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Introduction

Generative Atrtificial Intelligence (GenAl) has emerged as one of the most transformative technological
advancements of the past decade. It is revolutionizing the way we work, create, and engage with infor-
mation. These advanced models are capable of learning intricate data patterns and generating new,
synthetic data that are identical to real-world examples. Among the most effective models in this field
are diffusion models [52, 18, 54, 56], which have revolutionized the fields of image synthesis [36, 12,
45], video generation [5, 37], audio design [26, 22], and even molecular biology [62, 23]. These mod-
els work by gradually corrupting data with noise in a forward process and then learning to reverse this
noise during sampling to generate realistic outputs. Thanks to large-scale datasets [8], modern hard-
ware accelerators, and advances in neural architectures, diffusion models have set new benchmarks
in high-fidelity data generation.

As the scale and scope of these models expand, they increasingly exhibit properties of foundational
models, that are general-purpose systems, reusable across domains, and capable of adapting to a
variety of downstream tasks. This scalability, however, comes with a growing need for controllabil-
ity, the ability to steer a model’s output following user intent. Whether the task involves generating
photorealistic images, retrieving information, designing proteins, or composing music, users frequently
seek outputs that satisfy specific criteria. These criteria may include aesthetic appeal, factual accuracy,
alignment with textual prompts, or in scientific applications such as drug discovery, the generation of
molecules or proteins that exhibit desired structural and functional properties.

To meet this need, a wide array of alignment methods have been proposed. One prominent approach is
fine-tuning [28, 40, 7, 59], where a base generative model is fine-tuned to align with a target distribution.
While effective in task-specific settings, fine-tuning is often computationally expensive, requiring large
amounts of labeled data. It also risks overfitting reward signals, leading to over-optimization where out-
puts optimize the reward superficially but diverge from true user intent. An alternative and increasingly
popular strategy is inference-time guidance [56, 12], where models are conditioned at generation
time using external reward signals without retraining the model. This enables plug-and-play flexibility,
allowing users to use reward functions such as classifiers, loss functions, or probability estimators that
measure how well the output aligns with the given user conditioning signal. These guidance techniques
generally fall into two categories: gradient-based methods, which modify the generative trajectory by
applying gradients of the reward function, and sampling-based methods, which rely on generating mul-
tiple candidate samples and selecting those with higher reward scores.

Sampling-based approaches, such as Controlled Denoising (CoDe) [51], are more general but compu-
tationally expensive, as reward alignment depends on sampling large candidate pools at each step.
This raises a central question for controllable generation: Can sampling-based and gradient-based
inference-time guidance be unified to reduce sampling overhead, enhance output quality, and
achieve better trade-offs between reward alignment and prior divergence? In this work, we pro-
pose a unified framework that combines the strengths of sampling-based and gradient-based inference-
time guidance. Inspired by Controlled Denoising (CoDe) [51] framework, we extend blockwise sampling



with blockwise gradient-based updates to more effectively guide the generation process.

To evaluate the robustness and generality of our approach, we experiment with various reward models
of increasing complexity. We begin with simple reward models that evaluate only the final generated
image, then incorporate models that are jointly conditioned on the generated image and prompt. We
further also extend to reward models that incorporate additional signals such as a reference image for
style guidance. Finally, we test our method on non-differentiable reward functions by approximating
gradients through zero-order optimization techniques, showcasing the applicability of our method in
diverse and practical scenarios where backpropagation is not feasible. While our experiments focus
on image generation, the proposed methods are broadly applicable across generative domains. As
GenAl continues to evolve, the ability to control and align outputs with nuanced goals is becoming
increasingly fundamental. This work takes a step toward that vision by offering a more flexible, efficient,
and generalizable framework for guided generation.

In the following chapters, first, we present a scientific paper on the proposed method in Chapter 2, which
we aim to submit at the /IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
2026. Following this, we present motivation and the impact of Generative Al, an overview of image
generation methodologies, diffusion models, and conditional image generation in Chapters 3, 4, 5 and
6, respectively as additional background material for the paper. Next, in Chapter 7 we discuss some
additional things and the alternatives considered and we conclude with concluding remarks and future
research directions in Chapter 8.
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Abstract A bird that is sitting in
Tiger the rim of a tire.

Aligning diffusion model outputs with downstream ob-
Jectives is essential for improving task-specific perfor-
mance. Broadly, inference-time training-free approaches
for aligning diffusion models can be categorized into two
main strategies: sampling-based methods, which explore
multiple candidate outputs and select those with higher
reward signals, and gradient-guided methods, which use
differentiable reward approximations to directly steer the
generation process. In this work, we propose a univer-
sal algorithm, CoDeX, which brings together the strengths
of blockwise sampling and gradient-based guidance into
a unified framework. Building on the blockwise sampling
paradigm of CoDe []], CoDeX integrates local gradi-
ent signals during sampling, thereby addressing the sam-
pling inefficiency inherent in complex reward-based sam-
pling approaches like CoDe. At the same time, it overcomes
the limited applicability of traditional gradient-guided
methods, which often struggle with non-differentiable re-
wards. By cohesively combining these two paradigms,
CoDeX enables more efficient sampling while offering bet-
ter trade-offs between reward alignment and divergence
from the diffusion unconditional prior. — Empirical re-
sults demonstrate that CoDeX consistently outperforms
CoDe and remains competitive with state-of-the-art base-
lines across a range of tasks. Our code is available at:
https://github.com/maurya-goyall0/CoDe_ext

Aesthetic

Deer with matching fireplace
in room.

Pickscore

-A bird that is sitting in the rim of a tire.
. —4

Ref. Img

(T+1)2!I Pickscore

1. Introduction

Diffusion models [2-5] have illustrated impressive ca-
pabilities in sampling complex data distributions, allowing
them to generate high-quality images [6—8], videos [9, 10],

audio [11, 12], and even biological structures such as pro- . . L. .

tei dDNA [13.141. Th del tvpically trained Figure 1. CoDeX generates high-quality images across diverse re-
eins an .[ 3,14]. These mo e.s are typically traine ward objectives such as aesthetic, pickscore, and in (T+I)2I guided
on large and diverse datasets, allowing them to capture a using pickscore demonstrating robust and adaptable performance.

wide range of patterns and variations [15]. However, in
many practical scenarios, it becomes important to guide
the generative process towards outputs maximizing specific



properties, such as aesthetic appeal or adherence with user-
provided prompts or images. Thus, conditioning diffusion
models to produce outputs that meet user-defined criteria
has emerged as a consequential problem.

There are several ways for conditioning generative mod-
els to produce outputs aligned with the user’s desired ob-
jective. The most straightforward method is fine-tuning
[16—19] the unconditional foundational model for each spe-
cific task or condition. Fine-tuning has demonstrated strong
performance in aligning models with specific tasks, en-
abling the base model to learn domain-specific nuances and
outperform more general-purpose approaches when suffi-
cient data and computational resources are available. Fur-
thermore, once fine-tuned, the model can generate aligned
outputs rapidly at inference time, requiring no additional
computation during sampling. However, fine-tuning is com-
putationally expensive and typically requires substantial la-
beled data or high-quality reward signals. It also potentially
leads to reward over-optimization, a form of reward hack-
ing where the model exploits loopholes in the reward func-
tion to produce high-reward outputs that do not align with
true user intent. As an alternative, inference-time guidance
[5, 7] offers a more flexible solution by enabling training-
free conditioning through external reward models applied
during sampling.

In this work, we focus exclusively on inference-
time guidance for conditional image generation scenarios,
specifically in the setting where the reward model is applied
to the final denoised (clean) samples rather than interme-
diate noisy ones. This allows us to leverage off-the-shelf
reward models directly, without modifying them or extra
training. The reward models can be any loss function, clas-
sifier, or probability estimator that measures how well the
output aligns with the given user conditioning signal.

Training-free guidance methods can be extensively cat-
egorized into gradient-based [20-24] and sampling-based
approaches [ 1, 25]. Gradient-based guidance involves per-
turbing samples during the denoising process in the di-
rection that increases the reward, effectively guiding the
generation toward more desirable outcomes. Conversely,
sampling-based methods utilize stochasticity by generat-
ing multiple candidate samples and preferentially sampling
more from those expected to yield higher rewards. While
sampling-based approaches often offer a better trade-off
between target reward alignment and the divergence from
the prior [1], they come at a high computational cost, as
the number of required samples increases exponentially
with the divergence between the prior distribution and the
desired posterior distribution [26]. On the other hand,
gradient-based guidance can directly steer the generation
toward desirable outputs but faces limitations in flexibility,
differentiability, and generalization. In this work, we ex-
plore how these two paradigms can be effectively unified

to leverage their complementary strengths and aim to an-
swer the key question: Can sampling-based and gradient-
based inference-time guidance be unified to reduce sam-
pling overhead, enhance output quality, and achieve bet-
ter trade-offs between reward alignment and prior di-
vergence?

Inspired by Controlled Denoising (CoDe) [1] proposed
by Singh et al., we incorporate blockwise gradient guid-
ance with blockwise sampling to answer this question.
This unified framework leverages the strengths of both
sampling-based and gradient-based methods: the flexibil-
ity of sample-based reward maximization and the efficiency
of gradient-driven updates. By using gradient signals to ex-
plicitly steer the prior distribution toward the desired poste-
rior, we reduce the number of samples required during the
reverse diffusion process, thus improving computational ef-
ficiency while maintaining high output quality and strong
alignment with the target conditioning. Furthermore, we
also investigate the following set of extensions designed
to enhance the overall performance and efficiency of the
method, while also improving its generality and adaptabil-
ity across different tasks and reward structures:

* Sampling schedule: Introducing a scheduled sam-
pling strategy that allocates more sampling budget to
steps in the denoising process where the reward signal
is expected to be most significant.

* Non-greedy sampling: Replacing the myopic greedy
sampling strategy with more flexible alternatives
such as multinomial sampling to better control the
exploration-exploitation tradeoff.

* Clustering-based guidance: Incorporating clustering
techniques to limit the overhead of applying gradient
guidance to every sample individually.

e Multi-reward extension: Extending the CoDeX
framework to accommodate multiple, potentially com-
peting, reward functions.

* Non-differentiable rewards: Also test the method on
non-differentiable rewards using zero-order optimiza-
tion, utilizing the torchopt [27] library.

2. Related Works

Image Generation via Diffusion Models. Early ef-
forts on image generation relied on GANs [28] and VAEs
[29,30]. However, these approaches suffer from problems
such as training instabilities, limited representational power,
and mode collapse. This resulted in the generation of highly
smooth images for VAEs [31-33] or a lack of sample di-
versity and control for GANs [34, 35]. Diffusion models



tackle this by gradually transforming noise into clean sam-
ples through a learned denoising process iteratively, pre-
serving both the fidelity and diversity of the target distri-
bution [3, 7, 8]. This makes them particularly well-suited
for high-quality and diverse image-generation tasks.

Conditional Image Generation. Image generation
models are typically trained on large datasets which en-
able generating diverse and high-quality images. To provide
users with greater control over the generated content, condi-
tional image generation is used. Rather than sampling from
the marginal distribution p(x) conditional methods sam-
ple from p(z|c), where c represents the conditioning signal
such as class labels, textual prompts, images, or other forms
of guidance. Diffusion models are particularly well-suited
for conditional image generation due to their score-based
formulation, which estimates the gradient of the data dis-
tribution’s log density [5] (explained in detail in section 3).
This formulation naturally accommodates the integration of
conditioning signals into the generation process. Condi-
tional image generation can be further classified into two
broad categories: training-based and training-free.

Training-Based Methods. This includes methods that
train the model with conditioning signals (which can be
guided at inference time for better performance using meth-
ods like classifier-free guidance (CFG) [36]) or fine-tuning-
based methods that align the pre-trained foundational model
to the specific conditioning. Aligning pre-trained models
through fine-tuning is used a lot not just in vision but also
for language [37,38]. For diffusion models, there are sev-
eral ways of doing that - direct backpropagation [17, 39],
RL-based fine-tuning [40, 4 1], preference-based supervised
fine-tuning [ 18,42], domain adaption [43], etc. These meth-
ods are not scalable and require a lot of computation for
fine-tuning each different control signal, therefore, we look
into training-free inference-time alignment.

Training-Free Methods. These methods leverage ex-
pected rewards during the denoising process to perturb or
select optimal samples at inference time. This guidance
can be categorized into two main types: gradient guidance
and sampling-based guidance.

Gradient Guidance. [20-24,44] They leverage the ex-
pected predicted sample o, at each denoising step and
compute the gradient of the reward for this estimate. This
gradient guides the denoising trajectory toward regions in
the sample space that are expected to give higher rewards,
effectively guiding the generative process to produce sam-
ples with improved rewards.

Sampling-Based Guidance. [1,10,25,45] Instead of re-
lying on gradient information, they generate multiple can-
didate samples at each denoising step and estimate the
expected reward for each. This allows them to identify
promising directions in the sample space and explore more
of those areas in the denoising process, thereby guiding the

generation toward samples with higher expected rewards.

Combining Gradient and Sampling-Based Guidance.
TDS [26] was the first to propose a hybrid approach that
combines gradient-based optimization with sampling-based
exploration. However, their method relies on the Sequen-
tial Monte Carlo (SMC) sampling, assuming the gradient
to be sampling from the posterior and is evaluated only on
relatively simple tasks such as class-conditional generation
on MNIST and CIFAR [46], limiting its generalizability.
In contrast, our work explores a broader range of tasks by
leveraging off-the-shelf reward models without restricting
the setting to predefined class labels. Concurrent with our
work, DAS [45] extends the TDS framework by introducing
a tempering scheme to better explore reward-guided gen-
eration. However, it does not consider the blockwise per-
spective in gradient and sampling guidance, nor does it ex-
plore complex scenarios such as (T+])21 (Text-and-Image-
to-Image) guidance.

Approximating Gradients for Non-Differential Func-
tions. To ensure that the proposed method remains appli-
cable to both differentiable and non-differentiable rewards,
gradient approximations are used to enable perturbations in
the direction of reward improvement. Two primary strate-
gies exist for this purpose. The first involves training a sur-
rogate model to approximate the reward function, however,
this approach conflicts with the overarching goal of preserv-
ing a training-free framework. Therefore, this work adopts
the second strategy: zero-order optimization [47,48], which
allows for gradient approximation using only forward eval-
uations of the reward function, thereby avoiding the need
for additional model training.

3. Background

Diffusion Models. Diffusion models are Markov Chains
where for the forward process we iteratively noise a clean
input by adding Gaussian noise to it. Thus as we go
from ¢=0 (clean image) to t="T and for large enough
T, we reach Gaussian noise. Using a neural network we
learn to reverse this process py(x:—1|z¢) (denoising) since
q(x¢|xe—1) is known. Consequently, iteratively applying
po(z¢—1|7+) to a randomly sampled Gaussian noise, we can
sample from the target distribution or generate a new image.

Noise Based Formulation. The forward process at each
time is defined in Eq. 1 where the 3; represents the variance
schedule. a; = 1 — By and & = [],_, o [3]

q(w¢|m1) = N(th V1= Bizi—1, BT) eY)
Ty = Vauxo + V1 — arey 2
The whole forward process boils down to:

T

g(wrrleea) = [ a@ilwir). 3)

t=1



The diffusion model learns the reverse of this forward step:
po(wi-1]2t) = N(@1-1; po(w4, 1), Be1), 4
where the g (¢, t) is defined as:
1 1-— Qi
— - — 1) ). 5
NG <xt = atﬁﬁ(xt )) Q)

Hence, the UNet [49] given the noisy input (z;) predicts the
noise to be removed to obtain the clean sample (zg) from

M@(xtv t) =

Eq. 2 as:
eg(zt,t) = e = %. (6)
Vi—ay

Score Based Formulation. Diffusion models also have
a score-based formulation through SDE [5] to estimate the
score function which is defined as V,, logp(z;) using a
neural network. The forward process is defined as:

dx = f(x, t)dt + g(t)dw. 7

In the above equation f(x,t) is vectored value function
called the drift coefficient of x(¢) and g(¢) is a scalar func-
tion known as the diffusion coefficient of z(t), both of
which are known. The reverse process is defined as:

dr = [f(x,t)dt — g(t)*V, log pi(x)]dt + g(t)dw. (8)

Where w is the standard Wiener process when time flows
backward from 7" to 0. The only unknown term is the score
function i.e. V, logp;(x) which the neural network learns
to predict. Thus after sampling x(T) ~ pr and reversing
the process we can obtain the clean image (sample from py).
Alignment Objective. Considering an off-the-shelf re-
ward function » : X — R that quantifies the quality of
alignment of generated samples with a given conditioning.
Let 7(+) denote the reward-aligned diffusion model and p(-)
the base, unconditional reference diffusion model [1]. From
a reinforcement learning perspective, the alignment objec-
tive can be formulated as optimizing 7 to maximize the ex-
pected reward under the aligned distribution relative to p,
thereby encouraging the generation of samples satisfying:

m = argmax ARy r(z, i f) {EEUNP(It—l\It)[T(I())ﬂ

— KL(W(.Z't_1|$t) I p($t—1$t)>‘| ()

where A € R20 trades off reward for drift from the base
diffusion model p. Thus, the objective can be interpreted
as maximizing the expected reward while minimizing the
divergence from the prior distribution p, ensuring that the
learned policy 7 improves alignment without deviating ex-
cessively from the base diffusion model.

Classifier Based Guidance [5,7]. For conditional gen-
eration [7], the goal is to sample from p(z|y) instead of
p(z). Thus wrt to the score-based formulation we want the
V., log p(x:|y). Using Bayes Rule [50]: V represents V,

Vlog p(a:|y) = Vlog (W)

= Vlogp(z;) + Vlogp(yla:) — Viog p(y)
Viogp(z:) + Viogp(ylz:) . (10

unconditional score

adversarial gradient

In Eq. 10, we know the first-term unconditional score from
the foundational diffusion model and we get the second
term using an off-the-shelf reward model.

Tweedies Formula. In Eq. 10, we need the value of
p(y|z+), which represents the probability of the desired out-
come given a noisy image z;. However, most reward func-
tions available off the shelf are not designed to handle noisy
inputs, rather they expect clean images. To address this is-
sue, there are two possible approaches: either train a new
reward function capable of operating directly on noisy im-
ages or estimate the clean image from the noisy input us-
ing Tweedie’s formula. [51]. Since our goal is to develop
a training-free method, we choose the second approach.
Tweedie’s formula lets us estimate the expected clean im-
age given the noisy input and is given as:

Tt — / 1-— thQ(It, t)

i’o :E[.’L'0|.’L't] = \/a (11)
Using Eq. 11 we get the reward value as:
r(zope, y) = r(Elzolad, y) = (o, y). (12)

Controlled Decoding (CoDe). The idea of using block-
wise greedy sampling for guidance builds on the Best-of-N
(BoN) approach [52]. When performing conditional sam-
pling from the posterior p(x|y) given the prior p(x), we can
draw multiple independent samples from the prior and at the
end of the denoising select the one that best aligns with the
posterior. Given the probabilistic nature of the denoising
in diffusion models, a more aggressive way is to estimate
the expected alignment with the posterior (using a reward
model Eq. 11 and Eq. 12) and then explore more in the di-
rection expected to give higher rewards [1,25]. To enhance
computational efficiency and scalability, CoDe propose per-
forming this sampling procedure in a blockwise manner, ex-
ecuting it every B step and generating N candidate samples
per block. This parallels RL-based objectives where one
sample multiple times from a base policy (the base uncondi-
tioned diffusion model) and selects the sample best aligning
with the reward function.

SDEdit. Stochastic Differential Editing [53] is an image
synthesis and editing method that generates images aligning



with a reference without relying on complex reward mod-
els. SDEdit modifies the standard denoising diffusion pro-
cess by replacing the typical starting point of denoising, 7',
with » x T, where r is a user-defined percentage of noise
r € (0,1). This implies that instead of beginning the de-
noising from pure random noise, the process initiates from
an intermediate point. This is achieved by adding a con-
trolled amount of noise to the reference image, effectively
mimicking the forward diffusion process. The choice of r
directly influences the output: a higher r allows for greater
creative freedom, while a lower r enables the preservation
of more structural and stylistic properties from the reference
image. SDEdit is employed for (T+I)2I (Text-and-Image-
to-Image) generation, enabling style transfer while offering
users multiple adjustable parameters to control different as-
pects of the output image.

Zero-Order Optimization. Zero-order optimization is
used when we have to approximate the V. f(z) using just
the forward pass f(z).

NI
1 flz+o0€¢) — flz—o€;)

Vf(z)~ N Z; oy €, (13)
where ¢ is a n-dimensional vector for n-dimensional sam-
ples z sampled from (0,1;) and o is a scalar constant. N’
is the number of samples the more samples we have the bet-
ter the estimate at the cost of time and compute.

4. Methodology

We use blockwise gradient guidance to compute and add
the gradients to the images at that timestep for each stream
and then do the sampling. The algorithm is explained in
detail in Algorithms 1, 2 and 3. The difference between
the previous methods and our method is also explained by
the schematic diagrams in Fig 2. As outlined in Algo-
rithm 1, the procedure integrates blockwise gradient guid-
ance (lines 5-12) with blockwise sampling (lines 13-16) in
a unified framework. Specifically, blockwise gradient guid-
ance is applied independently to each stream (lines 7-10),
allowing for localized adjustment of the gradient signal at
the block level. Subsequently, preferential sampling is per-
formed based on the expected rewards computed for each
block (lines 13—16), enabling the model to selectively em-
phasize higher-reward regions during denoising.

To make the sampling more general we also change the
greedy sampling to temperature-based multinomial sam-
pling (Algorithm 3) this allows the model to consider paths
that can give higher rewards later in the denoising and us-
ing the temperature we can adjust the aggressiveness of the
sampling. Thus it allows the sampling to explore more and
can adjust the tradeoff between exploring and exploiting by
changing the temperature parameter.

Algorithm 1 CoDeX

Require: T, N, By, B, 7, po, 7, Y
1: Sample initial noise: {Z(T")}f}[:1 ~ N(0,I)
2: Initialize counter: s <— 1
3:fort=1T,...,1do

{20000 po({z" 1, 0)

5 if mod(s, B,) = 0 then

6 if gradient condition satisfied then

7: for k =1to N do

k)
8
9

ANF

g — GRAD(Zt(il,t -1

k k
SRR

10: end for

11: end if

12: end if

13: if mod(s, Bs) = 0 then

14: (25 = Ep ({8 MMt - 1)

1s: {2} sauere({z )}, 7D D), 7)
16: end if

17: s+ s+1

18: end for

19: return zg

Algorithm 2 GraD(z¢, t)

Require: latent z, timestep ¢

1: Zo « D(E,, (20]2t, 1)) > Expected clean sample

2 7(2¢) = 1(20) > Compute reward
3 g+ V., 7(2) > Compute gradient w.r.t. z;
4: return g

We also experiment with other extensions like having a
sampling schedule that allows exploring more in the denois-
ing steps expected to give more rewards. Moreover, we ex-
periment with clustering to decrease the overhead of adding
a gradient to all the sample streams and cluster together
points in the latent space that are closer, calculate one gradi-
ent for all of them, and add it to all the points in the cluster.

5. Experiments

We evaluate the performance of CoDeX by compar-
ing it against a range of state-of-the-art guidance meth-
ods across both Text-to-Image (T2I) and Text-and-Image-
to-Image ((T+I)2I) generation tasks. These evaluations are
conducted under both differentiable and non-differentiable
reward settings to ensure a comprehensive analysis. All ex-
periments are conducted using the pre-trained Stable Dif-
fusion v1.5 model [8], which was trained on the LAION-
400M dataset [54]. Stable Diffusion is a text-conditioned
latent diffusion model trained on paired image-text data. It
operates in latent space to perform denoising and leverages
text-conditioning to generate semantically aligned images.
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Figure 2. Schematic illustration of sampling-based guidance methods: BoN runs parallel diffusion streams and selects the highest-reward
sample after full denoising; CoDe performs greedy blockwise selection to focus on promising regions early; CoDeX enhances CoDe with
blockwise gradient-based guidance, scheduled particle sizes, and multinomial sampling for better efficiency and performance.

Algorithm 3 save e ({z™) }, 7(D({2{}), 7)

N

n—1, reward vector r =

(n) \N
tempJSn=1

Require: current images {zl@l}
r(D({é(()n) 1)), temperature 7, empty list {z
1: Compute softmax probabilities:

p o OPE/T) ey N

> exp(r; /7)

2: for 7 =1to N do

3 Sample index i ~ Multinomial({ P, }2_,)
4 Append 2, to {zt(gw}

5: end for

6: return {zt(;’,)np N

To ensure fair and reproducible comparisons, we gen-
erate 10 images per experimental setting (i.e., for each
prompt-reference image pair) using 500 DDPM steps. All
experiments are conducted using NVIDIA A40 GPUs, with
the random seed fixed at 2024 for reproducibility. Both
qualitative and quantitative results are reported across a va-
riety of scenarios to highlight the capabilities of CoDeX.
For all scenarios, the sampling block size is set to 5. The
gradient block size is adjusted based on the reward model:
5 for Aesthetic, 4 for pickscore, and 2 for the (T+I)2I set-
ting. Additionally, unless specified otherwise, the guidance
scale is fixed at 0.2 across all experiments.

Evaluation Settings and Metrics. We evaluate the
performance of all methods using a comprehensive set of

metrics designed to capture different aspects of alignment,
quality, and divergence from the unconditional model.
These include the expected reward, Frechet Inception Dis-
tance (FID) [55], CLIP-based Maximum Mean Discrepancy
(CMMD) [56], I-Gram [57, 58], and CLIPScore [59], re-
ferred to as T-CLIP throughout the paper. FID and CMMD
measure the deviation from the prior distribution defined
by the unconditioned Stable Diffusion model, providing a
sense of how far the generations diverge from typical out-
puts. I-Gram captures style and texture similarity between
the reference and generated images, particularly relevant in
the (T+I)2I setting, while T-CLIP assesses semantic align-
ment with the input prompt. To support diverse evaluation
goals, we consider a variety of reward models: the LAION
Aesthetic Predictor v2 [54, 60] for image-based aesthetic
quality, pickscore [61] for text-image alignment, a multi-
reward configuration that combines aesthetic and pickscore,
compressibility [40], and a non-differentiable reward facili-
tating compact image representations.

Baselines. In all experimental settings, we compare
CoDeX against CoDe with both N=40 and N=4, where
N denotes the number of samples generated. We treat the
N=4 configuration as the primary baseline, as CoDeX it-
self operates using only 4 sample streams per block. For
the Aesthetic and pickscore reward models, we additionally
benchmark against state-of-the-art gradient-based guidance
methods, including MPGD [23], FreeDoM [22], and Uni-
versal Guidance (UG) [21], which are known to improve
upon earlier approaches like DPS [20] by providing more
accurate gradient estimates.
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Figure 3. The aesthetic alignment offered by CoDeX outperforms other baselines in terms of the aesthetic score (also shown in Tables 1, 2)
while adhering to the given prompt. Despite a higher CMMD indicating a slight shift from the unconditional prior, CoDeX avoids reward
hacking and produces the most aesthetically pleasing samples compared to other baselines.

5.1. Image Reward Models

We first experiment with reward models just based only
on the final generated image such as the aesthetic scorer.
To guide the diffusion denoising process towards generat-
ing aesthetically pleasing images, we use the LAION aes-

thetic predictor V2 [54], which leverages a multi-layer per-
ceptron (MLP) architecture trained on top of CLIP embed-
dings. This model’s training data consists of 176,000 hu-
man image ratings, spanning a range from 1 to 10, with
images achieving a score of 10 being considered art pieces.
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Figure 4. These qualitative examples illustrate how CoDeX consistently produces images that more accurately and richly reflect the nuances
of the input prompts across various scenarios. This is quantitatively supported by higher pickscore and T-CLIP scores (Tables 3, 4).

We evaluate them on the evaluation dataset of animals from the prior distribution which is shown by the increase in the
ImageNet [62] (containing 51 prompts). CMMD, while the FID and the T-CLIP stay similar. We
also ablate on the different settings in CoDeX, as evident
from the results the major improvement comes from adding
the gradients, and then we can observe little improvements
from scheduling samples and making the sampling multino-

The quantitative results are summarized in Table 1, we
can see that CoDeX not only takes roughly 4—5 times less
time as compared to CoDe [1] but also gives much better
rewards. This comes at the cost of higher divergence from



mial. Furthermore, using clustering we can further reduce
the time taken at the cost of the rewards.

We further compare the performance of CoDeX against
state-of-the-art gradient-based guidance methods, as shown
in Table 2. While CoDeX achieves higher reward scores,
this improvement is accompanied by a greater divergence
from the unconditional prior. However, as demonstrated
by the qualitative results in Fig. 3, where CoDeX is evalu-
ated alongside all competing methods, this increased diver-
gence does not come at the cost of semantic or perceptual
alignment. The samples clearly show that CoDeX main-
tains high visual fidelity and relevance to the conditioning
inputs, suggesting that its superior reward performance is
not attributable to reward hacking.

5.2. Prompt Alignment Reward Models (T2I)

In this section, we guide the model to adhere better to
the given text prompt. Although the Stable Diffusion v1.5
is trained on text input conditioning, the performance (ad-
herence to prompt and output quality) starts degrading as
the prompt complexity increases. Hence, we use pickscore
[61] as the reward to generate good-quality images adher-
ing to the prompts. pickscore is a CLIP-based scoring func-
tion trained on Pick-a-Pic a large dataset of text-to-image
prompts and real user preferences over generated images.
We evaluate the performance of the generated images with
prompts taken from the HPDv2 [63] evaluation settings.

The quantitative results are given in Tables 3 and 4,
and the qualitative examples are shown in Fig. 4. CoDeX
significantly improves efficiency (3—4x faster), achieves
higher rewards, and maintains less divergence from the
prior (lower FID and CMMD). Moreover, CoDeX outper-
forms gradient guidance methods, providing better prompt
alignment and image quality.

5.3. Multi-Reward

In this section, instead of guiding the generated image
for a single reward, we consider an objective that balances
multiple rewards. Specifically, we guide the generation us-
ing a weighted sum of the aesthetic score and the pickscore:
1 X aesthetic + -2 X pickscore. The aesthetic score mo-
tivates aesthetically pleasing outputs, while the pickscore
assures alignment with the prompt based on human evalua-
tions. This grants users a more controlled trade-off between
visual quality and prompt fidelity. By adjusting the weights
71 and 79, users can tailor the generation process to their
specific preferences.

A plot of aesthetic score versus pickscore is shown in
Fig. 5. In comparison to the base diffusion model oper-
ating unconditionally, our approach allows for controlled
guidance by adjusting the parameters y; and 73, enabling
a flexible trade-off between multiple reward signals such as
aesthetic quality and pickscore. This provides users with

greater control to tailor generations based on specific ob-
jectives or use cases. The performance obtained by CoDeX
demonstrates significantly improved rewards across multi-
ple reward components. Specifically, CoDeX significantly
improves performance in multi-reward scenarios, boosting
the aesthetic reward by about 43% and the pickscore by 7%
compared to CoDe on average. Against gradient guidance
methods like FreeDoM, CoDeX still outperforms with in-
creases of 29% (aesthetic) and 6% (pickscore).
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Figure 5. In a multi-reward guidance scenario, CoDeX consis-
tently achieves higher aesthetic scores and pickscores, indicat-
ing superior performance in optimizing both rewards compared to
other methods.

5.4. (T+I)2I (Text-and-Image-to-Image)

As we move through the experiments we keep on adding
more control. This setting blends an additional reference
image, enabling the generation of a new image that not only
aligns with a given text prompt but also imitates the stylistic
elements of the provided reference. We use SDEdit [53]
for the style transfer and start the denoising from an inter-
mediary point by adding noise to the reference image and
then during the denoising using the pickscore as the reward
maintain a strong adherence to the prompt.

This offers users more fine-grained control over multiple
competing aspects of image generation, specifically balanc-
ing adherence to the text prompt with matching the stylistic
elements of a reference image. In this case, for prompt ad-
herence, we are guiding the model using the pickscore ex-
plicitly while for style transfer it starts the denoising from
the noised reference image (r=0.6) [53]. Thus we want the
final generated image to preserve the style and structure of
the reference image and at the same time be able to adhere
to the provided prompt. As seen in Table 5 and Figure 6
SDEdit prioritizes style transfer. However due to the ab-
sence of guidance its effectiveness in capturing prompt in-
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Figure 6. (T+I)2I scenario with pickscore for prompt alignment, SDEdit shows a stronger emphasis on style at the expense of capturing
detailed prompt intricacies. However, CoDe and CoDeX successfully manage to achieve both the style transfer while adhering to the
prompt. CoDeX generates images that adhere to the prompt more while still capturing the stylistic elements (Table 5).



Method Aesthetic Guidance (Image Based Guidance)
Rew. (1) | FID (J) | CMMD () | T-CLIP (1) | Time (])

Base-SD 5.17 88.213 0.203 0.769 0.32
CoDe (N=4) 5.59 90.51 0.277 0.770 6.93
CoDe (N=40) 6.16 91.52 0.389 0.772 57.53
CoDeX (N=4,greedy) 8.26 93.46 0.657 0.772 11.67
CoDeX (N=4,mn (7 = 0.001)) 8.27 92.44 0.666 0.772 11.52
CoDeX (N schedule, greedy) 8.34 92.93 0.644 0.771 12.94
CoDeX (N schedule, mn (7 = 0.001)) 8.37 90.65 0.634 0.772 13.20
CoDeX (N schedule, mn (7 =0.001), KMeans) 8.19 91.23 0.602 0.773 9.42

Table 1. Aesthetic guidance results comparing CoDeX and CoDe on various metrics like reward (aesthetic score), FID, CMMD, T-CLIP,
and time (in minutes per image), The schedule used is [2, 2, 2, 4, 4, 4, 4, 6, 6, 6], mn is multinomial sampling. CoDeX significantly reduces
time by 5—6x while improving aesthetic reward alignment. This comes with a higher divergence from the prior (increased CMMD), but
without reward hacking (as shown in qualitative samples in Fig. 3 and maintaining alignment with text (T-CLIP)).

Method Aesthetic Guidance

Rew (1) | FID () | CMMD ({) | T-CLIP (1)
MPGD 5.96 95.60 0.472 0.762
FreeDoM | 6.56 104.61 0.637 0.756
UG 6.18 153.71 0.844 0.745
CoDeX 8.37 90.65 0.634 0.772

Table 2. Aesthetic guidance results comparing gradient guidance
methods to CoDeX. CoDeX achieves the highest reward and better
prompt alignment (T-CLIP score), while remaining closer to the
prior than other methods. FreeDoM and UG, due to their recurrent

steps, are further from the prior (higher CMMD and FID).

Method Pickscore Guidance

Rew (1) | FID (]) | CMMD (]) | T-CLIP (1)
MPGD 0.2254 | 140.00 0.500 0.810
FreeDoM | 0.2287 | 143.23 0.483 0.817
UG 0.2282 | 149.54 0.626 0.816
CoDeX 0.2449 | 131.64 0.457 0.824

Table 3. Pickscore guidance results comparing gradient guidance
methods to CoDeX. It deviates less from the prior (lower CMMD)
and offers better prompt alignment (higher pickscore and T-CLIP).

tricacies is limited. In comparison, both CoDe and CoDeX
demonstrate the capacity to balance both style and prompt
adherence. CoDeX achieves slightly better prompt adher-
ence and enhanced style transfer, all while being nearly
twice as fast as CoDe.

5.5. Non-Differentiable Rewards

One of the key advantages of CoDe is its ability to oper-
ate in settings with non-differentiable rewards, as it does not
rely on gradient-based optimization. Motivated by this, we
also extended our algorithm to such scenarios. We use zero-

order optimization, which enables gradient approximation
without explicitly requiring reward differentiability.

For the non-differentiable reward, we use image com-
pressibility [40] which measures the size of the image
in kilobytes. Therefore we guide the model to create
lightweight compressible images. The quantitative results
are summarized in Table 6. As seen from the performance
degradation, approximating gradients in this setting is par-
ticularly challenging. The high dimensionality of image
data, even when working in a latent space, requires a large
number of particles to obtain a reliable gradient estimate.
This leads to high computational overhead that renders the
method inefficient in practice when compared to CoDe.
This can be also seen in the qualitative results in Fig. 7.

Unconditional models produce highly detailed images,
which are visually rich and are thus less compressible.
CoDe effectively blurs backgrounds and removes fine de-
tails, like wolf hair in the qualitative examples, leading to
improved compressibility. CoDeX despite using many par-
ticles (IV'=>50), suffers from noisy gradient estimates which
leads to significantly increased computational cost and time.
Therefore, as seen qualitatively, while CoDeX introduces
some blurring, it struggles to remove fine details as effec-
tively as CoDe, illustrating the inefficiencies of zero-order
optimization in high-dimensional spaces.

6. Conclusion

We propose a unified framework that efficiently com-
bines blockwise sampling with blockwise gradient-based
guidance, reducing sampling overhead while maintaining
strong performance trade-offs. This integration makes
CoDe more effective for differentiable reward settings,
where it outperforms purely sampling-based strategies in
both efficiency and reward quality. However, for non-




Method pickscore Guidance (T2I Based Guidance)
Rew. (1) | CMMD () | T-CLIP (1) | Time ()

Base-SD 0.21901 0.3176 0.8115 0.33
CoDe (N=4) 0.23094 0.3873 0.8179 1.89
CoDe (N=40) 0.24244 0.5116 0.8246 16.89
CoDeX (N=4,greedy) 0.24444 0.4666 0.8265 4.45
CoDeX (N=4,mn (7=0.0003)) 0.24440 0.4598 0.8229 4.47
CoDeX (N schedule, greedy) 0.24493 0.4569 0.8242 4.45
CoDeX (N schedule,mn (7=0.0003)) 0.24413 0.4429 0.8230 4.44
CoDeX (N schedule,mn (7=0.0003) ,KMeans) 0.24221 0.4235 0.8216 3.44

Table 4. Pickscore guidance results comparing CoDeX and CoDe on various metrics like reward (pickscore), CMMD, T-CLIP, and time
(in minutes per image), The used schedule is [2, 6, 6, 2, 2, 2, 4, 4, 6, 6], mn is multinomial sampling. CoDeX improves guidance efficiency
(reducing time by 3—4x) and achieves better prompt alignment (higher pickscore and T-CLIP), while also deviating less from the prior
(lower CMMD).

Method pickscore Guidance ((T+I)2I Based Guidance)

Rew. (1) | I-Gram (1) | CMMD (}) | T-CLIP (1) | Time ()
SDEdit 0.20385 46.35 1.0078 0.75618 0.06
CoDe (N=4) 0.21324 4491 1.1162 0.77535 0.32
CoDe (N=40) 0.22210 43.69 1.1984 0.77993 2.87
CoDeX (N=4,greedy) 0.22229 45.07 1.2489 0.78113 1.12
CoDeX (N=4,mn (7=0.0003)) | 0.22263 45.04 1.2210 0.77717 1.05

Table 5. (T+I)2I pickscore guidance results comparing CoDeX and CoDe on various metrics like reward (pickscore), I-Gram CMMD,
T-CLIP, and time (in minutes per image), mn is multinomial sampling. CoDeX improves guidance efficiency (reducing the time by 2x)
and achieves better prompt alignment (higher pickscore and T-CLIP), while also preserving the style better (I-Gram), which comes at
higher deviation from the prior (higher CMMD).

Method Compress Guidance (Non-Differential)
Rew. (1) | FID () | CMMD (}) | T-CLIP (1) | Time (|)

Base-SD -103.089 | 72.30 0.1870 0.7712 0.35
CoDe (N=4) -61.480 81.86 0.3378 0.7744 1.74
CoDe (N=40) -32.015 135.00 0.9901 0.7574 15.79
CoDeX (N'=1) -64.524 81.69 0.3390 0.7721 3.70
CoDeX (N'=10) | -59.048 83.56 0.3183 0.7770 11.26
CoDex (N’ =150) | -57.170 105.13 0.3290 0.7667 45.40

Table 6. Compressibility guidance comparison between CoDe and CoDeX (N’ represents the number of particles taken for the zero-
order gradient estimations. High image dimensionality in latent space leads to noisy gradient estimates for CoDeX (larger N'), increasing

computational cost (time) and diminishing performance compared to sampling-based methods like CoDe.

differentiable rewards, the gradient estimates become in-
creasingly noisy, requiring a large number of particles to
approximate them accurately. As a result, the performance
degrades and falls short of the purely sampling-based ap-
proach in these scenarios.

7. Future Work

Despite significant advancements in conditional image
generation, its inference time remains a considerable bot-
tleneck compared to unconditional models, limiting real-
world adoption. Future work should look into making this
even more efficient and reduce the time close to uncondi-
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Figure 7. Qualitative samples comparing unconditional generation (Base SD) with compressible guidance methods (CoDe and CoDeX).
Base SD generates detailed images, indicating low compressibility. CoDe blurs backgrounds and removes fine details (e.g., wolf hair).
CoDeX even with N’ = 50 struggles to remove subtle details due to the noisy gradient estimation.

tional diffusion. Additionally, due to time constraints, we
did not explore the effects of dynamic temperature schedul-
ing or adaptive particle allocation. Investigating these direc-
tions could yield further improvements in both generaliza-
tion and efficiency, potentially enhancing reward outcomes
across a broader range of tasks.
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Generative Al

Throughout the history, humans have learned to leverage machines to automate various tasks. We
used machines to boost our limited physical strength, endurance, memory, and computing capability.
With the emergence of Generative Al, this boundary is shifting rapidly. Generative models that can
make text, images, code, and even strategic decisions are starting to help us think and be creative.
As long as we can gather enough data to train an Al to act and make decisions like a person, we can
now automate many tasks that used to be done by people [27]. This change has happened thanks
to not only new model architectures like large language models (LLMs) or diffusion models but also
better hardware power and the availability of much more training data that help with the needs of these
complex, data-heavy systems.

Generative Al is reshaping the landscape of technology and creativity by enabling systems to au-
tonomously generate text, images, audio, video, and other forms of content. This capability is rev-
olutionizing content creation, problem-solving, and innovation across a wide range of domains [41].
Industries such as healthcare, logistics, entertainment, manufacturing, real estate, finance, and law
are profoundly adopting generative Al for tasks like visual content generation, audio synthesis, video
production, text and code creation, and intelligent data retrieval. These systems boost efficiency, cre-
ativity, and user control by also supporting back-and-forth collaboration and knowledge management
through personalized and adaptive solutions.

As the amount and diversity of training data for generative models keeps growing, these models are
showing more and more traits of foundational models, systems that can generalize widely, and display
a deeper understanding of the world. This has been possible due to emergence and homogenization,
which allow the behavior to be implicitly induced and build them across a wide range of applications
respectively [9]. This increasing generality also brings challenges, especially in terms of controllability
and alignment with user intent. In this work, we look into a subclass of these models (diffusion models)
and attempt to make them more controllable, while our experiments are conducted in the image gener-
ation domain, the proposed approach is generalizable and can be easily adapted to other modalities.

20



Image Generation

Al Generated Content has revolutionized the way we retrieve and consume information. By automating
the generation of text, images, and videos, Al enables quick, scalable content production tailored to
individual needs and preferences. Generative Al aims to learn the underlying patterns of a dataset
to generate new, original samples that resemble those drawn from the same distribution. Thus given
enough samples, sampled from an underlying unknown distribution p(z) the goal is to generate new
samples z such that z ~ p(z).

4.1. Al Based Image Generation

In recent years, image generation has made great progress as an important application area of artificial
intelligence technology. Generative models based on deep learning have been able to create incred-
ible visual content, which is widely used in various fields such as entertainment, scientific research,
art, and commercial applications. The core of this technology is to simulate or reconstruct real-world
image content [6, 29]. Early frameworks for image generation models were dominated by generative
adversarial networks (GANs) [15] and variational autoencoders (VAEs) [25]. Nowadays, large-scale
generative models based on diffusion models [52] have become state of the art, and have significantly
improved the image fidelity and diversity.

4.2. Generative Models

In this section, we discuss the evolution of the generative models used for image generation. We
discuss the previously used methods like VAEs and GANs and then discuss Diffusion Models. Figure
4.1 gives a high-level overview of these different models.

4.2.1. VAE: Variational Autoencoders

Variational autoencoders (VAE) [25, 44] are a class of generative models comprising of an encoder-
decoder [10] structure that can reconstruct input data. Therefore they aim to generate new samples by
learning the latent representation of the data. Unlike Autoencoders, VAE applies a probabilistic model
to deep neural networks. Their major objective is to map the input to a data distribution rather than
mapping it into a fixed vector [63]. Thus, sampling from the distribution increases the data diversity as
well as the capability of noise handling.

The encoder maps each data element z; to a latent space z; that follows a Gaussian distribution (Fig-
ure 4.2).

log g4 (:?[2) = log N (=; 1) (2), 2™ (2)1) (4.1)
p(z) = N(20,1) (4.2)

Thus, the encoder learns to predict the mean and the variance of the distribution. However, this process
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Figure 4.1: A sketch comparison of generative model architectures. (a) GAN model generates images using the generator that
is trained by adversarial training. (b) VAE model reconstructs the image by maximizing the variational lower bound from the
latent representation. (c) Diffusion model reconstructs image by denoising the Gaussian-noised image in an iterative process.

Figure 4.2: A Variational Autoencoder graphically represented. Here, encoder ¢(z|x) defines a distribution over latent
variables z for observations z, and p(z|z) decodes latent variables into observations.
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Figure 4.3: The reparameterization trick to make sampling from parameterized distribution differentiable [65].

is not differentiable as sampling is a stochastic process and therefore we cannot back-propagate the
gradient. To make it trainable, the reparameterization trick (Figure 4.3) is used, which separates the
sampling and the prediction of the mean and variance.

2 = pgla) + og(a) O c, (4.3)

where € is randomly sampled from normal Gaussian distribution. The decoder aims to reconstruct the
input, which is trained by maximizing the probability of generating input data given the latent space
variable P(z|z). Itis trained by maximizing the tractable lower bound of P(z) [33]

L
1
Ly = axgmax = > 1og po(e|") = Dici(go(2l2) | p(2)). (4.4)
' =1

VAEs are very useful because of their latent space structures and are thus used for reducing computa-
tional complexity by learning the representation in the latent space instead of the pixel space. However
for image generation direct sampling from Gaussian distribution leads to blurred images, and informa-
tion loss (due to them being projected on lower dimensional latent). Thus they have inferior perfor-
mance to SoTA image generation architectures like GANs and Diffusion models. Figure 4.4 represents
the overall structure of VAE for image generation.

4.2.2. GAN: Generative Adversarial Networks

Generative Adversarial Networks (GANs) [15] are inspired by the ideas of game theory. They have ex-
cellent performance in image generation tasks, are fast, and dominated the field in the early days. GANs
introduced the idea of adversarial training and its model structure consists of two parts: the Generator
(G) and the Discriminator (D). Wherein the generator is responsible for generating fake data to trick the
discriminator into believing that the generated data is close to the real data distribution. Whereas the
discriminator’s task is to determine whether the data is real or generated. Through adversarial training
with minmax algorithm, the generator and discriminator learn together, thereby enabling the gener-
ator to generate more realistic data and the discriminator to more accurately distinguish between the
real and the generated data.

The training objective either requires fixing the generator and taking gradient ascent on the discriminator
(as it maximizes the value function):

V(D,G) = Egnpgallog D(x)] + E.np. [log(1 — D(G(2)))], (4.5)

or fixing the discriminator and taking the gradient descent on the generator’s loss:

Le = log(1 — D(G(2))). (4.6)



4.72. Generative Models 24

Figure 4.4: The overall model structure of VAE consists of an encoder, which maps the image to the latent space, and a
decoder, which recovers the image from the latent space to the pixel space. During training, the VAE learns to recreate its
inputs, while during generation, it samples from the latent distribution to produce novel images similar to the training data.

Thus it effectively becomes a min-max game with the objective:

min max V(D,G). (4.7)

GANSs can generate images with higher fidelity when compared to VAEs. They can also perform well on
complex tasks like text-based image generation, image superresolution, object detection, etc. However,
training a GAN is trickier, since there is no explicit representation of the data density p(z) which leads
to lower diversity. Furthermore, the need to balance the performance of the discriminator and the
generator to avoid model collapse ends up generating the same image from the noise [48]. Figure 4.5
represents the overall architecture of GANs for image generation.

4.2 3. Diffusion Models

Sohl-Dickstein et al. [52] first proposed the application of diffusion models in the field of deep learning.
The core idea of this model is to simulate the diffusion and restoration processes in physical systems
to generate high-quality data samples.

They break down the process of converting the noise into the image into multiple iterative steps. Thus
the neural network learns to reverse this process py(x;—1|z:) since g(x¢|z:—1) is known and deter-
ministic. There are two popular diffusion model formulations, denoising diffusion probabilistic models
(DDPM) [18] and score-based diffusion models [56].

DDPM is a fundamental type of diffusion model that uses discrete timesteps. It is based on Monte
Carlo Markov Chain for both the forward and the reverse process. In the forward process which is
deterministic, it goes from a clean sample at t = 0 to a complete random Gaussian noise at ¢t = T (for
large T). This noise is scaled by a scheduler 5, and o, = 1 — 3;. The forward process is defined as:

T
q(zrr) = [ [ alwelaer), (4.8)
t=1
Qe)(xt\xtq) = N(ﬂﬁt; \/07153715717 BtI); (4.9)

qo(zt|To) = N (x5 /arzo, (1 — a)I). (4.10)
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Figure 4.5: The overall structure of GAN consists of a generator and discriminator. The generator inputs a random noise
vector to generate an image. The discriminator judges the real image and the generated image.

where a; = Hthl ;.

The reverse process is also a Markovian chain that samples the data from a learned Gaussian distri-
bution at each timestep to remove this noise. Thus to generate a new image we just sample a random
Gaussian noise and then iteratively apply the reverse process:

Po(112) = N (013 pro (e, t, Do (a1, ). (4.11)

DDPM takes the variance as a fixed schedule thus Xy (2, t) = ; and calculates the mean value with the
approximation of z( given z, that is the posterior mean of the forward process, derived from Bayesian
theorem :

wo(ze,t) = fi(zy, 29) = \/IOTt(xt - \/lﬁ_tiateg(xt,t)). (4.12)

Training is based on the optimization of the variational upper bound, which can be reparameterized as:

L= Et,a:g,e |:

e —eg(vV/arxo + MG,t)H? . (4.13)

The loss function is the MSE error between the predicted noise at a certain timestep and the noise that
is sampled from the forward process. Therefore, DDPM uses a time-aware U-net [46] as the backbone
network that takes the noise data z; and the timestep ¢ as the input.

Score-based diffusion models generalize the DDPM process using differential equations. Score match-
ing refers to the use of a score function to approximate the gradient of the dense probability function
S(x,t) = Vi logp(xy). In diffusion models, this is applied by using stochastic differential equations
(SDEs). The forward process becomes:

dx = fi(x)dt + gidw. (4.14)

In the above equation f;(z) is vectored value function called the drift coefficient of « and g; is a scalar
function known as the diffusion coefficient of z, both of which are known. The reverse process is defined
as:

dz = [fi(x) — g7V log pi(z)]dt + g(t)dw. (4.15)

We learn the score function and the training objective is:

* . 2
0" = arg min E, {/\(t)Em(O)Ex(tﬂx(O)[HSG(m(t)vt) — V) IOgPOt(mt\u’Uo)Hz]} : (4.16)
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Figure 4.6: The overall structure of diffusion models; x( represents the true/clean natural image, xz is pure Gaussian noise.
q(xt,z¢—1) is known and from this we learn pg(z¢—1|z¢) .

Diffusion models show a much more stable training process as compared to GANs, preserving the high
fidelity of the images and the diversity. However, it needs massive repeating steps to denoise the data
in the correct direction. Figure 4.6 represents the overall structure of the diffusion models.

In the next section, we will dive deeper into the mathematical derivation for the diffusion model.



Diffusion Models

Diffusion models [52, 18, 54, 56] excel at modeling complex and realistic data distributions and demon-
strate remarkable abilities across vision [55, 36, 45], small molecules [66, 67, 21], proteins [1, 62], audio
[26, 32], 3D objects [34, 35] and a lot more. Diffusion models take inspiration from thermodynamics and
propose an iterative Markov Chain process for image generation. They degrade the image gradually
by adding Gaussian noise and learn to reverse this process, thereby generating images from sampled
Gaussian noise. In this chapter, we aim to understand the underlying mathematical formulation behind
the diffusion models and try to understand how they are trained. For a more deeper understanding,
readers are encouraged to consult Luo et al. [33].

5.1. Mathematical Formulation
In this section, we will discuss the mathematical formulation behind training a diffusion model, the ELBO
based objective, and the score matching formulation.

5.1.1. Evidence Lower Bound (ELBO)
Since it is a Markov Chain:
q(@e|zi—1) = q@i|ze—1, 20). (5.1)

the extra conditioning term is superfluous due to the Markov property. Then with Bayes rule, we can
rewrite this as:

q(xt_1\a:t,$0)Q(33t|fU0)_ (5.2)

q\T¢|Tt—1,T0) =
(@ ) @ ]z0)

Figure 5.1: In diffusion model we know the noising process q(z:|x:—1) and need to learn p(z¢—1|x¢). xr is pure random
Gaussian noise and zg is the clean image.
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log p(z) = log/p(xOIT) dx1.T (5.3)
— log / p@or)a(@irleo) \ (multiplying and dividing by q(z1.7|0)) (5.4)
q(z1:7]20)
p(xO:T) :|
= log Eq(zy.1|wo 5.5
08 Lg(z1.7|0) [ (z1.7|20) (5.5)
> Eqg(ar.r|a0) {log (Oﬂ} (using Jensen’s Inequality ) (5.6)
) q(w1.7|20)

We get the ELBO term which is the lower bound thus, maximizing this term means we are maximizing
log p(z). Hence, we use this as our proxy optimization term.

logp(w) Z Eq(rer\mg)
>E

q(z1.7|x0)

Using Equation 5.1

1o Pm)po(olan) TTis po(re o) |

g 2127) Hlepe(zt—llxt)]

Hthl Q($t|$t71)
plar)pe(ola1) [T;_o po(we—1lze)
q(z1]0) [Tr—y a(e|7e-1)

> By .r|zo)
R g(w1|z0) TTj—y q(@elzs -1, 20)
T
p(zr)po(zo|r1) po(Ti_1]|T4)
> Eyarirleo) |log =~ tlog| | =
alerrlzo) g(w1]xo) L1 q(@ilwi 1, 20)
Using Equation 5.2
>E lo p(zr)po(wo|T1) T lo H po(wi—1|Ts)
= ~al@nrlzo) S e .’L‘1|$0 & a(ze—1]z¢,%0)q(we|0)
L q(zt—1]z0)
i T
p(zr)pe(wo|r1) po(wi_1]xt)
>E log ——————~ +1
= Halerlzo) |08 q(z1]wo) - ogH (

terms get canceled except for qq(iﬂfg))
p(zr)pe(wolz1)

(
= Hatenria) [bg pe=e)

p(zr)pe(wol|T1)

= Bo(orrlao) [log q(xr|zo0)

p(xr)
> Ey(a1.r120) 108 P (T0|T1)] + Eq(ay,1|20) {log ] Z Eq(z1.720)

> Eq (a1 |20)[l0g Po(2o|21)] + Eq(ar|2) [log .%'T|.Z’0 } ZEq(at xy—1|z0) {1

> Eq(w1|zo) [10gpg(l‘0|l’1)] - DKL((]

+ log

q(ze_1|ze,m0)glazrdTs)
a(z=tT0)

t=2

glzrtTo)

—a q(ze—1|ze, 0)

q(zr|70)

t=2

(z7|z0) || (7))

reconstruction term

prior matching term

Po(zi—1|7¢)
q(xr|zo) 1o q(@e—1|2e, o)

d (2e-1]ze)
+Zlog Po(Ti—1|T¢ 1

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

p6($t71|$t) ]
Q(ﬂft—1|$t,$o)

(5.15)

p()(xtfl |1't) }
q(xi|zi—1,20)

(5.16)
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T
- ZEq(xt\zo)[DKL(Q(CEt—ﬂxt,xO) | po(zi—1]z4))] - (5.17)

t=2

denoising matching term

Thus we have derived an interpretation for the ELBO, and each individual term here represents:
* Eg(a1]20) [log po(zo|z1)] can be interpreted as a reconstruction term, which predicts the log proba-
bility of the original data given the first step latent.

* Dir(q(xr|xo) || p(xzr) The prior matching term represents how close the distribution of the final
noisy input is to the standard Gaussian prior. It has no trainable parameters and for large enough
T, can be approximated to zero.

* Eg(ailz0) [Prr(q(ze—1]2t,70) || po(w:—1]2¢))] the denoising matching term ensures that the ground
truth denoising step ¢(x:—1|x¢, xo) matches the transition step py(xz:_1|x¢). This term dominates
the reconstruction term and thus can be used as a proxy for optimizing.

5.1.2. Training Objective
Thus the objective becomes (as ELBO needs to be maximized and thus the negative of this term needs
to be maximized which means it should be minimized):

argrneinEtw{Q,T} [Eq(zslz0) [PrL(q(zi—1]2¢, 20) || Po(2i-1]20))]] - (5.18)

Thus we model the py(z:—1|z:) also as a gaussian, with the same variance as q(z;—1 |z, zo) i.e. (refer
Section 5.1.3):

arg Hbin D (q(zi—1|ze, x0) || o(2i—1]2¢))

= argmin DN (we—1; p1g, Xq(t)) || N(we—1; o, E4(1)))

. 1
= argm@lnm o (e, t) — ,uq(xhxo)Hg} . (5.19)

This can be optimized in two major ways where the neural network learns different objectives which
are both interrelated:

1. ég(xy,t) is a neural network that learns to predict the source noise ¢y ~ N (¢; 0, I) which basically
determines x; from z¢. Learning to predict the noise is equivalent to learning to predict the original
image x(, but some prior works have found that predicting the noise resulted in better performance

[18, 47):
Ty = \/0771,.130 + v 1-— Qi€qQ- (520)

1—ay_ + ar_1(1 —
oy o) = VL0 1)?_ &to‘t 11 = an)zo (5.21)

Substituting eq 5.20 for z( in eq 5.2 (from subsection 5.1.3 eq 5.30) we get:

V(L= Gy ) (L - o) B

1q (e, €0) = =& (5.22)
1 1-— (677
= Ty — €0- 5.23
Var VI an/a (5:29)
Therefore, we approximate the denoising transition mean py(z;,t) as:
1 l1-a R
pio (e, t) = ¢ L ep(ay,t). (5.24)

CVI-an/a
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Substituting eq 5.23, 5.24 in eq 5.19 we get the training objective for this formulation as:

(1—ay)?

- 2
202(0) (1~ a)ay L0~ @Dl (5.25)

arg min
0

2. sg(xe,t) is a neural network that learns to predict the score function V., log p(x:) which is the
gradient of z; in the data space, for any random noise level t.

Vauwg =z + (1 — )V, log p(ay) (5.26)

Following similar steps as before the training objective becomes:

(1—ay)?

202(t) oy

arg min
0 q

Isoze,t) — Vi, logplae) 3] (5.27)

Thus we can either train the neural network to predict the noise or predict the score function. Generally,
diffusion models are trained by randomly sampling timesteps t and minimizing the norm of the prediction
with the ground truth target.

5.1.3. Determining q(z;— 1|z, zo)
From the Bayes rule, we get that (after skipping some steps for detailed calculation refer to [33]):

q(xe|2zs—1,20)q(21—1]20)

q(zi—1|me, T0) = o(z o) (5.28)
_ N($t7 \/Oéitl'tfl, (1 — Oét)I)N(.’Etfl; \/Oiltflfﬁ[), (1 - dtfl)]:) (529)

N (23 Vaxg, (1 — a;)I)
o Nz 1 Vo (1l —ap—1)z + Va1 (1 —ag)wg (1 —oy)(1— o‘zt,l)) (5.30)

1— oy ’ 1— oy

Hq(Tt,T0) Zq(t)=03(1)

5.2. DDPM and DDIM

5.2.1. DDPM
A diffusion model trained using the Markov Chain and predicting the noise was proposed by DDPM
[18]. The training and the sampling algorithms are shown in the Algorithm 1 and Algorithm 2.

Algorithm 1 Training
repeat

Algorithm 2 Sampling

N 15 @ ~ N(0.1)
2 xowq(.xo) 2. fort=1T,...,1do
i' th;](l(go;T({l,.”’T}) 3 ift>1z2~N(0,1),elsez=0
: < ’ . _ 1 11—y
5.  Take gradient descent step on 4 wma = g (e \/ﬁ@(ztat)) + oz
— — 2 .
6 Vo ||e — eo(v/a@rmo + I — aue, t) 5: end for
7: until converged 6: return z

Generating a high-fidelity image requires traversing the entire reverse diffusion chain, which typically
comprises a large number of timesteps (7" ~ 1000). This sequential, step-by-step nature of sampling
leads to slow inference times and high computational expense, as each denoising step requires a
forward pass through the neural network. This dependency on numerous iterations to ensure high
sample quality poses a challenge for real-time applications and large-scale data generation. This com-
putational and inefficient bottleneck served as a primary motivation for further research, leading to the
development of methods that could accelerate the sampling process without compromising generation
quality, notably through the introduction of Denoising Diffusion Implicit Models (DDIMs) [54].
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Figure 5.2: DDIM sampling explained, M: represents the manifold for t timestep

5.2.2. DDIM

DDIM aimed to accelerate the generative process without sacrificing the high sample quality achieved
by DDPMs. The key innovation through which they achieve this lies in generalizing the forward diffu-
sion process to a non-Markovian one. This means that in DDPM'’s the forward process requires a
strict dependence of z; only on x;,_; DDIM allows it to depend on the initial data point o aswell. Then
formulating the reverse process deterministically as a solution to an ODE (Ordinary Differential Equa-
tion) allows for jumping in the denoising trajectory. Thus can directly estimate a less noisy sample x;_
from z; skipping t—k—1 steps. Thus by choosing a subset of total timesteps T (around 50 instead of
1000). DDIM can drastically reduce inference time, often by orders of magnitude (10—50x faster), while
maintaining comparable or even superior sample quality in many cases.

Crucially, the training objective of DDIM remains identical to that of DDPM, thus we can use the neural
network trained using DDPM and sample much faster from this. Figure 5.2 explains how it works thus
instead of going directly from z; to x;_; in DDIM we go from z; to z; using the Tweedies formula
(predicted x() and then add noise to this predicted z, to go till z;_;.

— V1 - t
Tg—1 = /o1 (xt xOétEe)(l‘t, )> +/1— 1 —ofeg(z,t) + ovey (5.31)
¢ ~~

random noise

predicted zo direction pointing to z,

5.3. Latent Diffusion Models

Building on the advancements of DDPM and DDIM, a further critical step towards making diffusion
models practical for high-resolution image generation was the introduction of Latent Diffusion Models
(LDMs). The fundamental challenge with previous diffusion models, especially for large images, was
that the diffusion process (both forward and reverse) operated directly on the raw pixel data. This
meant that for a high-resolution image (e.g., 1024x1024 pixels), the neural network had to process an
enormous number of dimensions at every single step, leading to extremely high computational costs
for both training and inference.

LDMs address this computational burden by performing the diffusion process not in the high-dimensional
pixel space, but in a much smaller, perceptually meaningful latent space. This is achieved by leverag-
ing a pre-trained autoencoder, which is a neural network composed of two parts: an encoder and a
decoder. The encoder takes a high-resolution image and compresses it into a lower-dimensional la-
tent representation, capturing the most essential visual information while discarding redundant details.
Whereas, the decoder learns to reconstruct the original high-resolution image from this compressed
latent code.

Thus using the autoencoder we train and sample from the diffusion models in the latent space lead-
ing to a substantial reduction in computational requirements. This still retains enough information to
reconstruct a high-quality image as the autoencoder is trained to preserve perceptual fidelity. During
inference, a random noise vector is sampled from the latent space, and the diffusion model performs
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Figure 5.3: Stable Diffusion architecture.

its denoising steps on this low-dimensional representation. Once the denoising is complete, the re-
sulting clean latent code is passed through the pre-trained decoder, which reconstructs the final, high-
resolution image. This separation of concerns allows for much faster training and sampling of diffusion
models, even on consumer-grade GPUs, making them far more accessible and enabling the creation
of powerful models like Stable Diffusion. Furthermore, the latent space often allows for easier ma-
nipulation and conditioning (e.g., text-to-image generation) by connecting external information to this
compressed representation via mechanisms like cross-attention.

This architectural efficiency, coupled with the ability to condition the generation process, led to the
development of highly influential models. The subsequent section will delve into how these principles
are basically applied in Stable Diffusion, a widely recognized example of a Latent Diffusion Model that
has revolutionized text-to-image synthesis and is widely used.

5.3.1. Stable Diffusion

Stable Diffusion [45] is a text-conditional latent diffusion model which allows it to drastically reduce
the computational resources required for both training and inference, allowing for high-quality image
generation accessible on consumer-grade hardware like standard GPUs.

Text-conditional generation allows users to exert fine-grained control over the generated content by
simply providing a textual prompt. Thus it provides users the ability to control the image generation
using text prompts. The remarkable diversity and quality of Stable Diffusion is due to its extensive
training. The model was mostly trained on massive datasets of image-text pairs, most notably subsets
of the LAION-5B dataset [49]. LAION-5B is a publicly available dataset comprising of billions of image-
text pairs scraped from the internet. This huge amount of diverse data allowed Stable Diffusion to learn
a rich understanding of the relationship between visual concepts and their textual descriptions, covering
a vast variety of objects, scenes, styles, and artistic movements. Thus, this comprehensive training
enables it to generate a wide spectrum of images, from photorealistic scenes to abstract art, all guided
by textual input. This large dataset allows it to serve as a foundational model for image generation.

The core components of Stable Diffusion, as depicted in the architectural diagram (Figure 5.3), work to
translate textual prompts into stunning visual imagery. The architecture has two major parts:

1. VAE The VAEs are an important part of the stable diffusion architecture as using the encoder (£)
and the decoder (D) they train the diffusion mode and perform the inference in the latent space
(z) instead of doing it in the pixel space (x) which saves a lot of compute and time.
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Figure 5.4: Stable Diffusion (Text conditioning) training

For stable diffusion models like SD 1.5, and SD 2.1 the VAE used is k1-£8 (Kullback-Leibler f8
denotes 8x downsampling and upsampling which uses KL divergence regularization during the
training). Thus for example a 512 x 512 x 3 image is turned to 4 x (%2) x (212) thatis 4 x 64 x 64
in the latent space.

For the newer and larger models like SDXL [39], they use a retrained-from-scratch VAE which is
specifically optimized for larger resolution and refined latent space characteristics.

2. Text-Conditioned UNet text conditioning allows users to guide the image generation process
with natural language, transforming abstract noise into specific visual concepts. The mechanism
for this conditioning primarily revolves around two key components: a Text Encoder and Cross-
Attention layers embedded within the U-Net architecture.

(@)

(b)

Text Encoder Using pre-trained CLIP (Contrastive Language-Image Pre-training) [42] Text
Encoder the text is converted into a numerical form which is machine understandable. CLIP
itself was trained on a massive dataset of image-text pairs from the internet. Its objective
was to learn a shared, multimodal embedding space where similar concepts, whether ex-
pressed in text or image, are mapped close together. The CLIP Text Encoder breaks it
down into individual tokens (words or sub-word units). Each token is then converted into a
high-dimensional vector (token embedding). These embeddings are not just arbitrary num-
bers, they capture the semantic meaning of each word in the context of a vast language and
image understanding. The output of the Text Encoder is a sequence of these token embed-
dings, which essentially represents the numerical representation of the user’s prompt.

U-Net with cross attention The UNet is trained to predict text conditioned ey (z¢, t;y) in-
stead of predicting ey (z¢, t) where y represents the conditioning (text/prompt) and is trained
similarly (Figure 5.4). The U-Net itself is a convolutional neural network designed for image-
to-image translation, operating in the VAE'’s latent space. Its U-shape comes from its sym-
metrical encoder-decoder structure with skip connections, which helps preserve fine details
during the denoising process. The U-Net in Stable Diffusion consists of multiple resolution
blocks. As the noisy latent image passes through the encoder path, its spatial dimensions
are progressively downsampled, capturing coarser features. The decoder path then up-
samples these features to reconstruct the denoised latent. Skip connections connect corre-
sponding resolution levels in the encoder and decoder to ensure information flow. This is
then combined with a cross-attention mechanism to allow text conditioning.

At various points within the U-Net, typically after convolutional blocks at different resolution
levels, cross-attention layers are strategically inserted. These layers are the points where
the text embeddings from the text encoder interact with the latent image features being pro-
cessed by the U-Net. Queries(Q) are derived from the current latent image features within
the U-Net. They represent what the U-Net is currently looking for in the image. Keys(K)
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and Values(V) are derived from the text embeddings produced by the CLIP text encoder
and represent the available information. The attention calculates a similarity score between
the image feature queries (Q) and the text embedding keys (K). This score determines how
much attention different parts of the image features should pay to different words in the
prompt. The resulting attention weights are then used to combine the text embedding val-
ues (V), effectively injecting the semantic guidance from the text into the U-Net’'s image
processing.

QK"
Attention(Q, K, V) = softmax ( > -V, (5.32)
Vd
Q=W oi(z), K =W 1),V = W\ - (), (5.33)

where ¢;(z;) € RV xde represents a flattened ‘intermediate repre_sentation of the UNet im-
plementing ¢y and W € R¥x, Wéf € R4 and W) € R¥< are learnable projection
matrices.

Thus the conditional LDM is learned using:
Lipym = ES(I),y,CNN(O,l),t [H €— Ge(zt,tﬂ'e(y)) ||§] ) (5.34)

which is jointly optimized for both 7y and ¢4 [45].

On top of all this to enhance the influence of the text prompt and improve image quality, Sta-
ble Diffusion also uses Classifier-Free Guidance [19] during inference (explained in detail
in Section 6.1.2) which involves running the U-Net for each denoising step twice once with
text and once with an empty prompt. The final prediction used is then obtained by subtract-
ing the null prompt noise from the conditioned one to push the model more strongly toward
generating content with the specific text prompt, leading to more faithful and striking results.
The guidance scale parameter allows users to control the strength of this conditioning.



Conditional Image Generation

Since image generation models are trained on large and diverse sets of images their training objectives
don’t always align with the human expectations and intentions [31]. For example, images generated
by pre-trained T2I (text-to-image) models, like stable diffusion, may not accurately align to text prompts
or may have a low aesthetic quality [7, 14, 28]. To address this and give users more control over
the generation beyond simply modeling the training data distribution recent works have begun to op-
timize pre-trained diffusion models directly for human-preferred properties [31]. This idea is inspired
by similar prior developments in the LLMs to align them with human intentions to enhance their capa-
bilities. Common popular powerful large language models (LLMs) like GPT-4 [2] after the pretraining
stage are fine-tuned to follow instructions and align well with human preferences. This post-training
process usually involves supervised fine-tuning (SFT) followed by alignment with human feedback us-
ing techniques like reinforcement learning from human feedback (RLHF) [2, 38] and direct preference
optimization (DPO) [43, 16].

These methods can be broadly categorized into two major categories training-based and training-free
(inference-time alignment) techniques. Wherein the training-based methods involve either training a
new model from scratch for this conditioning on paired examples of images and conditions like stable
diffusion or fine-tuning the pre-trained models to align it with the new conditioning signals. Training-
free alignment methods on the other hand utilize an off-the-shelf reward function to approximate the
performance of the image and the conditioning signal and use this during the denoising to generate
images offering better rewards and thereby better alignment to the conditioning signal.

6.1. Alignment Techniques

Recent research has now shifted towards leveraging the powerful representations learned by founda-
tional models, which serve as a robust starting point. This saves the cost and time required for full
model training by allowing efficient alignment to novel conditioning signals.

6.1.1. Finetuning Based Methods

These methods use the pre-trained foundational model and fine-tune it for conditioning using Super-
vised Fine-Tunning (SFT), Reinforcement Learning (RLHF) [11]. In RLHF the base policy remains the
foundational model which is then optimized towards maximizing the reward provided by the reward
model (which is trained to reflect human preferences) [31].

Thus the base policy py is fine-tuned to maximize reward r4(c, ) while minimizing the KL divergence
Dy, between the current policy py and the initial reference policy p,.;. Basically, we want to still stay
close to prior distribution (to avoid reward hacking) and get a higher reward that matches the human
preference.

max Ecpanpo(alo) [ro(c, ) = BDrr(po(ale) || pref(z]c))], (6.1)

35
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Figure 6.1: In RLHF we need to explicitly train a reward model that captures human preference which is then used to fine-tune
the foundational model whereas in DPO using just a preferred and dispreferred output during the training of the model to align it
towards human preference without requiring any explicit reward model [32].

[ controls the extent of deviation from the prior [57]. Optimizing this objective is equivalent to maximiz-
ing the following KL-shaped reward in expectation:

po(xc)
rg(c, ) — Blog m (6.2)

Some ways of doing this are Proximal Policy Optimization (PPO) [50], Direct Preference Optimiza-
tion (DPO) [43, 61], Odds ratio preference optimization (ORPO) [20], Kahneman-Tversky optimization
(KTO) [58, 13, 30], and preference ranking optimization (PRO) [53], etc. To get a better understanding
of these methods refer to their respective papers or this survey paper [31].

These methods work well for conditioning or aligning to a new control signal but require significant
data and computation. Furthermore, for every new conditioning, a new model needs to be fine-tuned
which is not very scalable. Thus we look into inference-time guidance models which use pre-trained
off-the-shelf reward models and guide the images during the denoising to obtain higher rewards.

6.1.2. Inference-Time Guidance: Classifier Based Guidance and Classifier-Free
Guidance

Inference-time guidance allows users to align the pre-trained foundational model to the downstream
task in a training-free manner by using off-the-shelf reward functions. For more details readers are
encouraged to refer to [60]. This is done by either modifying the denoising step to explicitly push the
denoising towards better rewards or by sampling from it multiple times and then selecting the one
expected to give the highest reward. We will now discuss some popular approaches to achieve this -
Classifier Based Guidance (Gradient Guidance) [12, 56], Classifier Free Guidance [19] and Sampling
Based Guidance [51].
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Figure 6.2: (a) shows the denoising process for DDIM scheduler, (b) lllustration of different most popular training-free gradient
guidance algorithms. [68]

Classifier Based Guidance (Gradient Guidance)
For conditional generation[12], the goal is to sample from p(x|y) instead of p(x). Thus wrt to the score-
based formulation we want the V, log p(x:|y). Using the Bayes Rule [33]: V represents V.,

Vlog p(z¢ly) = Vlog (W)

= Vlogp(xt) + Vlog p(y|x:) — Viog p(y) (6.3)
= Vlogp(z:) + Vlogp(yl|z:)

unconditional score  adversarial gradient

In the above Eq. 6.3, we know the first-term unconditional score from the foundational diffusion model
and we get the second term using an off-the-shelf reward model. Since we are utilizing the predicted
clean image using the Tweedies formula for the gradient estimation this is a bit noisy. There are many
different variations of circumventing this which either do this repeatedly [4, 69] or take the gradients wrt
to the predicted image to stay on the manifold [17].

For comparing with gradient guidance we use the methods MPGD [17], FreeDoM [69] and UG [4]. For
more details about these methods and their subtle details refer to their respective papers or TFG [68]
which explains the differences very well. A general view of all the popular gradient guidance in contrast
to DDIM sampling is shown in Figure 6.2.

FreeDoM [69] at the cost of additional compute introduces a recurrent strategy (also called time-travel
strategy) which iteratively denoises z;_, from z; and adds noise to z;_; to regenerate x; back and
forth. During each of these steps it does move it towards higher rewards using the gradients. In the
algorithm 3 we can see that we do gradient ascent in line 12 and do it multiple times (r;) and then again
go from z;_; to z; (line 16).

MPGD [17] aims to keep the image on the manifold even after the gradient and does it by taking the
gradient wrt to xg|; (Vs logr(zo), c)) instead of z; (Vy, logr(xo), c)) and adds it to the clean image
and then goes to the timestep x;_;. In algorithm 4 for stable diffusion we can see we predict the clean
sample (line 5) using the Tweedies estimate and to this, we add the gradient (line 7) and then return to
the t — 1 timestep by adding noise.

UG [4] on top of the recurrent strategy solves the backward optimization problem Ay = arg max J(oe +
A) which guides both x|, and z; simultaneously. Algorithm 5 shows the recurrent strategy for & steps
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Algorithm 3 FreeDoM [69]

Require: condition ¢, unconditional score estimator s(-, t), time-independent distance measuring func-
tion Dy(c, -), pre-defined parameters 3;, a;, learning rate p;, and repeat times {ry,--- ,rr}
1: Sample 1 ~ N(0,1)
2: fort=T101do

3: fori=r,tol1do

4: if t > 1 then

5: €1 ~ N(O, I)

6: else

7: €1 =0

8: end if

9 T = (1 + %ﬁt) xy + Bps(xe, t) + /Brer
10: Tl = \/%j (@ + (1 — au)s(xe, 1))
11: g: = thDg(c, Ill0|t($t))

12: Tt—1 = Tt—1 — PGt

13: if : > 1 then

14 €2 ~N(0,1)

15: xy = /1= w1 + /Brea
16: end if

17: end for

18: end for

19: return x

Algorithm 4 MPGD for latent diffusion models [17]
1: Sample zr ~ N (0, I)
2. fort=1T,...,1do
3: Sample e; ~ N(0,1I)
4: Zot = \/% (ze = VI —=areo(ze,1))
5
6
7

Zo|t = Zojt — CtVzy, L (D(zo|t)§y)
Zi—1 = \/Qt—120|t

: + ]-_dtfl —O't2 ee(zt,t)—l—atet
8: end for
9: return xy = D(z)
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Algorithm 5 UG [4]
Parameter: Recurrent steps k, gradient steps m for backward guidance and guidance strength s(t)
Required: z; sampled from A(0, I), diffusion model ¢y, noise scales {&t}thl, guidance function f,
loss function ¢, and prompt ¢

1: fort =T7,7T—-1,...,1do

2: forn=1,2,...,kdo

3: Calculate 2, as
2 = zt — V1 — areg(ze, 1)
Vo
4: €o(z1,t) = €g(z, 1) + s(t) - V,0(c, £(20))
5: if m > 0 then
6: Calculate Az by minimizing ¢(c, f(2o + A)) with m steps of gradient descent
7 Perform backward universal guidance:

€p < €0 — Vau /(1 —ay) Az

8: end if
9: zi—1 < S(z¢,€9,1)
10: Sample € ~ N(0,1)

11: Zt<—\/O_[t/dtflztfl+\/1—dt/dt,16I
12: end for
13: end for

and shows the two gradients to optimize z; and z, in lines 4 and 7 respectively. Also, it takes m steps
to optimize the backward and get a better approximation of the 2.

Classifier-Free Guidance

Classifier-based guidance uses a pre-trained unconditional model and using an off-the-shelf reward
model it is able to guide the generation towards generating samples for the downstream task the reward
model follows. However, in some cases we can train a conditional model and want to make it abide
better to the given conditioning for example we have stable diffusion models that are text-conditioned
and we want them to generate images that follow the text prompts better. For these cases, we can use
inference time methods like classifier-free guidance to guide it away from the "null” prompt and more
towards the given prompt.

V represents V,,:

Vlog p(y|z:) = Viogp(xi|y) — Vlog p(wy). (6.4)

Substituting Eq. 6.4 to Eq 6.3 we get [33]:

Vlogp(zily) = Viogp(xr) +~ (Vg p(x:]y) — Vlog p(zy)) (6.5)
= Vlogp(z¢) + vV log p(x:|y) — vV log p(x) (6.6)
= 7Vlogp(z|y) + (1 — 7)Vlog p(x+) (6.7)

conditional score unconditional score.

Generally, v is set greater than 1 which means that we are guiding the model to follow the given condi-
tioning y more and steer it away from the "null” conditioning. This null conditioning can also be replaced
by negative prompts [3], the prompt we don’t want the image to adhere to. Subsequent research has
also shown that replacing the unconditional score with a checkpoint diffusion model before it's fully
trained works well, essentially guiding the model away from a less refined (bad) version of itself [24].
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6.1.3. Inference-Time Guidance: Sampling-Based Guidance

The shortcoming of the gradient-based guidance methods (classifier-based guidance) methods is that
they require the reward models to be known and differentiable, which is not always the case. Thus
sampling-based guidance methods which are built on top of the Best-of-N (BoN) approach evolved
[51]. The idea of BoN is relatively simple and it just samples from the prior (unconditional) model
multiple times and then selects whichever one aligns the best with the conditioning. Since it is sampling
from the prior it doesn’t deviate much from it and one way to think why it is very efficient is to think
about estimating winrate. Thus when compared to the base model for n streams the winrate becomes
(n —1)/n. Thus for a large enough n (around 100) it almost always beats the base policy.

However, BoN fails or the number of particles required becomes very large for complex rewards and
large-foundational models. The bottleneck is that we have to unroll the whole diffusion model and then
see which sample or stream is aligning the best with the reward. CoDe [51] makes it more efficient by
unrolling till the blocksize and then using the Tweedies formula to estimate the rewards and then using
greedy sampling to explore more in the directions expected to give higher rewards.

Algorithm 6 CoDe [51]
Require: p unconditional prior, T" total timesteps, NV number of parallel sampling streams, B blocksize,
¢ conditioning

1: Sample initial noise: zr ~ N(0,1)

2: Initialize counter: s =1

3: forte[T'—1,...,0]do

4 if mod(s, B) = 0 then

5 Sample N times over B steps:

m N t+B

6 {xt’l}nﬂ iind. izt plzicafzi)
7: Compute values of all N samples:
8
9
0

Vel = {r@®ml))

Select the sample with maximum value:
xp_q + argmax V(zi_1;p,c)

) N
{mgil }n:l

10:

11: end if
12: s+ s—+1
13: end for

14: Return: z,

As seen by the Algorithm 6 we sample for B steps for N parallel streams and then select the one which
aligns the most with the reward. For detailed mathematical proofs and the working refer to the paper.



Additional Discussion

In this chapter, we talk about pipeline details, modeling design choices that didn’t work, and explain the
reasoning behind some of the choices made and the alternatives considered.

7.1. (T+I)2I scenario affect of the » parameter

For the Image-Text to Image setting where we have a reference image and start the denoising from »-T'
instead of T' by adding controlled noise to the reference image and then further guiding the denoising
towards the pickscore. The hyperparameter r is crucial, balancing the preservation of the reference
image’s style and structure against allowing the model more creative freedom to follow the prompt. A
higher r offers more creative freedom but can lead to the final image hardly resembling the reference,
while a lower r heavily fixes the style and structure, thereby failing to incorporate the prompt. For
a fair comparison and optimal performance, r should be adaptively tuned for each method, prompt,
and reference image, as its optimal value varies based on prompt complexity and reference image
characteristics but due to time and computational restraints we fixed this hyperparameter for all the
methods.

This can be seen from Fig 7.1 as in this case for the same prompt and r it doesn’t perform that well
on a complex style like van Gogh and performs well on an abstract style. When r = 0.6, the model
demonstrates a stronger ability to capture the complex brushstrokes and overall aesthetic of the Van
Gogh style. However, for the abstract style (bottom row), while the colors are preserved, the distinctive
stylistic elements of the abstract art are not fully transferred. Whereas at » = 0.5 for a different prompt,
the model appears to over-capture the Van Gogh style, leading to an output that, while matching the
style, doesn’t adhere to the specified prompt at all. The model for the abstract style captures the style
elements and applies them in a manner that aligns well with the given prompt. These observations
empirically show that the optimal » value is not universal but should be adjusted dynamically based on
both the complexity of the input prompt and the characteristics of the reference style image. Further
research can look into making this adaptive by analyzing the reference image and the prompt.

7.2. Gradient-quidance on the greedy selected sample

The first extension we implemented was adding the gradient guidance to the greedily best-selected
sample as this was much more efficient than adding it individually to all the steams. However, the
increase in performance was not substantial. The reason for this was that by focusing only on the
best path at each step, we were overlooking potentially better, unexplored paths that might have a
lower immediate reward but could lead to a much higher overall outcome with the addition of gradient
guidance. Thus we decided to add the gradients to all the streams which is a bit more computationally
expensive but helps in achieving much better rewards.

41
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Figure 7.1: Performance of CoDeX for varying r values across different reference images. The left columns show results for
r = 0.6, and the right columns for » = 0.5. The top row is for a more detailed and complex reference style (Van Gogh’s Starry
Night) while the bottom row is for a more abstract style

Figure 7.2: The schematic diagram representing the working of the variant tried and the CoDeX



Conclusion

By combining blockwise sampling with blockwise gradient descent we are not only able to achieve
better rewards but are able to do so while deviating less from the prior all while reducing the sampling
computational overhead significantly. Thus it makes the process much more efficient and can be used
for high-quality conditioned image generation for any conditioning with an off-the-shelf reward model.
This makes it much more general and easy to use and extend without requiring any training.

However, extending it to non-differentiable rewards didn’t work primarily due to the highly noised esti-
mates of the gradients in the multi-dimensional image space (even for latent diffusion models) which
required many forward passes for it to work and therefore not only made it lose its efficiency but also
performance. Further research on more efficient gradient approximation methods can be applied to
make these work in non-differentiable reward scenarios.

Despite the notable progress in making conditional image generation through sampling more efficient,
the considerable inference time compared to unconditional models continues to be a major barrier to
real-world adoption. Additionally, due to the time constraints of the current study, a thorough investiga-
tion into the impact of dynamic adaptive temperature scheduling and adaptive particle schedules was
not feasible. Dynamic temperature scheduling could allow for more subtle control over the exploration-
exploitation trade-off during generation, while adaptive particle schedules could dynamically adjust
computational resources based on the complexity of the generation task. Thorough experimentation
in these areas could further increase the overall reward and generalization of our method.
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Appendix

A.l. Guidance Rescaling

We rescale the guidance scale using the same mechanism as the one used in FreeDoM [69]. What
they do is that they basically guide the model guidance scale times in the direction of the gradient and
rescale this scale based on the CFG guidance. Thus they guide the model even more if there is a big
difference between the text conditional and the unconditional noise prediction.

|| correction ||, -scalecrg - scalegrag

scalepew = A.1
new | grad o +¢ (A1)
where correction is just the CFG [19] correction term:
correction = éy(x¢, prompt) — ég(xy) (A.2)

We found the dynamic rescaling strategy to be the most effective within our evaluation setting and thus
adopted it in place of a fixed guidance scale. By normalizing the guidance using the gradient norm and
scaling it proportionally to the correction norm it reduces the sensitivity to the choice of guidance scale.
Therefore, a consistent range of values (generally between 0.2 and 0.6) performs reliably well across
different reward models. This not only improved performance stability but also saved considerable
time, as it decreased the need to manually tune the guidance scale for each individual reward function
checking for a ton of different values based on the reward scale.

A.2. Image Based Guidance

For the aesthetic reward model, we use the ViT-L/14 as the backbone model for the CLIP. We use a
blocksize of 5 for both the sampling and gradient guidance in this case and set the guidance scale to
be 0.2. We do the denoising for 500 DDPM steps and the CFG guidance scale is also set to 5. Also,
we start adding the gradients from the 0.6 noise ratio i.e. if 7' = 1000 we start adding the gradients
from the 600 timestep. This preserves the image structure, doesn’t reward hack, and guides it towards
achieving a better reward. The evaluation set contains 51 prompts (from the ImageNet evaluation set)
and we generate 10 images for each prompt.

For gradient guidance experiments for MPGD and FreeDoM we do the guidance only for noise ratios
between 0.7 and 0.3. Thus for timesteps 70 — 30 in a 100 step DDIM scheduler. The guidance scales
used are 7.5 for MPGD and 0.2 for FreeDoM. Additionally, for FreeDoM, we perform 10 optimization iterations
per denoising step. For the UG baseline, we also use 100 DDIM steps, with 6 optimization steps and a
forward guidance weight of 30.
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Figure A.1: More qualitative examples for aesthetic guidance



A.3. T2I Setting 50

A.3. T2I Setting

For the pickscore reward model, we again use the ViT-L/14 as the backbone model for the CLIP. We
use a blocksize of 5 for both the sampling and 4 gradient guidance in this case and set the guidance
scale to be 0.2. We do the denoising for 500 DDPM steps and the CFG guidance scale is also set to 5.
We do the gradient addition during the whole denoising as we also want to alter the structural properties
for the alignment to complex prompts. This preserves the image structure, doesn’t reward hack, and
guides it towards achieving a better reward. The evaluation set contains 50 prompts (from the HPD [64]
evaluation dataset) and we generate 10 images for each prompt.

The setting for gradient guidance remains the same except for UG where we increase the weight to 150.

A.4. Multireward Setting

In the multireward setting, we use the same prompts as the Aesthetic case but only a subset of 6 out of
the 51 and generate 10 images for each as it takes longer due to the weighted addition of the two reward
models. The rest of the settings are the same and we add the gradients during the whole denoising.

The values of v, and ~; are taken as (1, 0), (0, 1) and we set v; as 1 and change - in [2, 3, 5, 10, 15, 20, 25
,30, 50,70, 100, 150, 200, 250, 300, 350, 400, 450, 500, 750, 1000]

A.5. (T+I)2I Setting

For this, we use the same 50 prompts as the T2| setting, use the three style images as the reference
images, and generate 10 images for each prompt and each style. We use the 100 step DDPM scheduler
and we set r to be 0.6. The sampling blocksize is 5 and the gradient blocksize is 2 with a guidance
scale of 0.4. The rest of the settings are the same.
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Figure A.2: More qualitative examples for T2l pickscore guidance
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Figure A.3: Each column corresponds to a different prompt. Rows are grouped by 2 € {0, 150, 1000} (top to bottom), with ~;
fixed at 1. Within each group, the three rows show results from CoDe, FreeDoM, and CoDeX (top to bottom). The top group
focuses more on aesthetic quality, whereas the bottom group prefers Pickscore, and the middle group (2 = 150) offers a

balanced trade-off between the two.
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Figure A.4: More qualitative samples for the (T+1)2I scenario
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