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1 Introduction

The road network is the core and essential mode of transportation, providing a variety of
services to the human civilization. Possession of detailed and reliable digital road network
datasets can support a wide number of applications such as vehicle navigation, urban plan-
ning, updating of geographic information systems, traffic management, road monitoring, cri-
sis response, disaster management and many more. Up until recently, digital road network
datasets were created in a semi-automatic way followed by meticulous manual extraction
[23]. It is a time consuming, expensive and labor-intensive procedure. As a consequence,
it is unfeasible to satisfy the needs of modern times with manual work, given the popularity
of location-based services and applications. In order for those activities to maintain their con-
tinuous functionality, an automated method is needed to acquire and update digital datasets
of the dynamic road network structure.

Technological advances in the field of remote sensing offer the opportunity for spatial infor-
mation extraction from an abundance of high-resolution image data that faithfully depict the
earth’s surface [32]. Although scientists have been trying to solve the problem of road detec-
tion for more than 30 years now [1], there hasn’t been a flawless technique that can generalize
the desired output under all different situations that occur in the built environment. The rea-
son is that road networks are intricate structures. Their observation in remote sensing imagery
can be either locally blocked by a variety of objects, like trees, buildings, cars and other street
furniture or confused by a neighbouring location that has similar texture. Furthermore, their
intensity pixel values can vary due to the difference of atmospheric conditions, seasonality of
data acquisition and shadows of objects. A plethora of factors and their interrelation has to be
taken into consideration to create a robust road extraction algorithm.

Recently, as a state-of-the-art machine learning technique, deep learning [16] made a major
breakthrough in conventional computer vision tasks such as image classification, object de-
tection, semantic segmentation and instance segmentation [20, 30, 13, 31, 11} 12, 38, 45, 7, |8}
6, (14, 33} 35, 29]. As a result, a large number of researchers started using deep learning tech-
niques to solve remote sensing problems [21], as well as the road detection task [41]. Because
of its supremacy of modeling complex nonlinear relationships between variables, deep learn-
ing surpassed conventional road detection algorithms [40]. However, the entire automation of
the road extraction procedure is still not feasible. Extracted road networks using deep learn-
ing techniques frequently contain noise, artefacts, isolated road segments or miss information,
making them inadequate for real-world applications, requiring significant amount of manual
labor to correct the errors [3].

Road extraction with deep learning using remote sensing data is usually posed as either a se-
mantic segmentation task, where each pixel of a remote sensing image is classified according
to the class that it belongs -road or non-road-, or as a road center-line vector graph extrac-
tion, both followed by post-processing steps to refine their results. The main advantage of
semantic segmentation approaches is the preservation of geometric properties of the road net-
work, since every classified road image pixel corresponds to a specific spatial extent, while the
main advantage of the vector graph extraction approaches is the preservation of topological
properties, owing to their design to preserve road connectivity. Apart from the aforemen-
tioned difficulties and properties of the road network structure that complicate the procedure
of road detection, inaccuracies using deep learning techniques appear for two more, but very
important reasons. First, because topology is generally ignored during the pixel-wise seman-
tic segmentation task, meaning that every pixel is handled individually and second, because



ground truth or reference data used to train the deep learning models contain inaccuracies
(label scarcity , omission, noise) [36, 26], which unfortunately mislead neural networks into
making incorrect estimations.

Road networks are structures for which prior knowledge exists. For example, it is known that
roads have consistent width, are almost always made of concrete and are continuous (i.e. any
location of the network should be able to be reached by any other location of the network).
Existing approaches haven’t utilized all the properties and known information of the road
network to enhance their training phase. The focus of this research is to utilize this knowl-
edge and retain both topological and geometrical properties of the road network, as much
as possible, meliorating current road detection algorithms. The collection of each property
is equally important and essential for all applications. When combined, they can provide a
structured and detailed representation of the road network, useful for safe localization and
motion planning. In order to achieve that, I intend to combine the two different deep learning
techniques used for road detection (semantic segmentation and vector road-center-line graph
extraction) into one, unified and novel model, using the Multi-task learning approach [19].
Enriching the amount of context that each task receives for its training phase should improve
the performance of each task, and thus, improve the performance of road detection.

1.1 Scientific relevance

The topic of road detection using deep learning techniques is highly correlated with the scien-
tific field of the Geomatics for the Built Environment study program. A robust and working
algorithm will allow the acquisition of essential geographical knowledge about the built envi-
ronment by employing an innovative and advanced technique.

2 Related work

As pointed out earlier, many algorithms have been developed to extract road networks from
remote sensing images. To confine the range of the literature review, only pioneering ap-
proaches that explore deep learning techniques were examined.

2.1 Pioneer Road Detection approaches

Mnih and Hinton [27] used restricted Boltzmann machines (RBMs) to detect road areas from
high resolution aerial images. To improve their results, they applied both a pre-processing
and a post-processing step. During the pre-processing step, they reduced the dimensional-
ity of the input data, while during the post-processing, they removed disconnected blotches
and filled in the gaps or holes in the roads. Zhang et al. [43] created a Deep Residual U-Net
model, by extending the U-Net architecture [33], adding short-cut connections between the
CNN layers, producing a semantic segmentation output depicting the road network. Cheng
et al. [9]] created a cascaded end-to-end CNN that both detects and extracts road center-lines.
Their method is divided into two networks, one dealing with the road detection and one with
the center-line extraction exploiting information collected during the inferring process of the
first network. In the final step, a thinning algorithm is applied to refine the extracted center-
line network. Buslaev et al. [4] proposed a fully convolutional neural network consisting of a
ResNet-34 pre-trained on ImageNet encoder and a decoder similar to that from a vanilla U-Net
model. Additionally, they designed a loss function that simultaneously considers binary cross
entropy loss and intersection over union (IoU) loss to improve their predictions. Another
study that utlized U-Net is the work of Sun et al [37], who created a model using stacked



U-Nets with multiple output. They also incorporated a hybrid loss function to confront the
issue of unbalanced classes of training data. To improve performance, they also implemented
post-processing steps, like shorterst path search with hierarchical thresholds. Zhou et al. [44]
designed a semantic segmentation model, called D-LinkNet, based on an encoder-decoder
structure, dilated convolution to enlarge the receptive field of the feature points maintaining
resolution and pretrained encoder especially for the road detection task. The D-LinkNet was
the winner of the DeepGlobe 2018 road challenge [10]. Mattyus et al. [22] created a method
that improves road connectivity with post-processing steps after the prediction stage, which
is based on a CNN segmentation, applying heuristics to missing connections or isolated road
segments. Although it is a method that produces excellent results when the prediction output
is accurate, it doesn’t perform well when it has many errors, which is the usual case due to
occlusion, shadows and reasons explained above. Mosinska et al. [28] proposed the topology-
aware loss function, which is a new loss function for delineation of curvilinear structures.
Replacing the regular pixel-wise loss function, e.g. cross entropy, with their own in a U-Net
model, topology structure information is taken into account and better road extraction perfor-
mance is achieved. Ventura et al. [39] proposed a method, built on top of a semantic segmen-
tation classification, that iteratively connects road segments inferred in neighbouring image
patches, thus resulting in a fully connected network. Li et al. [17] proposed PolyMapper, an
algorithm for direct extraction of topological maps as a collection of building footprints and
roads, using raw aerial imagery. They combined the principle of a maze solving algorithm,
commonly known as the left-hand or right-hand rule, with a CNN-RNN deep learning model
that first detects the points of interest, like intersection points or seed points, and then sequen-
tially connects them according to their conditional probability distribution to belong to the
road network.

2.2 Baseline methods

During the process of the literature review, two studies were distinguished by their perfor-
mance and ability to maintain specific properties of the road network, those of topology and
geometry. These two studies will be used as inspiration for the creation of my own road de-
tection algorithm as well as baselines for its evaluation. The following sections give a detailed
description of their functionality as the sub-tasks of my own deep learning model will have
the same logic.

2.2.1 RoadTracer: Automatic Extraction of Road Networks from Aerial Images

RoadTracer [2] is an algorithm that directly constructs a graph representation of the road net-
work using an iterative search procedure controlled by a CNN-based decision function. The
construction of the road network graph starts from a seed location known to be on the road
network, and sequent points are added according to the search procedure. The decision func-
tion is invoked at each step of the search to figure out the next best action to take: either
add and walk towards a new node to the road network, or return to the previous node and
continue from there.

More specifically, the search algorithm starts with an input of (v, B), where vy is the seed
location node, and B is a bounding box that defines the area of interest. The search algorithm
also keeps a graph G and a stack of nodes S, that both initially contain only vy. The current
location of the search algorithm is represented by S;,,, which is the top node of the stack S. On
every step, the decision function uses graph G, S, and an image centered at S;,,’s location
to determine if it should walk a fixed distance D (authors of the paper used D = 12) forward



from S;p, keeping a certain direction, or go back to node S, 1. The direction is also selected
by the decision function from a set of known a angles distributed in [0,277). The new location
is added as a node onto S, and as a node along with an edge on the graph G. If the decision
function chooses to stop, Sty is popped from S. When S is emptied, the road network graph
G is complete.

The CNN decision function is evidently the most crucial part of the Road Tracer method, since
all the aforementioned actions originate from it. It is implemented with a CNN, which takes
the centered RGB image at Sy,,’s location as input, concatenated with one additional channel.
This fourth channel is the graph G, as it is constructed until the current step. G is rendered by
drawing anti-aliased lines along the edges of the graph that are presented withing the centered
image extend. The output has two components. The first one is the final action to be taken,
either walking or stopping, and the second one is the angle that describes the direction of the
walking. The decision function output holds the only post-processing step that is required for
this method, which is the selection of the threshold value that will distinguish the outputs of
either walking or stopping, which has to be selected manually.

To train the CNN-based decision function, training examples were dynamically generated
by running the search algorithm as the decision function during training. Given an input
region (vg, B), training starts by initializing an instance of the search algorithm G, S. On every
individual training step, like during inference, the CNN has to decide on an action based
on the constructed output, and update G and S based on that decision. The ground truth of
that action is determined according to how an “oracle” decision function that makes optimal
decisions using the ground truth graph G* would react. The CNN corrects itself and trains to
learn that action.

The algorithm contains some small improvement steps such as a simple merging step of earlier
explored paths and guidance when walking outside of the bounding box area. The main lim-
itations of this approach are its inability to keep geometrical properties of the road, like shape
and width, since it directly constructs a vector graph representation of the road network, the
creation of abundant vertices and edges, increasing the complexity factor of the graph, its ten-
dency to fail at intersections, at roads with high curvature and finally, with greater length. This
happens because the road graph construction is based on the sequential decisions made by the
CNN decision function. Once the CNN makes a mistake, the algorithm will consequently pro-
duce incorrect road segments or won’t succeed to recognize existing road segments.

2.2.2 Improved Road Connectivity by Joint Learning of Orientation and Segmentation

Batra et al. [3] developed a two stage road detection method to enhance the connectivity of
the extracted road network. During the first stage, a joint learning module by stacking multi-
branch encoder-decoder structure is implemented, aiming to allow the flow of information
between two related tasks, those of per-pixel road segmentation and road orientation. Dur-
ing the second stage, a connectivity refinement model is applied, to connect small gaps and
remove false positive occurrences.

The additional task of orientation learning introduces a connectivity constraint in the encoded
representation, due to the fact that accurate road orientation predictions foster connected, and
not isolated, road segments. Joint learning of related tasks (i.e. road segmentation and road
orientation) results to more generalizable features [5, [15]. In order to train the model to learn



how to identify the road orientations, orientation ground-truths were created from the refer-
ence road vector data. To keep it simple and consistent, driving directions were ignored and
road orientation was always calculated as a vector starting from left to right and from top to
bottom as a unit vector in sequential pixels.

Although orientation supervision increases the connectivity in the predicted road network,
intricate situations such as bridges, parking lots and highway cross-roads cause inaccurate
or fail to produce orientation predictions. This was the motivation to create the connectivity
refinement step, which considers missing or fake road segments as corrupted ground-truth
masks, that will be restored by the pre-trained refinement network. In pre-training phase,
an input remote sensing image, a corrupted ground truth mask and the previous prediction
image are concatenated and feeded as input to the refinement model. Ultimately, the neural
network is trained to encode available context, filling missing road segments. Later on, the
pre-trained model is further fine-tuned by replacing the manually corrupted ground truth
masks with the segmentation outputs.

The stacked multi-branch module has three parts. The first part is the shared encoder, the sec-
ond one is the repetitive fusion with multi-branch and the third one is the prediction branches
of each task. This module simultaneously learns a robust common representation in the shared
encoder, creates predictions for segmentation and orientation of roads and permits the infor-
mation flow from one task to the other, enhancing road connectivity. The capability of produc-
ing intermediate outputs at different scales, allows to use multi-scale loss function to guide the
model training.

3 Research questions

3.1 Objectives

The main research question for this study is:

To which extent is it possible to utilize topological and geometrical constraints to improve road
detection using deep learning techniques?

The goal of this research is to examine how topological and geometrical prior knowledge can
assist the remote sensing task of road detection using deep learning techniques. In order to do
that, a new deep learning model will be designed, able to exchange and leverage information
between different sub-tasks, thereby benefiting from the capabilities of each sub-task. The
following sub-questions will be relevant:

o Can geometric prior knowledge improve road detection?

Can topological prior knowledge improve road detection?

How to incorporate prior knowledge or geometric constraints into a deep learning model?

How to combine two different deep learning models with different architecture and aim into one,
unified model?

What are the limitations of a model that combines two different models into one, unified model?



3.2 Scope of research

This thesis will focus on the development of a new deep learning based approach incorpo-
rating prior knowledge and geometric constraints for road detection, which is expected to
outperform state-of-the-art methods (i.e., the two baseline approaches). Furthermore, this
method will be limited for evaluation only on the selected datasets described in[6.2} If there is
enough time, the extension of the proposed model’s capabilities will be explored.

4 Methodology

In this study, two models that were described in section will be used as inspiration for
the creation of a new and novel model to solve the task of road detection. Since each model
has different architecture and design, it is not possible to create a new model using one as
a skeleton and exploit their strongest points, aiming to surpass their performance. In order
to combine their abilities into one, unified approach, a new model inspired by the baseline
methods and Multi-task learning will be used.

4.1 Overview of Multi-task learning in Deep Neural Networks

Multi-Task learning, as the name betrays, aims to solve multiple tasks simultaneously, by tak-
ing advantage of the relationships between different tasks. The main principle is, that if there
are n tasks with an acceptable degree of relation between them (not all tasks need to be related
to each other), Multi-Task Learning (or MTL) will improve the performance of a model -i.e. of
each task-, by utilizing the knowledge obtained from every participating task [42].

MTL is beneficial because a more generalized representation of the features or attributes of
the input data can be learnt by a multi-task learning model, than by a normal or single-tasked
deep learning model. Normal deep learning models aim to optimize their objective func-
tion by fine-tuning hyperparameters till the performance of a single task cannot be further
increased. In a multi-task learning model hyperparameters are fine-tuned according to an ob-
jective function that considers the loss functions of auxiliary tasks, aiming to increase their
accuracy rates concurrently.

Apart from its generalization property, MTL leads to better results also due to the regulariza-
tion ability expressed by inducing bias into the models. When trying to optimize multiple
tasks, hypotheses that favor all the n tasks are preferred and thus, the risk of overfitting is sig-
nificantly reduced, while the model becomes more capable on handling random noise during
training [5].

The two most commonly used techniques to apply MTL in Deep Neural Networks are the
Hard Parameter Sharing and the Soft Parameter Sharing (of hidden layers) techniques. In
Hard Parameter Sharing, a common hidden layer(s) (e.g. a common encoder) is used for all
the auxiliary tasks. Towards the end of the model, several layers are dedicated to exclusive
tasks. In Soft Parameter Sharing layers are not shared. Each participating model has its own
sets of weights and biases. These parameters are regularized in order to become more similar
and able to represent each task individually. Intermediate extracted features or end results can
be shared between different tasks to enhance the performance of the multi-task model [34].



4.2 Multi-task learning applied to Road Detection

To solve the problem of road detection, MTL will be used to combine a model aiming to solve
the task of road centerline vector graph extraction with a model aiming to solve the task of
semantic segmentation. The first task represents the preservation of topology, and the second
the preservation of geometry or road surface. The architecture and aim of each model is dif-
ferent and thus, Hard Parameter Sharing is not recommended as an initial option.

In this study, the first technique that will be used is the Soft Parameter Sharing. In the early
stages of the new model development, the initial models that will keep their architecture and
will be assisted either by the extracted intermediate or end results of the other model. To
mitigate common drawbacks of Multi-task Learning and especially, those of Soft Parameter
Sharing, counter-measures will be taken. Specifically, in order to let the model determine in
what way the task-specific networks leverage the knowledge of the other task, the work of
Misra et al [24] could be used, who answered this problem by creating the ”cross-stitch units”
that learn a linear combination of the output of the previous layer. Another very good idea
was that of Kendal et al. [15], where they noticed that the performance of multi-task learning
systems is highly dependent on the relative weighting between each task’s objective function
or loss function. Therefore, they proposed a method that weighs multiple loss or objective
functions by taking into consideration the homoscedastic uncertainty of each task, overcom-
ing the need of manual setting.

However, since deep learning models are problem-based, success is not guaranteed. Depend-
ing on the model’s performance, different solutions might be implemented, such as the cre-
ation of a brand new neural network using reasoning and algorithms of the two baseline neu-
ral networks, or the extension of the multi-task learning model by adding another few layers
after the output layers of each tasks, aiming to combine their outputs.



5 Time planning

The following Gantt chart illustrates the thesis’s schedule, mainly focused on the algorithm’s implementation. Documentation will coincide
with the development of the algorithm, to avoid loss of information and record every step in detail. The exact dates of P3 and P4 will be
determined in the future.

Methodology Development _ Dec 1 - Dec 31
Experimentation / Preliminary Results ﬁ Jan1-Feb29
Finalization of Methodology _ Mar 1 - Apr 30
Revisal/Experimentation _ Mar 22 - May 19

2019 2020
Week 1 5 9 13 17 21 25 29 2020
Oct 14, 2019 Nov 11, 2019 Jan 15, 2020 Mar 22, 2020 May 2?, 2020
Project Approval P1 P2 P3 P4



6 Tools and datasets used

6.1 Programming language

The programming language used for the implementation of the proposed model will be the
Python Programming Language. It has a concise, simple and readable syntax, is platform
independent, supported by a wide community and offers a wide variety of reliable libraries
and frameworks, dedicated to Al-based projects. It is the best option to increase productivity
and efficiency during the implementation of a prototype model.

6.2 Data

Three challenging datasets that have been widely used by researchers trying to solve the prob-
lem of road network detection will be used. Their selection accounts for the fact that they were
created by well-trained engineers, making them a reliable choice, and offer the chance to com-
pare results of the proposed methodology with results provided by other scientists.

6.2.1 DeepGlobe

The DeepGlobe road dataset was created for the DeepGlobe Road Extraction Challenge [10].
The dataset contains 6226 RGB satellite images, collected by DigitalGlobe’s satellite from three
different areas: Thailand, Indonesia, and India. 4696 images are destined for training purposes
and 1530 for validation. Their format is GeoTiff, with size 1024x1024 pixels and ground resolu-
tion of 50cm/pixel. Each satellite image is paired with a mask image for road labels. The mask
is a gray-scale image, with white standing for road pixel, and black standing for background.
Mask images are not flawless, because manual annotation of images is rather costly, especially
in urban regions. The creators of the datasets mention that small roads within farmlands were
intentionally not annotated.

In order to use the dataset for the experiments, the mask images were binarized with a thresh-
old of 128, because their values weren’t pure 0 and 255. Furthermore, image data augmenta-
tion was applied on-the-fly, to artificially enrich the dataset with multiple images.
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Figure 1: Example image from the DeepGlobe Dataset

6.2.2 SpaceNet

The SpaceNet road dataset was created for the SpaceNet Challenge: Road Extraction and
Routing [18]. The dataset contains 2567 satellite images, collected by DigitalGlobe’s satellite
from four different cities: Paris, Las Vegas, Shanghai, and Khartoum. Their format is GeoTiff
(16-bit), with size 1300x1300 pixels and ground resolution of 30cm/pixel. Their corresponding
road network ground truth data is provided in the form of vector data (line-strings), represent-
ing the center line of roads. Furthermore, the road labels correspond to different road types
(Motorway, Primary, Secondary, Tertiary, Residential, Unclassified, Cart Tracks) from the four
cities, having diverse road widths and visual appearance. Each image may have multiple line-
strings and each line- string consists of pixel coordinates X Y depicting road center line points
in the 2D image plane, assuming top-left corner as the origin.

In order to use the dataset for the experiments, the dataset was divided into 2000 images for
training and 567 for testing, after converting all images from 16-bit to 8-bit format. The divi-
sion of the dataset was done in a way that each city would equally contribute to train and test
the algorithm (80% - 20% respectively). Furthermore, image data augmentation was applied
on-the-fly, to artificially enrich the dataset with multiple images.

11



Figure 2: Example image from the SpaceNet Dataset

6.2.3 Massachusetts Roads Dataset

The Massachusetts Roads Dataset was built by Mnih et al. [25]. It was the first publicly avail-
able dataset for convolutional neural network training addressing the road detection problem.
It consists of 1171 aerial images of the state of Massachusetts, from which 14 were randomly
selected for validation and 49 for testing by the creator. Their format is GeoTiff, with size
1500x1500 and ground resolution of 1m/pixel. It covers an area of approximately 2600 square
kilometers in total, and introduces a wide variety of urban, suburban, and rural regions. The
mask images for road labels were generated by rasterizing road center lines obtained from the
OpenStreetMap project. According to the creator, a thickness of 7 pixels and no smoothing
was used.

In order to use the dataset for the experiments, image data augmentation was applied on-
the-fly, to artificially enrich the dataset with multiple images and make them usable for the
network.

12



Figure 3: Example image from the Massachusetts Roads Dataset

References

[1]

(2]

3]

6]

(7]

Ruzena Bajcsy and Mohamad Tavakoli. “Computer Recognition of Roads from Satellite
Pictures”. In: IEEE Transactions on Systems, Man, and Cybernetics 6 (1976), pp. 623-637.

Favyen Bastani et al. “Unthule: An Incremental Graph Construction Process for Robust
Road Map Extraction from Aerial Images”. In: CoRR abs/1802.03680 (2018). arXiv: 1802.
03680. URL: http://arxiv.org/abs/1802.03680.

Anil Batra et al. “Improved Road Connectivity by Joint Learning of Orientation and Seg-
mentation”. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2019.

Alexander Buslaev et al. “Fully Convolutional Network for Automatic Road Extraction
from Satellite Imagery”. In: June 2018, pp. 197-1973. DOI: 10.1109/CVPRW.2018.00035.

Rich Caruana. “Multitask Learning: A Knowledge-Based Source of Inductive Bias”. In:
ICML. 1993.

Liang-Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep Convolu-
tional Nets, Atrous Convolution, and Fully Connected CRFs”. In: CoRR abs/1606.00915
(2016). arXiv:|1606.00915. URL: http://arxiv.org/abs/1606.00915.

Liang-Chieh Chen et al. “Encoder-Decoder with Atrous Separable Convolution for Se-
mantic Image Segmentation”. In: CoRR abs/1802.02611 (2018). arXiv: 1802.02611. URL:
http://arxiv.org/abs/1802.02611.

13


https://arxiv.org/abs/1802.03680
https://arxiv.org/abs/1802.03680
http://arxiv.org/abs/1802.03680
https://doi.org/10.1109/CVPRW.2018.00035
https://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1606.00915
https://arxiv.org/abs/1802.02611
http://arxiv.org/abs/1802.02611

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Liang-Chieh Chen et al. “Rethinking Atrous Convolution for Semantic Image Segmen-
tation”. In: CoRR abs/1706.05587 (2017). arXiv:|1706 .05587. URL: http://arxiv.org/
abs/1706.05587.

Guangliang Cheng et al. “Automatic Road Detection and Centerline Extraction via Cas-
caded End-to-End Convolutional Neural Network”. In: IEEE Transactions on Geoscience
and Remote Sensing PP (Mar. 2017), pp. 1-16. DOI: 10.1109/TGRS.2017.2669341.

Ilke Demir et al. “DeepGlobe 2018: A challenge to parse the earth through satellite im-
ages”. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops. Vol. 2018-June. May 2018, pp. 172-181. 1SBN: 9781538661000. DOI: 10. 1109/
CVPRW.2018.00031, arXiv: 1805.06561. URL: http://arxiv.org/abs/1805.065617%
20http://dx.doi.org/10.1109/CVPRW.2018.00031,

Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv: 1504 . 08083,
URL: http://arxiv.org/abs/1504.08083.

Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection and se-
mantic segmentation”. In: CoRR abs/1311.2524 (2013). arXiv: 1311 . 2524. URL: http:
//arxiv.org/abs/1311.2524,

Kaiming He et al. “Mask R-CNN". In: CoRR abs/1703.06870 (2017). arXiv:|1703.06870.
URL: http://arxiv.org/abs/1703.06870.

Simon Jégou et al. “The One Hundred Layers Tiramisu: Fully Convolutional DenseNets
for Semantic Segmentation”. In: CoRR abs/1611.09326 (2016). arXiv: 1611 .09326. URL:
http://arxiv.org/abs/1611.09326.

Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-Task Learning Using Uncertainty
to Weigh Losses for Scene Geometry and Semantics”. In: CoRR abs/1705.07115 (2017).
arXiv:|1705.07115, URL: http://arxiv.org/abs/1705.07115,

Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521 (May
2015), pp. 436—44. DOI:|10.1038/nature14539.

Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. “Topological Map Extraction from
Overhead Images”. In: (2018). arXiv: 1812.01497. URL: http://arxiv.org/abs/1812.
01497.

Dave Lindenbaum and Todd Bacastow. “SpaceNet : A Remote Sensing Dataset and
Challenge Series”. In: (). arXiv: arXiv:1807.01232v3.

Shikun Liu, Edward Johns, and Andrew ] Davison. “End-to-End Multi-task Learning
with Attention”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 1871-1880.

Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: To appear. 2016. URL: http:
//arxiv.org/abs/1512.02325.

Lei Ma et al. “Deep learning in remote sensing applications: A meta-analysis and re-
view”. In: ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019), pp. 166-177.
ISSN: 0924-2716. DOI: https://doi.org/10.1016/j.isprsjprs.2019.04.015. URL:
http://www.sciencedirect.com/science/article/pii/S0924271619301108.

Gellert Mattyus, Wenjie Luo, and Raquel Urtasun. “DeepRoadMapper: Extracting Road
Topology from Aerial Images”. In: Proceedings of the IEEE International Conference on Com-
puter Vision 2017-Octob (2017), pp. 3458-3466. 1SSN: 15505499. DOI:/10.1109/ICCV.2017.
372.

Greg Miller. The Huge, Unseen Operation Behind the Accuracy of Google Maps. June 2017.
URL: https://www.wired.com/2014/12/google-maps-ground-truth/.

14


https://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://doi.org/10.1109/TGRS.2017.2669341
https://doi.org/10.1109/CVPRW.2018.00031
https://doi.org/10.1109/CVPRW.2018.00031
https://arxiv.org/abs/1805.06561
http://arxiv.org/abs/1805.06561%20http://dx.doi.org/10.1109/CVPRW.2018.00031
http://arxiv.org/abs/1805.06561%20http://dx.doi.org/10.1109/CVPRW.2018.00031
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1611.09326
http://arxiv.org/abs/1611.09326
https://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1705.07115
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1812.01497
http://arxiv.org/abs/1812.01497
http://arxiv.org/abs/1812.01497
https://arxiv.org/abs/arXiv:1807.01232v3
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.04.015
http://www.sciencedirect.com/science/article/pii/S0924271619301108
https://doi.org/10.1109/ICCV.2017.372
https://doi.org/10.1109/ICCV.2017.372
https://www.wired.com/2014/12/google-maps-ground-truth/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Ishan Misra et al. “Cross-stitch Networks for Multi-task Learning”. In: CoRR abs/1604.03539
(2016). arXiv: 1604 .03539. URL: http://arxiv.org/abs/1604.03539.

Volodymyr Mnih. “Machine Learning for Aerial Image Labeling”. PhD thesis. Univer-
sity of Toronto, 2013.

Volodymyr Mnih and Geoffrey Hinton. “Learning to Label Aerial Images from Noisy
Data”. In: Proceedings of the 29th International Coference on International Conference on Ma-
chine Learning. ICML'12. Edinburgh, Scotland: Omnipress, 2012, pp. 203-210. ISBN: 978-
1-4503-1285-1. URL: http://dl.acm.org/citation.cfm?id=3042573.3042603.

Volodymyr Mnih and Geoffrey E Hinton. “Learning to Detect Roads in High-Resolution
Aerial Images”. In: (2009), pp. 1-14.

Agata Mosinska et al. “Beyond the Pixel-Wise Loss for Topology-Aware Delineation”.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 1 (2018), pp. 3136-3145. 1SSN: 10636919. DOI: 10.1109/CVPR. 2018 . 00331.
arXiv:|1712.02190.

George Papandreou et al. “Weakly- and Semi-Supervised Learning of a DCNN for Se-
mantic Image Segmentation”. In: CoRR abs/1502.02734 (2015). arXiv: 1502.02734. URL:
http://arxiv.org/abs/1502.02734.

Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:
CoRR abs/1506.02640 (2015). arXiv: 1506 . 02640. URL: http://arxiv.org/abs/1506.
02640.

Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506 . 01497. URL: http:
//arxiv.org/abs/1506.01497.

John A. Richards. In: Remote Sensing Digital Image Analysis. 2013. 1ISBN: 978-3-642-30061-
5. DOI:|10.1007/978-3-642-30062-2. URL: https://www.springer .com/gp/book/
9783642300615#aboutBook.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv: 1505 .
04597. URL: http://arxiv.org/abs/1505.04597.

Sebastian Ruder. “An Overview of Multi-Task Learning in Deep Neural Networks”. In:
CoRR abs/1706.05098 (2017). arXiv: (1706 . 05098, URL: http://arxiv.org/abs/1706.
05098.

Evan Shelhamer, Jonathon Long, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 39 (May 2016), pp. 1-1. DOI:|10.1109/TPAMI . 2016 .2572683.

Suriya Singh et al. “Self-Supervised Feature Learning for Semantic Segmentation of
Overhead Imagery”. In: BMVC. 2018.

Tao Sun et al. “Stacked U-nets with multi-output for road extraction”. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops. Vol. 2018-June.
2018. 1SBN: 9781538661000. DOI:10.1109/CVPRW.2018.00033.

Towaki Takikawa et al. “Gated-SCNN: Gated Shape CNNs for Semantic Segmentation”.
In: CoRR abs/1907.05740 (2019). arXiv: |1907 . 05740. URL: http: //arxiv . org/abs/
1907.05740.

Carles Ventura et al. “Iterative Deep Learning for Road Topology Extraction”. In: (2018).
arXiv:|1808.09814. URL: http://arxiv.org/abs/1808.09814.

15


https://arxiv.org/abs/1604.03539
http://arxiv.org/abs/1604.03539
http://dl.acm.org/citation.cfm?id=3042573.3042603
https://doi.org/10.1109/CVPR.2018.00331
https://arxiv.org/abs/1712.02190
https://arxiv.org/abs/1502.02734
http://arxiv.org/abs/1502.02734
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1007/978-3-642-30062-2
https://www.springer.com/gp/book/9783642300615#aboutBook
https://www.springer.com/gp/book/9783642300615#aboutBook
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/CVPRW.2018.00033
https://arxiv.org/abs/1907.05740
http://arxiv.org/abs/1907.05740
http://arxiv.org/abs/1907.05740
https://arxiv.org/abs/1808.09814
http://arxiv.org/abs/1808.09814

[40]

[41]

[42]

[43]

[44]

[45]

Weixing Wang et al. A review of road extraction from remote sensing images. June 2016. DOTI:
10.1016/7.jtte.2016.05.005!

Yongyang Xu et al. “Road extraction from high-resolution remote sensing imagery us-
ing deep learning”. In: Remote Sensing 10.9 (Sept. 2018). 1SSN: 20724292. DOI: 10.3390/
rs10091461.

Yu Zhang and Qiang Yang. “An overview of multi-task learning”. In: National Science
Review 5.1 (Sept. 2017), pp. 30—43. 1SSN: 2095-5138. DOI: 10 . 1093 /nsr/nwx105. eprint:
http://oup.prod.sis.lan/nsr/article-pdf/5/1/30/24164435/nwx105 . pdf. URL:
https://doi.org/10.1093/nsr/nwx105.

Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. “Road Extraction by Deep Residual
U-Net”. In: CoRR abs/1711.10684 (2017). arXiv: 1711.10684. URL: http://arxiv.org/
abs/1711.10684.

Lichen Zhou, Chuang Zhang, and Ming Wu. “D-linknet: Linknet with pretrained en-
coder and dilated convolution for high resolution satellite imagery road extraction”. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.
Vol. 2018-June. 2018, pp. 192-196. 1SBN: 9781538661000. DOI: |10 . 1109 /CVPRW . 2018 .
00034.

Yi Zhu et al. “Improving Semantic Segmentation via Video Propagation and Label Re-
laxation”. In: CoRR abs/1812.01593 (2018). arXiv: 1812.01593. URL: http://arxiv.org/
abs/1812.01593.

16


https://doi.org/10.1016/j.jtte.2016.05.005
https://doi.org/10.3390/rs10091461
https://doi.org/10.3390/rs10091461
https://doi.org/10.1093/nsr/nwx105
http://oup.prod.sis.lan/nsr/article-pdf/5/1/30/24164435/nwx105.pdf
https://doi.org/10.1093/nsr/nwx105
https://arxiv.org/abs/1711.10684
http://arxiv.org/abs/1711.10684
http://arxiv.org/abs/1711.10684
https://doi.org/10.1109/CVPRW.2018.00034
https://doi.org/10.1109/CVPRW.2018.00034
https://arxiv.org/abs/1812.01593
http://arxiv.org/abs/1812.01593
http://arxiv.org/abs/1812.01593

	Introduction
	Scientific relevance

	Related work
	Pioneer Road Detection approaches
	Baseline methods
	RoadTracer: Automatic Extraction of Road Networks from Aerial Images
	Improved Road Connectivity by Joint Learning of Orientation and Segmentation


	Research questions
	Objectives
	Scope of research

	Methodology
	Overview of Multi-task learning in Deep Neural Networks
	Multi-task learning applied to Road Detection

	Time planning
	Tools and datasets used
	Programming language
	Data
	DeepGlobe
	SpaceNet
	Massachusetts Roads Dataset



