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ABSTRACT

Constraint Programming (CP) solvers are complex pieces of software with a large surface area for
bugs, making it difficult to trust their claims of unsatisfiability or optimality. We make a contribution
to the development of a CP unsatisfiability proof checker, which is formally verified in Rocq, by
investigating how to develop checkers for individual proof steps. In particular, we develop formally
verified checkers that can verify the reasoning performed by alldifferent and cumulative timetable
propagators. We also introduce a methodology for supporting other propagators and constraints in
the checker. We also contribute a formally verified integer domain representation using what we
call perforated intervals. Perforated intervals are designed to efficiently interoperate with atomic
constraints, which are at the heart of the CP proof system. They are an important building block for
the verification of proof steps that combine previous proof steps to derive new facts, which we also
part of our contribution, and are also used in our propagation checkers. Our results demonstrate the
feasibility of a CP-native unsatisfiability proof checker and increase the understanding of propagation
verification. Our work also provides important building blocks that can be used to support additional

constraints and propagators.
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1. INTRODUCTION

In our modern world, optimization is everywhere. For example, in healthcare, there is the challenge
of optimally scheduling scarce resources such as nurses, operating rooms, and doctors [1]. Or in
circuit design, optimization is used both for designing efficient chips and for verifying them [2].

One powerful paradigm for modeling and solving optimization problems is constraint programming
(CP). In CP, problems are modeled using constraints that respect a problem’s high-level structure.
An example of such a constraint, often used in scheduling and which we study at length in this
thesis, is the cumulative constraint [3]. In Example 1.1, we briefly discuss applying the cumulative

constraint to a healthcare scheduling problem.

Example 1.1 In healthcare planning, doctors necessary for operations are a scarce resource.
During some time window, we might have only 2 available doctors. Furthermore, there are 3
operations a,b and ¢ (each of a certain duration) that must be performed, where operations
a and b require a single doctor, while operation ¢ requires two doctors. To ensure we never
schedule more doctors than we have available, we can impose a cumulative constraint on those
operations with a maximum capacity of 2 (the doctors). The cumulative constraint ensures that
at any particular time, the operations do not exceed the capacity. See Section 2.5 for a formal
description.

Figure 1 shows a possible schedule, where we assume operation a takes 1 unit of time, and

operation b and ¢ each take 2 units of time.

Capacity

0 1 2 3 4
Time

FIGURE 1. Timeline showing a possible schedule for operations a, b, ¢ that satisfies a cumulative
constraint with capacity 2. The height of an operation indicates its usage, which in this case is

the number of required doctors.

The above example primarily shows how CP can be used for modeling. We now briefly discuss the
principles of CP solving. To find solutions, solvers interleave inference (or propagation) with search.
The former shrinks the search space, the latter explores it. Inference can make use of algorithms
specialized for each constraint.

Modern CP solvers are applied in multiple domains and have been particularly successful in
scheduling [4], [5]. However, this success is owed in large part to a combination of advanced

algorithms, as well as heavy performance engineering. Solvers have a large surface area for bugs, due



Introduction

to the complexity this engineering inevitably brings to their implementation, as well as due to the
complexity inherent in many of the algorithms used in CP.

When bugs lead a solver to incorrectly declare that it has found a solution, this can be easily
caught. This is because a solution can be checked if it indeed satisfies all constraints. However,
when a solver declares that there is mo solution, i.e., that the problem is unsatisfiable, there is no
simple certificate (which in the other case is the solution itself) that can be checked to verify the
solver’s claim. Note that a claim of optimality is equivalent to the claim that any better solution is
unsatisfiable.

There is great value in ensuring that solvers do not erroneously claim unsatisfiability. We highlight
two important reasons:

1. In some domains, an incorrect unsatisfiability claim is hugely problematic. For example,
in circuit verification, when comparing two circuits that are supposed to have the same
behavior, this means there would exist inputs for which this is not the case.

2. Incorrect unsatisfiability claims are often the result of subtle bugs. Effectively catching these
improves the reliability of solvers, allowing them to incorporate more complex algorithms
and improve performance.

One avenue to eliminate erroneous unsatisfiability claims is to prove the solver’s completeness [6],
which would ensure that if a solution exists, the solver would find it. However, this is challenging, in
particular without sacrificing performance.

Instead, the solver could record the steps it took to determine the unsatisfiability of a particular
instance, producing a proof of unsatisfiability. This proof can then be verified by a program that is
more trusted than the solver. This approach, known as proof logging, has already seen great success
in SAT solvers [7] (see also Section 2.6), up to the point where it is now mandatory to participate
in competitions [8].

This success has only recently been extended to CP solvers. Many modern CP solvers are based
on the lazy clause generation (LCG) paradigm [9] and Flippo et al. [10] have demonstrated that such
an LCG solver can be instrumented to produce unsatisfiability proofs. These proofs use a format
inspired by the DRUP format [11], [12] in SAT.

Ideally, verifying these proofs would involve using the same powerful constraint-specific reasoning
that was used to produce them. However, previous work has mostly followed the approach of encoding
CP problems as simpler problems, such as SAT [13]. In the work of Flippo et al., proofs produced by
the solver were translated to pseudo-Boolean proofs and verified by a pseudo-Boolean checker [14].
A CP-native checker, which understands the specialized reasoning performed by solvers, does not
have to translate CP reasoning into more limited types of reasoning.

This has led to a project to develop a formal CP proof system and CP-native proof
checker [15], of which this thesis is a part. We will refer to this project as the CP checker
project and to the checker as the CP checker.

To verify proofs using specialized CP-native reasoning, this reasoning must be explicitly supported
in the checker. This entirely removes the encoding step, but requires more complicated verification

algorithms. This verification must be made trustworthy to the highest possible degree, as otherwise
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the conclusion can still be questioned. The gold standard for achieving this level of trust is a machine-
checked formal proof of correctness. Therefore, the CP checker is formally verified using Rocq [16].

The proof format of Flippo et al. [10] was improved and formalized as a full proof system by
Sidorov et al. [15] for the CP proof checker project. We will refer to this proof system as the CP proof
system. Compared to the original proof format, it better captures the integer reasoning performed by
CP solvers. Since CP solvers work by interleaving propagation and search, the proof system must also
capture this. Proofs, which consist of a sequence of steps, therefore contain two types of proof steps:

o inferences: which capture a particular type of reasoning performed by the solver (usually
over a particular constraint).
e deductions: which combine different facts into new facts. These combined facts correspond
to how modern LCG solvers perform search.
A proof in the CP proof system always makes a certain claim. In this thesis, we consider only an
unsatisfiability claim in this thesis. This claim is valid if all steps of the proof are valid and the final
step supports the claim. Steps can depend on previous steps. Therefore, verifying the proof requires
keeping some kind of global state. Furthermore, the final step requires special attention to see if the
claim is indeed correct.

As a first step, it is natural to disregard these complexities and focus only on the individual proof
steps. This gives rise to the main research question of this thesis: How can we develop formally
verified checkers for individual proof steps in a CP unsatisfiability proof checker?
Our contribution is then to determine how to check these individual steps using formally verified
algorithms, leaving the remaining concerns for the CP proof checker project to solve.

We do not consider all possible proof steps. Inference proof steps can be separated into two
categories: inferences that correspond to a particular type of CP propagation algorithm (propagator
inferences), and inferences that are more general-purpose. The latter category includes inferences
that rewrite previously deduced facts as well as inferences that bring a variable’s initial domain into
the context. This work only focuses on the first category, i.e., propagator inferences.

We do not aim to be able to verify all types of propagator inferences. Instead, we restrict ourselves
to two popular constraints, alldifferent and (timetable) cumulative. This allows us to demonstrate
the feasibility of developing inference checkers. Furthermore, this allows us to establish a general
methodology that can be applied to other constraints to ease their checker implementations and
allow the checker to be extended in the future.

Furthermore, we introduce a theory and formalization of perforated intervals, which is pivotal in
the implementation and formalization of both inference and deduction checking. Perforated intervals
are a representation of (potentially infinite) subsets of Z, which are used to describe variable domains.
They consist of (optional) bounds and a set of holes. We describe the operations that can be
performed on perforated intervals and under what conditions these can be performed efficiently.
These operations and properties are all formally verified.

Finally, we present some findings of working with Rocq, which is the interactive theorem prover
and programming language used for the implementation of the checker.

An outline of the structure of this thesis is provided next.
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Section 2 introduces the necessary background for understanding our approach and results.
This includes a description of the proof system and checker used in this thesis, which are
being developed concurrently by Sidorov et al. [15].

Section 3 describes the related work.

Our general approach is described in Section 4. In particular, we describe the difference
between handling deductions and propagator inferences and exactly which proof steps are

considered in this work.

Then we describe our contribution in 6 top-level sections:

Section 5) methodology for developing formally verified propagator inference checking
algorithms;

Section 6) the formalization and implementation of a theory for converting atomic
constraints into a holes-based domain representation (termed perforated intervals). This is
foundational to all the other results in this thesis

Section 7) the implementation and formalization of the fact deduction procedure (Proce-
dure 2.35), which also discusses maps of variable domains

Section 8) an alldifferent checker capable of verifying inferences for alldifferent constraints
where the premises are without redundancy

Section 9) a checker capable of verifying inferences for cumulative constraints that are
derived using timetable reasoning;

Section 10) general findings for working in Rocq in the context of constraint programming.

Having described our results, we discuss them in Section 11, where we also mention possible future

work. This is followed by an extended summary in Section 12.



2. BACKGROUND

2.1. Constraint Programming

We begin with a formal treatment of constraint programming, see also Rossi et al. [17] and Apt [18].

Definition 2.1 (Domain): A domain D is a mapping from a set of variables X to sets that

represent the values a variable is allowed to take. For any variable z € X', we require D(z) C Z.

In the theory of constraint programming, it is possible to replace Z with other sets. However, our
approach is tailored to integers. It is also common to work only with finite domains, because a
complete solver can then be constructed using a simple backtracking procedure. Most practical
solvers also require this, but for our purposes, this is not important. In fact, the primary domain

representation introduced in this work supports infinite subsets of Z.

Definition 2.2 (Assignment, <> Assignment): Given variables X', an assignment is a mapping
0 : X — Z. Such a 0 is said to be consistent with respect to a domain 2D if for all z € X', 0(x) €
D(z). We use ©(X) to refer to the set of all possible assignments over .

Definition 2.3 (Constraint): Given variables X' = {z,...,x, }, a constraint is a predicate c :
O(X) — {true, false}. An assignment 6 satisfies a constraint ¢ if ¢(f) = true. A domain D

satisfies a constraint c if every assignment consistent with 2 satisfies c.

For a constraint to be practical, we expect it to be a computable function that terminates in

polynomial time.

Definition 2.4 (CSP): A Constraint Satisfaction Problem (CSP) is a triple (€, X, D), where

€ is a set of constraints, I is a set of variables and D is a domain (for the set of variables X).

Definition 2.5 (Solution): An assignment 6 is a solution to a CSP (€, X, D) if for all ¢ € €, it

holds that ¢(6) = true, i.e., the assignment satisfies all constraints.

We call a CSP satisfiable if there exists at least one solution. A solution then serves as a certificate for
the satisfiability claim of a CSP. Checking whether the claim holds only requires checking whether
the solution satisfies every constraint. This is not a hard problem.

A more general problem is the Constraint Optimization Problem (COP), which includes, in
addition, an objective function that must be either minimized or maximized. Suppose we have such
a COP, which consists of a CSP (€, X, D) and an objective function f(X). We can verify optimality
by first checking that the optimal solution with objective p* satisfies the underlying CSP and second
by determining that the underlying CSP with the addition of the constraint f(X') > p* (or < in the

case of a minimization problem) is unsatisfiable. For this reason, we will now concern ourselves only
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with CSPs and infeasibility and will often use the term “CP (Constraint Programming) problem” to
refer to a CSP.

We now provide a few simple examples to show how the earlier definitions work.

Example 2.6 (Linear inequality): A linear inequality  + y < 20 is then formally a function ¢
that takes an assignment 6 that returns true if 6(z) + 6(z) < 20. Let an example assignment be
(0(x) = 90,0(y) = 2). This assignment does not satisfy ¢, as we have that 90 + 2 < 20. However,
the assignment (6(z) = 12,0(y) = —17), does satisfy c.

Example 2.7 (CSP and solution): Consider the same variables as in Example 2.6, as well as the
constraint c¢. Furthermore, consider the domain (D(z) = [0, 00), D(y) = [4,100]) and a second
constraint ¢’ representing the equation y # 20. Then ({c,c’}, X, D) is a CSP. Furthermore, the
assignment (f(x) = 12,6(y) = 4) is a solution to the CSP.

When domains are finite, practical CSP solvers will eventually enumerate all solutions. However,
they speed up this process by interleaving search with reasoning that makes use of the problem’s
structure. This reasoning is called propagation or filtering and cuts off parts of the search space
that cannot be part of any feasible solution. This happens by explicitly pruning the currently stored
domains.

In the next two sections, we discuss two different constraints, alldifferent and cumulative. These
were selected based on a combination of popularity and intuition about how challenging they would
be to verify. During the discussion of these constraints, we also introduce the intuition necessary for

verifying the reasoning performed during propagation.

2.2. Alldifferent
We first introduce the alldifferent constraint, which allows constraining variables to take on distinct

values.

Definition 2.8 (Alldifferent, <> Alldifferent_1): Given a set of variables X, the alldifferent
(X) constraint is defined to return true given an assignment 6 if for all pairs z,y € X s.t. © #

y, we have that 0(x) # 6(y).

Particular algorithms used to prune domains for a particular type of constraint are known as
propagation algorithms. We will not discuss the exact requirements for an algorithm to qualify as a
propagation algorithm, as for our purposes, we need only to understand that they map domains to
domains. We refer to [19] and [17] (§14.1.1) for details.

As alldifferent is a popular and simple (in the sense that it is simple to define, as it is not simple
to solve) constraint, there are many different propagation algorithms (see e.g. [20] for algorithms
for modern CP solvers and the earlier [21] for a broad survey). Propagation algorithms can be
differentiated not only by their time complexity but also by their propagation strength. The following

section will introduce a way to characterize this, called local consistency.
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2.2.1. Local consistency

Consider the following example.

Example 2.9 (Bounds consistent propagation): Let ¢ = alldifferent(x, y;, ¥s, 21, 25), D(x) =
{L 27374a 5}5 @(yl) = {07 1}7 D(y2> = {07 l}a D(’Zl) = {2a4}v @(ZQ) = {25 4} Then we can prop-
agate that x > 2, because if z were equal to 1, y, and y; would both have to be zero, which is

not allowed.

The propagation removed 1 from the domain of z. In fact, we can now say the domain has reached
a certain level of local consistency, where local indicates we are speaking only of consistency with
regards to this one constraint (local) as opposed to the entire problem (global). This specific level
of consistency is known as bounds(Z) consistency [22]. Loosely, this means that the lower and upper
bounds of each variable domain are part of a solution containing only integers that fall between the
upper and lower bounds of the domain of their respective variable. We can define this formally as

follows (where we assume the domains are all integer):

Definition 2.10 (Bounds consistency): An integer domain 2 is bounds(Z) consistent
with respect to a constraint ¢ and variables X if we have that Ve € X and Vd €
{min(D(z)), max(D(z))}, there exists an assignment 6 consistent with 2 that satisfies ¢ such

that 0(z) = d and 0(z") € [min(D(z")), max(D(z’))], for all 2’ € X s.t. &’ # x.

Example 2.11 (Check bounds consistenty of domain): To see why the domains of Example
2.9 are now bounds consistent after propagating z > 2, we must check the lower and upper
bounds of all variables. For all bounds except the new lower bound of z, clearly there exists a
solution. For z = 2, set y; =0, y, = 1, 2, = 3, 25 = 4. Note that setting z; = 3 is allowed since

3 € [min(D(z,)), max(D(z)))-

There exist polynomial-time propagation algorithms for alldifferent that can achieve this level of
consistency. This is not the case for every constraint, since such an algorithm existing for the next
constraint we discuss, cumulative, would imply P = N P. However, for alldifferent we can actually do
even better. The strongest possible form of local consistency is known as domain consistency, which

we illustrate in the next example.

Example 2.12 (Inconsistent values): While the domains of Example 2.9 were bounds consistent
after propagating x > 2, the domains still contain values that cannot be part of any feasible
solution. If z = 2, then z; and z, would both have to be 4, which is not allowed. Furthermore,
if =4, z; and 2z, would both have to be 2, which is also not allowed. Once we have done this,

D(z) = {3,5}, and there exists a solution containing any value from any domain.



Background

We now give the formal definition of domain consistency. It can be interpreted as requiring that if
we fix a variable to some arbitrary value in its domain, there exists at least one assignment satisfying

the constraint.

Definition 2.13 (Domain consistency): A domain 2D is domain consistent (also known as
generalized arc consistent or hyper-arc consistent) with respect to a constraint ¢ and variables
X if Vo € X and Vd € D(z), there exists an assignment 6 consistent with 2 that satisfies ¢ such
that 6(z) = d and 6(z") € D(a’), for all 2’ € X s.t. 2’ # x.

We have seen that propagation algorithms can be differentiated by time complexity and by specific
notions of propagation strength (local consistency). This involved some specific examples of propa-
gations. The next subsection discusses how we can formally describe such propagations, which will
be an important step towards introducing the proof system for verifying the unsatisfiability of CP
problems. This is because, when a solver propagates, it relies on these propagations for its eventual
unsatisfiability conclusion. Therefore, the proof system must somehow describe these propagations.
Furthermore, the formal description will provide us with a clue about what properties of a constraint

we want to use.

2.3. Formal description of propagation outputs
We now illustrate in an example how a particular propagation output can be described by a simple

logical statement, which can then be certified.

Example 2.14 (Formally describing propagation): Consider a particular propagation for
¢ = alldifferent(z,y, z) that maps the input domain D(z) = {3,4}, D(y) = {3,4}, D(z) =
{3,4,5} to D’(z) = {5} (where the domains for = and y are unchanged). This is because assigning
z to 3 or 4 would mean there are not enough possible values for  and y. However, if the domains
for x and y were different, this might not be valid.

To verify this particular reasoning, we want to establish a logical statement representing that,
given an assignment # consistent with particular domains for z, y, and z, we know for sure that
0(z) cannot be 3 or 4 if we also want 6 to satisfy c¢. The natural way to represent this is in an
implication, where the premises include the initial domains and the constraint being satisfied,
and the right-hand side contains what we can then conclude.

c(0) =true AO(xz) € D(x) NO(y) € D(y) NO(z) € D(2) = 0(2) £3N0(z) £ 4
On the right-hand side, we have written the domain update as 6(z) # 3 A 6(z) # 4. In practice,
any domain update will remove some values or tighten a bound. This is equivalent to satisfying
some additional constraints requiring this removal or a tighter bound. For example, we can
write 6(z) # 4 as “0 satisfies the constraint z # 4”. In this case, we could require 6 to satisfy the
constraint z > 5 or z = 5. These constraints, known as atomic constraints, play a fundamental
role in many CP solvers and also in the proof system. We use the notation [z ¢ ¢|, where ¢ € {<
. >,=,#}. We can go further and use these even for representing the domains. Furthermore, we

will not include ¢(f) = true in the statement, leaving this as an implicit requirement, giving:
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[z 23] A fx <4A[y >3 A [y <4A[z >3] A[z<5] = [z 43| Az # 4] (1)
We call the above a generalized fact, to distinguish it from a more narrowly defined notion of

fact that we introduce later in Definition 2.30.

An important property of the above facts is that, as implications, they can be converted to equivalent
logical statements with an empty right-hand side, i.e., a fact p — ¢ is equivalent to p A ~q — L
(where L indicates conflict or contradiction). Equation 1 would then be written:
223 A [z <AA[y 23 Ay <A ([z=3]V]z=4]) - L (2)

This is valid, since when 6(z) = 3 or 6(z) = 4, the constraint cannot be satisfied and our implicit
premise ¢(0) = true is falsified. However, the left-hand side now contains nested structures and both
A and V connectives. Instead, consider that facts of the form p — ¢; A g, A ... A gq,,, are equivalent to
a series of facts p = ¢;, p — ¢o, .., P — ¢,,. Hence, verifying Equation 2 is reduced to verifying the
following facts:

223Nz <4 A[y=3|A[y<4n[z=3]—1

[z 23] A [z <A A[y 23| A [y <4]A[z=4]—= L @
Here, we have a very simple structure on the left-hand side, which is simply a specification of a
particular domain. During verification, it must then be established that this particular domain would
admit no solution. This is often easier than exactly replicating the same right-hand side. Before we
give a number of examples where this is the case, we formally define atomic constraints and introduce

some useful notation.

Definition 2.15 (Atomic constraints, <> BoundAtomic): An atomic constraint is a constraint
defined by a variable z, ¢ € Z and ¢ € {<, >, =, #}, that given an assignment 0 returns true if
0(z) o c. For an atomic constraint a (defined by x,¢ and c), we overload the notation [z ¢ ] to

mean the logical proposition a(f) = true and a itself.

Notation 2.16 (Induced domain and domain as fact L.h.s.): Let A = a,, ay, ..., a,, be a collection
of atomic constraints over the variables r'. Then 2, refers to the domain induced by A, so for
al zin X, Dy(x) ={n€Z:V[z' oc] € As.t. ' =x,noc} Furthermore, we will often write
facts as D — ¢ instead of a; A ... A a,,, — ¢, in which case D is the domain induced by the fact’s
actual left-hand side. Furthermore, the fact D A =g — L then refers to the fact a; A ... A a,, A
-q — L.

We now list a number of examples of why showing conflicts is often a better strategy than running
propagation.
o If a propagation algorithm can propagate multiple variables, we might have to check which
one matches the propagation we are checking.
e If the propagation algorithm we use for verifying results in a much stronger propagation
that the propagation we are checking, we must use more complex logic to see if it subsumes

the propagation we check.
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o If we only implement the strongest possible propagation algorithm in the checker, it might
always do a lot of work to find the best possible propagation, even if most propagations we
check are actually caught with much simpler logic.

o If we are checking a propagation that makes a small change (from e.g. x > 3 to x > 4), the
negation might make the domain so small (just z = 3), that conflicts can be very quickly
detected. For large changes, naturally the negation leads to a larger domain, giving the
checker a “hint” that it must do more work.

While most of these downsides can be alleviated by special-case logic, the conflict checking approach

captures them all automatically.

Example 2.17 (Benefits of conflict checking vs propagator reproduction): Consider two propa-
gators, Pyeak AN Dyyone- Here, P, is a weaker propagator, so it cannot achieve the same level of
domain tightening. Then, a propagator output for p,,..;, might be D — [z > 3] and a propagator
output for py,,,, might be D — [z > 5].

If we use a verification algorithm based on pg,,,, and input D, it would redo the work of the

strong propagator and would determine that [z > 5] can be propagated.

In practice, the conversion of Equation 2 to Equation 3 does not happen during verification. Instead,
facts such as Equation 1 should be rewritten into multiple facts, each with only a single consequent,
already during the production of the proof. The two facts we would then encounter in a proof would
be the following (note that the facts in Equation 3 could also occur in the proof if the propagator
had actually been given their left-hand side as inputs, in which case it would have found that they

are a conflict):

[z 23| A e <4 A[y 23] A [y <4] = [z # 3]
[z =3[ A [z <4 Afy 23| N[y <4] = [z # 4] W

This allows us to now define a strategy for verifying propagator reasoning.

Procedure 2.18 (Informal propagator verification strategy): To verify a propagation of a
propagator p for a constraint ¢ that maps domains D to D’, we use the following strategy:
1. Write D as a conjunction of atomic constraints. We again use D to refer to this
conjunction.
2. Write D’ as a similar conjunction of atomic constraints df A ... A d,,, such that D A dj A
... A d], represents exactly D’. Then, we have a generalized fact D — dj A ... A d], (for
this logical statement to be true, we implicitly assume the constraint ¢ to be satisfied)
3. Separate D — dj A ... A d},, into separate facts D — dj, D — d5, .., D — d,.
4. Verify a fact D — d’ by assuming D A —~d’ (which represents just another domain)
and deriving that ¢ can then not be satisfied, i.e. D A —=d’ — L. This requires the
construction of an algorithm V that takes ¢ and a domain, and returns true if it can

show that c is unsatisfiable under that domain.
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This will be the primary strategy through which we verify the specialized reasoning of propagators
for particular constraints. This approach has many benefits, as many practical CP solvers can readily
generate such facts (see Section 2.8, which discusses solving and proof logging in more detail).
Procedure 2.18 builds upon previous work in two ways. First, consider the SAT problem, which
is exactly a CSP but with Boolean variables and with constraints consisting of Boolean formulas
(variables connected by A, V and —). The SAT community pioneered RUP clauses (reverse unit
propagation) [11], [12], which are also verified by negating the consequent and then deriving a conflict.
This was brought to the more general CP context previously by the unpublished work of Gange et
al. [23].

We have seen, as mentioned in the final step of Procedure 2.18, that in order to verify a propa-
gation, we must be able to determine when a constraint has no solutions given a particular domain.

We now return to alldifferent and discuss what is already known about this in the literature.

2.4. Alldifferent (conflicts)

We seek a way to, given some domain (represented as a conjunction of atomic constraints),
determine whether a constraint is unsatisfiable. In the case of alldifferent, there is a powerful theorem
(originally by Hall [24], formulated also in [21]) that tells us exactly when alldifferent admits a

solution.

Theorem 2.19 (Hall): Let C'(X) be an alldifferent constraint over the variables X and let D
be their associated domain. Then there exists an assignment v(X) that satisfies C' if and only

if for every K C X, we have that [ __, D(z)| > |K|.

In other words, if there is no solution given a particular domain D, then there must exist some subset
of variables such that the union of the domains of all these variables is strictly smaller than the
number of variables in this subset. Note that we used exactly this principle in e.g. Example 2.14
to derive a conflict. However, this theorem states that in fact every conflict implies the existence of
a subset of variables with a smaller domain. This, combined with the fact that the required check
to determine whether a subset K is conflicting is very cheap, gives rise to a promising verification
algorithm in the case that K is known. First, we formally define the set we are interested in separately

from the theorem’s statement.

Definition 2.20 (Tight Hall set): Let C'(X) be an alldifferent constraint over the variables X and
let D be their associated domain. Then we call a K C X a tight Hall setif |J__, D(x)| <|K|.

In using the term tight Hall set, we follow the terminology of [21]. To find a tight Hall set given a
fact F' (and hence a supposedly conflicting domain Dy ), we can use a procedure used by domain-
consistent propagators algorithms for alldifferent. Since we have not implemented this, we give only
a summary. The procedure makes use of graph theory, which we will not describe in detail. This

algorithm is originally due to Régin [25], and we also refer to [21] for more details.

11
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Procedure 2.21 (Find conflicting subset):
1. Determine a maximum matching M on the bipartite graph G = (X,V, E), where X is
the set of variables, V is the union of the domains D of the variables in X and zv € F
if v € D(z). This matching can be obtained by e.g., Hopcroft-Karp [26].
2. If the maximum matching M does not cover X (if it does, then there is no conflict), let
K Dbe the set of variables reachable from the unmatched variables through M-alternating

paths (this can be found through e.g., breadth-first search). Then K is a tight Hall set.

We now move on to a different constraint, which does not have a powerful tool like Hall’s theorem.

2.5. Cumulative
The next constraint, called cumulative [3], is frequently used in scheduling problems, and its

language also reflects this. It has many variants, we adapt the definition used by MiniZinc [27], [28].

Definition 2.22 (Cumulative, <> Cumulative): Let A be a set of activities, where for each
activity a € A there is a fixed processing time duration(a) and resource usage usage(a). Each
activity is associated with a variable start(a) that refers to the activity’s start time. Then, given
an assignment 0, an activity a is active at time ¢ if 6(start(a)) <t < O(start(a)) + duration(a)
(¢>is_active_at). There is also a global resource bound R. Then, the cumulative(A) constraint
returns true given an assignment 6 if at each time ¢, the total resource usage of all activities

active at t is less than or equal to R.

While for alldifferent there exists a polynomial time algorithm that decides unsatisfiability, deter-
mining whether a single cumulative constraint has a solution is already NP-hard. In fact, if we had
a polynomial time propagator that achieves bounds(Z)-consistency, this would already imply P =

NP [29]. Let us state an example of a cumulative constraint and a possible propagation.

Example 2.23 (Timetable reasoning): Table 1 shows an example of a cumulative constraint
with 4 activities. The lower and upper columns refer to the lower and upper bounds of the

domains of the activities’ start times.

Activity | usage duration Tlower upper
T 1 2 0 10
a 1 2 0 1
1 3 0 1
c 2 3 2 3

TABLE 1. Activity parameters

For activities a, b, and c, there are certain times where they are certainly active, their so-called
mandatory parts (see Section 2.5.1 for more details). Consider activity a. It starts at either t = 0

or t = 1. In either case, because its duration is 2, it is active at t = 1. Using similar reasoning for
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the other activities, we can create the following “resource profile”, shown in Figure 2. A square
is brightly colored if an activity is certainly active at that time and transparent if it could maybe
be active. The height is equal to the activity’s usage. We also label the constraint’s capacity,

which is 2.

Capacity

Usage
[\

0 1 2 3 4 5 6 7
Time ¢t

FIGURE 2. Timeline showing activities a, b, c. Brightly colored blocks indicate when activities
are certainly active no matter when they are scheduled. Lightly colored areas indicate when an

activity could maybe be active.

Based on this figure, we see that x cannot start at ¢ = 0, as then for t = 1 the capacity would be
exceeded. Similarly, for all times up to ¢t = 4. Only at ¢t = 5 is there no violation. Therefore, we
can propagate [x > 5] (where we use x to also refer to the start time variable). We can represent
this propagation with the following fact:
[a>0lAJa<1]AD>0]ADB<1Alc>2]Alc<5]A[x>0] = [z >5] (5)

The above reasoning is known as timetable reasoning.

Since we cannot hope for efficient propagation algorithms that achieve any standard form of local
consistency, instead we can look at some propagation algorithms for cumulative that achieve weaker
filtering. One of the most important cumulative propagation algorithms is timetable, which has O(n?)
[30] and O(nlogn) [31] implementations. However, it has rather weak propagation strength. One of
the strongest practical propagation algorithms is energetic reasoning [29], [32]. However, it suffers
from a high time complexity, O(n3). Consequently, it is not implemented in many modern solvers.
We therefore focus on timetable propagation here, as it has been the most successful in practice. We
also refer to [33] for a treatment of cumulative in learning CP solvers.

As with alldifferent, to verify propagation outputs such as Equation 5 we must study the type
of conflicts that can occur when writing timetable propagations D — d as D A =d — 1. However,
while for alldifferent we have a necessary condition for conflicts, such a condition is not known for
timetable propagation conflicts. Our contribution includes the categorization of these conflicts, which
is based on the timetable propagation algorithm. We discuss this algorithm in the next subsection.
2.5.1. Timetable propagation

Given an activity & with processing time duration(z) and starting time variable start(z) with
domain [Lower(x),upper(x)], then for times ¢ s.t. upper(z) <t < lower(x) + duration(x) we know

that x is active. This can be derived by observing that an activity is active at times start(z) <
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t < start(x) + duration(x) and then using the bounds. We say that for such ¢, « is mandatory (<>
mandatory_active), or compulsory. For a visual representation, see Figure 3. We also define the
resource profile, which for each time ¢ is defined as the sum of the usages of all activities that are
mandatory at that time.

Duration = 5

EST LST ECT LCT
o 1 2 3 4 5 6 7 8 9 10

Time ¢
Start time bounds: [1, 4]
FIGURE 3. Mandatory part determination for an activity of duration 5 and start time bounds [1, 4]:
The mandatory part (dark blue) spans from LST (latest start time = start time upper bound) to
ECT (earliest completion time = start time lower bound + duration), as that is when the activity

is active no matter where we schedule it (within its bounds).

Based on these concepts, we describe the basic procedure for timetable propagation in Procedure
2.24. Note that more optimized versions exist, but we describe only the simplest form, which also
forms the basis of our verification algorithm. In particular, a significant optimization is to not look

at any individual time point, but only at the time intervals where the resource profile changes.

Procedure 2.24 (Timetable propagator):

1. (Determine horizon) Given a cumulative constraint ¢ with activities A, determine the
constraint horizon, which is [min,. 4 Lower(a), max,c 4 upper(a)].

2. (Resource profile) Compute the resource profile for each time in the horizon, which gives
a function P that maps times to the remaining capacity at that time after subtracting
the usage of each activity that is mandatory at that time. Let M(¢) be the set of
activities mandatory at ¢, then P(¢) = R — ZI€M<t) usage(z).

3. (Resource profile check) For each time in the horizon, check whether P(t) < 0; if it is,
report the fact D(A) — L, where D(A) represents the domains of all activities in A.

4. (Propagation) Note that for each ty, .. and activity a, a can start at t.,. if we have

P(t) > usage(a) for all ¢ s.t. t <t < tgee + duration(a). For each activity, a single

start
pass starting from lower(a) to upper(a) can propagate a > t’ if for all lower(a) <t < ¢/
we have that a cannot start. Similarly, a single pass starting from upper(a) and down to
lower(a) can propagate a < t’. The fact is then of the form D(A) — [a < t'] (or [a > t']
if the lower pass identified a new bound). Furthermore, it is possible for a to not be able

to start at any time lower(a) <t < upper(a). Then, the fact is of the form D(A) — L.

We now apply Procedure 2.24 to Example 2.23, allowing us to find possible propagations in a

systematic way.
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Example 2.25 The times in Example 2.23 we said some activities had to be “certainly active”
correspond to their mandatory parts. In Table 2 we compute the mandatory parts, while in
Table 3 we compute the resource profile from ¢ = 0 to ¢ = 6. From this we can also deduce that

the first spot with P(t) > 0 where = (which has duration 2) can start is indeed ¢ = 5.

Activity | upper Tlower + duration mandatory part
az 10 2 0
a 1 2 1, 1]
1 3 1, 2]
c 3 5 (3, 4]

TABLE 2. Mandatory parts of activities in Example 2.23

Time | M(t) usages P(t)
0 0 2
{a,b} {1,1} 0
OIS
feb {2} 0
0
2
2

fey {2
0
0

S|l |lWIN|=|O

=S| =

TABLE 3. Resource profile after subtracting constraint capacity of activities in Example 2.23.

We have seen two different constraints and defined how we can describe the reasoning made by
propagators using “facts”. Furthermore, we discussed an informal strategy for verifying these facts.
Before we discuss this more rigorously and explain these facts can be combined to construct actual
unsatisfiability proofs, we look at proofs of unsatisfiability in SAT. Such proofs are already widely
used in SAT, which can be seen as a special case of CP. Ideas from SAT have also inspired the CP

proof system considered in this work.

2.6. Proofs of infeasibility in SAT

The problem of determining whether a solution exists for a CSP that contains only Boolean
variables and propositional constraints (in conjunctive normal form) is known as the Boolean satis-
fiability problem or SAT. Since SAT is NP-complete, many other problems can be expressed in terms
of SAT. Furthermore, it is in a way the “simplest” such problem, as variables can only have two
possible values. For a detailed discussion of unsatisfiability proofs in SAT, see Heule [7]. We draw
heavily from it.

In SAT, most proofs of unsatisfiability consist of a sequence of clauses that are redundant with
respect to the problem’s propositional constraints. A clause is a disjunction of propositional variables

or their negation, e.g., z V -y V z.
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One of the first widely used formats, and the one that played an important role in inspiring the
CP proof system we introduce in Section 2.7, is the RUP format. For this, we must first define what a

RUP (reverse unit propagation) clause is. This requires introducing the concept of unit propagation.

Procedure 2.26 (Unit propagation): Given a clausal constraint I; VI, V ... V [,,, where each I,
is a literal (so a propositional variable or its negation), if every literal except one is false, we

know that the remaining literal must be true. This reasoning is known as unit propagation.

Definition 2.27 (RUP): Consider a conjunction of clauses & =¢; A ¢y A ... A ¢, and a clause
¢. If performing unit propagation on & A —¢ implies a contradiction, then ¢ is a reverse unit

propagation (RUP) clause with respect to & .

We consider an example to make this more intuitive.

Example 2.28 (RUP): Let F = (z V y) A (—y) and ¢ = z. Observe that by unit propagation on
J, we must have that y = false, which then implies x = true. But —c¢ implies that x = false,
so F A —c¢ implies a contradiction. Note that this is a similar trick to what we do in Procedure

2.18, where to verify & — ¢ we verify & A —¢ — L.

A RUP proof then consists of a sequence of RUP clauses, ending with the empty clause to prove
unsatisfiability. A RUP proof can then be verified as described in Procedure 2.29. Note that it is
more standard to traverse the proof in a backwards direction [11], but this is not important for our

purposes.

Procedure 2.29 (RUP proof verification): Given: a sequence of RUP clauses ty,t,, ..., t,, and
a conjunction of clauses F = ¢; A ... A ¢, that we seek to show is unsatisfiable.
1. Set C:=5 and P :=1t,ty,...,T,.
2. Let t be the first element of P and remove it from P. If P is empty, reject the proof.
3. Perform unit propagation on C' A —¢. If this does not lead to a contradiction, reject the
proof. Otherwise, move on to the next step.
4. If v was the empty clause, J is unsatisfiable. Otherwise, set C' := C' A t; and go back to
step 2.

We are now ready to present the CP proof system.

2.7. CP proof system
The CP proof system considered in this work is exactly the proof system of Sidorov et al. [15],
which is part of the same collaborative effort. Proofs in this proof system are sequences of facts,
which we already informally introduced in Example 2.14 as a way to describe reasoning performed
by propagation. However, facts are not only used to describe propagator reasoning, as we shall soon

see. We now define what a fact is and then give its meaning.
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2.7.1. Facts

Definition 2.30 (Fact, <> ProofFact): A fact is an implication defined by its premises and
consequent. For a fact w, premises(w) is a set of atomic constraints. consequent(w) is a single

atomic constraint, or it is empty.

Each of the two lines in Equation 4 are examples of a fact.

Definition 2.31 (Assignment satisfies fact, <> fact_valid): Let w be a fact and 6 an assign-
ment. Then 0 satisfies w if, when 6 satisfies all atomic constraints in premises(w), we have that 6
also satisfies consequent(w), i.e. premises(w) — consequent(w). An empty consequence, written

also as L, indicates the “always false” constant.

With the above definitions, we can write a fact w with premises(w) = {aq,a,,...,a,,} and
consequent(w) = g as a; Aay A ... Aa,, — q.If consequent(w) is empty, we write a; A ay A ... Aa, —
L. This latter type of fact is known as a nogood, which is directly related to the nogoods encountered
during CP solving (see Section 2.8) and shows up as deductions in our proof system (see Example
2.34 for an example). However, nogoods can also show up as inferences when propagators run into
conflicts (Equation 3 contains two examples).

The previous definition refers to a particular assignment. However, we want to say something
about any assignment that solves the problem, as this will later allow us to determine when a problem

is unsatisfiable.

Definition 2.32 (Fact holds for CSP, <> fact_holds): Let P be a CSP and w a fact. Then we

say w holds for P, if for every solution 8 of P, we have that 6 satisfies w.

The previous definitions should make it clear that facts are nothing more than constraints that are

redundant with respect to the CSP, meaning they do not change the satisfiability of the CSP.

Aside

Given a set of constraints €, where each ¢ € € is a computable function, we can consider as
the underlying proof system something at least as powerful as Peano arithmetic. Then we can
express, for a given ¢ € € and assignment 6, ¢(f) = true in this proof system (as Peano arithmetic
can model the computable functions). Then we can describe the logical truth of a sentence a; A
as A ... A a,, — ¢ in this system as the corresponding fact being satisfied by all assignments 6

that, for all ¢ € €, satisfy c(f) = true.

We now show that if the fact T — L holds for a particular CSP, then that CSP is unsatisfiable. Here
we use the notation “T” to indicate the constant that is always true, which in our definition of fact

corresponds to having no premises.

17


https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#ProofFacts.ProofFact
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#ProofFacts.ProofFact
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#ProofFacts.fact_valid
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#ProofFacts.fact_valid
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#ProofFacts.fact_valid
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#ProofFacts.fact_valid
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#Proofs.fact_holds
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#Proofs.fact_holds
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#Proofs.fact_holds
https://redirect.tipten.nl/thesis-checker-docs/Checker.Spec.html#Proofs.fact_holds

Background

Lemma 2.33 (CSP unsatisfiability): Let 2 be a CSP. If the fact T — L holds for 2, then 2 is

unsatisfiable.

Proof. Let 6 be a solution to . Since T — L holds for P, it must be satisfied by 6. Since the
premises are empty, we immediately know that the left-hand side is satisfied. But then the right-
hand side must be true. However, this implies a contradiction. We have shown that the existence

of a solution implies a contradiction. Hence, there is no solution to P. O

The proof system must make it possible to verify that T — L is a valid fact. We have already seen
how to verify a particular type of fact, namely those used to represent propagator reasoning for
a particular constraint (Procedure 2.18). These “propagator facts” are part of a class of facts we
call inferences. Their defining factor is that they can be considered independently, requiring only
knowledge of their associated constraint. Clearly, unless the CSP contains some trivially unsatisfiable
constraint, we cannot do this for T — L. Instead, the proof format supports deriving new facts from
other facts. This allows combining the knowledge of multiple constraints, which is often needed to
prove unsatisfiability. It is also closely related to how modern CP solvers work (see Section 2.8). The
following example shows how two different inferences can be combined to derive a new fact, in a

process called deduction.

Example 2.34 (Fact derivation): Consider a particular CSP. The table below gives an example
of how a new fact can be derived for this CSP. The third row is the new fact. Furthermore, we
have two inference facts (row 1 and row 2) that have already been verified to hold for the CSP
and are implied by some constraints numbered i and ii, which can be seen in the “Implied by”
column. The fact we seek to deduce also has information in the “Implied by” column, which
in this case refers to the two inferences we need. To see why the fact is implied by the two
inferences, consider an assignment such that the left-hand side is satisfied. Then, we know x €
(—00,3] and y € [6,00). We must then show that the right-hand side is satisfied, which in this
case means we must derive a contradiction. Now, fact 1 holds for the CSP, and since our current
domain for x implies < 5, we can record for z the domain [7,00). Furthermore, since y > 6,
certainly y # 5 and hence z < 6. However, this is incompatible with [7,00) and hence we have

a contradiction. Therefore, fact 3 holds for the CSP.

Index Fact Implied by
1 [x <5] = [z>7] i
2 [y # 5] — [z < 6] ii
3 [x<3|Aly>6]—-L 1,2

PRrROOF 1. This proof snippet, consisting of three steps, is an example of how a new fact can be

derived from previous ones. The third row is the new fact, which is derived from the previous two.
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What we saw in Example 2.34 was a deduction step. Facts derived with deduction always have
an empty consequence (which makes them nogoods). The next section discusses deduction in more
detail.
2.7.2. Deduction steps

Deduction derives new facts using a sequence of inferences that are already known to hold for
a CSP. Those inferences are all checked individually before they are passed to the deduction step.
The deduction step assumes the inferences are in the precise order that allows justifying the nogood.
To describe this process precisely, we need to define what it means for an atomic constraint to be
satisfied by a domain.

Procedure 2.35 describes the exact process that we informally followed in Example 2.34.

Procedure 2.35 (Deduction check): Given: a sequence of previously verified facts J =
(I, 1, ...,I,) and a nogood N =n; A ... An,, — L to be verified.

1. Let D be the domain induced by the atomic constraints n; A ... An,,. If there is a
variable with an empty domain, the nogood is trivially satisfied, generally indicating a
mistake. In our implementation, we therefore reject the deduction.

2. Let I =a; N... Na; — ¢ be the first fact in the sequence J and remove it from J. If
there is no such fact, reject and return that the deduction is invalid. Otherwise, if there
exists an atomic constraint a € {ay,...,q;} s.t. 2 does not satisfy a, reject and return
that the deduction is invalid. Otherwise, go to step 3.

3. If ¢ was empty, return that the nogood is valid. Otherwise, update 2D with the atomic
constraint in ¢ (if ¢ refers to a variable x, remove the values from D(x) that violate
q). If there is a variable with an empty domain in the updated domain, return that the

nogood is valid. Otherwise, go back to step 2.

Our claim is now that if Procedure 2.35 accepts a deduction and if every I € J holds for a particular
CSP P, then w also holds for P. One of our contributions is the formal proof of this for our specific
implementation of Procedure 2.35. Note also that the above description does not mention how
domains are tracked and updated. That is part of our contribution, see Section 7.

A walid deduction is defined as a deduction that is accepted by Procedure 2.35. For a more formal
description of the validity of a deduction, we refer to Sidorov et al. [15]. Their formal description
differs from our implementation, as it was developed only after we finished the deduction step.

Now that we know how to combine inferences to deduce new facts, we will discuss precisely what
type of inferences there are and how to check them.

2.7.3. Inference steps

Inferences are facts that, as opposed to facts derived through deduction, can be verified indepen-
dently. They rely either on a constraint in the original CSP, an initial domain in the CSP (which
we can also view as a constraint), or on a previously established fact (which is just a redundant
constraint). In general, they could also rely on multiple constraints at once, but this is not important

in this work, and hence we will assume they rely only on a single constraint. However, annotating
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inferences only with their associated constraint is not enough. This is because there are multiple
types of derivation possible for one constraint. For example, while in this work we focus on timetable
propagation for cumulative, it would be possible to also verify energetic reasoning. To support this,
every inference is also annotated with a so-called inference rule, which, informally, is the strategy it

should use to verify the inference. The formal definition is given in Definition 2.36.

Definition 2.36 (Inference rule): An inference rule is a predicate that takes a fact w and a

constraint ¢ as input.

In the informal Procedure 2.18 (propagator verification strategy), an inference rule corresponds to
the algorithm V' in the final step. However, instead of a domain, an inference rule takes a fact (which
can then optionally be converted into a domain). As stated earlier, it would be possible to construct
inference rules that reason over multiple constraints, but we do not consider this case. Hence, we

leave it out of the definition. The next definition states when an inference rule is valid.

Definition 2.37 (Inference rule validity): An inference rule R is valid if for all constraints ¢, all
facts w, and all assignments 6 that satisfy ¢, we have that R(w, ¢) = true implies that 6 satisfies

w.

It is easy to show that given a fact w, a CSP with constraints €, a constraint ¢ € € and a valid
inference rule &, R(w,c) = true implies that w holds for the CSP. In practice, an inference rule
only works for a particular type of constraint. Such a practical implementation can then be turned
into an inference rule by simply rejecting any constraint that is not of the correct type. In fact, the
trivial “always false” predicate would be a valid inference rule. Inference rule validity, therefore, only
requires soundness, not completeness.

In this work, we only develop inference steps related to propagator reasoning. To understand the

other types of inference steps, we first present an example of a full deduction proof stage.

Example 2.38 (Deduction): In Proof 2 we see a complete example of a deduction stage. Here
¢, is an alldifferent constraint over the variables a,b and c; ¢y is a cumulative constraint with
parameters as in Table 1 of Example 2.23; f; is the fact [z # 7] — L; fy is the fact [z = T] A [c >
6] — L. First, notice that the deduction relies on the initial domains that are part of the CSP
definition. These are materialized in the deduction using the domain inference rule. Furthermore,
the deduction relies on previously established facts. Since deduced facts are nogoods, if we were
to repeat exactly those facts, we would not know which conclusion to draw from them. Therefore,
the fact equiv rule is used to rewrite the nogoods into equivalent facts with the conclusion
necessary for this deduction. Then, two propagator inference rules are used, each of which relies
on a constraint in the CSP. Finally, the deduction mentions that it relies on exactly the previous

9 steps for its derivation.
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Index  Fact Rule Implied by

1 T — [z >0] domain D ()

2 T —[a>0] domain D (@)

3 T —[b>0] domain D (b)

4 T—=b< 1] domain D (b)

5 T = [c>0] domain D (c)

6 T—=[z=7] fact_equiv I

7 [2=7] = [c < 3] fact_equiv fo

8 [a>0]Ala<1]A[bB>0]A[b<1]A alldifferent c
[c>0]A[c<3]—=[c>2]

9 [a>0]Afla<1]Ab>0]Ab<1]A timetable Co
[c>2]A[e <3]Afz>0] = [z >5]

10 [ <4]Aa<1l]— 1L deduction 1,2,3,4,5, 6,

7,8,9

PrOOF 2. Example of a practical deduction stage that makes use of multiple inference types.

We now describe the different inference steps in detail.

1. Propagator inference step: inference step that describes the reasoning of a particular propa-
gator for a particular constraint. Each different propagator and constraint must be explicitly
supported, or must be translated to a type of reasoning that is supported by the checker. We
aim to develop a methodology that aids in the support of new constraints and propagators
in the checker.

2. Initial domain inference step: a CSP consists of variables, domains, and constraints. As
deductions can only use inferences to support their derivation, the checker supports a special
inference step type that uses the initial domain to infer a particular atomic constraint in
order for deductions to use the initial domains.

3. Nogood inference step: all deduction steps derive nogood facts. If a new deduction step wants
to use a nogood in a way other than directly implying a contradiction, it has to be rewritten
as an equivalent fact.

The nogood inference step and the initial domain inference step are not part of our contributions,
but instead part of the collaborative effort to develop a CP unsatisfiability proof checker. They are
therefore not discussed any further. We do mention that the formally verified machinery used to
handle and track domains, which is one of our main contributions, was used in their implementation.

Checking propagator inference steps involves the definition of a valid inference rule. In the
formally verified checker, this means the implementation of a function with the following signature:

check_inference(fact: Fact, constraint: Constraint) -> bool. The function should only return
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true if any solution to the constraint satisfies that fact (this implies inference rule validity for a
particular CSP if the constraint is part of the CSP).

We finish this section with a short description of the precise definition of a proof.
2.7.4. Proof definition

Our description on paper of a valid proof in the CP proof system of Sidorov et al. [15] is somewhat
more informal than what can be found in [15]. This is because this work was developed concurrently
with the formal development of the proof system. Hence, some parts of the implementation predate
the formal description on paper of [15]. In particular, this is the case for the deduction step. Now,
before we define the notion of proof, we define the different proof steps and their combination into

a proof stage.

Definition 2.39 (Inference step): An inference step I consists of a fact fact(I), a valid inference

rule rule(]) and a constraint constraint([).

Note that in the above definition of an inference step, we leave implicit the fact that we can write the
initial domains of a CSP as constraints. Hence, an inference step can also refer to the initial domain
of a particular variable. Furthermore, remember that, given the above definition of an inference step,

if rute(I)(fact(l), constraint(l)) = true, we know that fact(/) holds for the given CSP.

Definition 2.40 (Proof stage, <> ProofStage): A proof stage S is a sequence of facts J (the
inferences) and a fact fact(S) with empty consequence (the deduction fact). Given a CSP
(X,D,€), S is valid if the following holds:
1. (Inference validity) For every inference I € J we have that constraint(l) € € and
rule(])(fact(I), constraint(l)) = true.
2. (Deduction validity) Procedure 2.35 (deduction check), instantiated with J and wg.quct

returns that the deduction is valid.

Definition 2.41 (Unsatisfiability proof): Given a CSP (X, 2, €), a proof II is a sequence of
proof stages (S7, S, ..., S,,), where a stage S, must be valid with respect to the CSP (X', D,€C U
{fact(S;) : 1 <i < k}). Il is an unsatisfiability proof if for some stage S € II, fact(S) = T — L.

2.8. Constraint solving and proof logging

To aid understanding of the proof system, we briefly discuss the connections of the proof steps
to CP solving and how it is possible to implement proof logging. We concern ourselves mainly
with learning CP solvers, i.e., solvers that use some form of learning close to conflict-driven clause
learning (CDCL, see Silva et al. [34]) in SAT. In particular, we consider the architecture known as
lazy clause generation [9] (LCG, see also Schutt [33], §2.4). Many state-of-the-art solvers employ
this architecture, and it is also used by the Pumpkin solver [35], which is the solver that supports
outputting proofs that can be verified by the CP proof checker.

LCG solvers are characterized by the existence of a high-priority SAT engine as a global propagator

that maintains a (lazily generated) propositional view of the problem. Furthermore, other propa-
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gators are expected to explain their inferences and conflicts in terms of clauses. These explanations
correspond exactly to the formal description of propagation outputs we discussed in Section 2.3.
For example, the propagation in Example 2.23 (cumulative example) would be explained exactly by
Equation 5. Note that there are often multiple explanations possible (see e.g. Schutt [33]), but any
valid explanation D — ¢ requires that D A —¢ — L. To see why these explanations are clauses, any
atomic constraint [z ¢ ¢] can be viewed as a Boolean variable that is true when the constraint is
satisfied, and false otherwise. Furthermore, an implication a; A ... A a,, — ¢ is logically equivalent to
the clause —a; V...V —a,, V q.

We will briefly discuss CDCL. CP solvers perform extensive search, making decisions until a
conflict is reached, producing a nogood (i.e., a domain under which the problem has no solutions).
The conflict is then analyzed (utilizing the explanations mentioned earlier), improving the nogood.
This nogood is then added to the constraint database (it learns the nogood), preventing the solver
from returning to this branch of the search tree. Furthermore, it frequently prevents the solver from
exploring other fruitless branches. These conflict nogoods are exactly the deduction nogoods in our
proof. The inference steps used to derive a particular nogood are then the explanations for the
propagations that led to the conflict.

In conclusion, the inferences and deductions correspond to explanations and conflict nogoods
that an LCG solver uses even if it does not produce a proof. These can then be used, with hardly
any additional logic necessary, to construct a CP proof. Of course, there are still many practical

difficulties, for which we refer to Flippo et al. [10].

2.9. Formal verification
The CP unsatisfiability proof checker developed by the collaborative effort this work is a part of
is formally verified in Rocq (formerly known as Coq) v8.20 [16], [36]. Therefore, all the implemen-
tations and formalizations in this work are also done in Rocq. We refer to Peled et al. [37] for a
broad introduction to formal verification. Rocq, which is both an interactive theorem prover and a
programming language, allows us to both implement the checker, state its specification, and prove
that the implementation adheres to the specification. The proof is machine-checked by Rocq’s kernel.
This kernel’s internal workings are not unlike a type checker. The logic of Rocq is known as the
Calculus of Inductive Constructions [38], which is a typed A-calculus. We will not discuss this logic in
detail, as we primarily view Rocq as a tool and do not study it on its own. We do mention that Rocq
allows programming with dependent types [39], a powerful construct that allows types to depend on
elements of other types. If we use the example of Bove & Dybjer [40], consider the type A™ of vectors
of length n of component type A. The type A" then depends on n.

Rocq was chosen for a number of reasons; we highlight two of them:
e Most languages and provers with capabilities similar to Rocq (and including Rocq) are
slow. Their expressive machinery weighs them down, and they are often interpreted rather
inefficiently. However, Rocq provides a powerful extraction mechanism that allows Rocq

code to be compiled to OCaml. While OCaml is not a low-level language and features
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garbage collection, it has been used for performance-sensitive systems [41] and has orders of
magnitude better performance than interpreting Rocq directly.

o It is a mature toolchain that has been used to verify large software projects. For example,
an optimizing C compiler known as CompCert has been verified in Rocq [42]. This maturity
has many benefits, such as IDE support, an ecosystem of community-developed libraries,

and helpful resources.

2.10. Mathematical background
In Section 2.7.2, it was mentioned that a domain is tracked for each variable during the deduction
process. These domains need not be finite. For example, the domain induced by a single > atomic
constraint will still be infinite. Therefore, it will be useful to consider an extension of the integers
for the domain representation discussed in Section 6.
2.10.1. Z.,,

The extended integers, denoted Z.,, are defined as Z U {—oo, +00}. They are not as well studied

ext)
as the extended real numbers, which have applications in e.g., measure theory. We could not find
any formalization and found only mentions as examples in a general theory on compactification in
topology [43]. We do note we are not the first to use it in CP, see e.g. [44]. Since we are not concerned
with performing arithmetic on them and use them only to define an order, we do not suffer from the
fact that some arithmetic operations (such as co — c0) do not have a natural definition.
2.10.1.1. Operations.

We define comparison on Z,, such that —oo < x < 400 holds for all x € Z,, and when z,y € Z
we also have z <, y when z < ; y. This defines a total order.

We also define the max and min operations in the natural way, where we have, for example,

min({n,+oo}) =n for n € Z.
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3. RELATED WORK

Unsatisfiability proofs are not standard in CP. In fact, in the 2023 and 2024 editions of the
XCSP competition [45], [46], and the MiniZinc challenge [47], [48], the only solver with support for
generating proofs of infeasibility was the Pumpkin solver [35], which is the solver that pioneered the
format and proof system used in this work [10], [15].

Instead, we must look to the SAT and SMT communities, where unsatisfiability proofs are already
widely used. In fact, unsatisfiability proofs have been mandatory for solvers participating in the
unsatisfiability track of the SAT Competition since 2013 [8]. For more information on unsatisfiability
proofs in SAT, see Section 2.6.

State-of-the-art SMT solvers such as CVC4, Z3, and veriT also support proof production [49].
Barrett et al. [49] describe SMT proofs as an interleaving of SAT proofs and SMT-specific theory
proofs. Furthermore, their proofs are mostly solver-specific or not fully specified, often requiring
running the full solver to verify. Efforts to develop separate checkers often involve describing all
reasoning in terms of SAT and use SAT proof formats [50].

If we now look at efforts to produce unsatisfiability proofs in CP, we see that these approaches
often rely on SAT as well. For example, the solver by Veksler et al. [13] can produce proofs that can
explain all CP reasoning in terms of SAT.

A more recent development has been the use of pseudo-Boolean models. Like SAT, all variables
are Boolean, but instead of clausal constrainsts pseudo-Boolean models allow linear inequalities over
these variables. The Glasgow CP solver [14], [51] encodes CP constraints in pseudo-Boolean form
and uses a cutting planes proof system. They use an external verifier, VeriPB, to verify the proofs.

VeriPB is also used in the work by Flippo et al. [10], which introduced an initial version of the
proof format used in this work, which we discuss in detail in Section 2.7. VeriPB can also be used
in SAT and has participated in the SAT Competition [52], not in the MiniZinc challenge or XCSP
competition, as these have no special rules or requirements for proof logging and/or certification.

Furthermore, VeriPB also has a formally verified back-end, known as CakePB [53]. They have
also shown it to be possible to formally verify the encoding step. This means they can achieve a very

high level of trust.
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4. APPROACH

Our main goal is to determine how to develop formally verified checkers for individual proof steps,
where the proof steps are as described in Section 2.7. We repeat the different proof steps here and
discuss our approach for each one, highlighting the expected difficulties.

Propagator inference step: For each possible type of reasoning (propagator 4 constraint
combination), it is necessary to implement a checker of signature check inference(fact: Fact,
constraint: Constraint) -> bool and prove that it is sound.

Since there are many constraints and propagators, we cannot hope to implement them all. Instead,
we focus on implementing two important ones to serve as an example, using them as inspiration for
the development of a general methodology for developing new propagator inference checkers.

To ensure an inference checker faithfully checks a particular propagator, the checker should
successfully verify every valid propagation D — ¢ by that propagator. Rewriting propagations as
D A —~q — L and determining under what conditions conflicts occur is expected to make this easier.

Furthermore, as each checker only receives a fact as input, we want some procedure to convert it
into a domain structure that provides more information.

Deduction step: The main difficulty with checking a deduction step, as we see in Procedure 2.35
(deduction check), comes from tracking the domains, updating them, checking whether they satisfy
atomic constraints and, checking if there is a variable with an empty domain. Furthermore, as the
deduction steps do not depend on any constraint-specific reasoning, there is only a single thing to
implement and formally verify. Therefore, a general methodology is not required.

Other steps: The initial domain inference step and nogood inference step are not part of our
contribution, but rather part of the CP proof checker project [15].

Building blocks: Furthermore, we notice that both the propagator inference step and the
deduction step require reasoning about domains: in particular, they require going back and forth
between a richer, more efficient domain representation and atomic constraints. We therefore seek to
develop building blocks that can be used both in the deduction checker and in inference checkers.

Implementation: Finally, we expect difficulty with the implementation, as we will have to
express the checker algorithms in the programming language of the Rocq prover, which is a functional
language. Furthermore, our informal notions might not always translate well to rigorous formal
statements.

The remaining sections describe our contributions, where each separate contribution is a top-level

section.
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5. INFERENCE CHECKER METHODOLOGY

The first major contribution we present is a methodology for developing propagator inference
checkers. We immediately specify that this methodology is useful only for propagators that do more
than a simple conflict check or for which not much is yet known about the necessary conditions of
conflicts.

Before describing the general methodology, we summarize its use for developing a checker for the
timetable propagator for the cumulative constraint. This should give an intuitive idea of its usefulness
and the various steps. The dedicated section on this checker (Section 9) describes this in more detail

and also contains proofs.

Example 5.1 (Methodology application to cumulative): Consider the cumulative timetable
propagation algorithm (Procedure 2.24). Let ¢ be a cumulative constraint with activities A.

1. First, we notice that the algorithm has an explicit conflict check in step 3 (resource
profile check). It reports the fact D — L, where D is simply the domain of all activities.
We have identified our first conflict type, as the reported fact already has an empty
consequence. This conflict occurs if there exists a time ¢ where the resource profile
already overloads the constraint’s capacity. We will also name this conflict, terming it
a time conflict.

2. Next, we see that the timetable algorithm has two types of propagation. If it determines
that a task x whose start time has L as a lower bound cannot start for all times L <t <
L’, then it propagates x > L’. The second type is analogous, but then for a start time
with upper bound U it determines that the task cannot start at U’ < t < U’. Hence, it
propagates x < U’. If we then consider the situation where we negate the consequent,
we see that the two types of propagation actually have the same conflict condition. In
the case of the increased lower bound, negating the consequent means that L < x <
L’, but at these times, we saw that it cannot start. Hence, there is a conflict. We see
the same for the upper bound case. This means we have identified a second conflict
type, which we term an activity conflict. This conflict occurs if an activity cannot be
scheduled anywhere within its bounds. Note that the timetable algorithm also reports
a conflict in this situation.

3. We must now build a formally verified algorithm for each conflict type. We will not go
into details on how to do this for cumulative here, see Section 9.

4. Then, notice that for the two propagation types, the variable that is in the consequent
refers to exactly the activity that will have an activity conflict. Hence, we can use the
variable in the consequent to guide our algorithm to consider that activity first.

5. We can now combine the different conflict checks and our use of the consequent as a

hint into a checking algorithm that will verify any timetable propagation.

Now that we have seen an example, we can introduce the general methodology, which has exactly the

same steps as above. Consider a propagator p for a constraint of type 7. We propose the following
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methodology for developing an inference checker that can verify every fact describing a propagation

by p. This builds on Procedure 2.18 (strategy for verifying propagators) and the proof system used
in this work (Section 2.7).

Procedure 5.2 (Methodology for inference checker development):

1.

(Identify propagator conflict checks) Many propagators have conflict checks. For
each conflict check, describe the conditions when such a conflict check would find a
conflict. This gives a list of conflict types. Example: in cumulative timetable, at each
time point it is checked whether mandatory activities exceed the capacity.
(Propagation conflict types) Exhaustively describe the different types of propagation
that can occur. For each such type of propagation, determine the exact (domain)
conditions under which the propagator will perform such a propagation. Ezample: in
cumulative timetable a lower bound for a task’s starting time that is initially L can be
increased to some value L’ if scheduling that task at any time from L to L’ — 1 would
cause the capacity to be exceeded. Suppose we call this domain condition D and the
propagated constraint q. Then D A —q is another conflict type. This further expands
the list of conflict types.

(Conflict checkers) For each of the conflict types identified in steps 1 and 2, build
a formally verified algorithm that is able to identify that particular conflict. If no
additional information is available, this algorithm is not necessarily of significantly
lower implementation complexity than the propagation algorithm itself. However, the
propagated atomic constraint is by definition tighter than the original bound. Therefore,
this domain will always be more restricted than the domain a propagator would have
to deal with. In many cases, this can reduce the number of considered cases, allowing

a simpler, but less efficient, algorithm to be used.

. (Consequent hint) Optionally, the information that a particular variable was

restricted to a particular bound can be used by the verification algorithm. This can
further restrict the number of considered cases, as potentially only that particular
variable must be checked. Fxample: in cumulative timetable we know that if a particular
activity was propagated, we need only inspect if we cannot schedule that activity on its

domain.

. (Infer domain and combine) Combine the different conflict checkers into a single

checker for the fact. Then, given a fact, convert it into a domain (where for a fact A —

q we use the domain A A —q) and feed it to the checker.

We have successfully applied Procedure 5.2 to the cumulative constraint. We now discuss our notion

of conflict types in some more detail. This is followed by a discussion of the conditions necessary for

applying this methodology to a constraint.
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5.1. Conflict types

For a particular propagator p for constraints of type T, a conflict type is a conflict characterized
by a particular domain condition: if the domain condition is satisfied, the constraint becomes
unsatisfiable.

In the case of cumulative, we saw two different types: time conflicts and activity conflicts. If a
propagator performs a conflict check, the conditions it checks for are exactly the domain conditions
of a conflict type. Furthermore, for every propagation D — ¢, the domain condition D combined
with the condition —q is the domain condition of a conflict type.

It is possible for multiple types of propagations to degenerate to the same conflict type when the
negated consequent is added. We saw this case for cumulative: when propagating, one must separately
propagate the lower and upper bounds, but the propagations actually have the same conflict type

(the activity conflict).

5.2. Usage conditions

Not all checkers for constraints and propagators can be more easily developed using this methodol-
ogy. In particular, for another constraint we studied in detail and developed a checker for, alldifferent,
there exists a powerful theorem for alldifferent that directly provides a necessary condition for the
unsatisfiability of an alldifferent constraint (Theorem 2.19). Furthermore, this condition is easy to
check. This means that we do not have to investigate the propagation algorithm in order to discover
the different conflict types, as there is only one (an alldifferent conflict).

As part of the CP proof checker project, a linear inequality checker has also been developed. When
we try to apply our methodology to this checker, we see a similar problem as with alldifferent: there
is only one conflict type, namely when the minimum value (based on bounds reasoning) of the left-
hand side of the checker exceeds the constant on the right-hand side. Therefore, the methodology
cannot really be applied; there are not enough steps in the propagation algorithm to apply it to.

We now summarize these two cases as general cases in which this methodology is not as useful as
it is for constraints such as cumulative.

o If there exists a sufficient condition for the unsatisfiability of a constraint and this condition
is easy to check, a checker can simply implement a check for this condition and be done.
o If there is only one conflict type that is already captured by a conflict check in the propa-

gation algorithm, then the checker can simply implement the conflict check and be done.
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6. PERFORATED INTERVALS

As discussed in the approach (Section 4), both the deduction step and the inference checkers
need some machinery to reason about variable domains and atomic constraints. We present here
the theory and formally verified implementation of a particular integer domain representation that
fulfills the following specific requirements:

¢ Deduction requires efficiently checking whether atomic constraints hold and whether a group
of atomic constraints implies an empty domain.

e Our timetable cumulative checker requires the extraction of lower and upper bounds from a
list of atomic constraints (which, when considering not-equals constraints, might be different
from just the maximum upper bound, minimum lower bound).

e Our alldifferent checker requires building an enumerated domain from a list of atomic
constraints.

We call the domain representation introduced here perforated intervals. A perforated interval consists
of three pieces of data: lower and upper bounds as well as a set of holes (or perforations). The name
was chosen to be distinct from punctured intervals used in e.g., analysis, which are usually missing
exactly one value, while our perforated intervals can have many holes.

In this section, we begin with the formal definition and discuss some related concepts, including
the introduction of the concept of a perforated interval being tight. When a perofrated interval is
tight, we can perform the efficient checks necessary for fact deduction and we can easily check whether
the domain is empty. We then discuss these checks and their implementation (together with their
correctness specification) in Section 6.1. This is followed by a discussion in Section 6.2 on how we can
build these domains by updating them based on atomic constraints. Then, the algorithm for how to
actually tighten a domain is described in Section 6.3, followed by proofs that this algorithm actually
results in a tight domain. We conclude with a discussion of some implementation considerations in

Section 6.4.

Definition 6.1 (Perforated interval, <> Domain): A perforated interval is a triple (1b,ub, holes),
where 1b,ub € Z,,, (<> Zext) and holes is a finite subset of Z.

We note that in our formalization, these perforated intervals are referred to simply as domains,
as that is currently the only type of domain representation in the checker. A perforated interval
can also be interpreted as the set difference of two sets, [Ib,ub] — holes, where the interval must
satisfy [1b,ub] C Z. Since perforated intervals represent domains, we define when an element is in a

perforated interval.

Definition 6.2 (Elements, <> is_in_dom): Let n € Z and dom = (1b,ub, holes) a perforated
interval, then n € dom iff 1b < n < ub and n ¢ holes.

This induces a natural equivalence between perforated intervals.
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Perforated intervals

Definition 6.3 (Domain equivalence, <> dom_equiv): Let dom and dom’ be two perforated

intervals. Then they are equivalent, written dom ~ dom’, iff forall n, n € dom <+ n € dom’.

There exist examples of perforated intervals that are equivalent, but not equal. We will often say

these have the same logical domain.

Example 6.4 (Unequal but equivalent): Let dom = (5,+00,{5,6}) and dom” = (7,400, {}).
Then dom =~ dom’. Let dom = (4,6,{4,5,6}) and dom, = (10,5, {}). Then also dom

~
empty — empty — empty —

/
dOMMgp iy -

It is important to be able to determine whether an atomic constraint holds for all elements of a
domain (i.e., when a domain satisfies the constraint, see Definition 2.15 and Definition 2.3), since
then we can check whether the premises of a fact hold. Furthermore, it should be easy to determine
when a domain is inconsistent, which is necessary in the deduction step.

Not every perforated interval can be easily checked for these conditions. For example, verifying

whether dom,,, . from Example 6.4 is inconsistent requires looking at the holes and seeing that every

/

element in the interval is in the set of holes. However, domg,,.

checking its bounds immediately
leads to the conclusion that it is empty. Similarly, to see whether = > 6 holds for dom (again, from
Example 6.4) requires inspecting the holes, while for dom” comparing 6 with the lower bound suffices.

We now state the exact condition for such checks to require only inspecting the bounds.

Definition 6.5 (Tightness, <> dom_tightened): Let dom = (1b,ub,holes) be a perforated
interval. Then dom is called tight if 1b,ub ¢ holes.

In the next subsection, these checks are discussed in detail.

6.1. Checks

We want our domain to support efficiently answering the following two questions:
1. (Check atomic holds) Is a particular atomic constraint true for every value in the domain?
(Definition 6.7)
2. (Check domain consistency) Is the domain non-empty? (Definition 6.6)

Let us describe these properties formally.

Definition 6.6 (Domain consistency, <> dom_consistent): A domain dom is consistent (or non-

empty), if there exists n € Z such that n € dom.

In the remainder of this section, we will make use of unbound atomic constraints. We call them
unbound because (as opposed to Definition 2.15), they do not refer to any variable. Instead, they
are a constraint on some number, without any reference to the concept of a variable. We will use
the notation [¢ ¢], where ¢ € Z and ¢ € {<,>,#,=}), to refer to them. We will also frequently omit
“unbound” when this does not lead to confusion. Note also that an atomic constraint (as in Definition

2.15) can be seen as a pair consisting of an unbound atomic constraint and a variable identifier.
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Perforated intervals

Definition 6.7 (Atomic holds, <> atomic_holds): Let a = [¢ ¢] be an atomic constraint. Then

a holds for a domain dom if for all elements n € dom, we can say n ¢ c.

Note that if dom is the domain of some variable x, Definition 6.7 is equivalent to dom satisfying the
atomic constraint [z ¢ ¢] (Definition 2.15 and Definition 2.3).

We describe a procedure for checking each of the two properties specifically for perforated intervals.
The first check function — check_consistency (Pseudocode 6.8) — first checks whether the lower bound
is positive infinity or the upper bound is negative infinity (returning false in both cases) and then
checks whether the lower bound is less than or equal to the upper bound. If so, it returns true.

We describe this now using pseudocode. The syntax used and the precise definitions of e.g.

PerforatedInterval are discussed in Appendix A.

Pseudocode 6.8 (Domain consistency check, <> dom_check_consistent):

Definition check consistency(dom: PerforatedInterval) -> bool:
match (lb(dom), ub(dom)):

case (positive infinity, ):
return false

case (_, negative infinity):
return false

case (_, _):
return lb(dom) <= ub(dom)

The next check function — check_holds (Pseudocode 6.9) — has different behavior for each atomic

constraint.

o c| constraints, it returns whether the upper bound is less than or equal to c.

<
> ¢| constraints, it returns whether the lower bound is greater than or equal to ¢

Fo
¢ Fo
o For

For [# ¢], it checks whether ¢ is strictly greater than the upper bound, c is strictly smaller

]

]
c] constraints, it checks whether the lower and upper bounds are equal to ¢
],

than the lower bound, or if ¢ € holes.

check_holds makes use of is_element_of (Function Description A.2).

Pseudocode 6.9 (Check if atomic holds for domain, <> check_holds):

Definition check holds(dom: PerforatedInterval, atom: Atomic) -> bool:
match comparator(atom):
case less equal:
return ub(dom) <=? constant(atom)
case greater_equal:
return constant(atom) <=? 1lb(dom)
case equal:
return (ub(dom) <=7 constant(atom)) && (constant(atom) <=? lb(dom))
case not_equal:
if ub(dom) <? constant(atom):
return true
else if constant(atom) <? lb(dom):
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Perforated intervals

return true
else:

return is element of(constant(atom), holes(dom))

Our claim is now that when a perforated interval is tight, the check functions decide the properties
(with an additional requirement on check_holds for the perforated interval to be consistent). In order
to use the check functions correctly, an implementation would have to ensure the domains are tight
before giving them to those functions. This gives the following two lemmas, which also serve as the

correctness specifications of the check functions.

Lemma 6.10 (check_consistency decides consistency if tight, <> dom_consistent_iff_
checked): Let dom be a tight, perforated interval. Then dom is consistent if and only if check_

consistency(dom) = true.

The proof has been formalized, but we omit it here, as most cases can be dealt with simply by case
splitting and do not depend on the perforated interval being tight. Instead, we highlight one specific
case to illustrate why the perforated interval must be tight. When ub is some number U € Z and
Ib = —o0, notice that ub € dom (and therefore it is consistent), since the perforated interval is tight

we have that ub ¢ holes.

Lemma 6.11 (check_holds decides atomic holding if tight, consistent): Let dom be a tight and
consistent perforated interval and a an atomic constraint. Then a holds for dom if and only if

check_holds(dom, a) = true.

The reason we require consistency is that for an inconsistent and tight perforated interval, check_
holds might not return true, even though our definition for an atomic holding would be trivially
true (as the perforated interval is then empty). Note: we have not formalized the forward direction
of this proof for all cases, which is not needed for soundness. However, we have done it for the lower
bound, <> tightened_then_checks_1b. The other cases should follow similarly. We briefly discuss
two cases.
o When proving the forward implication for an atomic a = [> ¢|] and we have that 1b =
—oo and ub is some number U € Z, check_holds equals true if ¢ < —oo. This can never
be the case, so we must derive a contradiction. Since we assume a holds, then the value
min({U, ¢,min(holes U0)}) — 1 has to be greater or equal to ¢ as it is in the perforated
interval (since smaller than all holes and smaller than U). But by its definition, it is strictly
less than c. Hence, there is a contradiction. For the upper bound case, we have not formally
proven the forward implication due to time constraints.
e When proving that when a not equals constraint holds check_holds equals true, we look at
the two possible outcomes of the triple or statement. In the non-trivial case, this then gives
that 1b < ¢ < ub and ¢ ¢ holes. But that gives exactly that ¢ € dom. But then the atomic

constraint applies to ¢, so ¢ # ¢, which is a contradiction.
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Now that we know how to check consistency and whether an atomic constraint holds for a perforated
interval, we will discuss in the next subsection how to actually build them, which is done by iteratively

updating an initial domain representing all of Z.

6.2. Updates
For each type of atomic, a perforated interval can be updated such that the atomic holds for the
perforated interval. This can, for example, be used to track the domains of variables during deduction
step checking (Section 7) or to extract lower and upper bounds from a fact (see Section 7.1.1 for
details). The four possible updates are as follows, which are collected in the function apply_atomic
(Pseudocode 6.12):
e For [< ¢] atomics, update the upper bound by taking the maximum of the current upper

bound and ¢ (using the operations on Z, defined in Section 2.10.1).

ext

e For [> ¢] atomics, update the lower bound by taking the minimum of the current upper

bound and ¢ (using the operation on Z,, defined in Section 2.10.1).

ext

o For [= ¢] atomics, update both the upper bound and lower bounds just as for inequality
atomics.

o For [+# ¢] atomics, add ¢ to the holes.

Pseudocode 6.12 (Update domain so that atomic holds, <> apply_atomic):

Definition apply atomic(dom: PerforatedInterval, atom: Atomic) -> PerforatedInterval:
match comparator(atom):
case less equal:
new ub := max(ub(dom), constant(atom))
return PerforatedInterval(lb(dom), new ub, holes(dom))
case greater equal:
new lb := min(lb(dom), constant(dom))

return PerforatedInterval(new_1lb, ub(dom), holes(dom))

case equal:
new ub := max(ub(dom), constant(atom))
new lb := min(lb(dom), constant(dom))

return PerforatedInterval(new_1b, new_ub, holes(dom))
case not_equal:
new _holes := add to(constant(atom), holes(dom)

return PerforatedInterval(lb(dom), ub(dom), new_holes)

We now state useful specificaiton lemma for apply_atomic: it says that any integer is an element of
a perforated interval that had an atomic applied if and only if that integer was an element of the

original domain and it obeys the atomic constraint.

Lemma 6.13 (apply_atomic specification, <> apply_atomic_spec): Let n € Z, dom a perforated

interval, and [¢ ¢] an atomic constraint, then n € apply_atomic(dom,[¢ c]) <> n € dom An o c.

We omit its proof, which can be done by examining the cases for 1b and ub and using the defined

order on Z .
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We also define a function that applies multiple atomic constraints to a domain, apply_atomics

(Function Description 6.14).

Function Description 6.14:
(<> apply_atomics) Given a domain dom and a list of atomics atomics, successively updates
the domain for each atomic in atomics using apply_atomic.

Definition apply atomics(dom: PerforatedInterval, atoms: List[Atomic]) -> PerforatedInterval:

Using a straightforward induction proof, we can generalize Lemma 6.13 for apply_atomics as follows:

Lemma 6.15 (apply_atomics specification, <> dom_effect_atomics): Let n € Z, dom
a perforated interval and atomics a list of atomic constraints, then n €

apply_atomics(dom, atomics) <> n € dom A (V[o ¢| € atomics,n ¢ c).

Armed with this lemma, we see that applying the order of atomic constraints has no effect on which
logical domain is implied by them, because the right hand side it states that for all atomics in
atomics, we have that domain elements must satisfy them, irrespective of the order of atomics.
This is a powerful tool for when we want to manage applying multiple atomic constraints.

In Section 6.1, we described the check functions for perforated intervals. They work correctly only

when given tight domains. How to achieve tightness is described in the next section.

6.3. Tightening procedure

In this section, only the case for tightening the lower bound is described. The upper bound case is
fully symmetric. In our formal proofs, we have tried to use this symmetry to avoid duplicate proofs
as much as possible. We describe this technique at the end of this section.

The tightening procedure is simple. Given a list of holes in strictly increasing order (so in particular
it also has no duplicates) and an initial lower bound, we can tighten the lower bound by first iterating
until we find a hole equal to the current lower bound. The current bound is then increased by one.
We then keep iterating until the next hole is not equal to the current bound (which happens when

the list of holes skips at least one integer). We illustrate this with a simple example.

Example 6.16 (Tightening): Suppose we have a variable x that we know is greater than or
equal to 5. Given a list of holes (values that we know z cannot take) of [3, 5, 6, 7, 9], we first
iterate until we reach 5, so then we are left with [5, 6, 7, 9]. Then the bound is updated to 6,
to 7, and to 8 as we iterate. However, since there is no hole at 8, we stop. Therefore, our lower

bound is updated to 8.

We give pseudocode for the two functions used in the implementation of the tightening procedure.
First, we define tighten_lb_with_holes (Pseudocode 6.17), which is defined using “Recursive”,
indicating it is a recursive function. This function computes the tightened lower bound only. The
second match case is the case where the list is non-empty, after which the head of the list is assigned

to the variable h and the remaining elements to holes'.
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Pseudocode 6.17 (Tighten lower bound given holes, <> tighten_with_holes):

Recursive tighten lb with holes(holes: List[Z], lb: Z) -> Z:
match holes:

case nil:
return b
case h :: holes':
if h =? 1b:
return tighten 1b with holes(holes', lb + 1)
else:
return b

We then define tighten_1b (Pseudocode 6.18), which operates on a full domain instead. Furthermore,
it ensures that redundant holes (holes smaller than the lower bound) are removed using filter_
greater_eq (Function Description A.3), as otherwise tighten_lb_with_holes would not perform any
tightening. Note that we first check if we need to do any tightening at all. Furthermore, we do not
update the holes during tightening, as removal is not cheap, and we would potentially have to remove

many elements after tightening the bounds.

Pseudocode 6.18 (Tighten domain lower bound, <> tighten_1lb):

Definition tighten lb(dom: PerforatedInterval) -> PerforatedInterval:
match 1b(dom):
case 1b _value:
if is element of(lb_value, holes(dom)):
holes from lb := filter greater eq(holes(dom), 1b value)
updated b := tighten 1b with holes(holes from 1b, lb value)
return PerforatedInterval (updated lb, ub(dom), holes(dom))
else:
return dom
case _

return dom

We are interested in proving two facts: 1) (tighten equivalency) tightening the bounds produces
a new domain that is equivalent to the previous one, i.e., tightening does not change the elements
that can be in the domain. This is useful when we care only that the bounds produced in the domain
procedures are actually valid for the variable we are looking at, not if they are as good as they could
be. Critically, this is actually all that is needed to prove the soundness of the checker. 2) (tightening
tightens) after applying the tightening procedure (not just on the lower bound, but also the upper
bound), our domain is tight. If that holds, we can apply what we learned earlier about tight domains.
We begin with the fact that tightening creates a new equivalent domain. As before, we only write
down the case for tightening the lower bound.
6.3.1. Tighten equivalency

We first need a number of intermediary lemmas that relate to tighten_lb_with_holes. The first
one says that if a value obeys some bound and is not a hole, that value will still obey the tightened

bound. To see why (in the case of a lower bound), tightening always terminates when we reach a
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value not in the holes. Since it is a valid lower bound, it was originally below the value. But since

the value is not in the hole, it can never increase beyond the value.

Lemma 6.19 (Soudness of tighten_lb_with_holes, <> tighten_with_holes_sound): Let
holes be a list of integers and y € Z s.t. y ¢ holes. Furthermore, let 1b € Z s.t. b < y. Then,
tighten_lb_with_holes(holes, Ib) < y.

Proof. We prove this by induction over holes. First, in the case when holes is empty, we
immediately return the bound unchanged. But since one of our assumptions is that 1b <
y, if it remains unchanged, then still tighten_lb_with_holes(holes,1b) <y. Now consider
the inductive case, where we have y ¢ (h :: holes’) and 1b <y. We then have to show
that tighten_lb_with_holes((h :: holes’), 1b) < y. Consider that if h # b, the bound remains
unchanged. Therefore, we can again use our assumption that 1b <y. In the other case, we
must show, after simplifying, that tighten_lb_with_holes(holes’, h + 1) < y. First, note that y ¢
(h :: holes’) indicates y # h and y ¢ holes’. Furthermore, as we did induction over general 1b, our
induction hypothesis states that Vb,y ¢ holes’ Ab <y — tighten_lb_with_holes(holes’,b) < y.
Therefore, we can apply our induction hypothesis with b = 1b + 1. We already had that y ¢ holes’,
so all that remains is to show that 1b+ 1 < y. Since 1b < y, it is enough to show y # 1b. But we

already have y # h, and in the case we are considering h = 1b. O
Next, we have that tightening can only ever increase (so it is also monotonic).

Lemma 6.20 (Monotonicity of tighten_lb_with_holes, <> tighten_holes_monotonic): Let
holes be a list of integers and 1b € Z. Then 1b < tighten_lb_with_holes(holes, 1b).

Proof. We again use induction over holes. For empty holes, tighten_lb_with_holes(holes,
lb) =1b, so in that case we are done. In the inductive case, we must show 1b <
tighten_lb_with_holes((h :: holes’), 1b). Consider first the case where h = lb. Then we have
to show 1b < tighten_lb_with_holes(holes’, b+ 1). Then we can use our induction hypothesis
(which, since we were general in 1b, states Vb, b < tighten_lb_with_holes(holes’, b)) to find that
b+ 1 < tighten_lb_with_holes(holes’, 1b + 1), so certainly 1b is also less than or equal. In the
case where h # 1b, we just have to show 1b < 1b by the definition of tighten_lb_with_holes, so

we are done immediately. O
Then, we prove the equivalence of having a bound and a hole and having a tight bound and a hole.

Lemma 6.21 (Tightened bound equivalency, <> tighten_holes_equiv): Let holes be a list
of integers and 1b,y € Z. Then the following are equivalent:

1. Ib<yand y ¢ holes

2. tighten_lb_with_holes(filter_greater_eq(holes, 1b),1b) <y and y ¢ holes

37


https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_with_holes_sound
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_monotonic
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_monotonic
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_monotonic
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_monotonic
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_monotonic
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_monotonic
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_equiv
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_equiv
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_equiv
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_equiv
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_equiv
https://redirect.tipten.nl/thesis-checker-docs/Checker.Domain.html#tighten_holes_equiv

Perforated intervals

Proof. Let holes, 1b,y be as in the assumptions.

1 = 2: Clearly we have y ¢ holes. Then we apply Lemma 6.19 (tighten_lbh_with_holes sound-
ness), after which it remains to be shown that 1b <y and y ¢ filter_greater_eq(holes, 1b).
The first is part of our assumptions. To see why y ¢ filter_greater_eq(holes, 1b), consider that
filter_greater_eq(holes, 1b) is a subset of holes, so since y ¢ holes, certainly it is not in the
subset.

2=1: Again, y ¢ holes is immediate from our assumptions. Then, since 1b<
tighten_lb_with_holes(filter_greater_eq(holes,lb),1b) by the monotonicity of tightening
(Lemma 6.20), and because we have tighten_lb_with_holes(filter_greater_eq(holes, 1b),lb) <

y by assumption, we have 1b < y as required. O

Lemma 6.22 (tighten_lb preserves logical domain, <> tighten_lb_equiv): Let dom a perfo-

rated interval. Then tighten_lb(dom) ~ dom.

Proof. Let n € Z and dom = (1b,ub, holes). We must show that n € dom <» n € tighten_1lb(dom).
First, suppose 1b € {00, —o0}. Then we see that tighten_lb does not modify the domain. There-
fore, we look only at the case where 1b € Z. Next, consider the case where 1b ¢ holes. Again, the
domain remains unchanged, so we may now assume 1b € holes. We have that tighten_lb(dom) =
(tighten_lb_with_holes(filter_greater_eq(holes, 1b)), ub, holes), so all that remains to be
shown is that 1b < n <> tighten_lb_with_holes(filter_greater_eq(holes, 1b)) < n. For this, we
can apply Lemma 6.21 (tightened bound equivalency), since for both the = and < we also have
that n ¢ holes. O

6.3.2. Tightening tightens

Now that we have seen that our implementation of tightening creates an equivalent domain, we
want to show that this actually creates a domain that is tight. This is not trivial to prove and
relies on the holes being sorted. In our implementation, the holes set is implemented using a tree
data structure, allowing efficient iteration in sorted order. We again state only the case for lower
bounds. We first state and prove a lemma about the exact behavior of tighten_lb_with_holes. This
is almost exactly what we want, but here we expect holes to not contain any “redundant” holes. In

our practical implementation, this is ensured by filter_greater_eq.

Lemma 6.23 (Tighten holes specification, <> tighten_holes_spec): Let holes be a list of
strictly increasing integers and let 1b € Z. Then, if we have that for each h € holes, b < h,
this implies tighten_lb_with_holes(holes, lb) ¢ holes.

Proof. We proceed using induction over holes, not yet choosing a particular 1b. Then in the case
that holes is empty, clearly any value cannot be an element of it so also tighten_lb_with_holes

(holes, lb) ¢ holes, for any 1b.
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Next, consider the case where holes = h :: holes’. Let 1b € Z be s.t. for any h’ € h :: holes’,
b < h’. Furthermore, let h :: holes’ be strictly increasing. Our goal is then to show that
tighten_lb_with_holes(h :: holes’, 1b) ¢ h :: holes’.

We consider two cases. First when h = 1b.

Case 1. h=1b

Our goal then simplifies to showing that tighten_lb_with_holes(holes’,h+1)¢ h::
holes’. This is equivalent to showing that tighten_lb_with_holes(holes’,h+1)=hV
tighten_lb_with_holes(holes’,h+ 1) € holes’ leads to a contradiction. Note that by the monot-
onicity of tighten_lb_with_holes (Lemma 6.20), h + 1 < tighten_lb_with_holes(holes’,h +1).
But then we have that h + 1 < h if tighten_lb_with_holes(holes’,h + 1) = h, a contradiction in
that case.

We will now use the induction hypothesis to show that tighten_tb_with_holes(holes’,h + 1) ¢
holes’, which contradicts the other case. The induction hypothesis is for holes’, but is general
over 1b. If we choose 1b = h + 1, it indeed implies what we want. To appply it, we must show that
holes’ is strictly increasing and that for all A’ € holes’, h+1 < h’. Clearly holes’ is strictly
increasing, since h :: holes’ is. Furthermore, all elements in holes’ must be strictly greater than
h since h :: holes’ is strictly increasing. So for any h’ € holes, h < h’. But then h +1 < h’ as
required.

Case 2. h# 1b

In this case, our goal simplifies to showing 1b ¢ h :: holes’. This is equivalen to deriving a
contradiction when h = 1b V 1b € holes’. Clearly, we cannot have h = 1b. In the other case, since
b € holes’, we have that h < 1b by the fact that h :: holes’ is strictly increasing. But one of
our assumptions is that for all A’ € h :: holes’, 1b < I’. Since h € h :: holes’, also 1b < h. But
we cannot have that both A < 1b and 1b < h. O

Lemma 6.24 (Tightened lower bound is not in holes, <> tighten_lb_tightens): Let dom be
a perforated interval. Then, 1b(tighten_lb(dom)) ¢ holes(tighten_1lb(dom)).

Proof. First, observe that tighten_lb does not change the holes, so let holes be
the holes of dom. Furthermore, if 1b(dom) is not finite or is already not an element
of holes, we are also done. In the other case, we have that Ub(tighten_lb(dom))=
tighten_lb_with_holes(filter_greater_eq(holes, 1b)). Let us abbreviate this value by 1b’.
Therefore, we must show that 1b" ¢ holes. First, we see that 1b < 1b” by the monotonicity
of tighten_lb_with_holes. We will now determine that 1b” ¢ holes by showing that 1b’ €
holes implies a contradiction. Since 1b’ € holes and also 1b < 1b’, we know that 1b’ €
filter_greater_eq(holes, 1b). This is because holes is sorted in strictly increasing order (by our
implementation of the perforated interval), so since filter_greater_eq returns the part of the list
to the right of 1b, we know the returned elements are exactly those elements in the original list

greater than or equal to 1b. It is enough to show that 1b’" ¢ filter_greater_eq(holes, lb), as
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that implies a contradiction. We can now apply Lemma 6.23 (tighten holes spec) with holes =

filter_greater_eq(holes, Ib), which, if we substitute the meaning for 1b’, finishes the proof. O

We have seen how we can check whether a perforated interval is empty and whether an atomic
constraint holds for it, how we can update it, and how we can tighten it. We also saw that when
a perforated interval is tight, the efficient checks we implement actually decide the properties we
seek to check. We now conclude our discussion of perforated intervals with a discussion of some

considerations that matter for the actual implementation and formalization.

6.4. Implementation considerations
6.4.1. Z,
We implement Z,, exactly with the properties as described in Section 2.10.1. For this, we introduce
a new inductive type in Rocq, as shown in Snippet 6.25. Here, Z is the integer type of Rocq. The

type corresponds exactly to the three cases of Z,: either it is an integer, —oo, or +oo0.

Snippet 6.25 (Definition of Z_, in Rocq, <> Zext):

Inductive Zext :=
| zz : Z -> Zext
| neg inf : Zext

| pos_inf : Zext.

We then define a module that is a subtype of UsualOrderedTypeFull from the Structures.Orders file
of the Rocq standard library. Usual here relates to the fact that we have the usual Leibniz equality
between elements. We then need to define and prove the required properties, such as compare. We
also get the notation. Furthermore, by including a number of other modules that provide additional
facts, we get a large amount of lemmas for free, nearly the same number as are available for z.
In particular, we include GenericMinMax, which automatically defines min and max and a number of
useful lemmas (which we extend with additional standard library modules that provide additional
properties for free).

We also implement a number of tactics. We noticed that various of the lemmas that are automat-
ically available are automatically unwrapped and stated in terms of the defined Zext.compare, instead
of the more natural comparison operators we define. Therefore, we provide tactics that automatically
replace instances of Zext.compare with the operators that have nicer notation and interpretation.
The most essential tactic is zext_as_z, which rewrites Z,,, comparisons that we know are between
finite numbers in terms of the standard Z comparison operators. Combined with the lia tactic,
many goals can then be solved. We also provide some tactics to destruct instances of Z,,, into the
possible cases and try to solve the goal, but even with just a few instances, this can already be slow
and generate too many cases. We found that doing the destruction manually often kept things more
manageable. In fact, the infinity cases are often rather easy to solve with just simplification and
tactics such as easy.

We believe the value of using Z,, as opposed to using e.g., option Z is twofold:
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1. Since we get the definition of min and max and associated lemmas for free, we do not require
defining special functions which work differently depending on whether option Z is a lower
bound or upper bound. This also applies to writing tactics.

2. The code and proofs are easier to read, as <,>,<,> have a very well-known intuitive
meaning.

The proofs do not necessarily become easier, as tactics could also be written for option Z that would
achieve similar convenience. We expected that the use of the order tactic would simplify many proofs,
but we were unable to get it to work even in simple cases. It would most likely be easier to extend
the lia tactic to Z, than the previous approach. This would make most proofs trivial, but was not
attempted in this work.

6.4.1.1. Holes.

We implement the set of holes of a perforated interval with the MSetInterface from the Rocq
standard library. More specifically, we use MSetRBT [54], [55]. This implementation uses a red-black
tree and therefore provides logarithmic lookup, deletion and insertion. Furthermore, when converting
a set into a list, one gets the list in strictly increasing sorted order. MSetRBT was chosen due to
the arguments provided in [55]: they require much less bookkeeping computations using the Rocq Z
integer type and were benchmarked to perform faster. However, we do not provide any systematic
comparison in this work.
6.4.1.2. Tighten symmetry.

We only stated and proved all the tightening lemmas for the lower bound case. However, we also
want to prove the upper bound case. The proofs are almost entirely symmetrical, simply turning <
into > and vice versa would be enough. However, we do not want to duplicate these proofs, as the
proof is basically the same. Instead, we made the definitions and lemmas generic over < and >. We
first define a simple type Sign that is either plus or minus. Then, for <, <, <7 we define operations
that take a Sign as an additional parameter, where in the minus case the order of the arguments is

swapped. We give one example below.

Snippet 6.26 (Definitions for implementing tightening symmetry, <> Sign, <> le_flip):

Inductive Sign :=
| plus

| min.

Definition le flip (sign : Sign) x y :=
match sign with
| plus => Z.le x y
| min => Z.le y X

end.

Next, we define notation that makes it clear the actual direction of the operator depends on the
provided sign. For example, we use the notation x <=[z] y to mean le flip z x y. Finally, we define

the following tactic:
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Snippet 6.27 (Tactic for automatically simplifying signed comparisons):

Ltac simpl sign :=
match goal with
| [ sign : Sign |- 1 =>
unfold sign to z in *; unfold le flip in *;
unfold 1t flip in *; unfold ltb flip in *;
destruct sign

end.

This tactic searches for a variable of type sign and, if it exists, unfolds all the earlier definitions and
then splits into two cases. In our proofs, we often use this tactic at the very end, followed by lia.
We also define a function sign to z that returns +1 for plus and —1 for min, which we use in our
generic tighten function to either increase or decrease, depending on the sign.

This strategy removes most of the duplication present in the tightening proofs, leaving only a few

cases like the actual tighten 1b and tighten_ub that work on domains.
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7. DEDUCTION STEP CHECKER

In the previous section, we introduced the perforated interval. With that as a building block,
we now describe the formalization and implementation of the deduction step checking procedure
(Procedure 2.35). To track the domains, we use a map data structure that maps strings to perforated
intervals. We will simply refer to these as “domain maps” (or Domains in pseudocode). Before we
present the pseudocode of our implementation for the deduction step, we will go into more detail

about the operations available on domain maps and how they can be constructed.

7.1. Domain maps

In this subsection, we will mostly avoid giving pseudocode and instead give high-level descriptions.
This is because the implemention will have a significant dependence on the underlying map data
structure. Furthermore, we do not go into detail about the various lemmas required for utilizing
domain maps, except for the primary one necessary for soundness stated at the end. This is because
these lemmas are mostly straightforward, albeit tedious, to prove. Furthermore, they are tightly
coupled to our specific implementation and are mostly generalize the detailed facts we already know of
the individual perforated interval operations to apply to multiple variables, or are related specifically
to using the map.

A domain map can be constructed directly from a list of atomic constraints, which then represents
the domains of the variables when assuming every atomic constraint in the list must hold. For this

process we use the function domains_from_atomics (Function Description 7.1).

Function Description 7.1:

(<> domains_from_atomics) Given a list of atomics atomics, where each atomic is of the form
[ ¢ c], returns a map that maps each variable to a perforated interval. This map is constructed
by first constructing a map that maps each variable to the atomics in atomics mentioning that
variable. Then apply_atomics is applied with an initial perforated interval of (—oo, oo, ().

Definition domains from atomics(atomics: List[BoundAtomic]) -> Domains:

Note that domains_from_atomics does not do any tightening. As tightening is relatively expensive, this
saves a lot of work when tightening is not needed. Furthermore, it is possible for some domains to be
inconsistent without the function failing. When we do need tightened and consistent domains, we can
use tighten_doms (Function Description 7.2) and check_domains_consistent (Function Description

7.3).

Function Description 7.2:
(<> tighten_doms) Tightens the lower and upper bounds of all the perforated intervals stored
in the map using tighten_1b and tighten_ub (which is defined analagously).

Definition tighten doms(doms: Domains) -> Domains:
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Function Description 7.3:
(<> check_domains_consistent) Returns true if check_consistency returns true for every
perforated interval stored in the map and false otherwise.

Definition check domains consistent(doms: Domains) -> bool:

These operations are useful, especially when considering multiple atomic constraints at once.
However, in the case of the deduction step, we must ensure, before every inference, that the domains
are tight. Tightening every domain (which, if every domain is already tight, still requires a single
membership check for every variable domain) is not free. For this reason, there is also doms_apply_

tighten (Function Description 7.4).

Function Description 7.4:

(<> doms_apply_tighten) Updates only the domain stored in the domain map for the variable
named by atomic. It then tightens the domain and checks for consistency. If the domain become
inconsitent, it returns None, otherwise the updated domain map wrapped in Some.

Definition doms apply tighten(doms: Domains, atomic: BoundAtomic) -> Option[Domains]:

Let us now consider the most interesting fact, which is when we call a domain map “valid”. First,
we define the following function (where initial dom = (00, —o00,#)) and we use atomics_for_var

(Function Description A.4)):

Pseudocode 7.5 (Specification function for domain induced by atomic constraints, (<>
applied_dom)):

Definition applied dom(x: Id, atomics: List[BoundAtomic]) -> PerforatedInterval:

return apply atomics(atomics for var(x, atomics), initial dom)

The above function outputs what we would like our variable domain to look like after we construct
a domain map. However, we do not actually use the above function (as this would be very slow); it
is only used to define the specification. To do this, let us define some notation. When D is a domain
map, D(x) — in the implementation, we use the notation D d-> x — is the perforated interval stored

for the variable x, or simply all of Z in case nothing is stored for x.

Definition 7.6 (Domain map validity, <> valid_domains): Let D be a domain map and
atomics a list of atomic constraints. Then D is walid for atomics if, for all z, D(x) =~

applied_dom(D,atomics).

We skip the precise statements and proofs of the facts related to domain map validity, again because
their proof relies on very specific implementation details and is rather mechanical. We quickly
summarize them here:

¢ The domain map produced by domains_from_atomics is valid for the atomics it is given.
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e If a domain map is valid for some list of atomics, then the result of applying doms_apply_
tighten will also be valid for this list of atomics, as well as the additional atomic constraint
that is given.

e Since we proved that the result of tighten_doms is equivalent to its input, we immediately
have that it also preserves domain map validity.

Before moving on to the implementation of the deduction step, we also mention how domain maps
are useful for inference checking.
7.1.1. Inference checking

An inference of the form a; A ... A a,, — ¢ can often be verified more easily by explicitly considering
the domains of variables, as opposed to looking at the atomic constraints. More precisely, inferences
can be verified if their associated constraint cannot be satisfied given the domain implied by a; A
... \a,, N —~q. However, it is often useful for inference checking to know which variable is mentioned
in the right-hand side, as this can provide a hint that speeds up verification in some cases (this is
particularly important for the cumulative checker). For this reason, we define two functions. First,
using negate_bound_atomic (Function Description A.5), we define atomics_from_fact (Pseudocode

7.7), which, given a fact a; A ...a,, — ¢, returns the atomics aq, as, ..., a,,, ~q as well as var(q).

Pseudocode 7.7 (Extract consequent variable and convert to conflict form, <> atomics_from_
fact):

Definition atomics from fact(fact: ProofFact) -> Option[Id]*List[BoundAtomic]:
match consequent(fact):
case None:
return (None, premises(fact))
case Some(consq var, consq_atomic):
negated := negate bound atomic((consq var, consq atomic))

return (Some(consq var), negated :: premises(fact))

The second function — infer_domains (Pseudocode 7.8) — then uses atomics_from_fact and the

previously defined domain map operations.

Pseudocode 7.8 (Infer domain map and consequent variable from fact, <> infer_domains):

Definition infer domains(fact: ProofFact) -> Option[Domains*Option[Id]]:
(maybe consq_var, atomics) := atomics from fact(fact)
doms := domains from atomics(atomics)
doms_tight := tighten doms(doms)
if check domains consistent(doms_tight):
return Some(doms_tight, maybe consq var)
else:

return None

We see that infer_domains returns exactly the domain map implied by a; A ... A a,,, A —¢, as well as
the variable for g. It also checks for consistency, since that usually indicates there is something wrong

with the inference. For infer_domains to be useful, we need a useful specification for it. For this, we
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introduce a second way for a domain map to be valid, but in this case with respect to a solution

instead of a list of atomics. Note that this is exactly the same as in Definition 2.2 (assignments).

Definition 7.9 (Domain map consistent with solution, <> sol_in_doms): Let 6 be an assignment
and D a domain map. Then we say 6 is consistent with respect to D if for all z, we have

0(z) € D(z).
We now relate it to the concept of domain map validity we introduced earlier.

Lemma 7.10 (Domain validity and assignment consistency, <> valid_domains_sol_in_doms_
iff_valid_atoms): Let atomics be a list of atomics, 6 an assignment, and D a domain map.
Then, if D is valid with respect to atomics, we have that the following are equivalent:

1. 0 satisfies atomics

2. 0 is consistent with respect to D

This finally gives rise to the specification of infer_domains:

Lemma 7.11 (Specification of infer_domains, <> infer_domains_correct): Let fact be a fact
and D a domain map. Then, if infer domains(fact) = Some(D, ), we have that the following
are equivalent for an arbitrary assignment 6:

1. 0 is not consistent with respect to D

2. 0 satisfies fact

To see why this is useful, consider the following generic inference checker, where we assume
domain cannot satisfy my constraint is a function that, when it returns true, is indeed correct that

the constraint cannot be satisfied for the particular domain:

Pseudocode 7.12 (Propagator inference checker structure):

Definition my checker(fact: Fact, constraint: MyConstraint) -> bool:
match infer domains(fact):

case None:
return false

case Some(doms, ):
if domain_cannot satisfy my constraint(doms, constraint):

return true

else:

return false

Proving soundness involves proving that if the checker returns true for a particular fact and
constraint, then the fact must be satisfied by every assignment satisfying that constraint. More

precisely:
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Lemma 7.13 (Soundness for generic constraint inference checker): Let ¢ be a constraint of type
MyConstraint and let fact be a fact s.t. my checker(fact, c) = true. Then for all assignments

0 that satisfy c, we have that they also satisfy fact.

Proof. Let 6 be an assignment that satisfies c¢. Since my checker(fact, c) = true, we see that
infer_domains(fact) must have resulted in some domain D. We can then rewrite our goal using
Lemma 7.11 (infer_domains specification). We must then show that 6 is not consistent with respect
to D. But this is exactly what domain_cannot_satisfy my constraint tests for, which we now to

be true because our checker returned true. O

7.2. Deduction implementation

The implementation of the deduction step is recursive, but otherwise follows Procedure 2.35.

We now state the pseudocode for our implementation, where we use “Inductive” to mean a data
type with multiple possible cases, which can optionally also contain data of another type (known also
as an enum or union). First we define the recursive step step_inference (Pseudocode 7.15) using
all_premises_hold (Function Description A.6), which itself relies on check_holds. Furthermore, we
now see the use of doms_apply_tighten (Function Description 7.4) to apply the consequent of an

inference fact.

Pseudocode 7.14 (Deduction recursive step result, <> DeductStep):

Inductive DeductStep:
case deduct domains(domains: Domains)
case deduct valid

case deduct reject

Pseudocode 7.15 (Recursive step for one inference, <> step_inference):

Definition step inference(fact: ProofFact, domains: Domains) -> DeductStep:
if all premises hold(premises(fact), domains):
match consequent(fact):
case None:
return deduct valid
case Some(consequent):
match doms apply tighten(domains, consequent):
case None:
return deduct valid
case Some(domains'):
return deduct domains(domains')
else:
return deduct reject

As we can see, either the domain is updated, or we find that updating leads to an inconsistency

(in which case the nogood is valid), or we see that some inference cannot be applied because its
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premises are not satisfied. Now we define the outer recursive function: deduct_check_inferences

(Pseudocode 7.17).

Pseudocode 7.16 (Deduction check result, <> CheckDeductResult):

Inductive CheckDeductResult:
case deduced

case failed

Pseudocode 7.17 (Deduction checker with initialized domains, <> deduct_check_infer-
ences):

Recursive deduct check inferences(
facts: List[ProofFact],
domains: Domains
) -> CheckDeductResult:
match facts:
case nil:
return deduct failed
case fact :: facts':
match step inference(fact, domains):
case deduct domains domains':
return deduct check inferences(facts', domains')
case deduct valid:
return deduced
case deduct reject:
return deduct failed

However, deduct_check_inferences can only be initialized with domains. However, in the deduction
step we are verifying a fact. More specifically, we are verifying a nogood, which has no consequent

and is therefore defined only by its premises. This gives check_deduct (Pseudocode 7.18).

Pseudocode 7.18 (Deduction checker, <> check_deduct):

Definition check deduct(
premises: List[BoundAtomic],
steps: List[ProofFact]
) -> CheckDeductResult:
doms := domains from atomics(premises)
doms_tight := tighten doms(doms)
if check domains consistent(doms):
return deduct check inferences(steps, doms tight)
else:

return failed

Before we state the main correctness lemma, which does not actually mention domain maps as these
are an implementation detail and not present in the signature of check_deduct, we state the lemma

that specifies the correctness of deduct_check_inferences. This is also the main inductive proof.
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Lemma 7.19 (Correctness of deduct_check_inferences, <> deduct_check_inferences_cor-
rect): Let v be an assignment, atomics a list of atomic constraints, and D a domain map s.t.
D is valid for atomics. Furthermore, let steps be a list of inference facts. Then, if we have that
v satisfies every inference s € steps and if deduct check inferences(steps, D) = deduced, then

v satisfies the fact with premises equal to atomics and an empty consequent.

We omit the proof as it follows quite easily when performing induction over steps, although it is
still somewhat tedious. We do mention that the case where DeductStep is valid, but the inference
has a non-empty consequence. We must then have that applying the consequent leads to an empty
domain for the consequent variable. To then prove that the assignment satisfies the nogood, we use
the knowledge that if an assignment satisfies a list of atomic constraints, applying these atomics
must result in a consistent domain (since the assignment’s value must be in the domain, so it is non-
empty). This then results in the contradiction we need to verify the nogood.

With the above lemma in hand, we can state the primary lemma that is used by the checker,

which does not care about how domains are actually implemented.

Lemma 7.20 (Correctness of check_deduct, <> check_deduct_correct): Let v be an assign-
ment, atomics a list of atomic constraints, and steps a list of inference facts. Then, if we have
that v satisfies every inference s € steps and if check_deduct(atomics, steps) = deduced, then

v satisfies the fact with premises equal to atomics and an empty consequent.

We omit the proof as it follows immediately from deduct_check_inferences and the properties of the

domain map operations.

7.3. Implementation considerations

7.3.1. Domain maps

The map data structure (<> Maps) comes from the MMaps Rocq community library [54], [55], [56]
and is a modernization of the FMaps file in the Rocq standard library. We expect it will, at some point,
be accepted into the standard library. It was selected because it also contains an implementation
based on red-black trees, which is not the case for FMaps.
7.3.2. Error handling

The original implementation of the deduction step was almost identical to the pseudocode.
However, it was later enhanced with the ability to propagate what exact premise causes the deduction
step to fail. We removed this for the sake of clarity and because this was not an original contribution

of the author.
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8. ALLDIFFERENT CHECKER

We saw in Section 2.2 that, according to Theorem 2.19, there is a necessary condition for all
alldifferent conflicts. Our checker exploits exactly this. We do not actually formalize the fact that this
condition is necessary, as for soundness, we only need that it is a sufficient condition. We developed
this proof in a way that is mostly agnostic to the actual checker implementation. We state and prove

it below.

Lemma 8.1 (Sufficient condition for alldifferent unsatisfiability, <> alldiff_conflict_if_
union_lt_vars): Let variables be a list of variables with no duplicates, doms a mapping of
variables to a materialized domain (a finite set explicitly listing all values in a variable’s domain)
and domain_union a list of integers with no duplicates s.t. Vn,n € domain_union < 3z, x €
variables A n € doms(x). Then, if the length of domain_union is strictly less than the length
of variables, there exists no solution v that satisfies the alldifferent constraint with variables

variables and where v(z) € doms(x) (for all x € variables).

Proof. Our goal is to prove that there exists no solution. That means that if such a solution exists,
there must be a contradiction. Therefore, let v be an assignment that satisfies the alldifferent
constraint defined by variables and such that Va € variables,v(x) € doms(x). It is enough to
show that the length of domain_union is greater than or equal to the length of variables, since
we assumed the opposite, and if this is the case, we can derive a contradiction, which is our goal.

Now, the length of variables is the same as the length of map(v, variables), which is the list
obtained by mapping all variables to their assignment according to variables'. We will call this
mapped list of values vars_values. We can now replace our goal with showing that the length of
domain_union is greater than or equal to the length of vars_values.

We now use the well-known fact that states that if a list has no duplicates and every element
of that list is also in another list, then the length of this list must be smaller than the list it
is contained in. Applied to our goal, all that is then left to show is that vars_values has no
duplicates and is indeed contained in domain_union.

First, we show that vars_values contains no duplicates. For this we use a lemma that states
that when a function f is injective (i.e., when f(x) = f(y), z = y, also known as one-to-one) for all
inputs that are elements of some list L, then if that list has no duplicates, map(f, L) will also have
no duplicates. Applied to our goal of showing vars_values has no duplicates, it remains to show
that v is injective on vars_values. For this,; let © and y be two variables in variables such that
v(x) = v(y). The goal is then to show that z and y are equal. However, since v(zx) # v(y) because
of our assumption that v satisfies the alldifferent constraint defined on variables, we are done
as this conflicts with v(z) = v(y). Furthermore, one of our main assumptions was that variables

had no duplicates.

'This fact holds for any list and function and can be proven by induction. Length is defined recursively in the
natural way.


https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars
https://redirect.tipten.nl/thesis-checker-docs/Checker.AlldifferentCheck.html#alldiff_conflict_if_union_lt_vars

Alldifferent checker

We have now proven the first subgoal, leaving only the requirement that vars_values is
contained in domain_union. Let n be an arbitrary element of vars_values. Then we are done
if n is also in domain_union. First, note that since n is in a mapped list, there must exist = s.t.
x € variables and n = v(x).2. No,w based on our assumptions, n is an element of domain_union
exactly if there exists an z’ such that «’ € variables and n € doms(z’). Let = be this «’. The

first condition we already showed, and since v(x) € doms(z), we must have that n € doms(x). O

We now present the pseudocode for the actual checker, which we prove to be sound with the earlier
lemma. We use the functions from Section 7.1.1 (inference checking results), in particular, infer_
domains (Pseudocode 7.8).

To apply Lemma 8.1, we must compute length of the union of all domains. To do this using
perforated intervals would require taking the min/max of the bounds as well as the intersection of
all holes. However, to simplify our proofs and implementation, we instead choose to first materialize
every perforated interval into a finite set of values and then compute the union. We do this with

materialize_vars_doms (Function Description 8.2).

Function Description 8.2:

(¢>materialize_vars_doms) For each variable in vars, looks up the perforated interval in
domains and, if it is bounded, materializes it as a set of values and adds it to the output list. The
materialization is performed by first constructing a range from the upper to the lower bound
and then remove every hole. An alternative would be to check first if an element in the range is

a hole before adding it to the final set, but we choose the first implementation as it is simpler.

Definition materialize vars doms(vars: List[Id], domains: Domains) -> List[Set[Z]]:

We can now define alldifferent_checker (Pseudocode 8.3). Instead of the length of all variables in
the fact, we use the length of materialized doms since for some variables in the fact the inferred

domain might not be bounded. Furthermore, we use the functions cardinal and union_sets.

Pseudocode 8.3 (Alldifferent inference checker, <> alldifferent_checker):

Definition alldifferent checker(fact: ProofFact, constraint: AlldifferentConstraint) -> bool:
match infer domains(fact):
case None:
return false
case Some(domains, ):
materialized doms := materialize vars doms(variables(constraint), domains)

return cardinal(union sets(materialized doms)) <? length(materialized doms)

Our checker has one significant limitation: to guarantee the fact is verified, the fact may only mention
the actual conflicting variables (i.e., the variables in the tight Hall set), since our checker has no
way to actually determine which variables are the conflicting ones. This would require a significantly

more complex algorithm (see Procedure 2.21). However, the additional parts would not have to be

2This fact holds for any list and function and can again be proven through induction, through the definition of map
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verified for soundness, since once we know which variables we must look at we can apply the above
checker to those variables and use its correctness to prove soundness. We give an example of a fact

our checker cannot verify.

Example 8.4 (Incorrect rejection of valid fact): Consider the domains D(x) = {1,3}, D(y) =
{1,3}, D(z) = {1,3}, D(r) = {2,4}. The alldifferent constraint with variables {z,y, z, 7} would
not have a solution, since if we take the conflicting variables {x,y, z}, we see there are only two
values to choose from. However, if we also include the domain of r into our fact, our checker
would count 4 variables and 4 values, which is perfectly fine, and hence the checker would reject

the fact.

8.1. Implementation considerations
In order to prove soundness using Lemma 8.1 (sufficient condition for alldifferent unsatisfiability),
we must construct variables, domain_union, and doms s.t. they fulfill the lemma’s requirement.
As we designed the lemma to be mostly agnostic to the checker’s implementation details, we cannot
use the result of infer_domains for doms (this implementation-agnostic design is discussed in more
detail in Section 10.1). Furthermore, we also cannot simply use all variables in the domain map,
since the fact might include variables that are not in the constraint. While we will not provide the
full checker soundness proof here, we do give our choice for these variables, as the rest is mostly
straightforward and mechanical. First, let D be the domain map that results from infer domains.
e For variables we take all keys of D and filter out those that are not bounded, after which
we filter out those that are not contained in the constraint.
o For doms we define doms(zx) as the materialized version of D(z) if D(zx) is finite, and an
empty set either if = is not in D or if D(x) is infinite.
e For domain_union we choose exactly the union that the checker also picks, so
union set(materialize vars doms(variables(constraint), domains)).
Note that you could use the implementation of materialize vars_doms (which uses flat _map_option,
which in one iteration performs a map but only includes those who are mapped to Some; for which we
have a lemma that shows it is equivalent to first filtering and then mapping) to choose variables.
While this makes showing that length(materialized doms) is indeed the length of the variables
easier, it must be shown to have no duplicates, which is harder than the double filter approach

we take.



9. CUMULATIVE CHECKER

For our implementation of an inference checker for a cumulative timetable propagator, we follow
our method in Procedure 5.2 (methodology for inference checker development), applying it to the
timetable propagator we describe in Procedure 2.24. This is a more detailed description of Example
5.1. We assume in this section that the terminology of Section 2.5 is known. However, we do not
yet detail the pseudocode or proofs; these are given in Section 9.2 and Section 9.3, respectively. We

conclude this section with a discussion of some implementation considerations in Section 9.4.

9.1. Applying Procedure 5.2
9.1.1. Step 1: Identify propagator conflict checks

Time conflict. We begin by examining the main conflict check of the timetable algorithm. This
checks whether the resource profile exceeds the capacity. If it is exceeded, the resulting conflict
is associated with only a single time ¢: Suppose we have a cumulative constraint ¢ with capacity
capacity(c) and activities x,y, z in that constraint that are mandatory at some time t. Then, if
the usages usage(x) + usage(y) + usage(z) > capacity(c), there is a conflict. Since this conflict is
associated with a single time point, we call this a time conflict.

9.1.2. Step 2: Propagation conflict types

Activity conflict. If we study the propagation performed by timetable propagators (which we
described in Procedure 2.24), we find another conflict type. Consider the same constraint ¢, with the
same condition on the usages. Then the three activities cannot be active at the same time. Consider
now that y and z are mandatory at all times lower(z) <t < upper(z). That means that, no matter
where x is scheduled to start between its upper and lower bounds, the capacity would be exceeded.
In other words, if we try to place = “on top” of the resource profile with the starting time between its
bounds, this will always overflow the capacity somewhere. This implies a conflict. In a more general
case with more activities, there could be different activities mandatory at different times. Activity
conflicts can also be seen as follows: there is an activity conflict if scheduling = at any time within
its bounds would cause a time conflict.

Relation between time and activity conflicts. We note that a time conflict implies an activity
conflict for all involved activities at that time. To see why, note that an activity being mandatory
at a time t means that no matter at what time it is scheduled exactly, it will be active at ¢. But
we know that the other activities are mandatory at ¢ (since we had a time conflict), so no matter
where we schedule the activity, there would be a time conflict at ¢. However, in the case of an activity
conflict, it is not necessary for the capacity to be exceeded at any specific time ¢t. This can be seen
in Example 9.1.

Hints. A reason for differentiating between activity and time conflicts, despite the fact that a
time conflict implies an activity conflict, is that each requires a different type of certificate to check.
A time conflict only requires a time ¢, after which it can check which activities are mandatory at
that time and determine if the capacity is exceeded. However, an activity conflict, given an activity

x, must check for all possible starting times of x that it cannot be started there. These certificates,
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which could be used to serve as hints to the checker, are not used by the checker (except when there
is an activity conflict for the variable in the consequent). This is discussed further in Section 11.6.1.

Propagation example. We have now discussed the two types of conflict. In practice, the type
of reasoning done to determine the existence of an activity conflict is actually the reasoning done for
propagation. Such propagations, when their right-hand side is negated and added to the left-hand
side of the inference, take the form of an activity conflict.

The following example highlights this fact.

Example 9.1 (No time conflict): Consider a constraint C' with variables  and y, capacity(C) =
1 and all usages equal to 1. Let start(y) € [1,10] and duration(y) = 2. Next, let start(z) €
[0,2] and duration(z) = 4. Then, z is mandatory at t = 2 and ¢ = 3. y is nowhere mandatory. y
cannot start at ¢ = 1, since then it would also be active at t = 2, which would conflict with x.
Similarly, it cannot be active at t = 2 or ¢t = 3. Therefore, y > 4 would be a valid propagation. If
we represent this as a fact, this would be [ > 0] A [z < 2] A [y > 1] A [y < 10] — [y > 4]. Then,
the logically equivalent conflict form would be: [z > 0] A [z < 2] Ay > 1] Ay < 3] — L (after
removing the redundant upper bound for y). There is no time conflict, because y is still nowhere
mandatory. However, this is an activity conflict, since for all 1 < ¢ < 3, scheduling y at those

times would cause a conflict.

However, there exist (many) propagations that can be verified by finding a time conflict.

Example 9.2 (Time conflict): Consider a constraint ¢ with variables x and y, capacity(c) =
1 and all usages equal to 1. Let start(y) = 0 and duration(y) = 2. Next, let start(z) € [0, 10]
and duration(z) = 2. Then, x is nowhere mandatory, while y is clearly mandatory at both ¢t =
0 and ¢t = 1. The resulting fact is then [z > 0] A [y = 0] — [z > 2]. To verify this fact, we check
whether the domains x € [0,1] and y = 0 lead to a conflict. We see that x is now mandatory
at t = 1 since upper(z) < 1 < lower(z) + duration(z) (2 < 1 < 2). Consequently, there is a time
conflict at t = 1.

9.1.3. Step 3: Conflict checkers

Now that we know the types of conflicts our checker should find, we design two checkers, one for
each conflict. We first present a high-level overview of the two fundamental function definitions. The
detailed algorithm (including pseudocode) is then presented in Section 9.2.

Time conflict checker. resource_profile(capacity, times, bounded_activities), computes a
resource profile over a given set of times, reporting whether it finds a time conflict at any of the
times. For each ¢, the value it reports is the capacity minus the sum of the usages of all activities
mandatory at that ¢. This is the difference between the constraint capacity and the standard resource
profile as defined in Section 2.5.1 (P(t) in Procedure 2.24, step 2). It works by traversing the given
times and then computing for each activity in bounds whether it is mandatory based on its bounds.

The computation exactly follows the definition given in Section 2.5.1.
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Activity conflict checker. can_schedule_activity_with_profile(activity, profile), takes as
input a resource profile (as computed by resource_profile, so with the remaining capacity instead
of the used capacity) on all times from (for an activity z) from lower(x) (inclusive) to upper(x) +
duration(x) (exclusive) and reports whether it is possible to schedule it at any of those time. Here,
it assumes that the particular activity can be scheduled at times when it is mandatory. If it cannot
find any such time, it reports an activity conflict. It works by mapping the given profile to a list
of booleans, where the boolean represents whether the activity can be active at that time. This is
computed (for an activity x) by checking as the result of P(t) > usage(x) (as in Procedure 2.24,
propagation) for each time, with the value always being true if z is mandatory (since we assume the
case where it cannot be active in that case to be caught by the time conflict checker). This list of
booleans is then traversed to find duration(z) number of true values in a row (so if the duration is
3, the resulting list must be a run of 3 trues). If it can find such a run, we know we can at least
schedule the activity there, and hence there is no conflict.

9.1.4. Step 4: Consequent hint

Since we base the activity conflict check on the propagation performed in the timetable algorithm,
we can use the variable present in the consequent to optimize our checker and run can_schedule_
activity_with_profile for the variable in the consequent first. In fact, if the consequent contains
the variable z, we can also perform the time conflict check (and build a resource profile) only for
times t s.t. Lower(z) <t < upper(x) + duration(x), falling back to the entire constraint horizon in
case we cannot find a conflict.

9.1.5. Step 5: Infer domain and combine

Based on the two functions of step 3 and our use of the consequent as a hint, we now have all the
ingredients to summarize the main steps of the checker.

1. Given a fact, checker uses infer_domains (Pseudocode 7.8) to get the domains of the
activity’s starting times as perforated intervals. From these intervals, the checker extracts
the lower and upper bounds and adds their capacity and usage information. See Section 9.4
for additional details.

2. From infer_domains, the checker also gets whether the fact has a consequent and the variable
of that consequent. If it does, we will first seek to determine a conflict for the activity present
in the consequent. It does this using the resource_profile function applied to the time range
[Lower, upper]. If there is a time conflict in that range, the inference is also valid. Otherwise,
the profile is given to can_schedule_activity_with_profile, which returns false in case there
is a conflict. If there is no conflict, proceed to the next step.

3. If no conflict could be determined on the consequent’s bounds or if there was no consequent,
a resource profile will be constructed that ranges from the minimum start time among all
variables to the maximum start time among all variables. If no conflict can be determined,
it proceeds to the next step.

4. If the previous cases failed, the checker will seek to determine a conflict by checking all
activities in the same way as it checked the one associated with the consequent. Once it

finds one, it will report it. Otherwise, the checker fails to verify the inference.
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In the next section, we give a more complete description of the above algorithm and also include

pseudocode.

9.2. Algorithm description
In step 1 we extract the lower and upper bounds of each activity and collect them together with
their other parameters (resource usage, activity duration). We call this specific type BoundedActivity

(Pseudocode 9.3). The procedures in this section all work on this type.

Pseudocode 9.3 (Type that is used to represent an activity during checking, <> BoundedAc-
tivity):
Record BoundedActivity:

lower: Z

upper: Z

duration: N

usage: N
The function that performs step 1 is infer_cumulative_activity_bounds (Function Description 9.4).

Function Description 9.4:

(¢<>inferred_cumulative_activity_bounds) Uses infer_domains (Pseudocode 7.8) to infer
domains from a fact. It then returns only those activities with bounded start times as
BoundedActivity, including each activity’s parameters from the constraint definition. The option
in the return type is the activity associated with the consequent (if it exists). Note that the
activity in the consequent also exists in the returned list of activities. If the fact itself is
inconsistent, the list will be empty.

Definition infer cumulative activity bounds(
constraint: CumulativeConstraint,
fact: ProofFact

) -> List[BoundedActivity]*Option[BoundedActivity]:

Now, let us define the two functions from the previous section in detail.

resource_profile works as follows. For each element of the range of times it receives, it simply
computes what activities are mandatory and adds up their usages. If this exceeds the capacity,
an error is returned. Otherwise it returns the difference between the capacity and the usage. We
describe this in pseudocode, noting that some optimizations have been removed for the sake of
exposition (see also Section 9.4). The function uses filter_mandatory (Function Description A.10)
and n_sum (Function Description A.11). To ensure it can actually catch time conflicts, we use map_
valid (Function Description A.12), which will return None if any of the resource_profile_t calls

returned None.

Pseudocode 9.5 (Resource profile construction and time conflict checker, <> resource_

profile_t, <> resource_profile):
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Definition resource profile t(

capacity: N,
bounded activities: List[BoundedActivity],
t: Z
) -> Option[N]:
mandatory at t := filter mandatory(t, bounded activities)
mandatory usages := map(usage, mandatory at t)
mandatory usage := n sum(mandatory usages)

if capacity <? mandatory usage:
return None
else:
return Some[capacity - mandatory usage]

Definition resource profile(

capacity: N,

times: list Z,

bounded activities: List[BoundedActivity]
) -> Option[List[N]]:

return map valid(resource profile t(capacity, bounded activities), times)

Next is can_schedule_activity_with_profile (Pseudocode 9.9). It works by first converting the
profile given to a list of bools that correspond to whether the activity can be active at the associated
time. This is done by profile_to_active_list (Pseudocode 9.6). This function assumes the first
profile entry corresponds to the lower bound of the given activity, with each subsequent entry
corresponding to the next timepoint. We show the pseudocode for this function and then illustrate

it with an example.

Pseudocode 9.6 (Function that maps profile to list of booleans that represent when activity

can be active, <> check_can_be_active, <> profile_to_active_list):

Definition check can be active(bounded activity: BoundedActivity, usage_time: N*Z) -> bool:
t := fst(usage time)
usage left := snd(usage time)

return is mandatory(t, bounded activity) or (usage(bounded activity) <= usage left)

Definition profile to active list(
bounded activity: BoundedActivity,
profile: List[N]

) -> List[bool]:

latest_active time := lower(bounded_activity) + length(profile) - 1
profile range := range(lower(bounded activity), latest active time)
profile with times := combine(profile, profile range)

return map(check can be active(bounded activity), profile with times)

Example 9.7 Consider the activities from Example 2.23. We seek to verify the fact written in
Equation 5. The checker sees that the consequent mentions x. The inferred domain when veri-

fying this fact is [0, 4] for z (since we negate [x > 5]). Then profile_to_active_list constructs
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a range (using range (Function Description A.13)) that represents the full window z could
be active, so from ¢ = 0 (earliest timepoint it could be active) to t =4+ 2 —1 =5 (the latest
timepoint it could be active). It assumes it is provided with a profile over the same timepoints.
From Example 2.25 this profile is [2, 0, 1, 0, 0, 2]. The profile and times are then combined using
combine (Function Description A.14), forming [(0, 2), (1, 0), (2, 1), (3, 0), (4, 0), (5, 2)]. For
each of these entries check_can_be active uses is_mandatory (Function Description A.9) and
whether there are enough resources left to determine whether x can be active. This is shown in
Table 4. Being mandatory is enough, since then x would already be included in the computation

of P(t), which is always greater than 0 since otherwise the profile computation would not have

succeeded.
Time | is_mandatory P(¢t) Can be active?
0 false 2 true
1 false 0 false
2 false 1 true
3 false 0 false
4 false 0 false
5 false 2 true

TABLE 4. Computation of an active list for activity « from Example 2.23.

To then determine whether the activity can indeed be scheduled, can_schedule_activity_with_
profile uses has_n_true (Function Description 9.8) to check whether there is a space where the
activity can be scheduled. This requires there to be a run of consecutive true values of length at
least equal to the activity’s duration. We now show the pseudocode, although we omit it for has_n_
true as this is not central to the cumulative checker. We discuss it in more detail in Section 9.4.4 in

the implementation considerations.

Function Description 9.8:
(¢>has_n_true) Returns true if there exist n consecutive true elements in 1.

Definition has n true(n: N, l: List[bool]) -> bool:

Pseudocode 9.9 (Function to check if given a profile, an activity can be scheduled, <> can_
schedule_activity_with_profile):

Definition can schedule activity with profile(bounded activity: BoundedActivity, profile:
List[N]) -> bool:
active list := profile to active list(bounded activity, profile)

return has n true(duration(bounded activity), active list)

We are now ready for the main checker definition. However, we will not use can_schedule_

activity_with_profile and resource_profile directly. Instead, we will define a function
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check_conflict_for_bound (Pseudocode 9.11) that constructs a resource profile only for the times
between the possible active window of an activity. Furthermore, it uses check_time_conflict_horizon
to check for time conflicts over the constraint’s entire horizon in case it cannot find a conflict in the
consequent’s possible active time window. It also uses any_true (Function Description A.15) to check

for conflicts in all activities as a fallback. This is necessary for facts without a consequent.

Function Description 9.10:

(¢<>check_time_conflict_horizon) Computes the minimum lower bound and maximum
upper bound of all activities in bounded activities and then returns true if it can find a time
conflict using resource_profile over the interval between that min and max. This means it
looks for a time conflict over the entire constraint’s horizon.

Definition check time conflict horizon(
capacity: N,
bounded activities: List[BoundedActivities]
) -> bool:

Pseudocode 9.11 (<> check_conflict_for_bound, <> cumulative_checker):

Definition check conflict for bound(
capacity: N,
bounded activities: List[BoundedActivity],
activity: BoundedActivity

) -> bool:
latest active time := lower(activity) + length(profile) - 1
profile times := range(lower(activity), latest active time)

match resource profile(capacity, profile times, bounded activities):
case None:
return true
case Some(profile):

return negb(can schedule activity with profile(activity, profile))

Definition cumulative checker(fact: ProofFact, constraint: CumulativeConstraint) -> bool:
(activity bounds, maybe rhs bound) := infer cumulative activity bounds(constraint, fact)
match maybe rhs bound:

case Some(rhs_bound):
if check conflict for bound(capacity(constraint), activity bounds, rhs bound):
return true

if check time conflict horizon(capacity(constraint), activity bounds):
return true
if any true(check conflict for bound(capacity(constraint), activity bounds),
activity bounds):
return true
else:

return false
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9.3. Proofs
Our goal is to prove soundness of the cumulative checker. That is, given a fact fact and a
cumulative constraint c, if the checker returns true, than any assignment that satisfies ¢ should also
satisfy fact. This is exactly Lemma 7.13 (soundness for generic constraint inference checker), but

then specialized to cumulative. Let us state it formally as a theorem.

Theorem 9.12 (Soundness for cumulative_checker, <> checker_cumulative): Let ¢ be a
cumulative constraint and let fact be a fact s.t. cumulative_checker(fact, c) = true. Then for

all assignments 6 that satisfy ¢, we have that they also satisfy fact.

In order to prove this, we will need a number of other lemmas. We will use the strategy given in the
generic proof of Lemma 7.13. This means we must use Lemma 7.11 (infer_domains specification) to
develop a similar specification for infer_cumulative_activity_bounds.
9.3.1. Using Lemma 7.11 for correctness of infer_cumulative_activity_bounds
infer_cumulative_activity_bounds does not produce a domain map we use directly but instead a
list of BoundedActivity (Pseudocode 9.3). In Lemma 7.11 we were able to relate an assignment with a
domain. Here, we instead relate an assignment with a list of BoundedActivity. We therefore introduce
the notion of a list of BoundedActivity to be walid for a particular assignment and cumulative

constraint. For this we also also use the following type:

Pseudocode 9.13 (Activity, <> Activity):

Record Activity:
start: Var
duration: N
usage: N

To grasp why we define the validity as we do below, we must first understand a feature of the CP
proof checker. Namely, to make it possible to parse all FlatZinc [27] files, which is the format used
in practice by the checker to store problem models, it is possible for the above Var type to not refer
to a named variable. Instead, it can also be just an integer constant. What this means is that it is
possible for there to be multiple identical activities, since there is no variable name to distinguish
them. Furthermore, given an activity x where start is actually a constant and an assignment 6,
O(x) will just return the underlying constant. We discuss this in more detail in Section 9.4.5 (in the
implementation considerations).

We now give the validity definition.

Definition 9.14 (Validity of BoundedActivity list, <> valid_bounds): Given an assignment 6, a
list {5 of BoundedActivity and a list [, of Activity are valid according to the following inductive
definition:

o They are valid if {5 is empty and [, is empty.
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o They are valid if there are 5,1,

b of type BoundedActivity, a of type Activity s.t. the
following holds:

» U5, 1., are valid for 0

»ip=0b:ulp

. 1,

lower(b) < f(start(a)) < upper(d)

—a- 1
=a:l]

v

» duration(b) = duration(a)
» usage(b) = usage(a)

o They are valid if there are I, a of type Activity s.t. the following holds:
» g, U, are valid for 0

rl.=axl]

From this definition, we see that a valid triple (6,1z,1.) can be constructed by taking a constraint and
a domain that we now is consistent with 0, taking the constraint’s list of activities to be [, and then
get the lower and upper bounds from the domain for each activity to construct a BoundedActivity,
and then let [5 be all these BoundedActivity (in the same order as [.). Note that it is also possible
to skip an activity (the third case in the definition), which is useful if we do not have a bounded
domain for that activity’s starting time.

infer_cumulative_activity_bounds does exactly this, which gives the following lemma. We write

it in the form of Lemma 7.11 (but as we do not need the 2. — 1. direction, we skip that).

Lemma 9.15 (infer_cumulative_activity_bounds specification, <> inferred_cumulative_
activity_bounds_spec): Let fact be a fact and consider a cumulative constraint c. Let
(bounded_acts, _) = infer_cumulative_activity_bounds(c, fact). Then for all assignments 6

s.t. bounded_acts and activities(c) are not valid for 6, we have that 6 satisfies fact.

Proof sketch. We only sketch the proof, as it relies heavily on the exact implementation (see
Section 9.4).

Let 0 be an assignment as required. infer_cumulative_activity_bounds first calls infer_domains
on the fact. If it returns None, then bounded_acts is empty. Then, by Definition 9.14 we should have
that bounded_acts and activities(c) are trivially valid for 6. But since one of our assumptions is
that this is not not the case, we have a contradiction and are done in this case.

Otherwise, we have that infer_domains returns a domain D. We can then use Lemma 7.11 to
rewrite our goal to showing that € is not consistent with respect to D.

We show this by assuming 6 is consistent with D and deriving a contradiction. Note that if
0 is consistent with D and bounded_acts is constructed as we described above (by processing
activities(c) and determining the bounds from D), then bounded_acts and activities(c) are valid

for 6. But this contradicts our assumption that they are not valid. O

Using Lemma 9.15 while trying to prove Theorem 9.12, it is possible to reduce the goal to showing

that bounded_acts and activities(c) are not valid for an assignment 6 that satisfies the cumulative
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constraint c. This is equivalent to showing that assuming they are valid will lead to a contradiction.
Since our checker only returns true when either check_conflict_for_bound or check_time_conflict_
horizon return true, our next goal will be to show that if they return true, then we will be able to
derive a contradiction using our assumptions. We study each case separately.

9.3.2. Contradiction when check_conflict_for_bound = true

We will be able to find a contradiction by proving the following lemma.

Lemma 9.16 (No activity conflict for solution, <> no_bound_conflict_for_solution): Let
0 be an assignment satisfying the cumulative constraint ¢, let bounded_acts be s.t. it is valid
for activities(c) and 6. Then, for any b € bounded_acts, we have that check_conflict_for_

bound(capacity(c), bounded acts, b) = false.

From Pseudocode 9.11 we see that check_conflict_for_bound relies on resource_profile and can_
schedule_activity_with_profile. We will have to prove that there are no overflows in an assignment
that satisfies a cumulative constraint and that any activity in the constraint can be scheduled. For

this first fact we will need one additional intermediate lemma.

Lemma 9.17 (Mandatory usage less than or equal to true usage, <> bounds_mandatory_t_
le_usage): Let 0, acts and bounded_acts be s.t. bounded_acts and acts are valid for § and
let t be an arbitrary timepoint. Then, let mandatory usage be exactly as defined in resource_
profile_t for inputs bounded_acts and ¢ (capacity is not needed to compute mandatory_usage).
Then, we have that:

mandatory usage < Z usage(z),
xeMy(t)

where Mj(t) is a subset of acts s.t. each activity in My(t) is active at ¢ according to 6.

Proof. Since acts and bounded_acts are valid for 6, we have for each b € bounded_acts that
there is precisely one matching activity a € acts s.t. 6(z) falls within the bounds of b and has the
same usage. Next, mandatory usage is the sum only over each mandatory activity. But for each
mandatory activity b, its matching activity will certainly be active. Hence, its matching activity
will be in M(t) and therefore each element of the sum on the left-hand side also exists on the

right-hand side. O
We can now prove that a solution to cumulative will have no overflows.

Lemma 9.18 (No overflow for solution, <>no_profile_overflow_for_solution): Let 0
be an assignment that satisfies a cumulative constraint ¢ and let bounded_acts be a list
of BoundedActivity. Furthermore, assume bounded_acts and activities(c) are valid for 6.
Then for any list of timepoints times, we have that resource_profile(capacity(c)), times,

bounded_acts) does not return None.
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Proof. We assume it returns None and derive a contradiction. If it returns None, then according to
how map_valid works there must exist some ¢t € times such that resource_profile_t(capacity(c),
bounded acts, t) returns None. Let mandatory usage be as defined in resource_profile_t for the
inputs capacity(c), bounded_acts, t. Then we must have that capacity(c) < mandatory usage.

Now, since 6 satisfies ¢, we must have that ) usage(z) < capacity(c), where M,(t) is

xeMy(t)
the set of activities in ¢ active at ¢ according to 6. If we now apply Lemma 9.17 we see that

mandatory usage <>  _ " usage(z). From this we can then derive capacity(c) < capacity(c),

o(t)
which is a contradiction. O

Before we state the precise lemma for can_schedule_activity_with_profile needed to prove Lemma

9.16 (the main goal of this subsection), we will need to define what a wvalid profile is.

Definition 9.19 (Profile validity, <> valid_profile): Let C' be some capacity and bounded_
acts be a list of BoundedActivity. We call the profile (which is a list of N) profile valid on

toin tO 1 if the following holds:

max’
o Its length is equal to ¢, — ;. + 1 (or it is empty if ¢, >t ..)

o Foreveryts.t.t,, <t<t,.,thenthelement (such that n =¢—t¢,,) of the list should

equal the result of resource_profile_t(C,bounded_acts,t) and this should not be a

max’ min

conflict.

We now state the lemma.

Lemma 9.20 (Can schedule for solution, <> can_schedule_activity_with_profile_valid):
Let 6 be an assignment that satisfies a cumulative constraint ¢ and let bounded_acts be a
list of BoundedActivity. Furthermore, assume bounded_acts and activities(c) are valid for
6. Then, for any bound b € bounded_acts and profile that is valid on [Lower(b), upper(b) +
duration(b) — 1] for capacity(c) and bounded_acts, we must have that can_schedule_activity_

with_profile(b, profile) = true.

We cannot prove this before some additional theory, which we will discuss in the next subsection
(Section 9.3.3). However, we are now ready to present the proof of Lemma 9.16. We do note we skip
some details related in particular to how range is implemented and how we define the proofs for it,

but we believe this is unimportant for this presentation.

Proof of Lemma 9.16. Let b be as in the statement. Let latest active time and profile times
be as defined in Pseudocode 9.11 for inputs capacity(c), bounded acts, b.

Since the conditions of Lemma 9.18 are satisfied, we have that resource_profile(capacity(c),
profile times, bounded acts) cannot return None.

Instead, let profile be the profile it returns. All we need to do is show that profile is a valid
profile to apply Lemma 9.20, which since we negate the result of can_schedule_activity_with_

profile gives us what we need.
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From how profile times is defined using range, we see immediately that profile indeed
has the correct length. Furthermore, the second property is also satisfied since resource_profile
simply maps profile_times (which has as its nth element the value exactly what is required) using
resource_profile_t. We also know that none of them are a conflict because of how map_valid

works, as resource_profile did not return None. O

We will now develop what is necessary to prove Lemma 9.20. After that, only a lemma about check
time_conflict_horizon remains before we can prove the main soundness theorem.
9.3.3. Proof of Lemma 9.20

can_schedule_activity_with_profile (Pseudocode 9.9) first constructs an active list using
profile_to_active_list and then calls has_n_true. We will not discuss in detail how the latter works
(and how we prove its correctness) as it is not essential for understanding cumulative. We mention

some more details in Section 9.4.4.

Proof of Lemma 9.20. Let b and profile be as required. We must show that has_n_
true(duration(b), active list) returns true, where active list equals profile_to_active_
list(b, profile).

This is the case when there exists some (zero-indexed) index k in active_list s.t. the “run”
starting at the kth element of active list at least has length duration(b). A run is a series of con-
secutive true values starting at some index. Furthermore, since bounded_acts and activities(c)
are valid for 6, there exists an a € activities(c) that matches b.

Now let k& be 6(start(a)) — Lower(b). Remember, since a matches b, we have that Lower(b) <
O(start(a)) < upper(b). Now, the run starting at k will be of length duration(b) if we have that
for all ¢ s.t. k < i < duration(b), the ith element of active list is true.

Consider that profile is a valid profile starting at Lower(d). Then the nth element of profile
corresponds to resource_profile_t(capacity(c), bounded acts, n+lower(b)). Let us write this
as Bounged_acts (1 + Lower(b)) If we look at the elements of active list, by the properties of range
and combine we see that its nth element is check_can_be_active(b, (F,,ndeq acts(? + Lower (b)), n +
Lower(b))). We see that nth element is then true if either b is mandatory at n + Lower(b) or if
usage(b) < B,

If we now consider n s.t. kK <n < duration(b), then start(a) <n + lower(b) < start(a) +

ounded_acts (T + Lower(D)).
duration(b). Therefore, we are done if for all ¢ s.t. start(a) <t < start(a) + duration(b), we have
that b is mandatory at ¢ or if usage(b) < F,o ngeq aces(t))-

Consider an arbitrary such ¢. If b is mandatory at ¢, we are done. Otherwise, we know that b
is not mandatory at ¢ and hence the usage of a is not included in the mandatory usage used to
calculate B, qeq acts(t) (see Pseudocode 9.5). However, a is active at ¢ according to 6, since it
falls within its active period. Since, 6 satisfies ¢, the total usage at ¢ cannot exceed the capacity of
c. Hence B, pgeq gcts(t) must be at least usage(b), since otherwise the capacity would be exceeded.

O

9.3.4. Contradiction when check_time_conflict_horizon = true
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We will not precisely state or prove the lemma that a contradiction occurs in this case. However,
this is quite clear, since it returns true if it finds a time where resource_profile_t returns None.
However, the list of timepoints that includes all timepoints in the constraint’s horizon satisfies the
assumptions of Lemma 9.18. But according to that lemma, it cannot return None. Therefore, there
is a contradiction.

9.3.5. Proof of Theorem 9.12.

We can now prove the soundness theorem.

Proof of Theorem 9.12. Let ¢ be a cumulative constraint and fact a fact. Furthermore, let
cumulative_checker(fact, c) = true and let # be an assignment that satisfies c. We must show
that 0 satisfies fact.

Let bounded_acts, maybe_prop be the result of infer_cumulative_activity_bounds(c, fact).

We apply Lemma 9.15 to reduce our goal to showing that bounded_acts and activities(c)
are not valid for 6. To do that, we assume they are valid and derive a contradiction.

First, we show that the checker only returns true in two cases:

a) There exists a bound b € bounded_acts s.t. check_conflict_for_bound(capacity(c),
bounded acts, b) = true

b) check_time_conflict_horizon(capacity(c), bounded acts) = true

If we look at every place the checker returns true, in the first case maybe_prop is Some. Then clearly
case a) applies. We omit the proof that maybe_prop € bounded_acts, as it is not interesting and
relies only on a number of data structure operations. In the second case, clearly case b) applies.
In the final case, by the definition of any_true case a) clearly applies.

All that remains to be done is to derive a contradiction in case a) and case b).

In case a) we apply Lemma 9.16 and see that check_conflict_for_bound(capacity(c),
bounded_acts, b) = false, which contradicts our assumption.

In case b) we follow the argument in Section 9.3.4 to derive a contradiction. O

9.4. Implementation considerations
9.4.1. Control flow and errors
The pseudocode in the previous sections is written in a style that assumes the existence of more
explicit control flow than exists in the language that the checker is implemented in (Rocq). This is
done to aid readability. In truth, Rocq is a purely functional language and does not have the concept
of an early return or the concept of an error. Instead, the fact that a function returned an error is
inferred through different means. We highlight two examples.

1. The type signature of resource_profile in reality is simply list N. Instead, an error case is
distinguished from a non-error case by setting the list to nil. This is primarily to allow the
use of map_valid.

2. resource_profile_t actual return type is option N, where the None case is the error.

9.4.2. Reversed range input

65



Cumulative checker

We explicitly did not write an actual invocation of resource_profile in the pseudocode, as the
actual implementation expects a range of times that is in decreasing order, as opposed to the final
profile, which is in increasing order. This is because map_valid reverses its input for performance
reasons (as this allows writing it as a tail-recursive function).

9.4.3. Combined steps

A number of values are computed in a single iteration, as opposed to multiple ones, again for
performance reasons. An example that actually has implications for the proof is the computation of
the active list in profile_to_active_list. Instead of building another range, then combining, and
then mapping, a function called z_map is used that computes the time inputs as it recurses.

9.4.4. Run of consecutive values

For the proof of Lemma 9.16 we simplified many details. In fact, the entire theory that leads to
the fact that a run of a certain length n is implied by the existence of an index k s.t. for all ¢ s.t.
k <i < k+ n is nearly 350 lines of Rocq. We list a number of interesting implementation details.

The recursive structure of has_n_true makes proofs hard as it works with a current run length
that resets whenever it hits zero. In a way, this non-monotonicity makes a standard inductive proof
for its properties difficult. Instead we define a much more inefficient function max_runs that simply
works by computing the maximum of the runs starting at every index and relate it to has n true.
The maximum never resets as it recurses, making proofs easier.

In the previous subsection we mention the function z map that computes the time inputs as it
recurses on some list. This makes determining what the nth value of its output is easier, which helps
reducing the problem of showing that the run of consecutive values is a particular length to the
statement that every timepoint between some bounds obeys the required condition.

9.4.5. Variables and constants

As discussed, the variable type used in the CP proof checker is either an identifier, or a constant
integer value. The reason for this mostly comes from practical concerns, as the CP proof checker
must support reading FlatZinc files [27].

This allows two different activities to actually look identical, since identical parameters and start-
ing time are very possible. This means that after processing activities into a list of BoundedActivity,
we cannot “go back” to the list of activities in the constraint and find which activity gave rise to
the BoundedActivity, since more than one might be valid. Furthermore, we cannot easily use a map
data structure as we have no natural key we can choose.

There are ways around this, by generating unique names also for the constant activities. However,
this would necessarily incur some runtime cost. Instead, by defining validity (Definition 9.14) in a
way that strongly follows exactly how activities are processed, we can find the matching activity
when we need it in proofs.

We have mostly omitted the details of finding this matching activity, but it works roughly as
follows:

1. The goal is given a BoundedActivity b € bounded_acts, s.t. bounded_acts is valid with

respect to a list of activities acts, to find the a € acts that matches b.
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2. First, since b € bounded_acts, we can split bounded_acts into two lists, with b somewhere
in the middle. We can then prove that we can similarly split acts into two lists, with the
matching a in the middle as well.

3. To show this, use induction over acts and look at the possible cases how bounded_acts

could have been constructed. In the end this will require there to be some matching a.
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10. ROoCQ FINDINGS

During the implementation and formal verification of a constraint programming unsatisfiability
proof checker in Rocq, we noticed a number of things that we believe are useful to discuss and that we
have not seen discussed elsewhere. While our discussion is specific to Rocq, we believe these findings
also apply to formal verification in general, although some proof assistants/interactive theorem
provers handle some things better than others (although we have not investigated this in detail).
First of all, we found that there are two main categories of proof segment (where a proof segment
is defined as some operation consisting of one or more proof lines): data structure manipulation
and conceptual. Full proofs often interleave these two categories. The next section goes into detail
on this. Closely related is the fact that developing the right specification, so the right definitions
of the intended behavior of implementations, is much harder than actually proving them. We also
discuss this in a separate section below. We also discuss some more details related to Rocq and proof
assistants in Section 11.3 as part of the Discussion.

Note: We use snippets of Rocq code more liberally in this section than in others and therefore

assume some familiarity with Rocq.

10.1. Two categories of proof

The first type of segment is what we describe as a data structure manipulation segment, or
implementation-coupled manipulation segment. Proof segments of this type are very tightly coupled
to the implementation and less so to the underlying concepts. The work is often tedious, but at the
same time mechanical. Furthermore, it is very hard to read proof segments of this category. In fact,
we found it nearly always takes less time to simply redo the proof than to adapt it to a small change
in the implementation. This category also makes up the vast majority of most proofs, when looking
at the number of lines.

The second type of segment is what we describe as a conceptual segment. These proofs are often
shorter, but (usually) much less obvious. They take more time to develop, but are less sensitive to
changing small details. Therefore, these proofs are more valuable to preserve when refactoring. Often,
they are also more readable than the other type of segment.

10.1.1. Example: alldifferent checker

To test this hypothesis, we developed our alldifferent checker in such a way that each individual
lemma consists mostly of one type of proof segment. This makes the core, conceptual proofs more
implementation-agnostic, as was briefly mentioned in Section 8.1.

The main conceptual proof, which is Lemma 8.1, makes no mention of our implementation. First,
we state the important definitions in Rocq. First, some shorthand definitions, where sint.t is an

MSet with elements of type Z, using the MSetRBT set implementation (both from the standard library).

Snippet 10.1

Definition domains := string -> sint.t.

Definition assignment consistent with domains (doms : domains) (variables : list string)
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(assignment : string -> Z) : Prop :=
forall x, In x variables -> sint.In (assignment x) (doms Xx).

Then, the formal statements of an alldifferent constraint and when we consider an alldifferent

constraint to be satisfiable given some variable domains.

Snippet 10.2

Definition Alldifferent 1 (variables : list string) (assignment : string -> Z) : Prop :=
forall x vy,
In x variables ->
In y variables ->

assignment x <> assignment y.

Snippet 10.3

Definition AllDifferent satisfiable (doms : domains) (variables : list string) :=
exists assignment, assignment consistent with domains doms variables assignment

/\
Alldifferent_1 variables assignment.

Finally, the statement of Lemma 8.1 in Rocq.

Snippet 10.4

Lemma alldiff unsatisfiable condition (doms : domains) (variables : list string)
(domain _union : list Z)
NoDup domain union
->
NoDup variables
->
(forall n, In n domain union <-> (exists x, In x variables /\ sint.In n (doms x)))
->
List.length domain union < List.length variables
->

~ AllDifferent satisfiable doms variables.

The proof of Snippet 10.4 is 21 lines and follows the proof as we described it in Lemma 8.1 almost
exactly. We use only a few lemmas, all from the Rocq standard library. Although some details are
specific to the fact we use lists without duplicates to model sets, we do not need to actually use the
definition of a list, only some high-level facts. We claim that the proof therefore consists mostly of
conceptual segments.

Then, the implementation of our checker then takes 35 lines (7 lines if we exclude the implementa-
tion of materializing perforated intervals as lists of elements). The soundness proof is then a staggering
104 lines (including 7 lines of comments), even though it mentions nothing new conceptually. This

is nearly 5 times the number of lines in the conceptual proof. We will not repeat the proof here, but
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detail the different segments. For more information on how we actually instantiated Lemma 8.1, see

Section 8.1.

1.

We introduce variables and rewrite the proof so we have the validity of the domain map in
our hypothesis (using the correctness lemma of infer_domains, see Section 7.1.1). (304-310;

6 lines)

. We define our choices of doms and variables so that we can later apply the lemma in Snippet

10.4. (311-315)

. We show that our choice of doms and variables satisfies

assignment_consistent_with_domains (Snippet 10.1) (316-327)

. The definition of alldifferent from Snippet 10.2 does not match the specification of alldifferent

in our checker, because for performance reasons we do not store variables in a list, and
another implementation detail we do not mention here. Therefore, we must show that it
is enough to show that the definition of not being satisfied (~ AllDifferent satisfiable,
Snippet 10.3) by our chosen variables is enough to show that the checker’s conception of
alldifferent is not satisfied. This also does the job of relating it to our hypothesis, stating
the validity of our domain map from the first step in the proof. (328-357)

. We then introduce our instantation of domain union, finally allowing us to apply

alldiff_unsatisfiable_condition (Snippet 10.4) (358-360).

. We dispatch the conditions that our instantiations of domain union and variables contain

no duplicates. This is easy as they are either the elements of an MSet or the filtered keys of
an MMap (see Section 7.3.1 for what MMap is and how we use it). (361-362)

The most tedious part now follows: showing that the condition forall n, In n domain union
<-> (exists x, In x variables /\ sint.In n (doms x)) from Snippet 10.4 holds for our
instantiations of variables, doms, and domain_union. This relies heavily on a few other facts
(also consisting of dozens of lines of proof) of how we materialized perforated intervals in a
(relatively) efficient way as lists of elements, while remembering that we only materialized

them for the variables we chose. (363-396)

. Finally, we reason over the fact that our checker returning true indicates that indeed the

length of our chosen domain union is strictly less than the length of our chosen variables.
This requires yet again going into the implementation of how we materialized domains.

(397-417)

We claim that all the listed proof segments save the actual application of alldiff unsatisfiable

condition in step 5 are data structure manipulation segments.

We do not have a solution for this situation (we are unsure if we can even justify calling it a

“problem”) as we are not experts in Rocq. See Section 11.3.1 for a discussion of proof automation,

which we had initially hoped would be able to prevent the dominance of implementation-specific

lines vs conceptual lines. Also see the next section.
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10.2. Choosing the right specification

We find that choosing how to describe the behavior of a particular function, or what parts to
describe and which parts to ignore, is very important to achieving strong productivity in a proof
assistant such as Rocq. Sometimes, the right choice is to actually not write a specification at all,
but to simply take the actual function definition as the canonical specification and prove that other
functions are equivalent to it.

An example of the latter case is our implementation of the range function. Since for a given lower
and upper bound, there is only one possible range, we can declare any definition that is easy to work
with in proofs as the canonical implementation. Since it is an actual definition, many properties can
easily be proven when needed and do not always require additional lemma’s.

As we iterated on the proofs of the cumulative checker to improve their structure and readability
and bring them closer to pen-and-paper proofs, we saw that there is great freedom in choosing the
right specification and this significantly impacted the size of the proofs, in one instance going from
1200 to 900 lines of Rocq for the main cumulative checker.

Even though the findings in this subsection are mostly anecdotal, we report them as they serve

as the starting point of a more systematic investigation.
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11. DISCUSSION

We first summarize and interpret each of our contributions separately. For each contribution, we
also discuss the implications and their specific limitations. We organize them as follows:

e In Section 11.1 we discuss our contributions related to propagator inferences, namely our
inference checker methodology and our development of inference checkers for timetable
cumulative and alldifferent.

e In Section 11.2 we discuss our contributions related to perforated intervals. We also discuss
our contributions related to the deduction step.

e In Section 11.3 we discuss our findings related to using Rocq, which we expect to also
generalize to other interactive theorem provers.

Next, we collect and briefly discuss various minor contributions to the CP proof checker in
Section 11.4, mostly in the form of building blocks and utilities that can be reused for future
extensions of the checker. We discuss general limitations that apply to our results more broadly in

Section 11.5, followed by a discussion on future work in Section 11.6.

11.1. Propagator inference methodology and propagator inference checkers

‘We have demonstrated the feasibility of formally verified propagator inference check-
ers through the successful development of an alldifferent checker (for minimal inferences; Section 8)
and a cumulative checker (for timetable reasoning; Section 9).

The formally verified alldifferent checker is the first of its kind, while a cumulative checker has
previously been demonstrated [23]. However, our cumulative checker is designed for a fully formalized
proof system, and we believe that it describes more precisely the class of inferences it expects to
check. We could not verify whether the checker by Gange et al. [23] also verifies every timetable
inference that we are able to verify (we believe our checker can verify all of them).

If we compare our work to other approaches for formally verified CP, we see they either use a
generic algorithm that is not constraint specific [6], or encode models and reasoning in another,
simpler language (SAT or PB) [13], [14].

However, our goal was not only to demonstrate the feasibility of this novel approach but to
determine how we can develop propagator inference checkers. Our ambition was to make it possible
for future work to develop new checkers in a mostly mechanical way. It should be possible to derive
them from the propagation algorithm with formal correctness proofs that are no more difficult than
their corresponding pen-and-paper proofs.

We believe our propagator inference methodology (Section 5) does not fully achieve this
goal, but does provide an important first step that increases the understanding of these
checkers. This is mainly because of the introduction of conflict types (Section 5.1), with two clear
examples in the cumulative checker: time conflicts and activity conflicts (Section 9.1).

Furthermore, we see that there exists a class of constraints and propagators that are simple enough
that they do not even need this methodology. In the case of alldifferent, we see that Hall’s theorem

(Theorem 2.19) provides all we need. This implies that developing checkers for other constraints
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that are similarly deeply understood should be straightforward. It also provides a clear motivation
to study the literature and find analogs of Hall’s theorem.
11.1.1. Limitations

We now discuss some limitations. First of all, we have only tested and developed the methodology
based on a single constraint (cumulative) and propagator (timetable). The linear inequality checker
and alldifferent checker are too simple for the methodology to apply.

Another major limitation of our methodology is that it provides no guidance on the formal
verification part of implementing a propagator inference checker. While this was an explicit goal,
we have not found any generally applicable concepts that can make formally verifying the conflict
checkers any easier. Our overall results do contribute to this (through perforated intervals and
potentially re-using code from the cumulative checker for other constraints related to activities). One
thing we observe is that the major difficulty comes from implementation-coupled proof segments (see
Section 10.1), which we believe is hard to generalize (as by definition it relies heavily on the specific

implementation, which will always differ between constraints).

11.2. Perforated intervals

One of our most important and most practical contributions is the development of perforated
intervals (Section 6): their formalized theory and their formally verified implementation, including
check and update operations. To our knowledge, a holes+interval-based domain representation, while
not new, has not been thoroughly studied on its own merits before, nor do we know of any study
about the concept of tightness. Furthermore, while the theory of perforated intervals is simple, this
is actually a large benefit when it comes to formal verification, as simple concepts are often more
easily formally verified.

The success and generalizability of perforated intervals were unexpected, as we had no explicit
goal related to it: only an idea that we wished to develop building blocks that could be reused by
multiple inference checkers. All of our checkers rely on perforated intervals, and due to their use at
the heart of the checker (through the deduction step), they are an integral part of the proof checker
implementation and its performance characteristics.

Preliminary experimental results from Sidorov et al. [15] indicate they are performant enough
in practice, although this requires further study. If this is confirmed, we hypothesize this can be
primarily attributed to the efficient implementation of red-black trees in Rocq for our sets and maps
by Appel et al. [55].

In the next section, we highlight the usages of perforated intervals in our work and the overall
checker. After that, we discuss the relevance of additional results not strictly necessary for the
checker’s soundness proof. We follow that by discussing alternatives to perforated intervals. Finally,
we discuss the deduction step, as its implementation relies primarily on perforated intervals.
11.2.1. Usages

Perforated intervals are used throughout the checker, primarily at points where integer domain

reasoning, bounds reasoning, and atomic constraints intersect. We list the following;:
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1. In the cumulative checker (Section 9), they are used to extract the lower and upper bounds
for each activity from a fact (see also Section 7.1.1).

2. (Not our contribution) In the nogood equivalency checker, the two nogoods that are to be
checked are converted into domains, after which each domain is checked for equivalence
(currently they are required to have exactly the same holes, but this requirement could be
relaxed as holes outside the bounds do not have to be considered).

3. In the alldifferent checker (Section 8), they are used to first aggregate the domains of all
variables in the fact. After this, the perforated intervals that are bounded on both sides
are materialized: they are converted into element lists. This eases the computation (and
subsequent formal verification) of the union of domains. In the future, materialization could
be avoided by implementing a union operation over perforated intervals.

4. Critically, in the deduction checker (Section 7), they are used to track the domains of each
variable as inferences are checked and applied in order. As perforated intervals support
efficient check functions (Section 6.1) and update functions (Section 6.2), all operations are
logarithmic. If any variable has an empty domain at the end of the deduction step, we know
the deduction is valid.

We expect all future propagator inference checkers to also use perforated intervals, as they allow the
inference of rich domain information from facts, which are represented as lists of atomic constraints.
We spent much of our time on exactly this problem, which means that future checkers can simply
reuse this infrastructure.

The correctness specification (see Section 7.1.1) of this procedure is also phrased in such a way and
comes with a number of additional lemmas that simplify the proof of inference checkers. They work by
transforming the soundness proof from a proof about fact validity into a proof about unsatisfiability
under a domain. It thereby also performs the right-hand side negation we saw was useful already in
Procedure 2.18 (propagator verification strategy).

11.2.2. Completeness

We provide additional proofs that are not necessary for proving the soundness of the proof checker:
namely, the fact that the checker functions (Section 6.1) decide their respective properties when the
domain is tight is not necessary for this. We only need the backwards direction of Lemma 6.11 (check
decides atomic holds) and Lemma 6.10 (check decides consistency). However, the forward direction
provides strong guarantees that our implementation will not mistakenly reject valid deductions or
fail to notice that the premises of an inference are already contradictory. We fully prove the second
lemma, but we have two unresolved cases for Lemma 6.11. The difficult case has been proven, and
the other case is symmetric, but was not proven due to time constraints.

Furthermore, while we do use the tightening function to ensure that we do not reject valid
deductions, for soundness, we only need that tightening does not change the logical domain (Lemma
6.19). However, we actually prove that the tightening procedure causes the domain to become tight.
This is actually rather involved, but critical if we want to indeed ensure we do not unnecessarily

reject deductions or inferences.
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Other than mistaken rejections, these proofs are also important theoretical contributions, as they
are they show the power of perforated intervals by proving that the simple check functions really are
enough to determine the properties we care about.

11.2.3. Alternatives

Our domain representation based on perforated intervals is rather non-standard. Indeed, we know
of no special term to refer to this representation (perhaps due to its simplicity) and have used the
term perforated interval in this work. Instead, in CP applications, common domain representations
include range sequences, just an interval, or fully enumerated domains (the latter can be implemented
in numerous ways, such as with a bitvector). For example, in the Chuffed [57] constraint solver,
integers are either fully enumerated or represented as a single interval. The Gecode [58] constraint
solver uses range sequences. A newer representation is that of sparse sets [59], used e.g. in MiniCP
[60]. Gap interval trees [61] also exist. Furthermore, there has been formalization work of other
representations, see [62] for lists of intervals and [63] for sparse sets.

Some of these are clearly not feasible to fully replace the perforated interval, because they do
not support infinite domains (e.g., enumerated domains). However, they could be used without issue
to replace the way we implement the set of holes, which relies only on the features of the MSet-
interface in Rocq. Therefore, any implementation that satisfies this interface could serve as a drop-in
replacement for our choice of an implementation based on red-black trees in the standard library.

Furthermore, we would not need perforated intervals (or at least we would not need the majority of
the theory, check, and update operations) if the proof system had a richer view of domains embedded
in the format instead of a list of atomic constraints. Furthermore, additional requirements such
as sorting the facts by variable or in other ways could also allow replacing (at least part of) the
perforated interval implementation. However, this has other drawbacks as it increases the complexity
for solvers. This could be solved by moving much of the work being done by perforated intervals into
the parsing stage.

11.2.4. Deduction step

We believe the novelty of our contribution to developing a formally verified implementation of
the deduction step is primarily contained in the contribution of perforated intervals and the (more
straightforward) development of domain maps on top of them. If we exclude those two contributions,
the soundness proof of the deduction step follows mostly from the design of the proof system. We
think this is a testament to the proof system. We wish to highlight the fact that the use of domain
maps in the implementation can be fully factored out from the soundness proof, compare Lemma
7.19 to Lemma 7.20. This means that the main loop of the checker that combines all the individual
proof step checkers does not need to concern itself with domain maps or perforated intervals.

When it comes to performance, the deduction step, as implemented, does not make any unnec-
essary traversals or any unnecessary accesses. We expect potential improvements to be found only

in the use of the domain map and domain implementation.

11.3. Rocq findings
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This section discusses results related to interactive theorem provers/proof assistants such as Rocq.
In particular, we discuss Section 10. We believe that much of what we find in that section is already
known among the experts of the formal methods and programming language communities. However,
as these findings were highly non-obvious to us and they are related to an important trade-off we
discuss further in Table 5, we mark them as important. Initially, based on the reading we did on
developing large projects in Rocq (see e.g. [64]), we thought that automation was critical and very
helpful to developing proofs. However, this is not what we experienced. We discuss this in the next
subsection.

11.3.1. Proof automation

As discussed in Section 10.1, a large part of our proofs consists of implementation-coupled proof
segments. This was contrary to our (naive) expectation that the majority of proof lines would be
dedicated to conceptual proofs. This was mostly because we hoped automation could shorten the
non-conceptual parts. However, we found that developing and understanding automation took more
time than simply brute-forcing the proof by hand. Especially once one gets more experience in writing
the implementation-coupled proof segments, the cost of switching to automation feels higher. The
author was introduced to Rocq through a course structured around the Software Foundations series
by Benjamin Pierce [65], [66]. Software Foundations provides an excellent introduction to writing
proofs by hand and cultivates deep understanding. However, while automation is extensively covered,
it is mostly as an afterthought. Therefore, the author only began considering automation after he
had become quite familiar with Rocq. This might have shaped our difficulties with automation.

Consequently, we present no major results that make use of automation other than predefined
tactics such as lia (which allow solving any goal involving linear arithmetic). Two small exceptions

are our development of Z., (although this is mostly a wrapper around lia) and our use of

ext
automation in proving lemmas related to tightening holes for both lower and upper bounds (again,
mostly as a wrapper around lia). We expect Rocq experts to make better use of automation to
potentially simplify many of our implementation-coupled proofs. However, we remain skeptical that
this will bring huge benefits to future developments, as new checkers will use fundamentally different
reasoning.
11.3.2. Limitations

Our findings working with Rocq are mostly based on anecdotal evidence. Our original research
questions were mainly concerned with the algorithmic side of developing checkers, not with their
formal verification. We did not perform any systematic comparison of using different approaches
to formal verification, nor did we perform a thorough review of the literature on how to do formal
verification. We are therefore very careful to assume any kind of generalization of our findings on
using Rocq. Instead, we report them mostly to encourage future work and report some simple lessons

we learned as we developed the checkers.

11.4. Building blocks and utilities
One of our supporting goals was to find building blocks and utilities that could be reused for

future inference checkers. Perforated intervals are the most important ones we found and have been
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detailed in the previous section. In this section, we list a number of other useful utilities that we
believe might be useful for future developments. We did not study them in detail. Hence, we only
mention them briefly.

e Overall, our Utility.v (<> Utility) file consists of over 2000 lines. This is not necessarily
a good thing, but it shows that a large part of our proof developments were deemed to be
useful outside of the checker for which we initially needed them.

o We developed a theory of “sublists” (<> SubList), a subset-like relationship for lists (and
equivalent to it if both lists have no duplicates) that requires the existence of a list such that
the permutation of this list appended to the “sublist” equals the larger list. This is equivalent
to requiring that each element in the sublist occurs less than or equally as frequently in
the larger list. Originally, this was a critical concept in our cumulative checker, but the role
is now smaller after a refactor, so that the checker no longer relies on activity names and
can have duplicates. However, it has allowed proving a number of useful facts more easily,
particularly about lists having no duplicates. It is also an interesting contribution in its
own right.

o We provide various “list extensions” (<> ListEx), which consist of a number of combinators
and useful utilities related to lists. The most used was flat_map_option (<> flat_map_
option), which fulfills the useful function of applying a function with an optional return
value to a list and only retaining elements where the function evaluates to a Some value. It
does this in a single linear pass, but we provide an equivalence proof by first filtering all
elements that will return None and then applying a map with the function. This simplifies
many proofs, as we can use the extensive machinery that the Rocq standard library contains
for the standard filter and map operations. It also allows defining our own lemmas in terms of
filter in map, so that we do not have to create a special case for flat _map option everywhere,
and do not have to work from the function’s definition. We also provide map_valid (<> map_
va'lid), which also works on a function with an optional return value, but early returns with
None if even a single value in the list evaluates to None.

o We make induction proofs using fold_left easier by introducing a fold induction lemma for
fold right that removes the need for separately defining recursive functions with a general
initial value: useful when only one specific value is used. However, fold left is generally
more efficient as it is tail-recursive. This can often be remedied by rewriting fold left in
terms of fold right, showing that it still holds for a reversed list, and then applying our
fold_ind (<> fold_ind) lemma. We are sure there are ways to automate this, but we have
not found the need or time.

o We define min and max operations over lists of integers and give formal specifications and
correctness proofs (<> ZMaxMinList).

e We provide a useful range (<> range) function that computes the range from a starting
integer to an end integer, as well as various facts about it. This function is critical for
our cumulative implementation, as we rely on it to give us an ordered interval. See also

Section 9.4.
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o We provide MSet (<> Sets) and MMap (<> Maps) instantiations, as well as useful helper
functions and lemmas for any type with the usual Leibniz equality (which includes the
integers, strings, and many similar types), such as build that can construct a set given a
list of elements. For MMap in particular, we prove many details for string maps (particularly
about their keys, such as filtering the entries of a map based on keys), but these could easily
be generalized.

o Our CumulativeUtil.v (<> CumulativeUtil) file similarly contains nearly 600 lines, which
could be reused by constraints with a similar activity and usage model as cumulative. We

highlight our development of has _n_true, used to determine if activities can be scheduled.

11.5. Limitations

In addition to the limitations of each of our individual contributions, we also mention a few
limitations of our work as a whole.

11.5.1. Empirical validation of practical significance

Our work contains no experimental section. Consequently, we cannot empirically validate whether
our work can be used in practice. This is a significant limitation and makes it difficult to compare
with approaches that are already used in practice.

The primary reason is that this thesis is part of a larger collaborative effort [15], and a number of
components that are necessary to run the checker on non-toy examples were not yet available when
this work reached its final stage:

o The extraction from Rocq to OCaml has to be set up and optimized.

o A parser that can transform constraint programming models into the checker’s data model.
This parser will be written in OCaml.

e A parser that can parse proofs into the checker’s data model (which also requires reading
from a file, among other things). This parser will be written in OCaml.

o The individual proof step checkers had to be combined into a single implementation (mostly
completed, but only in the last stage of this work, which also required some refactoring of
our implementations).

Therefore, our results are primarily theoretical, although when the above components are completed,
the results are expected to also be of practical significance, as the preliminary results are encouraging.
We refer to Sidorov et al. [15] for the results.

11.5.2. Formal verification trade-off

As discussed more specifically in Section 11.3, formal verification is a difficult task. Its main
drawback, in our view, is the required time investment. Everything is possible, and even complex
implementations and optimizations are all provable, but this often causes a nonlinear increase in
proof complexity. Extending our checker with additional constraints requires implementing the entire
inference checker in Rocq. We do note that richer hints, discussed in Section 11.6.1, might alleviate
some of this. However, as an example, checking an activity conflict in a cumulative timetable propa-
gation fundamentally requires checking a condition for many timepoints. Doing this in a reasonably

efficient way requires taking into account the ordering, among other difficulties.
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This compares unfavorably with an approach such as the one taken by Gocht et al. with VeriPB
and CakePB [51] (or any approach where the verification language is more limited). In their approach,
reasoning can be explained in pseudo-Boolean terms by an unverified implementation. Only the
encoding must be trusted, which means that when adding an additional constraint with a similar
level of trust as our checker (meaning that the checker’s soundness is formally verified), only the
encoding of that constraint into pseudo-Boolean constraints and variables has to be formally verified.
The checker reasoning also requires implementation, but this can happen using an untrusted program
and does not affect soundness.

We summarize the formal verification trade-off in Table 5. We do not specifically list pseudo-
Boolean as the approach, as it applies to any approach that encodes the proof in a language more
limited than what CP is capable of. Note that in the first published version of our checker, we do
not expect to formally verify the model parsing. However, since this is not an encoding (it is a direct
translation and we can call it parsing), it is much less complex and less prone to error. Below, we

assume we would want to verify this in order to achieve the same level of trust.

Criteria

Limited language

Sidorov et al.

Encoding verification

Yes (+-)

Yes (+—)

Reasoning verification

Only core language, not

constraint-specific (+)

Core language and for each

inference rule (—)

Conceptual difficulty of en-

coding

Medium, must be converted

into limited language (—)

Low, can be directly mod-

eled (+)

Conceptual difficulty of rea-

soning

High, must be converted
into limited language rea-

soning (——)

Medium, must be trans-
lated into functional algo-

rithm (++)

Encoding performance

Slow, verified and requires
larger size due to limited

language (—)

Medium, verified but po-
tentially same size as origi-

nal model (+)

Checking performance

Medium to incomparable,
reasoning must be checked
by verified implementation,
but can be generated by
unverified implementation,
which does need to do more

work (4+—)

Medium to incomparable,
reasoning must be verified
by wverified checker, but
proofs can be smaller as
reasoning can be translated

more directly (+—)

Formal verification com-

plexity

Low, only encoding and

core language (++)

High, every inference rule
checker must be formally

verified (——)

TABLE 5. Comparison of formal verification tradeoff between an approach that translates a CP
problem into a more limited language (such as SAT or pseudo-Boolean constraints) and our approach.

—— indicates singificant weakness, +— indicates neutral, ++ indicates significant strength.
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One limitation of the above table is that it is mostly a qualitative comparison. It is possible that
practical concerns change the balance. We claim that our approach is conceptually lighter, as it can
be translated more directly from pre-existing propagation algorithms, but requires more code to be
formally verified (each individual inference checker). We believe this formal verification is arduous
primarily due to the large amount of data structure manipulation (see Section 10.1).

In summary, we believe the burden of formal verification to be the major limitation of this work, as
it threatens the generalizability of our methods. This generalizability is simultaneously our greatest

strength. Experimental results in Sidorov et al. [15] might reveal more practical limitations.

11.6. Future work

We conclude our discussion by mentioning recommendations and possible future work. We start
with more fundamental directions and finish with a number of subsections, mostly related to
hypothetical performance improvements.

11.6.1. Hints

In many cases, verification could be sped up or simplified significantly when provided with a
hint that has richer information than just the inference rule and the constraint. Furthermore, these
hints can help to characterize the conflict types we mentioned in Procedure 5.2 or even simplify the
checking algorithm. For each of the propagator inference checkers in the CP proof checker, we discuss
the value of hints. We conclude by mentioning some practical concerns.

In the case of cumulative, if the checker knows it is supposed to look for a time conflict at a
specific time, it only needs to look at which activities are mandatory at that time, which means the
time complexity is suddenly only O(n), where n is the number of activities. In the case of an activity
conflict, for cumulative, we cannot do better than just checking the activity’s entire domain, and
due to the fact that we have access to the right-hand side of a fact, we know which activity was
propagated. However, if the consequent is empty, it is still possible for there to be an activity conflict.
Currently, we must check for all activities to see if they can possibly be scheduled. Instead, if a hint
containing the violating activity was provided, we could prevent this unnecessary work (providing a
speedup by a factor of n).

In the case of alldifferent, the set of variables that are conflicting could serve as the hint. If the
solver knows this set, it should simply log a fact that includes only variables of this set, which would
make this unnecessary. However, it is possible to envision a solver implementation that performs no
propagation and only performs a conflict check. It could try to find a maximum matching and report
a conflict if the maximum matching does not cover every variable. Only including the variables in
the maximum matching would not constitute a valid fact, so the propagator could decide to simply
include the domain of every variable. Since it does not do any propagation, it would not perform
Procedure 2.21. However, the matching is still useful information and could serve as a hint. In that
case, the verification algorithm would only have to implement Procedure 2.21, which is much better

than also having to implement a full matching algorithm.
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In the case of linear inequalities, we do not see any use for hints. This is because checking a
conflict simply involves evaluating the inequality’s left-hand side. This always requires knowledge of
all variable bounds, which will always be carried by a valid fact.

We see that hints can provide significant speedups and potentially simplify algorithms. However,
we do mention at least one practical concern. Preferably, the parsing of a proof would not require
complicated logic that depends on the constraint. However, in the case of cumulative, the hint might
be a single variable name or an integer. In the case of alldifferent, it could even be a set of variables.
If hints are added to the proof system, this would therefore add significant complexity to the parsing,
which is currently unverified. Furthermore, how to exactly represent these hints in the checker itself
might also be complicated, as they are of different types. More constraints would have to be evaluated
to see if the benefits outweigh the costs.

11.6.2. Perforated interval unions

Currently, the alldifferent checker computes the union of domains by first materializing domains as
lists of elements and then adding them all together in a new set, which is then used to determine the
size of the union. However, this materialization process involves the creation of many new sets and
intermediate data structures. We expect this to be the main bottleneck of the alldifferent checker.

An improved implementation would not construct any new sets, but simply update the perforated
interval by computing the union in the following way:

1. Given two bounded perforated intervals dom; and dom,, ensure the least upper bound and
greatest upper bound between them.

2. Then, take the perforated interval with the fewest holes. For each hole, check whether it is
outside the least upper bound and greatest upper bound computed in the previous step. If
it is, remove it from the domain. Then, check if the hole exists in the other domain. If it
does not, remove it from the domain.

3. Now, update the bounds of the perforated interval with the fewest holes (some of which
might now have been removed) with the new least upper bound and greatest upper bound.

Over a group of perforated intervals, the result would be equivalent to the intersection of the holes
of all perforated intervals, while its lower bound would be the minimum of all lower bounds, and
its upper bound the maximum of all upper bounds. While this might increase the complexity of
the proofs, we believe this will improve performance by no longer requiring the construction of sets
and performing fewer traversals. Furthermore, this does not require the construction of ranges, as
opposed to our (naive) implementation of domain materialization.

11.6.3. Cumulative timepoints

Our implementation of a cumulative checker is based on a very simplified cumulative propagator
that considers every time point. This means that more fine-grained time domains would reduce
performance. Efficient implementations of cumulative timetable propagation [30], [31] only consider
the different intervals between step changes in the resource profile heights. These step changes occur
because activities become mandatory or stop being mandatory at those times. The profile remains

constant between those steps. Since for each activity there are at most two events (start or stop being
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mandatory) that can cause step changes, the computation’s time complexity now depends only on
the number of activities and not on the number of timepoints.

We expect that applying this optimization will not significantly affect the difficulty of computing
time conflicts. However, we expect large implications for our implementation of detecting activity
conflicts, because the different points of a profile will now represent different lengths of time. An
activity also does not necessarily need to start only at one of the step changes; it still has the freedom
to start at any time point. Therefore, our strategy of computing for every time point whether an
activity can be active cannot be simplified as easily. A more careful study of these efficient algorithms
is needed to come up with solutions.

11.6.4. Study of formal verification

In Section 11.5 we mention that one of the greatest limitations of the CP-native approach is the
greater formal verification burden. However, while we report some limited findings about using Rocq
(Section 10), we mention in Section 11.3 that we do not assume they will generalize and that they
were not obtained through any kind of systematic data-based approach.

Therefore, we believe that this is a promising direction for future work. In particular, this work
approaches the problem mostly from the constraint programming direction. Future work could
approach the problems more from the formal methods direction. In particular, we believe that it
should be possible to address most of the limitations we mention in Section 11.1, as our results do
not contain any methodology on how to approach the formal verification part.

11.6.5. Summary of other points

We also summarize points related to future work mentioned in earlier parts of the Discussion or
too short to merit their own section:

o Perforated intervals could be replaced by a more compact representation in the proof format.
Alternatively, parsing can convert atomic constraints into domains. This would still require
modifying the proof system and specification of the checker (Section 11.2.3).

e The implementation of the holes set could be replaced by other implementations than our
enumerated set (which is itself implemented using red-black trees) (Section 11.2.3).

e Proof automation could be improved, as we make little use of it other than lia. This could
help reduce the relative amount of implementation-coupled proof lines vs. conceptual proof
lines (Section 11.3.1).

o Empirical evaluations are missing (Section 11.5.1). These will be found in Sidorov et al. [15].

e The parsing of problem models into the checker’s data model could be formally verified. Note,
parsing proofs does not need to be formally verified, as we care only about the conclusion.
If the parsing invalidates the proof, the checker will simply reject. If it happens to turn an
invalid proof into a valid one, the conclusion will still be correct.

e Variables currently use string identifiers. If we change them to use the Rocq positive
datatype (Coq’s Z implementation is based on it), which uses a binary representation, this
would unlock potentially more efficient map data structures [67]. Furthermore, they would
have the benefit of being extensional, meaning two maps containing the same entries are

equal under Coq’s Leibniz equality. This can simplify proofs. However, these are currently
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not yet part of the MMap [56] library that is used by the checker, although they have been
proposed [68].

Clearly, it is interesting to extend the checker with additional constraints. We recommend
first implementing additional propagators for cumulative, such as energetic reasoning, as
these can reuse many components from cumulative while still testing the methodology.
Furthermore, extensions of alldifferent, such as the global cardinality constraint, might be
able to reuse parts of its checker. On the other hand, there are also constraints that differ
significantly from those two, which could further test the limits of our methodology. These

include constraints such as element and circuit.
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12. CONCLUSION (EXTENDED SUMMARY)

Constraint Programming (CP) solvers have a propensity for bugs due to their use of performance
engineering and complex algorithms. This reduces trust in their results, which are hard to check in
the case of optimality or unsatisfiability claims. Logging and checking proofs is a promising way to
remedy this by allowing optimality and unsatisfiability claims to be verified.

Previous work showed that it is possible to instrument state-of-the-art solvers to produce proofs of
unsatisfiability. However, there does not yet exist a way to verify this reasoning in a CP-native fashion.
Instead, existing methods require the encoding of models into more restricted formats and explaining
reasoning in terms of simpler reasoning. This results in potentially larger proofs. Furthermore, it can
be difficult to explain some types of reasoning in these simpler languages.

This work is a part of a project to improve this by developing an end-to-end CP-native proof
system and proof checker. To achieve the highest possible trust, given the fact that verification
requires reasoning of a similar strength to solvers, the CP proof checker is formally verified in Rocq
to be sound: when it accepts a proof, we know the proof’s claim to be correct. Proofs in the CP proof
system consist of a sequence of individual proof steps, each of which must be individually verified.
This work asks how formally verified checkers for individual proof steps can be developed. This is
challenging because one of the main proof step types — propagator inferences — can use any type of
CP reasoning. Consequently, supporting a new constraint or propagator requires the implementation
of a dedicated inference checker.

Our work makes the following main contributions:

e The development of a methodology for developing propagator inference checkers: This
methodology guides the creation of a checker by studying the conflict types of a particular
propagation algorithm for a particular constraint, as we find (building on previous work)
that checking conflicts is easier than checking specific propagation results.

e A formalized theory and implementation of perforated intervals: perforated intervals are
a domain representation consisting of bounds and holes, and support efficient check and
update operations. The development also includes theoretical results that tell us under
what conditions these check and update conditions are efficient and through what operation
this condition (tightness) can be achieved. This includes formal proofs that go beyond the
soundness claims necessary for the proof checker. Perforated intervals can be used to reason
over domains instead of atomic constraints for inference checkers. They also form the core
of the deduction step, which is the other main proof step type we consider.

e Deduction allows deriving new facts from previous ones. Deduction steps correspond to the
learned nogoods found by learning CP solvers. Checking the deduction step requires careful
tracking of variable domains using domain maps, which build on perforated intervals. We
present a fully formalized implementation with a correctness proof that is abstracted from
its implementation details.

e A formally verified algorithm for checking inferences made by a timetable propagator for
the cumulative constraint. This checker checks two different conflict types, as identified by

the methodology of our first contribution. This non-trivial checker serves as an example for
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future inference checkers and demonstrates that our methodology works. It is based on a
simplified propagator that considers individual timepoints, which leaves room for further
optimization.

A formally verified checker for alldifferent that can catch all valid alldifferent propagations,
as long as inference proof steps contain no redundant information. This checker uses Hall’s
theorem to determine whether an alldifferent constraint is unsatisfiable. As the checker has
a powerful tool (Hall’s theorem) to understand the possible conflicts, it does not need our
inference checker methodology.

Findings about the usage of Rocq, which is the language and proof assistant used to imple-
ment and verify the CP proof checker. In particular, we find two types of proof segments:
conceptual proofs and implementation-coupled proofs. We successfully tested this hypothesis

by decoupling the two types in our alldifferent checker.

Our work is a significant step towards achieving a formally verified CP proof checker that is capable

of directly verifying CP and integer reasoning, while also making theoretical contributions through

the theory of perforated intervals. Our proposed methodology should make the checker extensible,

as should our perforated intervals and library of utilities.

In particular, our methodology advances our goal by tackling the checking algorithms, while

perforated intervals and our examples advance the formal verification part of it. However, there are

some important limitations.

First of all, we identify a significant formal verification burden, which we were not able to
alleviate with automation. Our proposed inference checker methodology also provides no
guidance on formal verification, focusing instead only on developing the checking algorithm.
We see that the approach adopted by the CP proof system used in this work increases
this burden compared to earlier approaches for CP unsatisfiability proofs (that encode the
problem in a more limited language, such as pseudo-Boolean constraints) by requiring a
formally verified checker for every type of inference. However, the CP proof system has the
major benefit that less conceptual work is required to translate propagation algorithms and
constraint models, as they can be supported directly and do not have to be translated to
reasoning in more limited languages.

Finally, this work lacks an empirical evaluation, as the proof checker is still missing important
components. This complicates judging our work’s practical implications. However, this is

expected to be addressed in upcoming work by the CP prof checker project.

We see multiple avenues to further improve our work.

First of all, our proposed methodology could be improved by developing guidance for the
formal verification of checkers for conflict types. This would significantly advance our goal
of how to develop formally verified proof step checkers.

Next, multiple performance improvements are possible, in particular for cumulative by
not considering all timepoints and for alldifferent by computing the domain union more

efficiently.
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o Adding support for new constraints will also advance our understanding of inference checking
by providing additional examples and testing our methodology.

o Finally, a large conceptual improvement to inference checking could be made by investigating
support for richer hints to the proof system. These hints can tell the inference checkers “where
to look”. In the case of cumulative, this would be especially helpful for conflict inferences,

providing significant speedups.
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APPENDIX

A. Pseudocode
Language

Our pseudocode closely follows Python’s syntax, but borrows some concepts from Rocq where
appropriate. We have four types of declaration, which mostly follow Rocq:

e Definition for functions

e Recursive for recursive function (Fixpoint in Rocq)

e Record for product types (classes/structs)

o Inductive for sum types (unions/enums)

We use a number of polymorphic/generic types, using Python’s syntax for generics, i.e., List[E]
indicates a List of type E.

e List, for lists similar to Rocq’s lists, which can be prepended using the syntax a :: nil,
where nil is the empty list.

o Set, for sets without duplicate elements, which are assumed to have at worst logarithmic time
complexity for addition and deletion operations. We use the MSet interface, using MSetRBT
as the implementation, both from the Rocq standard library.

e Option[E], which can either be None or a value of type E wrapped in Some.

We allow for anonymous product types (tuples), where we use the * syntax (as in Rocq) to indicate a
tuple. For example, X * Y is the type of pairs of elements, where the first is of type X and the second
of type Y. Similarly, we use the | syntax (as in Python) for anonymous sum types (in practice, there
would need to be some way to always distinguish elements, but as this is pseudocode, we need not
worry about this).

Our pseudocode language allows matching on inductive types, using a syntax similar to Python,
where we match on some variable and then list the different cases. This allows, for example, to
distinguish an empty list from a non-empty one and bind the head of the list to a variable (see e.g.
deduct_check_inferences).

Our pseudocode language also allows currying (like Rocq). Therefore, given a function f with
three arguments, f(a, b) returns a function with one argument (the third one).

We now list the primary data types that we have already defined mathematically.

Pseudocode A.1:
Primary data types.

Inductive AtomicComparator:
case less equal
case greater equal
case equal

case not_equal
Record Atomic:

constant: Z
comparator: AtomicComparator
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Record PerforatedInterval:

1b: Zext
ub: Zext
holes: Set[Z]

Record BoundAtomic:
var: Id

atomic: Atomic

Record ProofFact:
premises: list[BoundAtomic]
consequent: list[BoundAtomic]

The last thing we mention is that for record types, we assume the existence of functions that map
records to their members (similar to how records work in Rocq). So for a variable dom of type
PerforatedInterval, we have that lb(dom) is the lower bound of dom (and therefore of type Zext).
Descriptions

We list some additional descriptions of some elementary functions used in the pseudocode in

this work.

Function Description A.2:

Returns whether element is an element of set. E is a generic element type.

Definition is element of(element: E, set: Set[E]) -> bool:

Function Description A.3:
Returns a list of the elements of 1 values greater than or equal to lower, without changing the
order.

Definition filter greater eq(l: List[Z], lower: Z) -> List[Z]:

Function Description A.4:
Returns only the atomics in atomics that are associated with var.

Definition atomics for var(var: Id, atomics: List[BoundAtomic]) -> List[Atomic]:

Function Description A.5:

Negates the constraint in atomic such that the domain induced by the negated atomic is exactly
the complement of the domain induced by the original atomic. For example, [z < ¢| becomes
[x > c+1].

Definition negate bound atomic(atomic: BoundAtomic) -> BoundAtomic:
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Function Description A.6:
Returns true if for every atomic constraint [z ¢ ¢] in atomics, we have that check_holds(D(z), [¢
c]) = true, and false otherwise.

Definition all premises hold(atomics: List[BoundAtomic], D: Domains) -> bool:

Function Description A.7:
Takes the union of all sets in sets and returns it as a single set. E is generic element type.

Definition union sets(sets: list[Set[E]]) -> Set[E]:

Function Description A.8:

Returns the number of distinct elements in the the set s.

Definition cardinal(s: Set[E]) -> N:

Function Description A.9:
Given a BoundedActivity act, computes whether act is active at time ¢, i.e., whether upper(act)
< t < lower(act) + duration(act).

Definition is mandatory(bounded activity: BoundedActivity, t: Z) -> bool:

Function Description A.10:
Given a list of BoundedActivity, returns only those activities s.t. is_mandatory returns true for t.

Definition filter mandatory(
TS Z,
bounded activities: List[BoundedActivity]

) -> List[BoundedActivity]:

Function Description A.11:
Returns the sum of all numbers in 1.

Definition n sum(l: List[N]) -> N:

Function Description A.12:

Returns None if for any element a of 1, f(a) = None. Otherwise, it returns the unwrapped results
of mapping each a according to f (possible since f(a) returns an element of type B wrapped in
Some for all a), wrapped in Some.

Definition map valid(f: A->Option[B], l: List[A]) -> Option[List[B]]:
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Function Description A.13:
Returns a list consisting of every integer in the in the interval [lb, ub] in increasing order.
Returns an empty list if ub < 1b.

Definition range(lb: Z, ub: Z) -> List[Z]:

Function Description A.14:
Combines two lists s.t. the ith element of the output list is the pair consisting of the ith element

of 11 and the ith element of 12. Output list has the same length as the shortest of 11 and 12.

Definition combine(11: List[A], 12: List[B]) -> List[A*B]:

Function Description A.15:
Returns true if f(a)=true for any a in 1.

Definition any true(f: A->bool, 1l: List[A]) -> bool:

B. Software
The code for the CP proof checker that this thesis contributescan be found in [69]. All documen-

tation links in this thesis are built from the version in that reference.
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