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ABSTRACT

Paradigmatic compressible one-dimensional flows provide insights regarding the loss mechanisms of fluid machinery components typical of
power and propulsion systems, like turbomachines and heat exchangers. Their performance also depends on the working fluid, thus, on both
molecular complexity and thermodynamic state. Four typical flow configurations have been investigated, namely, Rayleigh and Fanno flows,
mixing of two co-flowing streams, and flow injection into a mainstream. It was found that the Gr€uneisen parameter allows the quantitative
characterization of the influence of molecular complexity on losses. Moreover, the influence of dense vapor effects has been evaluated and
assessed in terms of other fluid parameters. The analysis allowed the quantification of how, in Rayleigh flows, the energy transferred as heat
is converted into kinetic and internal energy of the fluid, and, in Fanno flows, entropy is generated due to friction. In Rayleigh flow, the fluid
at the inlet of the channel must have more energy for the flow to choke, depending on the molecular complexity. Similarly, in Fanno flows
and for a given value of the compressibility factor, molecular complexity determines the choking point in the channel, and the higher its
value the further downstream is the location. Moreover, for both Fanno and Rayleigh flows, if the flow is subsonic and dense vapor effects
are relevant, the Mach number varies non-monotonically along the channel. Finally, it was proven that the amount of entropy generated in
mixing flows increases with both the fluid molecular complexity and with the thermodynamic non-ideality of the fluid states.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058075

I. INTRODUCTION

Many chemical and energy conversion processes make use of
working fluids which, in certain operating conditions, are in the dense
vapor state. Thermodynamic and transport properties, collectively
called thermophysical properties, of dense vapors differ from those of
the so-called ideal gas, see Fig. 1. A fluid is a dense vapor if it is oper-
ated in thermodynamic states occurring in proximity of the dew line
or near the vapor–liquid critical point. Flows in which the fluid is in
these states are affected by large gradients of thermophysical proper-
ties.1 The examples of energy conversion processes in which the work-
ing fluid can be affected by the so-called non-ideal compressible fluid
dynamic (NICFD) effects are the expansion occurring in the turbine
stator of organic Rankine cycle (ORC) power systems,2,3 the compres-
sion occurring in the compressor of supercritical carbon dioxide
(sCO2) power systems,4 and in the compressor of heat pumps.5

Any process affected by non-ideal dense vapor effects makes the
design of internal flow components more challenging because stan-
dard guidelines for the design of components operated with air or
steam as working fluids cannot be employed, as they would lead to
incorrect sizing and wrong performance estimations. For example,
the design of compressors and turbines generally relies on

well-established semiempirical correlations developed for conven-
tional machines using air, combustion gases, or steam as working flu-
ids. These semiempirical models do not provide sufficiently accurate
results for turbomachinery operating with dense vapors, see, e.g.,
Giuffr�e and Pini.6 Although methodologies for preliminary fluid
dynamic design and optimization of, for example, turbines for ORC
power systems,7–9 compressors for sCO2 power systems,10,11 and
compressors for heat pumps12 have been developed, no validated
design guidelines for turbomachinery operating partially or
completely with the working fluid in the dense vapor thermody-
namic region are available yet.

Guidelines specifically developed for the meanline design of these
machines would thus provide more accurate predictions of both effi-
ciency and loss breakdown in turbines and compressors operating
with dense vapors. Denton13 first proposed a physics-based loss model
for conventional turbomachinery. The model exploits first principles
applied to simplified one-dimensional flow configurations to estimate
the entropy losses generated by different sources. He identified four
loss mechanisms: viscous effects in boundary layers, viscous effects in
mixing processes, shock waves, and heat transfer across temperature
differences. However, the model is only valid under the ideal gas and
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the incompressible flow assumptions. As proven by Giuffr�e and Pini,6

the generalization of the model to non-ideal compressible flows allows
the development of a design framework which provides more accurate
guidelines for unconventional turbomachinery.

Gaining a better physical understanding of how both the working
fluid and the non-ideal gas dynamics features affect the flow field is
paramount to design efficient fluid machinery components. Following
the seminal work of Thompson,14 the non-ideal fluid dynamics of
dense vapor flows is governed by the fundamental derivative of gas
dynamics, a fluid thermodynamic property defined as

C � 1þ q
c

@c
@q

� �
s

¼ c4

2v3
@2v
@p2

 !
s

; (1)

where q is the density, c the speed of sound, and s the entropy. The
fundamental derivative is related to the variation of the speed of sound
with density along isentropic processes: for this reason, the propaga-
tion of the waves in dense fluids strongly depends on its value.15

Equation (1) shows that the sign and the value of C can be inferred
from the concavity of isentropic lines if displayed on the pressure–vo-
lume thermodynamic diagram of the fluid. If C > 1, the sound speed
decreases along isentropic compression processes and increases along
expansions: this situation is representative of fluid flows occurring dur-
ing air compression and exhaust gas expansion in turbochargers, or
exhaust gas expansion in gas turbines. However, fluid flows for which
C < 1 are also possible: in this case, the speed of sound increases over
compressions and decreases over expansions. C is greater than one if
the fluid is in the dilute gas state, that is

C ¼ ðcþ 1Þ=2; (2)

for the ideal gas, while the line C ¼ 1 delimits vapor states closer to the
dew line and to the vapor–liquid critical point of the fluid, for which
Z � pv=ðRTÞ < 1, where Z is the so-called compressibility factor, see
Fig. 1. Furthermore, it is theoretically predicted that so-called
Bethe–Zel’dovich–Thompson (BZT) fluids,14,16,17 whose molecules are
rather complex, exhibit a thermodynamic region in the vapor phase
where the fundamental derivative is negative. This is a necessary

condition for the possibility of attaining non-classical gasdynamic phe-
nomena, such as rarefaction shock waves and compression fans,18 in
flows. The works by Cramer,19 Zamfirescu,20 and Kluwick21 provide an
extensive review of the theory of non-classical gas dynamics. The exper-
imental investigations aimed at proving the existence of rarefaction
shock waves in BZT fluids were conducted in the past,22 and are still
being performed,23,24 using siloxanes as working fluids.17 Moreover,
experimental campaigns on dense vapor nozzle flows are currently
being conducted with the aim of characterizing non-ideal compressible
flows in the presence of shock waves.25,26 Efforts are also made to
enhance the theoretical understanding of compression and expansion
phenomena in transonic27 and supersonic28–31 dense vapor flows.

Several studies investigating non-ideal compressible effects in
characteristic one-dimensional flow processes have already been con-
ducted. Kluwick32 and Cramer33 showed that, due to the non-
monotonic variation of density with the Mach number, three sonic
points rather than a single one may occur during isentropic supersonic
expansions of BZT fluids. Therefore, a conventional converging–
diverging nozzle is not sufficient to obtain a shock-free expansion from
the subsonic to the supersonic regime, but unconventional nozzle
shapes consisting of two throats are required. More recently, Guardone
and Vimercati34 outlined a set of exact solutions corresponding to ten
different operating regimes in a converging–diverging nozzle using the
rather inaccurate van der Waals thermodynamic model for the fluid.
Baltadjiev11 derived approximated relations between stagnation and
static variables as a function of the flow Mach number and the isentro-
pic exponents, i.e., /t=/ ¼ f ðM; cpv; cpTÞ, where / is a thermody-
namic property (enthalpy, pressure, temperature, or density), and the
subscript t denotes stagnation quantities. These relations are formally
similar to their ideal gas counterparts, the only difference being the use
of the generalized isentropic exponents cpv and cpT (see Table I) in place
of c. To derive these relations, Baltadjiev11 assumed the same value of
the isentropic exponents for the stagnation and static variables. In addi-
tion, they extended the definition of corrected mass flow per unit area
_mcorr to the case of isentropic compressible flows of dense vapors. They
found that its value depends only on the flow Mach number and the
average value of the exponent cpv over the process. In particular, the

FIG. 1. Temperature-entropy diagram for two fluids with different molecular complexity: (a) CO2 and (b) hexamethyldisiloxane (siloxane MM). Colored contours report the varia-
tion of the Gr€uneisen parameter. Contours of fundamental derivative C (black) and generalized polytropic exponent cpv (white) are also displayed.
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maximum value of corrected mass flow per unit area at choking condi-
tions decreases with increasing values of cpv.

Other studies investigated dense vapor effects in physical pro-
cesses using one-dimensional theory with either constant energy trans-
fer as heat or wall friction. These are often labeled as Rayleigh and
Fanno flows, respectively; Anderson,35 Chap. 3, provides a complete
analysis of both processes under the perfect gas assumption. Following
the approach of Schnerr and Leidner,36 Cramer provided a qualitative
analysis of Fanno37 and Rayleigh38 flows in dense vapors, with a focus
on BZT fluids. For his analysis, he adopted the van der Waals fluid
thermodynamic model. He proved that as many as three sonic points
may occur in Rayleigh processes, while in Fanno flows as many as
three sonic points corresponding to two maxima and one minimum
in entropy may occur. However, the use of a thermodynamic model
based on the van der Waals equation of state leads one to substantially
overestimate the extent of the C < 0 region. Furthermore, non-
classical gasdynamic studies are still purely theoretical in nature, and
applications have not been devised yet. On the contrary, non-ideal
flows occurring with the fluid in states characterized by 0 < C < 1 are
of relevant industrial interest. Characterizing the influence of non-
ideal fluid dynamics on relevant turbulent viscous and diabatic pro-
cesses becomes thus of prime importance to correctly predict the per-
formance of internal flow devices. However, a quantitative
understanding of the impact of the fluid state on both viscous turbu-
lent and diabatic processes is scarcely documented in the literature.

The aim of this study is to evaluate the impact of both fluid
molecular complexity and thermodynamic non-ideality on some para-
digmatic compressible non-ideal flow processes, using state-of-the-art
fluid thermophysical models. Loss mechanisms and relevant trends in
flow variables are both qualitatively and quantitatively estimated.

The article is structured as follows. Section II lists the characteris-
tic non-dimensional fluid parameters used in this study and discusses
the importance of the Gr€uneisen parameter which is used here for the
first time in relation to molecular complexity. In Sec. III, a general

theoretical framework for one-dimensional compressible flows is
derived from first-principle equations; here, the parameters introduced
in Sec. II are used to characterize these flows. The obtained framework
can be used for preliminary investigations of loss mechanisms affect-
ing the performance and operation of turbomachinery, heat exchang-
ers and in other engineering applications. Section IV treats the impact
of the fluid, namely, of its molecules, on chocking and the trend of
flow variables in channel flows with constant thermal energy addition
(Rayleigh flow) and wall friction (Fanno flow). In addition, the fric-
tion coefficient in turbulent channel flows of dense vapors is esti-
mated with three-dimensional Reynolds Averaged Navier–Stokes
simulations (RANS) of pipe flows and compared with values result-
ing from the friction coefficient formulation valid for incompressible
flows. Section V describes the impact of the fluid and its properties
on two paradigmatic one-dimensional mixing flow configurations,
namely, the mixing of two streams and flow injection. Section VI
outlines the main conclusions drawn from this study.

II. NON-DIMENSIONAL FLUID PROPERTIES
CHARACTERIZING DENSE VAPORS

The ideal gas equation of state reads

p ¼ qRT: (3)

If Eq. (3) holds, then Z¼ 1. Fluid states close to the critical point or
close to the dew line do not obey the ideal gas law, see Fig. 1. The iso-
baric and isochoric heat capacity, their ratio c ¼ cp=cv , and Z vary
depending on the fluid state, see Reynolds and Colonna,39 Chap. 6.
The principle of corresponding states is based on the observation that,
at fixed reduced temperature and pressure, different fluids have, to a
certain degree of approximation, the same value of Z, see Reynolds
and Colonna,39 Fig. 6.6. Therefore, Z is a thermodynamic similarity
parameter that is also useful for fluid dynamic analyses.

However, fluid-dynamic processes can be better examined by
using other dimensionless state properties. Isentropic flows of dense
vapors are described by the thermodynamic relation

p=qcpv ¼ const:; (4)

in analogy with isentropic flows of fluids in the ideal gas state.40 Figure 1
shows the variation of cpv in the temperature-entropy diagram for fluids
made with molecules of different degree of complexity.

Differentiation of Eq. (4) yields41

cpv ¼ �
v
p

@p
@v

� �
s
¼ �c

v
p

@p
@v

� �
T
¼ c

bTp
; (5)

where bT is the isothermal compressibility of the fluid, whose definition
is reported in Table I. Both bT and c are positive for all fluids in the
vapor state; as a consequence, cpv > 0 for all fluid thermodynamic
states. Differentiating Eq. (5) with respect to the specific volume leads to

C ¼ 1
2

cpv þ 1� v
cpv

@cpv
@v

� �
s

" #
: (6)

For flows with moderate variations of thermodynamic properties, the
approximation C ’ ðcpv þ 1Þ=2 holds, therefore, cpv � const:. This
relation is similar to the relation valid for the ideal gas, see Eq. (2).

TABLE I. Secondary thermodynamic properties relevant for the study of one-
dimensional flows.

Definition Ideal gas

bp ¼
1
v

@v
@T

� �
p
¼ 1

T
þ 1
Z

@Z
@T

� �
p

1
T

bT ¼ �
1
v

@v
@p

� �
T

¼ 1
p
þ 1
Z

@Z
@p

� �
T

1
p

cpv ¼
c

bTp
c

cpT ¼
c� 1

c
bTp
bpT

c� 1
c

C ¼ 1þ q
c

@c
@q

� �
s

cþ 1
2

G ¼ 1
qcv

@p
@T

� �
q
¼ cpvcTp

c� 1

W ¼ q
@c2

@p

 !
q

¼ cpv þ
@cpv
@p

 !
q

p
c
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If an isentropic process is considered and temperature and pres-
sure are taken as primary variables, the governing law becomes

TpcpT ¼ const:: (7)

Its differentiation41 yields

cpT ¼
p
T

@T
@p

� �
s

¼ c� 1
c

bTp
bpT

; (8)

where cpT is the so-called isentropic pressure–temperature exponent,
and bp is the isobaric compressibility of the fluid. The derivation is
provided in Appendix A.

In addition to the fundamental derivative C, an additional non-
dimensional parameter is required to evaluate the variation of the
speed of sound in non-isentropic processes, see Appendix B. This
parameter is defined as

W � q
@c2

@p

 !
q

¼ cpv þ
@cpv
@p

 !
q

p: (9)

The second expression in Eq. (9) (see Appendix A) highlights that W
is directly linked to the variation of cpv with pressure over an isochoric
process. The term ð@cpv=@pÞqp is negative for fluids characterized by
low complexity of the molecular structure in thermodynamic regions
where q > qcr and T ’ Tcr. However, in these cases, the absolute
value of this term never exceeds the one of cpv; as a consequence
W > 0 in the vapor region for all fluids. As discussed in Sec. IV, W
affects the variation of the Mach number in both Rayleigh and Fanno
flows.

Finally, the Gr€uneisen parameter for fluids is defined as42

G � 1
qcv

@p
@T

� �
v
: (10)

The Gr€uneisen parameter is commonly used in equations of state for
solids to relate thermodynamic variables with the lattice vibrational
spectra. In particular, Eq. (10) provides the average over the values of
Gr€uneisen parameter calculated for each individual mode of the lattice
vibrational spectrum of the solid.43 This parameter is often assumed to
be constant with temperature in solids. Arp et al.42 generalized the def-
inition provided by Eq. (10) to fluid phases. Using the Maxwell ther-
modynamic relations39 and Eqs. (5), (A10), and (A11), the Gr€uneisen
parameter can also be written as

G ¼ � v
cv

@s
@v

� �
T
¼ v

cv

@s=@pð ÞT
@v=@pð ÞT

¼ � v
cv

@v=@Tð Þp
@v=@pð ÞT

¼ v
cv

bp

bT
¼ c� 1

bpT
¼ cpvcpT : (11)

The use of the Gr€uneisen parameter in fluid dynamics theory is quite lim-
ited,44,45 and systematic studies involving G are limited to liquid flows.46,47

Recently, Mausbach et al.43 examined the variation of the Gr€uneisen
parameter over the temperature-entropy diagram for 28 pure fluids.
Estimations of the value ofG based onmolecular simulations are compared
against the values obtained with state-of-the-art multiparameter equations
of state models. The results showed that the Gr€uneisen parameter for vapor
states increases with the density and decreases with the temperature for all
the examined pure fluids, with the exception of water.

In general, fluids can be classified depending on the level of com-
plexity of their molecules. A parameter for the evaluation of molecular
complexity has been defined differently by different authors. Bethe16

first proposed

dc1 ¼
R

cv1ðTcÞ
: (12)

cv1 is defined as the isochoric specific heat evaluated at the critical
temperature Tc in the limit v!1. Guardone and Argrow48 con-
cluded, based on an analysis conducted on selected BZT fluorocar-
bons, that dense-vapor effects are strongly influenced by dc1 and by
the acentric factor of the molecule. The authors also proved that, if the
van der Waals and the Redlich–Kwong equations of state models are
employed, the minimum values of the fundamental derivative of gas
dynamics evaluated along both the critical isotherm and the saturation
curve are monotonically increasing functions of dc1 for the selected
fluorocarbons. The minimum value of the fundamental derivative
Cmin along the vapor–liquid equilibrium curve is thus adopted in sub-
sequent studies by the same group to classify the molecular complexity
of fluids.28 Using a thermodynamic approach based on the simple van
der Waals model, Colonna and Guardone49 and Harinck et al.50

explained the link between the value of dc1 and molecular complexity
from a physical point of view. According to the energy equipartition
principle, the number of active degrees of freedom of the molecule
evaluated at the critical temperatureNðTcÞ is given by

NðTcÞ ¼
2

dc1
: (13)

As a result, the molecular complexity does not depend on molecular
weight. Furthermore, the trend of dc1 with the molar mass is strictly
monotone if the considered fluids belong to the same class (e.g.,
hydrocarbons, siloxanes, or fluorocarbons), therefore, have similar
molecular structures.

In the ideal gas limit, dc1 tends to the value of the inverse of the
Gr€uneisen parameter evaluated at the critical temperature: combining
Eq. (10) with p ¼ qZRT yields

G ¼ 1
dc1

cv1
cv

Z þ T
@Z
@T

� �
q

" #
: (14)

In this equation, dc1 accounts for the molecular complexity of the
fluid, while the remaining terms account for its departure from
the ideal gas value. In the dilute gas region, Z ! 1; cv ! cv1 and the
derivative of Z vanishes, therefore, G1 ! 1=dc1, where G1 denotes
the Gr€uneisen parameter evaluated according to the ideal gas assump-
tion and along the critical isotherm.

In process and energy engineering, given that also processes
entailing phase change are of interest, the molecular complexity of the
working fluid is often evaluated by means of the coefficient r, defined
as52

r¼Tcr

R
ds
dT

� �
sat;Tr¼0:7

¼ 1
0:7R

ðc�1Þ
G2

cpvZR�
c�1
G

1
q
dpsat
dT

� �
sat;Tr¼0:7

;

(15)

where the subscript sat denotes dew point variables, and Tr ¼ 0:7
means that the saturated property is evaluated for a temperature that
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is 0.7 times the critical value. Equation (15) highlights the link between
r and some fluid parameters. The r coefficient is proportional to the
slope of the dew line of the fluid in the Ts diagram, which is primarily
a function of the heat capacity of the saturated vapor. Charts in
Invernizzi,52 Sec. 2.5, show that r increases with the molecular com-
plexity of the fluid. In particular, the slope of the dew line in the tem-
perature entropy diagram, and thus r, is positive for fluids with a high
molecular complexity. Conversely, r is negative for fluids character-
ized by a simple molecular structure.

The graph in Fig. 2(a) can be used to compare the various defini-
tions of molecular complexity with the aim of evaluating which
parameter best fits results for a large number of fluids representative of
a wide range of molecular complexities. All values are evaluated using
multiparameter equations of state models for a number of fluids for
which input data are available and that are implemented in a

well-known commercial program.51 Data of r and the inverse of G1
(and thus dc1) are fitted with a linear regression. A third-order polyno-
mial function is instead used to fit 1=ðCmin þ 1Þ with r. Unity is
added to the denominator to attain a smooth and monotone fit of the
data also in case some BZT fluids characterized by Cmin < 0 are
included in the analysis. The maximum deviations between the calcu-
lated 1=G1 and the linearly interpolated values occur for r < 0 and
r > 80. The deviations between the calculated 1=ðCmin þ 1Þ values
from their polynomial fit are considerably larger (>500%) for large
values of molecular complexity, while they are smaller for low values.

Figure 2(b) shows the relation r vs ð1=GÞ for three different sets
of reduced temperatures and pressures and for the same fluids consid-
ered in Fig. 2(a). The results prove that the linear relation between r
and 1=G is maintained, albeit less rigorously, also in the dense vapor
region: substantial deviations from the linear relation between r and
1=G can be observed only in the case Tr ¼ 1; pr ¼ 0:85. G can, there-
fore, be used to quantify the complexity of pure fluid molecules and as
non-dimensional property for the comparison of flow processes fea-
turing different working fluids.

Graphs in Fig. 3 show the variation of each fluid parameter along
the critical isotherm at p < pc. Four different fluids of different molec-
ular complexity are reported. Regardless of their molecular complexity,
the specific heat ratio c and the inverse of the compressibility factor Z
increase monotonically with the reduced pressure p=pcr. For values of
pressure approaching that of the critical point, the value of c increases
more sharply, more so for simple molecules. For low molecular com-
plexity fluids, the Gr€uneisen parameter peaks in proximity of the criti-
cal point and converges to the ideal gas value as the pressure decreases.
However, for fluids made of increasingly complex molecules
[Figs. 3(c) and 3(d)], the ratio G=G1 is a monotonic function of the
pressure; thus, no maximum value exists. The trend of the function
W=W1 is opposite to that of G=G1. The parameter which is mostly
affected by molecular complexity is the generalized isentropic expo-
nent cpv. For low values of molecular complexity [Fig. 3(a)], cpv mono-
tonically increases with pressure and tends to a finite value at the
critical point. For moderate molecular complexity values [Fig. 3(b)],
the cpv=cpv;1 function exhibits a minimum value, while for fluids
made of the complex molecules [Figs. 3(c) and 3(d)], the trend is
monotone. Notably, cpv < 1 for states in the superheated vapor region
of molecularly complex substances [see Fig. 1(b)]. Finally, the funda-
mental derivative of gas dynamics monotonically increases with pres-
sure in fluids with a low molecular complexity. For fluids made of
increasingly complex molecules [Figs. 3(c) and 3(d)], the function
C=C1 exhibits a minimum in proximity of the critical point.

Summarizing, all non-dimensional fluid properties carry informa-
tion about the relevance of thermodynamic non-ideality of fluids.
Nevertheless, depending on the type of analysis or application, one
parameter can be more suited than the others. For example, the com-
pressibility factor Z can be effectively used to ensure thermodynamic
similarity between physical processes occurring in different fluids. The
exponent cpv, instead, has recently been utilized to assess the impact of
fluid non-ideality on the design of turbomachinery components. The
design of turbine nozzles for ORC systems operating with dense vapors
strongly depends on the value of cpv.

53 The value of the fundamental
derivative of gas dynamics C is paramount for assessing dense vapor
effects in relation to the propagation of waves in fluids. It can, therefore,
be argued that the Gr€uneisen parameter is particularly suitable for the

FIG. 2. Fluid thermodynamic parameters that were defined to evaluate the molecu-
lar complexity in previous studies (Cmin and r) and their relation with the Gr€uneisen
parameter. All values are calculated with the multiparameter equation of state mod-
els implemented in a well-known property estimation program.51 (a) Variation of
black dot 1=G1 ¼ dc1 and red triangle 1=ðCmin þ 1Þ with r. 1=G1 is normalized
with 1=G1;min ¼ 107:92, while 1=ðCmin þ 1Þ is normalized with 1=ðCmin þ 1Þmin
¼ 1:29 (b) Gr€uneisen parameter vs r as a function of several values of reduced
temperature and pressure. Black dot Tr ¼ 0:9; pr ¼ 0:05, red triangle Tr ¼ 1;
pr ¼ 0:65, blue square Tr ¼ 1; pr ¼ 0:85. Linear regression fitting curves are also
reported as solid lines with their respective 95% confidence bounds (shaded
areas).
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study of the role of fluid molecular complexity if paradigmatic non-
reactive flows of pure fluids and mixtures are considered.

III. THEORETICAL FRAMEWORK

The derivation of the one-dimensional theoretical framework for
the analysis of paradigmatic flows of dense vapors is based on the
work of Shapiro,54 which is limited to ideal gas flows. This analysis
was later further elaborated by Greitzer et al.55 Arp et al.42 and, more
recently, Baltadjiev et al.11 extended part of Shapiro’s framework to
the case of dense vapor flows, in which the fluid thermodynamic prop-
erties are obtained with an arbitrary equation of state model. This
framework is extended here to the case of non-isentropic processes,

and the fluid parameters introduced in Sec. II are used to quantify the
influence of both the molecular complexity of the working fluid and
the thermodynamic operating conditions.

The differential conservation equations for an infinitesimal con-
trol volume [see Fig. 4(a)] with a variable cross-sectional area A, fric-
tional wall stresses sw, infinitesimal energy transfer as shaft work to
the fluid dwshaft, and as heat to the fluid dq, and mass flow injection
d _m read55

dq
q
þ du

u
þ dA

A
¼ 0; (16)

quAduþ Adp ¼ �qA–dwshaft � swdAwþd _m uinj cos a� uð Þ; (17)

FIG. 3. Variation of fluid properties along the critical isotherm for several fluids, where1 denotes the properties estimated at v !1. (a) nitrogen, (b) CO2, (c) toluene, and
(d) siloxane MM. Fluid parameters: Black line c=c1, blue line cpv=cpv;1 , orange line C=C1, yellow line G=G1, purple line W=W1, and green line 1=Z.
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dht ¼ dhþ uduþ hinj � hinj;in þ
u2

2
�
u2inj
2

� �
d _m
_m

¼ –dq� –dwshaft; (18)

where u is the absolute flow velocity, q the density, A the cross-
sectional area, p the pressure, Aw the wetted surface area around the
control volume, uinj the velocity of the injected mass flow, a the mass
flow injection angle, and hinj;in ¼ hinjðTinj; pinjÞ and hinj ¼ hinjðT; pÞ
the specific static enthalpy of the injected fluid at the inlet and the out-
let of the control volume, respectively.

The arbitrary equation of state in the volumetric form p ¼ qZRT
together with the calorimetric equation of state h ¼ hðT; pÞ, forming
the thermodynamic model, close the set of equations. The

thermodynamic relations s ¼ sðT; pÞ and c ¼ cðq; sÞ allow one to
derive the equations in the desired form.

The system of equations can be manipulated to obtain the analyt-
ical relations between the infinitesimal variation of each flow quantity,
for instance, pressure or temperature, and the variation of cross-
sectional area, the energy transfer as heat, the shaft work, and the wall
friction. The contribution due to the injected mass flow is neglected,
and it is separately analyzed in Sec. V. With this approach, one can
analyze the influence of the non-ideality of the fluid properties on the
variation of each flow quantity for a given change of cross-sectional
area, energy transfer as heat and shaft work, and wall friction. Table II
lists all these relations, whose derivation is reported in Appendix B. All
the relations can be formalized in the synthetic form

FIG. 4. (a) Control volume for the analysis of one-dimensional compressible flows with a variable cross-sectional area, energy transfer as heat or shaft work, wall friction, and
fluid injection. (b) Mixing of two co-flowing streams in a constant area channel. The dashed lines identify the control volume used for the mixing loss calculation.

TABLE II. Influence coefficients for compressible channel flow and real gas in terms of c, C, G, cpv, and W.

dA
A

�dq
cpT

�dwshaft

cpT
4Cf

dx
dH

dq
q

M2

1�M2
� c� 1ð Þ

G
1

1�M2
� c� 1ð Þ

G2

1
1�M2 �Gþ 1

2
M2

1�M2

dp
p

cpvM
2

1�M2ð Þ �
cpv c� 1ð ÞM2

G 1�M2ð Þ
�

cpv c� 1ð Þ
G2 1�M2ð Þ �

cpvM
2

2
1þ GM2

1�M2

dT
T

GM2

1�M2
� cM2 � 1

1�M2
� c� 1ð Þ
G 1�M2ð Þ �

G cM2 � 1ð ÞGþ c� 1ð Þ
� �

c� 1ð Þ 1�M2ð Þ
M2

2
dM
M

� 1þ C� 1ð ÞM2

1�M2

c� 1ð Þ
G

C
1�M2

�W
2

� �
c� 1ð Þ
G2

C
1�M2

Gþ 1ð ÞC
1�M2ð Þ � G

W
2

� �
M2

2
du
u

� 1
1�M2

c� 1ð Þ
G

1
1�M2

c� 1ð Þ
G2

1
1�M2

Gþ 1
2

M2

1�M2

dc
c

C� 1ð ÞM2

1�M2 � c� 1ð Þ
G

C� 1ð Þ
1�M2

�W
2

� �
� c� 1ð Þ

G2

C� 1
1�M2 � Gþ 1ð Þ C� 1ð Þ

1�M2ð Þ � G
W
2

" #
M2

2

ds
cp

0 1 0 G2

c� 1
M2

2
dh
cpT

G2

c� 1
M2

1�M2
�M2 Gþ 1ð Þ � 1

1�M2ð Þ
� 1
1�M2 � G2 Gþ 1ð Þ

c� 1ð Þ 1�M2ð Þ
M4

2
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U ¼ f1
dA
A

� �
þ f2

�dq
cpT

 !
þ f3

�dwshaft

cpT

 !
þ f4 4Cf

dx
dH

� �
;

fi ¼ fiðc; cpv;C;G;W;MÞ; i ¼ 1;…; 4;

9>>=
>>;
(19)

where U is the normalized differential variation of a thermodynamic
or fluid dynamic variable, e.g., temperature or flow velocity, Cf is the
Fanning friction factor, and dH is the hydraulic diameter. The fi factors
are termed influence coefficients54 and solely depend on the Mach
number and on some of the non-dimensional fluid properties intro-
duced in Sec. II. As a result, each of the flow quantities in the first col-
umn listed in Table II is given by the summation of the product
between each independent variable in the first row and the corre-
sponding influence coefficient.

A. Validation: Flow expansion in a
convergent–divergent nozzle

This case has already been treated extensively in the literature;
here, only a comparison with recent experimental data obtained with a
blow-down wind tunnel realizing the supersonic expansion of octame-
thyltrisiloxane (siloxane MDM) is reported. The accuracy of the one-
dimensional framework has been quantitatively verified by comparing
the values of Mach number and static pressure along the channel cal-
culated with the equations of Table II against the experimental values
documented in Spinelli et al.56 Figure 5 shows the comparison between
these experimental data and the values obtained with the one-
dimensional model valid for dense vapors and that valid for the ideal
gas, see Anderson,35 Chap. 3. The governing flow equations were dis-
cretized with a first-order Euler scheme in space and solved numeri-
cally. Boundary conditions in terms of inlet total pressure, total
temperature, and Mach number were prescribed so that they matched
the corresponding experimental values. Table III reports the main data
identifying the four test cases considered in this analysis. Two different
convergent– divergent nozzle geometries are considered for the cases
termed M1.5H, M1.5L and M2.0L, M2.0H by Spinelli et al.56 Fluid
properties of MDM are evaluated using the state-of-the-art multipa-
rameter equation of state model by Thol et al.57 The experimental data
are those acquired at t¼ 0 s, i.e., immediately after the opening of the
main control valve.

With reference to Fig. 5, the pressures calculated with dense-
vapor flow model match the experimental data with acceptable accu-
racy considering the limitations of the model: the relative difference
between values obtained with the numerical model and values
obtained from measurements never exceeds 6.5% for all cases. Mach
numbers calculated with the one-dimensional model feature values
that are within the uncertainty band associated with the experimental
data. The values of pressure and Mach number computed with ideal
gas model are rather accurate if the inlet pressure is low, i.e., for the
M1.5L and M2.0L test cases. The ideal gas model predictions are
increasingly inaccurate with higher inlet pressures, as far as the values
related to the divergent part of the nozzle are concerned (Zt � 0:65 at
the nozzle inlet). The discrepancy between the outlet static pressure
calculated with the dense-vapor model and the ideal gas model is
�12% for both cases M1.5H and M2.0H and �6% for the remaining
cases.

IV. PARADIGMATIC ONE-DIMENSIONAL
COMPRESSIBLE FLOWS OF DENSE VAPORS

The influence coefficients �dq=ðcpTÞ and 4Cf dx=dH reported in
Table II are instrumental to the analysis of Rayleigh and Fanno pro-
cesses in dense vapors. These configurations are representative of

FIG. 5. Validation of the one-dimensional equations for an isentropic vapor flow
through a supersonic nozzle by comparison with the measurements (Spinelli
et al.56). The working fluid is siloxane MDM. The results of the calculations per-
formed by assuming that the fluid obeys the ideal gas law are also reported. (a)
Pressure vs axial coordinate. (b) Mach number vs axial coordinate. For both
graphs: —–: fluid properties calculated with a multiparameter equation of state
model,57 – – –: fluid properties calculated with the ideal gas model, dot: measured
values (pressure) or values derived from measured information (Mach) with corre-
sponding error bars; cases, as termed by Spinelli et al.:56 black line: M1.5L, red
line: M1.5H, blue line: M2.0L, and green line: M2.0H.
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actual flow processes in engineering applications. On the one hand,
non-adiabatic flows can be encountered, for example, in small-scale
turbines for ORC systems and heat exchangers. Moreover, the
Rayleigh flow simplification can be adopted for the preliminary assess-
ment of supercritical injection processes in combustors. On the other
hand, profile losses due to the presence of a laminar or turbulent
boundary layer on blade surfaces and contributing to the total loss in
turbomachinery can be modeled by means of the Fanno flow.13 To the
authors’ knowledge, no study on the influence of the fluid on each of
these paradigmatic flows in the non-ideal, albeit classical, regime is
available in the literature. Only some studies about non-classical flows
were carried out in the past,36–38,42,58 but they are based on the estima-
tion of fluid thermodynamic properties by means of largely inaccurate
thermodynamic models, such as the van der Waals equation of state.

For this analysis, equations in Table II are discretized with a first-
order forward scheme for an infinitesimal control volume of length dx
and numerically integrated over a given length. Non-dimensional fluid
parameters are estimated within each infinitesimal control volume as
the average of the value calculated at the edge of each control volume.
Calculations are performed for nine different fluids (see Table IV) and
different inlet conditions. The state-of-the-art multiparameter equa-
tions of state models implemented in an in-house software for the cal-
culation of thermophysical properties51,59 are adopted. To ensure
thermodynamic similarity among all the fluids, two sets of inlet condi-
tions in terms of reduced temperature and pressure are considered,
namely, those characterized by Tr ¼ 1:05; pr ¼ 1:15 and by
Tr ¼ 0:9; pr ¼ 0:05. The compressibility factor associated with the
high-pressure and high-temperature inlet condition is Z ’ 0:5, while
that associated with the dilute-gas inlet condition is Z ’ 1.
Calculations are stopped either when pressure and temperature equal
the corresponding saturated values or the outlet Mach numberMout is

equal to 1.4. For the majority of the considered fluids, the limit assures
that, in the supersonic regime, the thermodynamic model is within its
range of validity. The discretization is locally refined in proximity of
the sonic point to avoid numerical divergence.

A. Rayleigh flow of dense vapors

Figures 6(a) and 6(b) show the Rayleigh curves evaluated for
Z ’ 0:5 and Z ’ 1, respectively. The results are reported for the fluids
of Table IV. The inlet Mach number Min is set to 0.7. For each curve,
the point at maximum Ds=cp;in, with cp;in denoting the isobaric specific
heat evaluated at the inlet, corresponds to the thermodynamic state
where choking occurs. The heat transferred to each infinitesimal con-
trol volume is equal to 100 J: this value has been chosen after a sensitiv-
ity analysis. To assure a better refinement at M ’ 1, the value of dq is
changed by a factor 1.75 every time the value of the first non-decimal
unit of the parameter 10 �M, where M is the flow Mach number,
increases of 1.

The use of the appropriate influence coefficients in Table II yields
the relation

dh
dq
¼ 1

T
dh
ds
¼ �M2ðGþ 1Þ � 1

ð1�M2Þ : (20)

Equation (20) shows that, at fixed reduced inlet temperature and pres-
sure, both the Mach number and the Gr€uneisen parameter directly
affect the variation of the specific enthalpy of the fluid along the duct.
In particular, the Gr€uneisen parameter is related to the slope of the
Rayleigh curves: fluids with a higher molecular complexity exhibit a
larger enthalpy increase if compared to fluids made of simpler mole-
cules. This shows that, as expected, substances characterized by a low
value of G convert into internal energy a larger amount of thermal
energy transferred to the flow. Combining the relation
du=u ¼ f ðc;G;MÞ � dq=ðcpTÞ, which can be obtained with the influ-
ence coefficients of Table II with Eq. (A13), leads to

dEk
dq
¼ G

M2

1�M2
; (21)

where Ek ¼ u2=2 is the kinetic energy of the fluid. Conversely, sub-
stances characterized by high values of G, for instance, nitrogen or
oxygen, convert a proportionally larger amount of thermal energy
transferred to the flow into kinetic energy. Equation (21) shows
that changes in kinetic energy scale linearly with the Gr€uneisen
parameter of the fluid, or, equivalently, are inversely proportional
to its molecular complexity. The distribution of the thermal energy
input between kinetic and internal energy of the fluid depends on
the value of the isobaric specific heat capacity cp at fixed thermody-
namic conditions. From Eqs. (11) and (A12) and the relation pv ¼
ZRT, it follows that

cp
R
¼ ðc� 1Þ

G2
cpvZ: (22)

The factor 1=G2 is several orders of magnitude larger than the numer-
ator. As a consequence, the specific heat at constant pressure times the
molar mass is inversely proportional to the square of the Gr€uneisen
parameter or, equivalently, directly proportional to the square of the
molecular complexity of the fluid. Figures 6(a)–6(c) show that G
becomes larger than G1 for all the fluids if the fluid state approaches

TABLE IV. Fluids adopted for the analysis of Rayleigh and Fanno flows and charac-
teristic properties. The markers in the last column are used in Figs. 6, 7, 11, and 12.

Fluid
Mmol

(g mol�1)
Tcr

(K)
pcr
(bar) c1 Cmin G1 Marker

N2 28.01 126.19 33.96 1.40 1.3390 0.40
O2 32.00 154.58 50.43 1.40 1.3314 0.40
CO2 44.01 304.13 73.77 1.30 1.1944 0.3004
Isobutane 58.12 407.81 36.29 1.08 0.7105 0.0775
Toluene 92.14 591.75 41.26 1.05 0.5849 0.0486
MM 162.38 518.70 19.39 1.03 0.3395 0.0272

TABLE III. Several flow properties identifying the inlet conditions of the selected test
cases treated in Spinelli et al.56 The total compressibility factor Zt is calculated start-
ing from the inlet total quantities.

Test pt (bar) Tt (K) pr;t Tr;t Zt

M1.5L 4.59 512.15 0.32 0.91 0.81
M1.5H 9.20 541.15 0.64 0.96 0.63
M2.0L 4.58 520.15 0.32 0.92 0.82
M2.0H 9.02 542.15 0.63 0.96 0.65
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the critical point of the substance. This results in a steeper enthalpy
increase at constant thermal energy input if compared to the case for
which Z ’ 1 [Figs. 6(b)–6(d)]. However, this effect is more pro-
nounced for complex molecules, which exhibit a larger deviation of G
from the baseline G1 value [Figs. 6(c) and 3]. For substances charac-
terized by low values of G1, the maximum value of enthalpy along
a Rayleigh curve moves closer to the sonic point. Equating to zero
Eq. (20) results in

MmaxðhÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

Gþ 1
p : (23)

For complex fluids,MmaxðhÞ � 1 as G! 0, whileMmaxðhÞ ¼ 1=
ffiffiffi
c
p

for
a perfect gas. In other words, adding thermal energy to a subsonic flow
of a dense vapor increases the static enthalpy until the choking condi-
tions are reached.

Figures 7(a) and 7(b) show the dimensionless thermal energy
flux that is required to choke the flow at different subsonic inlet Mach
numbers for both the Z ’ 0:5 [Fig. 7(a)] and the Z ’ 1 [Fig. 7(b)].
Both graphs show that the larger the fluid molecular complexity, the
larger the amount of energy that needs to be transferred as heat to the
fluid to choke the flow. The influence of the fluid molecular complex-
ity is less visible in the Z ’ 1 case, i.e., if the fluid is in the dilute gas
state.

The physical explanation of these results is that fluids made of
complex molecules (low values of G1), thus with a large number of
active molecular degrees of freedom, can store a larger quantity of
thermal energy. Therefore, only a small share of the energy trans-
ferred as heat contributes to the increase in the kinetic energy of
the flow [Eq. (21)]. Note also that the relative amount of thermal
energy required to choke the flow starting from subsonic inlet con-
ditions is lower if Z ’ 0:5 compared to the Z ’ 1 case. The differ-
ence is larger for simple molecules (’ 10 times less than the
amount evaluated for Z ’ 1). This is due to the higher value of the
isobaric specific heat capacity in proximity of the critical point,
whose increase is steeper for simple molecules, as it can be inferred
from the trend of c reported in Fig. 3. Similar conclusions for
supersonic Rayleigh flows of van der Waals fluids can be found in
Schnerr and Leidner.36

Figures 8(a) and 8(b) show the variations of Mach number with
the normalized entropy increase at different inlet Mach numbers. The
results are reported for nitrogen [Fig. 8(a)] and siloxane D6 [Fig. 8(b)],
a BZT fluid. Two sets of inlet temperature and pressure at different
levels of thermodynamic non-ideality, namely, Tr ¼ 1; pr ¼ 0:9 and
Tr ¼ 0:9; pr ¼ 0:05, are considered. These cases correspond to a
value of the compressibility factor at the inlet of Z ’ 0:5 and Z ’ 1,
respectively. If the fluid is in the ideal gas state, the Mach number
increases monotonically with the entropy, and, consequently, with the
energy input as heat. Due to the higher number of molecular degrees
of freedom, in Rayleigh flows of fluids made of more complex mole-
cules, like, for instance, siloxane D6, the Mach number increases less
with the input of energy as heat if compared to the Rayleigh flows of
simpler molecules.

Figure 8(b) highlights that the trend of Mach number as a func-
tion of energy input as heat is non-monotone for subsonic Rayleigh
flows of D6: after an initial decrease, the Mach reaches a minimum
and then increases. Solving dM=M ¼ f ðdqÞ ¼ 0 yields an analytical
relation for the inversion of the Mach number, namely,

FIG. 6. Rayleigh curves for different fluids at Min ¼ 0:7. Markers and colors identi-
fying the curve in relation to each fluid are reported in Table IV. Considered
cases: (a) Tr ¼ 1:05; pr ¼ 1:15; Z ’ 0:5; (b) Tr ¼ 0:9; pr ¼ 0:05; Z ’ 1. (c)
and (d) report the variation of G=G1 for the processes displayed in (a) and
(b), respectively.
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Mmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

C
W

r
; (24)

which is defined for

C � W
2
: (25)

If the fluid is in the dilute gas state, Z ! 1; 2C=W! ðcþ 1Þ=c, and
Mmin does not admit real solutions. The red line in Fig. 8(b) identifies
the locus ofMmin for different values of the inlet Mach number. Given
that W is greater than zero for all vapor thermodynamic states and for

all fluids, also several non-BZT fluids exhibit thermodynamic states
for which Eq. (25) is satisfied. This non-classical behavior is due to the
steep increase in the speed of sound that dense vapors of complex mol-
ecules fluids exhibit in proximity of the critical point, which prevails
over the flow acceleration forMin < 1.

Figure 9 depicts the boundaries of the thermodynamic region in
which the relation (25) holds in the temperature-entropy diagram of
different fluids. The BZT region, i.e., the region satisfying the C < 0
condition, is also reported for comparison. Calculations based on
state-of-the-art thermophysical models highlighted that fluids with

FIG. 8. Mach number vs entropy in Rayleigh processes in (a) nitrogen and (b)
siloxane D6 for different inlet Mach numbers. Two sets of inlet reduced temperature
and pressures are considered: – – – Tr ¼ 1; pr ¼ 0:9; —— Tr ¼ 0:9; pr ¼ 0:05.
The red line in identifies the locus of Mmin.

FIG. 7. Non-dimensional energy transfer as heat required to attain choked condi-
tions as a function of the inlet Mach number. Markers and colors identifying the
curve in relation to each fluid are reported in Table IV. Considered cases: (a)
Tr ¼ 1:05; pr ¼ 1:15; and (b) Tr ¼ 0:9; pr ¼ 0:05.
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G1 < 0:059 admit a thermodynamic region where the relation (25) is
satisfied. Given the small extent of the BZT thermodynamic region of
D6 predicted by current thermodynamic models, the effects on chok-
ing as the ones discussed by Cramer38 and dependent on the van der
Waals thermodynamic model are confined to a very restricted range
of thermodynamic conditions close to the critical point. Therefore,
they are almost impossible to visualize.

B. Fanno flow of dense vapors

Fanno processes have been numerically assessed for all the fluids
in Table IV. As shown in Table II, the solution of the one-dimensional
equations requires the specification of the friction factor coefficient Cf ,
which is directly proportional to the entropy generation due to viscous
dissipation. Simple algebraic manipulation allows us to write

fs ¼
ðsout
sin

Tds
1
2 u

2
¼
ðL
0

4Cf dx
dH

: (26)

Equation (26) shows that the entropy generation due to friction in
fully developed channel flows depends on the Fanning friction coeffi-
cient and on the pipe aspect ratio L=dH. Sciacovelli et al.

60 recently
determined the trend of Cf as a function of the Reynolds number for
dense vapors in supersonic fully developed channel flows with isother-
mal walls by means of direct numerical simulations (DNS). The
authors simulated the flows of air and fluorocarbon PP11 (C14F24).
They estimated the fluid properties using the perfect gas model for air
and the Martin–Hou equation state for PP11. The results show that,
for dense vapor flows, the dynamic and thermal effects are decoupled
to a large extent, and compressibility has a minor effect on the skin
friction coefficient if compared to what happens for air flows.
Therefore, the skin friction coefficient in dense organic vapor flows
tends to the incompressible flow value given by Deans’s equation for
rectangular duct channels.61 Numerical simulations of two-
dimensional boundary layers with zero pressure gradient conducted
by Pini and De Servi62 further corroborate this finding. However, the
study by Sciacovelli60 has been conducted assuming isothermal chan-
nel walls and supersonic flow.

To assess the influence of both flow compressibility and thermo-
dynamic fluid state also for the case of subsonic adiabatic channel

flows of dense vapors, three-dimensional axial-symmetric steady-state
numerical flow simulations were performed. This study also enabled
the assessment of the accuracy of the well-established
Colebrook–White empirical model for the computation of the friction
factor coefficient in pipe flows.63 Differently from the approach
adopted by Sciacovelli,60 in this case the Reynolds Averaged
Navier–Stokes (RANS) equations model was employed, together with
Spalart–Allmaras (SA) turbulence closure model.64 Despite the accu-
racy of existing turbulence models for dense vapor flows is not fully
ascertained, the work documented in Otero et al.65 proved that eddy
viscosity models, such as SA, can provide reasonably accurate values
of boundary layer quantities for wall bounded turbulent flows even in
the case of strong variations of fluid thermophysical properties.
Therefore, the RANS model complemented by the SA eddy viscosity
closure is deemed sufficient for the purpose of this analysis. The study
described in Sciacovelli et al.66 further corroborates the validity of the
approach: the numerical analyses of turbulent channel flows simulated
with four variants of the k� � turbulence model demonstrate that all
of the eddy viscosity models provide results that are in qualitative
agreement with those obtained with DNS. The considered geometry is
a straight 12m long pipe, limited to a circular sector of 36

�
. The pipe

length was chosen such that fully developed flow is attained for all the
case studies. The mesh consists of 1.2 	 106 elements to ensure grid
independence. Appendix C reports the results of the grid indepen-
dence study. The grid is refined in proximity of the wall to ensure
accurate resolution of the boundary layer. The first cell height is set to
2 	 10�8 m to guarantee yþ < 1 for all the considered simulations.
Rotational periodicity is attained by prescribing symmetry boundary
conditions on the remaining interfaces. Flows of two fluids with differ-
ent level of molecular complexity are investigated, namely, air in
ideal gas conditions and siloxane MM. The viscosity value for air is
set to 1.831	 10�5 Pa s over the whole computational domain.
Thermophysical properties of siloxane MM are estimated with the
state-of-the-art models implemented in a well-known commercial
software.51 Numerical simulations have been performed with a com-
mercial computational fluid dynamic (CFD) software.67 No-slip and
adiabatic conditions are imposed at the smooth wall. Total inlet tem-
perature and pressure are chosen such that the prescribed values of Tr

and pr at the outlet, where the flow is fully developed, are obtained.
Table V lists the four considered sets of Tr and pr at the pipe outlet.
These values were set such that the thermodynamic states of the simu-
lated flows are (1) close to vapor–liquid critical state (case Z05 with
Z ’ 0:5), (2) in the subcritical and supercritical dense vapor region
(cases Z07sub and Z07super, respectively, with Z ’ 0:7) and (3) in
the dilute gas state (case Z1 with Z ’ 1). To study the effect of the
Mach number on the friction coefficient at the pipe outlet, six values

TABLE V. Values of the outlet reduced temperature and pressure and resulting
Mach number range for each of the fluids under investigation.

Tr pr M range (air) M range (MM)

Z05 1.05 1.15 0.45–0.69 0.45–0.85
Z07sub 1 0.65 0.43–0.82 0.34–0.79
Z07super 1.1 1.05 0.34–0.72 0.32–0.80
Z1 0.9 0.05 0.6–0.8 0.51–0.83

FIG. 9. Boundaries of the thermodynamic regions encompassing states for which
C < W=2 in the temperature-entropy diagram for fluids with different molecular
complexity. For siloxane D6, a close-up of the regions in which C < WG=
½2ðGþ 1Þ
 (red) and the C < 0 (green) are also displayed.
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of normalized pressure difference ðpt;in � poutÞ=L are prescribed for
each set of Tr and pr. Table V lists the values of the outlet reduced tem-
perature and pressure for the four different cases, together with the
resulting exit Mach number range. In all cases, the value of the
Reynolds number calculated with the pipe diameter as reference
dimension is sufficiently large to assume fully turbulent flow, i.e.,
ReD ¼ qmumD=lin > 107, where m stands for meridional. In accor-
dance with the observations of Otero et al.65 and Sciacovelli et al.,66

the turbulent Prandtl number is set to 0.9 in all simulations.
Figures 10(a) and 10(b) show the results for air (ideal gas) and

siloxane MM. Overall, the values of Cf calculated with the
Colebrook–White correlation valid for incompressible flows are larger
than the ones obtained from numerical simulations. However, for
channel flows withM< 0.4 at the outlet, the maximum relative differ-
ence between Cf values obtained from CFD simulations and those cal-
culated with the empirical correlation is �3%. If M> 0.4, for channel
flows of air modeled as an ideal gas, Cf values decrease with both M
and ReD, thus deviating from the values calculated with the
Colebrook–White correlation. Still in the case of air flows, ifM ’ 0:7,
the calculated maximum relative difference between Cf values is’ 9%
for the Z05, Z07sub, and Z07super cases, and ’ 16% for the Z1 case.
Conversely, in the case of siloxane MM flows, the Cf vs ReD curves
obtained from CFD simulations follow the same trend given by the
Colebrook–White correlation, regardless of the value of M. Therefore,
the value of the friction coefficient depends solely on the Reynolds
number in the case of flows of low-G fluids and is not influenced by
the compressibility of the flow. A low value of the fluid Gr€uneisen
parameter, indeed, implies a low value of the Eckert number of the
flow. Simple algebraic manipulation gives

Ec ¼ u2

cpT
¼ G2

c� 1
M2; (27)

which shows that Ec decreases with the fluid molecular complexity. The
lower the Eckert number, the higher the heat capacity of the fluid and
the lower the influence of the temperature both on viscous dissipation
and on the value of the skin friction. This is in line with results described
by Pini and De Servi,62 who studied dense-vapor effects on the dissipa-
tion coefficient Cd in compressible laminar boundary layers. Moreover,
these results are also consistent with the outcome of the study of Chen
et al.,68 who performed DNS of fully turbulent channel flows and
observed that the averaged center-to-wall temperature ratio is lower in
the flows of organic fluids with a large molecular complexity and
decreases if the fluid state approaches that of the vapor–liquid critical
point. Moreover, the Eckert number decreases if the thermodynamic
state of the fluid approaches that of the critical point. This is due to the
increase in the value of c, which prevails over that ofG, see Fig. 3.

Stemming from these considerations, the Colebrook–White rela-
tion is deemed sufficiently accurate for the estimation of the skin fric-
tion coefficient in compressible dense vapor flows. Given the lack of
correlations for the friction factor coefficient in the case of compress-
ible channel flows of arbitrary fluids, the Colebrook–White equation is
also used to estimate Cf for channel flows of high G fluids. In addition,
according to Eq. (26), the Colebrook–White equation provides a con-
servative estimations of the Cf value and, consequently, of the entropy
loss coefficient in pipe flows. Furthermore, for subsonic flows, changes
of the flow ReD are more relevant than changes in M. To the authors’
best knowledge, the only available correlation for compressible pipe

flow is that of Panhandle.69 However, the validity of the relation is lim-
ited to Reynolds numbers between 5	 106 and 1:4	 107.

The viscous equations governing adiabatic flows that can be
obtained in terms of the coefficients listed in Table II were solved to
evaluate the influence of both the fluid molecular complexity and
dense vapor effects. The hydraulic diameter of the pipe is constant and
equal to 0.1m.

Figures 11(a) and 11(b) show the Fanno curves evaluated for
Z ’ 0:5 and Z ’ 1. The entropy production is plotted in terms of the
local entropy loss coefficient TDs=u2in. The results are displayed for the

FIG. 10. Friction coefficient Cf vs Reynolds number ReD for compressible pipe flows.
(a) air (ideal gas) and (b) siloxane MM. The values of Cf obtained from CFD simulations
are compared with the values calculated with the empirical Colebrook–White correlation.
Blue dotted line: case Z05; green dotted line: case Z07sub; pink dotted line: case
Z07super; red dotted line: case Z1; black continuous line: Colebrook–White correlation.
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fluids of Table IV. The inlet Mach number is set to Min ¼ 0:7. The
molecular complexity of the fluid affects the value of Dh required to
choke the flow for both the Z ’ 0:5 and Z ’ 1 cases. The combina-
tion of the enthalpy and entropy equations, see Table II, yields

1
T
dh
ds
¼ � Gþ 1ð Þ M2

1�M2
: (28)

This relation shows that the slope of the Fanno curve depends on the
value of G. As a consequence, the enthalpy drop that causes the flow

to be choked decreases with increasing fluid molecular complexity
and normalized entropy generation. If the fluid states are in prox-
imity of the critical point at the inlet (case Z ’ 0:5), the enthalpy
drop at choking conditions is lower than the enthalpy drop leading
to choking in case the fluid is in the dilute gas state. This finding is
valid for all the investigated fluids and is related to the larger value
of the dense-vapor isobaric heat capacity if compared to the ideal
gas value.

Figures 12(a) and 12(b) show that the pipe length L� required for
the flow to be choked is significantly longer for flows of fluids made of
complex molecules, regardless of the thermodynamic state and the
inlet Mach number. This is a consequence of the higher entropy gener-
ation in choked Fanno flows of low-G fluids, see Fig. 11: viscous dissi-
pation at the walls induces viscous heating of the flow; thus, complex
molecules of organic dense vapors allow a larger amount of the energy
to be stored as internal energy of the fluid with negligible or minor
increase in the fluid temperature. Moreover, a smaller amount of inter-
nal energy is converted into kinetic energy; from Table II, it follows
that

dEk
Ek
¼ Gþ 1ð Þ M2

1�M2

4Cf dx
dH

: (29)

This equation shows that, if different fluids are compared at fixed
reduced temperature and pressure at the inlet, the variation of kinetic
energy of the fluid is affected more by the decrease in the value of G
than by the increase in the value of Cf , see Figs. 12(c) and 12(d).
Therefore, the increase in kinetic energy is low in flows of fluids made
of complex molecules. As a consequence, in these flows, the fluid
acceleration is smaller and choking occurs further downstream.
Furthermore, L� increases if the fluid state approaches the critical
point of the substance, regardless of its molecular complexity, due to
the large value of the heat capacity in the dense vapor thermodynamic
region, see Eq. (22).

Figures 13(a) and 13(b) show the variation of Mach number
with the normalized pipe axial coordinate at different inlet Mach
numbers. The results are reported for nitrogen [Fig. 13(a)] and
siloxane D6 [Fig. 13(b)]. The same sets of inlet reduced tempera-
ture, reduced pressure, and Mach number introduced in Sec. IVA
are also used here to fix the conditions of the flow. If the fluid is in
the dilute gas state, the Mach number increases monotonically
with the axial coordinate. At fixed normalized axial coordinate, the
Mach number increases less in the case of flows of fluids made of
complex molecules, such as siloxane D6. However, if the fluid is in
a thermodynamic state close to that of the critical point, the trend
of the Mach number as a function of the axial coordinate becomes
non-monotone for Fanno flows of D6: after an initial decrease,
it reaches a minimum and then increases. Solving dM=M
¼ f ð4Cf dx=dHÞ ¼ 0 yields an analytical relation for the minimum
value of the Mach number, namely,

Mmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2C

W
Gþ 1
G

r
; (30)

which is defined for

C � W
2

G
Gþ 1

: (31)

FIG. 11. Fanno curves in the non-dimensionalized h – s thermodynamic plane for
different fluids at fixed inlet Mach number, Min ¼ 0:7. The considered fluids can be
identified with the colors and markers reported in Table IV. Two sets of inlet reduced
temperatures and pressures are reported: (a) Tr ¼ 1:05; pr ¼ 1:15; and (b)
Tr ¼ 0:9; pr ¼ 0:05.
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If the fluid is in the dilute gas state, Z ! 1; 2C=WðGþ 1Þ=
G! ðcþ 1Þ=ðc� 1Þ, and Mmin does not admit real solutions. The
red line in Fig. 13(b) identifies the locus ofMmin for different values of
the inlet Mach number. Figure 9 shows the thermodynamic region
formed by states for which (31) holds in the temperature-entropy dia-
gram of D6. Calculations based on state-of-the-art thermophysical
models highlighted that fluids with G1 < 0:0128 admit a thermody-
namic region where relation (31) is satisfied. The term G=ðGþ 1Þ is
always greater than one. As a consequence, compared to Rayleigh
flows, only a few fluids, mainly BZT fluids, exhibit a thermodynamic
region where Eq. (30) admits a real solution.

FIG. 13. Mach number vs non-dimensional axial pipe coordinate for Fanno flows of
(a) nitrogen and (b) siloxane D6 for different inlet Mach numbers. Two sets of inlet
reduced temperature and pressures are considered: � � � � � � Tr ¼ 1:05; pr ¼ 1:15;
and — Tr ¼ 0:9; pr ¼ 0:05.

FIG. 12. Pipe length required to choke the flow vs inlet Mach number. Two sets of inlet
reduced temperature and pressure are considered: (a) Tr ¼ 1:05; pr ¼ 1:15; (b)
Tr ¼ 0:9; pr ¼ 0:05. (c) and (d) depicts the variation of the friction coefficient with the
inlet Mach number corresponding to the cases of figures (a) and (b), respectively.
Fluids are labeled with the colors and the markers reported in Table IV.
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V. MIXING OF DENSE VAPORS STREAMS

Two configurations of mixing flows are considered, namely, the
co-flowing of two streams in either thermal or kinematic non-
equilibrium and the injection of a flow into a main stream. Co-flowing
mixing is representative, for example, of flow phenomena occurring in
turbomachines and heat exchangers, like wake mixing downstream of
a blade or a blunt body, while flow injection resembles, for example,
tip leakage flow. For the case of co-flowing mixing, entropy generation
is calculated by applying the conservation laws and models for ther-
modynamic and transport properties of the fluid to the control volume
sketched in Fig. 4(b) and assuming a mixed-out state at the outlet. The
wall shear and the heat flux from the wall are neglected. The irrevers-
ible entropy generation is expressed in terms of loss coefficient as

fs;irr ¼
�T in;tðsout � sinÞ

1
2 �u2

in
; (32)

where �T in;t is the stagnation inlet temperature averaged over the mass
flow, �u in is the mass-flow-averaged velocity at the inlet, and sout is the
mixed-out entropy at the outlet boundary. Two sets of inlet thermody-
namic conditions are considered, namely, �T r;in ¼ 0:85; �pr;in ¼ 0:01
and �T r;in ¼ 1:05; �pr;in ¼ 1:15, where �T r;in and �pr;in denote the mass-
flow-averaged static temperature and pressure at the inlet. The first set
of conditions is representative of a dilute gas case (Z ’ 1), while the
second of a flow is occurring with the fluid states in proximity of the
vapor–liquid critical point of the fluid (Z ’ 0:5).

To study the effect of kinematic non-equilibrium, the reduced
temperature of both streams is set to �T r;in, while M1 and M2 are both
set to �M in6DM=2, where �M in ¼ 0:6. Similarly, the effect of thermal
non-equilibrium is evaluated by imposing M1 ¼ M2 ¼ �M in and T1
and T2 both equal to �T r;in6DTr=2.

Figure 14(a) shows the results of the calculation of the entropy
loss coefficient for flows in kinematic non-equilibrium and for the two
considered sets of inlet conditions. It can be observed that the trend of
the loss coefficient is barely dependent on both molecular complexity
and dense vapor effects. Furthermore, the entropy generation solely
depends on DM: the higher DM between the two streams, the higher
the resulting fs;irr. Conversely, the fluid non-ideality and its molecular
complexity affect the entropy loss in the case of thermal non-
equilibrium. If the inlet conditions are close to the critical point [Fig.
14(b)], the irreversible entropy loss coefficient increases regardless of
the fluid. According to Greitzer et al.,55 Chap. 1, the entropy produc-
tion in a process in which heat transfer across a finite temperature dif-
ference occurs is proportional to the thermal conductivity of the fluid.
Figures 14(c) and 14(d) illustrate the trends of the thermal conductiv-
ity of the fluid evaluated in the Z ’ 0:5 and Z ’ 1 cases, respectively.
On a qualitative basis, it can be inferred that the thermal conductivity
of the fluid increases as the state of the fluid departs from the dilute
gas state. Furthermore, molecular complexity has a significant impact
on the value of fs. This trend is in accordance with what can be
deduced from the equations governing the case of flow injection into a
main stream [Eq. (34)], which refer to a different flow configuration
but the flow is subjected to same underlying physics. A strictly physical
explanation of the trend could not be fully clarified. However, the
larger the specific heat capacity of the fluid, the lower is the related
temperature change for a fixed amount of exchanged thermal energy
between the different streams. Therefore, low G fluids in proximity of

FIG. 14. Irreversible entropy loss coefficient vs molecular complexity for mixing
streams in (a) kinematic or (b) thermal non-equilibrium. Inlet thermodynamic condi-
tions: �T r;in ¼ 0:85; �p r;in ¼ 0:01; Z ’ 1 (red) and �T r;in ¼ 1:05; �p r;in ¼ 1:15
Z ’ 0:5 (black). In figure (a), - - - � - - -: DM ¼ 0:2, � � � �D� � � �: DM ¼ 0:6,
—�—: DM ¼ 1. In figure (b), - - - � - - -: DT=Tcrit ¼ 2%, � � � �D� � � �:
DT=Tcrit ¼ 6%, —�—: DT=Tcrit ¼ 10%. For the case of thermal non-
equilibrium, values of thermal conductivity vs molecular complexity evaluated
for each fluid at Z ’ 0:5 (c) and Z ’ 1 (d) are reported. The same legend of
figure (b) applies to both charts.
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the critical point tend to remain in thermal non-equilibrium, thus
increasing the irreversible entropy generation.

Contrary to the case of co-flow mixing, the entropy loss coeffi-
cient for the flow injection configuration is an analytical expression if
the mass flow rate of the injected flow is small compared to that of the
main stream. The control volume for the analysis of this mixing con-
figuration is shown in Fig. 4(a); here, the contributions due to changes
in cross-sectional area, wall friction, energy transfer as heat and shaft
work are neglected. The fluid of the two streams is the same and the
two streams are in mechanical equilibrium with each other, i.e., the
mixing occurs at fixed pressure value. This implies that the specific
enthalpy of the injected flow after the mixing process is the same of
that of the main flow, i.e., hinj ¼ h.

The conservation equations in differential form are reported in
Sec. III, namely, Eqs. (16)–(18). The wall viscous effects term is
neglected, while the terms related to energy transfer as heat to the
flow, to shaft work and to variations in the cross-sectional area do not
apply. Hence, following the same approach reported in Sec. III and
Appendix B, one can obtain a relation for the entropy variation of the
main stream, namely,

ds
cp
¼ d _m

_m

hinjðTinjÞ � hinjðTÞ
cpT

þ 1
2
G2M2

c� 1

(

	
uinj
u

� �2

þ�2
uinj
u

� �
cos aþ 1

" #)
: (33)

The irreversible entropy loss due to mixing is dsirr ¼ ds� ðsinj
�sÞd _m= _m, where s and sinj are the inlet entropy of the main and the
injected streams, respectively.70 By multiplying this relation by 2T=u2

and combining it with Eq. (A13), the entropy loss coefficient can be
expressed as

fs;irr ¼ fs �
2ðc� 1Þ
G2M2

sinj � sð Þ
cp

d _m
_m
; (34)

where

fs ¼
Tds
u2=2

¼ d _m
_m

2ðc� 1Þ
G2M2

hinjðTinjÞ � hinjðTÞ
cpT

(

þ uinj
u

� �2

� 2
uinj
u

� �
cos aþ 1

" #)
: (35)

Equation (34) points out the contributions of kinematic and of ther-
mal non-equilibrium to the irreversible entropy generation. The sec-
ond term of Eq. (35) depends solely on the velocity difference between
the two streams and on the injection angle, hence, in the case of ther-
mal equilibrium of the two streams, entropy generation is not affected
by the state of the fluid and its molecular complexity. The charts in
Fig. 14 related to the mixing of co-flowing streams show that in both
configurations, molecular complexity and thermodynamic fluid state
do not play a role. Conversely, in the case of thermal non-equilibrium,
they affect irreversible entropy generation.

More insights could be obtained by numerically solving Eq. (34)
for two sets of inlet thermodynamic conditions, namely, Tr ¼ 1:05;
pr ¼ 1:15 (ideal gas) and Tr ¼ 1:05; pr ¼ 0:01 (dense vapor,
Z ’ 0:5). For both cases, three different inlet Mach numbers, namely,

M¼ 0.3, M¼ 0.8, andM¼ 1.2, and two sets of the injected flow tem-
perature ratios were considered, i.e., Tinj=T ¼ 0:95 and Tinj=T ¼ 1:05.
For all cases, the ratio between the injected and main stream mass
flows d _m= _m was set to 0.01. Figures 15(a) and 15(b) display the results
for the cases Z ’ 0:5 and Z ’ 1, respectively. If the inlet thermody-
namic conditions depart significantly from those of the critical point,
the dissipation linearly increases with molecular complexity. As
Z ! 1, Eq. (34) resembles the ideal gas formulation reported in
Greitzer et al.55 As a consequence, fs;irr only depends on the ratio
Tinj=T and on G1, given that ðc� 1Þ ! G1. For fixed values of
Tinj=T andM, fs;irr decreases with G1. From Eqs. (34) and (35), it can

FIG. 15. Irreversible entropy loss coefficient vs molecular complexity in flows with
fluid states featuring (a) Z ’ 0:5 and (b) Z ’ 1. For both figures, ——:
Tinj=T ¼ 0:95; � � � � � �: Tinj=T ¼ 1:05; �: M¼ 0.3, �: M¼ 0.8, and �: M¼ 12.
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be also inferred that the injection of a cooler stream leads to a higher
entropy generation. Furthermore, the dissipation decreases with the
Mach number of the main flow.

The same observations apply to the Z ’ 0:5 case. However, fs;irr
increases of up to one order of magnitude for flows of complex mole-
cules in thermodynamic states in the vicinity of the vapor–liquid criti-
cal point state [Fig. 15(a)]. In accordance with Eq. (34), the charts
show that reversible entropy generation increases in case the injected
flow is cooler. In addition, as c!1, for thermodynamic states in
proximity of that of the critical point, regardless of the fluid, the effect
of c prevails on the effect of G.

VI. CONCLUSION

This study is related to the investigation of the impact of fluid
molecular complexity and dense vapor effects on paradigmatic one-
dimensional flows, namely, Rayleigh and Fanno flows, together with
the mixing of two streams in kinematic and thermal non-equilibrium.
The theoretical framework for the analysis of one-dimensional flows
of perfect gases has been extended to the case of non-ideal compress-
ible flows. Flows of several fluids at different reduced thermodynamic
inlet conditions have been considered. State-of-the-art thermophysical
models have been used to accurately estimate the thermodynamic and
transport properties of the fluids.

Based on the results of the numerical analysis, the following con-
clusive remarks can be drawn.

(1) The molecular complexity of a fluid scales with the inverse of
the Gr€uneisen parameter G for a given thermodynamic state. In
particular, the Gr€uneisen parameter evaluated for v!1 is
inversely proportional to the number of molecular degrees of
freedom of the fluid molecule. This relation is qualitatively valid
also for fluid states close to the vapor–liquid critical point. The
Gr€uneisen parameter G is, therefore, arguably the best parame-
ter to characterize molecular complexity given that it appears
explicitly in paradigmatic flow equations.

(2) In Rayleigh flows, the ratio between kinetic and internal energy
of the fluid is determined by the complexity of the fluid mole-
cules, as expected. The Gr€uneisen parameter determines the
value of this ratio and affects the amount of energy transfer as
heat causing flow choking.

(3) RANS CFD simulations of subsonic channel flows showed that
the Fanning friction coefficient Cf is arguably independent of
the flow Mach number, if the fluid is made of complex mole-
cules. As a consequence, the Colebrook–White empirical corre-
lation valid for incompressible flows provides accurate values of
Cf as a function of the Reynolds number ReD even if the flow is
compressible.

(4) In a Fanno flow, the molecular complexity of the fluid deter-
mines the location at which the flow is choked, which increases
with increasing molecular complexity.

(5) The relation between the Mach number and the production of
entropy in Rayleigh and Fanno flows of complex-molecule flu-
ids is non-monotonic if the inlet fluid state is at conditions close
to those of the vapor–liquid critical point. The minimum value
of the Mach number is dependent on the fluid thermodynamic
variables C, W, and G.

(6) In flows in which two streams at different inlet velocity and
temperature mix, thermal non-equilibrium between the streams

induces a larger dissipation in fluids characterized by high com-
plexity of the molecular structure. Furthermore, the dissipation
increases if the fluid state at the inlet of the channels approaches
the vapor–liquid critical state.

(7) The value of the Eckert number decreases with the complexity
of the fluid molecular structure. As a consequence, thermal and
dynamic effects can be decoupled, to a large extent, in fluids
characterized by a high molecular complexity.

Future research will aim at validating the obtained trends with
high-fidelity numerical simulations and experiments in boundary
layers and mixing processes in dense vapor flows. Additional research
will also involve the estimation of the influence of both two-phase
flows and mixtures of fluids on the one-dimensional processes consid-
ered here.
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APPENDIX A: USEFUL RELATIONS BETWEEN
FLUID PARAMETERS

The derivation of analytical relations between some of the
non-dimensional fluid parameters introduced in Sec. II is reported
here for convenience. In a dense vapor, the specific enthalpy
depends on both temperature and pressure, i.e., h ¼ hðT; pÞ. The
differential of the specific enthalpy reads

dh ¼ @h
@T

� �
p
dT þ @h

@p

� �
T

dp ¼ cpdT þ
@h
@p

� �
T

dp: (A1)

Differentiating the Gibbs equation dh ¼ Tdsþ vdp with respect to
pressure at constant density yields

@h
@p

� �
T

¼ v þ T
@s
@p

� �
T

: (A2)

Using the Maxwell relation ð@s=@pÞT ¼ ð@v=@TÞp
71 and substitut-

ing Eq. (A2) into Eq. (A1) gives

dh ¼ cpdT þ v � T
@v
@T

� �
p

" #
dp

¼ cpdT þ
1� bpT
	 


q
dp; (A3)

where bp is the isobaric compressibility, as reported in Table I.
Equation (A3) can be substituted into the Gibbs equation to obtain

ds ¼ cp
dT
T
� bp

p
q
dp
p
: (A4)

The total differential of the entropy s ¼ sðp;TÞ is given by

ds ¼ @s
@T

� �
p
dT þ @s

@p

� �
T

dp: (A5)
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Combining this equation with Eq. (A4) gives

cp
T
¼ @s

@T

� �
p
¼ @p

@T

� �
s

@v
@T

� �
p
¼ @p

@T

� �
s

bp

q
; (A6)

which is obtained with the help of the so-called chain rule and the
Maxwell relation ð@s=@pÞT ¼ ð@v=@TÞp.

Similarly, by using the relations e ¼ eðT; vÞ; s ¼ sðT; vÞ, the
Gibbs equation and the relations between thermodynamic deriva-
tives listed in Bridgman,71 one can also obtain

cv
T
¼ @s

@T

� �
v
¼ � @p

@T

� �
v

@v
@T

� �
s
: (A7)

Here, again the chain rule and the Maxwell relation ð@s=@pÞv ¼
�ð@v=@TÞs have been used. A simple algebraic manipulation of
Eqs. (A6) and (A7) leads to

cp � cv
cv

¼ c� 1
c
¼ @p

@T

� �
v

@T
@p

� �
s

¼
bp

bT

@T
@p

� �
s

: (A8)

Differentiating the equation Tp�cpT ¼ const: gives

@T
@p

� �
s

¼ cpT
T
p
: (A9)

The combination of Eqs. (A6) and (A9) provides

cpT ¼
bp

cp

p
q
; (A10)

similarly, Eq. (A8) can be combined with Eq. (A9) to obtain

cpT ¼
c� 1

c
bTp
bpT

: (A11)

By manipulating Eqs. (5), (11), (A10), and (A9), a relation between
cpv, G, bp, and bT can be found and is

bp

cp

p
q
¼ c� 1

c
bTp
bpT
¼ G

cpv
: (A12)

The sound speed in a dense vapor can be expressed in terms of cpv
and G using Eqs. (5), (11), and (A12) as

c2 ¼ @p
@q

� �
s

¼ cpv
p
q
¼ G2

c� 1
cpT: (A13)

Finally, the combination of (A13) with (A12) allows us to write

p
qu2
¼ 1

cpvM2
: (A14)

APPENDIX B: DERIVATION OF THE INFLUENCE
COEFFICIENTS

The general volumetric equation of state valid for dense vapors
p ¼ qZRT is adopted to derive some relations among the fluid
properties that are used to obtain expressions for the influence coef-
ficients. Differentiation of the volumetric equation of state gives

dp
p
¼ dq

q
þ dT

T
þ dZ

Z
: (B1)

Given that Z ¼ Zðp;TÞ, the first-order expansion of the differential
dZ yields

dZ
Z
¼ T

Z
@Z
@T

� �
p

dT
T
þ p
Z

@Z
@p

� �
T

dp
p
: (B2)

Using the relations reported in Table I, this expression can be
substituted into Eq. (B1) to obtain

bTp
dp
p
� bpT

dT
T
¼ dq

q
; (B3)

or, alternatively, making use of the definitions of cpv and G, one
obtains

c
cpv

dp
p
� c� 1

G
dT
T
¼ dq

q
: (B4)

The combination of Eq. (A3) reported in Appendix A with
Eqs. (A12) and (11) gives

dh
cpT
¼ dT

T
þ G� ðc� 1Þ

cpv

G
c� 1

dp
p
: (B5)

Manipulating the Gibbs equation, together with Eqs. (B5) and
(A12), provides a relation for the specific entropy variation, i.e.,

ds
cp
¼ dT

T
� G

cpv

dp
p
: (B6)

Consider now the momentum equation (17). The friction term
can be rewritten as a function of the non-dimensional friction coef-
ficient Cf and of the so-called hydraulic diameter, defined as
dH ¼ 4A=pw, where pw is the wet perimeter. Dividing all the terms
of the equation by qu2A yields

du
u
þ p

qu2
dp
p
¼��dwshaft

u2
�1
2
4Cf

dx
dH
þd _m

_m

uinj
u

cosa�1

� �
: (B7)

Equations (A13) and (A14) can be substituted into the momentum
equation (B7) to obtain

du
u
þ 1

cpvM2

dp
p
¼ �ðc� 1Þ

G2M2

�dwshaft

cpT
� 1
2
4Cf

dx
dH

þ d _m
_m

uinj
u

cos a� 1

� �
; (B8)

where the Mach number is used in place of the speed of sound. The
energy equation (18) can be manipulated to find a relation between
pressure and temperature. Dividing all terms by cpT and inserting
Eqs. (A13), (A14), and (B5) yields

dT
T
þG�ðc�1Þ

cpv

G
c�1

dp
p
þG2M2

c�1
du
u

¼�dq
cpT
��dwshaft

cpT
þ hinj;in�hinj

cpT
þ1
2
G2M2

c�1

uinj
u

� �2

�1

" #( )
d _m
_m
:

(B9)
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Consider c ¼ cðq; sÞ; the total differential of the speed of sound
can, therefore, be written as

dc ¼ @c
@q

� �
s

dqþ @c
@s

� �
q
dq: (B10)

Using the definition of the fundamental derivative of gas dynamics
[Eq. (1)], the first derivative in Eq. (B10) can be rewritten as

@c
@q

� �
s

¼ ðC� 1Þ c
q
: (B11)

The Maxwell thermodynamic relations and Eq. (10) can be com-
bined to obtain a formulation for the derivative appearing as the
second term of Eq. (B10), i.e.,

@c
@s

� �
q
¼ 1

2c
@c2

@s

� �
q
¼ 1

2c

@c2=@p
	 


q @p=@Tð Þq
@s=@eð Þq @e=@Tð Þq

¼ G
T
2c

W ¼ c� 1
bpT

T
2c

W; (B12)

where ð@s=@eÞq ¼ 1=T according to Bridgman71 and ð@e=@TÞq
¼ cv . The combination of the last two relations with Eq. (B10) yields

dc
c
¼ ðC� 1Þ dq

q
þ c� 1

bpT
T
2c

W ¼ ðC� 1Þ dq
q
þ bpT

W
2
ds
cp

¼ ðC� 1Þ dq
q
þ c� 1

G
W
2
ds
cp
: (B13)

Note that the second term cancels out if the process is isentropic.
Given that M � u=c, it is also possible to relate the change of speed
of sound to the change of Mach number via

dM
M
¼ du

u
� dc

c
: (B14)

The combination of Eqs. (16), (B4)–(B6), (B8), (B9), (B13),
and (B14) provides analytical relations between each flow quantity
and changes of cross-sectional area, energy transfer as heat, shaft
work, wall friction, and mass flow injection. These relations are
summarized in Table II and can be formally expressed through the
synthetic formulation reported in Eq. (19). Neglecting the contribu-
tions due to shaft work, energy transfer as heat, wall friction, and
changes of cross section, the entropy increase in the main flow due
to fluid injection in the control volume can also be retrieved. In par-
ticular, the combination of Eqs. (16), (B6), (B8), and (B9) results in
Eq. (33).

APPENDIX C: MESH SENSITIVITY ANALYSIS

A study of the sensitivity to the grid resolution for the CFD
simulations treated in Sec. IV B was performed. Simulations of flows
of siloxane MM with Tr;out ¼ 1:05; pr;out ¼ 1:15 at the pipe outlet
and pt;r ¼ 1:7 at the inlet were run for several grids with different
levels of refinement. A total of four grids with 480 000, 640 000, 1.2
	 106, and 2.4 	 106 cells were considered. Figure 16 shows the
results of the mesh sensitivity analysis. The relative deviation of the
values of Cf , M, and ReD between the finest and the coarsest grid is
<1% for all variables, see Fig. 16(a). Minimal differences depending
on the grid density were also observed in terms of Mach number
profile at the pipe outlet [Fig. 16(b)]: the largest difference is of
0.4% at the channel mid-line.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

FIG. 16. Grid independence study. (a) Relative deviation, as a function of the computational mesh size, of the values of —�— Cf , —�— M, and —�— ReD from the ones computed using the
coarsest mesh of 480000 cells. Each variable is calculated with a mass flow average over the outlet section of the pipe. (b) Mach number at the outlet pipe section vs normalized radial coordinate for
four different computational grids. Grid size: black line: 480000, red line: 640000 blue line 1.2M, green line: 24M. A close-up of the Mach profile in proximity of the pipe centerline is also displayed.
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