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Abstract

Dual encoders are highly effective and widely deployed in the re-
trieval phase for passage and document ranking, question answer-
ing, or retrieval-augmented generation (RAG) setups. Most dual-
encoder models use transformer models like BERT to map input
queries and output targets to a common vector space encoding the
semantic similarity. Despite their prevalence and impressive perfor-
mance, little is known about the inner workings of dense encoders
for retrieval. We investigate neural retrievers using the probing
paradigm to identify well-understood IR properties that causally
result in ranking performance. Unlike existing works that have
probed cross-encoders to show query-document interactions, we
provide a principled approach to probe dual-encoders. Importantly,
we employ causal probing to avoid correlation effects that might be
artefacts of vanilla probing. We conduct extensive experiments on
one such dual encoder (TCT-ColBERT) to check for the existence
and relevance of six properties: term importance, lexical matching
(BM25), semantic matching, question classification, and the two
linguistic properties of named entity recognition and coreference
resolution. Our layer-wise analysis shows important differences
between re-rankers and dual encoders, establishing which tasks
are not only understood by the model but also used for inference.
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• Information systems→ Retrieval models and ranking.
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1 Introduction

Dual-encoder models are becoming increasingly common in mod-
ern information retrieval pipelines for the initial retrieval phase
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Figure 1: We causally probe dual encoders for retrieval for

multiple IR and NLP abilities to understand which are rel-

evant for the retrieval task. Specifically, we investigate the

difference between probing (presence of information) and

causal probing (usage of information in downstream tasks)

for six IR abilities.

[20, 27, 66]. These encoders separately encode queries and docu-
ments into a joint embedding space where relevant queries and
documents are represented in each other’s proximity under a simple
and efficiently computable distance function. With the improve-
ment in efficient data structures for approximated nearest neighbor
search [8, 26, 61], they are now popular choices for fast first-stage
retrieval in retrieval augmented models among many other general
applications like question answering, fact-checking, etc. Along with
efficiency, dual-encoder models have achieved impressive results on
several information retrieval benchmarks. In spite of the retrieval
performance benefits, little is understood about the mechanisms
they use to perform search and retrieval tasks – to what degree do
they understand classical notions of term-matching models? Do they
identify entities in documents and queries for determining relevance?
Do they perform basic NLP operations like co-reference resolution
and entity linking, improving over term-matching, for determining
relevance? Do they internally perform query classification? Yet, a bet-
ter understanding of how retrievers work can help identify failure
cases [41] and allow for more effective training [3, 12, 64].

Consequently, a lot of the recent work on explainable informa-
tion retrieval has focused on studying these models from various
aspects [55, 57, 67, 69]. However, most of the popular and common
techniques focus on explaining single decisions – a query-decision
prediction (pointwise), a preference pair (pairwise), or an entire
ranking for a query (listwise) [2]. Little work on model and dataset
level improves our understanding of the general model capabili-
ties, with the notable exceptions being [49, 64]. This paper aims to
extend our understanding of BERT-based dual encoder models by
using a family of techniques called model-probing that tries to un-
derstand to what extent a trained model exhibits well-understood
linguistic and retrieval properties [58].
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Figure 2: We use a combination of the standard probing setup to locate IR ability information in our dual encoder and causal

probing to understand whether that information is used during retrieval.

Probing has been proposed as a method to analyze document
representations by developing small probe tasks to characterize
the ranking abilities of text encoders [34, 64, 65]. Instead of the
commonly used local interpretability approaches that try to explain
a certain decision [48, 56]; probing focuses on a holistic analy-
sis of grounding the abilities of an already trained model to well-
understood IR properties and abilities.

Probing tasks are usually framed as classification or regression
problems, where the target variable relates to a specific linguistic or,
in our case, an IR property of interest. The idea is to train a classifier
(often referred to as the “probe”) on top of the fixed representations
produced by a task fine-tuned model, e.g., monoBERT [38], dual-
encoders for text retrieval and ranking. If the probe can predict a
certain propertywith high accuracy, it suggests that the information
about that property exists in the representation. In this work, we
are interested in probing fine-tuned text retrievers to check for the
presence and utilization of IR and linguistic properties/abilities like
matching, semantic similarity, named-entity recognition, etc.

Recent work has shown some innate limitations of the probing
paradigm. Specifically, successful probing does not necessarily im-
ply that the model uses that information for its primary task [46]. In
other words, existing probing methods might show that a model’s
representations encode a certain IR or linguistic property, but these
properties might not be used for the final task performance—text
retrieval in our case. In this work, we intend to fill this gap in IR
research by performing causal probing [44] to conclusively estab-
lish if a certain IR property is firstly exhibited in the document
representations and secondly utilized in text retrieval (Figure 1).

1.1 Contributions

In this paper, we propose a method of causally probing all layers
of dual encoders for retrieval to study the importance of several IR
abilities. Besides our findings, we offer several methodical contribu-
tions. We apply causal probing to dual encoders and, to the best of
our knowledge, are the first work of probing dual encoders on but
the last layer. We detail our experimental setup in Chapter 3. Fur-
ther, we analyze the otherwise neglected class of retrieval models.
We consider several established IR abilities - lexical and semantic
matching, question understanding, named entity recognition, and

coreference resolution. We measure the relevance of such IR abili-
ties by constructing counterfactual embeddings that do not contain
these abilities and evaluating the retrieval performance when using
the counterfactual embeddings. Figure 2 shows an overview of our
approach. To the best of our knowledge, we are the first to apply
such layer-wise analysis to dual encoders and the first to apply
causal probing to IR models in general. Our experiments emphasize
the relevance of BM25, RSJ term importance, NER, and question
understanding for retrieval. Interestingly, removing the properties
from the last layer is less critical than removing them from layers 8-
11, suggesting that these layers contain much relevant information
for the retrieval task. However, we observe no substantial impact
of removing semantic similarity or coreference information. The
code is available1.

2 Related Work

Causal probing is part of a larger subfield of interpretability re-
search called mechanistic interpretability, which focuses on the
mechanisms by which models perform their tasks. There are several
mechanistic studies in transformer-based (large) language models
- for example, identifying functions of individual attention heads
[21, 35, 53] or deciphering the usage of feed-forward layers in fac-
tual recall [19, 36]. The goal of the study is similarly to understand
the processes that allow dense retrievers, specifically TCT-ColBERT
[31], to perform retrieval. However, we do not focus on localizing
or understanding individual attention heads, but investigate which
layers and IR abilities are required to do so.

2.1 The Probing Paradigm

Probing was introduced by Conneau et al. [10] to analyze BERT
[13] representations for lexical properties. Many studies have been
conducted to analyze if text representations learn low-level syn-
tactic features to high-level factual knowledge [58, 59]. In parallel
to investigating linguistic, knowledge-based abilities, probing best
practices have also emerged that attempt to answer the question –
what are the best practices to probe effectively? [24, 39, 40]. Most
notably, Ravichander et al. [46] found that probe classifier would
also achieve high accuracy on tasks not related to the downstream

1https://github.com/Heyjuke58/causal_probing
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task and, therefore, questioned whether probing accuracy is an-
swering the implicit question of relevancy towards to task. To
counteract this problem, both Pimentel and Cotterell [39] and Voita
and Titov [62] proposed approaches to measure the ease of extrac-
tion together with the accuracy of the task to understand better
how usable the property is for the model. Lately, several works
moved from probing layers to probing individual neurons. This is
either utilized to investigate factual information in neurons [11] or
as a general methodology to investigate how localized information
is encoded [22]. Additional work has found that language models
encode functions in their embedding spaces Hendel et al. [23], Todd
et al. [60], further motivating whether IR abilities are encoded.

Yet, much of the work comes short of the implicit goal of prob-
ing studies. We are less interested in whether some property (e.g.,
subject-verb agreement) can be decoded from the model’s embed-
dings but rather in whether this information is used for inference.

2.2 Causal Probing

Since the standard probing setup is limited to identifying whether
information can be decoded from embeddings, causal probing meth-
ods have been developed to investigate the abilities’ relevance for
downstream tasks ([4, 14, 46] inter alia). This is usually done by
constructing counterfactual embeddings that do not contain cer-
tain information and then testing the impact on a downstream
task by comparing the performance of normal embeddings to the
counterfactual ones. Elazar et al. [14] first suggested this approach
and investigated the impact of part-of-speech information on the
masked language modeling task. Similarly, Lasri et al. [29] investi-
gate the use of grammatical number information in BERT, finding
different encodings for verbs and nouns that are used for language
modeling. Lastly, Rozanova et al. [52] use the causal probing ap-
proach and investigate natural language inference (NLI), but other
than previous studies build counterfactual representations by re-
moving everything except the task-specific information, finding
that it better aligns with theoretical expectations in the NLI case.

Central to the causal probing approach is building counterfac-
tual representations (i.e., representations without the specific prop-
erty under investigation). Previous work has focused on iterative
nullspace projection (INLP) [43] - a method in which linear classi-
fiers are iteratively trained to predict the property (e.g., gender bias),
and the information used by these classifiers is iteratively guarded
by projecting the input to the nullspace of the classifier. This was
later refined using a minimax optimization problem formulation
[45]. Our work builds on the work of Ravfogel et al. [45] that is
theoretically well-founded.

2.3 Analysis of IR Models

In this section, we review the recent works using the probing para-
digm or related approaches to shed light onmechanisms and learned
information of IR models. Zhan et al. [68] investigate the attention
patterns of ranking models and find that large amounts of the at-
tention are offloaded to punctuation and other low-information
tokens. Choi et al. [9] analyze the attention maps of ranking models
and find these to contain inverse document frequency informa-
tion. Another line of interpretability works aims to explain ranking
models with understandable concepts. Several works either tested

whether the model’s predictions agree with IR axioms [6, 49] or
tried explaining predictions by aligning them to such [63]. Sen et
al. [54] use a similar approach but utilize a linear classifier with the
coefficients of term frequency, document frequency, and document
length to approximate the model’s predictions. Adolphs et al. [1]
employ query embeddings to generate query reformulations and
show that these embeddings can be moved in latent space to re-
trieve relevant paragraphs. Following the finding that embeddings
can be projected into the vocabulary space, often resulting in un-
derstandable concepts [18], Ram et al. [42] investigate dual encoder
representations and failure-cases in a similar manner. Relatedly,
Liu and Mao [32] project representations of multi-vector dense
retrievers into the vocabulary space and find that different vectors
can address different information needs from passages.

Several probing studies have analyzed ranking models for a wide
variety of NLP and IR-related tasks; Fan et al. [15] probed different
IR models for 16 linguistic tasks (lexical, syntactic, and semantic),
such as part-of-speech or polysemy. MacAveney et al. [34] probed
a large set of ranking and retrieval models on three categories of
tasks: matching abilities, sensitivity to manipulation, and sensitivity
to writing styles. Further, Lovón-Melgarejo et al. [33] probed lan-
guage models for hierarchical properties, finding their injection can
improve LM’s understanding of hierarchy. Yet, these studies were
limited to analyzing the probing performance on the models’ last
layer. Wallat et al. [64] used probing to identify layers that contain
the most task-specific information and applied this knowledge to
design a multi-task learning setup to train better ranking models.
Chen et al. [7] use causal interventions to reverse engineer the
relevance judgement of a dense retriever model, identifying that a
group of attention heads adhere to term-frequency axioms.

In a behavioural study, Formal et al. [16] investigate the match-
ing abilities of ColBERT [28], a common dual encoder model. By
analyzing exact and soft matches w.r.t. term importance, Formal et
al. find that the model captures a notion of term importance and
seems to rely on that information for identifying important terms.
In a follow-up work, Formal et al. [17] find that the inability to
identify important terms in unseen distributions is one reason for
the poor generalization abilities of ranking and retrieval models.

This study aims to ground retrieval performance towell-understood
IR properties, making dense retrievers more understandable. While
related to existing work, our work employs the causal probing
approach to understand matching and other abilities of retrieval
models not only on the last but on all layers.

3 Probing Bi-Encoder Ranking Models

3.1 Preliminaries: Causal Probing

When analyzing a dual encoder, our goals are two-fold. By probing
the model, we first want to show that an ability is exhibited. In a
second causal probing step, we study task relevancy by investigating
the impact on retrieval performance of surgically removing IR
abilities. Probing entails training a small classifier 𝑓 to predict a set
of ranking abilities 𝐴 (e.g., BM25 scores) from the embeddings of a
ranker Φ. To do so, we construct training and test data setsAwhere
the input is query and passage pairs, and the target is specified by
the ability (e.g., a BM25 score). We then train the classifier (referred
to as the "probe") on fixed representations of our model to predict
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Algorithm 1: Property removal using R-Lace
Input: Data (𝑋,𝑦), Loss ℓ , projection rank 𝑘 , outerloop 𝑇 ,

inner loop𝑀

Output: A projection matrix 𝑃 that neutralizes a rank space
// Initialization

1 initialize predictor 𝜃 ∈ R𝐷 randomly
2 initialize predictor 𝑃 ∈ R𝐷𝑋𝐷 randomly
3 for 𝑖 = 1 to T do

4 for 𝑗 = 1 to M do

5 𝜽 ← SGDUpdate
(
𝜕ℓ (𝒚,𝑋𝑃𝜽 )

𝜕𝜽

)
;

6 end

7 for 𝑗 = 1 to M do

8 𝑃 ← SGDUpdate
(
𝜕ℓ (𝒚,𝑋𝑃𝜽 )

𝜕𝑃

)
9 𝑃 ← 1

2 (𝑃 + 𝑃
𝑇 ) // Ensure P is symmetric

10

11 𝑃 ← FantopeProjection(𝑃, 𝑘) // Project on the

fantome

12

13 end

14 end

// Recomputing P

15 𝑈 , 𝐷 = spectralDecomposition (𝑃) // Perform SVD that

reduces the rank by 𝑘

16

17 𝑃 ← 𝑈 [: −𝑘, :]⊤𝑈 [: −𝑘, :]
18 return 𝑃

the targets. If the classifier’s performance is above chance, Φ is said
to exhibit that ability. Since this test can establish the presence of
an ability but not its usage, we apply causal probing methods in
a second step to address this limitation [14, 29]. Causal probing
measures the relevance of an ability 𝑎 by removing it from Φ’s
embeddings and then evaluating the impact on the total retrieval
performance. If Φ uses 𝑎 for retrieval, we would observe reduced
performance after 𝑎’s removal.

Problem Statement. Given a document, a query encoder Φ, and
an ability 𝑎, we want to determine 𝑎’s causal effect on the retrieval
performance.

3.2 Property Removal

To causally determine if a certain ability 𝑎 is responsible for re-
trieval task performance, we posit that the removal of the ability
would result in the reduction of task performance. Specifically, we
would want to remove the ability 𝑎 from the input representation
space 𝜙 induced by the ranker Φ so that the output counterfactual
representation space 𝜙𝑐 does not encode 𝑎. Note that the ability to
encode 𝑎 is determined by the performance on the probe task. We
use a framework [45] that uses linear projections for concept re-
moval in the context of bias detection and removal. Mathematically,
we want to find the projection matrix 𝑃 , such that counterfactual
embeddings 𝜙𝑐 = 𝑃𝜙 cannot be used to classify items in the probe
task 𝑎. For regression abilities, we use an analytical formulation of

Algorithm 2: Causal Probing Dual Encoders
Input: Task dataset a = {(𝑞, 𝑝,𝑦), ...}, Ranker Φ
Output: Causal probing results

1 for 𝑙 in 𝑙𝑎𝑦𝑒𝑟𝑠 (Φ) do
2 Initialize empty list: 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠;
3 for (𝑞𝑢𝑒𝑟𝑦, 𝑝𝑎𝑠𝑠𝑎𝑔𝑒,𝑦) in a do

4 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← avg_pool(𝜙𝑙 (𝑞));
5 𝑝𝑎𝑠𝑠𝑎𝑔𝑒𝑠 ← avg_pool(𝜙𝑙 (𝑝));
6 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 ← avg_pool(𝑞𝑢𝑒𝑟𝑖𝑒𝑠, 𝑝𝑎𝑠𝑠𝑎𝑔𝑒𝑠);
7 end

// Get probing performance on task 𝑎

8 𝑎𝑐𝑐 (𝑓 (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠,𝑦));
// Get concept-removing projection

9 if task 𝑎 is a classification task then

10 𝑃 ← LACE(𝜙𝑙 (a), 𝑦);
11 end

12 else if task 𝑎 is a regression task then

13 𝑃 ← R-Lace(𝜙𝑙 (a), 𝑦, 𝑟𝑎𝑛𝑘);
14 end

// Check whether the concept-removing

projection is able to remove the ability 𝑎

15 assert 𝑎𝑐𝑐 (𝑓 (𝑃 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠,𝑦)) == majority;

// Evaluate retrieval performance on TREC-DL

16 𝑛𝑑𝑐𝑔← Φ(𝑇𝑅𝐸𝐶);
// Evaluate retrieval performance on TREC-DL

after removing information from layer 𝑙

17 𝑛𝑑𝑐𝑔𝑐 ← Φ(𝑇𝑅𝐸𝐶) where 𝜙𝑙𝑐 = 𝑃 𝜙𝑙 ;
18 end

such a projection given by

𝑃 = 𝐼 − 𝑋⊤𝒚𝒚𝑋
𝒚⊤𝑋𝑋⊤𝒚

(1)

The iterative and relaxed version (R-Lace), which we apply to
classification tasks, is given by aminimax game. Generally, minimax
games are hard to optimize, except for the group of convex-concave
games where the inner optimization is convex and the outer con-
cave. However, R-Lace solves this by relaxing the only source on
non-convexity (the set of potential orthogonal projection matrices
P𝑘 ) to its convex hull (which in this case is the fantope [5]).

F𝑘 = 𝑐𝑜𝑛𝑣 (P𝑘 ) (2)

The minimax game is then given by

min
𝜽 ∈R𝐷

max
𝑃∈F𝑘

𝑁∑︁
𝑛=1

ℓ

(
𝑦𝑛, 𝑔

−1
(
𝜽⊤𝑃𝒙𝑛

))
(3)

where 𝜃 is the classifier’s parameter space and ℓ (·, ·),𝑔−1 (·, ·) are the
loss function and the activation function respectively. Optimization
is then achieved by alternating the optimization steps of the outer
and inner optimization problems while holding the other one fixed.
Algorithm 1 depicts how R-Lace can be used to get a property-
removing projection 𝑃 . Note that with property removal, the aim

 

2295



Causal Probing for Dual Encoders CIKM ’24, October 21–25, 2024, Boise, ID, USA

(a) Linear probe (b) Non-linear probe

Figure 3: Probing and property removal results for TI (top) and BM25 (bottom).

is to be minimally invasive and remove as little information not
related to 𝑎 as possible. In the analytical solution, this is given by a
rank 1 projection 𝑃 . For the relaxed R-Lace case, the subspace rank
is a hyperparameter, and we experiment with different ranks of 𝑃
given that a rank of 1 was insufficient and report the findings.

3.3 Causal Probing for Dual Encoders

Most of the work for probing neural rankers has been performed
only for representation space induced by joint query-document
representation [64]. Therefore, the investigations are limited mostly
to the re-ranking phase. We, however, are the first to layer-wise
probe (causal and otherwise) dual encoder models.

We utilize the recent dual encoder TCT-ColBERT [31] as our
subject model Φ. TCT-ColBERT is a 12-layer dense dual-encoder
retriever model based on the BERT [13] transformer architecture.
Other than contextual models, it independently encodes query and
passage, resulting in two separate embeddings. To score the rele-
vance of a passage w.r.t. a query, TCT-ColBERT uses dot-products
between the corresponding embeddings.

We then construct task datasets a for all abilities 𝑎 in our list of
IR abilities 𝐴 (c.f. Section 3.4). Examples of a for a task 𝑎 contain a
query 𝑞, a passage 𝑝 , a target value 𝑦, and optionally spans 𝑠𝑝 of
the position of specific tokens in 𝑠 .

Probing contextual encoders is straightforward since there is
only one contextual embedding containing information from both
query and passage. Probing dual encoders, however, requires a
different strategy since we obtain individual embeddings for query
and passage that only interact after the final layer. Since many of
our tasks, such as semantic similarity, require that interaction, we
propose the following strategy; For 𝑞, 𝑝,𝑦 ∈ a and a given layer 𝑙 ,
we retrieve Φ𝑙 ’s token embeddings and use average pooling to get
one single vector for the query and a single vector for the passage.
These vectors are then pooled again and used as input to the probe
classifier, together with the corresponding label 𝑦.

Causal probing requires obtaining the concept-nullifying projec-
tion matrix 𝑃 using (R)-Lace. Depending on the task type, we use
the analytical solution (Lace, for regression) or the relaxed version
(R-Lace, for classification). Additionally, we distinguish between
token or span-level (such as NER) and sequence-level tasks (such
as semantic similarity). While we use individual tokens or spans
to compute the (R)-Lace projection in the former case, we pool
over the token embeddings for sequence-level tasks. The resulting
projection is then applied to the entire sequence of tokens (both
query and passage tokens). Algorithm 2 shows this process.

3.4 IR Abilities

We utilize a selection of IR abilities that are strongly grounded in the
ranking and retrieval literature. If not noted otherwise, we build the
probe datasets by generating task-specific labels for 60k randomly
sampled query-passage pairs from MS MARCO [37]. This is similar
to existing work [64], from which we use the existing datasets for
BM25, NER, and coreference resolution. We then extend these with
additional tasks and apply them in our different settings.

BM25. As one way of measuring lexical similarity, this dataset is
constructed by using the BM25 algorithm [51] to produce BM25
scores between query and passage. To correctly predict the BM25
score, the model has to compute IDF values, as well as be aware of
the average document lengths in the corpus.

Term Importance or TI. Similar to Formal et al. [17], we investi-
gate the matching abilities of IR models by inspecting the model’s
ability to understand the Robertson-Spärck-Jones (RSJ) weight [50].
These RSJ weights measure the term importance of a token w.r.t. a
query and a corpus. It is computed as follows:

𝑅𝑆 𝐽 (𝑡, 𝑞, C) = log
𝑝 (𝑡 |R)𝑝 (¬𝑡 |¬R)
𝑝 (¬𝑡 |R)𝑝 (𝑡 |¬R) (4)
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(a) Linear probe (b) Non-linear probe

Figure 4: Probing and property removal results for SEM (top) and NER (bottom).

Semantic Similarity or Sem. Given that semantic matching has
been one of the main improvements of the embedding-based ma-
chine learningmodel, we test for TCT-ColBERT’s usage of semantic
matching to retrieve passages. We generate labels for the semantic
similarity task using Sentence-Transformer [47].

Named Entity Recognition or NER. Since many queries evolve
around entities, the ability to detect such could be relevant. There-
fore, we tested to what extent this ability affects the overall retrieval
performance. This dataset is created using the Spacy [25] named
entity recognizer to find entities in the passages.

Coreference Resolution or Coref. Related is the ability to match
surface forms to one entity. To understand to what degree this is
used by TCT-ColBERT, we additionally test this ability. Usually,
this dataset would require matching an entity phenotype from the
query to another mention in the passage (as done in [64]). Since we
are using a dual encoder in this study and the query and document
are processed independently, we construct this dataset by finding
coreference examples only in the passage. Analogously, we also
train the R-Lace projection only on Coref examples in the passage.

Question Classification or QC.We believe one central ability to
find the correct information is to understand what kind of query
is given. Thus, we include question type classification as a task.
We use the dataset provided by Li and Roth [30] containing 5453
questions and use the coarse labels (abbreviation, entity, description,
human, location, numeric value). Given that QC is only defined for
the query, we train the R-Lace projection only on the query and
apply the resulting projection only to the query embeddings.

3.5 Probing Metrics

For our classical probing experiments, we report the classifier’s
accuracy and, in the regression case, the regressor’s coefficient of
determination (𝑅2). We use 𝑅2 over mean squared error (MSE) as

𝑅2 is scaled so that comparisons between datasets become easier.

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
(5)

where 𝑆𝑆𝑟𝑒𝑠 =
∑
𝑖 𝑒

2
𝑖
is the sum of squares of residuals and 𝑆𝑆𝑡𝑜𝑡 =∑

𝑖 (𝑦 − 𝑦𝑖 )2. The residual is 𝑒𝑖 = 𝑦𝑖 − 𝑓𝑖 and 𝑦 is the mean of the
targets. An 𝑅2 value of 1 would denote the regression model to
perfectly fit the data.

4 Do Dual-Encoder Representations contain our

IR Abilities?

As a first step, we want to understand whether the abilities are
actually encoded by the model’s embeddings and whether we can
remove the information using (R)-Lace. We consider probing a fine-
tuned dual encoder [31] for the IR abilities in Section 3.4. We utilize
the layer-wise probing procedure detailed in Section 3.3. Given
that Lace will remove linear-encoded information from the em-
beddings, we train linear probe models to predict the probe task
(original) and compare it with three baselines; First, the accuracy
achieved by a majority classifier. This is to understand whether the
property is encoded in the embeddings in the first place (majority).
Second, the performance of the probe model on the counterfactual
embeddings 𝜙𝑐 that result from Lace removing the (linear) probe
task information from the original embeddings. This is a test of
whether Lace can remove all of the ability-related information, and
we expect the probe classifier to perform worse (and at or below
majority) for the counterfactual embeddings. Lastly, we remove
random dimensions with a similar rank as those removed by Lace
(control) to understand if the reduced performance is caused by
Lace selectively removing probe task information or destroying
the embeddings. Ideally, the control performance should be close to
the original performance. Every run is repeated five times using the
embeddings of every layer. We also include the same experiments
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Figure 5: Top row: NER. Bottom row: QC. Accuracy decreases after applying the R-Lace counterfactual projection (left) or control

projection (right) at each layer with increasing rank of the eliminated subspace. A value of 1 indicates no accuracy decrease.

The pattern indicates where the accuracy is equal to or less than the majority accuracy (0.24 for NER, 0.23 for QC).

with an MLP probe model. By comparing the performance of lin-
ear and non-linear probes, we aim to understand what amount of
task information might be encoded in a non-linear fashion. Given
that (R)-Lace is only able to remove linear information, this yields
additional contextualization.

The results for the TI probe task are shown in Figure 3. Despite
slight differences between the linear and the MLP probe models, we
observe similar trends and performance; the performance increases
up to layers 7-9 and then slightly decreases toward the final layer.
We note that Lace completely removes the linear information. As
expected, we only observe slight decreases in MLP performance
after removing TI information using Lace. Additionally, removing
TI information using Lace seems to be sufficiently selective as we
do not see reduced performance with our control.

Similar trends can be seen for the other two regression tasks
of BM25 (Figure 3) and Sem (Figure 4, top), where both linear and
MLP probe models peak at layer 9 and 8 respectively and slightly
decrease in performance toward the final layer. Similar to the TI
results, we observe Lace to remove all linear information regarding
BM25 and Sem.

Next, we will discuss the three classification tasks of NER, Coref,
and QC for which we used the relaxed version (R-Lace) to construct
the counterfactual embeddings. While the analytical Lace projec-
tion always removes a minimal subspace of rank 1, the size of the
subspace becomes a hyperparameter in R-Lace.

What is the right subspace size to remove? First and foremost,
we observe that removing a subspace of rank 1 is enough to remove
all linear information in the Coref case (c.f. Figure 6, top left), but
not for NER and QC. We, therefore, remove subspaces of increasing

rank from the model’s embeddings using R-Lace. Since removing
more and more information from the embeddings comes at the risk
of destroying the embeddings, we similarly remove random sub-
spaces of increasing rank from the embeddings to understand the
impact on embedding integrity. The results are depicted in Figure 5.
We observe that in the case of QC, using R-Lace to remove a sub-
space of rank 4 reduces the probing performance to the majority for
most layers with non-zero but also non-substantial impact on the
embeddings (control). For NER, a very high-ranking subspace would
need to be removed to delete (almost) all NER information from
the embeddings. However, removing such a big subspace comes at
the cost of destroying other important information from the em-
bedding. We, therefore, select a rank for 8 for the NER experiments
since it removes a considerable amount of NER information without
impacting other information in the embeddings.

The results for the NER task are shown in Figure 4 (bottom). Other
than for the regression tasks, the NER performance is rather stagnant
over the layers both for the linear and the MLP probe model. R-Lace
with a subspace rank of 8 is able to remove significant parts of the
NER information but does not entirely reach majority accuracy. For
Coref (see Figure 6, top), we observe quite a difference in linear and
MLP probe performance. While both probes peak in performance in
themiddle layers (4 and 5) and then decrease, as observedwith other
probe tasks, there seems to be a larger discrepancy between the
linear andMLPmodels. This might hint at not all Coref information
being linearly encoded by the model. Yet, R-Lace removes all the
linear Coref information from the embeddings. Lastly, the results
for QC (Figure 6, bottom) locate most of the QC information around
layer 10 with slight drops in performance toward layer 12. The
linear QC information is successfully removed by R-Lace.
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(a) Linear probe (b) Non-linear probe

Figure 6: Probing and property removal results for COREF (top) and QC (bottom).

4.1 Insights

Can we remove IR ability information? For the regression
tasks TI, BM25, Sem, we utilize the closed-form solution (Lace) and
observe perfect removal of IR subtask information from the model’s
embeddings. For two of our classification tasks (Coref and QC),
we again observe close-to-perfect information removal using the
iterative R-Lace. For the NER task, we find the R-Lace projection to
removemuch of the task information, but the classifier performance
not quite dropping to majority accuracy.

Where in the model is the information located? Task-specific
information is mostly located in layers 4 – 10, with slight decreases
in task performance toward the final layer. This further motivates
the layer-wise analysis of IR models.

5 Are the Abilities used for Ranking?

Now that we have established that 1) the model contains linear
task information on our probe tasks and 2) we can successfully
remove that task information using (R)-Lace, we can investigate
the most important question: Are these tasks relevant for retrieval?.
To answer this question, we use (R-)Lace to produce counterfactual
embeddings as discussed in Section 4 and inject these at individual
layers. We then use the last layer’s embeddings on the retrieval
task and report the impact of the intervention. The results for our
six tasks and the baseline performance of the (unaltered) model are
given in Figure 7. Lower NDCG scores at a given layer indicate an
IR ability’s usage for the retrieval task.

5.1 Results

Non-relevant Abilities. Judging by the impact of our causal anal-
ysis, we do not find evidence of either Sem or Coref being used
during retrieval. The model seems to rely on lexical over semantic
matching. Since Coref is also the task with the largest discrepancy

Figure 7: Impact of ability removal on retrieval performance.

between linear and non-linear information (c.f. Section 4), it might
be that linear Coref information is not used for retrieval.

Relevant Abilities. We observe a negative impact on retrieval
performance after removing the remaining properties, suggesting
that these are all used to varying extents during retrieval. Lexical
matching (measured by BM25 and TI) seems to be most relevant in
layers 9 and 10. This finding coincides with our earlier analysis in
Section 4, where we found these layers also to contain the most in-
formation regarding these abilities. Similarly, we find QC to be most
utilized in the upper layers (around layers 10 and 11). Removing
these abilities from other layers (especially the last layer) only has
a small impact on retrieval quality. This would suggest that linear
ability information is relevant at some point in TCT-ColBERT’s
embedding space but is then transformed or aggregated so that
removing it directly from the last layer no longer has an effect.
Solely NER is found to be relevant almost irrespectively of the layer
under investigation.

Insight. The model utilizes linear information about all IR subtasks
except for Sem and Coref for retrieval. While the most important
layers vary slightly, they almost all center around the layers 9-11.
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Study Model Type TI BM25 SEM NER COREF QC

[64] Contextual (re-rankers) / ↑, 𝐿5 ↑, 𝐿4 ↓, 𝐿4 ↑, 𝐿6 /
[15] Contextual (retrieval) / / / ↔, 𝐿 ↔, 𝐿 /
[34] Dual (retrieval) 𝐿 𝐿 / / / /
[16, 17] Dual (retrieval) 𝑅 / / / / /
[7] Dual (retrieval) 6 layers 𝑅4,5 / / / /
Ours Dual (retrieval) 𝐿7, 𝑅9 𝐿9, 𝑅9 𝐿8 𝐿4, 𝑅𝑚𝑎𝑛𝑦 𝐿4 𝐿10, 𝑅10

Table 1: Contextualization of our study with related studies. We denote studies that locate information at a specific layer with

𝐿𝑙𝑎𝑦𝑒𝑟 and use 𝑅𝑙𝑎𝑦𝑒𝑟 to denote our findings of the most relevant layer. Studies that only investigate the last layer are denoted

with 𝐿 or 𝑅 without indices. For studies that compare the probing performance of the ranking model to pre-trained models, we

use arrows to indicate whether the IR model outperforms the pre-trained model or not.

6 Discussion

How do our results relate to existing studies? To understand
how the results of this causal probing study relate to existing re-
search, we present the most relevant other studies in Table 1.

Several other studies identify IR ability information in the last
layer of IR models [15, 34]. Yet, the models under investigation,
tasks, and methodology vary between studies. Additionally, by lim-
iting the probing approach to the last layer, it does not shed light on
where in the model the information is stored or used. Given that we
find all properties to peak in intermediate layers, this information
is relevant to understanding the internal information processing
of such ranking models (in agreement with [64]). Compared with
Wallat et al. [64], who also probe layer-wise, we observe some
disagreement in terms of the location of the knowledge and what
tasks seem to be important. This might be due to multiple reasons;
First, their work judges the relevance of IR subtasks by measuring
how easily decodable - how available - the information is to the
model and compares this with pre-trained BERT models. This ease
of extraction might be a proxy but not a real test for whether the
model uses the information. So even though Sem and Coref are eas-
ier to decode in their study, it does not guarantee the usage. Second,
when comparing the layers in which information peaks, we find the
contextual re-ranker [64] to peak in earlier layers. This might be a
result of the different paradigms or contextual and dual encoders. In
the latter, query and passage embeddings are only interacting after
layer 12. We hypothesize that given many of our tasks only make
sense in the interaction between query and passage (e.g., Sem), it
makes sense for the model to preserve this information up until
later layers. Chen et al. [7] checked whether individual attention
heads adhere to a term frequency axiom (TFC1, “Prefer documents
with more query term occurrences.”) and found this information to
have an effect on the relevance prediction of a 6-layer dual-encoder.
Specifically, this information has been used by the model in layers
4 and 5. This is related to our IR subtasks of TI and BM25, which
also have been observed to have an impact not in the ultimate but
in the penultimate layers of the model.

Impact of our Results. The results of this offer a better under-
standing of dual encoder models for retrieval and the information
they use to perform that task. Given the rise of retrieval-augmented
generation (RAG), understanding the retrieval component is espe-
cially important. Causal analysis of IR models allows for answering

the question of what information is being used for relevance es-
timation, which will hopefully spur further research. Especially,
the findings that semantic similarity did not seem to be causally
important for the retrieval task warrants more investigations. Fur-
ther, we found that removing the IR abilities from the last layer did
not substantially impact the model, posing the question of what
information is being used in the last layer. Is it a composite of the
individual abilities or some other property that we did not test for?

While the findings of this study are descriptive, they could be
used to produce more effective IR models by informing more ef-
fective training setups on how to combine retrieval training signal
with auxiliary information [3, 12, 64]. Lastly, more robust and fair
models can be build by understanding which information is being
used and, potentially, removing unwanted knowledge.

7 Conclusion

In this work, we investigate which subtasks are relevant for TCT-
ColBERT to perform retrieval. To do so, we collect a selection of
established IR abilities (term importance, BM25, semantic similar-
ity, named entity recognition, coreference resolution, and question
classification). We first show that information on all of the tasks
above can be located in the model - and, further, can be removed
from the embeddings using (R)-Lace. Using a layer-wise analysis,
we show that most of the task-specific information seems to be en-
coded in the middle layers (4-10). In the second step, we investigate
the importance of these tasks for retrieval by removing the task
information from our model’s embeddings. We remove task infor-
mation from single layers at a time and report the impact on the
final retrieval performance - where we observe high relevance of
BM25, term importance, and question classification information in
layers 9-11 and the widespread importance of named entity recog-
nition. Surprisingly, semantic similarity and coreference resolution
do not seem to be relevant for the retrieval task. To the best of our
knowledge, this is the first work of causally probing IR models and
investigating the importance of IR subtasks for inference.
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