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 A B S T R A C T

Algorithmically Generated Domains (AGDs) are integral to many modern malware campaigns, allowing 
adversaries to establish resilient command and control channels. While machine learning techniques are 
increasingly employed to detect AGDs, the potential of Large Language Models (LLMs) in this domain remains 
largely underexplored. In this paper, we examine the ability of nine commercial LLMs to identify malicious 
AGDs, without parameter tuning or domain-specific training. We evaluate zero-shot approaches and few-shot 
learning approaches, using minimal labeled examples and diverse datasets with multiple prompt strategies. 
Our results show that certain LLMs can achieve detection accuracy between 77.3% and 89.3%. In a 10-shot 
classification setting, the largest models excel at distinguishing between malware families, particularly those 
employing hash-based generation schemes, underscoring the promise of LLMs for advanced threat detection. 
However, significant limitations arise when these models encounter real-world DNS traffic. Performance 
degradation on benign but structurally suspect domains highlights the risk of false positives in operational 
environments. This shortcoming has real-world consequences for security practitioners, given the need to 
avoid erroneous domain blocking that disrupt legitimate services. Our findings underscore the practicality 
of LLM-driven AGD detection, while emphasizing key areas where future research is needed (such as more 
robust warning design and model refinement) to ensure reliability in production environments.
. Introduction

Cybercrime has transformed into a highly profitable and organized 
ndustry, surpassing even the global illegal drug trade in terms of 
evenue [1]. This surge in profitability has driven the development 
f increasingly sophisticated malware, driving the need for continued 
dvancements in security measures for prevention, detection, and re-
ponse. To address these ever-evolving threats, the MITRE ATT&CK 
ramework [2] offers a comprehensive, dynamic model for understand-
ng adversary behavior throughout the entire attack lifecycle [3]. By 
etailing the tactics, techniques, and procedures employed by attackers, 
t provides a clear map of how adversaries exploit vulnerabilities, move 
aterally, and achieve their objectives.
A key tactic in many cyberattacks is Command and Control (C&C), 

here adversaries establish and maintain communication with com-
romised systems to exert control and exfiltrate data. MITRE ATT&CK 
aps several C&C techniques, including exploiting legitimate commu-
ication channels or using encryption to evade detection. By identifying 
hese techniques, defenders can recognize and disrupt malicious com-
unication channels before attackers can further exploit compromised 
ystems.

∗ Corresponding author.
E-mail addresses: tpelayo@unizar.es (T. Pelayo-Benedet), rjrodriguez@unizar.es (R.J. Rodríguez), C.HernandezGanan@tudelft.nl (C.H. Gañán).

One such technique frequently employed by attackers is the use 
of Domain Generation Algorithms (DGAs). Rather than relying on a 
static list of IP addresses or domains, which are easily discovered 
and neutralized [4,5], DGAs dynamically generate domains for C&C 
traffic and other malicious purposes, including but not limited to C&C 
operations. While our research primarily focuses on their use in C&C 
infrastructures, these algorithms make it significantly more difficult 
for defenders to block, track, or take control of these communication 
channels. Using DGAs allows malware to check potentially thousands 
of domains for instructions, making it more resilient to efforts intended 
to disrupt communications. First implemented in the Conflicker 
worm [6], DGAs have proven highly effective at maintaining persistent 
communications between attackers and victims and remain a key tool 
in modern cyberattacks.

DGAs generate numerous Algorithmically Generated Domains (AGDs) 
using various pseudo-random techniques such as hash-based methods, 
dictionary-based approaches, and others [7]. Both malware and at-
tacker share the same DGA and initial seed value. Once the attacker 
registers a single AGD and deploys their C&C server, the compromised 
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system continuously generates and attempts connections to new AGDs, 
searching for the one that matches the registered domain. In case the 
C&C server is exposed, the attacker can quickly register a new AGD and 
redeploy their infrastructure, allowing infected systems to reconnect to 
the new domain.

Detecting malicious AGDs has been a major area of research over 
the past 14 years [8–16]. Several detection approaches have been pro-
posed, with deep learning methods emerging as particularly prominent 
in recent literature. A comprehensive review on this topic can be found 
in [17].

Despite this progress, there remains a gap in the literature regarding 
the use of Large Language Models (LLMs) for AGD detection. This 
work seeks to address this gap by assessing the inherent capabilities of 
LLMs to identify malicious AGDs without the need for domain-specific 
fine-tuning. Specifically, we evaluate and quantify the classification 
performance of a set of LLMs based solely on their base training, 
providing valuable insights into their pattern recognition capabilities 
in the context of cybersecurity and AGD detection.

It is important to distinguish between traditional fine-tuning, which 
modifies a model’s internal parameters through additional training, and 
contextual (or in-context) learning, where guidance is provided through 
examples within the prompt without altering the model’s weights. Our 
few-shot setup relies exclusively on contextual learning, preserving the 
pre-trained state of the evaluated LLMs.

Similarly, this work does not aim to explore advanced prompt 
engineering techniques, such as chain-of-thought prompt [18], iterative 
refinement [19], or self-consistency [20]. Instead, prompts are con-
structed using a structured, incremental methodology to evaluate how 
varying degrees of contextual information affect model performance. 
The goal is to establish a baseline characterization of LLM capabili-
ties for AGD detection, rather than to optimize task-specific prompt 
strategies.

To further evaluate the potential of LLMs in this domain, we for-
mulated a set of research questions that focus on three fundamental 
aspects:

(i) the inherent detection capabilities of the models,
(ii) their ability to distinguish between different malware families, 

and
(iii) their performance when faced with real-world domains.

These aspects are explored through the following research questions:

Q1.- (RQ1.1) How effective are LLMs in detecting malicious AGDs 
based solely on domain name string analysis? (RQ1.2) What is 
the impact on classification accuracy when specific linguistic fea-
tures are provided to LLMs to analyze in domain name strings? 
(See §5).

Q2.- To what extent can LLMs distinguish between different mal-
ware families, considering examples of AGDs generated by each 
family? (See §6).

Q3.- How do LLMs perform when evaluating real-world
non-malicious domains that may share structural similarities 
with malicious AGDs? (See §7).

To answer these RQs, we tested nine different LLMs from four 
vendors. We created three distinct datasets, based on [7,21], and real-
world DNS logs, and developed four unique prompting strategies using 
an iterative prompting approach [22]. Some preliminary results ad-
dressing RQ1 were previously presented in [23]. Here, we significantly 
extend that preliminary analysis by conducting a large-scale systematic 
evaluation of LLM for AGD detection and classification.

Our evaluation showed that LLMs were able to detect malicious 
domains with accuracy rates ranging from 77.3% to 89.3% without 
requiring task-specific fine-tuning. However, all models exhibited sig-
nificant false positive rates. Even when we enhanced the prompts to 
provide guidance for analyzing lexical features, minimal improvements 
2 
were observed compared to the basic prompting approach. This sug-
gests that the limitations in performance are inherent to the models 
themselves rather than the prompting strategy.

Through convergence tests with 10,000 samples, we validated the 
appropriateness of our dataset size. Performance analysis showed a 
correlation between model size and runtime, while confidence analysis 
revealed systematic biases favoring malicious classifications.

For multiclass classification of malicious AGDs by malware family, 
we found that 10-shot learning was the most effective, striking a bal-
ance between accuracy and processing efficiency. Using this approach, 
we evaluated LLMs ability to detect and categorize malicious domains. 
Performance varied significantly depending on the DGA generation 
scheme. Models performed almost perfectly on hash-based DGAs, but 
struggled with dictionary-based DGAs. Notably, larger models gener-
ally outperformed smaller ones, although half of the models failed to 
achieve an F1 score above 40%.

Using real-world DNS traffic and an optimized prompt, we tested the 
effectiveness of LLMs in more practical deployment scenarios. Despite 
providing more specific contextual guidance, most models showed sub-
stantial performance degradation (ranging from 11% to 24%) compared 
to their baseline results. This indicates critical challenges in classify-
ing legitimate domains with AGD-like characteristics. While improved 
prompt engineering can improve performance, these results highlight 
the fundamental difficulties of deploying LLMs for AGD detection in 
production environments.

In summary, this paper makes the following contributions:

• We present the first systematic evaluation of LLM capabilities for 
detecting malicious AGDs in binary and multiclass classification 
setups. Our work introduces the use of zero-shot and few-shot 
learning for this task without the need for model tuning.

• We investigate multiple prompt engineering strategies for AGD 
detection and quantify their effectiveness and impact on classifi-
cation performance.

• We analyze the effect of the number of in-context examples on 
the performance of few-shot learning for malware family clas-
sification. Our experiments demonstrate that model accuracy is 
sensitive to the amount of guidance provided.

• We identify a key limitation in the models’ ability to distinguish 
benign domains under realistic conditions, especially when those 
domains exhibit DGA-like structural characteristics.

Unlike traditional DGA detection approaches, which rely on special-
ized models for specific tasks (e.g., convolutional neural networks [13] 
or long short-term memory models trained on DGA datasets [12]), 
our work explores whether general-purpose LLMs can detect malicious 
domains using only their pre-trained pattern recognition capabilities. 
We do not aim to outperform existing detection models, but rather to 
establish a performance baseline that reveals the extent to which LLMs 
exhibit security-relevant implicit behavior. This perspective highlights 
the potential of LLMs as complementary tools in security workflows 
and motivates further research on their applicability and limitations in 
threat detection tasks.

This paper is organized as follows. Section 2 provides background 
on relevant concepts. Section 3 discusses related work. Section 4 details 
the experimental setup, including dataset construction and prompt 
design. Sections 5–7 present the experimental results for each RQ. 
Section 8 discusses the limitations of his work. Finally, Section 9 
concludes the paper and outlines directions for future research.

2. Background

This section describes the fundamental concepts related to DGAs, 
few-shot learning, and prompt engineering, which are relevant to our 
work.
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2.1. DGA fundamentals

A Domain Generation Algorithm (DGA) is a mechanism that generates 
domain names using pseudo-random logic, typically initialized with 
a shared value to ensure output consistency across instances. This 
synchronization allows malware and its C&C infrastructure to keep 
in contact. The resulting domains, known as Algorithmically Generated 
Domains (AGDs), are central to many modern malware families [2].

DGAs differ in the mechanisms used to generate domains [7]. 
Common approaches include arithmetic methods that convert com-
puted values into ASCII characters, hash methods that leverage crypto-
graphic functions, dictionary-based strategies that concatenate human-
readable words, and permutation-based schemes that reorder charac-
ters from known domains. These variations produce distinctive do-
main characteristics; for example, dictionary-based DGAs typically 
produce linguistically plausible domains, while hash- and arithmetic-
based DGAs typically generate random-looking sequences that are 
harder to remember.

2.2. Few-shot learning

Few-shot learning (FSL) is a machine-learning paradigm in which 
models generalize to new tasks using only a small number of labeled 
examples [24]. This approach leverages prior knowledge to reduce 
both training data requirements and computational overhead, making 
it suitable for dynamic or resource-constrained environments (e.g., an 
IoT device, a router, or an edge computing node) [25].

LLMs inherently support FSL through context-based learning [26], 
where examples are integrated directly into prompts rather than being 
used to modify model parameters [27]. Pre-training on a variety of 
tasks allows these models to quickly adapt to the specific task con-
text. Previous work shows that performance typically saturates after 
10–20 examples for very large models like GPT-3 [26], while mid-scale 
models in the 7B–13B parameter range perform optimally with 40–48 
examples [28].

2.3. Prompt engineering

Prompt engineering refers to the practice of creating input prompts 
that effectively guide LLMs to perform a desired task without altering 
its parameters [22]. A well-constructed prompt typically includes a 
clear task description, sufficient contextual information, and, where 
appropriate, illustrative reasoning steps [29]. This allows LLMs to lever-
age their prior knowledge while adapting to specific scenarios [30].

Designing effective prompts requires understanding the model’s 
behavior and limitations. This typically involves defining task objec-
tives, selecting an appropriate structure or format, integrating relevant 
examples or context, and refining the prompt through iterative testing. 
In this work, we use prompt engineering to structure inputs that allow 
LLMs to perform AGD detection without any parameter tuning, relying 
solely on their pre-trained knowledge and the contextual guidance 
provided through carefully designed prompts.

3. Related work

The detection of algorithmically generated domains (AGDs) remains 
a challenge in cybersecurity due to the ongoing evolution of domain 
generation algorithms (DGAs). This ongoing competition has driven 
the transition from traditional statistical techniques to increasingly 
sophisticated machine learning-based approaches [7].

Early systems such as EXPOSURE [8,9] laid the groundwork for 
passive DNS-based detection, combining lexical and temporal features. 
Pleiades [10] leveraged failed DNS queries to identify AGDs, while 
Phoenix [11] extended detection to classify malware families using 
domain- and IP-level features.
3 
The application of neural networks marked a significant advance 
in AGD detection. Woodbridge et al. [12] introduced LSTMs for bi-
nary and multiclass AGD classification. Subsequent work by Yu et al. 
[13] employed convolutional neural networks (CNNs) to capture local 
patterns in domain strings. More recent models, such as Deep Bot De-
tect [14], demonstrated competitive accuracy at lower computational 
cost, while Berman [15] proposed a one-dimensional capsule network 
to address the limitations of CNN-based architectures.

Recent efforts have focused on improving robustness and general-
ization. Drichel et al. [16] applied transfer learning to improve the 
detection of novel AGD patterns. Similarly, Cebere et al. [17] conducted 
a meta-analysis that identified persistent limitations in the current 
detection landscape, including overfitting to known families and low 
adaptivity. Dataset selection also plays an important role in detection 
performance. While Alexa [31] was historically used for benign domain 
baselines, it has been widely replaced by Tranco List [21], which offers 
greater stability and methodological rigor1. Malicious AGDs often come 
from datasets such as Bambenek [33], 360NetLab [34], the Domain 
Generation Algorithms Repository [35], and DGArchive [7]. In this 
work, we adopted the latter due to its sample diversity.

A major ongoing challenge is the emergence of new DGA families, 
which often require periodic model retraining to maintain performance. 
This has driven interest in architectures with greater generalization 
capabilities that can adapt to previously unseen DGAs.

In this sense, Large Language Models (LLMs) represent a promising 
alternative for DGA detection thanks to their robust pattern recogni-
tion and language understanding capabilities [36]. Unlike traditional 
models, which require extensive training for each task, LLMs can 
parse domain names using knowledge acquired during pre-training, 
without the need for additional fine-tuning. By using carefully designed 
prompts, LLMs can be reused for DGA detection, potentially enabling 
more flexible and generalizable detection of both known and emerging 
threats [37].

4. Experimental setup

We utilized LLM APIs from third-party providers for two primary 
reasons. First, most large models are not available for local deployment, 
restricting self-hosted options. Second, the few open-source models 
that do exist require significant computational resources, making local 
operation impractical (as discussed in Section 8).

Based on preliminary testing and the constraints of the chosen 
LLM constraints, we limited each API request to 125 domains. All 
experiments were automated using Python 3.11.2, and our source code 
is available on GitHub.2

LLM selection. We evaluated nine LLMs from four leading vendors, 
spanning both free and paid service offerings. Our selection criteria 
emphasized models with publicly available APIs and documented ca-
pabilities in natural language understanding and generation. For paid 
models, we also took into account a cost–benefit analysis, prioritizing 
competitively priced solutions. Cost considerations were particularly 
relevant given the large number of API calls and token consumption 
required for our experiments. The selected models are listed in Table  1.

Among the paid models, we evaluated two main providers: An-
thropic [38] and OpenAI [39]. From Anthropic’s Claude family, we 
selected Sonnet 3.5 and Haiku 3.5; from OpenAI, we used both 
GPT-4o and GPT-4o-mini. For the free models, we relied on the 
offerings from Google [40] and MistralAI [41]. Although both providers 
offer paid tiers, their free versions met the requirements of our ex-
periments. From Google, we used Gemini 1.5 Pro (with usage 

1 While Tranco improves on previous classifications in terms of repro-
ducibility and representativeness, it may still contain malicious domains, as 
pointed out by Pochat et al. [32].

2 https://github.com/reverseame/LLM-DGA-lab

https://github.com/reverseame/LLM-DGA-lab
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Table 1
Overview of evaluated LLMs. The ‘Context Window’ and ‘Output Limit’ values indicate token capacities provided by the respective APIs.
 Model Context window Output limit Release Tier API Tag  
 GPT-4oa 128,000 16,384 Nov’24 Paid gpt-4o-2024-11-20  
 GPT-4o-minib 128,000 16,384 Jul’24 Paid gpt-4o-mini-2024-07-18  
 Claude Sonnet 3.5a 200,000 8,192 Oct’24 Paid claude-3-5-sonnet-20241022 
 Claude Haiku 3.5b 200,000 8,192 Oct’24 Paid claude-3-5-haiku-20241022  
 Gemini 1.5 Proa 2,097,152 8,192 Sep’24 Free gemini-1.5-pro-002  
 Gemini 1.5 Flashb 1,048,576 8,192 Sep’24 Free gemini-1.5-flash-002  
 Gemini 1.5 Flash-8Bb 1,048,576 8,192 Oct’24 Free gemini-1.5-flash-8b-001  
 Mistral Largea 131,000 N/A Nov’24 Free mistral-large-2411  
 Mistral Smallb 32,000 N/A Sep’24 Free mistral-small-2409  
a indicates larger models.
b indicates smaller models counterparts.
constraints), Gemini 1.5 Flash, and Gemini 1.5 Flash-8, while 
from MistralAI, we used Mistral Large and Mistral Small. 
Several others models were excluded from this work due to limitations 
detailed in Section 8. However, the variety among the selected models 
was sufficient diverse to ensure diverse coverage for our analysis.

While all models participated in our performance benchmark, we 
restricted parameter tuning and rapid engineering experiments to Gem-
ini 1.5 Flash, Gemini 1.5 Flash-8B, Mistral Large, and 
Mistral Small. This selective approach was due to both budget and 
time constraints, given the high volume of API requests required. The 
combination of comprehensive model coverage for overall testing and 
optimization targeting a subset of models allowed us to gain robust 
insights from multiple vendors.

Because LLMs are frequently updated (often without explicit no-
tification), our experiments were conducted between December 2024 
through early January 2025. While these results offer valuable in-
sights into the capabilities of each model, they should be interpreted 
within this time frame. Future evaluations may yield different results 
as vendors continue to develop their models.
Construction of datasets. Three datasets were constructed for the ex-
periments. The first dataset, 𝐷1, contains 25,000 malicious domains 
generated by DGAs and 25,000 non-malicious domains. The second 
dataset, 𝐷2, includes 50,000 malicious domains generated by DGAs 
from 25 different malware families, with an equal number of domains 
per family. Finally, the third dataset, 𝐷3, compromises 50,000 non-
malicious domains extracted from the University of Zaragoza DNS 
server logs spanning from June 2023 to May 2024 (347 days in total).

We used 𝐷1 to evaluate LLMs’ AGD detection (addressing RQ1), 𝐷2
to evaluate their ability to classify malware families RQ2, and 𝐷3 to 
test performance on real-world domains RQ3.

The malicious AGDs in 𝐷1 and 𝐷2 are derived from DGArchive [7], 
a dataset comprising 137 malware families and variants using DGAs. 
To maintain both relevance and diversity, we selected 25 families 
that represent the full range of DGA types (see Section 2.1). This 
approach helps to avoid bias toward any particular generation scheme 
while preventing underrepresentation of others. However, we exclude 
permutation-based generation schemes due to the lack of sufficiently 
large families for meaningful experiments. The selected families are 
listed in Table  2. From each family, we randomly sampled 1,000 DGAs 
for 𝐷1 and 2,000 DGAs for 𝐷2, ensuring that the two datasets are 
disjoint.

To ensure the diversity and representativeness of our malicious 
domain dataset, we selected 25 malware families from DGArchive, a 
repository with 137 distinct DGA families, the most comprehensive 
available for this type of analysis. Our selection was based on the goal 
of covering the full range of generation techniques, including arith-
metic, hashing, and dictionary algorithms. By balancing the families 
across these categories, we avoided overrepresentation of any single 
type. This sampling strategy captures the variability of DGA patterns 
present in real-world malware and reduces potential biases, allowing 
for a more robust and generalizable assessment.
4 
Table 2
Selected malware families that utilize DGAs.
Malware family AGD examples 

Arithmetic-based
banjori nlgbpartbulkyf.com 
conficker tsdtjmgjvtv.biz 
emotet bqwpjpkujiaabouh.eu 
flubot nygrkfvksfadlmr.ru 
gameover kljinjhfqdynzbylayizx.ru 
metastealer maacykqieygsiemm.xyz 
necurs ngosrfurisqtsy.org 
nymaim nvnhmobqg.com 
pitou oqzoaaqay.biz 
pushdo nealilxotad.kz 
qakbot rakfqviujexuxyhpxd.com 
rovnix 116wncabm8ai74q2al.com 
virut pyycva.com 
zloader seprfyswjugpvldkrwwg.com 

Dictionary-based
gozi limitingcopyright.com 
matsnu accident-be-kind.com 
nymaim2 reachesdarkness.am 
suppobox roomtomorrow.ru 

Hash-based
darkwatchman 9b93cf03.top 
dyre a000dc63f44247436a9b8558310bb48441.cc 
grandoreiro a40424003475944.servehalflife.com 
monerominer 6604fafaf6f09.hosting 
pandabanker 9337a3e6c511d.net 
tinynuke 7f6fb68d7aac2de485ac1256503bb5c0.com 
wd wd405b87d8c2d634fa8252225af75a5781.pro 

Non-malicious domains in 𝐷1 were obtained from the Tranco list
[21]. While the Tranco list is generally considered a reliable source, it 
may still contain malicious domains, as noted by [32].

We constructed the dataset 𝐷3 using DNS resolution logs collected 
from the University of Zaragoza. This dataset complements Tranco’s list 
by providing a localized view of domain resolutions in an academic 
setting. While Tranco reflects globally popular domains, university DNS 
records capture domain resolution behavior specific to educational 
institutions. The dataset spans 347 days, encompassing almost a full 
year of network activity and a wide range of legitimate domains.

Due to the high volume of DNS queries, we applied a rigorous filter-
ing process to ensure only syntactically valid and resolvable domains 
were retained. This validation step was necessary to preserve data 
quality and eliminate malformed or transient entries that could affect 
the integrity of the evaluation. The primary filter imposed technical 
requirements:

(i) a maximum total length of 253 characters;
(ii) a leading character that is a letter, followed by letters, digits, or 

hyphens; and
(iii) length restrictions of 1 to 63 characters for each segment, with 

no leading or trailing hyphens.

The secondary filter addressed domain categorization using the Tranco 
list as a basis for identifying non-malicious domains. Specifically, 
domains whose second-level domain (SLD) and top-level domain (TLD) 
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combinations appear on the Tranco list were classified as non-malicious.
We recognize that the Tranco list, while reliable, has limitations
(e.g., the potential inclusion of malicious domains and the omission 
of legitimate ones) [32]. Therefore, domains that did not meet the 
technical criteria or Tranco-based verification were discarded.

After filtering, domains were clustered by their SLD+TLD pairs, as 
certain tuples, such as googlesyndication.com, office.com, 
and cloudfront.net, were found with disproportionately high fre-
quency. To mitigate potential bias, we imposed a limit of 500 domains 
per tuples, ensuring that no single group represented more than 1% 
of the dataset. From the resulting set we randomly sampled 50,000 
domains were randomly selected from the resulting pool. By combining 
globally representative domains from Tranco with locally observed 
domains from the university’s DNS traffic, we constructed a balanced 
and realistic dataset, suitable for evaluating the ability of LLMs to 
distinguish SLDs from legitimate domains in practical environments.
Prompt construction. Four incremental prompts, named 𝑃1 through 𝑃4, 
were developed under the hypothesis that providing more contex-
tual information could improve classification performance. We em-
ploy an iterative prompting approach [22], illustrated in Fig.  1. The 
construction of each prompt proceeds as follows:

(1) 𝑃1 takes a minimal approach that presents the task and sets up 
a structured response format, requiring the domain name, its 
classification, and a confidence level.

(2) 𝑃2 extends 𝑃1 by adding guidance on lexical feature analysis, in-
structing the LLM to pay special attention to the various genera-
tion schemes that malware may employ to create comprehensive 
AGDs [7]. These lexical features include:

(i) level of randomness,
(ii) character frequency,
(iii) digit-letter ratio,
(iv) consonant-vowel ratio,
(v) pronounceability,
(vi) presence of meaningful words, and
(vii) similarity to popular domains.

(3) 𝑃3 further refines 𝑃2 by providing 10 example domains for each 
of the 25 malware families in 𝐷2, leveraging the FSL capabilities 
of LLMs [26]. All examples are disjoint from 𝐷2 to preserve the 
integrity of the evaluation. 𝑃3 also updates the output format, 
adding a new field for the malware family. Additionally, to 
handle classification uncertainty, the LLM can assign domains 
to an ‘‘Unknown Family’’ category or use ‘‘-’’ if a domain is 
considered benign.

(4) 𝑃4 builds on 𝑃2 by providing additional context about benign 
AGD-like domains in real-world scenarios, in particular subdo-
mains of legitimate domains. The prompt specifically tells the 
LLM to focus on TLD and SLD tuples, helping to discriminate 
between malicious AGDs and legitimate subdomains that might 
appear algorithmically generated.

Our experimental design explores two learning paradigms: zero-
shot learning (used in prompts P1, P2, and P4), where models receive 
task instructions without examples, and few-shot learning (used in 
P3), where models are guided by a limited set of labeled instances. 
In both cases, model parameters remain unchanged, allowing us to 
evaluate the pattern recognition capabilities acquired by the LLMs 
during pre-training.

Developing specialized prompts for each LLM can potentially yield 
more accurate results by leveraging the unique capabilities and features 
of each model [22]. However, we took a generalized approach by using 
the same prompts for all models. This decision reflects two key goals:

(i) while LLM-specific prompts may improve performance, they do 
not fundamentally alter a model’s underlying ability to perform 
classification, and
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(ii) a uniform prompt design ensures a fair comparative evaluation 
across different LLMs.

By maintaining uniform, generalized prompts, we can better assess the 
intrinsic strengths and limitations of each model, providing valuable 
insights while preserving a balanced comparison framework.

To ensure reproducibility, the full text of all four prompts (P1–P4) 
is included in Appendix. These prompts reflect the exact instructions 
and context used during the assessment, allowing our methodology to 
be accurately replicated.

Our prompt design seeks to enable systematic evaluation through 
gradual increases in contextual information, rather than exploring ad-
vanced prompt optimization techniques. While strategies such as using 
chain-of-thought prompting, iterative refinement, or multi-step reason-
ing could further improve performance, they are beyond the scope of 
this work. Instead, our methodology seeks to establish baseline capa-
bilities through incremental design, providing a structured foundation 
for future work in advanced prompt engineering.
Batch size justification. We selected a batch size of 125 domains per 
API call to balance processing efficiency and output constraints. As 
shown in Figs.  2 and 3, increasing the batch size to this point yields 
substantial speed improvements (3–9 times) while maintaining reliable 
classification output. Beyond this threshold, efficiency gains plateau 
and error rates increase, especially for smaller models.

This value also represents a practical upper bound for smaller 
models such as Mistral Small and Gemini Flash, which cannot 
consistently process larger batches due to output token limitations. 
Standardizing the batch size to 125 domains ensures consistent evalu-
ation conditions across models and maximizes performance within the 
implementation constraints at the time of this work.
Metrics. The metrics used in our work include accuracy (𝐴𝑐𝑐), pre-
cision (𝑃𝑟𝑒𝑐), recall (𝑅𝑒𝑐), F1-score (𝐹1), false positive rate (𝐹𝑃𝑅), 
true positive rate (𝑇𝑃𝑅), Matthew’s correlation coefficient (𝑀𝐶𝐶), and 
Cohen’s Kappa coefficient (𝜅). Their definitions are given below:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐 ⋅ 𝑅𝑒𝑐
𝑃 𝑟𝑒𝑐 + 𝑅𝑒𝑐

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑀𝐶𝐶 = 𝑇𝑁 ⋅ 𝑇𝑃 − 𝐹𝑁 ⋅ 𝐹𝑃
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

,where

𝑝𝑜 =
(𝑇𝑁 + 𝑇𝑃 )

(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 )

𝑝𝑒 =
(𝑇𝑁 + 𝑇𝑃 )(𝑇𝑁 + 𝐹𝑁)
(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 )2

+
(𝐹𝑁 + 𝑇𝑃 )(𝐹𝑃 + 𝑇𝑃 )

(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 )2

Here, True Negative (TN) and True Positive (TP) are the number of 
legitimate domains correctly classified as non-AGDs and AGDs correctly 
classified as AGDs, respectively. In contrast, False Negative (FN) and 
False Positive (FP) are AGDs misclassified as legitimate and legitimate 
domains misclassified as AGDs, respectively.

Accuracy, precision, recall, and F1-score measure the overall clas-
sification performance, while FPR and TPR capture the false and true 
positive rates across all classified domains, respectively. MCC assesses 
the classification quality, particularly for imbalanced datasets, by con-
sidering both positive and negative classes. Finally, 𝜅 indicates the 
degree to which the observed agreement exceeds chance, with values 
closer to 1 meaning higher agreement.
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Fig. 1. Prompt construction scheme. The figure also shows which steps are used for each 𝑃𝑖 prompt.
Fig. 2. Mean processing time per domain across different batch sizes using 𝐷1 and 𝑃1.

Statistical analysis. To ensure robust evaluation and address statistical 
validity, we report 95% confidence intervals for all performance met-
rics using the Wilson score interval [42]. This method was selected over 
standard normal approximation due to its higher performance with 
moderate sample sizes, particularly when observed proportions are near 
the extremes (i.e., close to 0 or 1). The Wilson interval provides more 
precise coverage of the nominal confidence level, making it ideal for 
6 
Fig. 3. Number of unclassified domains across different batch sizes using 𝐷1 and 𝑃1.

our experimental setting with 50,000 domain samples and the range of 
accuracies observed across models.

5. Evaluating effectiveness of LLMs in detecting AGDs

In this section, we address RQ1 by analyzing the ability of LLMs 
to detect AGDs. First, we evaluate their ability to classify malicious 
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Table 3
Performance of LLMs with 95% confidence intervals (in parentheses) under two prompting strategies (P1 and P2) on the D1 dataset. Values are presented as point estimate 
(95% CI). Bold values highlighted in orange indicate the best performance across all models for each metric.
 Model P Accuracy (%) Precision (%) Recall (%) F1-score (%) FPR (%) TPR (%) AUC (%) MCC (%) Cohen’s 𝜅 
 GPT-4o P1 86.8 (85.2–88.4) 83.6 (81.8–85.4) 91.4 (89.9–92.9) 87.3 (85.8–88.8) 17.9 (16.1–19.7) 91.4 (89.9–92.9) 86.8 (86.4–87.1) 73.8 (70.8–76.8) 0.603   P2 87.0 (85.4–88.6) 84.6 (82.8–86.4) 90.5 (89.0–92.0) 87.4 (85.9–88.9) 16.5 (14.8–18.2) 90.5 (89.0–92.0) 87.0 (86.7–87.3) 74.2 (71.2–77.2) 0.603  
 GPT-4o-mini P1 77.3 (75.4–79.2) 73.0 (70.9–75.1) 86.4 (84.6–88.2) 79.2 (77.4–81.0) 31.9 (29.7–34.1) 86.4 (84.6–88.2) 77.3 (76.8–77.7) 55.4 (51.8–59.0) 0.415   P2 78.5 (76.6–80.4) 74.6 (72.5–76.7) 86.5 (84.7–88.3) 80.1 (78.3–81.9) 29.4 (27.3–31.5) 86.5 (84.7–88.3) 78.5 (78.1–78.9) 57.8 (54.3–61.3) 0.435  
 Claude 3.5 Sonnet P1 89.3 (87.9–90.7) 83.8 (82.0–85.6) 97.4 (96.5–98.3) 90.1 (88.7–91.5) 18.8 (17.0–20.6) 97.4 (96.5–98.3) 89.3 (89.0–89.6) 79.7 (77.0–82.4) 0.682   P2 89.4 (88.0–90.8) 84.2 (82.4–86.0) 96.8 (95.8–97.8) 90.1 (88.7–91.5) 18.2 (16.4–20.0) 96.8 (95.8–97.8) 89.3 (89.0–89.6) 79.5 (76.8–82.2) 0.678  
 Claude 3.5 Haiku P1 85.6 (84.0–87.2) 84.0 (82.2–85.8) 87.9 (86.3–89.5) 85.9 (84.4–87.4) 16.8 (15.1–18.5) 87.9 (86.3–89.5) 85.6 (85.2–85.9) 71.2 (68.4–74.0) 0.563   P2 85.2 (83.6–86.8) 84.7 (82.9–86.5) 86.0 (84.3–87.7) 85.4 (83.9–86.9) 15.6 (14.0–17.2) 86.0 (84.3–87.7) 85.2 (84.9–85.6) 70.5 (67.7–73.3) 0.548  
 Gemini 1.5 Pro P1 87.7 (86.2–89.2) 83.8 (82.0–85.6) 93.5 (92.2–94.8) 88.4 (87.0–89.8) 18.1 (16.4–19.8) 93.5 (92.2–94.8) 87.7 (87.4–88.0) 76.0 (73.2–78.8) 0.632   P2 87.6 (86.1–89.1) 84.2 (82.4–86.0) 92.6 (91.2–94.0) 88.2 (86.8–89.6) 17.4 (15.7–19.1) 92.6 (91.2–94.0) 87.6 (87.3–87.9) 75.6 (72.8–78.4) 0.625  
 Gemini 1.5 Flash P1 84.8 (83.2–86.4) 83.5 (81.7–85.3) 86.9 (85.2–88.6) 85.1 (83.6–86.6) 17.2 (15.5–18.9) 86.9 (85.2–88.6) 84.8 (84.5–85.2) 69.7 (66.9–72.5) 0.544   P2 84.9 (83.3–86.5) 83.6 (81.8–85.4) 86.8 (85.1–88.5) 85.2 (83.7–86.7) 17.1 (15.4–18.8) 86.8 (85.1–88.5) 84.9 (84.5–85.2) 69.8 (67.0–72.6) 0.545  
 Gemini 1.5 Flash-8B P1 81.7 (79.9–83.5) 78.2 (76.2–80.2) 87.9 (86.2–89.6) 82.8 (81.1–84.5) 24.5 (22.5–26.5) 87.9 (86.2–89.6) 81.7 (81.3–82.1) 63.9 (60.8–67.0) 0.494   P2 82.7 (81.0–84.4) 79.8 (77.8–81.8) 87.6 (85.9–89.3) 83.5 (81.9–85.1) 22.1 (20.2–24.0) 87.6 (85.9–89.3) 82.7 (82.4–83.1) 65.8 (62.8–68.8) 0.510  
 Mistral Large P1 88.7 (87.2–90.2) 87.3 (85.7–88.9) 90.6 (89.0–92.2) 88.9 (87.5–90.3) 13.2 (11.7–14.7) 90.6 (89.0–92.2) 88.7 (88.4–89.0) 77.4 (74.6–80.2) 0.639   P2 88.5 (87.0–90.0) 87.1 (85.5–88.7) 90.5 (88.9–92.1) 88.8 (87.4–90.2) 13.4 (11.9–14.9) 90.5 (88.9–92.1) 88.5 (88.2–88.8) 77.1 (74.3–79.9) 0.636  
 Mistral Small P1 85.1 (83.5–86.7) 82.6 (80.8–84.4) 89.0 (87.4–90.6) 85.7 (84.2–87.2) 18.8 (17.1–20.5) 89.0 (87.4–90.6) 85.1 (84.8–85.5) 70.4 (67.6–73.2) 0.560   P2 85.5 (83.9–87.1) 83.7 (81.9–85.5) 88.1 (86.4–89.8) 85.8 (84.3–87.3) 17.1 (15.4–18.8) 88.1 (86.4–89.8) 85.5 (85.1–85.8) 71.1 (68.3–73.9) 0.562  
P: Prompt; Acc: Accuracy; Prec: Precision; Rec: Recall; F1: F1-score; FPR: False Positive Rate; TPR: True Positive Rate; AUC: Area Under the Curve; MCC: Matthews’s Correlation Coefficient; 𝜅: Cohen’s Kappa Score.
domains using 𝐷1 together with the minimal 𝑃1 prompt. Next, we inves-
tigate whether providing domain-specific knowledge of the linguistic 
features of AGDs (i.e., lexical cues) improves detection performance, 
using the same 𝐷1 dataset, but with the 𝑃2 prompt for improved 
context.

5.1. LLM performance evaluation

Table  3 presents the performance metrics for both prompting strate-
gies (𝑃1 and 𝑃2). Without task-specific tuning or example-based train-
ing, the LLMs evaluated in this work achieve accuracy, precision, 
recall, and F1-scores ranging from 77.3% and 97.4%, a remarkable 
benchmark. Furthermore, AUC values range from 78.5% to 89.4%, 
demonstrating the models’ ability to distinguish between benign and 
malicious domains. Particularly significant are the MCC values (55.4% 
to 79.7%) and 𝜅 scores (0.41 to 0.68), indicating substantial agreement 
between model predictions and true labels across all LLMs evaluated.

Claude 3.5 Sonnet demonstrated superior performance across 
most metrics, albeit only by slight margins over competitors such as 
Mistral Large in certain cases. Notably, it obtained the highest AUC 
values, highlighting its superior discriminatory ability to distinguish 
between malicious and benign domains. A clear trend emerges across 
all models: those with larger amounts of parameters generally perform 
better, as evidenced by the strongest results of GPT-4o, Claude Son-
net, Gemini Pro, and Mistral Large compared to their smaller 
counterparts.

The ROC analysis in Fig.  4 reinforces the superior discriminative 
performance observed in the standard classification metrics. Claude 
3.5 Sonnet exhibits the best overall ability to distinguish between 
classes in both prompting strategies, consistently achieving ROC curves 
close to the ideal upper-left corner and reaching AUC values as high 
as 89.3%. The performance difference between the largest and small-
est models is clearly reflected in both the curve profiles and the 
corresponding AUC scores.

Behavior at low false positive rate thresholds (FPR < 0.1) is par-
ticularly relevant in deployment environments, where false positives 
can lead to unintended disruption of legitimate services. In this re-
gion, Claude 3.5 Sonnet and Mistral Large maintain high 
TPR while minimizing FP, making them more suitable for production 
environments where legitimate domain blocking must be minimized. 
In contrast, GPT-4o-mini and Gemini 1.5 Flash-8B show more 
gradual ROC slopes, indicating reduced effectiveness under strict FP 
constraints.

Despite these successes, a notable concern is the consistently high 
FPR across all models. This limitation poses a significant challenge 
for real-world deployment, as legitimate domains would frequently be 
misclassified as malicious, potentially leading to excessive connection 
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blocks. Even Mistral Large, which achieved the best FPR, still 
exhibits a rate that could cause considerable disruptions in production 
environments.

Furthermore, the accuracy comparison in Fig.  5 reveals a systematic 
bias toward detecting malicious domains. Accuracy differences between 
malicious and benign domains can reach up to 16%, highlighting a 
critical imbalance that underscores the need for further refinement 
before these models can be reliably deployed.

Experimental results indicate that LLMs generally perform well 
across all metrics. However, the high false positive rates in each model 
pose a critical barrier to real-world deployment. Furthermore, system-
atic bias favoring malicious domain detection at the expense of be-
nign accuracy further limits their practical applicability in production 
environments.

To assess the practical implications of the observed FPRs, consider 
a deployment scenario involving the classification of one million legiti-
mate domain queries per day. Given FPRs ranging from 13.2% to 31.9% 
across the evaluated models, this would result in the incorrect flagging 
and potential blocking of between 132,000 to 319,000 benign domains 
each day. These misclassifications would significantly disrupt routine 
network operations, demonstrating that these models, in their current 
form, are not suitable for direct deployment in production environ-
ments without additional filtering, post-processing, or risk mitigation 
mechanisms.

5.2. Simple vs. Advanced prompt engineering

Comparison of the prompting strategies (𝑃1 and 𝑃2), as shown 
in Table  3, reveals minimal impact on model performance across all 
evaluated LLMs. In most cases, metric variations between the two 
approaches remained below 2 percentage points, suggesting that a more 
elaborated prompt incorporating fine-grained linguistic features may 
not be strictly necessary for this particular classification task.

Confidence interval analysis provides statistical support for these 
findings. In most cases, the 95% confidence intervals (CI) for perfor-
mance under P1 and P2 exhibit substantial overlap, indicating that 
the observed differences are within the bounds of expected variation. 
For instance, GPT-4o shows and increase in accuracy from 86.8% (CI: 
85.2–88.4%) with P1 to 87.0% (CI: 85.4–88.6%) with P2. The overlap 
of intervals suggests that this change is not statistically significant.

Although 𝑃2 consistently reduces FPR relative to 𝑃1 (see Fig.  5), 
this improvement comes at the expense of lower malicious detection 
accuracy. Moreover, the marginal gains in FPR are still insufficient 
to address practical deployment challenges in real-world settings. Sta-
tistical analysis supports this trend: while 𝑃2 reduces the FPR in all 
evaluated models (e.g., from 17.9% to 16.5% in the case of GPT-
4o), the overlapping 95% CI suggest these improvements are within 
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Fig. 4. ROC curves comparing the performance of LLMs in detecting AGDs under the 𝑃1 and 𝑃2 prompting strategies. Curves closer to the top left corner indicate higher 
discriminative performance.
-

Fig. 5. Accuracy of each LLM in classifying malicious (red) versus benign (blue) 
domains under the two prompt strategies, 𝑃1 (top) and 𝑃2 (bottom). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
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statistical uncertainty. This reinforces our conclusion that while more 
informative prompts may slightly reduce false positives, the observed 
improvements are marginal and insufficient to overcome the limitations 
of practical implementation.

Consequently, our incremental prompt engineering approach should 
be considered a fundamental investigation into the role of contextual 
information in AGD detection. While this approach reveals how prompt 
structure influences model behavior, it is not intended to exhaust the 
spectrum of advanced prompting techniques. Methods such as chain-
of-thought reasoning, multi-step prompting, or iterative refinement 
may offer greater improvements, but are beyond the scope of this 
work, which focuses on establishing baseline LLM performance using 
controlled prompt complexity.

5.3. Dataset size validation

Our evaluation dataset comprises 50,000 domains, evenly split be-
tween malicious AGDs and legitimate domains (25,000 each). Although 
some deep learning approaches leverage hundreds of thousands of 
samples, we consider this dataset sufficient to evaluate the performance 
of LLM for domain classification. As illustrated in Fig.  6, the F1-scores 
for all evaluated models converge at approximately 10,000 samples, 
with negligible changes up to the full 50,000 samples. Notably, both 𝑃1
and 𝑃2 follow a similar convergence trend, indicating that increasing 
the dataset size beyond this point would likely not yield significant 
performance gains. This consistent behavior across all models suggests 
that further scaling of the dataset would provide only marginal benefits 
for LLM-based domain classification.

5.4. Time execution analysis

Table  4 summarizes the execution time performance for both prompt
ing strategies (𝑃1 and 𝑃2) across all evaluated LLMs. We report a 
comprehensive set of timing metrics – including mean, variance, stan-
dard deviation, median, minimum, and maximum execution times – to 
provide a detailed overview of how each models processes requests. Fig. 
7 complements these data by illustrating their distribution through box 
plots, highlighting variability and outliers in each model’s performance.

When comparing mean and median execution times across the 
LLMs, a clear trend emerges: larger models typically require more pro-
cessing time than their smaller counterparts. Within the same provider, 
model size strongly correlates with higher computational overhead. A 
notable exception is found in the Claude family, where both models 
exhibit similar mean and median execution times despite different sizes.
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Fig. 6. Convergence analysis of F1-scores for LLMs under prompting strategies 𝑃1 and 𝑃2 using 𝐷1.
Comparing 𝑃1 and 𝑃2 shows a consistent pattern: 𝑃2 generally 
increases mean and median execution times, suggesting that more 
sophisticated prompt engineering systematically demands additional 
processing, rather than simply being influenced by sporadic outliers or 
network fluctuations.

However, exceptions do occur—most prominently with Gemini 
1.5 Pro, which experiences a counter intuitive decrease in mean 
execution time when moving from 𝑃1 to 𝑃2. This discrepancy could 
stem from various factors, including service load, network conditions, 
or backend resource allocation. The high variance observed in 𝑃1 for 
this model, clearly visible in Fig.  7, indicates that such anomalies 
may reflect service instability during testing rather than any inherent 
difference between the two prompts. Similar high-variance behavior in 
other models (e.g., Mistral or GPT-4o) underscores the importance 
of external factors in measured performance.

In summary, these findings confirm a trade-off between model 
size and execution time, with larger models generally requiring more 
computational resources. While 𝑃2 introduces a modest yet system-
atic increase in processing time, this overhead can be exacerbated by 
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fluctuating service stability. As a result, evaluating real-world LLM per-
formance must account for both the computational cost of sophisticated 
prompts and the potential impact of environmental variables.

5.5. Confidence analysis

Fig.  8 shows that all models consistently report high confidence 
values, with medians typically above 85% for both malicious and 
benign classifications. Notably, a systematic bias emerges: models show 
higher confidence in labeling domains as malicious compared to be-
nign, suggesting an inherent bias toward malicious classification. The 
evaluated models also demonstrate a correlation between confidence 
and accuracy, reporting higher confidence for accurate predictions and 
lower confidence for misclassifications.

Closer inspection of the boxplots reveals a number of low confidence 
outliers (below 50%), particularly in malicious domain classifications, 
most prominently in GPT-4o-mini. These low confidence cases occur 
for both correct and incorrect predictions, indicating a specific pattern 
of uncertainty in malicious domain detection. However, these outliers 
represent only a small fraction of all predictions, reinforcing the overall 
tendency toward overconfidence.



T. Pelayo-Benedet et al. Journal of Information Security and Applications 93 (2025) 104176 
Table 4
Comparison of runtime performance of LLMs using 𝑃1 and 𝑃2 prompt strategies on the 𝐷1 dataset (in seconds). The values represent processing 
time (in seconds) for batches of 125 domains and include mean runtime (𝑥̄), variance (𝜎2), standard deviation (𝜎), median (𝑥̃), minimum (𝑥𝑚𝑖𝑛) 
and maximum (𝑥𝑚𝑎𝑥) execution times.
 LLM Prompt 𝑥̄ 𝜎2 𝜎 𝑥̃ 𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥  
 GPT-4o 𝑃1 33.23 71.09 8.43 31.14 17.10 73.47 
 𝑃2 34.61 109.85 10.48 31.62 20.18 88.78 
 GPT-4o-mini 𝑃1 18.58 9.56 3.09 17.83 13.92 33.92 
 𝑃2 19.41 12.42 3.52 18.82 13.12 37.38 
 Claude 3.5 Sonnet 𝑃1 28.92 33.06 5.75 29.04 21.37 89.52 
 𝑃2 32.67 17.28 4.16 32.45 25.35 62.18 
 Claude 3.5 Haiku 𝑃1 30.68 14.63 3.83 31.50 25.32 56.44 
 𝑃2 30.71 12.98 3.60 31.33 18.52 37.27 
 Gemini 1.5 Pro 𝑃1 49.73 136.11 11.67 46.39 28.16 94.52 
 𝑃2 43.64 29.12 5.40 43.01 27.85 80.18 
 Gemini 1.5 Flash 𝑃1 16.87 1.17 1.08 16.92 11.21 30.96 
 𝑃2 17.23 1.66 1.29 17.25 15.30 27.82 
 Gemini 1.5 Flash-8B 𝑃1 9.91 0.34 0.58 9.85 8.24 16.80 
 𝑃2 10.09 0.57 0.76 10.12 3.27 18.84 
 Mistral Large 𝑃1 40.34 114.22 10.69 43.11 15.16 71.69 
 𝑃2 46.54 210.98 14.53 47.67 15.36 99.87 
 Mistral Small 𝑃1 31.02 110.18 10.50 29.37 1.31 96.26 
 𝑃2 30.59 37.03 6.08 30.72 0.82 46.08 
Fig. 7. Distribution of execution times (in seconds) for different LLMs under 𝑃1 (left) and 𝑃2 (right) prompting strategies on the 𝐷1 dataset. The values represent processing time 
for batches of 125 domains.
In summary, these findings highlight a critical limitation in the 
self-assessment capabilities of models, as a high level of confidence 
does not consistently reflect high accuracy in real-world scenarios. 
The marked overconfidence, especially in labeling malicious domains, 
warrants cautious interpretation of confidence scores when deploying 
LLM in production environments.

The observed overconfidence in model predictions reflects an in-
herent characteristic of pre-trained LLMs when applied to classification 
tasks. While calibration techniques such as temperature scaling, his-
togram binning, or confidence thresholding can help mitigate this 
effect, their application requires access to validation data and post ad-
hoc adjustments, which is beyond the scope of our zero-shot evaluation 
framework. In this work, we intentionally retained the original confi-
dence results of the models to provide an accurate assessment of their 
unmodified behavior in cybersecurity-relevant scenarios.

5.6. Missing domains

During the evaluation, some domains were not classified on the 
first attempt due to internal LLM processing limitations and output 
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generation issues. This behavior, observed across all evaluated models 
with varying frequencies (see Fig.  9), manifested itself three distinct 
error patterns:

(i) output format violations (e.g., extraneous characters such as 
brackets or quotation marks),

(ii) domain name transcription errors (misspellings or character sub-
stitutions), and

(iii) domain omissions in the output.

Although each LLM exhibited these errors to varying degrees, larger 
models tended to produce more transcription errors, while smaller 
models were more prone to format violations. Domain omissions were 
less common overall, but still occurred across all models.

Fig.  9 shows classification failures for each LLM. Since each prompt 
processes 125 domains, the average error rate per prompt ranged from 
0.096% (Claude 3.5 Sonnet) to 22.9% (Gemini 1.5 Pro), reflect-
ing notable disparities in reliability across models. Furthermore, the 
more specialized prompt in this experiment (𝑃2) consistently resulted 
in a higher number of unclassified domains, suggesting that increased 
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Fig. 8. Distribution of confidence values in different classification results for each LLM.
Fig. 9. Number of unclassified domains on the first attempt of each LLM using the 𝑃1
and 𝑃2 prompt strategies.

prompt complexity may lead to formatting errors and misinterpre-
tations. In contrast, the simpler prompt (𝑃1) produced fewer output 
errors, despite its lack of domain-specific targeting.

To better understand the limitations of LLMs in domain classifica-
tion, we conducted a qualitative analysis of the unclassified samples, fo-
cusing on the domain types that were most frequently left unclassified. 
Table  5 presents the distribution of unclassified domains by generation 
scheme under both prompting strategies, revealing systematic patterns 
that shed light on the LLM’s weaknesses.

The results reveal a strong concentration of misses among
arithmetic-based domains. While the 𝐷1 dataset contains an equal dis-
tribution of benign and malicious domains (25,000 each), arithmetic-
based DGAs account for approximately three-quarters of all classifica-
tion misses (75.99% under 𝑃  and 74.47% under 𝑃 ). This imbalance 
1 2
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Table 5
Distribution of unclassified domains by generation 
scheme and domain type under the prompting strate-
gies 𝑃1 and 𝑃2.

 Domain type 𝑃1 𝑃2  
 Arithmetic-based 75.99 74.47 
 Hash-based 12.00 12.89 
 Dictionary-based 9.02 9.29  
 Benign 2.98 3.34  

suggests that arithmetic-based generation schemes pose a structural 
challenge to LLMs, resulting in disproportionately high miss rates 
relative to their presence in the dataset.

In contrast, hash- and dictionary-based DGAs contribute more mod-
erately to misclassification, accounting for approximately 12% and 
9% of unclassified domains, respectively. Notably, benign domains, 
despite representing 50% of the dataset, account for less than 3.5% 
of total classification failures. This disparity indicates that LLMs are 
significantly more reliable when processing legitimate domains than 
when handling certain types of DGAs, particularly those generated by 
arithmetic schemes.

Furthermore, the similarity in failure distribution between the two 
prompt strategies suggests that these difficulties are due to intrinsic 
limitations of the model, rather than the prompt design. Prompting 
alone does not appear sufficient to overcome the structural challenges 
posed by certain domain generation techniques.

5.7. Cost–benefit analysis

To assess the practical feasibility of LLM-based AGD detection in 
operational environments, we analyzed the trade-off between detection 
performance and associated inference costs based on our experimental 
data. Table  6 summarizes the actual API costs incurred for each prompt 
strategy in the evaluated commercial LLMs.
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Table 6
API costs (in USD) to process 50,000 domains in different prompt strategies.
 Model 𝑃1 𝑃2 𝑃3 𝑃4  
 GPT-4o 8.26 8.70 13.42 9.34  
 GPT-4o-mini 0.50 0.53 0.81 0.57  
 Claude Sonnet 3.5 13.88 14.42 26.26 15.46 
 Claude Haiku 3.5 3.67 3.86 6.49 4.14  

Our analysis reveals substantial variability in cost, depending on 
both the model and the prompt complexity. To process the full dataset 
of 50,000 domains, total costs ranged from as little as $0.50 (us-
ing GPT-4o-mini with 𝑃1 prompt) to $26.26 (using Claude 3.5 
Sonnet with 𝑃3 prompt). Prompt complexity is a major factor in 
cost differences: 𝑃3, which implements few-shot learning with mul-
tiple examples in context, results in costs between 54% and 82% 
higher compared to simpler strategies across all models. Similarly, 𝑃4, 
which introduces real-world contextual information, generates modest 
increases of 7% to 13% over 𝑃2.

These findings underscore the importance of considering not only 
model accuracy but also economic and infrastructure constraints when 
implementing LLM for large-scale detection tasks. In cost-sensitive en-
vironments, these trade-offs can influence the choice of prompt design 
or model selection, especially when real-time processing is required.

The cost-performance ratio reveals trade-offs relevant to practi-
cal deployment. Claude Sonnet 3.5 achieves the highest accu-
racy (89.4%), but also incurs the highest costs ($14.42 for 𝑃2). In 
contrast, GPT-4o-mini offers a lower, albeit reasonable, accuracy 
performance (78.5%) at much lower cost ($0.53). The 10.9% accu-
racy improvement translates to a 27-fold increase in cost, equivalent 
to approximately $1.32 per additional percentage point of accuracy. 
This disparity underscores a fundamental challenge in applying LLM 
to security tasks: achieving top-tier performance requires a substan-
tial monetary investment that can be prohibitive in many real-world 
scenarios.

These costs increase linearly with data volume, posing new limita-
tions in operational environments. For example, processing one million 
domains per day would result in daily costs of between $10.60 and 
$525.20, corresponding to annual expenses of between $3,869 and 
$191,698, depending on the management model and strategy. These 
high recurring costs can be a barrier to continuous deployment, espe-
cially in resource-constrained contexts such as IoT security monitoring 
or integrated threat detection. In these environments, the use of free 
or lower-cost models, such as those from the Gemini or Mistral 
families, may be necessary, even at the cost of some performance 
degradation.

6. Evaluating AGD classification in malware families

To address RQ2, we evaluate the performance of LLMs using the 
𝑃3 prompt strategy, which follows a two-step classification process. 
First, the models detect malicious AGDs in 𝐷2. Then, for any domain 
identified as malicious, the models apply FSL (with 10 examples per 
family) to assign each domain to its corresponding family. This sequen-
tial approach evaluates how well each model can detect and categorize 
malicious domains.

6.1. Impact of size in FSL

We conduct a preliminary study to identify the optimal number of 
examples for FSL, discarding the zero-shot approach since at least one 
reference example is needed for classification. We systematically test 
sample sizes from a single example up to 25 examples, tracking the 
ability of LLMs to classify AGDs by family. Fig.  10 summarizes our 
findings.
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Fig. 10. Progression of LLM performance in classifying AGD malicious domains across 
malware families using FSL with varying sample sizes.

Fig. 11. Unclassified AGDs requiring reclassification attempts across different few-shot 
sample sizes.

It is noteworthy that Mistral Small failed to classify AGDs by 
family, showing close to zero performance at all sample sizes tested; 
therefore, its results are excluded from further analysis. Among the 
other models, both a very low and a very high number of examples 
led to suboptimal performance, suggesting an ideal range for FSL in 
this domain. As shown in Fig.  11, increasing the number of samples 
also increases the proportion of unclassified domains.

The shaded region in both figures denotes a range of 10 sam-
ples, reflecting the best balance between classification accuracy and 
minimizing first-shot failures. This region indicates that using approxi-
mately 10 examples per family strikes a balance between performance 
gains and avoiding excessive unclassified results.

6.2. Assessment of malware family classification

Fig.  12 shows the precision, recall, and F1-score metrics of the LLMs 
evaluated in classifying malicious AGDs by malware family. Substantial 
performance differences emerge between models and vendors, with the 
OpenAI and Mistral Small  models performing particularly poorly. 
Likewise, Claude 3.5 Haiku and Gemini 1.5 Flash do not exceed 
40% on any metric (indicated by the red line in Fig.  12), justifying their 
exclusion from further analysis.
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Table 7
Performance comparison of different models in DGA detection by malware family type.
 Family Claude Sonnet 3.5 Gemini 1.5 Pro Gemini 1.5 Flash-8B Mistral Large Type  
 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1  
 banjori 99.9 99.6 99.7 96.9 98.9 97.9 83.0 63.9 72.2 96.2 63.0 76.1  
 conficker 96.9 97.6 97.2 85.9 69.1 76.6 54.1 31.1 39.5 76.5 14.1 23.8  
 emotet 98.2 100.0 99.1 97.2 98.9 98.0 98.2 99.5 98.8 95.1 42.4 58.6  
 flubot 98.9 97.1 98.0 89.5 76.1 82.3 65.4 64.9 65.1 69.8 39.5 50.5  
 gameover 99.6 97.0 98.3 94.6 92.2 93.4 82.0 66.7 73.6 92.0 44.4 59.9  
 metastealer 100.0 100.0 100.0 99.7 100.0 99.8 95.4 99.7 97.5 95.0 99.6 97.2  
 necurs 97.0 89.9 93.3 80.9 60.6 69.3 78.3 59.7 67.8 52.0 43.7 47.5  
 nymaim 97.6 98.7 98.1 73.6 93.6 82.4 77.4 85.2 81.1 73.0 88.4 80.0  
 pitou 99.7 99.5 99.6 96.2 93.4 94.8 82.2 84.4 83.3 89.0 77.4 82.8  
 pushdo 99.2 99.9 99.6 98.6 98.6 98.6 95.4 96.4 95.9 94.8 97.7 96.2  
 qakbot 96.0 98.6 97.3 85.5 84.4 84.9 60.6 49.4 54.5 38.1 57.4 45.8  
 rovnix 100.0 100.0 100.0 95.5 99.8 97.6 57.0 35.8 44.0 87.4 96.1 91.5  
 virut 99.0 100.0 99.5 94.8 100.0 97.3 95.1 99.8 97.4 79.8 99.5 88.5  
 zloader 100.0 100.0 100.0 97.1 97.3 97.2 70.9 93.4 80.6 74.7 44.6 55.8

Arithmetic

 
 gozi 97.2 99.9 98.5 95.8 97.2 96.5 55.9 90.3 69.1 90.1 87.5 88.7  
 matsnu 94.4 99.6 96.9 80.5 92.6 86.1 75.2 95.1 84.0 7.9 63.0 14.0  
 nymaim2 96.1 99.6 97.8 83.8 97.3 90.0 46.5 42.6 44.4 9.1 22.9 13.0  
 suppobox 99.6 88.8 93.9 98.6 96.5 97.6 98.5 39.4 56.3 86.8 96.2 91.3

Dictionary

 
 darkwatchman 100.0 100.0 100.0 100.0 100.0 100.0 89.3 99.9 94.3 83.7 99.8 91.1  
 dyre 99.0 100.0 99.9 99.8 100.0 99.9 97.8 99.8 98.8 99.0 88.9 93.7  
 grandoreiro 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.9 100.0 99.9 99.9  
 monerominer 100.0 100.0 100.0 99.8 100.0 99.9 99.2 99.9 99.6 83.2 99.6 90.7  
 pandabanker 100.0 100.0 100.0 100.0 99.8 99.9 98.8 97.6 98.2 97.8 60.7 74.9  
 tinynuke 100.0 100.0 100.0 99.8 99.3 99.6 96.0 67.7 79.4 97.1 83.9 90.0  
 wd 100.0 100.0 100.0 99.3 99.9 99.6 97.9 99.6 98.7 95.7 99.0 97.3

Hash

 
 Total 96.2 91.4 93.7 88.3 72.5 79.6 62.7 51.9 56.8 46.7 37.2 41.4 –  
Fig. 12. Comparative performance of LLMs in classifying malicious AGD families using 
the 𝐷2 dataset and the 𝑃3 prompt strategy.

Among the remaining models, precision generally exceeds recall, 
suggesting a conservative classification strategy; models tend to be 
accurate once they label a domain as belonging to a specific family, 
but risk missing valid instances. To dig deeper, Table  7 examines 
how LLMs classify specific DGA families, revealing that different DGAs 
significantly influence detection performance.

Interestingly, a closer look at individual families reveals a contrast-
ing pattern: for most families and models, recall outperforms precision. 
This trend implies a tendency toward over-assignment rather than a 
conservative approach, where models readily label domains as belong-
ing to a particular family, but are sometimes inaccurate. In some cases, 
however, precision significantly outperforms recall, enough to skew 
overall metrics toward higher average precision.

In particular, when broken down by generation scheme:

• Hash-based DGAs stand out for consistently high classification 
rates across all models. Claude 3.5 Sonnet achieves perfect 
accuracy in this category, likely thanks to its ability to recognize 
the distinctive hexadecimal patterns of hash-based domains.
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• Arithmetic-based DGAs show mixed results. Families such as 
metastealer, rovnix, and zloader maintain strong clas-
sification scores, but conficker, notable for being one of the 
first arithmetic-based DGAs, exhibits significantly lower detection 
rates. Its simpler generation mechanism can blur the line between 
malicious and legitimate domains.

• Dictionary-based DGAs prove the most challenging, with weaker 
overall classification metrics compared to other schemes. Despite 
additional guidance in 𝑃3 on dictionary-based generation, most 
models appear to rely on character pattern analysis rather than 
semantics, hampering their ability to correctly classify domains 
based on natural words.

7. Evaluating performance on real-world domains

To address RQ3, we evaluate the performance of LLMs on real-world 
domains from 𝐷3. This setup tests each model’s ability to correctly 
classify legitimate domains that may share structural similarities with 
AGD patterns, an essential step in understanding false positives in 
practical deployment.

7.1. Real-world domain classification analysis

Fig.  13 shows a substantial drop in performance when the models 
classify real-world domains from 𝐷3, compared to their results on 𝐷1. 
Accuracy values for 𝑃4 decrease by 11% to 24% relative to 𝑃1 and 𝑃1 on 
benign domains from 𝐷1. An exception is Claude 3.5 Sonnet, which 
maintains similar classification rates, suggesting stronger reasoning 
capabilities in this more complex setting.

These results highlight a fundamental challenge: LLMs struggle to 
classify legitimate domains that exhibit some characteristics commonly 
flagged as suspicious. This limitation is particularly problematic in 
real-world environments, where false positives can cause unwarranted 
disruptions and potentially severe business impacts. Addressing this 
reliability gap in LLMs remains a critical hurdle for production-ready 
AGD detection.

The performance degradation observed on real-world domains in 
the 𝐷3 dataset further exacerbates the FP problem. When evaluating 
our university’s DNS dataset, composed of 50,000 legitimate domain 
queries, the models incorrectly classified between 5,500 and 12,000 
domains as malicious, corresponding to an 11% to 24% reduction in 
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Fig. 13. Comparison of the accuracy of LLMs in detecting benign domains using 𝑃1
and 𝑃2 prompts with the 𝐷1 dataset and 𝑃4 with the 𝐷3 dataset.

accuracy. Extrapolating these results to an enterprise-scale deployment 
processing one million domain queries per day, this would translate 
to between 110,000 and 240,000 false positives daily. Such a high 
volume of misclassifications would severely disrupt normal operations, 
routinely blocking legitimate services and making them inaccessible to 
users.

7.2. Optimizing prompts for real-world domain classification

Classifying benign domains that resemble AGDs poses a unique 
challenge in real-world network traffic. This section compares the 
effectiveness of different indications in handling legitimate domains 
that might generate false positives due to AGD-like structures.

The 𝑃4 prompt strategy explicitly takes benign domains with AGD-
like structures into account by recommending focused analysis of TLD 
and SLD tuples, along with more detailed contextual guidance. As 
shown in Fig.  14, these improvements translate into improved accuracy 
across all LLMs tested, compared to 𝑃1 and 𝑃2. While this improvement 
represents a step forward in reducing false positives, it also underscores 
the need for carefully designed prompts that reflect the nuances of 
real-world network traffic.

8. Limitations

While our findings demonstrate the potential of LLMs for AGD 
detection, several limitations limit the broader applicability and gener-
alizability of our results. These factors encompass technical, hardware, 
economic, temporal, and operational considerations, which we ac-
knowledge in order to provide a clearer context for the conclusions 
drawn in this work.
LLMs features. Current LLMs face notable limitations on output length, 
with OpenAI models offering the largest limit of approximately 16,000 
tokens. This limit requires multiple API calls to classify large sets of 
domains, leading us to limit each request to 125 domains to avoid ex-
ceeding response limits. Additionally, context window restrictions com-
plicate the detection or clustering of previously unseen malware fami-
lies, as significantly larger context windows would be required. While 
models such as Gemini 1.5 Pro offer potentially adequate windows, 
free tier restrictions currently prevent a comprehensive large-scale 
comparison between different LLMs.
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Fig. 14. Comparison of the accuracy of LLMs in detecting benign domains using 𝑃1, 
𝑃2, and 𝑃4 prompts with the 𝐷3 dataset.

Hardware constraints. Although open-source alternatives such as Meta’s 
LLaMA [43] are freely available, their larger models typically require 
substantial computational resources beyond the reach of most users. 
Smaller variants, such as LLaMA 3.1-8B, can run on standard hard-
ware, but have underperformed in our experiments, primarily because 
they do not consistently follow the requested output format for domain 
detection.

Dataset considerations. While our datasets offer sufficient diversity to 
address the specific research questions posed in this work, certain 
limitations in data selection should be acknowledged. While DGArchive 
provides a comprehensive collection of 137 malware families, and our 
selection of 25 families was designed to represent diverse domain gen-
eration schemes, incorporating additional sources of malicious domains 
to capture emerging DGA techniques not reflected in the current dataset 
could be beneficial for future work.

For benign domains, we used a combination of the widely used 
Tranco list (considered the current standard in legitimate domain re-
search) and DNS records collected from a university network. It is 
important to clarify that the university dataset was not intended to be 
globally representative. Instead, it serves as a concrete example of DNS 
traffic in an academic environment, complementing Tranco’s broader 
scope. This inclusion allows for the evaluation of LLM behavior in 
real, non-synthesized traffic, which may contain benign domains with 
structural properties similar to those of AGD.

The deliberate integration o benign, globally representative (Tranco)
and context-specific (university records) datasets provides a balanced 
evaluation framework for assessing LLMs’ ability to differentiate be-
tween legitimate and algorithmically generated domains. While we 
recognize that DNS traffic can vary significantly in other environments 
(e.g., corporate or Internet service provider networks), our dataset 
design aligns with the goal of evaluating LLMs’ pattern recognition 
capabilities under controlled but realistic conditions.

Economic factors. Because LLMs represent an emerging technology 
with constant operating costs, financial constraints limit the number of 
models we can feasibly evaluate. Our reliance on third-party vendors 
(or cloud platforms for open-source models) inherently restricts the 
breadth and depth of our experimentation.
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Scope of prompt engineering. Our prompt engineering strategy lever-
ages incremental complexity (𝑃1-𝑃4) to systematically evaluate the 
effect of contextual information on LLM performance. While this ap-
proach enables controlled evaluation of baseline capabilities, it does not 
incorporate advanced prompt engineering techniques such as chain-of-
thought reasoning, iterative refinement, multi-step prompting, or more 
sophisticated reasoning frameworks. These techniques can improve 
performance but require specific optimization and task-specific tuning, 
which is beyond the scope of this work. Our goal remains to establish a 
fundamental understanding of LLM’s behavior in detecting AGD under 
standardized and reproducible conditions.
Operational feasibility and impact of false positives. The high FPR ob-
served across all evaluated models, ranging from 13.2% to 31.9%, pose 
significant obstacles to real-world deployment. In enterprise environ-
ments processing 1 million legitimate domain queries per day, these 
rates would result in the incorrect blocking 132,000 to 319,000 legiti-
mate domains, causing widespread service disruptions. The problem is 
exacerbated when applying the models to real-world DNS traffic, where 
an accuracy degradation of 11% to 24% could generate an additional 
110,000 to 240,000 FPs per day. These results would severely impair 
normal network operations and require extensive human interven-
tion or auxiliary validation systems, which would be operationally 
impractical and economically unsustainable.
Throughput and integration challenges for DNS firewalls. The runtime 
results presented in Table  4 highlight substantial throughput limitations 
that hamper real-time deployment. While DNS firewalls in produc-
tion environments typically handle thousands of queries per second, 
the fastest model tested (Gemini 1.5 Flash-8B) only manages 
about 12.6 domains per second, and the slowest (Gemini 1.5 Pro) 
handles only about 2.5 domains per second. This discrepancy, span-
ning nearly two orders of magnitude, makes direct integration into 
high-performance DNS filtering systems unfeasible without significant 
architectural adjustments.

In addition to processing speed, several additional integration chal-
lenges must be considered. LLM inference latency, especially in com-
mercial APIs, far exceeds the sub-millisecond response times typically 
required in DNS infrastructure [44]. Furthermore, our evaluation relies 
on batch processing, which does not fit the inherently flow-oriented na-
ture of live DNS traffic. High FPRs further complicate implementation, 
as they could cause substantial disruption to legitimate services.

While techniques such as parallelization, load balancing, and re-
sponse caching can mitigate some of these challenges, they introduce 
considerable engineering complexity and operational overhead. A more 
practical alternative might be a multi-tiered architecture, where con-
ventional statistical or neural methods handle the majority of traffic 
at line speed, and LLM-based analysis is reserved for ambiguous or 
high-risk cases. Given current performance and reliability limitations, 
commercial LLMs appear to be better suited for offline analysis, post-
event investigation, or as auxiliary tools in threat intelligence processes, 
rather than as primary components of real-time filtering.
Time-dependent considerations. All experiments were conducted be-
tween December 2024 and January 2025, making our results dependent 
on the model’s capabilities during that period. Vendors may update 
their algorithms without public notice, making it difficult to track 
subsequent changes. However, to aid reproducibility, Table  1 specifies 
the exact model identifiers (API tags) used in this work.

9. Conclusions

Algorithmically-generated domain detection has emerged as a key 
area of research in recent years. Motivated by the demonstrated versa-
tility of LLMs, we explored their potential for malicious AGD detection. 
Our findings suggest that LLMs can effectively distinguishing benign 
and malicious AGD domains for binary classification. However, signif-
icant challenges remain in multiclass classification of DGA types into 
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malware families, particularly for dictionary-based schemes, as well 
as in accurately identifying benign domains within real-world traf-
fic. These challenges represent fundamental obstacles to the practical 
deployment of LLMs for AGD detection.

It is important to distinguish our approach from traditional fine-
tuning methods commonly used in previous research. The few-shot 
prompt strategy adopted in this work provides illustrative examples 
directly within the prompt to guide model behavior, but does not 
involve any modification to its parameters. Our results demonstrate 
that modern LLMs can leverage their pre-trained knowledge to de-
tect AGDs using simple prompting techniques, without the need for 
domain-specific retraining or architecture changes.

While these findings are encouraging, future work evaluate LLM-
based AGD detection in a wider range of operational environments. 
Our use of university DNS records was intentionally limited to eval-
uating model behavior in a specific academic environment and was 
not intended to represent global traffic patterns. However, enterprise 
networks, ISPs, healthcare systems, and other domains present distinct 
DNS characteristics and threat profiles. Evaluating the performance of 
LLMs in these contexts would provide a more complete view of their 
applicability in real-world deployment scenarios.

To improve multiclass classification performance, particularly with 
regard to malware family identification, future research could explore 
two-stage classification architectures. In this process, an initial binary 
classification phase, similar to the one presented in this work, could 
be followed by a dedicated family-level classifier. This second stage 
could benefit from fine-tuning open-source LLMs on labeled samples 
specific to DGA families, thereby improving discrimination between 
similar patterns, especially among dictionary-based DGAs, which were 
among the most complex in our work.

The performance limitations observed in our runtime analysis likely 
represent the most significant obstacle to production deployment. Cur-
rent commercial LLMs cannot meet the latency and volume require-
ments of high-speed DNS firewalls. However, they remain suitable for 
use cases such as offline analysis, forensic investigation, and threat 
hunting, where real-time constraints are less stringent. Future work 
should explore model compression and distillation techniques that pre-
serve the pattern recognition capabilities of large LLMs while enabling 
line-speed inference. Furthermore, training domain-specific LLMs, fo-
cusing exclusively on the structural and lexical features of domain 
names, can lead to more lightweight and easier-to- implement models.

Future work will focus on overcoming these limitations by adapting 
open-source models and leveraging fine-tuning techniques to develop 
more specialized and efficient detection systems.
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Appendix. Developed prompts

This appendix provides the full text of all prompts (𝑃1–𝑃4) used in 
our experiments. Each prompt was constructed using the iterative de-
sign methodology described in Section 4 and illustrated in Fig.  1. These 
prompts define the exact task formulations and contextual instructions 
provided to the LLMs, ensuring the transparency and reproducibility of 
our assessment process.

A.1. 𝑃1: Minimal approach

Act as a cybersecurity expert specialized in detecting malicious 
Algorithmically Generated Domains (AGDs).
Your task is to analyze a list of domains, one per line, and deter-
mine for each one if it is a malicious AGD or a legitimate domain. 
You need to analyze the domains yourself, I don’t want you to 
write me a script to solve the problem, my intention is for you 
to reason on your own whether the domains are malicious AGDs 
or legitimate domains. I need you to analyze the full list, without 
truncating for brevity, don’t pause and if you ask me to continue 
the answer will be always yes.
Provide ONLY your answer in the following exact format, 
with no additional text: [DOMAIN]|Y|[CONFIDENCE] or [DO-
MAIN]|N|[CONFIDENCE]
Where:
- [DOMAIN] is the analyzed domain
- Y means it is a malicious AGD
- 𝑁 means it is not a malicious AGD
- [CONFIDENCE] is a number between 0.0 and 100.0 with one 
decimal indicating the confidence percentage in the decision
Response format examples:
For example1.com that in this example is a malicious AGD with 
95.5% confidence: example1.com|Y|95.5
For example2.com that in this example is a legitimate domain with 
87.3% confidence: example2.com|N|87.3
The domains to analyze will be provided in the following message, 
separated by commas.
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A.2. 𝑃2: Lexical feature analysis

Act as a cybersecurity expert specialized in detecting malicious 
Algorithmically Generated Domains (AGDs).
Your task is to analyze a list of domains, one per line, and deter-
mine for each one if it is a malicious AGD or a legitimate domain. 
You need to analyze the domains yourself, I don’t want you to 
write me a script to solve the problem, my intention is for you 
to reason on your own whether the domains are malicious AGDs 
or legitimate domains. I need you to analyze the full list, without 
truncating for brevity, don’t pause and if you ask me to continue 
the answer will be always yes.
Malicious AGDs can follow different generation schemes:
* Arithmetic-based: Uses mathematical operations to generate 
domains
* Hash-based: Employs cryptographic hash functions for domain 
generation
* Wordlist-based: Creates domains by concatenating words from 
predefined lists
* Permutation-based: Generates variations by permuting a base 
domain string
* Adversarial-based: Creates domains that deliberately evade 
detection by replicating benign domain characteristics
When analyzing a domain, please consider the following lexical 
features:
1. Statistical features
* Level of Randomness: Malicious domains tend to have higher 
levels of randomness due to uniform and random character distri-
bution, while legitimate domains have lower randomness due to 
natural linguistic patterns.
* Character Frequency: Legitimate domains use common charac-
ters in proportions similar to natural language, while malicious 
ones tend to use uncommon characters more frequently.
* Digit/Letter Ratio: Malicious domains tend to have a higher 
proportion of digits to letters, while legitimate ones maintain a 
more moderate and contextual use of numbers.
2. Pronounceability Features
* Pronounceability Index: Legitimate domains are easily pro-
nounceable due to their natural linguistic structure, while 
malicious ones are difficult or impossible to pronounce.
* Consonant/Vowel Ratio: Legitimate domains maintain a nat-
ural proportion between consonants and vowels similar to hu-
man language, while malicious ones tend to have unbalanced 
proportions.
3. Linguistic Features
* Meaningful Word Presence: Legitimate domains tend to contain 
real words or meaningful combinations, while malicious ones use 
meaningless character sequences. This is particularly effective for 
detecting hash-based and arithmetic-based AGDs.



T. Pelayo-Benedet et al. Journal of Information Security and Applications 93 (2025) 104176 
* Dictionary Presence: Legitimate domains tend to contain words 
that appear in dictionaries or recognizable combinations of them, 
while malicious ones use random sequences. While wordlist-based 
AGDs may contain dictionary words, they often combine them in 
unnatural ways.
4. Composition Features
* Similarity to Popular Domains: Malicious domains often try to 
imitate popular domains with small variations, while legitimate 
ones are the original brand domains.
* Distance to Known Domains: Malicious domains maintain a 
calculated distance to popular domains to deceive users, while 
legitimate ones are the original domains without variations.
Provide ONLY your answer in the following exact format, with no 
additional text:
[DOMAIN]|Y|[CONFIDENCE]
or
[DOMAIN]|N|[CONFIDENCE]
Where:
- [DOMAIN] is the analyzed domain
- Y means it is a malicious AGD
- 𝑁 means it is not a malicious AGD
- [CONFIDENCE] is a number between 0.0 and 100.0 with one 
decimal indicating the confidence percentage in the decision
Response format examples:
For example1.com that in this example is a malicious AGD with 
95.5% confidence: example1.com|Y|95.5
For example2.com that in this example is a legitimate domain with 
87.3% confidence: example2.com|N|87.3
The domains to analyze will be provided in the following message, 
separated by commas.
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A.3. 𝑃3: Malware family classification

Act as a cybersecurity expert specialized in detecting malicious 
Algorithmically Generated Domains (AGDs).
Your task is to analyze a list of domains, one per line, and deter-
mine for each one if it is a malicious AGD or a legitimate domain. 
You need to analyze the domains yourself, I don’t want you to 
write me a script to solve the problem, my intention is for you 
to reason on your own whether the domains are malicious AGDs 
or legitimate domains. I need you to analyze the full list, without 
truncating for brevity, don’t pause and if you ask me to continue 
the answer will be always yes.
Malicious AGDs can follow different generation schemes:
* Arithmetic-based: Uses mathematical operations to generate 
domains
* Hash-based: Employs cryptographic hash functions for domain 
generation
* Wordlist-based: Creates domains by concatenating words from 
predefined lists
* Permutation-based: Generates variations by permuting a base 
domain string
* Adversarial-based: Creates domains that deliberately evade 
detection by replicating benign domain characteristics
When analyzing a domain, please consider the following lexical 
features:
1. Statistical features
* Level of Randomness: Malicious domains tend to have higher 
levels of randomness due to uniform and random character distri-
bution, while legitimate domains have lower randomness due to 
natural linguistic patterns.
* Character Frequency: Legitimate domains use common charac-
ters in proportions similar to natural language, while malicious 
ones tend to use uncommon characters more frequently.
* Digit/Letter Ratio: Malicious domains tend to have a higher 
proportion of digits to letters, while legitimate ones maintain a 
more moderate and contextual use of numbers.
2. Pronounceability Features
* Pronounceability Index: Legitimate domains are easily pro-
nounceable due to their natural linguistic structure, while 
malicious ones are difficult or impossible to pronounce.
* Consonant/Vowel Ratio: Legitimate domains maintain a nat-
ural proportion between consonants and vowels similar to hu-
man language, while malicious ones tend to have unbalanced 
proportions.
3. Linguistic Features
* Meaningful Word Presence: Legitimate domains tend to contain 
real words or meaningful combinations, while malicious ones use 
meaningless character sequences. This is particularly effective for 
detecting hash-based and arithmetic-based AGDs.
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* Distance to Known Domains: Malicious domains maintain a 
calculated distance to popular domains to deceive users, while 
legitimate ones are the original domains without variations.
Malicious AGDs are grouped into families, where each family is 
created using a specific Domain Generation Algorithm (DGA) and 
a seed value. This algorithm-seed combination acts as a ‘‘recipe’’ 
that produces similar-looking domains within the same family.
There are some of known malicious AGD families that you should 
know to classify. The format is the name of the family followed by 
the character ‘‘:’’ and then a list of malicious AGDs separated by 
the character "," and limited by the character ";". The families are 
the following:
<family1>:<domain1>,<domain2>, . . . ;
...:...;
Provide ONLY your answer in the following exact format, with no 
additional text:
[DOMAIN]|Y|[DGA_FAMILY]|[CONFIDENCE]
or
[DOMAIN]|N|-|[CONFIDENCE]
Where:
- [DOMAIN] is the analyzed domain
- Y means it is a malicious AGD
- 𝑁 means it is not a malicious AGD
- [DGA_FAMILY] is:
* The known family name if identified
* ‘‘UnknownFamilyX’’ (where X is a number) if malicious but 
family unknown
* ‘‘-’’ if the domain is legitimate
- [CONFIDENCE] is a number between 0.0 and 100.0 with one 
decimal indicating the confidence percentage in the decision
Response format examples:
For example1.com that in this example is a malicious 
AGD from Necurs family with 95.5% confidence: 
example1.com|Y|Necurs|95.5
For example2.com that in this example is a legitimate domain with 
87.3% confidence: example2.com|N|-|87.3
For example3.com that in this example is a malicious AGD from 
unknown family with 92.1% confidence: example3.com|Y|Un-
knownFamily1|92.1
For example4.com that in this example is a malicious AGD from 
unknown family with 91.1% confidence: example4.com|Y|Un-
knownFamily2|91.1
For example5.com that in this example is a malicious AGD that 
seems from the same unknown family as example3.com with 
89.4% confidence: example5.com|Y|UnknownFamily1|89.4
The domains to analyze will be provided in the following message, 
separated by commas.
18 
A.4. 𝑃4: Real-world domain classification

Act as a cybersecurity expert specialized in detecting malicious 
Algorithmically Generated Domains (AGDs).
Your task is to analyze a list of domains, one per line, and deter-
mine for each one if it is a malicious AGD or a legitimate domain. 
You need to analyze the domains yourself, I don’t want you to 
write me a script to solve the problem, my intention is for you 
to reason on your own whether the domains are malicious AGDs 
or legitimate domains. I need you to analyze the full list, without 
truncating for brevity, don’t pause and if you ask me to continue 
the answer will be always yes.
Malicious AGDs can follow different generation schemes:
* Arithmetic-based: Uses mathematical operations to generate 
domains
* Hash-based: Employs cryptographic hash functions for domain 
generation
* Wordlist-based: Creates domains by concatenating words from 
predefined lists
* Permutation-based: Generates variations by permuting a base 
domain string
* Adversarial-based: Creates domains that deliberately evade 
detection by replicating benign domain characteristics
When analyzing a domain, please consider the following lexical 
features:
1. Statistical features
* Level of Randomness: Malicious domains tend to have higher 
levels of randomness due to uniform and random character distri-
bution, while legitimate domains have lower randomness due to 
natural linguistic patterns.
* Character Frequency: Legitimate domains use common charac-
ters in proportions similar to natural language, while malicious 
ones tend to use uncommon characters more frequently.
* Digit/Letter Ratio: Malicious domains tend to have a higher 
proportion of digits to letters, while legitimate ones maintain a 
more moderate and contextual use of numbers.
2. Pronounceability Features
* Pronounceability Index: Legitimate domains are easily pro-
nounceable due to their natural linguistic structure, while 
malicious ones are difficult or impossible to pronounce.
* Consonant/Vowel Ratio: Legitimate domains maintain a nat-
ural proportion between consonants and vowels similar to hu-
man language, while malicious ones tend to have unbalanced 
proportions.
3. Linguistic Features
* Meaningful Word Presence: Legitimate domains tend to contain 
real words or meaningful combinations, while malicious ones use 
meaningless character sequences. This is particularly effective for 
detecting hash-based and arithmetic-based AGDs.
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* Distance to Known Domains: Malicious domains maintain a 
calculated distance to popular domains to deceive users, while 
legitimate ones are the original domains without variations.
Note that benign AGDs can exist. To correctly identify them as 
benign rather than malicious, you should pay closer attention to 
their combination of top-level domain and second-level domain, as 
subdomains could be created using DGAs while still being benign.
Provide ONLY your answer in the following exact format, with no 
additional text:
[DOMAIN]|Y|[CONFIDENCE]
or
[DOMAIN]|N|[CONFIDENCE]
Where:
- [DOMAIN] is the analyzed domain
- Y means it is a malicious AGD
- 𝑁 means it is not a malicious AGD
- [CONFIDENCE] is a number between 0.0 and 100.0 with one 
decimal indicating the confidence percentage in the decision
Response format examples:
For example1.com that in this example is a malicious AGD with 
95.5% confidence: example1.com|Y|95.5
For example2.com that in this example is a legitimate domain with 
87.3% confidence: example2.com|N|87.3
The domains to analyze will be provided in the following message, 
separated by commas.

Data availability

Data will be made available on request.
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