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Laymen's Summary

In the study of evolutionary biology, there exists a method called the “cherry picking algorithm” that
produces the instructions needed to create a network that shows how different species are related. This
report explores what happens when the algorithm starts with a wrong choice, or a “suboptimal cherry”
for the first step of the algorithm, and how this affects the accuracy of the algorithm. Imagine you are
trying to build a family tree for different species, but you start with a mistake. This research looks at
how such initial mistakes can impact the accuracy of the entire family tree. We conducted this study
using simulations of the algorithm that deliberately make an initial mistake, and afterwards continue as
the algorithm would normally. The study found that starting with a wrong step in the algorithm usually
makes the performance of the algorithm worse. Specifically, it lead to an average optimal performance
decrease of 34,8% for networks relating a smaller number of species, and 11.3% for networks relating a
larger number of species. Interestingly, the larger the number of species we are attempting to relate in
the network produced by our algorithm, the less severe the impact of the initial mistake. We concluded
that making an initial mistake negatively effects the average performance of the algorithm, and the extent
of the effect varies with the number of species we are trying to relate in our network.
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Summary

DNA is used as the primary tool of biological inheritance. DNA replication is the process by which DNA
makes a copy of itself, and it occurs during reproduction among other things. During this replication of
DNA, mutations can occur, We can model the mutation of DNA sequences using nucleotide substitution
models, in Chapter 3 we discuss two of these: the Jukes-Cantor model and the Kimura-2 model. Many
mutations of DNA sequences can ultimately give rise to the creation of new species.

Phylogenetics is the study of evolutionary history and relationships between groups of organisms, and
these relationships are often determined by analyzing the DNA sequences and how they mutate from
each other. The main tool used for displaying these evolutionary relationships are phylogenetic trees.
In Chapter 4 we treat four algorithms for reconstructing trees: two distance-based methods and two
character-based methods.

Phylogenetic trees however do not allow for more complex evolutionary processes, such as hybrid spe-
ciation or horizontal gene transfer for example, as they assume that species descend from only one
ancestor. To address these kinds of processes, we use phylogenetic networks as an extension of tra-
ditional phylogenetic trees. These networks allow us to display more complex evolutionary processes,
where we allow species to descend from multiple ancestors. In Chapter 5 we discuss a cherry picking
algorithm that combines a set of phylogenetic trees into a phylogenetic network with the smallest number
of reticulations, that displays all these trees. We discuss two different implementions of this algorithm:
Rand and TrivialRand, and we analyze the differences of these two methods analytically.

After this, we researched the effect of picking a suboptimal cherry first in the cherry picking algorithm
with TrivialRand, using several numerical simulations. Firstly, we researched the average output of the
algorithm, and our simulations demonstrated that suboptimal picking led to an average increase of up
to 11.3%, when we have a small optimal reticulation number. Then, we researched the effect of subop-
timal picking on the optimal output, and we found that it led to an average increase of reticulations of
up to 34.8%. Furthermore, our research found that there is a negative correlation between the effect of
suboptimal picking and the optimal reticulation number. We found that in a small number of cases in our
simulation, suboptimal picking did not have a negative effect on the amount of reticulations, this was due
to limitations of the simulation, resulting in the simulation not picking a suboptimal cherry as a first cherry.

We concluded that suboptimal picking clearly has a negative impact on the performance of the algorithm,
and the extent of this effect varies with the optimal reticulation number.
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1
Introduction

A phylogenetic tree is a diagram that shows the lines of evolutionary descent of different species from
a common ancestor. In Figure 1.1 we see an example of a phylogenetic tree. The leaves of the tree
represent the species that we are trying to compare, and the interior nodes of the tree represent common
ancesters. In this report we will be focussing on rooted binary trees, i.e. trees in which each node has
at most two children, as we have in this example. In Chapter 4 we discuss different algorithms for
reconstructing trees.

Figure 1.1: Rooted Phylogenetic tree. Figure by Paleontological Research Institution

Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of
non-tree like evolutionary events, like hybrid speciation for example: where a new species is created
from a combination of parental species. Thus in a network there can be nodes with multiple parents
(in-degree > 1), which we will call reticulations. In this report we will only consider binary phylogenetic
networks, where reticulations have exactly two parents, as in Figure 1.2.

A rooted binary phylogenetic network is a connected, directed acyclic graph where each vertex is either

1. the root : in-degree 0, out-degree 2
2. a tree node: in-degree 1, out-degree 2
3. a reticulation: in-degree 2, out-degree 1
4. a leaf : in-degree 1,out-degree 0

Where the in-degree is the number of edges incoming into a vertex, and the out-degree the number of
edges leaving a vertex. Furthermore, each leaf is labeled uniquely by a taxon (species). A network is
considered tree-child if each internal node has at least one child that is either another tree node or a
leaf. So in a tree-child network a tree node can not have two reticulation as children, and a reticulations
can not have another reticulation as a child.. A normal network is a type of tree-child network where,
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additionally, the two parents of a reticulation node are always not comparable, one is not a descendant
of the other. During the experiments conducted during our research, we focused on normal networks.

We will define the parent of a node v as the most recent ancestor of this node, and we will denote this
by P (v). A cherry in a network (or in a tree) is an ordered pair of leaves that share the same parent, i.e.
(x, y) is a cherry if P (x) = P (y). Notice that if (x, y) is a cherry, then so is (y, x). A reticulated cherry is
an ordered pair of leaves (x, y), where the parent P (x) of x is a reticulation, and the parent of P (x) is a
tree node, and the parent of y: P (y).

In the network N1 in Figure 1.2, we see that (d, c) and (d, e) are reticulated cherries. Notice that (x, y) is
a reticulated cherry implies (y, x) is not a reticulated cherry. We will define reducing (picking) a cherry
(x, y) in a network, as deleting x and the edge (P (x), x), and replacing the edges (P (P (x), P (x)) and
(P (x), y) by a single edge, (P (P (x)), y). Reducing a reticulated cherry (x, y) deletes the reticulation
P (x) and the edges (P (y), P (x)) and (P (x), x), and replaces the other edge incoming to the reticulation
(z, P (x)) with the edge (z, x). We say that a pair of leaves (x, y) is reducible in the network N if it is
either a cherry or a reticulated cherry of N . In Figure 1.2, we see the action of reducing the cherry (b, a)
from N1, and then reducing the reticulated cherry (d, e) from N2.

Figure 1.2: Picking cherries

We say that a sequence of cherries S = (x1, y1), . . . , (xn, yn), with xi ̸= yi for all i, is a cherry-picking
sequence (CPS) if yi ∈ {xi+1, . . . , xn, yn} for all i < n, so each second leaf of a cherry is either a first
leaf in a later pair, or the second leaf of the last cherry in the sequence. This is an important feature that
will allow us to construct a network using our algorithm. Given a CPS S and a network N , we define NS

as the network obtained by reducing all cherries in S in order. Hence, N3 = N1(b,a)(d,e) in Figure 1.2. We
say that a CPS S fully reduces a network N, if NS is a network consisting of only the root and one leaf.
And we say that S fully reduces the set of networks (or trees) N , if it fully reduces all networks N ∈ N .
Now we can define what it means for a network to display a set of trees. We say that the network N
displays a set of trees T if a minimum-length CPS S that fully reduces N , also fully reduces T . In this
definition, minimum-length means that there does not exist a CPS of fewer cherries, that fully reduces
N . This means that every reducible pair in N , must be a cherry in some T ∈ T . Using this definition, a
phylogenetic network can be interpreted as a tool to summarize a set of phylogenetic trees. In Figure
1.3(a) we see a network displaying a set of two trees, seen in Figure 1.3(b). Furthermore, for a tree
set T , a cherry (x, y) is defined as trivial, if it is a cherry in all trees that contain both x and y, and it’s a
cherry in at least one tree. We see that for the set of two trees in Figure 1.3(b), there are no trivial cherries.

Figure 1.3: Phylogenetic network displaying two tree’s

The Hybridization problem is the computational problem of combining a set of phylogenetic trees into
a phylogenetic network, with the smallest number of reticulations, that displays this set. Solving the Hy-
bridization problem is a major challenge in phylogenetics. We will discuss an algorithm that uses cherry
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picking, in an attempt to solve this problem. It works by picking a CPS S, that fully reduces all the input
trees, and then uniquely reconstructing the phylogenetic network, for which S is a minimum length CPS.
This cherry picking heuristic algorithm, introduced by G.Bernardini et al, in “Constructing phylogenetic
networks via cherry picking and machine learning” [1] has shown promise in producing a network with
a (near) optimal reticulation number. We discuss this algorithm in detail in Chapter 5

Despite the effectiveness of the cherry picking algorithm, the impact of picking an suboptimal cherry as a
first cherry, had not yet been investigated. Understanding this is important to understand and eventually
improve the algorithm’s reliability. Hence, the primary objective of our study was to investigate what
the effect is of picking a suboptimal cherry as a first cherry, on the algorithm’s performance. While
there are more advanced and complex implementations of the cherry picking algorithm, we focused
on the implementation of the cherry picking algorithm with TrivialRand (5.1.1), as we were interested
in obtaining an initial understanding of the effect. In this implementation, the cherry picking heuristic
algorithm picks trivial cherries if these exist, and otherwise pick a cherry uniformly at random. Our
expectation was that initiating the cherry picking algorithm with a suboptimal cherry would increase the
number of reticulations in the network, obtained using the CPS of the algorithm.

To conduct this study, we investigated the cherry picking algorithm analytically, to obtain a preliminary
insight of what the potential impact could be of initiating the cherry picking algorithm with a suboptimal
cherry. After this, we simulated scenarios where the cherry picking algorithm is firstly executed ordinarily
and then deliberately guided to pick a suboptimal cherry first, and we compared these results.



2
Phylogenetics

Dna is the genetic information inside an organism’s cells that makes any living organism unique. It
contains the instructions needed for an organism to develop, survive and reproduce [2]. Your DNA
determines what color eyes you have, how tall you are and how susceptible you are to various health
conditions. DNA is composed of two linked strands that wind around each other in the form of a double
helix [3]. Each strand consists of a sequence of four nucleotides – adenine, thymine, guanine and
cytosine – forming pairs with their counterpart nucleotide in the other strand. In these linked strands,
adenine is always linked to thymine, and guanine is always linked to cytosine, as can be seen in Figure
2.1.

Figure 2.1: Structure of DNA. Figure by the National Library of Medicine (USA)

The order of the nucleotides, commonly referred to as bases, is the encoding that distinguishes each
individual. The DNA of humans consist of around three million nucleotide bases, and more than 99
percent of these are the same for humans.

DNA does more than specify the structure of a living organism, it is also used as the primary tool of
biological inheritance. During birth you inherit approximately half of the DNA of your mother, and half of
the DNA of your father, by DNA replication. DNA replication is the process by which DNA makes a copy
of itself, and it occurs during cell division. Therefore, it occurs during reproduction, but also during the
repair of your body, for instance for the repair of damaged tissues. This replication of DNA doesn’t occur
flawlessly, it may happen that the wrong DNA is copied, or part of the DNA may be forgotten, these
mistakes are called mutations and give rise to the creation of new species.

Phylogenetics is the study of evolutionary history and relationships within groups of organisms. These
relations are often determined by looking at DNA sequences and how they mutate from each other.
Phylogenetics is important because it gives us a better understanding of how species, or genes, evolve.
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Through phylogenetics we don’t only learn how the organisms have mutated and evolved to become
what they are now, but it also enables us to predict how they will evolve in the future. These evolutionary
relationships are usually shown in phylogenetic trees, which we introduced in Chapter 1. Every time the
tree splits can be seen as the evolutionary process of DNA mutations, ultimately creating a new species.
Therefore the modelling of DNA mutations is of vital importance. In the next Chapter, we will look into
nucleotide substitution models, which model the mutation of DNA sequences over time.



3
Nucleotide Substitution Models

DNA replication is the process by which DNA makes a copy of itself, and it occurs during cell division,
as stated in Chapter 2. During this replication of DNA sequences, a number of mutations can occur:

1. Substitutions: a nucleotide is replaced by another nucleotide.
For example ACT −→ AGT .

2. Insertions: a nucleotide is inserted in the sequence.
For example ACT −→ ACGT .

3. Deletions: a nucleotide is deleted from the sequence.
For example ACT −→ AT .

These replication errors are one of themost important processes that drive evolution and genetic changes.
In this chapter, we will study and analyze nucleotide substitution models, where we assume that there
are no insertions or deletions during the replication process. The nucleotide substitution models we
conmsider, are discrete-time markov models with the following assumptions:

• Only substitutions occur along the evolutionary process
• Each site in the sequence evolves independently of the other sites and with the same probabilities
• The substitution process is the same on each time step and does not depend on the past given
the present

This last assumption is called the Markov assumption and mathematically is seen as

P (Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P (Xn+1 = xn+1 | Xn = xn)

3.1. General nucleotide substution model
These models will be described with a transition matrixM , and an ancestral distribution vector p0. These
represent the probabilities of the substitutions and the ancestral sequence, respectively. Thus, the gen-
eral nucleotide substitution model is given as:

M =


pA,A pA,C pA,G pA,T

pC,A pC,C pC,G pC,T

pG,A pG,C pG,G pG,T

pT,A pT,C pT,G pT,T

 =


a b c d
e f g h
i j k l
m n o p

 p0 =


p0A
p0C
p0G
p0T


Where pN,M gives the probability of a substitution from base N to base M , and p0N gives the probability
of the base N being in the starting DNA sequence. In this case we don’t assume any structure on the
transition matrix or ancestral distribution vector. The only constraint of the general transition matrix is
that the rows sum up to 1, as it is a matrix of probabilities: a base must either be replicated without
errors, or substitute to another base. In the same manner, the column of the distribution vector must
sum up to 1. In the rest of this chapter, we will discuss two nucleotide substitution models with a certain
structure in the transition matrices and ancestral distribution vectors.

6



3.2. Jukes-Cantor model 7

3.2. Jukes-Cantor model
The Jukes-Cantor model is a simple nucleotide substitution model that assumes that all substitutions
between the bases have exactly the same probability a

3 of occurring. The model is given by the following
transition matrix and ancestral distribution vector [4].

M =


pA,A pA,C pA,G pA,T

pC,A pC,C pC,G pC,T

pG,A pG,C pG,G pG,T

pT,A pT,C pT,G pT,T

 =


1− a a

3
a
3

a
3

a
3 1− a a

3
a
3

a
3

a
3 1− a a

3

a
3

a
3

a
3 1− a

 p0 =


p0A
p0C
p0G
p0T

 =


1
4

1
4

1
4

1
4


In this model, the transition matrix is called a Jukes-Cantor matrix, with parameter a ∈ [0, 1]. As you can
see, every substitution has the same probability a

3 , and the four bases are uniformly distributed, so we
expect approximately an equal frequency of the four bases in the original DNA sequence. You can also
easily check that the sum of the rows of the matrix and the sum of the column of the vector are equal
to one, as stated in section 3.1. The probability of a mutation is considerably low, therefore in practice
we expect the Jukes-Cantor parameter a to be close to 0. Furthermore, the Jukes-Cantor parameter a
represents the probability of observing any substitution at a certain position after one time step. To see
this, observe the following calculation:

P (substitution) =
∑

N,M∈Σ
N ̸=M

p0N · P (N →M) =
∑

N,M∈Σ
N ̸=M

1

4
· a
3
= 12 · a

12
= a

where Σ = {A,C,G,T} is the set of nucleotide bases. Now that we know the structure of the Jukes-
Cantor model, we will discuss an application on a DNA sequence.

Example.
Suppose that we have the following DNA sequence of 40 bases S0 that has mutated to become the
sequence S1:

S0 TGTGCAGCATAACTGCGTGTATCCAGCTAGTATCATGACG
S1 TGTCCAGCATAAAGGCGTGTATCCTGCTAGTATCAAGACG

Notice that five (visible) substitutions have occurred:

1. G −→ C on site 4
2. C −→ A on site 13
3. T −→ G on site 14
4. A −→ T on site 25
5. T −→ A on site 36

Thus, in five of the fourty sites of the DNA sequence, a substitution has occurred, and in the rest of
the sites the DNA replication has been without errors. Therefore, we can estimate the Jukes-Cantor
parameter a by the relative frequency of substitutions 5

40 , yielding the Jukes-Cantor matrix below to
model our DNA sequence over time.

M =



21
24

1
24

1
24

1
24

1
24

21
24

1
24

1
24

1
24

1
24

21
24

1
24

1
24

1
24

1
24

21
24





3.3. Kimura-2 model 8

Furthermore, notice that in our original DNA sequence, there are 10G’s andA’s, 11 T ’s and 9 C ′s, so the
bases are almost uniformly distributed over the fourty sites, in line with what we would expect according
to the Jukes-Cantor ancestral distribution vector.

3.3. Kimura-2 model
In this section, we will be discussing a generalization of the Jukes-Cantor nucleotide substitution model:
the Kimura 2 (parameter) substitution model [4]. It takes into account the structure of the DNA bases.
We can divide the bases into two types based on their structure [5]:

1. Purines: consists of the DNA bases Adenine and Guanine, these have a double-ring structure
2. Pyrimidines: consists of Cytosine and Thymine (and Uracil), these have a single-ring structure

Figure 3.1: Purines and Pyrimidines structure, Figure by geeksforgeeks.org

These nucleotide types further give rise to two types of substitutions. Transititions [6] are substitutions
between a purine and a purine (A↔ G), and between a pyridine and a pyridine (C ↔ T ). Transversions
are substitutions between a purine and a pyridine, or vice-versa . In this model we assume that all
transitions have the same probability: α, and all transversions have the same probability: β. In practice,
transitions are observed to occur more frequently than transitions [6], therefore we would expect the
transition parameter α to be larger than the transition parameter β

M =


pA,A pA,C pA,G pA,T

pC,A pC,C pC,G pC,T

pG,A pG,C pG,G pG,T

pT,A pT,C pT,G pT,T

 =


1− 2β − α β α β

β 1− 2β − α β α

α β 1− 2β − α β

β α β 1− 2β − α

 p0 =


p0A
p0C
p0G
p0T

 =


1
4

1
4

1
4

1
4


Example.
Suppose that we have the following DNA sequence of 40 bases S0 that has mutated to become the
sequence S1:

S0 TGTGCAGCATAACTGCGTGTATCCAGCTAGTATCATGACG
S1 TGTACAGCATAATGGCGTGTATCCGGCTAGTATCACGACG

1. G −→ A transition
2. C −→ T transition
3. T −→ G transversion
4. A −→ G transition
5. T −→ C transition
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Notice that four transitions have occurred and one transversion. We can estimate the transition probabil-
ity and the transversion probabilities by their relative frequencies, yielding the following transition matrix
to model the mutation of the DNA sequence S0 over time:

M =



34
40

1
40

4
40

1
40

1
40

34
40

1
40

4
40

4
40

1
40

34
40

1
40

1
40

4
40

1
40

34
40


Observe that the transition probability is larger than the transversion probability in this example, in line
with what we would expect in practice.



4
Phylogenetic Tree Reconstruction

Methods

As stated in Chapter 2, phylogenetic tree’s are diagrams that show the lines of evolutionary descent
of different species from a common ancestor. The nodes represent species (or other organisms) and
the edges represent DNA mutation processes between the species. In this report we will only consider
binary tree’s, i.e. tree’s in which each node has either zero children (leaves), or two children (internal
nodes). There are various methods known for reconstructing phylogenetic trees. We will discuss two
types of phylogenetic reconstruction methods: distance-based methods and character based methods.

4.1. Distance-based methods
Distance-based methods use a notion of genetic “distance” between species to infer their evolutionary
relationships. These methods assume that the “further away” two species are, so how larger the genetic
differences, the longer the time since their last common ancestor. These pairwise “distances” between
species can be calculated in various manners, but they are often calculated based on the difference
between DNA sequence alignments. Distance-based methods have a matrix of pairwise distances be-
tween species as input, and obviously a phylogenetic tree as an output. Distance-based methods are
often very fast, as we reduce all the information of the difference between DNA sequences to a distance,
and so the input data is relatively small, however this reduction of data to a distance could lead to the loss
of information. We will be discussing two distance-based methods: The Neighbour-Joining algorithm
and the UPGMA algorithm.

4.1.1. Neighbour-Joining algorithm
The Neighbour-Joining algorithm is a distance-basedmethod that reconstructs trees by iteratively joining
the closest pairs of organisms based on their genetic distance [7]. It starts by identifying the species pair
with the smallest ’distance’, and placing a common ancestor for these species. You then recalculate the
distances between this common ancestor and the remaining species, to obtain a new distance matrix.
After this, you repeat this process until there is only a single pair of species left.

10



4.1. Distance-based methods 11

Algorithm 1 Neighbor-Joining Algorithm
INPUT : distance matrix D
OUTPUT : unrooted binary phylogenetic tree

Step 1 : Initiation
Initialize the tree with each taxon as a separate node (leaf).

Step 2 : Iteration
Construct an n× n matrix, Qd, whose entries are given by:

QD(i, j) = (n− 2) · d(i, j)−
∑
k ̸=i

d(i, k)−
∑
k ̸=j

d(j, k), (4.1)

for each i, j ∈ [n] with i ̸= j, and set QD(i, i) = ∞. Identify the pair of leaves (x, y) that minimizes
Qd(x, y). Define a new node z, and join the taxa x and y to z in the tree, using the following distances

d(x, z) =
1

2
d(x, y) +

1

2(n− 2)

∑
k ̸=x

d(x, k)−
∑
k ̸=y

d(y, k)


d(y, z) = d(x, y)− d(x, z)

(4.2)

Calculate the distance matrix again, where we remove the leaves x and y from the matrix, and calculate
the distance from z to each of the remaining taxa using:

d(z, u) =
1

2
(d(x, u) + d(y, u)− d(x, y)) (4.3)

Therefore obtaining a new (n− 1)× (n− 1) distance matrix Dz.

Step 3 : Termination
The iteration process is repeated until only two taxa remain. The distance between these final two taxa
defines the last branch of the phylogenetic tree.

Example. Suppose we have the following distance matrix between four species:

D =


0 1.1 1.0 1.4
1.1 0 0.3 1.3
1.0 0.3 0 1.2
1.4 1.3 1.2 0


Consider matrix D, of dimension n = 4. For 1 ≤ i, j ≤ 4, we compute QD(i, j) as:

QD(i, j) = (n− 2) · d(i, j)−
∑
k ̸=i

d(i, k)−
∑
k ̸=j

d(j, k)

We have:
QD(1, 2) = 2 · 1.1− (1.1 + 1.0 + 1.4)− (1.1 + 0.3 + 1.3) = −4,
QD(1, 3) = 2 · 1.0− (1.0 + 1.1 + 1.4)− (1.0 + 0.3 + 1.2) = −4,
QD(1, 4) = 2 · 1.4− (1.0 + 1.1 + 1.4)− (1.4 + 1.3 + 1.2) = −4.6,
QD(2, 3) = 2 · 0.3− (1.1 + 0.3 + 1.3)− (1.0 + 0.3 + 1.2) = −4.6,
QD(2, 4) = 2 · 1.3− (1.1 + 0.3 + 1.3)− (1.4 + 1.3 + 1.2) = −4,
QD(3, 4) = 2 · 1.2− (1.0 + 0.3 + 1.2)− (1.4 + 1.3 + 1.2) = −4.

We set QD(i, i) = ∞ for all i, in order to ensure that the minimum can never be found in the diagonal.
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Therefore, the matrix QD is:

QD =


∞ −4 −4 −4.6
−4 ∞ −4.6 −4
−4 −4.6 ∞ −4
−4.6 −4 −4 ∞


We can see that the minimum of the entries of this matrix corresponds toQD(1, 4) andQD(2, 3). Without
loss of generality, we choose leaves 1 and 4 to be the first found cherry of the tree. To continue with the
algorithm, we redefine leaves 1 and 4 into a new leaf X1 = (1, 4) and compute the new distances from
leaves 2 and 3 to X1.

d(X1, 2) =
1

2
(d(1, 2) + d(4, 2)− d(1, 4)) =

1

2
(1.1 + 1.3− 1.4) = 0.5

d(X1, 3) =
1

2
(d(1, 3) + d(4, 3)− d(1, 4)) =

1

2
(1.0 + 1.2− 1.4) = 0.4

Moreover, if we calculate the branch length between the new node X1 and the leaves 1 and 4, we have:

d(1, X1) =
1

2
d(1, 4) +

1

4
(
∑
k ̸=1

d(1, k)−
∑
k ̸=4

d(4, k) = 0.6

d(4, X1) = d(1, 4)− d(1, X1) = 1.4− 0.6 = 0.8

Now, for the tree with nodes X1, 2, 3 we have the new distance matrix:

DX1
=

 0 0.5 0.4
0.5 0 0.3
0.4 0.3 0


Let us now compute the off-diagonal values of the matrix QX1

:

QX1
(X1, 2) = 0.5− (0.5 + 0.4)− (0.5 + 0.3) = −1.2,

QX1
(X1, 3) = 0.4− (0.5 + 0.4)− (0.4 + 0.3) = −1.2,

QX1
(2, 3) = 0.3− (0.5 + 0.3)− (0.4 + 0.3) = −1.2.

So,

QX1 =

 ∞ −1.2 −1.2
−1.2 ∞ −1.2
−1.2 −1.2 ∞


Thus, we arbitrarily choose the cherry (X1, 2) as the following one. Let us denote this new node as Y1,
and calculate the remaining distances:

d(Y1, 3) =
1

2
(d(X1, 3) + d(2, 3)− d(X1, 2)) =

1

2
(0.4 + 0.3− 0.5) = 0.1

d(X1, Y1) =
1

2
d(X1, 2) +

1

2
(
∑
k ̸=X1

d(X1, k)−
∑
k≠2

d(2, k)) = 0.3

d(2, Y1) = d(X1, 2)− d(X1, Y1) = 0.2

With this, only two taxa Y1 and 3 are left, and thus we implement the termination step, and we are ready
to draw the phylogenetic tree corresponding to our initial distance matrix D1.

The NJ-algorithm reconstructs the unrooted binary phylogenetic tree seen in figure 4.1. Notice that all
the distances from our initial distance matrix D are correctly displayed in our tree.
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Figure 4.1: Output of the NJ-algorithm

4.1.2. UPGMA algorithm
The UPGMA (Unweighted Pair Group Method with Arithmetic mean) algorithm is a simple distance-
based phylogenetic reconstruction method that works by iteratively joining groups of nodes, which we’ll
call ’clusters’, that are closest to each other, using the average distance between the nodes in the clusters
[8] . Thus, we define the distance between clusters C1 and C2 as:

d(Ci, Cj) =
1

|Ci| · |Cj |
∑

p∈Ci,q∈Cj

dpq, (4.4)

where |Ci| and |Cj | are the amount of nodes in the clusters i and j, respectively. Using the UPGMA
algorithm, we reconstruct rooted binary phylogenetic tree’s from distance matrices. In the tree’s con-
structed by the UPGMA algorithm, the only distance that we consider is the vertical distance between
nodes, and we disregard the horizontal distance in the tree’s.

Algorithm 2 UPGMA algorithm
INPUT : distance matrix D
OUTPUT : rooted binary phylogenetic tree

Step 1 : Initialisation
1. Assign each node i to its own cluster Ci, and place this leaf at height zero

Step 2 : Iteration
1. Determine the two clusters i, j for which the distance between these is the smallest
2. Define a new cluster k by Ck = Ci ∪ Cj , and define dku for all u
3. Define a node k with descendants i and j and place this node at height dij

24. Replace clusters Ci and Cj with Ck

Step 3 : Termination
1. The algorithm terminates when only two clusters Ci and Cj remain, and then we place the root at

height dij

2

Example. Suppose that we have the following distance matrix between 4 species S1 , S2 , S3 and S4,
and we want to compute the corresponding phylogenetic tree

D =


0 1.3 1.2 1.4
1.3 0 0.3 0.8
1.2 0.3 0 1.6
1.4 0.8 1.6 0


The algorithm initiates by assigning all species to their own cluster and placing these at height zero as
leaves:

After this, the algorithm determines the two clusters for which the distance between these are the small-
est. In the distance matrix D, the smallest distance between clusters is 0.3, between clusters C2 and
C3. Thus we define a new cluster C5 = C2 ∪ C3, and calculate the new distances:
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Figure 4.2: Initiation step UPGMA

• dC5,C1
=

d2,1+d3,1

2 = 1.25

• dC5,C4
=

d2,4+d3,4

2 = 1.2

Thus we place a node with descendants S2 and S3 at height d1,2

2 = 0.15, and obtain the following distance
matrix

D =

 0 1.25 1.4
1.25 0 1.2
1.4 1.2 0



Figure 4.3: Iteration step UPGMA

Now we see that the smallest distance is 1.2, between clusters C5 and C4. Thus, we define a new cluster
C6 = C5 ∪ C4, calculate the new distance

• dC6,C1 =
d2,1+d3,1=d4,1

3 = 1.3

and place a node between clusters C5 and C4 at height dC5,C4

2 = 0.6

Figure 4.4: Iteration step UPGMA

Now only the clusters C1 and C6 remain, with distance matrix

D =

[
0 1.3
1.3 0

]
So the termination step begins, and we place a root at height dC1,C6

2 = 0.65 to obtain the following rooted
phylogenetic tree
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Figure 4.5: Termination step UPGMA

4.2. Character-based methods
Character-based methods for reconstructing phylogenetic trees analyze DNA sequence alignments di-
rectly, considering each individual position of the nucleotides in the sequence alignment. Using the
whole DNA sequence gives us a more detailed and accurate tree, as we have more information to de-
termine the evolutionary relationships on. However more information of course generally make these
methods computionally more expensive; these methods are often slower than distance based methods,
especially for large datasets.

4.2.1. Maximum Parsimony method
The Maximum Parsimony method (MP) is a simple character-based reconstruction method that aims to
determine the evolutionary tree that minimizes the number of mutations in the DNA sequences. We will
discuss the Fitch-Hartigan algorithm [9], which calculates the parsimony score of a specific tree topology.

The Maximum Parsimony method works as follows. Given a DNA alignment sequence of k species,
each sequence consisting of n nucleotide bases. Firstly, we build all possible tree topology’s on k
leaves, and calculate the parsimony score of all these possible tree’s using the Fitch-Hartigan algorithm.
The MP method then supposes that the tree topology with the smallest parsimony score, therefore the
least amount of mutations, is the most probable phylogenetic tree displaying the species from our se-
quence alignment.

LetXi be the i’th column of the sequence alignment. So this corresponds to a vectorXi = (x1, x2, . . . , xn),
where xa is the i’th nucleotide of the a’th sequence.
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Algorithm 3 Fitch-Hartigan algorithm
INPUT : DNA sequence alignment and a tree topology
OUTPUT : parsimony score of this tree topology

Step 1 : Initialisation
1. If the tree topology is unrooted, arbitrarily introduce a root to obtain a binary rooted tree

Step 2 : Iteration:
For each character alignment Xi

1. Assign to each node v in the tree, a pair (A,n), where A ∈ {A,C,G, T} and m ∈ Z≥0

(a) To each leaf x in the tree, assign the pair (X (x), 0)
(b) Let u, v be the two children of v, with assigned pairs (A1, n1) of u and (A2, n2) of v, then assign

to v the pair

(A,n) =

{
(A1 ∪A2, n1 + n2 + 1), if A1 ∩A2 = ∅
(A1 ∩A2, n1 + n2), otherwise

Repeat this until all nodes have been assigned a pair. If the root has been assigned pair (A,n),
then the parsimony score of the character alignment Xi: PSXi

= n

Step 3 : Termination
1. If the parsimony score of all character alignments have been computed. The parsimony score of

the tree is

PS(T ) =
∑
i

PSXi

Example. Let us construct the phylogenetic tree for 4 species S1, S2, S3 and S4, where we assume for
simplicity that their DNA sequences are of length 4

X1 X2 X3 X4

S1 T C A T
S2 T C A T
S3 A C A G
S4 A G A G

The Maximum Parsimony method would proceed by firstly building all possible tree topologies on 4
leaves, two of which T1 and T2 can be seen in figure 4.6. Afterwards, it calculates the parsimony score
of all the possible tree topologies, using the Fitch-Hartigan algorithm. In figure 4.6, you can see the
implementation of the Fitch-Hartigan algorithm on the two trees T1 and T2

The parsimony score of

• T1 = PSX1 + PSX2 + PSX3 + PSX4 = 1 + 1 + 0 + 1 = 3

• T2 = PSX1 + PSX2 + PSX3 + PSX4 = 2 + 1 + 0 + 2 = 5

Therefore, The Maximum Parsimony method tells us that T1 is the better tree topology. Notice that in
T1 species S1 and S2 are evolutionally ’closer’, than in T2, which agrees with what we would expect as
species S1 and S2 have the same DNA squence. The MP method would proceed by calculating the
parsimony score of all of the other possible tree topologies.
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Figure 4.6: Fitch-Hartigan algorithm on two tree’s T1 and T2

4.2.2. Maximum Likelihood Method
The maximum likelihood is a character-based reconstruction method that constructs a phylogenetic
tree using the so-called Felsenstein Pruning Algorithm [9]. This algorithm computes the probability, or
’likelihood’, of a specific DNA alignment. As in the Fitch-Hartigan algorithm of MP method, the vertices
in the model will be assigned nucleotide bases, in the set {A,C,G, T}. To be able to calculate the
likelihood of a certain alignment, the edges will contain transition matrices corresponding to a certain
evolution model, e.g. a nucleotide substitution model, that calculate the probabilities of mutations, and
the root r will have an ancestral distribution vector πr, as in chapter 3.The Felsenstein Pruning algorithm
works as follows; Given an alignment of n species with DNA sequences of m nucleotides,

S1 = s11, s
2
1, . . . , s

m
1

S2 = s12, s
2
2, . . . , s

m
2

...
Sn = s1n, s

2
n, . . . , s

m
n

and given a specific tree topology T , root distrubution vector πr, and transition matrices for each edge
Me, the Felsenstein Pruning algorithm computes the probability of the alignment in our tree

P (S1, S2, . . . , Sn | T, πr,Me)

which we will henceforth denote as the likelihood L(S1, S2, . . . , Sn) of the alignment.

Let Xi once again be the i’th column of the sequence alignment: Xi = (si1, s
i
2, . . . , s

i
n) We will calculate

the likelihood L(S1, S2, . . . , Sn) of the entire DNA alignment using the following assumption that we have
already seen for nucleotide substituion models: all sites evolve independently of each other. Therefore
the likelihood of the entire DNA sequence alignment is the product of the likelihood of each character
alignment Xi.

L(S1, S2, . . . , Sn) = P (S1, S2, . . . , Sn | T, πr,Me) =

m∏
i=1

P (Xi | T, πr,Me)



4.2. Character-based methods 18

Algorithm 4 Felsenstein Pruning algorithm
INPUT : DNA sequence alignment, tree topology, root distribution vector and transition matrices for each
edge
OUTPUT : likelihood of this tree topology

Step 1 : Initialisation
For each character alignment Xi

1. Label the leaves of the tree topology: x, corresponding to the associated nucleotide in the character
alignment Xi(x)

2. label each internal node, and label each edge with the corresponding transition matrix

Step 2 : Iteration:
For each character alignment Xi

1. Calculate recursively the probabilities of the subtrees with root vn, working from the leaves upwards
to the root r:
Let u, s be the children of vn, where edge (vn, u) has transition matrixMu and edge vn, s has matrix
Ms

(a) If u, s are leaves of nucleotides N,M :

Lvn
i (x) = (Mu)x,N (Ms)x,M

(b) if u is an internal node, and s is a leaf of nucleotide M :

Lvn
i (x) = (

∑
P∈{A,C,G,T}

(Mu)x,PL
u
i (P ) ) ∗ (Ms)x,M

(c) if u, s are internal nodes:

Lvn
i (x) = (

∑
P∈{A,C,G,T}

(Mu)x,PL
u
i (P ) ) ∗ (

∑
P∈{A,C,G,T}

(Ms)x,PL
s
i (P ) )

2. After we have calculated the partial likelihood of the entire tree (subtree with root r). We say that
the likelihood of the character alignment Xi

L(Xi) =
∑

P∈{A,C,G,T}

Lr
i (P )πr(P )

where r is the root of the tree

Step 3 : Termination
1. The likelihood of the tree topology T

L(T ) =
∏
i

L(Xi)
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Example. Consider the same DNA sequence alignment of 4 species S1, S2, S3 and S4 of the previous
example

X1 X2 X3 X4

S1 T C A T
S2 T C A T
S3 A C A G
S4 A G A G

We start the initiation step by labeling all the leaves with the corresponding bases from the character
alignments, and labelling each internal node and edge, as seen in figure 4.7 for the character alignments
X1 and X2.

Figure 4.7: Felsenstein pruning algorithm algorithm on tree T

After this we need to calculate the partial conditional likelihood of all the alignments L(X1), L(X2), L(X3)
and L(X4), and finally the likelihood of the entire tree T would be given by

L(T ) = L(X1) ∗ L(X2) ∗ L(X3) ∗ L(X4)

We calculate the likelihood of the character alignment L(X1) as follows:

1. Firstly, we calculate the likelihood of v2, where both children of v2 are leaves

Lv2
1 (x) = (M3)x,T (M4)x,T

for x ∈ {A,C,G, T}
2. After this, we calculate the likelihood of v1, where v2 is an internal node, and A is a leaf

Lv1
1 (x) = ((M2)x,AL

v2
1 (A) + (M2)x,CL

v2
1 (C) + (M2)x,GL

v2
1 (G) + (M2)x,TL

v2
1 (T )) ∗ (M5)x,A

3. Finally, we calculate the likelihood of r: the entire sequence alignment

Lr
1(x) = ((M1)x,AL

v1
1 (A) + (M1)x,CL

v1
1 (C) + (M1)x,GL

v1
1 (G) + (M1)x,TL

v1
1 (T )) ∗ (M6)x,A

Now if we were given the transition matrices Mi and the root ancestral distribution vector πr, we could
calculate the likelihood of the character alignment L(X1)

L(X1) = Lr
1(A)πr(A) + Lr

1(C)πr(C) + Lr
1(G)πr(G) + Lr

1(T )πr(T )



5
Reconstructing Phylogenetic

Networks Using Cherry Picking

5.1. Solving the Hybridization problem
In this section, we will focus on solving the Hybridization problem discussed in Chapter 1, which is the
computational problem of combining a set of phylogenetic tree’s into a phylogenetic network, with the
smallest possible number of reticulations, that displays this set of trees. To obtain this network, we use
the cherry picking heuristic algorithm introduced in Chapter 1. The algorithm works by picking a CPS
S that fully reduces all the input trees, and then uniquely reconstructing the phylogenetic network, for
which S is a minimum length CPS. It constructs the network by processing the cherries in S in reverse
order. In Section 5.1.2, we discuss the algorithm used to reconstruct the network corresponding to a
CPS S.
As stated already, the cherry picking heuristic (CPH) algorithm seeks a cherry picking sequence S that
fully reduces the set of input trees.

Algorithm 5 CPH algorithm [1]
INPUT : A set T of phylogenetic trees
Output : A CPS reducing T

1. S ←− ∅
2. while there is a reducible pair in T do
3. (x, y)←− PickNext(TS)
4. S ←− S ◦ (x, y)
5. Reduce (x, y) in all trees of TS
6. S ←− CompleteSeq(S)
7. Return S

Notice that there is a function CompleteSeq in the algorithm, which turns a sequence of cherries S into a
CPS if this is not the case, by adding cherries to S such that each second leaf is a first leaf in a later pair,
as required in the definition of a CPS. This will be an important feature needed to construct the network
corresponding to a CPS. Furthermore, notice that the function PickNext gives us different manners of
picking which cherry to reduce first from TS .

5.1.1. PickNext function
We will discuss two different implementations for the function PickNext.

1. RAND
Function PickNext picks uniformly at random a cherry of TS

2. TrivialRand
Function PickNext picks a trivial cherry if there exists one and otherwise picks a reducible pair
according to RAND

20
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Remember that a cherry (x, y) is defined as trivial, if it is a cherry in all tree’s that contain both x and y,
and it’s a cherry in at least one tree. There exists another implementation of PickNext, that uses machine
learning to pick a cherry at each step [1], that has the highest probability of leading to a network with the
smallest number of reticulations possible, in Section 5.2 we will further elaborate on this implementation.
During our research analytically we found that TrivialRand can give us up to 3 times fewer reticulations
on a set of two trees with 5 leaves. In Figure 5.1a you can see an execution of CPH with RAND on a
set of two trees with 5 leaves.

(a) CPS fully reducing set of two tree’s (b) Network reconstructed from this CPS

Figure 5.1: Implementation of RAND

By picking cherries randomly, we obtained a CPS S = (b, c)(a, b)(b, c)(d, e)(c, e)(a, e)(c, e) that fully re-
duces our input set, as only the root and one leaf is left after reducing the cherries in S in order. In this
case using RAND, we obtained a CPS containing 7 cherries, which reconstructed the network in Figure
5.1b with 3 reticulations.

After this we executed CPH with TrivialRand on the exact same set of two trees, to try to get a better
understanding of how these two methods perform against each other.

(a) CPS fully reducing set of two tree’s (b) Network reconstructed from this CPS

Figure 5.2: Implementation of TrivialRand

In this case using TrivialRand we obtained the CPS S = (d, e)(a, b)(b, c)(a, e)(c, e) containing 5 cherries,
as you can see in Figure 5.2a, and we obtained the network in Figure 5.2b with one reticulation. Notice
that the first cherry we pick (d, e) is indeed a trivial cherry, as the cherry is present in all trees contain-
ing the leaves d and e. We see that in this execution of TrivialRand we obtained a network with one
reticulation, while the execution of RAND gave us a network with three reticulations. Remembering the
hybridization problem and that we seek the network with the smallest amount of reticulations, clearly
TrivialRand performed better during this iteration. Note that both of these methods make use of random
choices, and thus both methods could have given us different results. In this case we were researching
the worst-case theoretical performance of RAND, and the best case scenario for TrivialRand. During
our numerical research we found that when we have as input for the CPH algorithm any set of two trees
with five leaves, and the optimal reticulation number is one, executing CPH with TrivialRand gives us 3
reticulations worst-case, while Rand gives us 5 reticulations worst-case.
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5.1.2. Reconstructing a network from a CPS
Youmight be wondering how we reconstructed the phylogenetic networks in Figure 5.1b and 5.2b. In this
subsection we will be discussing the algorithm that we use to reconstruct the phylogenetic network from
a cherry picking sequence S. We have told you before that we reconstruct the network by processing
the cherries in S in reverse order, but what does that exactly mean?

Algorithm 6 Network reconstruction algorithm
INPUT : CPS S of length n
OUTPUT : rooted binary phylogenetic network N

We reconstruct the network by processing the cherries in S in reverse order
Step 1 : Initialisation
Start by processing the last cherry in S, say (a, b), and draw the network N with two leaves (a, b)

Step 2 : Iteration
Let P (v) be the parent of node v. Process each cherry in S in reverse order, starting from the (n− 1)th

cherry, suppose this cherry is (c, d)

1. if c is not a leaf in N :
draw an edge in N from the edge (P (d), d) to a leaf, and label this leaf c

2. if c is a leaf in N :
draw an edge in N from the edge (P (d), d) to the edge (P (c), c), thus creating a reticulation which
becomes the parent of c

Step 3 : Termination

When all the cherries in S have been processed, the algorithm terminates

Return: network N

Notice that as S is a CPS, it is not possible in the iteration step that d is not a leaf, as in a CPS each
second element must either be a first element in a later cherry, or the second element of the last cherry.
An example of algorithm 6 is covered in Appendix A.

You might wonder if there is a way to predict how many reticulations a network might have. If you have a
CPS S, and a phylogenetic network N on a set of leaves X, reconstructed from S, then for the number
of reticulations in the network N , which we will henceforth denote as r(N)

Lemma 2 [1]:

r(N) = |S| − |X|+ 1

Proof.
Let |X| be the number of leaves in the network and R be the number of reticulations. As the network
N is reconstructed from the CPS S, we know by the manner of construction that every element in S is
reducible in N in order, and that S is a minumum length CPS fully reducing N . For each cherry a ∈ S,
either

1. a is a cherry in NS∗

2. a is a reticulated cherry in NS∗

where S∗ is the sequence of cherries in S up to a.
If a is a cherry in NS∗ , a will decrease the number of leaves in the network by one after reduction. If a is
a reticulated cherry, it will decrease the number of reticulations by one after reduction. We know that S
is a minimum length CPS fully reducing N , therefore S reduces the number of leaves by |X| − 1, as it
reduces the network from |X| leaves to one leaf, and S deletes all R reticulations in N . Consequently,



5.2. Performance when picking a suboptimal cherry first 23

every element in S that does not reduce a cherry, deletes a reticulation, hence

|S| − (|X| − 1) = R

5.2. Performance when picking a suboptimal cherry first

In this section we will be researching the effect of picking a suboptimal cherry first in the cherry picking
algorithm. But before getting into that we must first define what a suboptimal cherry is. Let a CPS S be
such that it fully reduces a set of trees T . We know that the network N , reconstructed from S, displays
the tree set T , but depending on S, this network might not be an optimal network displaying T , i.e. a
network with the least number of reticulations.

Lemma 4 [1]:
A CPS S reducing a set of trees T reconstructs an optimal network N if and only if each cherry in S is
successively reducible in the network N

Let OPT (T ) be the set of networks with the smallest possible number of reticulations that display a
tree set T . Suppose we were constructing a CPS S displaying T with the CPH algorithm. If at every
iteration i of PickNext(TSi ), we knew if a reducible pair (x, y) in TSi , was reducible in some optimal net-
work N ∈ OPT (T )Si , we could solve the Hybridization problem optimally according to Lemma 4, where
Si is the sequence of cherries constructed until iteration i. Therefore, in the Hybridization problem, we
seek to predict whether a given cherry of T is reducible in an optimal network N , without knowing N .
G.Bernardini et al introduce machine-learned heuristics for the CPH in [1]. They introduce an imple-
mentation of PickNext(TS ) that uses the information of the cherries in TS , to pick the cherry with the
highest probability of being reducible in some (unknown) optimal network NS . We will not discuss this
implementation in detail, but this could be interesting to delve into in the future. As stated before, the
aim in this section is to research the effect of picking a suboptimal cherry as a first cherry in the CPH
algorithm with TrivialRand. According to Lemma 4, a suboptimal (wrong) cherry is a cherry that is not
reducible in any optimal network. Therefore if we know the optimal networks, we know which cherries
are suboptimal. We will use this property to conduct experiments analyzing the performance of the CPH
algorithm with TrivialRand when it attempts to pick a suboptimal cherry first, but first we will discuss a
method used to optimize the performance of TrivialRand.

5.2.1. Use of tree expansion
In Section 5.1.1, we saw during our numerical research that the worst-case scenario of TrivialRand, was
(significantly) better than the worst-case scenario of Rand. A method is explained in [1] that improves the
performance of TrivialRand quite a bit. This method, called tree expansion, works as follows. Suppose
that the function PickNext(TS) chooses the trivial pair (x, y) at some iteration. Therefore, for each tree
in TS that contains the leaves x and y, (x, y) is a cherry. Each other tree T ∈ TS has exactly one of the
following properties:

1. x is a leaf, but y is not
2. y is a leaf, but x is not
3. both x and y are not leaves

We will now add the following step to our CPH algorithm: before we reduce (x, y) in TS : in all trees
with property 1, we replace the leaf x by the cherry (x, y). Therefore, during the reduction of the trivial
pair (x, y), these trees will now also reduce this cherry, resulting in the relabeling of all leaves x by y in
trees of property 1. This is desirable as now our reducted tree set no longer contains trees that contain x,
therefore saving us a reduction step in the future needed to reduce x. An example of how tree expansion
can lead to a reduction step less is seen in figure 5.3. As without tree expansion, we would still need to
reduce the cherry (a, c) in a reduction step in the future.

In fact, the execution of TrivialRand with tree expansion can reduce the output reticulation number of
the cherry picking algorithm by up to 40% [1]. We seek to investigate the accuracy of the CPH with
TrivialRand, when it picks the wrong cherry first. To do this, it is interesting to compare the best iterations
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Figure 5.3: Example where tree expansion leads to a reduction step less

of the algorithm possible, therefore I wanted to check if tree expansion also gives us better results in the
case that we pick a wrong cherry first. To do this, for each instance; we generate a normal network and
the set of trees that it displays, we simulate 100 runs of TrivialRand, with picking a suboptimal cherry
first, on this set of trees and calculate the average reticulation number out of all these runs, with and
without tree expansion. We simulated 100 of these instances, for various reticulation and leaf numbers
of the normal network, and took the average reticulation number over all these instances. The results
are seen in figure 5.4

Figure 5.4: Simulation of TrivialRand

Notice that as we took the average over all the runs of TrivialRand, the average number of reticulations
is relatively far from the optimal reticulation number (number of reticulations that the network displaying
the trees has). As expected, tree-expansion also reduces the number of reticulations, if we pick the
wrong cherry first. In fact, every single instance gave us fewer reticulations averaged over 100 runs,
using tree-expansion. Therefore, to compare the best simulations of the algorithm, I have used tree
expansion in all my simulations of TrivialRand that follow.

5.2.2. Simulation Results
In this section we will investigate the performance of the CPH algorithm when it picks a suboptimal
(wrong) cherry in the first iteration of PickNext, i.e. a cherry that is not reducible in any optimal network.
In an attempt to simulate this, we use the following idea: we create a normal network N and the set
of trees that this network displays T , then in the first iteration of the algorithm we pick a cherry that
is reducible in T , but not reducible in N , in an attempt to pick a suboptimal cherry. From now on
we will call this suboptimal picking. To get a first insight of what the overall performance difference
is between TrivialRand normally and with suboptimal picking, we carried out the following simulation. In



5.2. Performance when picking a suboptimal cherry first 25

each instance, we created a normal network with a certain number of leaves and reticulations, and we
generated the set of trees displayed in this network, then we ran TrivialRand normally 200 times on this
tree set and calculated the average number of reticulations over all these runs, and did the same for
TrivialRand with suboptimal picking. Finally, we repeated this process for 100 instances and calculated
the average over all these instances to obtain the data in Figure 5.5 . For simplicity, henceforth we will
denote a network with L leaves and R reticulations, as an (L,R) network.

Figure 5.5: Average reticulation number over 200 runs, averaged over 100 instances

Notice that as expected, suboptimal picking gives us more reticulations on average than executing Triv-
ialRand normally. I found that the simulation of TrivialRand with suboptimal picking, gave us on average:

• 11,3% more reticulations on a (20, 3) network
• 8,7% more reticulations on a (20, 5) network
• 5,75% more reticulations on a (20, 7) network

So there seems to be a negative correlation between the effect of suboptimal picking and the number
of reticulations in the network.

As the simulation of TrivialRand with suboptimal picking gave us the largest difference on the tree set
obtained from a (20, 3) network, we shall further discuss this case. In Figure 5.6a, we see the density
plot of the average number of reticulations of 200 instances, while running TrivialRand, with and with-
out suboptimal picking. Observe that the density plot shows a shift to the right with suboptimal picking,

(a) Density plot - (20,3) (b) Box Plots - (20,3)

Figure 5.6: Implementation of TrivialRand - 200 instances

reaffirming that the average reticulation number is larger with suboptimal picking. Furthermore, notice
that the difference between the two density plots is not solely a horizontal shift (by one), therefore we
conclude that suboptimal TrivialRand does not always give exactly one more reticulation than Trivial-
Rand normally. The box plots in figure 5.6b reaffirm many things we have already seen. Notice that the
interquartile range is slightly wider in the suboptimal picking, indicating a slightly larger variability in the
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average number of reticulations.

Although the CPH algorithm with TrivialRand picks trivial cherries first an in attempt to find a network
with the least amount of reticulations, it still contains randomness when these trivial cherries are not
available. Hence, one could run TrivialRand many times and select the best run, to attempt to obtain
an optimal network. In light of this, we conducted the following experiment to gain an understanding of
the optimal performance difference between TrivialRand normally and with suboptimal picking. In each
instance, we generated an (L,R) network and the set of trees displayed in this network, then we ran
TrivialRand 200 times on this tree set and calculated the output of the optimal run (least reticulations).
Finally, we repeated this process for 100 instances and calculated the average over all these instances
to obtain the data in figure 5.7.

Figure 5.7: Average reticulation number over the best runs of 100 instances

As we now calculated the average of the optimal run of each instance, as opposed to the average of
all the runs as in Figure 5.5, we notice that the average number of reticulations is much closer to the
optimal reticulation number. The performance of ’normal’ TrivialRand becomes worse as the number
of reticulations in the optimal network grows (G.Bernardini et al 2023, 13) [1], observe that suboptimal
TrivialRand also shares this property. The average of the best runs of our simulation with suboptimal
picking gave:

• 34,8% more reticulations on a (20, 3) network
• 20,9% more reticulations on a (20, 5) network
• 11,3% more reticulations on a (20, 7) network

As we have smaller numbers of reticulations now, the relative effect of suboptimal picking becomes
larger, compared to our results from Figure 5.5. Once again we observe a negative correlation between
the effect of the suboptimal picking and the number of reticulations in an optimal network. This can be
explained as follows; the average number of reticulations of the output of CPH with TrivialRand grows
significantly, as the number of reticulations in the optimal network increases. Therefore the extra reticu-
lations gained in our simulations because of the suboptimal picking, will be of less impact, as the poor
performance of TrivialRand is also giving us extra reticulations.

In Figure 5.8 we see the histogram of the best runs of 100 instances on our (20, 3) network. The first
thing that we notice is that in almost all the instances, the best run of CPH with TrivialRand normally
gives us an optimal number of reticulations, and the small rest of the instances gave us exactly one
reticulation above optimal, while the best run with suboptimal picking is a bit more varied.

Suboptimal picking makes sure that the CPS obtained does not reconstruct the optimal network that we
based our simulation on, by picking a cherry first which is not reducible in this network. Therefore, we
would expect that the best-case scenario of suboptimal picking would give us one reticulation more than
the number of reticulations in the optimal network. Notice that the execution of suboptimal picking gave
us one instance with an optimal number of reticulations. This is possible, as in our simulation, we pick a
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cherry first that is not reducible in the network that we based our simulation on, but it might be reducible
in some other optimal network. Therefore, in some cases the simulation of the CPH algorithm picks
a CPS that recontructs another optimal network. We simulated 200 more instances with suboptimal
picking and found that an optimal number of reticulations was found in 4,5% of these instances.

Figure 5.8: Histogram - (20, 3) network

In the simulation we calculated the best run with suboptimal picking, and normally, Table 5.1 shows for
each of the 100 instances in our simulations, how many more reticulations suboptimal picking gave us.

(20, 3) (20, 5) (20, 7)
less reticulations 0 4 18
same amount 3 16 18
1 more 89 45 24
2 more 6 24 22
3 more 2 11 18

Table 5.1: Percentages of the instances that had x more reticulations with suboptimal picking

Notice that as the number of reticulations in an optimal network grows, the amount of times grows
that suboptimal picking gives us a best run with less reticulations then executing TrivialRand normally.
This once again has to do with the decrease in performance of TrivialRand. The average number of
reticulations of the output of CPH with TrivialRand grows significantly, as the number of reticulations in
the optimal network increases. Therefore the chance that the poor performance of TrivialRand outweighs
the effect of suboptimal picking becomes larger.



6
Conclusion/Discussion

The study conducted on the effects of suboptimal picking on the CPH algorithmwith TrivialRand provided
some key insights into its performance. Our primary goal was to research how picking a suboptimal
cherry in the first iteration impacts the algorithm’s ability to pick a CPS that reconstructs a network with
the smallest amount of reticulations, displaying a tree set T

Our simulations demonstrated that suboptimal picking led to an increase in the average number of
reticulations for different optimal network configurations. While researching the overall performance
difference, suboptimal picking resulted on average in 11.3% more reticulations on a (20, 3) network,
8,7% on a (20, 5) network, and 5,75% on a (20, 7) network.

After this we investigated the effect of suboptimal picking on the optimal output of the cherry picking algo-
rithm. Our simulations demonstrated that the best runs resulted on average in 34,8% more reticulations
on a (20, 3) network, 20,9% on a (20, 5) network, and 11,3% on a (20, 7), indicating that the relative effect
of suboptimal picking is larger considering optimal outputs of the cherry picking algorithm. Furthermore,
in both cases our simulations indicated a negative correlation between the effect of suboptimal picking
and the optimal number of reticulations; as the optimal number of reticulations grows, the performance
reduction due to suboptimal picking becomes less noticeable.

We found that in a small number of cases suboptimal picking did not have a negative effect on the amount
of reticulations, this was due to limitations of the simulation, resulting in the simulation not picking a
suboptimal cherry as a first cherry.

This study opens avenues for further research, particularly in exploring the effects of suboptimal picking
on the CPH that uses machine learned heuristics to pick the optimal cherry at each iteration, discussed
in Section 5.2. Furthermore, it could be interesting to study the effect of picking suboptimal cherries in
a different iteration than the first one.

In conclusion, picking a suboptimal cherry in the first iteration of the CPH algorithm with TrivialRand
clearly has a negative effect on the number of reticulations of the network reconstructed by the picked
CPS, and the extent of this effect varies with the optimal reticulation number. Moreover, future work
focusing on machine learned heuristics could further refine our understanding of the effect of suboptimal
picking.
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A
Appendix

An example of how we reconstruct the phylogenetic network corresponding to the CPS

S = (b, c)(a, b)(b, c)(d, e)(c, e)(a, e)(c, e)

We reconstruct the network by processing the cherries in S in reverse order, as follows:
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Figure A.1: Phylogenetic network reconstructed by S
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Appendix

Table of the output of the average number of reticulations of 200 runs of TrivialRand per instance, for
200 instances. We do this for TrivialRand with suboptimal picking (wrong), and ordinary TrivialRand
(Normal).

Instances (20,3) - Wrong Cherry (20,3) - Normal
1 7.21 6.23
2 11.66 11.05
3 16.76 13.58
4 10.05 8.56
5 11.2 10.0
6 9.49 8.7
7 10.33 9.68
8 13.0 11.77
9 10.91 9.43
10 8.15 7.12
11 9.17 8.4
12 10.83 9.87
13 11.85 9.51
14 5.64 4.78
15 9.55 8.24
16 10.78 10.87
17 9.14 7.9
18 13.52 12.33
19 11.43 10.29
20 9.96 8.09
21 6.87 6.13
22 9.88 9.46
23 11.46 10.93
24 11.08 10.74
25 7.94 6.09
26 12.63 11.91
27 9.57 7.96
28 11.3 10.04
29 9.09 8.18
30 9.35 8.67
31 10.02 9.21
32 9.38 8.79
33 10.31 9.04
34 13.11 11.48
35 8.82 7.91
36 11.92 10.78
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Instances (20,3) - Wrong Cherry (20,3) - Normal
37 7.74 7.49
38 8.85 8.36
39 8.41 8.49
40 14.35 11.6
41 12.03 10.51
42 6.26 5.89
43 8.05 6.74
44 12.17 11.7
45 8.02 7.24
46 9.41 8.89
47 10.92 10.05
48 8.99 7.92
49 7.7 6.59
50 11.69 10.73
51 8.47 7.86
52 9.81 8.27
53 7.67 6.82
54 11.64 10.63
55 10.88 9.78
56 8.0 7.28
57 8.97 7.74
58 8.42 8.11
59 12.15 10.29
60 7.73 6.66
61 9.99 8.97
62 9.07 8.02
63 9.17 8.22
64 10.22 9.8
65 11.8 11.17
66 10.82 10.34
67 9.39 8.53
68 9.27 7.97
69 8.02 7.06
70 9.67 9.06
71 11.81 10.37
72 12.46 11.3
73 11.55 10.81
74 11.6 10.2
75 8.3 7.49
76 7.57 6.99
77 10.62 8.94
78 10.33 9.17
79 11.7 10.19
80 6.9 6.38
81 8.21 7.7
82 12.24 10.31
83 7.07 6.37
84 11.19 9.96
85 9.92 9.19
86 9.75 9.36
87 5.25 4.92
88 11.29 10.46
89 11.4 11.38
90 11.75 10.02
91 8.67 8.15
92 12.99 10.42
93 12.68 10.99



34

Instances (20,3) - Wrong Cherry (20,3) - Normal
94 9.18 7.29
95 6.49 6.19
96 11.49 11.75
97 14.18 11.95
98 8.65 8.45
99 5.48 5.2
100 11.7 10.96
101 10.95 7.9
102 10.51 9.47
103 11.88 11.48
104 13.15 11.5
105 10.25 8.62
106 13.77 11.62
107 9.35 8.42
108 8.35 7.2
109 11.19 9.92
110 3.81 3.6
111 4.94 4.54
112 9.55 9.48
113 10.5 10.01
114 10.4 8.79
115 11.62 10.28
116 14.52 11.45
117 8.38 7.1
118 7.38 6.77
119 11.77 10.37
120 11.05 10.36
121 8.59 8.21
122 9.96 9.13
123 12.94 11.06
124 11.02 9.37
125 10.77 9.2
126 10.37 9.24
127 8.45 6.96
128 8.35 8.01
129 9.33 8.03
130 8.3 7.75
131 10.48 9.07
132 12.5 10.93
133 8.29 7.22
134 10.52 10.55
135 11.44 9.75
136 9.89 8.52
137 10.19 8.5
138 7.13 6.74
139 10.12 8.89
140 11.06 9.44
141 8.43 7.95
142 9.82 8.8
143 6.28 5.58
144 7.6 6.48
145 12.42 11.89
146 10.56 10.03
147 6.73 5.88
148 8.04 7.96
149 6.42 6.07
150 7.32 6.34
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Instances (20,3) - Wrong Cherry (20,3) - Normal
151 10.11 8.88
152 9.52 9.61
153 7.21 6.35
154 7.69 7.24
155 9.29 8.31
156 8.71 8.34
157 9.37 7.46
158 8.7 7.47
159 9.99 8.6
160 8.82 7.74
161 10.23 9.43
162 12.42 12.14
163 11.18 9.31
164 9.82 8.65
165 12.41 12.23
166 8.03 6.54
167 14.74 13.8
168 11.37 10.0
169 11.28 9.64
170 9.48 9.02
171 5.48 5.15
172 8.32 7.52
173 7.01 6.73
174 8.64 8.27
175 9.17 7.97
176 11.96 10.4
177 13.81 12.27
178 6.35 5.29
179 10.88 10.27
180 10.63 10.51
181 8.82 7.26
182 7.23 6.85
183 10.0 9.57
184 10.44 8.79
185 9.97 7.73
186 11.12 10.05
187 11.35 9.88
188 8.53 7.44
189 10.7 9.37
190 11.52 9.15
191 7.89 6.97
192 10.88 9.73
193 10.03 8.4
194 11.25 9.93
195 11.35 9.39
196 11.04 10.73
197 7.97 6.3
198 9.61 9.06
199 4.63 4.68
200 13.87 13.0
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Appendix

Table showing the output of the best of 200 runs of TrivialRand, for 100 instances. We do this for
TrivialRand with suboptimal picking (wrong), and ordinary TrivialRand.

Instances (20,3) - Wrong (20,3) (20,5) - Wrong (20,5) (20,7) - Wrong (20,7)
1 4 3 7 5 13 9
2 4 3 7 5 10 9
3 4 3 6 10 10 8
4 4 3 9 6 11 11
5 4 3 7 6 17 9
6 4 3 9 7 14 12
7 4 3 9 8 10 8
8 5 3 8 6 12 10
9 4 3 7 6 16 8
10 4 3 8 5 11 10
11 4 3 6 5 11 12
12 4 3 7 5 10 9
13 4 3 8 6 13 12
14 4 3 7 5 11 9
15 4 3 8 7 8 9
16 4 3 6 6 13 10
17 4 3 8 5 11 10
18 5 3 6 6 13 16
19 4 3 6 5 10 10
20 4 3 9 6 15 18
21 4 3 7 7 11 10
22 4 3 8 6 11 11
23 4 3 8 6 16 14
24 4 3 6 5 10 10
25 4 3 8 6 15 11
26 5 3 8 7 12 8
27 6 3 7 6 12 10
28 4 3 7 5 10 8
29 4 3 7 6 10 10
30 4 3 7 6 13 9
31 4 3 7 5 11 10
32 4 3 7 5 14 12
33 4 3 6 5 13 12
34 4 3 9 6 11 9
35 4 3 8 6 11 13
36 6 3 6 5 12 8
37 4 3 6 6 10 10
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Instances (20,3) - Wrong (20,3) (20,5) - Wrong (20,5) (20,7) - Wrong (20,7)
38 4 3 7 6 12 11
39 4 3 7 6 10 7
40 4 3 7 6 9 9
41 4 3 6 5 11 10
42 4 3 8 7 12 8
43 4 3 6 5 10 11
44 4 3 6 5 10 9
45 5 4 7 7 9 10
46 4 3 7 5 9 7
47 4 3 7 6 8 9
48 4 3 6 5 10 10
49 4 3 10 5 11 10
50 4 3 8 5 13 10
51 4 3 8 7 11 15
52 4 3 7 5 11 9
53 4 3 5 5 12 9
54 4 3 9 5 14 10
55 4 3 7 8 13 9
56 4 3 8 5 10 9
57 4 3 7 6 9 9
58 4 3 6 6 10 9
59 4 3 9 7 12 13
60 4 3 6 7 9 7
61 4 4 5 5 12 10
62 4 3 7 9 14 12
63 4 3 7 6 11 9
64 4 3 6 5 11 9
65 4 4 6 6 16 13
66 4 3 6 5 10 8
67 4 3 7 6 11 11
68 4 3 7 5 10 11
69 4 3 6 6 14 16
70 4 3 7 5 10 9
71 4 3 6 6 12 12
72 5 3 7 5 12 11
73 4 3 6 5 11 9
74 4 3 7 6 10 12
75 4 3 7 5 13 10
76 4 3 8 6 10 11
77 4 3 6 5 11 8
78 4 3 6 6 13 9
79 4 3 6 5 10 11
80 4 3 9 7 12 14
81 4 3 7 5 9 8
82 4 3 6 6 8 9
83 4 3 6 6 14 11
84 4 3 7 5 9 14
85 4 3 7 5 14 12
86 4 3 8 6 10 10
87 4 3 6 6 12 11
88 4 3 5 5 9 11
89 4 3 8 6 10 9
90 4 3 6 5 14 8
91 5 3 7 5 12 14
92 4 3 7 6 10 10
93 4 3 7 5 11 8
94 3 3 8 6 10 11
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Instances (20,3) - Wrong (20,3) (20,5) - Wrong (20,5) (20,7) - Wrong (20,7)
95 4 3 8 5 11 10
96 4 3 7 6 11 10
97 4 3 8 6 10 9
98 4 3 8 7 9 10
99 4 3 7 6 9 8
100 4 3 6 6 16 11
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Source Code

These are the two Main python files I used to simulate the data, I extended the code seen in the section
“Experiments” in “Constructing phylogenetic networks via cherry picking and machine learning” [1]

1 import os.path
2 from argparse import ArgumentParser
3 import pickle as pkl
4 import time
5

6

7 from NetworkGen.normal_network import simulation as normal_simulation
8 from NetworkGen.tree_to_newick import *
9 from NetworkGen.NetworkToTree import *

10

11 from CPH import CPHeuristic
12

13 def make_test_normal(net_num, l, ret):
14 tree_info = f"_L{l}_R{ret}_normal"
15

16 # MAKE NETWORK
17 st = time.time()
18 beta = 1
19 distances = True
20 n = l - 2 + ret
21

22 # print info
23 print(f"JOB␣{net_num}:␣Start␣creating␣NETWORK␣(Normal,␣L␣=␣{l},␣R␣=␣{ret},␣n␣=␣{n})")
24

25 while True:
26 if l <= 20:
27 alpha = np.random.uniform(0.1, 0.5)
28 elif l <= 50:
29 alpha = np.random.uniform(0.1, 0.3)
30 else:
31 alpha = np.random.uniform(0.1, 0.2)
32 net, ret_num = normal_simulation(n, alpha, 1, beta, net_num)
33 num_leaves = len(leaves(net))
34 if num_leaves == l and ret_num == ret:
35 break
36

37 # EXTRACT TREES
38 net_nodes = int(len(net.nodes))
39

40 while True:
41 print(f"JOB␣{net_num}:␣Start␣creating␣TREE␣SET␣(Normal,␣L␣=␣{num_leaves},␣R␣=␣{ret_num

})")
42 tree_set, tree_lvs, num_unique_leaves = net_to_tree(net, num_trees=None, distances=

distances, net_lvs=num_leaves)
43 if num_unique_leaves == num_leaves:
44 break
45

46 num_trees = 2 ** ret_num
47 tree_to_newick_fun(tree_set, net_num, tree_info=tree_info)

39
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48

49 # SAVE INSTANCE
50 metadata_index = ["network_type" , "rets" , "nodes", "net_leaves", "chers", "ret_chers", "

trees", "n", "alpha",
51 "beta", "min_lvs", "mean_lvs", "max_lvs", "runtime"]
52

53 net_cher, net_ret_cher = network_cherries(net)
54 min_lvs = min(tree_lvs)
55 mean_lvs = np.mean(tree_lvs)
56 max_lvs = max(tree_lvs)
57 metadata = pd.Series([0, ret_num, net_nodes, num_leaves, len(net_cher)/2, len(net_ret_cher

),
58 num_trees, n, alpha, beta, min_lvs, mean_lvs, max_lvs,
59 time.time() - st],
60 index=metadata_index,
61 dtype=float)
62 output = {"net": net, "forest": tree_set, "metadata": metadata}
63

64 #
----------------------------------------------------------------------------------------------------------------------------------------------------------

65

66 net_Cher_and_retCher = net_cher | net_ret_cher
67

68 cherries, reducible_pairs_trees = tree_cherries(tree_set)
69

70 net_reducible_pairs = {tup: idx + 1 for idx, tup in enumerate(net_Cher_and_retCher)}
71 first_cherry_to_pick = {k: v for k, v in reducible_pairs_trees.items() if k not in

net_reducible_pairs}
72

73 while len(first_cherry_to_pick) == 0:
74 # --------------------------------------------Create a new network and tree set while

there is no wrong cherry to pick
75 tree_info = f"_L{l}_R{ret}_normal"
76

77 # MAKE NETWORK
78 st = time.time()
79 beta = 1
80 distances = True
81 n = l - 2 + ret
82

83 # print info
84 print(f"JOB␣{net_num}:␣Start␣creating␣NETWORK␣(Normal,␣L␣=␣{l},␣R␣=␣{ret},␣n␣=␣{n})")
85

86 while True:
87 if l <= 20:
88 alpha = np.random.uniform(0.1, 0.5)
89 elif l <= 50:
90 alpha = np.random.uniform(0.1, 0.3)
91 else:
92 alpha = np.random.uniform(0.1, 0.2)
93 net, ret_num = normal_simulation(n, alpha, 1, beta, net_num)
94 num_leaves = len(leaves(net))
95 if num_leaves == l and ret_num == ret:
96 break
97

98 # EXTRACT TREES
99 net_nodes = int(len(net.nodes))

100

101 while True:
102 print(f"JOB␣{net_num}:␣Start␣creating␣TREE␣SET␣(Normal,␣L␣=␣{num_leaves},␣R␣=␣{

ret_num})")
103 tree_set, tree_lvs, num_unique_leaves = net_to_tree(net, num_trees=None, distances

=distances,
104 net_lvs=num_leaves)
105 if num_unique_leaves == num_leaves:
106 break
107

108 num_trees = 2 ** ret_num
109 tree_to_newick_fun(tree_set, net_num, tree_info=tree_info)
110

111 # SAVE INSTANCE
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112 metadata_index = ["network_type", "rets", "nodes", "net_leaves", "chers", "ret_chers",
"trees", "n", "alpha",

113 "beta", "min_lvs", "mean_lvs", "max_lvs", "runtime"]
114

115 net_cher, net_ret_cher = network_cherries(net)
116 min_lvs = min(tree_lvs)
117 mean_lvs = np.mean(tree_lvs)
118 max_lvs = max(tree_lvs)
119 metadata = pd.Series([0, ret_num, net_nodes, num_leaves, len(net_cher) / 2, len(

net_ret_cher),
120 num_trees, n, alpha, beta, min_lvs, mean_lvs, max_lvs,
121 time.time() - st],
122 index=metadata_index,
123 dtype=float)
124 output = {"net": net, "forest": tree_set, "metadata": metadata}
125

126 net_Cher_and_retCher = net_cher | net_ret_cher
127

128 cherries, reducible_pairs_trees = tree_cherries(tree_set)
129

130 net_reducible_pairs = {tup: idx + 1 for idx, tup in enumerate(net_Cher_and_retCher)}
131 first_cherry_to_pick = {k: v for k, v in reducible_pairs_trees.items() if k not in

net_reducible_pairs}
132

133 if len(first_cherry_to_pick) > 0:
134 break
135

136 #
------------------------------------------------------------------------------------------------------------------------------------------------------------

137

138

139 os.makedirs(f"data/network/instances_test", exist_ok=True)
140 with open(
141 f"data/network/instances_test/tree_data{tree_info}_{net_num}.pkl", "wb") as handle

:
142 pkl.dump(output, handle)
143

144 print(f"JOB␣{net_num}:␣FINISHED␣in␣{np.round(time.time()␣-␣st,␣3)}s␣(Normal,␣L␣=␣{
num_leaves},␣"

145 f"R␣=␣{ret_num},␣n␣=␣{n})")
146

147 #data_path = f"data/network/instances/tree_data_L10_R2_normal_{i}.pkl" (what was there)
148 def main(args):
149 pass
150 # once for each instance (change 1 to args.num_instances for a specific instance)
151

152 data_best_runs = []
153 data_avg_ret_number_L20_R5_runs50 = []
154 data_worst_runs = []
155

156 for i in range(1, args.num_instances+1):
157 # make network + trees
158 #os.makedirs("data/network/instances_test", exist_ok=True)
159 data_path = f"data/network/instances_test/tree_data_L{args.num_leaves}_R{args.num_rets

}_normal_{i}.pkl"
160 #and len(first_cherry_to_pick) == 0??
161 if not os.path.exists(data_path) :
162 make_test_normal(i, args.num_leaves, args.num_rets)
163 # load data
164 data = pkl.load(open(data_path, "rb"))
165 # simulation
166 # get (reticulated) cherries of normal network
167 net_cher, net_ret_cher = network_cherries(data["net"])
168

169

170 #NEW set containing all reducible pairs of network
171 net_Cher_and_retCher = net_cher | net_ret_cher
172

173

174 # run CPH
175 retics = dict()
176 max_ret_number_instance = 0
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177 min_ret_number_instance = 1000
178 total_ret_number = 0
179 #suboptimal_solution_times = 0
180

181 for s in range(1, args.num_runs+1):
182 #print(f"Run {s}")
183 # todo: give as input something such that it doesn't select a correct cherry in

the first iteration
184 cph = CPHeuristic(inst_num=i, tree_set=data["forest"], seed=s, verbose=args.

verbose, pick_method=args.pick_method, tree_expansion=args.tree_expansion)
185 seq = cph.run_heuristic(net_Cher_and_retCher)
186 retics[s] = len(seq) - args.num_leaves + 1
187 #print(f"Inst {i}, run {s}: reticulation number = {retics[s]}")
188 total_ret_number += retics[s]
189 if retics[s] > max_ret_number_instance:
190 max_ret_number_instance = retics[s]
191

192 if retics[s] < min_ret_number_instance:
193 min_ret_number_instance = retics[s]
194

195 #if retics[s] == args.num_rets+1 :
196 #suboptimal_solution_times += 1
197

198 average_ret_number = total_ret_number/(args.num_runs)
199 data_avg_ret_number_L20_R5_runs50.append(average_ret_number)
200 data_best_runs.append(min_ret_number_instance)
201 data_worst_runs.append(max_ret_number_instance)
202

203 print(f'\n␣Instance␣{i}:␣\n␣Largest␣Reticulation␣number␣in␣these␣runs␣is:␣{
max_ret_number_instance}␣\n␣the␣smallest␣is:␣{min_ret_number_instance}␣'

204 f'\n␣Average␣reticulation␣number␣is:␣{average_ret_number}')
205 print()
206 #print("The average ret. number of these instances are: ",

data_avg_ret_number_L20_R5_runs50)
207 #print(f"Average ret number over all these instances is {sum(

data_avg_ret_number_L20_R5_runs50)/(args.num_instances)}")
208 print(f'The␣best␣run␣of␣these␣instances␣are␣{data_best_runs}␣\n␣Average␣best␣run␣over␣all␣

these␣instances␣is␣{sum(data_best_runs)/(args.num_instances)}' )
209 #print(f'The worst run of these instances are {data_worst_runs} and the worst overall run

is {min(data_worst_runs)}')
210

211 #f'\n In {(suboptimal_solution_times/args.num_runs)*100}% of the runs we find a
(sub)optimal solution' )

212

213 # todo: get best reticulation per instance
214

215

216 if __name__ == "__main__":
217 parser = ArgumentParser()
218 # input data
219 parser.add_argument('--num_instances', type=int, default=1)
220 parser.add_argument('--num_leaves', type=int, default=10)
221 parser.add_argument('--num_rets', type=int, default=2)
222

223 # simulation
224 parser.add_argument('--num_runs', type=int, default=10)
225

226 # heuristic settings
227 parser.add_argument('--pick_method', type=str, default="trivial", choices=["random", "

trivial"])
228 parser.add_argument('--tree_expansion', type=int, default=0, choices=[0, 1])
229

230 parser.add_argument('--verbose', type=int, default=1)
231

232 args = parser.parse_args()
233

234 main(args)

1

2 from copy import deepcopy
3 import networkx as nx
4 import numpy as np
5
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6

7 class CPHeuristic:
8 def __init__(self, inst_num, tree_set, seed=1, verbose=1, pick_method="trivial",

tree_expansion=0):
9 # data

10 self.inst_num = inst_num
11 copy_tree_set = deepcopy(tree_set)
12 self.trees = {t: PhT(tree) for t, tree in copy_tree_set.items()}
13

14 self.seed = seed
15 self.verbose = verbose
16 self.rng = np.random.RandomState(seed)
17

18 # set picking method
19 if pick_method == "trivial":
20 pick_triv = True
21 pick_random = False
22 else:
23 pick_triv = False
24 pick_random = True
25

26 if tree_expansion:
27 relabel = True
28 else:
29 relabel = False
30

31 self.pick_triv = pick_triv
32 self.pick_random = pick_random
33 self.relabel = relabel
34

35 def run_heuristic(self, net_Cher_and_retCher):
36 # Works in a copy of the input trees, copy_of_inputs, because trees have to be reduced

somewhere.
37 CPS = []
38 reduced_trees = []
39

40 # Make dict of reducible pairs
41 reducible_pairs = self.find_all_pairs()
42

43 # Pick the wrong cherry first
------------------------------------------------------------------------------------------

44

45 # Make dict of reticulated cherries/cherries in the network
46 net_reducible_pairs = {tup: idx + 1 for idx, tup in enumerate(net_Cher_and_retCher)}
47

48 # first_cherry_to_pick = {cherries that are in reducible_pairs but not in
Net_cher_and_RetCher}

49 first_cherry_to_pick = {k: v for k, v in reducible_pairs.items() if k not in
net_reducible_pairs}

50

51 # Run the algorithm once only for the first Cherry to pick, out of
first_cherry_to_pick

52

53 pick_random = self.pick_random
54 triv_picked = False
55 # pick cherry
56 if self.pick_triv:
57 chosen_cherry, triv_picked = self.pick_trivial(first_cherry_to_pick)
58 if chosen_cherry is None:
59 pick_random = True
60 else:
61 pick_random = False
62 if pick_random:
63 random_cherry_num = self.rng.choice(len(first_cherry_to_pick))
64 chosen_cherry = list(first_cherry_to_pick)[random_cherry_num]
65

66 CPS += [chosen_cherry]
67

68 if self.verbose and not pick_random:
69 print(f"Instance␣{self.inst_num}:␣TRIVIAL␣chosen␣cherry␣=␣{chosen_cherry}")
70 elif self.verbose:
71 print(f"Instance␣{self.inst_num}:␣RANDOM␣chosen␣cherry␣=␣{chosen_cherry}")
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72

73 # REDUCE CHOSEN CHERRY FROM FOREST
74 new_reduced = self.reduce_pair_in_all(chosen_cherry, reducible_pairs=reducible_pairs)
75 reducible_pairs = self.update_reducible_pairs(reducible_pairs, new_reduced)
76 reduced_trees += [new_reduced]
77

78 #
------------------------------------------------------------------------------------------------------------------

79

80 # START ALGORITHM
81 pick_random = self.pick_random
82 while self.trees:
83 triv_picked = False
84 # pick cherry
85 if self.pick_triv:
86 chosen_cherry, triv_picked = self.pick_trivial(reducible_pairs)
87 if chosen_cherry is None:
88 pick_random = True
89 else:
90 pick_random = False
91 if pick_random:
92 random_cherry_num = self.rng.choice(len(reducible_pairs))
93 chosen_cherry = list(reducible_pairs)[random_cherry_num]
94

95 # TREE EXPANSION
96 if triv_picked:
97 relabel_needed, chosen_cherry = self.pick_order(*chosen_cherry,
98 reducible_pairs[chosen_cherry

],
99 return_relabel_needed=True)

100 if self.relabel and relabel_needed:
101 if self.verbose:
102 print(f"Instance␣{self.inst_num}:␣RELABEL␣chosen␣cherry␣=␣{

chosen_cherry}")
103 reducible_pairs, merged_cherries = self.relabel_trivial(*chosen_cherry,

reducible_pairs)
104

105 CPS += [chosen_cherry]
106

107 if self.verbose and not pick_random:
108 print(f"Instance␣{self.inst_num}:␣TRIVIAL␣chosen␣cherry␣=␣{chosen_cherry}")
109 elif self.verbose:
110 print(f"Instance␣{self.inst_num}:␣RANDOM␣chosen␣cherry␣=␣{chosen_cherry}")
111

112 # REDUCE CHOSEN CHERRY FROM FOREST
113 new_reduced = self.reduce_pair_in_all(chosen_cherry, reducible_pairs=

reducible_pairs)
114 reducible_pairs = self.update_reducible_pairs(reducible_pairs, new_reduced)
115 reduced_trees += [new_reduced]
116

117 if len(self.trees) == 0:
118 break
119

120 # finish heuristic
121 return self.sequence_add_roots(CPS)
122

123 def find_all_pairs(self):
124 reducible_pairs = dict()
125 for i, t in self.trees.items():
126 red_pairs_t = t.find_all_reducible_pairs()
127 for pair in red_pairs_t:
128 if pair in reducible_pairs:
129 reducible_pairs[pair].add(i)
130 else:
131 reducible_pairs[pair] = {i}
132 return reducible_pairs
133

134 def find_all_reducible_pairs(self):
135 red_pairs = set()
136 for l in self.leaves:
137 red_pairs = red_pairs.union(self.find_pairs_with_first(l))
138 return red_pairs
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139

140

141 def reduce_pair_in_all(self, pair, reducible_pairs=None):
142 if not len(reducible_pairs):
143 print("no␣reducible␣pairs")
144 if reducible_pairs is None:
145 reducible_pairs = dict()
146 reduced_trees_for_pair = []
147 if pair in reducible_pairs:
148 trees_to_reduce = reducible_pairs[pair]
149 else:
150 trees_to_reduce = deepcopy(self.trees)
151 for t in trees_to_reduce:
152 if t in self.trees:
153 tree = self.trees[t]
154 # print(t, tree.leaves)
155 if tree.reduce_pair(*pair):
156 reduced_trees_for_pair += [t]
157 if (self.trees[t].root == 0 and len(tree.nw.edges()) <= 1) or \
158 (self.trees[t].root == 2 and len(tree.nw.edges()) <= 2):
159 # print(t, pair, tree.leaves)
160 del self.trees[t]
161 return set(reduced_trees_for_pair)
162

163 def update_reducible_pairs(self, reducible_pairs, new_red_trees):
164 # Remove trees to update from all pairs
165 pair_del = []
166 for pair, trees in reducible_pairs.items():
167 trees.difference_update(new_red_trees)
168 if len(trees) == 0:
169 pair_del.append(pair)
170 for pair in pair_del:
171 del reducible_pairs[pair]
172 # Add the trees to the right pairs again
173 for index in new_red_trees:
174 if index in self.trees:
175 t = self.trees[index]
176 red_pairs_t = t.find_all_reducible_pairs()
177 for pair in red_pairs_t:
178 if pair in reducible_pairs:
179 reducible_pairs[pair].add(index)
180 else:
181 reducible_pairs[pair] = {index}
182 return reducible_pairs
183

184 # TRIVIAL CHERRY PICKING
185 def pick_trivial(self, reducible_pairs):
186 trivial_cherries = []
187 trivial_in_all_cherries = []
188 for c, trees in reducible_pairs.items():
189 if len(trees) == len(self.trees):
190 trivial_in_all_cherries.append(c)
191 continue
192 trivial_check = self.trivial_check(c, trees)
193 if trivial_check:
194 trivial_cherries.append(c)
195

196 if trivial_in_all_cherries:
197 chosen_cherry = trivial_in_all_cherries[self.rng.choice(len(

trivial_in_all_cherries))]
198 triv_picked = False
199 elif trivial_cherries:
200 chosen_cherry = trivial_cherries[self.rng.choice(len(trivial_cherries))]
201 triv_picked = True
202 else:
203 chosen_cherry = None
204 triv_picked = False
205

206 return chosen_cherry, triv_picked
207

208 def trivial_check(self, c, trees):
209 if len(trees) == len(self.trees):
210 return False
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211 return len([t for t, tree in self.trees.items() if (set(c).issubset(tree.leaves) and t
not in trees)]) == 0

212

213 # TREE EXPANSION
214 def relabel_trivial(self, x, y, reducible_pairs):
215 # print(f"Cherry = {(x, y)}: RELABEL X = {x} to Y = {y}")
216 merged_cherries = set()
217 new_cherries = set()
218 for t, tree in self.trees.items():
219 if t in reducible_pairs[(x, y)]:
220 continue
221 if x in tree.leaves:
222 # change leaf set
223 tree.leaves.remove(x)
224 tree.leaves.add(y)
225

226 # relabel x to y
227 tree.nw = nx.relabel_nodes(tree.nw, {x: y})
228

229 # check if we have a new cherry now
230 for p in tree.nw.predecessors(y):
231 for c in tree.nw.successors(p):
232 if c == y:
233 continue
234 if c not in tree.leaves:
235 continue
236 if (c, y) in reducible_pairs:
237 reducible_pairs[(c, y)].add(t)
238 reducible_pairs[(y, c)].add(t)
239 try:
240 del reducible_pairs[(c, x)], reducible_pairs[(x, c)]
241 merged_cherries.add((x, c))
242 except KeyError:
243 pass
244 else:
245 # add to reducible_pairs?
246 reducible_pairs[(c, y)] = {t}
247 reducible_pairs[(y, c)] = {t}
248 new_cherries.add((c, y))
249 try:
250 del reducible_pairs[(c, x)], reducible_pairs[(x, c)]
251 except KeyError:
252 pass
253 return reducible_pairs, merged_cherries
254

255 def pick_order(self, x, y, new_reduced, return_cherry=False, return_relabel_needed=False):
256 leaf_x_left = 0
257 leaf_y_left = 0
258 for t, tree in self.trees.items():
259 if t in new_reduced:
260 continue
261 if x in tree.leaves:
262 leaf_x_left += 1
263 if y in tree.leaves:
264 leaf_y_left += 1
265 if return_cherry:
266 # FAVOR X, Y OVER Y, X
267 if leaf_x_left <= leaf_y_left:
268 return x, y
269 else:
270 return y, x
271 elif return_relabel_needed:
272 if leaf_x_left == 0:
273 return False, (x, y)
274 elif leaf_y_left == 0:
275 return False, (y, x)
276 elif leaf_x_left <= leaf_y_left:
277 return True, (x, y)
278 else:
279 return True, (y, x)
280 else:
281 return leaf_x_left, leaf_y_left
282
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283 def pick_cherry(self, triv_cherries, reducible_pairs):
284 leaf_left = dict()
285 for x, y in triv_cherries:
286 leaf_x_left, leaf_y_left = self.pick_order(x, y, reducible_pairs[x, y],

return_cherry=False)
287 leaf_left[(x, y)] = leaf_x_left
288 leaf_left[(y, x)] = leaf_y_left
289 best_cherry_id = np.argmin(list(leaf_left.values()))
290 return list(leaf_left)[best_cherry_id]
291

292 # FINISH HEURISTIC
293 @staticmethod
294 def sequence_add_roots(seq):
295 leaves_encountered = set()
296 roots = set()
297 # The roots can be found by going back through the sequence and finding pairs where

the second element has not been
298 # encountered in the sequence yet
299 for pair in reversed(seq):
300 if pair[1] not in leaves_encountered:
301 roots.add(pair[1])
302 leaves_encountered.add(pair[0])
303 leaves_encountered.add(pair[1])
304 roots = list(roots)
305 # Now add some pairs to make sure each second element is already part of some pair in

the sequence read backwards,
306 # except for the last pair in the sequence
307 for i in range(len(roots) - 1):
308 seq.append((roots[i], roots[i + 1]))
309 return seq
310

311

312 class PhT:
313 def __init__(self, tree):
314 self.nw = tree
315 self.root = 0
316 self.leaves = get_leaves(self.nw)
317

318 # Checks whether the pair (x,y) forms a cherry in the tree
319 def is_cherry(self, x, y):
320 if (x not in self.leaves) or (y not in self.leaves):
321 return False
322 px = -1
323 py = -1
324 for p in self.nw.predecessors(x):
325 px = p
326 for p in self.nw.predecessors(y):
327 py = p
328 return px == py
329

330 # the new arc has length length(p,v)+length(v,c)
331 # returns false if v is not a degree-2 node
332 def clean_node(self, v):
333 if self.nw.out_degree(v) == 1 and self.nw.in_degree(v) == 1:
334 pv = -1
335 for p in self.nw.predecessors(v):
336 pv = p
337 cv = -1
338 for c in self.nw.successors(v):
339 cv = c
340 self.nw.add_edges_from([(pv, cv, self.nw[pv][v])])
341 if 'length' in self.nw[pv][v] and 'length' in self.nw[v][cv]:
342 self.nw[pv][cv]['length'] = self.nw[pv][v]['length'] + self.nw[v][cv]['length'

]
343 self.nw.remove_node(v)
344 return True
345 return False
346

347 # reduces the pair (x,y) in the tree if it is present as cherry
348 # i.e., removes the leaf x and its incoming arc, and then cleans up its parent node.
349 # note that if px, and py have different lengths, the length of px is lost in the new

network.
350 # returns true if successful and false otherwise



48

351 def reduce_pair(self, x, y):
352 if x not in self.leaves or y not in self.leaves:
353 return False
354 px = - 1
355 py = - 1
356 for p in self.nw.predecessors(x):
357 px = p
358 for p in self.nw.predecessors(y):
359 py = p
360 if self.is_cherry(x, y):
361 self.nw.remove_node(x)
362 self.leaves.remove(x)
363 self.clean_node(py)
364 return True
365 return False
366

367 # Returns all reducible pairs in the tree involving x, where x is the first element
368 def find_pairs_with_first(self, x):
369 pairs = set()
370 px = -1
371 for p in self.nw.predecessors(x):
372 px = p
373 if self.nw.out_degree(px) > 1:
374 for cpx in self.nw.successors(px):
375 if cpx in self.leaves:
376 if cpx == x:
377 continue
378 pairs.add((x, cpx))
379 return pairs - {x, x}
380

381 # Returns all reducible pairs in the tree
382 def find_all_reducible_pairs(self):
383 red_pairs = set()
384 for l in self.leaves:
385 red_pairs = red_pairs.union(self.find_pairs_with_first(l))
386 return red_pairs
387

388

389 def get_leaves(net):
390 return {u for u in net.nodes() if net.out_degree(u) == 0}
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