic activity enhancement and the degradation me-
chanism of RhB by the TiO2/SiO2 photocatalysts were investigated by combining X-ray photoelectron spectro-
scopy, UV–Vis absorption spectroscopy, photoluminescence spectroscopy and the aid of charge carrier and
radical scavengers. Our findings have revealed an improvement of photogenerated charge separation due to the
SiO2 coating and the dominating role of hydroxyl radicals in the degradation of RhB.

1. Introduction

For a few decades since Fujishima and Honda discovered the pho-
tocatalytic splitting of water on TiO2 electrodes [1], enormous efforts
have been devoted to the development of TiO2 photocatalysis. Owing to
its excellent photocatalytic properties, high structural and chemical
stabilities, low environmental impact, abundance in nature, and espe-
cially its suitable flat band potential for various redox reactions, TiO2

has been widely used in various applications in environmental and
energy-related fields, such as air purification, water treatment and
hydrogen production [2–7]. However, due to its large band gap (i.e.,

~3.2 eV), TiO2 does not harvest efficiently sunlight that provides the
highest photon flux in the visible and infrared regions [8]. In addition,
the rapid recombination of photogenerated electrons and holes is a
limiting factor to achieve high photocatalytic efficiencies [6,9].
Therefore, to improve light harvesting and to reduce charge re-
combination, electronic structure and surface properties of TiO2 are
usually modified.

The electronic modification of TiO2 is commonly realized by doping
the host material with other elements to form energy levels in the band
gap of TiO2 [3,10–13]. This consequently reduces the bandgap and
enables the absorption of photons with lower energies [6,14–16]. In

https://doi.org/10.1016/j.apsusc.2020.147244
Received 17 October 2019; Received in revised form 14 June 2020; Accepted 10 July 2020

⁎ Corresponding author at: Faculty of Electrical and Electronic Engineering, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi 12116, Viet Nam (H. Van
Bui).

E-mail address: hao.buivan@phenikaa-uni.edu.vn (H. Van Bui).

Applied Surface Science 530 (2020) 147244

Available online 15 July 2020
0169-4332/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01694332
https://www.elsevier.com/locate/apsusc
https://doi.org/10.1016/j.apsusc.2020.147244
https://doi.org/10.1016/j.apsusc.2020.147244
mailto:hao.buivan@phenikaa-uni.edu.vn
https://doi.org/10.1016/j.apsusc.2020.147244
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsusc.2020.147244&domain=pdf


contrast, surface modification commonly promotes the charge transfer
between the TiO2 and the deposited materials, which can reduce the
charge recombination [14]. In this case, the surface of TiO2 is en-
gineered by coupling with a thin film or nanoclusters of other materials.
Due to their high catalytic activities, noble metals are most popularly
used [17–20]. In addition to promoting the electron transfer due to
their lower Fermi levels with respect to the conduction band of TiO2

[21–23], noble metals can also act as co-catalysts, providing further
catalytic enhancement [14]. For instance, the surface modification of
TiO2 nanoparticles by Pt nanoclusters could significantly improve the
photocatalytic activity of TiO2 toward the degradation of acid blue 9
[24]. An enhancement of photocatalytic performance was also observed
for the TiO2 modified with nanoclusters of Au, Ag and Cu [17,25–27].
Nevertheless, the use of noble metal may reduce the stability of the
catalysts due to the oxidation at the metal/TiO2 interface when exposed
to UV-irradiation. This can create electron-hole recombination centers
that affect the photocatalytic efficiency [28]. In addition, due to their
high cost, the use of noble metals is not desirable. Therefore, the surface
modification of TiO2 by metal oxides such as CuO, Cu2O, Fe2O3, CeO2,
MnO2 and MgO has recently been more attractive [25,29–34].

Given its large band gap (~9 eV), silicon dioxide (SiO2) is an ex-
cellent dielectric that has been a key material in the microelectronic
industry. The good electrically insulating nature of SiO2 also makes it
the material of choice for mitigating the photocatalytic activity of TiO2

[35–37]. This is due to the fact that a thin SiO2 layer can effectively
block the transport of photogenerated electrons and holes to the cata-
lyst surface, diminishing the photocatalytic reactions [35]. Never-
theless, many studies have also shown that the coupling with SiO2 can
enhance the photocatalytic activity of TiO2, which has been utilized in
various fields, such as degradation of pollutants [38–47] and bacteria
[48,49], heavy metal removal [50], CO2 capture [51] and other ap-
plications [52–57]. Generally, the enhancement or suppression of
photocatalytic activity strongly depends on the concentration (i.e., in
the case of TiO2-SiO2 mixture) or the thickness (i.e., in the case of TiO2/
SiO2 core/shell structure) of SiO2. For example, for the TiO2/SiO2 core/
shell structure, a thin layer of SiO2 with a thickness of about 1–2 nm can
effectively diminish the photocatalytic activity of TiO2 [37,58].
Therefore, in order to achieve an enhancement, a thinner layer is
needed. This requires a synthesis method that allows to control the
thickness of the coating layer at the sub-nanometer level. In this regard,
atomic layer deposition (ALD) is an excellent candidate. This is a gas-
phase deposition technique that allows to control the amount of de-
posited material down to the atomic scale, which has been utilized for
the deposition of various materials [59,60].

In this work, we employed ALD to deposit ultrathin SiO2 layers on
P25 TiO2 nanoparticles to fabricate TiO2/SiO2 core/shell nanos-
tructures and investigate their photocatalytic properties. The SiO2 ALD
process was carried out in a fluidized bed reactor (FBR) operating at
atmospheric pressure using silicon tetrachloride (SiCl4) as the precursor
and H2O as the co-reactant. Such a process not only enabled the de-
position of SiO2 at a temperature as low as 100 °C, but also provided the
ability to control the thickness of the SiO2 at the sub-nanometer level.
The photocatalytic properties of the TiO2/SiO2 photocatalysts were
investigate by the degradation of Rhodamine B (RhB) solution under
UV-light irradiation. We observed that the photocatalytic activity of the
TiO2 was significantly enhanced by depositing a SiO2 layer with a
thickness of below 1.4 nm; for a thicker layer, the photocatalytic ac-
tivity was strongly suppressed. By combining X-ray photoelectron
spectroscopy, UV–Vis absorption spectroscopy, photoluminescence
spectroscopy and the aid of charge carrier and radical scavengers, in-
sights into the photocatalytic activity enhancement and the degradation
mechanism of RhB by the TiO2/SiO2 photocatalysts were achieved,
which emphasized the improvement of photogenerated charge separa-
tion due to the SiO2 coating and the dominating role of hydroxyl ra-
dicals in the degradation of RhB.

2. Experimental methods

2.1. Preparation of TiO2/SiO2 core/shell photocatalysts

The deposition of SiO2 on TiO2 nanoparticles was carried out in a
fluidized bed reactor (FBR) operating at atmospheric pressure, as de-
scribed elsewhere [61]. Degussa P25 TiO2 (mean diameter of 21 nm
and specific surface area of 54 m2 g−1) was purchased from Evonik
Industries (Hanau, Germany). Silicon tetrachloride (SiCl4) contained in
a stainless steel bubbler was provided by Akzo Nobel HPMO (Amers-
foort, the Netherlands). Nitrogen (99.999 vol%) was used as the carrier
gas. For each experiment, 1.5 g of powder was used. The powder is
fluidized by an N2 gas flow of 0.5 L min−1, which was introduced
through the distributor plate placed at the bottom of the glass column.
An ALD cycle consisted of alternating exposures of the TiO2 powder to
SiCl4 vapor (1 min), followed by an N2 purging step (3 min), the
deionized water vapor (3 min), and finally an N2 purging of 8 min. The
deposition temperature was set at 100 °C. During the deposition, a
temperature variation of ± 5 °C was observed.

2.2. Characterization

The morphology of the TiO2/SiO2 particles was characterized by
transmission electron microscopy (TEM) using a JEOL JEM1400
transmission electron microscope. X-ray photoelectron spectroscopy
(XPS) was employed to investigate elemental compositions and bonding
states of the TiO2/SiO2 catalysts using a ThermoFisher K-Alpha system
(photon energy of 1486.7 eV). The peak positions were calibrated by
using the C 1s peak at 284.8 eV as the reference. The UV–Vis diffuse
reflectance spectra (DRS) were recorded using a PerkinElmer-Lambda
900 spectrometer. The photoluminescence spectra of the catalysts were
investigated using a Horiba Jobin Yvon spectrometer equipped with a
450 W xenon discharge lamp as the excitation source.

The atomic concentration of the deposited SiO2 was determined
using instrumental neutron activation analysis (INAA). For each mea-
surement, 100 mg powder was loaded into high purity polyethylene
capsules. The samples and a reference sample were irradiated at a
constant neutron flux. All reactors used for neutron activation em-
ployed uranium fission, which provides a neutron flux (kinetic energy
less than 0.5 eV) in the order of 1012 cm–2 s−1. Upon irradiation, a
neutron can be absorbed by the target nucleus (i.e., Si), forming a
radioactive nucleus. The nuclear decay of the radioactive nuclei pro-
duce Gamma rays, which can be detected by the INAA detectors, from
which the Si loading was determined.

The specific surface area (SSA) of the powder was determined by
BET method using a Micromeritics Tristar II at 77 K. For each mea-
surement, 160 mg of the powder was used. All the samples were an-
nealed in N2 at 150 °C for 16 h prior to the measurements. Data analysis
was performed using Microactive software V3.02. The BET SSA was
determined by fitting of data points in the P/P0 = 0.05–0.225 region.

The photodegradation of Rhodamine B (RhB) in aqueous solution
was used to evaluate the photocatalytic activity of the TiO2/SiO2 pho-
tocatalysts. In each experiment, 10 mg of the catalyst was added to
80 mL RhB solution (RhB concentration of 10 mg L−1) contained in a
200-ml glass beaker (diameter of 8 cm). The suspension was con-
tinuously stirred in the dark for 60 min to obtain the adsorption/des-
orption equilibrium, which was then exposed to UV-radiation generated
by a mercury lamp for different exposure times. After separating the
solid catalyst by centrifuging, the solution was analyzed by UV–visible
spectroscopy using a Jenway’s 6800 double beam spectrophotometer to
determine the RhB residual concentration.
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3. Results and discussion

3.1. Morphology, structure and elemental composition of the TiO2/SiO2

photocatalysts

The reactions between SiCl4 and H2O in ALD of SiO2 are based on
the ligand exchange between the functional groups, i.e.,−Cl and−OH,
on the surface, which requires a relatively high temperature, typically
in the range of 300–420 °C [62–64]. For lower deposition temperatures,
the presence of a catalyst, such as ammonia (NH3) or pyridine (C5H5N),
is commonly needed [65,66]. Nevertheless, the SiCl4/H2O ALD process
carried out in a fluidized bed reactor operating at atmospheric pressure
in this work enabled the growth of SiO2 at 100 °C, which is significantly
lower than the deposition temperature reported in the literature
[62–64]. This is indicated by the TEM images presented in Fig. 1a–d,
which show the TiO2/SiO2 nanoparticles with a core/shell structure.
From the TEM images, the thickness of the SiO2 layer is determined,
whereas the Si atomic concentration (Si at.%) is measured by INAA. The

plots of SiO2 thickness and Si at.% as a function of the number of ALD
cycles exhibit a linear dependence (Fig. 1e) that represents the linear-
growth regime of ALD [60]. In this regime, a growth-per-cycle (GPC) of
approximately 0.5 Å is obtained, which is slightly lower than the GPC of
the SiO2 ALD reported in the literature (i.e., 0.7–1.1 Å) [62,63]. In
addition, the constancy of the GPC obtained for different SiCl4 exposure
times (i.e., from 5 s to 120 s) shown in Fig. 1f reflects the self-saturating
behavior of ALD [60]. This self-limiting behavior in combination with
the linear-growth provides the ability to control the thickness of the
SiO2 layer at the sub-nanometer level by controlling the number of
cycles. This allows us to investigate the influence of the SiO2 thickness
at the ultrathin regime (i.e., less than 2 nm) on the photocatalytic ac-
tivity of TiO2.

The specific surface area (SSA) of the TiO2 powders before and after
coating with SiO2 is determined by BET method. An SSA of 54.5 m2 g−1

is obtained for the uncoated P25 TiO2, which is consistent with the SSA
value provided by the supplier. No considerable change is observed for
the total SSA obtained for the TiO2 powder coated with SiO2 for

Fig. 1. TEM images of TiO2 nanoparticles coated with SiO2 films grown at 100 °C for 8 cycles (a), 12 cycles (b), 30 cycles (c) and 40 cycles (d). The SiO2 film thickness
(□) and the Si atomic concentration (○) as a function of the number of cycles are plotted in (e). The plot in (f) shows the Si atomic concentration obtained for 12 ALD
cycles in which the SiCl4 pulse time is varied from 5 to 120 s while the pulse time of H2O vapor is fixed at 300 s.
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different numbers of ALD cycles, as shown in Fig. 2 (the squares).
However, using the T-method [67], the analysis of the isothermal
curves reveals the presence of micropores in the SiO2 films whose vo-
lume and SSA increase with the number of cycles (Fig. 2, the stars and
the triangles). The external SSA of the powders is determined from the
total SSA and the SSA of the micropores, showing a slight decrease with
increasing the number of ALD cycles (Fig. 2, the circles). This decrease
is attributed to the increase in particle size caused by the SiO2 coating
layer.

The results obtained from the XRD characterization show the
amorphous state of the SiO2 films, even after annealing at 500 °C for
16 h (Fig. S1, Supporting Information). The XPS spectra of the C 1s, Ti
2p, O 1s and Si 2p core-levels of the uncoated TiO2 and TiO2/SiO2 are
presented in Fig. 3. We note that in order to eliminate the influence of
the peak shift due to charging effects, the peak positions are calibrated
by referencing the C − C peak of the C 1s to the binding energy (BE) of
284.8 eV (Fig. 3a) [40]. For the uncoated TiO2, the two peaks at
BE = 464.2 eV (Ti 2p1/2) and BE = 458.6 eV (Ti 2p3/2) in the top
spectrum of Fig. 3b reflect doublet state of Ti(IV) 2p that arises from the
spin–orbit coupling. These two peaks in conjunction with the peak at
BE = 529.7 eV of O 1s (Fig. 3c, the top spectrum) represent the Ti − O
bond of TiO2 (hereafter designated as O−Ti) [40,68,69]. The peak at
BE = 457.4 eV in the Ti 2p top spectrum (Fig. 3b) could represent the
Ti 2p3/2 of the Ti(III) compounds (e.g., Ti2O3, oxygen vacancies, etc.)
[69], whereas the broad peak at 532.0 eV in the O 1s top spectrum
(Fig. 3c) is attributed to the chemisorbed hydroxyl groups (i.e., OH
groups) on the surface [51]. The presence of these OH groups is con-
firmed by the FTIR spectra (Fig. S2, Supporting Information).

For TiO2/SiO2, the peak at BE = 532.4 eV (O 1s, Fig. 3c) and the
peak at BE = 103.0 eV (Si 2p, Fig. 3d) represent the Si − O bond
(hereafter designated as O−Si) [70,71]. The binding energy difference
between the Si 2p and the O 1s of the O−Si bond is 429.4 eV, which is
consistent with the binding energy difference of the Si − O bond of
SiO2 (i.e., 429.3–429.4 eV) [70,71]. Furthermore, after coating with
SiO2, the Ti 2p and O 1s peaks of the O−Ti bond exhibit remarkable
shifts (i.e., 0.4 eV for Ti 2p and 0.5 eV for O 1s) toward the higher
binding energy (Fig. 3b and Fig. 3c). This shift is evidence of the for-
mation of Ti − O − Si linkages at the interface between TiO2 and SiO2

and arises from the difference in electron negativity between Si (1.90),
Ti (1.56) and O (3.44) [40,72]. The presence of the linkages is also
indicated by the peak at 531.8 eV in the O 1s spectrum (Fig. 3c)
[73,74]. The XPS analyses confirm the presence of SiO2, which is ad-
ditionally supported by the FTIR spectra (Fig. S2, Supporting
Information). In addition, the XPS data also demonstrated that the Si 2p
and Ti 2p spectra were not affected after the photocatalytic test, which

indicated a good chemical stability of the catalyst (Fig. S3, Supporting
Information).

3.2. Photocatalytic performance of the TiO2/SiO2 photocatalysts

The adsorption of RhB on the surface of the photocatalysts was
examined by monitoring the change of RhB concentration during stir-
ring the catalyst/RhB aqueous mixture in the dark before UV-light ir-
radiation. As shown in Fig. 4a, a similar variation of the RhB con-
centration is observed for all samples: a rapid decrease in the first
10 min, followed by a saturation. The former is caused by the adsorp-
tion of RhB on the surface of TiO2, whereas the latter indicates the
adsorption–desorption equilibrium. No significant difference in the
adsorption of RhB on uncoated TiO2 and SiO2-coated TiO2 was ob-
served, suggesting that the adsorption of RhB molecules was not en-
hanced by the SiO2 layer. This is in contrast with the results reported in
the pioneering work of Anderson and Bard, in which an enhanced ad-
sorption of the organic molecules on the catalyst surface due to SiO2

was observed [39,75]. However, the SiO2 layer strongly altered the
photodegradation of RhB under UV-light irradiation, as shown in
Fig. 4b. Particularly, for the uncoated TiO2, approximately 90% of the
RhB was degraded after 30 min irradiation. For the TiO2/SiO2 photo-
catalysts, the photodegradation exhibited a strong dependence on the
thickness of the SiO2 coating layer, which can be estimated by the ki-
netics of the photodegradation reaction described by equation [76]:

ln(C0/C) = kapp⋅t, or C = C0⋅exp(−kapp⋅t) (1)

Fig. 2. The total SSA (□), micropore SSA (∇), micropore volume (*) and ex-
ternal SSA (○) of the TiO2 powder coated with SiO2 for different numbers of
ALD cycles as determined by BET.

Fig. 3. Core-level XPS spectra of C 1s (a), Ti 2p (b), O 1s (c) and Si 2p (d) of the
uncoated TiO2 (top spectra) and TiO2 coated with SiO2 for 12 ALD cycles
(bottom spectra).
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where kapp represents the degradation rate, which is commonly referred
as the apparent first-order kinetic constant. The ln(C0/C) versus t plots
are shown in Fig. 4c, from which the kapp values were determined and
plotted in Fig. 4d. For the uncoated TiO2, a kapp of 55.2 × 10−3 min−1

was obtained. The coating of TiO2 by SiO2 initially resulted in an in-
crease of kapp with increasing the number of ALD cycles, reached the
maximum value of 95.6 × 10−3 min−1 at 8 ALD cycles (i.e., SiO2 film
thickness of about 0.7 nm). Hereafter, kapp gradually decreased to
64.6 × 10−3 min−1 for 20 ALD cycles, which was slightly higher than
the kapp obtained for the uncoated TiO2. A further increase of the
number of cycles to 30 and 40 resulted in a rapid drop of kapp to
8.4 × 10−3 min−1 and 4.3 × 10−3 min−1, respectively. The low kapp
values achieved for 30 and 40 ALD cycles (i.e., SiO2 thickness of 1.4 and
1.8 nm, respectively) indicate that the photocatalytic activity of TiO2

was strongly suppressed.

3.3. Roles of photogenerated electrons, holes and radicals in the
degradation of RhB by the TiO2/SiO2 photocatalysts

The photodegradation of organic dyes by TiO2-based photocatalysts
may be involved with a number of photocatalytic oxidation processes.
Generally, under UV-light irradiation, electrons in the valence band are
excited to the conduction band, generating charge carriers (i.e., elec-
trons in the conduction band and holes in the valence band). These
electrons and holes may recombine or diffuse to the catalyst surface to
take part in various photocatalytic reactions. Particularly, the electrons
in the conduction band can be absorbed by oxygen molecules, gen-
erating superoxide radicals (O2%

−) that can take part in the destruction
of organic molecules [2,77,78]. The holes in the valence band can be
absorbed by H2O molecules, generating OH% radicals [77,79–81],
which have been considered as the main oxidizing species for the de-
gradation of most of organic compounds [82,83]. In this work, the role
of the charge carriers and radicals in the photodegradation of RhB by

the TiO2/SiO2 photocatalysts was investigated by using scavengers:
ethylenediaminetetraacetic acid (EDTA) as the hole scavenger [84],
benzoquinone as the O2%

− scavenger [85], and dimethyl sulfoxide
(DMSO) as the OH% scavenger [86].

Fig. 5a–c present the photodegradation of RhB by the TiO2 coated
with SiO2 for 8 ALD cycles in the presence of the scavengers with dif-
ferent concentrations. On the one hand, the plots in Fig. 5a show that
when EDTA was added, the photodegradation of RhB was significantly
attenuated. Particularly, for an EDTA concentration of 0.05 mmol,
negligible degradation was observed in the first 20 min of the irradia-
tion, whereas for the higher EDTA concentrations the degradation was
only slightly lower than the self-degradation of RhB. This indicates the
key role of holes in the degradation of the dye. In contrast, in the
presence of benzoquinone, the degradation of RhB by TiO2/SiO2 was
nearly unaffected (Fig. 5b), which is also indicated by the nearly con-
stant kapp values shown in Fig. 5d. As benzoquinone is a scavenger of
O2%

− radicals that are formed due to the reduction of dissolved O2 by
photogenerated electrons in the conduction band, the nearly unaffected
degradation curves in Fig. 5b suggest the minor contribution of pho-
togenerated electrons. This is consistent with the conclusion on the
dominating role of holes obtained from the study shown in Fig. 5a. On
the other hand, in the presence of DMSO, the degradation was strongly
reduced (Fig. 5c). More particularly, kapp decreased from 95.6 × 10−3

min−1 (i.e., no scavenger) to 6.4 × 10−3 min−1 at a DMSO con-
centration of 2.0 mmol. Hereafter, a further increase of DMSO con-
centration to 3.0 mmol did not result in any considerable decrease of
the degradation rate (i.e., kapp = 4.7 × 10−3 min−1). The strong de-
crease of the degradation rate in the presence of the OH% scavenger
indicates that the oxidation of RhB was mainly caused by OH% radicals.

The results show that by varying the thickness of the SiO2 layer, the
photocatalytic activity of TiO2 can be tuned. In particular, an en-
hancement can be achieved by coating the TiO2 with a SiO2 layer
thinner than 1.4 nm, in which a layer of 0.7 nm provides the highest

Fig 4. Adsorption behavior of RhB on TiO2 and TiO2/SiO2 surface before UV irradiation (i.e., in the dark) (a), the degradation of RhB as a function of irradiation time
(b) and the corresponding kinetic plots (c), from which the first-order kinetic constants were determined and plotted (d).
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photocatalytic activity. For the SiO2 layers thicker than 1.4 nm, the
photocatalytic activity of TiO2 is significantly suppressed. The sup-
pression of the photocatalytic activity of TiO2 can be attributed to the
insulating properties of the thicker SiO2, which hindered the charge
transport from TiO2 to the surface [35,58]. In an attempt to explain the
enhancement of photocatalytic activity of the TiO2/SiO2 photocatalysts
with thin SiO2 layers, we investigated the UV–Vis absorption and
photoluminescence (PL) properties of the catalysts, which are presented
in Fig. 6. The UV–Vis spectra in Fig. 6a show absorption edges at
around 415 nm without a noticeable effect of the SiO2 coating. How-
ever, the PL spectra shown in Fig. 6b exhibit a strong influence of the
SiO2 coating on the PL properties of the photocatalysts. Specifically, for
the uncoated TiO2, two emission peaks at around 385 nm and 504 nm
were observed. The peak at 385 nm is attributed to the radiative band-
to-band recombination [87], whereas the peak at 504 nm is due to the
radiative recombination of the conduction band electrons with trapped
holes [88]. After coating with SiO2 for 2 and 8 ALD cycles, the PL

intensity of the two peaks significantly decreased. Hereafter, with fur-
ther increasing the number of ALD cycles, the intensity of the peak at
504 nm slightly lowered, while the change of the peak at 385 nm was
insignificant. It is known that the lower PL intensity reflects the lower
recombination rate of the photogenerated charge carriers [89,90].
Therefore, this indicates that the coating of SiO2 has improved charge
separation, which consequently enhanced the photocatalytic activity of
TiO2. This was also observed for the TiO2/SiO2 core/shell photo-
catalysts synthesized by sol–gel method reported by Yuan et al. [51].
According to Yuan et al, the enhancement of charge carrier separation
is due to the formation of Ti–O–Si bonds at the interface between TiO2

and SiO2, which is also evidenced from the XPS spectra shown in Fig. 3.

4. Conclusions

In conclusion, ALD using SiCl4 and H2O carried out in a fluidized
bed reactor operating at atmospheric pressure enabled the deposition of

Fig 5. Photodegradation of RhB by the TiO2

coated with SiO2 for 8 ALD cycles in the presence
of hole scavenger – EDTA (a), superoxide radical
scavenger – benzoquinone (b) and hydroxyl ra-
dical scavenger – DMSO (c) with different con-
centrations. The plots in (d) compare the kapp
values of the degradation processes presented in
(a), (b) and (c).

Fig. 6. UV–Vis absorption spectra (a) and photoluminescence spectra (b) of TiO2 and TiO2 coated with SiO2 for different number of cycles.
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SiO2 on P25 TiO2 nanoparticles at 100 °C, which is significantly lower
than the deposition temperature in conventional ALD processes. With a
growth-per-cycle of 0.5 Å, the ALD process provided the ability to
control the thickness of the SiO2 layer at the sub-nanometer level,
which allowed us to study the influence of the coating thickness on the
photocatalytic activity of the TiO2/SiO2 on the degradation of RhB
solution under UV-light irradiation. We observed that the coating of
SiO2 with a thickness of below 1.4 nm provided a considerable photo-
catalytic activity enhancement, whereas at a thickness of above 1.4 nm,
the photocatalytic activity was strongly suppressed. The photocatalytic
activity enhancement is attributed to the improved charge separation
facilitated by the Ti–O–Si bonds that are formed at the interface be-
tween TiO2 and SiO2. As the thickness of SiO2 layer increases, the SiO2

layer inhibits the charge transport from TiO2 to the outer surface, which
consequently suppresses the photocatalytic activity. With the aid of
using carrier and radical scavengers, namely, EDTA as the hole sca-
venger, DMSO as the OH% radical scavenger and benzoquinone as the
H2O2 scavenger, we found that OH% radicals were the main oxidizing
species for degradation of RhB solution.

In addition, the obtained results have shown that by controlling the
thickness of the SiO2 layer in a very narrow range, i.e., below 2 nm, the
photocatalytic property of TiO2 can be altered from enhancement to
suppression. Therefore, our work has demonstrated a feasible and ef-
ficient route not only for the synthesis of noble-metal free TiO2-based
photocatalysts with an enhanced activity, but also for tuning the pho-
tocatalytic properties. Moreover, the low-temperature ALD process is an
important asset which can enable the application of SiO2 coating on
temperature-sensitive materials such as polymers and organic mate-
rials.
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