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ABSTRACT

The goal of this contribution is to assess the impact statistical model selection has on confidence levels of parameter
estimators in linear(ized) GNSS models. In the processing of observational data, parameter estimation and statistical
testing are often combined. A testing procedure is exercised to select the most likely observational model among
the hypothesized ones, which is then followed by the estimation of the identified model parameters. The resulting
estimator will inherit the uncertainties involved in both estimation and testing which need to be properly taken into
account when computing the corresponding confidence level. The approach that is usually followed in practice to
determine the confidence level is to compute the probability of the estimator lying in a region around its true value
conditioned on the identified hypothesis. Therefore, use is made of the estimator’s distribution under the identified
hypothesis without regard to the conditioning process that led to the decision of accepting this hypothesis. In this
contribution, it will be shown that for a proper computation of the confidence level in combined estimation-testing
procedures, the associated probability should be conditioned not only on the identified hypothesis, but also on the
testing outcome that led to the decision of accepting this hypothesis. Therefore, use need to be made of the conditional
distribution of the estimator. We will provide numerical analysis of confidence levels with and without accounting for
conditioning on testing decision using a number of examples in the context of GNSS single point positioning. It will
be demonstrated that the customary practice which makes use of unconditional distributions to evaluate the confidence
level, may give a too optimistic description of the estimator’s quality.

INTRODUCTION

In the processing of observational data, parameter estimation and statistical testing are often combined. Usually, a
set of candidate observational models, say H0,H1, . . . ,Hk with H0 being the working (null) hypothesis and Hi for
i = 1, . . . ,k the alternative hypotheses, are put forward and a testing procedure is exercised to select the most likely
one. The parameters of interest, denoted by x, then get estimated according to the identified model. For example, in
GNSS positioning, first GNSS data undergoes statistical testing to detect and identify potential biases like outliers or
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cycle-slips and then, depending on the outcome of testing, the positioning parameters get estimated either based on
the working hypothesis where no bias is modelled or based on one of the alternatives in which the identified biases
are modelled. The resulting estimator will inherit the uncertainties involved in both estimation and testing [8] which
need to be properly taken into account when assessing the estimator’s quality.

In this contribution we analyse the impact of statistical model selection on the quality of the estimators generated
through combined testing-estimation procedures, and specifically concentrate on the confidence level. The approach
that is usually followed in practice to determine the confidence level is to compute the probability that the estimator of
the unknown parameters, directed by the testing outcome, is inside a region around its true value, without taking into
account the statistical testing that preceded the estimation [1, 4–6, 9]. Therefore, if Hi is the identified hypothesis,
then use is made of the distribution of the estimator under Hi, say x̂i, without regard to the conditioning process that
led to the decision of accepting this hypothesis. Assuming the data to be normally distributed and the observational
model to be linear, the estimator x̂i will also be normally distributed, and thus the confidence level is computed on the
basis of the normal distribution.

The approach of using the estimator’s unconditional distribution for computing the corresponding confidence levels
neglects the statistical testing that preceded the estimation of the model parameters, which will result in an incorrect
description of the estimator’s quality. In this contribution, it will be shown that for a proper computation of the
confidence level in combined estimation-testing procedures, the associated probability should be conditioned on the
testing outcome that led to the decision of accepting this hypothesis. Therefore, use need to be made of the conditional
distribution of the estimator underHi which, as will be shown, is not normal anymore.

This contribution is organized as follows. We first describe the null and alternative hypotheses, highlight the role of the
misclosure space partitioning in testing these hypotheses, and present the unknown parameters estimator capturing
the contributions from both testing and estimation. Next, assuming that statistical hypothesis testing has done its
job properly and identified the correct hypothesis, the actual conditional confidence level is formulated using the
estimator’s conditional distribution. The various factors that contribute to the difference between the conditional
and unconditional confidence levels are identified and discussed. We then demonstrate in graphical form, using a
simple observational model with one unknown parameter, both the unconditional and conditional distributions of the
parameter estimator, so that the different contributions to the confidence level, as well as the differences between the
two approaches, are understood. The confidence level comparison is then continued for a number of examples in the
context of GPS single point positioning. Finally, a summary with conclusions are presented.

INTEGRATED TESTING AND ESTIMATION

To illustrate the interaction between testing and estimation, we first specify the null and alternative hypotheses. Let
the observational model under the null hypothesisH0 be given as

H0 : E(y) = Ax; D(y) = Qyy (1)

with E(·) and D(·) the expectation and dispersion operator, respectively, y ∈ Rm the normally distributed random
observable vector, x ∈ Rn the estimable unknown parameter vector, A ∈ Rm×n the design matrix of rank(A) = n,
and Qyy ∈ Rm×m the positive-definite variance matrix of y. As, in practice, there are several different sources that
can make the observations deviate from H0-model, multiple alternative hypotheses usually need to be considered to
capture the corresponding deviations (the alternative hypotheses here imply extensions to the null hypothesis; they
present additional unknown parameters). For example when modeling GNSS data, we may need to take into account
alternative hypotheses describing pseudorange outliers and carrier-phase cycle slips. Here, we assume that there are k
alternative hypothesesHi (for i = 1, . . . ,k) of the form

Hi : E(y) = Ax + Ci δi; D(y) = Qyy (2)

for some vector Ciδi ∈ Rm \{0} such that [A Ci] is a known matrix of full rank and δi ∈ Rq is unknown (representing
the outliers and/or cycle slips). We assume that the hypotheses at hand do not occur simultaneously, indicating that
only one hypothesis is true at a time.
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Hypothesis Testing

To make statistical model validation of Hi (i = 0,1, . . . ,k) feasible, it is necessary to have redundant measurements
underH0, i.e. r =m−n 6= 0. In that case, an ancillary statistic, known as the misclosure vector t ∈Rr, can be obtained
as

t = BT y; Qtt = BT QyyB (3)

where B ∈ Rm×r is a full-rank matrix, with rank(B) = r, such that [A, B] ∈ Rm×m is invertible and AT B = 0. With

y Hi∼ N (Ax+Ciδi, Qyy) for i = 0,1, . . . ,k and C0δ0 = 0, the misclosure vector is then distributed as

t Hi∼ N (µti =Ctiδi, Qtt), for i = 0,1, . . . ,k (4)

with Cti = BTCi. Therefore, since E(t|H0) = 0, the misclosure vector t has a known probability density function (PDF)
underH0; it captures all the redundancy in the model. Any statistical model selection mechanism is then driven by the
misclosure vector t ∈ Rr and its known PDF under H0. Such model selection mechanism can be established through
unambiguously assigning the outcomes of t to the statistical hypotheses Hi for i = 0,1, . . . ,k, which can be realized
through a partitioning of the misclosure space Rr in k+ 1 subsets Pi ⊂ Rr (i = 0,1, . . . ,k). The testing procedure is
then unambiguously defined as [8]

selectHi ⇐⇒ t ∈ Pi, for i = 0,1, . . . ,k (5)

Therefore the decisions of the testing procedure are driven by the outcome of the misclosure vector t. If Hi is true,
then the decision is correct if t ∈ Pi, and wrong if t ∈ P j 6=i. The probability PFA = P(t /∈ P0|H0) is called false alarm
probability, and usually user defined by setting the appropriate size of P0. Note that in case r = 1 (single redundancy),
then P1 = · · ·= Pk = Pc

0 , implying that no identification can be exercised ifH0 gets rejected.

Parameter Estimation

Statistical model selection is usually followed by the estimation of the parameters of interest x. Assuming that the
testing outcome be the selection of the hypothesisH j (t ∈P j), then the parameters get estimated according to theH j-
model; (1) if j = 0, and (2) if j 6= 0. Therefore, the outcome of testing determines how the parameters get estimated.
The probabilistic properties of such an estimation-testing combination can be captured through a unifying framework
presented in [8]. As such, the estimator of x is given as

x̄ =
k

∑
i=0

x̂i pi(t) (6)

with pi(t) being the indicator function of region Pi (cf. 5), i.e. pi(t) = 1 for t ∈ Pi and pi(t) = 0 for t elsewhere,
and x̂i the estimator of x under the Hi-model. In practice, with one specific sample of observations y, one of the
hypotheses, sayH j, is selected and thus x̂ j will be the numerical final outcome. However, for a correct assessment of
the estimator’s statistical properties, we need to consider instead x̄; if the observation values would have been slightly
different namely, due to noise, it could be that statistical testing would have led to deciding that hypothesisHi should
be used, resulting in x̂i instead, and all these possibilities need to be properly accounted for through (6).

In this contribution, we make use of Best Linear Unbiased Estimation (BLUE) from which the estimators x̂0 and x̂i 6=0
follow as

x̂0 = A+ y , x̂i = x̂0 − Li t for i = 1, . . .k (7)

where A+ = (AT Q−1
yy A)−1AT Q−1

yy is the BLUE-inverse of A, and Li = A+CiC+
ti with C+

ti = (CT
ti Q−1

tt Cti)
−1CT

ti Q−1
tt being

the BLUE-inverse of Cti = BTCi. As x̂0, t, and thus x̂i, are linear functions of the normally-distributed observables
y, they are normally distributed as well. Also, from AT B = 0 follows that x̂0 and t are independent from each other.
It is however important to note that x̄ is not normally distributed as it is non-linearly dependent on the misclosure t
through the indicator functions pi(t).
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CONFIDENCE LEVEL

When providing estimates of the parameters of interest x, it is crucial to provide a quality description of these estimates
as well. Therefore, parameter estimates are usually accompanied by their corresponding confidence levels. Let us
assume that statistical hypothesis testing is successful and correctly selects the hypothesis Hi, i.e. t ∈ Pi. Then, the
estimate of x is given by x̂i. With Bxi ⊂Rn being a x-centered region, the approach that is usually followed in practice
to determine the confidence level (CL) is to compute the probability of x̂i ∈ Bxi under the identified hypothesis as
follows [1, 4–6, 9]

CLxi = P(x̂i ∈ Bxi |Hi) for i = 0,1, . . . ,k (8)

The probability in (8) is computed based on the PDF of x̂i under the identified hypothesis Hi. Assuming the data to
be normally distributed and the observational model to be linear, the estimator x̂i will also be normally distributed,
and thus the confidence level is computed on the basis of normal distribution. This approach, however, neglects the
statistical testing that preceded the estimation of the model parameters, resulting in an incorrect description of the
estimator’s quality. That x̂i is provided as the estimate of the parameters is the result of a testing outcome, namely of
having identifiedHi (t ∈ Pi). Thus, for a proper computation of the confidence level, one has to take this into account
as a condition. The correct confidence level is then given by

CLxi |(t ∈ Pi) = P(x̂i ∈ Bxi |t ∈ Pi, Hi) for i = 0,1, . . . ,k (9)

The probability in (9) is computed based on the conditional PDF of x̂i|t ∈ Pi underHi, which is not normal anymore.

The difference between CLxi |(t ∈ Pi, Hi) and CLxi reads

CLxi |(t ∈ Pi)−CLxi =
∫
Bxi

[
fx̂i|t∈Pi(θ |t ∈ Pi, Hi)− fx̂i(θ |Hi)

]
dθ (10)

with fx̂i(θ |H j) and fx̂i|t∈Pi(θ |t ∈ Pi, Hi) being the PDFs of x̂i and x̂i|t ∈ Pi under Hi, respectively. The above
equation shows, for a given Bxi , that the difference between the correct and incorrect confidence levels depends on the
difference between fx̂i|t∈Pi(θ |t ∈ Pi, Hi) and fx̂i(θ |H j). The conditional PDF fx̂i|t∈Pi(θ |t ∈ Pi, Hi) is given as [8]

fx̂i|t∈Pi(θ |t ∈ Pi, Hi) =
1

P(t ∈ Pi|Hi)

∫
Pi

fx̂i,t(θ ,τ|Hi) dτ (11)

where fx̂i,t(θ ,τ|Hi) is the joint PDF of x̂i and t underHi which given the relations in (7) and the fact that x̂0 and t are
independent can be expressed in the PDFs of x̂0 and t as

fx̂i,t(θ ,τ|Hi) = fx̂0(θ +Liτ|Hi) ft(τ|Hi) (12)

Unconditional vs. Conditional CL

UnderH0, as the correlation between x̂0 and t is zero, we have fx̂0|t∈Pi(θ |t ∈ P0,H0) = fx̂0(θ |H0), thus

CLx0 |(t ∈ P0) = CLx0 (13)

Under Hi 6=0, the conditioning in fx̂i|t∈Pi(θ |t ∈ Pi, Hi) can be nullified, i.e. fx̂i|t∈Pi(θ |t ∈ Pi, Hi) = fx̂i(θ |Hi), if
the correlation between x̂i and t would be zero and/or when the event t ∈ Pi takes place with 100% certainty, i.e.
P(t ∈ Pi|Hi) = 1. As (7) shows, the correlation between x̂i and t becomes equal to zero if Qtt = 0 and/or Li = 0. The
former cannot happen as t is a random vector and not deterministic, while the latter can happen if AT Q−1

yy Ci = 0 (Ci

being Qyy-orthogonal to the columns of A). In addition, if Li t be far more precise than x̂0, then the correlation between
x̂i and t would be close to zero. The probability of the occurrence of t ∈ Pi never becomes identical to 1. However,
this probability will approach 1 when ‖δi‖ → ∞, i.e. the model error or bias gets very big, and /or Pi→ Rr, i.e. Hi

2721



is almost always accepted. Also, in case the mean of the misclosure lies in Pi, i.e. Ctiδi ∈ Pi, then P(t ∈ Pi) becomes
close to 1 if the PDF of t, i.e. ft(τ|Hi), becomes highly peaked at Ctiδi ∈ Pi.

Therefore, underHi 6=0, the circumstances under which the confidence level using unconditional distribution provides
a reasonable approximation to the correct one using conditional distribution can be summarized as follows

For i 6= 0

AT Q−1
yy Ci = 0 =⇒ CLxi |(t ∈ Pi) = CLxi

Li→ 0 =⇒ CLxi |(t ∈ Pi)→ CLxi

‖δi‖→ ∞ =⇒ CLxi |(t ∈ Pi)→ CLxi

ft(τ|Hi) becomes highly peaked at Ctiδi ∈ Pi =⇒ CLxi |(t ∈ Pi)→ CLxi

Pi→ Rr =⇒ CLxi |(t ∈ Pi)→ CLxi

(14)

Simple Model

Here, using a simple observational model, we provide insight into the confidence levels’ characteristics. Consider a
linear observational model with only a single alternative hypothesis (k = 1) as follows

H0 : E(y) =

[
1
1

]
x, D(y) =

[
σ2

y 0
0 σ2

y

]

H1 : E(y) =

[
1
1

]
x + c1δ1, D(y) =

[
σ2

y 0
0 σ2

y

] (15)

With y ∈ R2 being the 2-vector of observations (m = 2) and x ∈ R being the unknown parameter (n = 1), the re-
dundancy of H0 is r = 1, implying that t ∈ R. The observations are assumed to be uncorrelated and have the same
variance σ2

y . An extra parameter, namely δ1 ∈ R, is introduced in the alternative hypothesis H1 with respect to the
null hypothesis H0, for instance, to accommodate a bias. To test the validity of H0, we make use of an overall model
test implying the partitioning of the misclosure space R in two intervals, i.e.

P0 = [−√κPFA,1σt ,
√

κPFA,1σt ] , P1 = Pc
0 (16)

where σt is the misclosure standard deviation and κPFA,1 the ordinate value of the χ2(1,0)-distribution above which
we find an area of size PFA.

We compare CLx1 |(t ∈ P1) with CLx1 over the x-centered interval

Bx1 = [x− ε , x+ ε], ε ∈ R+ (17)

Figure 1 illustrates the PDFs fx̂1(θ |H1) and fx̂1|t∈P1(θ |t ∈P1, H1) on the top, and the graphs of CLx1 |(t ∈P1)−CLx1

at the bottom, for different sets of values of contributing factors including σy, PFA, δ1 and the following two c1 ∈ R2

vectors

Case 1 : c1 =

[
0
1

]
, Case 2 : c1 =

[
−0.8

1

]
(18)

On the top, in each panel, the normal PDF fx̂1(θ |H1), which does not depend on the bias value δ1, is shown in
black, and the non-normal PDF fx̂1|t∈P1(θ |t ∈ P1, H1), which does depend on the bias value δ1, is shown for two
values of δ1 in gray and blue. The blue graph, fx̂1|t∈P1(θ |t ∈ P1, H1) for δ1 = 5, almost coincides with the black
one, fx̂1(θ |H1), in panels (b), (c) and (d), and slightly deviates from the black one in panel (a). At the bottom, the
corresponding graphs of CLx1 |(t ∈ P1)−CLx1 are shown as a function of CLx1 in the same colors. It is observed
that when the bias value δ1 gets sufficiently large, shown in blue, the difference fx̂1|t∈P1(θ |t ∈ P1, H1)− fx̂1(θ |H1)
gets small, so does CLx1 |(t ∈ P1)−CLx1 . However, for relatively small bias values, in gray, there is a significant
difference between CLx1 |(t ∈ P1) and CLx1 . We note that, depending on the bias value δ1, CLx1 |(t ∈ P1) could be
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(a) (b) (c) (d)

σy = 1, PFA = 10−2, Case 1 σy = 1, PFA = 10−2, Case 2 σy = 0.5, PFA = 10−2, Case 1 σy = 1, PFA = 10−1, Case 1

θ

x− 6 x− 3 x x+ 3 x+ 6

P
D
F

0

0.2

0.4

0.6

0.8

1

θ

x− 6 x− 3 x x+ 3 x+ 6

θ

x− 6 x− 3 x x+ 3 x+ 6

θ

x− 6 x− 3 x x+ 3 x+ 6

CLx1

0.2 0.4 0.6 0.8

C
L
x
1
|(
t
∈
P
1
)
−
C
L
x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

CLx1

0.2 0.4 0.6 0.8

CLx1

0.2 0.4 0.6 0.8

CLx1

0.2 0.4 0.6 0.8

Figure 1: Illustration of the non-normal distribution fx̂1|t∈P1(θ |t ∈ P1, H1) in gray (δ1 = 0.2) and blue (δ1 = 5) and
the normal distribution fx̂1(θ |H1) in black. The settings are: (a) σy = 1, PFA = 10−2 and Case 1 in (18); (b) σy = 1,
PFA = 10−2 and Case 2 in (18); (c) σy = 0.5, PFA = 10−2 and Case 1 in (18); (d) σy = 1, PFA = 10−1 and Case 1 in
(18).

larger or smaller than CLx1 |(t ∈ P1), implying that ignoring the conditioning on the testing decision may result in a
too optimistic description of the estimator’s quality, as demonstrated in Figure 1 at the bottom for the curves in gray,
where CLx1 |(t ∈ P1) < CLx1 . Comparing columns (a) and (b), the conditional distribution almost coincides with the
unconditional one when c1 = [−0.8, 1]T replaces c1 = [0, 1]T . The value of L1 (cf. 7) corresponding with ‘Case 1’ is
L1 = 0.5, and with ‘Case 2’ is L1 = 0.1. Thus, for ‘Case 2’ compared to ‘Case 1’, there is a much smaller correlation
between x̂1 and t which explains the closeness of the conditional and unconditional PDFs and the small values for
CLx1 |(t ∈ P1)−CLx1 .

Decreasing σy by a specific factor will also decrease σx̂0 (standard deviation of x̂0), σt (standard deviation of t) and
σx̂1 (standard deviation of x̂1) by the same factor. This explains why the unconditional PDF is more peaked in column
(c) in comparison with that in column (a). In column (c), it can also be seen that while fx̂1|t∈P1(θ |t ∈ P1, H1) and
fx̂1(θ |H1) coincide for δ1 = 5, still a significant difference exists between them for δ1 = 0.2. This can be understood as
follows. Taking B = [−1, 1]T (cf. 3), then we have σt =

√
2 and P0 = [−3.64, 3.64] in column (a), while σt = 1/

√
2

and P0 = [−1.82, 1.82] in column (c). Therefore, from column (a) to (c), the peakedness of ft(τ|H1) increases at
ct1δ1, and also P1 gets larger. In case ct1δ1 ∈ P1, then both of the mentioned changes will increase P(t ∈ P1|H1).
Otherwise, these two changes will have opposite impacts on P(t ∈ P1|H1) and thus this probability may decrease or
increase. With ct1δ1 = δ1, in both columns, δ1 = 5 (blue graph) lies in P1 whereas δ1 = 0.2 (gray) graph lies in P0. In
column (d), there is an increase in PFA compared to column (a), which will result in P1 getting expanded, which leads
to P(t ∈ P1|H1) getting larger. This explains the smaller differences between fx̂1(θ |H1) and fx̂1|t∈P1(θ |t ∈ P1, H1),
and also between CLx1 |(t ∈ P1) and CLx1 , in column (d) in comparison to column (a).
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NUMERICAL ANALYSIS

In this section, we compare the incorrect unconditional confidence levels (8) with the correct conditional ones (9) in
the context of GPS single-point positioning (SPP) application. Assuming that m GPS satellites are tracked by a single
receiver, the SPP observational model underHo reads

H0 : E(y) = [G em]︸ ︷︷ ︸
A

[
x
dt

]
, Qyy = σ2

y Im (19)

where y ∈ Rm is the vector of pseudo-range observables, G = [−uT
1 , . . . ,−uT

m]
T ∈ Rm×3 is the geometry matrix con-

taining the receiver-satellite unit direction vectors ui as its rows, em ∈ Rm is the vector of ones and Im ∈ Rm×m is the
identity matrix. The unknown receiver coordinate components and clock error are, respectively, denoted by x ∈ R3

and dt ∈ R. The observables are assumed to be all uncorrelated and of the same standard deviation σy. At this stage,
in order to simplify our analysis, we do not consider a satellite elevation-dependent variance matrix.

As alternative hypotheses, we consider those describing outliers in individual observations. Here we restrict ourselves
to the case of one outlier at a time. In that case there are as many alternative hypotheses as there are observations, i.e.
k = m. Therefore, the observational model underH0 andHi is given as

Hi : E(y) = [G em]

[
x
dt

]
+ ciδi , Qyy = σ2

y Im for i = 1, . . . ,m (20)

with ci ∈Rm the canonical unit vector having one as its ith entry and zeros elsewhere, and δi ∈R the scalar bias. Note
that [A ci] is a known matrix of full rank.

Hereafter we concentrate on receiver coordinates x as our parameters of interest and analyse the difference between
CLxi |(t ∈ Pi) and CLxi for i = 1, . . . ,m. For SPP application, this difference is driven by the misclosure space parti-
tioning regions (P j for j = 0,1, . . . ,m), the satellites geometry G, pseudo-range precision σy, the confidence region
Bxi , the true hypothesis and δi. In the following, for two satellite geometries, we illustrate CLxi |(t ∈ Pi)−CLxi

(i = 1, . . . ,m) as a function of the mentioned contributing factors, with Bxi being defined as

Bxi = {θ ∈ R3| ‖θ − x‖2
Qx̂i x̂i
≤ κα,3} for i = 1, . . . ,m (21)

in which ‖.‖2
Qx̂i x̂i

= (.)T Q−1
x̂ix̂i

(.) and κα,3 is the ordinate value of the χ2(3,0)-distribution above which we find an area
of size α . With Qx̂ix̂i being the variance matrix of x̂i, Bxi is the 100(1−α)% confidence ellipsoid of x̂i.

Testing Procedure

WithH0 in (19) andHi (i = 1, . . . ,m) in (20), our testing strategy comprises two steps of detection and identification,
respectively, and is specified as follows

• Detection: The validity of the null hypothesis is checked through an overall model test (the redundancy needs
to be r > 0). The null hypothesisH0 is accepted if t ∈ P0 with

P0 =
{

t ∈ Rr
∣∣∣ ‖t‖2

Qtt
≤ κPFA,r

}
(22)

in which ‖.‖2
Qtt

= (.)T Q−1
tt (.) and κPFA,r is the ordinate value of the χ2(r,0)-distribution above which we find an

area of size PFA.

• Identification: IfH0 is rejected in the detection step, a search is carried out among the specified alternativesHi

(i = 1, . . . ,m) to select the potential source of model error (note that with r = 1 identification is not possible).
The alternative hypothesisHi 6=0 is selected if t ∈ Pi 6=0 with

Pi =

{
t ∈ Rr \P0

∣∣∣∣ |wi|= max
j∈{1,...,m}

|w j|
}
, i = 1, . . . ,m (23)
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in which wi is Baarda’s test statistic computed as [2, 7]

wi =
cT

ti Q−1
tt t√

cT
ti Q−1

tt cti

, i = 1, . . . ,m (24)

Example 1: Figure 2

Figure 2 (left) shows the skyplot of six satellites for which six alternative hypotheses (k = 6) of the form of (20) can
be considered. With m = 6 and n = 4, the redundancy under H0 is r = 2, hence t ∈ R2 (so that we can conveniently
visualize the misclosure space). Without loss of generality, we choose B (cf. 3) in such a way that Qtt = I2. Figure 2
(right) shows the corresponding misclosure space (R2) partitioning in seven regions P0 (cf. 22) and Pi for i = 1, . . . ,6
(cf. 23). The shown vectors c̄i are the unit vectors c̄i = cti/‖cti‖. Given (23) and (24), region Pi6=0 contains samples
of the misclosure t ∈ Rr \P0 which have the largest projection onto the unit vector c̄i compared to other unit vectors
c̄ j 6=i ( j = 1 . . . ,6). As E(t|Hi) = ‖cti‖δi c̄i and Qtt = I2, ‖cti‖ is the indicator of minimal detectable bias (MDB) under
Hi [3, 7]; the larger the value of ‖cti‖, the smaller the MDB, and thus the better the detectability under Hi. For the
model at hand, we have

‖ct1‖ ≈ 0.68, ‖ct2‖ ≈ 0.72, ‖ct3‖ ≈ 0.55, ‖ct4‖ ≈ 0.53, ‖ct5‖ ≈ 0.64, ‖ct6‖ ≈ 0.12 (25)

implying that the detectability under H6 is much poorer compared to other alternatives. In other words, for the same
bias value δi, P(t /∈ P0|H6) is much smaller than P(t /∈ P0|Hi 6=0,6).

Figure 3 shows the corresponding colormaps of CLxi |(t ∈Pi)−CLxi for i = 1, . . . ,6 as a function of CLxi horizontally
and δi vertically, where each column represents an alternative hypothesis. From top to bottom, the underlying settings
are σy = 1m, PFA = 10−1, σy = 1m, PFA = 10−2 and σy = 0.5m, PFA = 10−1 , respectively. It is observed that
depending on the underlying settings and the bias value δi, the conditional confidence level could be much lower than
the unconditional one. For example, underH6 when σy = 1m, PFA = 10−2, δ6 = 5m and CLx6 = 0.95, the conditional
confidence level CLxi |(t ∈ P6) is smaller than CLx6 by an amount of 0.65, implying that CLx6 is too optimistic by
almost a factor of 3.

From Figure 3, we note that the difference CLxi |(t ∈ Pi)−CLxi for a given δi and CLxi shows larger magnitudes for
H6 compared to the other alternatives. To explain this behavior, we consider (7) which describes the link between x̂i

and t, established through Li. For the observational model at hand, in which the redundancy is r = 2 and also x ∈ R3,
Li is a 3×2 matrix given as

Li =
1
‖cti‖

Qx̂0x̂0(ū−ui) c̄T
i (26)

with Qx̂0x̂0 the variance matrix of x̂0 and ū = 1
6 ∑

6
j=1 u j the average receiver-satellite unit direction vector. Table 1 gives

the components of the 3-vector 1
‖cti‖

Qx̂0x̂0(ū−ui) for all i = 1, . . . ,6. As can be seen, the components of L6 are almost
6 times larger than those of Li 6=6. This has two implications: 1) the correlation between x̂6 and t is by far larger than
the correlation between x̂i 6=6 and t; 2) x̂6 has much poorer precision compared to x̂i 6=6. In addition, for i 6= 0, since
E(t|Hi) = ‖cti‖δi c̄i and Qtt = I2, the probability P(t ∈ Pi|Hi) for a given bias value δi is driven by several factors
including the region Pi and the magnitude of ‖cti‖. The larger the region Pi and the absolute value of E(t|Hi), the
larger the probability P(t ∈ Pi|Hi). Given that ‖cti‖ (cf. 25) and Pi (Figure 2) are much smaller for i = 6 than i 6= 6,
P(t ∈ P6|H6) is also smaller than P(t ∈ Pi 6=0,6|Hi 6=0,6) for a given bias value δi. All these factors lead to relatively
large differences between fx̂6|t∈P6(θ |t ∈ P6, H6) and fx̂6(θ |H6), thus between CLx6 |(t ∈ P6) and CLx6 .

For a given value of δi, the absolute value of CLxi |(t ∈ Pi)−CLxi as a function of CLxi first increases and then
decreases to zero. To understand this behavior, we note that increasing CLxi is the result of expanding Bxi (cf. 21) or
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Figure 2: [Left] Skyplot of six satellites. [Right] The corresponding datasnooping misclosure space partitioning with
P0 and Pi (i = 1, . . . ,6) formulated in (22) and (23), respectively, for Qtt = I2.

Table 1: Evaluation of (26) for the satellite geometry in Figure 2 and the hypotheses given in (19) and (20), assuming
σy = 1m.

1
‖cti‖

Qx̂0x̂0(ū−ui) H1 H2 H3 H4 H5 H6

first component 7.11 5.95 6.91 8.80 5.86 40.24
second component 6.53 6.24 6.28 6.90 6.54 38.16
third component -32.92 -30.07 -37.37 -40.04 -32.80 -211.82

alternatively decreasing α . Given (8) and (9), we have

α → 1 =⇒
{

CLxi |(t ∈ Pi) → 0
CLxi → 0

α → 0 =⇒
{

CLxi |(t ∈ Pi) → 1
CLxi → 1

(27)

As Figure 1 shows, depending on δi, either fx̂i|t∈Pi(θ |t ∈ Pi, Hi) or fx̂i(θ |Hi) is more peaked around x, implying
that one of the confidence levels increases more rapidly as α decreases. This, together with (27) and the fact that the
confidence levels CLxi |(t ∈ Pi) and CLxi are continuous functions of α , results in an increasing and then decreasing
behavior for the absolute value of CLxi |(t ∈Pi)−CLxi as a function of CLxi . We note that, for δi larger than a particular
value varying from alternative to alternative, the dependency of CLxi |(t ∈ Pi)−CLxi on CLxi almost vanishes and is
almost equal to zero. This is due to the fact that when δi→∞, we have P(t ∈Pi|Hi)→ 1 and thus CLxi |(t ∈Pi)→CLxi .

Comparing the panels on the first and second rows in Figure 3, it can be seen that decreasing PFA from 10−1 to 10−2

makes the absolute value of CLxi |(t ∈ Pi)−CLxi larger for a given δi. That is because when PFA decreases, the region
P0 gets expanded, while the other regions Pi6=0 shrink. Therefore, as PFA decreases, P(t ∈ Pi|Hi) for a given value of
δi decreases resulting in larger differences between the conditional and unconditional confidence levels. Decreasing
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Figure 3: Colormaps of confidence level differences CLxi |(t ∈ Pi)−CLxi as a function of CLxi horizontally and δi

vertically, corresponding with the satellite geometry and misclosure space partitioning in Figure 2. The columns from
left to right show the results under Hi for i = 1, . . . ,6. The settings from top to bottom are σy = 1m, PFA = 10−1,
σy = 1m, PFA = 10−2 and σy = 0.5m, PFA = 10−1.

σy from 1m to 0.5m, the results on the first row change to those on the third row. As was explained before with the
simple model, decreasing σy by a specific factor will also decrease Qx̂0x̂0 , Qtt and Qx̂ix̂i by the same factor, making
fx̂i(θ |Hi) more peaked around x, and ft(τ|Hi) more peaked around ctiδi. It also makes P0 shrink while the regions
Pi6=0 expand. Therefore, if ctiδi lies in the expanded Pi, then P(t ∈ Pi|Hi) increases, giving rise to smaller differences
between CLxi |(t ∈ Pi) and CLxi . However, if ctiδi lies in the shrunk P0, then ft(τ|Hi) getting more peaked and Pi

getting expanded have opposite impacts on P(t ∈ Pi|Hi), and thus this probability may decrease or increase.

Example 2: Figure 4

To see the impact of satellite geometry on the confidence levels, Figure 5 presents the same type of information as
Figure 3, but for the geometry of six satellites shown in Figure 4. The difference in confidence levels (conditional
minus unconditional) in general behaves similar to the earlier example. For this example, again we note the ‘negative’
values for CLxi |(t ∈ Pi)−CLxi under different hypotheses. For example, under H3 when σy = 1m, PFA = 10−2,
δ3 = 1m and CLx3 = 0.90, the conditional confidence level is CLx3 |(t ∈Pi) = 0.02, implying that CLx3 is too optimistic
by almost a factor of 40.

SUMMARY AND CONCLUSION

In this contribution we analysed the impact of statistical model selection on the quality of the estimators generated
through combined testing-estimation procedures. As in such procedures it is the testing outcome which determines
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Figure 4: [Left] Skyplot of six satellites. [Right] The corresponding datasnooping misclosure space partitioning with
P0 and Pi (i = 1, . . . ,6) formulated in (22) and (23), respectively, for Qtt = I2.

how the parameters get estimated, the eventual estimator’s quality is driven by the characteristics of not only estimation
but testing as well. As an important estimator’s quality indicator, we considered the confidence level which is often
computed as the probability of the estimator lying in a region around its true value without taking into account the
statistical testing that preceded the estimation. Therefore, once one of the hypothesized models is identified through
the testing procedure, the customary approach followed in practice to determine the confidence level is to make use
of the estimator’s distribution under the identified hypothesis without regard to the conditioning process that led to
the decision to accept this hypothesis. It was demonstrated that this conditioning process needs to be taken into
account for a proper computation of the confidence level by using the conditional distribution of the estimator under
the identified hypothesis conditioned on the testing outcome that led to the selection of this hypothesis.

Assuming that statistical hypothesis testing has done its job properly and identified the correct hypothesis, sayHi, we
formulated the actual conditional confidence level using the concept of misclosure space partitioning. It was shown
that under the null hypothesis, there would be no difference between the conditional and unconditional confidence
levels. Under alternative hypotheses however, the actual confidence level would be different from the unconditional
one. The factors contributing to this difference were identified and discussed.

Considering a binary-hypothesis testing applied to a simple observational model, the unconditional and conditional
distribution of the parameter estimator were demonstrated under the alternative hypothesis. It was shown that, with
normally distributed observables and linear models, the distributions of the estimators conditioned on the testing out-
come turn out to be no longer normal. For this simple observational model, it was shown that the actual confidence
level, computed based on the non-normal estimator’s conditional distribution, could be much smaller than the un-
conditional confidence level which is computed on the normal estimator’s unconditional distribution. Therefore the
customary approach may provide a too optimistic description of the estimator’s quality. We further continued con-
fidence level comparison using two examples in the context of GPS single point positioning. In our analyses, we
considered the contribution of several various factors to the difference between conditional and unconditional confi-
dence levels including satellite geometry, testing procedure, pseudo-range precision, confidence region and bias value
under the identified hypotheses. These examples corroborated the previous finding that the unconditional confidence
level can be much larger than its conditional version, thus providing a too optimistic description of the quality of the
estimator.
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Figure 5: Colormaps of confidence level differences CLxi |(t ∈ Pi)−CLxi as a function of CLxi horizontally and δi

vertically, corresponding with the satellite geometry and misclosure space partitioning in Figure 4. The columns from
left to right show the results under Hi for i = 1, . . . ,6. The settings from top to bottom are σy = 1m, PFA = 10−1,
σy = 1m, PFA = 10−2 and σy = 0.5m, PFA = 10−1.
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