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Abstract—Dynamic time warping (DTW) is a distance measure
to compare time series that exhibit similar patterns. In this paper,
we will show how the warping path of the DTW algorithm can
be interpreted, and a framework is proposed to extend the DTW
algorithm. Using this framework, we will show how the dynamic
programming structure of the DTW algorithm can be used to
track repeating patterns in time series.

Index Terms—dynamic programming, dynamic time warping,
time series analysis

I. INTRODUCTION

Many recorded signals exhibit some kind of cyclic behavior
where the signal values are repeated according to a certain
pattern, but where the frequency of the pattern is time-varying.
For example in [1], household power consumption is estimated
by optically sensing a rotating disc with a photoreflective
sensor, where the rotational speed of the disc is proportional
to the power consumption. As a consequence, the reflective
pattern of one full rotation is frequency-modulated by this
consumption. Another example can be found in the field
of remaining life estimation in rotating equipment where
vibration measurements are used of rolling element bearings
[2]. A defect in one of the bearing raceways will induce a clear
pattern in the vibration signal, where the rotational speed of
the bearing will modulate its frequency. Also, times series with
time-varying frequency include the repeating pulse signal in
ECG heart-rate data where its underlying frequency can be
altered by different causes [3].

Typically, the fluctuation of the frequency of these type of
signals may vary fast over time. As a consequence, conven-
tional frequency estimation techniques based on (short-time)
Fourier analysis may not be applicable, or require advanced
post-processing [4], since they assume a stationary signal
within their analysis window. In this paper we will demonstrate
a technique to estimate the phase of these recurrent patterns
from a noisy sensor reading based on dynamic time warping
(DTW).

DTW is a technique where two signals can be aligned in
time or warped, as to optimally fit the other signal within a
certain bound. First proposed by Sakoe and Chiba [5], DTW
offers an alternative to the conventional Euclidean distance
measure [6] for time series that exhibit a similar pattern but
that are not synchronized in time. A simple example of this

would be two signals that both have a clear peaks but where
the peak occurs at slightly different times. The DTW algorithm
would first align the two peaks, and then compare the samples
in between the peaks. Originally, the application of DTW was
focused on matching speech with a library of recorded vowel
sounds [7], [8], but nowadays it is a widely used technique
with various kinds of time series data [6], [9], [10]. The DTW
algorithm matches each of the samples of one signal with
a sample of the other signal in such a way that the cost
between the matched samples is minimized. The similarity
of the signals is then defined by the total cost of all matched
samples, and this cost can be used as a distance measure. In
addition to the computed cost, the algorithm also returns an
alignment between the two signals called the warping path.
In this paper it will be shown how this alignment can be used
to track repeating patterns in time series.

The DTW algorithm relies on a technique called dynamic
programming (DP). The principle of DP was developed by
Bellman in the 1950s, and relies on Bellman’s optimality
principle, which states that an optimal solution has the prop-
erty that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal solution with
regard to the state resulting from the first decision [11]. As a
consequence, DP breaks a dynamic optimization problem into
a sequence of simpler subproblems, and allows for an efficient
implementation of the combinatorial problem of finding the
alignment between the two samples. It is this property of the
dynamic time warping algorithm that will allow us to also find
an efficient solution for the tracking of repeating patterns in
time series.

In Section II, a more detailed description of the DTW algo-
rithm is provided which will be used to show the equivalence
of the distance between the aligned signals and the cost of the
warping path. Subsequently, we will show in Section III how
these results can be used to track repeating signal patterns.

II. DYNAMIC TIME WARPING

DTW aligns the samples of two signals
x = (x[0], . . . , x[i], . . . , x[N−1]), and y =
(y[0], . . . , y[j], . . . , , y[M−1]) by searching for a warping
path [12, p. 482]. The goal of the algorithm is to find
a mapping between the samples of x and y, so that the
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alignment between x and y and the alignment between y
and x are jointly optimized in some sense. The warping path
is defined as a set of, say K, index pairs

W = {(i0, j0), . . . (iK−1, jK−1)}.

Let ∆ik = ik − ik−1 denote the difference between two
consecutive indices with ∆i0 = 1, and let ∆jk be similarly
defined. The total cost of a warping path can then be defined
as

D(W) :=
K−1∑
k=0

α(∆ik,∆jk) d(ik, jk) ,

where α(∆ik,∆jk) and d(ik, jk) represent the transitions cost
between two successive index pairs and alignment cost for a
given index pair, respectively. The transition cost determines
the weights of different steps in the warping path. Examples
are α(∆ik,∆jk) = ∆ik + ∆jk for the symmetric DTW
algorithm, or α(∆ik,∆jk) = ∆ik for asymmetric DTW [5].
A common choice for the alignment cost is the squared error
d(ik, jk) = (x[ik]− y[jk])2. The objective of DTW is to find
the optimal path, say W∗, that minimizes the cost D(W). In
many applications, this cost is used as a distance measure to
define the similarity of two signals.

We will now define the phase function that maps the signal
x onto y, or vice versa. The phase function that aligns x
to y will be referred to as θx = (θx[0], . . . , θx[N−1]),
while the function that aligns y to x is referred to as
θy = (θy[0], . . . , θy[M−1]). The phase function θx is defined
as the mapping between an index i and the first index j that
is encountered in the warping path. That is

θx[i] := min
j
{j | (i, j) ∈ W}, (1)

and similarly for θy

θy[j] := min
i
{i | (i, j) ∈ W}.

With this, the aligned signals can be expressed as

y[θx] = (y[θx[0]], . . . , y[θx[N − 1]]),

x[θy] = (x[θy[0]], . . . , x[θy[M − 1]]).

Note that in the DTW algorithm we have ∆ik,∆jk ∈ {0, 1},
which means that ik ≥ ik−1 and jk ≥ jk−1. As a consequence,
we have

θx[ik] = min
j
{j | (ik, j) ∈ W}

≥ min
j′
{j′ | (ik−1, j′) ∈ W}

= θx[ik−1].

That is, θx is monotone, and similarly for θy . Figure 1 shows
an example of two warped signals and their corresponding
warping path. The original signals x and y are indicated by
the solid lines in the side and bottom subplot, respectively,
whereas the warped signals are depicted as dashed lines. The
warping path which maps the signals into each other is shown
in the center plot (+). The colors in the center plot (cost matrix)
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Fig. 1. Example of two warped signals and their corresponding warping path.
The original signals x and y are shown by the solid lines in the side and
bottom subplot, respectively, whereas the warped signals y[θx] and x[θy]
are depicted as dashed lines. The warping path which maps the signals into
each other is shown in the center plot (+).

represent the costs d(i, j); the darker the color, the lower the
cost. As indicated in the figure, the optimal path W∗ is the
path through the cost matrix having minimal cost.

A. Equivalence of the warping path cost and distance between
aligned signals

In this section we will show that the cost D(W) associated
with the warping path W is given by the sum of the distances
between the original and aligned signals. This equivalence
relation will be used in section Section III to modify the
DTW algorithm to track recurring patterns in time series. The
Euclidean distance between the signals can be expressed as

d(x,y[θx]) =
N−1∑
i=0

(x[i]− y[θx[i]])2 , (2)

and

d(x[θy],y) =
M−1∑
j=0

(x[θy[j]]− y[j])2 .

We have the following result.

Proposition II.1. Let α(∆ik,∆jk) := ∆ik + ∆jk, where
∆ik,∆jk ∈ {0, 1}. Then

D(W) = d(x,y[θx]) + d(x[θy],y) . (3)

Proof. We have.

D(W) =
K−1∑
k=0

d(ik, jk)(∆ik + ∆jk),

=
K−1∑
k=0

d(ik, jk)∆ik +
K−1∑
k=0

d(ik, jk)∆jk. (4)
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Note that if ik = ik−1, then ∆ik = 0 and similarly for ∆jk.
Hence, (4) reduces to

D(W) =
N−1∑
n=0

d(n, θx[n]) +
M−1∑
m=0

d(θy[m],m) ,

= d(x,y[θx]) + d(x[θy],y).

This completes the proof.

The choice α(∆ik,∆jk) = ∆ik + ∆jk results in a
warping path that jointly optimizes the Euclidean distances
between the warped signals. This algorithm is referred to
as the symmetric DTW algorithm. Alternatively, we could
define α(∆ik,∆jk) = ∆ik. By inspection of the proof of
Proposition II.1, it follows straightforwardly that in that case
we have D(W) = d(x,y[θx]), which results in the so-called
asymmetric DTW algorithm [5]. Note that in some recent
applications of the DTW algorithm, α(∆ik,∆jk) = 1 is used
implicitly (e.g. [13], [14]). In that case, there is no direct
relationship between the distance between the aligned signals
and the path cost D(W).

III. TRACKING RECURRING PATTERNS USING DTW

Having shown the relationship between the cost of the warp-
ing path and the distance between the aligned and unaligned
signals, we will now extend the algorithm to track recurring
patterns in time series. Figure 2 shows an example of such
a situation, where a noisy observation is shown in the top
subplot (dashed line) together with the warped signal (solid
line). Clearly, a repeating pattern is visible in the graph, but
the frequency (change of the phase) of the pattern changes
over time. In the bottom plot, both the true phase (dashed line)
and the estimated one (solid line) of the pattern is shown. For
the first half of the signal, the phase is increasing and the
frequency of the pattern is positive, but for the second half
of the signal the phase decreases and the frequency becomes
negative. When the frequency is negative, the pattern occurs
in reversed order.

To model this kind of signal, let y denote a template pattern
of length M , and let y[θx] denote a quasi-periodic repetition
of the template pattern of length N , where θx is a latent
phase function (of length N ), which we want to estimate. We
observe a noisy observation x of the (quasi) periodic signal
y[θx] given by

x = y[θx] + ε,

where ε is an additive white Gaussian noise signal. Note that
when y[θx] is quasi-periodic, θx is quasi-periodic as well. As
an example, for a repeating pattern of constant frequency, θx
has the shape of a sawtooth function, where each period of the
sawtooth corresponds to one repetition of the pattern. A more
general example of a phase function is shown in the bottom
plot of Figure 2 (dashed line). To estimate the phase function
from a noisy observation x, the template signal y must either
be known beforehand, or must be estimated from the signal
during periods where the frequency is constant. Estimating
the latent phase function can be considered as the problem
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Fig. 2. This figure shows a signal that exhibits a repeating pattern with time-
varying frequency. In the second half of the graph, the frequency of the pattern
becomes negative and the pattern occurs in reverse order. On the bottom plot,
the output of the dynamic programming based-tracking algorithm is shown,
indicating the actual and estimate phase of the pattern.

of tracking the template pattern as a function of time. Given
a squared-error distortion criterion, the maximum likelihood
estimator (MLE) for θx is given by

θ̂x = min
θ
d(x,y[θ]) . (5)

Without any additional contraints, the MLE will result in unre-
alistic phase functions since the estimates of the samples θx[i]
are obtained independently. This can be overcome by requiring
the phase function to be monotonic within each periodic
repetition of the template signal. Note that with the original
DTW algorithm, as presented in Section II, two patterns are
aligned which can be viewed as the alignment of a template to
a one-period signal. In that case, requiring monotonicity alone
is sufficient to guarantee a realistic phase function. In the case
of mapping a template to a (quasi) periodic signal, we need
an additional requirement that samples of the template are
mapped within the same period, and not mapped to samples
of succeeding periods. In order to do so, we put an additional
constraint that limits the change (slope) of the phase function.
That is, we define the problem of finding the phase function
as

θ̂x = min
θ

d(x,y[θx])

s.t. θx[i]− θx[i−1] ∈ {0, · · · , smax} ,
where smax denotes the maximum slope of the phase function.
This optimization problem can be solved using DTW by
introducing specific restrictions on ∆ik and ∆ik as ∆ik = 1
and ∆jk ∈ {0, · · · , smax}.

A. Recurring patterns with backwards motion

Recall our example of the rotating disc and the photo
reflective sensor as discussed in Section I. In this example,
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TABLE I
THIS TABLE SHOWS THE RELATIONSHIPS BETWEEN DIFFERENT VARIANTS OF THE DTW ALGORITHM AND THE EQUIVALENT OPTIMIZATION PROBLEMS.

DTW constraints Equivalent optimization problem Comments

α(∆ik,∆jk) = ∆ik + ∆jk
∆ik ∈ {0, 1}
∆jk ∈ {0, 1}

min
θ

d(x[θy],y) + d(x,y[θx])

s.t. θx[i] ≥ θx[i−1]

θy[j] ≥ θy[j−1]

Symmetric DTW [5]

α(∆ik,∆jk) = ∆ik
∆ik ∈ {0, 1}
∆jk ∈ {0, 1}

min
θ

d(x,y[θx])

s.t. θx[i] ≥ θx[i−1]
Asymmetric DTW [5]

α(∆ik,∆jk) = ∆ik
∆ik = 1

∆jk ∈ {0, · · · , smax}

min
θ

d(x,y[θx])

s.t. |θx[i]− θx[i−1]| ∈ {0, · · · , smax}
Equation (6)

it can happen that the disc rotates backwards, for example
in the case where a household has solar panels installed
and has a negative energy consumption during daytime. In
terms of the phase function, this means that the function is
not monotonically increasing anymore, but can decrease as
well. Still, due to physical limitations, the slope of this phase
function will be limited. To allow for this "backward rotation"
phenomena, we adapt our optimization problem to

θ̂x = min
θ

d(x,y[θx])

s.t. |θx[i]− θx[i−1]| ∈ {0, · · · , smax}.
(6)

An example of this model is shown in Figure 2, where the
signal is obtained from a typical photo reflective sensor used
to monitor analog electricity meters [1]. As the meter spins
backwards and forwards, the phase (position) of the meter
is tracked using the adapted DTW algorithm where we set
smax = 1.

Table I summarizes the relationship between minimizing
Euclidean distances between aligned signals (first column) and
the corresponding DTW algorithms (second column).

B. Numerical analysis

In this section, a numerical assessment of the performance
of the algorithm is provided. Since no other algorithms are
known to the author that implement this kind of phase tracking
of recurring patterns in noise, the algorithm was compared
to a threshold-based peak detection method. This algorithm
assumes there is one clear peak per revolution in the signal,
and increments the phase estimate by one revolution every
time this peak is detected. Figure 3 shows a comparison
of the algorithm of this paper with the heuristic algorithm
based on detecting peaks. As can be seen from Figure 3,
the algorithm outperforms the peak detection algorithm by
providing a higher granularity for the phase estimate. The
signal was generated with a linearly incrementing frequency
from the same pattern as Figure 2, and with a SNR of
roughly 6 dB. The experiment was run 1000 times for different
realisations of the noise, and the RMSE between the estimated
phase and the true phase was measured. The RMSE of the
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Fig. 3. This figure shows an example of the unwrapped phase estimated for
a noisy signal with a repeating pattern. In the top image, the true phase is
compared to the estimate from the algorithm presented in this paper and a
heuristic estimate based on counting the peak in the signal.

proposed method was roughly twenty times lower than the
phase estimate based on peak detection. In a different exper-
iment with templates with multiple peaks, the peak detection
algorithm overcounted the number of peaks. For signals with
decrementing phase (backwards pattern), the algorithm based
on peak detections could not distinguish between forwards and
backwards frequency of the signal.

IV. CONCLUSION

An interpretation for the cost of the DTW algorithm is
provided in this paper, and it was shown that this cost is equal
to the cost of the aligned signals that can be obtained from the
output of the algorithm. Then, using this equivalence, a method
was presented to adapt the DTW algorithm to efficiently find
an estimator for the phase of a recurring pattern in time series.
An implementation of this algorithm can be found under [15].
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