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Abstract 
 
Introduction: Heart failure (HF) poses a significant burden on public health. This can be largely attributed to 

recurrent hospitalizations in consequence of HF decompensation. Detection of early signs of impending fluid 

retention may facilitate timely medical intervention and thereby prevent hospitalizations. Monitoring of Cardiac 

Implantable Electronic Devices (CIEDs)-derived parameters has been proposed as promising solution, as the 

sensor inherent in CIEDs provide the ability to continuously monitor physiological signals. The aim of this study 

was to develop personalized machine learning (ML) models that can identify upcoming HF decompensation based 

on CIED-derived parameters.  

Methods: Two ML models, a support vector classifier (SVC) and an extreme gradient boosting (XGBoost) model, 

were developed for all patients. Features known to be associated to HF decompensation were extracted from daily 

CIED data. The output of the models is the daily classification of the patient’s HF status, either ‘stable’ or 

‘unstable’. Model performance was evaluated through area under the precision-recall curve (AUPRC). First, the 

models were tested on a development dataset with leave-one-out cross-validation, and subsequently on an 

independent test set.  

Results: In total, for 62 patients two models were developed. The average AUPRC on the independent test set of 

the XGBoost models was 0.63 ± 0.28 and of the SVC models was 0.57 ± 0.26. Finally, for each patient, the model 

that resulted in the highest AUPRC was selected. The final models achieved an AUPRC on the independent test 

set of 0.61 ± 0.28.  

Conclusion: The findings of this study show promising results for the use of personalized CIED-derived models. 

However, significant variability in model performance across patients highlight the need for further research.  
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1 

Introduction 

 

Heart failure (HF) is a clinical syndrome that exerts a significant impact on public health. It is the result of a 

structural and/or functional abnormality of the heart (1). Today, HF affects more than 60 million people in the 

world, corresponding to a prevalence of 1-2% of adults (2). As society ages, this number is expected to increase. 

In the Netherlands, costs related to HF constitute about 0.5% of the total health care budget (3). This can be largely 

attributed to the (recurrent) hospitalizations in consequence of worsening HF, or ‘decompensation’ (4). Yearly, 

an estimated 13% of patients are hospitalized at least once (5). Moreover, (recurrent) hospitalizations are an 

indication of disease progression and are significantly associated with increased mortality (6).  

For these reasons, prevention of recurrent hospitalizations is one of the major goals in the treatment of HF (1). To 

prevent hospitalizations, detection of impending fluid retention is key. Early detection could facilitate timely 

therapeutic adjustments and avoid hospitalizations. In the last decades, telemonitoring has gained interest as a 

promising solution to detect worsening HF at an early stage.   

The first telemonitoring strategies consisted of assessments of body weight, heart rate and blood pressure at home 

and monitoring of symptoms through telephone contact. Meta-analyses and Randomized Controlled Trials (RCTs) 

have demonstrated small and heterogeneous, but significant reductions in all-cause mortality and HF 

hospitalizations with these strategies (7-9). 

Simultaneously, Cardiac Implantable Electronic Devices (CIEDs) have been proven to be significant in the 

treatment of HF, to prevent sudden cardiac death and/or improve cardiac function (10, 11). The sensors inherent 

in these devices have facilitated the next step in telemonitoring. Sensing of electrical impedance, the RR interval 

and acceleration allows for monitoring of parameters such as thoracic impedance, respiratory rate, heart rate 

variability, night heart rate and physical activity. These parameters have all been proven to correlate with the 

pathophysiologic process of worsening HF (12-14). However, their individual predictive ability to predict an 

upcoming episode of worsening HF is limited (15-19).  

Nevertheless, the limited success of single sensor monitoring strategies may be attributed to the inherent 

multifactorial and complex nature of the pathophysiology of worsening HF. This hypothesis together with the 

aforementioned results of single sensor studies have triggered the development of algorithms that make use of 

multi-sensor derived parameters as inputs. HeartLogic is one example of a multisensor algorithm, developed by 

Boston Scientific (Marlborough, MA, USA). The algorithm was developed and validated in the MultiSENSE trial 

in 2017 (20). The study reported a sensitivity of 70% and specificity of 87.5% for detection of worsening HF. 

Since then, HeartLogic’s diagnostic performance to predict worsening HF has been successfully validated in 

multiple patient cohorts (21-25). Two studies have reported a positive effect of a HeartLogic guided care path on 

HF hospitalizations (22, 26). Yet, the question remains whether a standalone alert justifies therapeutic actions. 

The unexplained alert rate is reported between 0.16 per patient-year (PPY) and 1.47 PPY (20-24). Moreover, the 

mathematical methods used for development of HeartLogic are unknown to clinicians, essentially making 

HeartLogic a “black box” (27). The black box problem has been described as one of the phenomena setting back 
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the integration of machine learning (ML) models in the clinical practice (28). Moreover, HF is a complex and 

heterogeneous syndrome and its progression is of patient-specific nature (29).  

Therefore, the main objective of this thesis was to explore the feasibility of a personalized CIED-derived modeling 

approach. Conceptually, such an approach would enhance interpretability of the algorithm’s outcome and provide 

a patient-specific risk classification. To this aid, we developed and tested two different ML classifiers that use 

CIED-extracted features to discriminate between ‘stable’ HF and HF decompensation, which is referred to as 

‘unstable’ HF. For this purpose, we utilized Extreme Gradient Boosting (XGBoost) and a Support Vector 

Classifier (SVC).    
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2 

Background  

 

2.1 Pathophysiology of worsening heart failure and its relation to CIED-derived parameters  

 

Heart failure is a complex, chronic clinical syndrome punctuated by episodes of acute clinical deterioration, which 

further advance disease progression (30). These episodes of acute clinical deterioration, or decompensation, are 

associated with signs and symptoms of fluid retention, such as: (increased) dyspnea, orthopnea, weight gain, 

peripheral oedema, and fatigue (1).   

Sensing of physiological signals by means of CIEDs has allowed for a unique insight into the pathophysiology of 

these episodes (13). A graphical presentation of the progression of stable HF in an euvolemic ‘stable’ state to 

decompensated HF is presented in figure 1. The main proposed pathophysiologic mechanism is that reduced 

contractility of the heart results in increased intracardiac filling pressures (31). Studies have identified that about 

three to four weeks before hospitalization, cardiac filling pressures increase (32). Changes in contractility and 

cardiac filling pressures are reflected by the first and third heart sound (S1 and S3), respectively. CIED-derived 

accelerometer data embedded in the pulse generator of the device allow for quantification of S1 and S3 (33). The 

accelerometer measures accelerations resulting from vibrations in the right ventricular wall through the right 

ventricular lead. These measurements correspond to the auscultated heart sounds. The accelerometer based S1 

significantly correlates with the left ventricular pressure derivative (dP/dt), a measure of contractility (34). 

Moreover, increased S3 is indicative of elevated filling pressures (34). Specifically, the vibrations that are 

responsible for S3 are produced by rapid deceleration of the early diastolic transmitral flow caused by a stiff left 

ventricle (35, 36).     

Persistently increased pressures trigger interstitial fluid accumulation. Moreover, reduced cardiac output leads to 

activation of neurohormonal and sympathetic responses, which exert stress on peripheral vasculature and further 

exacerbate fluid retention (31). Increased heart rate and decreased heart rate variability, as monitored by the CIED, 

are indicative of increased sympathetic control (12). In addition, fluid accumulation is reflected by measurements 

of thoracic impedance. Thoracic impedance is measured between the device case and the right ventricular lead 

(37). Since electrical current conducts more rapidly through fluid than air, thoracic impedance decreases in case 

of fluid accumulation. A change in thoracic impedance may be identified about two weeks before hospitalization 

(38). 

Notably, symptoms of worsening HF can also be linked to parameters derived from CIEDs. For instance, patients 

who experience fatigue may decrease their activity levels. Moreover, an increased respiratory rate is associated 

with a rapid shallow breathing pattern, causing patients to experience dyspnea.    

Lastly, atrial fibrillation (AF) is a frequent and clinically significant comorbidity of HF; about 25% of HF patients 

experience sustained AF (39). The proportion of HF patients with AF increases with HF progression and age. One 

mechanism of AF that contributes to worsening HF is the result of the lack of effective atrial contractions and 

irregularity in the timing of the diastole. This causes the left atrial pressure to increase, whereas blood pressure, 



10 

 

stroke volume and cardiac output decrease. Moreover, AF can directly contribute to left ventricular dysfunction 

through a mechanism known as tachycardia-induced cardiomyopathy.    

 

Figure 1: A) Schematic representation of the clinical course of chronic HF, B) Hemodynamic changes leading to an episode of 

decompensation, C) Cardiac Implantable Electronic Device-derived parameters corresponding to hemodynamic changes.    

 

HRV, heart rate variability  
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2.2 Technical background 

 

Machine learning (ML) is the science within the field of Artificial Intelligence that provides systems with the 

ability to learn from data (40). It uses experiences, training data, to perform a task, aiming to optimize its 

performance in executing that task. Supervised learning is a type of ML in which the training data and the desired 

outcome are both fed to the system (41). The supervised learning algorithms compute relationships between the 

data and the desired outcome. Typically, the algorithms are trained for tasks of classification or regression.  

After model training, ML models are evaluated on test data that the model has not seen yet. A robust ML model 

generalizes well to new observations. Conversely, ML models that perform well on the training data, but not on 

the test data, are overfitted. Such models follow the noise in the training data rather than detect the relevant patterns 

(41).  

 

Extreme Gradient Boosting   

Within supervised learning, ensembling is a method of combining predictors (40). Specifically, Extreme Gradient 

Boosting (XGBoost) is a decision tree ensemble (42). A decision tree is a model that classifies or predicts by 

learning decision rules based on data features (43). The XGBoost ensemble is created by sequentially constructing 

decision trees (44). To do so, it leverages an approach known as gradient boosting. Each new tree is fit to the 

residual errors made by the previous tree. Specifically, each subsequent tree is fit to minimize the objective 

function. The objective function is a composite of the loss function 𝐿 and regularization terms Ω, which is given 

as in Equation 1 (45). 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝜃) =  𝐿(𝜃) + Ω(𝜃). (1) 

 
The regularization terms penalize model complexity and restrict the model’s training process to avoid overfitting 

(46). The loss function indicates the difference between the prediction 𝑦̂𝑖 and the true 𝑦𝑖 . In binary classification 

problems, the loss function is often represented by the logistic loss (Equation 2) (45). For a single data point, a 

simplified version of the logistic loss can be described by Equation 3, in which p denotes the probability.   

 

𝐿(𝜃) = ∑[𝑦𝑖 ln(1 + 𝑒−𝑦̂𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒𝑦̂𝑖)] . (2) 

𝐿(𝑦, 𝑝) = 𝑦 𝑙𝑜𝑔(𝑝) + (1 − 𝑦) log(1 − 𝑝) . (3) 

 

In conclusion, the XGBoost ensemble gradually performs better as more trees are added, constrained by the 

regularization terms to create a robust model. A simplified version of the structure of the XGBoost model is 

presented in figure 2.     
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Figure 2: Schematic presentation of Extreme Gradient Boosting.  

 

Hyperparameters are parameters of the learning algorithm that are set prior to model training. A subset of key 

hyperparameters of the XGBoost algorithm are depicted in table 1.  

 

Table 1: An overview of important hyperparameters for the XGBoost model (45, 46).  

 

Parameter Explanation The risk of 

overfitting as the 

parameter increases 

Learning rate The value of the learning rate scales the effect of each 

newly added tree.  

↑ 

Maximum depth Specifies the maximum allowed depth for each tree. ↑ 

Minimum child weight Minimum sum of Hessian values (second order 

derivative of the loss function) needed for a tree to 

split.  

↓ 

Subsample Fraction of the training set that is sampled to construct 

each tree.     

↑ 

 

Colsample by tree Proportion of features used to construct each tree.  ↑ 

Number of estimators Total number of trees in the model.    ↑ 

Scale position weight  Controls the balance of weights in both classes. 

Primarily used in datasets with significant class 

imbalance.   

Not applicable 

XGBoost, Extreme Gradient Boosting 

 

Support Vector Classifier  

The Support Vector Classifier (SVC) is a popular machine learning method that classifies data by fitting a 

hyperplane to a multidimensional feature space to separate classes (40). The kernel function describes the 

transformation of the data to this multidimensional feature space (41). The variety in kernel functions enable the 

SVC to identify both linear and more complex classification patterns. The goal is to find the decision boundary 

with the largest possible margin between the different classes. Figure 3 illustrates the decision boundary with a 

linear and a radial basis function kernel.  
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Figure 3: Examples of SVC hyperplanes with a linear and a Radial Basis Function (RBF) kernel. Both examples represent a two-

class classification problem. A) The linear kernel fits a linear decision boundary to separate the classes, B) The RBF kernel uses a 

Gaussian (exponential) function that allows for a non-linear decision boundary.  

  

 

RBF, radial basis function; SVC, support vector classifier  

 

The objective function determines the optimal parameters in the hyperplane to maximize the margin and is 

represented by Equation 4 (47). In this Equation, the first term describes minimizing the weight vector 𝜔 to 

maximize the margin. The second part addresses handling of misclassifications. C is the regularization parameter 

that determines the penalty of misclassifications and 𝜉𝑖  are the slack variables represent the degree of 

misclassifications (48, 49). In general, a higher value of C penalizes misclassifications on the training data, 

allowing for a more complex decision boundary.     

𝑚𝑖𝑛𝜔,𝑏,𝜉

1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝜉

𝑖

𝑙

𝑖=1

. (4) 

 

The kernel is one of the key hyperparameters of the SVC. Table 2 provides an explanation of important 

hyperparameters for the SVC.  

 

Table 2: An overview of important hyperparameters for the SVC (43, 50).  

   

Parameter Explanation The risk of overfitting as 

the parameter increases 

Kernel Describes the transformation of the data to the 

multidimensional feature space.  

Not applicable 

C Controls the trade-off between correct 

classification of training examples against 

maximizing the margin of the decision boundary.  

↑ 

Gamma* Controls the power of individual training 

examples to the decision boundary. 

↑ 

Class weight Controls the balance of weights in both classes. 

Primarily used in datasets with significant class 

imbalance.   

Not applicable 

SVC, Support Vector Classifier - *only applicable to non-linear kernels 
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Class imbalance  

A known challenge of ML models is an imbalanced dataset. The class imbalance problem occurs when the number 

of examples in one class is significantly higher than the number of examples in the other class (51). In the general 

context of clinical diagnostics, ‘healthy’ instances often outnumber ‘disease’ instances. As a result, class 

imbalance is a common problem in ML for clinical applications (52). Standard ML models often assume a 

balanced distribution between classes. This means that in case of a two-class classification problem, a sample is 

classified as the positive class if the predicted probability exceeds 0.5. With an imbalanced dataset, this may 

introduce bias towards the majority class. Conversely, the model may underfit to the minority data. Additionally, 

performance metrics such as predictive accuracy may overestimate the model’s performance. Multiple approaches 

have been proposed to deal with class imbalance. For example, oversampling the minority class, downsampling 

the majority class, adjusting misclassification costs and changing the decision threshold are amongst the strategies 

to tackle this problem (51).     

Synthetic minority oversampling technique (SMOTE) is a tool that addresses class imbalance by oversampling 

the minority class (53). A simplified version of this technique is represented by Equation 5. The technique 

randomly selects samples 𝑥𝑖  that serve as initial minority class samples. For each selected sample 𝑥𝑖  in the 

minority class, it finds the k closest neighbors within the same class. Synthetic samples are created along the 

vector between the original sample 𝑥𝑖   and one of the k closest neighbors 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 . The random scalar 𝑐 (value 

between 0 and 1) effectively determines the position of the new sample along the vector.  

  

(𝑥𝑛𝑒𝑤) = 𝑥𝑖 + 𝑐 ∗ (𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑥𝑖). (5) 

 

Model development  

In general, ML model development consists of a number of steps: data preparation, selection and finetuning of 

the model, training and performance evaluation.  

Models are typically optimized, trained and evaluated using cross-validation (CV) (41). In K-fold CV, the dataset 

is randomly split in K number of subsets, or folds. The model is trained and evaluated K times, with a different 

fold for performance evaluation in each iteration and training on the other K - 1 folds. Leave-One-Out cross-

validation is another cross-validation strategy that is often preferred for smaller or highly imbalanced datasets. 

Leave-one-out cross-validation uses each individual observation for evaluation, and the remaining observations 

for training. The performance of the model is obtained by averaging the performance across all validation 

observations. In general, the performance estimate obtained with leave-one-out cross-validation is subject to a 

degree of variance since each iteration uses almost all observations for training. In contrast, the performance 

estimate obtained with K-fold CV may exhibit some bias. A schematic presentation of both methods is provided 

in Figure 4.   
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Figure 4: Schematic presentation of 5-fold cross-validation (CV) and Leave-One-Out cross-validation (LOOCV). The data is split 

into a training set (blue) and a validation set (red). In 5-fold CV, the data is split in 5 subsets. In each fold, one subset is used for 

validation and the remaining subsets for training. In LOOCV, each single observation is used for validation once, and all remaining 

observations are used for training.   

 

 

Bayesian optimization  

An important step within the process of model development is hyperparameter tuning. During hyperparameter 

tuning, the performance of the model is optimized by evaluating the performance with different combinations of 

hyperparameters. Bayesian optimization is an efficient hyperparameter tuning method to iteratively propose new 

hyperparameter settings based on the performance of prior settings.  

The key concept of Bayesian optimization is a sequential model-based approach that is updated throughout the 

process to drive optimization decisions (54, 55). The aim is to search for the combination of hyperparameters that 

minimizes the performance loss on the validation set. With each iteration, the algorithm constructs a probabilistic 

model to capture how hyperparameters affect performance loss. To this aid, often a Gaussian Process is exploited. 

The output is an estimate of the expected performance loss and the uncertainty of the prediction. Equipped with 

these outputs, the acquisition function is leveraged to guide the selection of a new combination of hyperparameters 

(56). These functions represent a trade-off between exploration (investigating unknown settings) and exploitation 

(focusing on settings with high predicted performance). The search space defines the range and scale of the 

hyperparameters that are optimized (57).   
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3 

Methods 

 

3.1 Study population and data collection 

 

For this master thesis, we considered all HF patients under active follow-up in the HeartLogic cohort at the Leiden 

University Medical Center (LUMC) in October 2023. Patients who experienced at least one episode of 

decompensated HF since activation of HeartLogic were included.  

Patients in the HeartLogic guided care path at the LUMC are followed-up according to a standardized protocol. 

In case of an alert, the HF care team is notified. The patient is contacted by phone within 72 hours for structural 

evaluation of early signs and symptoms of HF decompensation. For this purpose, a dedicated heart failure 

questionnaire is used that includes assessment of symptoms, signs, weight, blood pressure and heart rhythm (23). 

In case 2 or more criteria of HF decompensation are met, the alert is considered true positive. All patients with a 

true positive alert receive lifestyle advice to limit fluid and salt intake. Additional therapeutic course of action 

depends on the severity of symptoms and signs. In most cases, oral diuretic therapy is up-titrated for several days 

(23, 26). Patients without symptoms or signs of HF decompensation or any other suspected diagnoses are 

followed-up again after two, six and ten weeks. In case no symptoms or signs of HF decompensation arise during 

this period of follow-up, an alert is deemed false positive.  

The follow-up protocol within the HeartLogic research consists of classification of each HeartLogic alert as true 

or false positive. Moreover, patients are offered the possibility to contact the HF nurses when they experience 

symptoms or signs of HF decompensation. An episode of HF decompensation without a preceding HeartLogic 

alert is considered false negative. For the purpose of this thesis, all alert follow-up data was made available.  

3.2    Preprocessing and feature extraction  

 

Boston Scientific provided the daily recorded CIED extracted sensor data and the corresponding HeartLogic index 

from each patient from the moment of inclusion in the HeartLogic cohort of the LUMC up to October 25, 2023. 

Fourteen parameters with a known association to HF decompensation were extracted from the CIED sensor data. 

An overview of these parameters is presented in table 3. In the context of model development, these parameters 

are referred to as features. Moreover, accounting for the temporal nature of the classification problem, we included 

a set of temporal features in the models. For S1, S3, impedance, respiratory rate, night heart rate, 24-hour heart 

rate, heart rate variability (HRV) and activity the difference between a value on day X and the value 14 days prior 

was calculated and implemented as additional ‘delta’ features (Equation 6). Lastly, previous studies have 

demonstrated the significance of the rate at which cardiac filling pressures and thoracic impedance change in 

relation to HF decompensation (32, 58). Therefore, the rate of increase, i.e. the slope, of S3 and thoracic impedance 

during seven days was calculated and included as feature, as depicted in Equation 7. As a result, twenty-four 

features were selected from the CIED data for model development.  
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𝐹𝑑𝑎𝑦 𝑥 = 𝐹𝑑𝑎𝑦 𝑥 − 𝐹𝑑𝑎𝑦 𝑥−14. (6) 

 

𝐹𝑑𝑎𝑦 𝑥 =  
𝐹 𝑑𝑎𝑦 𝑥 − 𝐹𝑑𝑎𝑦 𝑥−7

𝐹𝑑𝑎𝑦 𝑥−7

. (7) 

 

Table 3: An overview of the parameters extracted from Cardiac Implantable Electronic Devices (CIED), the methods used for 

measurement, the clinical relevance of the parameter in relation to worsening HF, and the direction of the change in case of worsening 

HF (27, 59, 60).   

 

Parameter Measurement   Clinical relevance  Direction 

of change 

Heart sounds 

First heart sound (S1) 

Third heart sound (S3) 

 

Both are derived from accelerometer 

data from accelerations through RV 

lead 

 

 

Ventricular contractility 

Cardiac filling pressures 

 

↓ 

↑ 

Thoracic impedance 

 

 

Impedance between RV lead and pulse 

generator  

Fluid accumulation ↓ 

Respiratory rate 

 

 

Respiratory rate, derived from 

impedance measurements   

Dyspnea  ↑ 

Heart rate 

Daily heart rate 

Night heart rate 

 

Heart rate variability 

 

 

Mean 24-hour heart rate 

Mean heart rate between midnight and 6 

a.m. 

SD of sinus-to-sinus intervals 

Sympathetic control  

↑ 

 

↓ 

Atrial tachyarrhythmias 

Duration 

Heart rate 

Count 

 

 

Hours in ATR mode 

Mean and maximum  

Number of episodes  

Known precipitating factor of 

HF decompensation  

 

↑ 

Sleep incline 

 

 

Angle between torso and the horizontal 

plane during sleep 

Orthopnea ↑ 

%Ventricular pacing  

 

 

Percent of beats paced through LV lead Marker for correction of 

ventricular dyssynchrony 

↓ 

Activity Active hours per day, derived from 

relation between respiration and heart 

rate  

Overall health status and 

fatigue 

↓ 

 

AF, atrial fibrillation; AT, atrial tachycardia; ATR, atrial tachy response; LV, left ventricular; RMS, root mean square; RV, right 

ventricular; SD, standard deviation  
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3.2 Model development  

 

The twenty-two extracted features serve as the input to the models. Furthermore, based on the alert follow-up data 

and additional data retrieved from hospital information systems, a daily output was generated that represents the 

patient’s daily classification of HF status as either ‘stable HF’ or ‘unstable HF’. In this context, ‘stable HF’ 

indicates that HeartLogic was not in-alert and the patient was not experiencing an episode of HF decompensation 

undetected by HeartLogic. Contrarily, ‘unstable HF’ indicates HeartLogic was in-alert, given the alert was 

assigned as true positive according to the HeartLogic protocol, or the patient experienced HF decompensation not 

detected by HeartLogic. As a result, in terms of model development, the model is trained to a two-class 

classification problem.     

For each patient, two patient-specific classification models were developed. The classifiers considered for model 

development were XGBoost and SVC. The methods of these models have been described in paragraph 2.2.   

 

Performance evaluation  

The XGBoost model classifies a daily observation as ‘unstable HF’ if the predicted probability is higher than 0.5. 

Alternatively, the SVC assigns the observations to a class based on the decision boundary. If the observation lies 

on the ‘unstable HF’ side of the decision boundary, the observation is classified accordingly. The threshold at 

which an observation is classified to a class is referred to as the decision threshold. Effectively, this threshold is 

dynamic. For instance, in XGBoost the decision threshold can be altered so that it only classifies an observation 

as ‘unstable HF’ if the predicted probability is higher than 0.6. Similarly, the decision threshold for a SVC can be 

adjusted to classify an observation as ‘unstable HF’ only if its distance to the decision boundary exceeds a 

specified value.    

 

The performance of the models was evaluated through the Area Under the Precision-Recall Curve (AUPRC). The 

Precision-Recall (PR) curve is a plot of recall, equivalent to sensitivity, against precision, equivalent to positive 

predictive value, across all decision thresholds. An example of a PR curve is provided in Figure 5. Therefore, the 

AUPRC provides a robust estimation of the overall model’s performance, independent of the decision threshold. 

This performance metric is typically preferred in scenarios with significant class imbalance as it focuses on the 

performance of the model to classify the ‘positive’ (minority) class (40). As a result, a higher AUPRC typically 

indicates fewer false positives and false negatives.  

 

Figure 5: Examples of A) Precision-Recall curve, and B) Receiver Operating Characteristic curve.  
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Anther metric that was obtained for performance evaluation is the area under the receiver operating characteristic 

curve (AUROC). The receiver operating characteristic (ROC) curve is a plot of false positive rate, equivalent to 

1 – specificity, against sensitivity. Balanced accuracy is another useful performance metric in case of a class 

imbalanced dataset (61). Given that it represents both the proportion of true positives and proportion of true 

negatives, as depicted in Equation 8, both classes are considered equally important. Lastly, sensitivity, specificity, 

positive predictive value (PPV) and negative predictive value (NPV) were acquired, which were calculated 

according to Equations 9-12.  

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

2
(

𝑇𝑃

𝑃
+

𝑇𝑁

𝑁
) . (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (10) 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (11) 

 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
. (12) 

 

Process of model training and testing 

Figure 6 outlines the model development process. The first step is a stratified split of the data in a development 

dataset used for model training and testing (85%), and a dataset that represents an independent test set (15%). The 

independent test set contains data that the model does not see during the training process.  

Subsequently, the development dataset is used for Bayesian optimization in a 5-fold cross-validation. For each 

combination of hyperparameters, the data is split in five subsets. Each subset serves as a validation set once. The 

model is fitted to the remaining four subsets. The performance of a given set of hyperparameters is defined as the 

average AUPRC of the model on the validation sets. During optimization, the number of iterations indicates the 

number of hyperparameter combinations that is evaluated. XGBoost optimization was conducted with 50 

iterations. Since training a SVC can be computationally expensive, optimization of the SVC was conducted with 

10 iterations. The search spaces defined for optimization of the model specific hyperparameters are presented in 

Table S1 and Table S2 in the Supplementary Material.  

The hyperparameters that performed best on the validation sets were implemented in the models. Next, for model 

training and testing, leave-one-out cross-validation was performed. In each iteration, a single observation was 

used for testing. The remaining data made up the training set that the model was fitted to. The predictions made 

on the test observations were used for performance evaluation. Of note, when evaluating performance through 

leave-one-out cross-validation, the combined test observations are referred to as the development test set.  

Finally, both models were fit once more to the entire development set. The fitted models were then applied to the 

independent test set to retrieve the performance of the model to unseen data. Ultimately, for each patient, the 

model that resulted in the best performance on the independent test set was selected.   
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Figure 6: Schematic presentation of the model development process.  

  

 

During optimization and model training, the training data is fed into a transformation pipeline. The pipeline is 

depicted in Figure 7. First, we addressed any missing values in the data. For a given feature, all missing values in 

the data were imputed with the median value of that feature, derived from the training data. In case all values from 

a feature were missing, these were all set to 0. Regarding missing data, it is key to understand why data is missing. 

Missing data may be due to random occurrences, specific causes or structural deficiencies in the data (62). To 

address this challenge, information was gathered on the nature of the missing data. For each patient, the proportion 

of missing values was retrieved and potential causes for missingness were explored.   

 

Figure 7: (Training) data transformation pipeline. Successively, we performed: missing data imputation, minority class oversampling 

and feature scaling.      

    

SMOTE, synthetic minority oversampling technique 

 

Hereafter, the SMOTE algorithm was applied to the training data to oversample the minority class to achieve a 

1:1 class distribution (Figure 8). As a result, the fitted model is less subjected to bias towards the majority class. 

 

Figure 8: Simplified schematic presentation of synthetic minority oversampling technique. The class imbalance problem (3:1) on the 

left is handled by oversampling of the minority class to a class distribution of 1:1.   
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The final step in the transformation pipeline prior to model training is feature scaling. Numerical features that are 

on different scales create potential issues for ML models. Most ML models do not perform well when the features 

are on different scales. Feature scaling transforms the scale of the features to a uniform range. With regards to the 

models developed in this study, tree-based models like XGBoost do not inherently require feature scaling. 

Contrarily, a SVC does require feature scaling as it relies on distance-based calculations (40, 62). For consistency, 

feature scaling was applied to both models. Within the transformation pipeline, two different approaches for 

feature scaling were studied: standardization and robust scaling. Standardization centers each feature around the 

mean; each feature has a mean of 0 and a standard deviation (SD) of 1. Similarly, robust scaling centers features 

around the median. In a dataset with a significant amount of outliers, robust scaling often performs better (43). 

Within each iteration of the 5-fold cross-validation and the leave-one-out cross-validation, the scaler was fitted to 

the training data and then subsequently applied to the test data.  

     

𝑋𝑖
′ =  

𝑋𝑖 − 𝑚𝑒𝑎𝑛

𝑆𝐷
 . (12) 

𝑋𝑖
′ =  

𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛

𝐼𝑄𝑅
 . (13) 

 

The parameters involved in the data transformation pipeline were treated as hyperparameters. These 

hyperparameters are applicable to both the XGBoost model and the SVC. The defined search space for the 

parameters is shown in table 4. The number of neighbors in the SMOTE algorithm and the type of scaler are 

optimized within the Bayesian optimization process. Of note, in case the number of neighbors k exceeded the 

number of samples N within the minority class, the number of neighbors was automatically set to N – 2.  

 

Table 4: Hyperparameters involved in the data processing pipeline with the search space defined for the Bayesian optimization 

process.  

Hyperparameter Search space 

Number of neighbors in SMOTE 3, 4 or 5 

Scaler Standard scaler (Equation 12) or robust 

scaler (Equation 13) 

 

SMOTE, synthetic minority oversampling technique 

 

Feature importance  

To gather more information on what drives the model’s predictions, it is valuable to determine the contribution of 

individual features to the predictive performance of the model. To this end, XGBoost models offer a 

straightforward attribute that quantifies the importance of each feature. In this study, the feature importance is 

defined as the gain; the increase in AUPRC brought by a given feature. All feature gains in a model sum up to 1. 

Therefore, if all features (n = 24) contributed equally to the model’s predictions, the gain of each feature would 

be approximately 0.04. To provide a conclusion on the feature significance throughout all XGBoost models, the 

average feature contributions were computed across all models with an AUPRC > 0.65.  
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Finally, to integrate the technical and clinical aspects of this study, one case is discussed to illustrate the 

development of the XGBoost model, the PR curve and the interpretation of the feature contributions.   

 

3.3 Software and statistical analysis  

Model development and statistical analyses were conducted in Python 3.11.6 with the following packages: 

Imblearn 0.11.0, Matplotlib 3.8.2, NumPy 1.26.3, Pandas 2.1.2, Pyreadstat 1.2.6, Scikit-learn 1.3.2, Scikit-

optimize 0.10.1, Statsmodels 0.14.1 and Xgboost 2.0.3. 

   

Baseline demographic and clinical data were retrieved from the hospital patient information systems (EPD-Vision 

and HiX). Collected data included age, gender, type of CIED, etiology of heart disease, left ventricular ejection 

fraction, comorbidities, cardiac history, medication and New York Heart Association (NYHA) class. Normally 

distributed descriptive data are reported as mean ± SD and non-normally distributed data as median ± interquartile 

range (IQR). Normality testing was performed with a Shapiro-Wilk test. Model performance was compared with 

Wilcoxon Signed Rank test. Correlation coefficients were calculated using Pearson’s r and Spearman’s . For all 

analyses, a P-value of ≤ 0.05 was considered statistically significant.  
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4 

Results 
 

4.1 Patient population 

 

At the moment of inclusion (October 2023), 166 patients were under active follow-up at the LUMC. Boston 

Scientific provided data of 126 of these patients. In total, 62 of these patients experienced at least one episode of 

HF decompensation and were therefore included in the study. Table 5 summarizes the baseline patient 

characteristics. Overall, median age was 69 (61-77) years, 73% of patients were male and the median left 

ventricular ejection fraction was 34%. The majority of patients had ischemic cardiomyopathy (56%) and NYHA 

class 1 (44%) or class 2 (26%) HF at the moment of inclusion in the HeartLogic cohort. Moreover, 37 (60%) 

patients had a cardiac resynchronization therapy with defibrillator (CRT-D) device and 25 (40%) an implantable 

cardioverter-defibrillator (ICD). At baseline, the prevalence of AF was 45% and of hypertension was 44%.  

 

Table 5: Baseline patient characteristics (n=62).   

 

Demographics (n=62) 

Age, median [IQR] 69 [61-77] 

Male, n (%)  45 (73) 

Years since HF diagnosis, median [IQR] 15 [6-19] 

BMI, median [IQR] 27 [24-30] 

LVEF, median [IQR] 34 [28-42] 

NYHA-class 

- Class 1, n (%) 

- Class 2, n (%) 

- Class 3, n (%) 

- Class 4, n (%) 

 

27 (44) 

16 (26) 

11 (18) 

8 (13) 

Etiology of HF 

- Ischemic, n (%) 

- Non-ischemic, n (%) 

- Congenital heart disease, n (%) 

 

35 (56) 

21 (34) 

6 (10) 

Laboratory values 

eGFR, median [IQR] 71 [53-83] 

NT-ProBNP, median [IQR] 541 [42-1413] 

Device 

CRT-D, n (%) 

- Percentage biventricular pacing, mean ± SD 

37 (60) 

84 ± 30 

ICD, n (%) 25 (40) 

Cardiac history 

Valve surgery, n (%) 12 (19) 

CABG, n (%)  10 (16) 
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Comorbidities 

Atrial fibrillation, n (%) 

- Paroxysmal, n (%) 

- Permanent/long persistent, n (%)   

28 (45) 

24 (39) 

4 (6) 

Hypertension, n (%) 27 (44) 

COPD, n (%) 3 (5) 

Diabetes Mellitus, n (%) 8 (13) 

Ischemic CVA/TIA, n (%) 7 (11) 

Medical therapy 

Beta-blocker, n (%) 58 (94) 

ACE-I/ARB/ARNI, n (%) 

- ACE-I, n (%) 

- ARB, n (%) 

- ARNI, n (%) 

61 (98) 

29 (47) 

14 (23) 

18 (29) 

MRA, n (%) 32 (52) 

Diuretics, n (%) 43 (69) 

Ivabradine, n (%)  2 (3) 

Digoxin, n (%)  2 (3) 

 

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin 2 receptor blocker; ARNI, angiotensin receptor neprilysin 

inhibitor; BMI, Body Mass Index; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease, CRT, cardiac 

resynchronization therapy; CVA, cerebral vascular accident; eGFR, estimated glomerular filtration rate; ICD, implantable cardioverter 

defibrillator; IQR, interquartile range; LVEF, left ventricular ejection fraction; MRA, mineral corticoid inhibitor; NYHA, New York 

Heart Association; NT-ProBNP, n-terminal pro B-type natriuretic peptide; TIA, transient ischemic attack.  

4.2 Alert follow-up and characteristics  

 

Median follow-up duration was 35 months (IQR: 23-49). In total, 187 patient-years of sensor data were collected. 

Throughout all patients, 153 episodes of HF decompensation occurred during follow-up. This corresponds to 0.82 

episodes per patient-year (PPY). Of those, 142 were true positive HeartLogic alerts and 11 were false negative 

episodes of HF decompensation, not detected by HeartLogic. Most patients (n = 33, 53%) experienced one episode 

during follow-up. Moreover, 10 patients (15%) experienced 2 episodes, 7 patients (11%) 3 episodes, 4 patients 

(6%) 4 episodes and 2 patients (3%) 5 episodes. Lastly, 5 patients (13%) experienced 6 episodes or more. One 

patient experienced a maximum of 13 episodes of HF decompensation. The median duration of an episode was 

31 days (IQR: 20-49 days). 

 

Figure S1 and Figure S2 in the Supplementary Material provide a complete overview of the follow-up of all 

episodes. In summary, of 153 episodes, most (n = 125, 82%) could be managed by the HF care team in the 

outpatient setting. In most cases (n = 115, 75%), oral diuretic therapy was escalated in response to an episode. In 

16 cases (10%), oral HF medication was optimized, either alone or in addition to diuretics. In some cases, these 

actions were insufficient to recompensate the patient or another form of therapy was needed. These episodes 

resulted in hospitalizations for HF without intravenous (IV) diuretic therapy (n = 5, 3%), administration of IV 

diuretics (n = 5, 5%), electrical cardioversion (n = 9, 6%) or an unscheduled outpatient clinic visit (n = 6, 4%).  



25 

 

4.3 Data analysis    

 

Class distribution   

The median follow-up of 35 months corresponds to a median number of 1064 days (IQR: 696-1477), or in terms 

of model development, observations. The median number of observations labeled as ‘unstable HF’ is 61 (IQR: 

28-117), representing 7.2% (IQR: 2.3-13%) of the data. Table S3 in the Supplementary Material outlines the 

class distribution across all patients.     

 

Missing data  

To address the nature of missing data, the proportion of missing samples of each feature was computed for all 

patients. Of significance, LV pacing, HRV and sleep incline were not available for a number of patients. 

Specifically, of 21 patients with a CRT-D device, no LV pacing data were available. HRV and sleep incline data 

were missing in 21 and 36 patients, respectively. As a result, all values were set to 0. With regards to LV pacing, 

EPD-Vision was accessed to rule out potential issues relevant to the classification of the patient’s HF status. 

Computation of sleep incline requires knowledge of a sleep period specified by the patient. This could be the 

reason of missing sleep incline. Finally, it was concluded that the missingness was not related to the outcome of 

the models; the classification of a patient’s HF status. All remaining missing feature values were imputed with 

the median value computed on the training data.  

 

4.4 Hyperparameter optimization 

 

The Bayesian optimization process provided the hyperparameters for both models for all patients. Thereafter 

hyperparameters were fixed, as presented in Table S4 and Table S5. 

 
4.5 Performance evaluation 

 

After the hyperparameters were fixed, the models were trained and tested through leave-one-out cross-validation 

on the development dataset and, finally, tested on the independent test set. For all individual models the specified 

performance metrics were computed. Table 6 compares the average performance of the SVC and the XGBoost 

models. First of all, the XGBoost models achieved higher AUPRCs in the independent test set, 0.63 ± 0.28 versus 

0.57 ± 0.26 (p < 0.01). Observed PPV (or precision) of the XGBoost models in the independent test set was 0.57 

± 0.27 and observed sensitivity was 0.65 ± 0.27. Overall, the models exhibit strong AUROC (0.90 ± 0.11 versus 

0.90 ± 11, p = 0.097), specificity (0.80 ± 0.25 versus 0.94 ± 0.071, p < 0.01) and NPV (0.92 ± 0.22 versus 0.94 ± 

0.071, p = 0.90), with XGBoost models slightly outperforming the SVC models.   
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Table 6: Average performance of the SVC and XGBoost models, obtained with leave-one-out cross-validation and the independent 

test set.  

 

Performance 

metric 

SVC 

LOOCV 

SVC 

independent 

test 

XGB 

LOOCV 

XGB 

independent 

test 

p-value 

LOOCV 

p-value 

independent 

test 

AUPRC 0.50 ± 0.25 0.57 ± 0.26 0.60 ± 0.25 0.63 ± 0.28 6.9*10-8 1.5*10-3 

AUROC 0.87 ± 0.12 0.90 ± 0.11 0.91 ± 0.076 0.90 ± 0.13 3.9*10-6 0.097 

Balanced accuracy 0.76 ± 0.12 0.78 ± 0.16 0.79 ± 0.10 0.80 ± 0.13 0.13 0.36 

Sensitivity (recall) 0.75 ± 0.24 0.76 ± 0.29 0.64 ± 0.22 0.65 ± 0.27 1.9*10-3 6.1*10-3 

Specificity 0.78 ± 0.25 0.80 ± 0.25 0.93 ± 0.067 0.94 ± 0.071 5.7*10-8 3.3*10-8 

PPV (precision) 0.35 ± 0.23 0.41 ± 0.28 0.52 ± 0.20 0.57 ± 0.27 1.3*10-8 1.3*10-5 

NPV 0.92 ± 0.21 0.92 ± 0.22 0.97 ± 0.032 0.96 ± 0.041 0.27 0.90 

 

Performance metrics are presented as mean ± standard deviation.  

AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic; LOOCV, leave-one-out cross-

validation; SVC, Support Vector Classifier; XGBoost, Extreme Gradient Boosting   

 

For all individual patients, one model was selected; the model that resulted in the highest AUPRC when applied 

to the independent test set. In total, the XGBoost model was selected for 51 patients and the SVC for 11 patients. 

The performance outcomes of these models are detailed in Table 7. On average, the models demonstrated a 

moderate AUPRC of 0.61 ± 0.25 on the development test set and 0.61 ± 0.28 on the independent test set. The 

average balanced accuracy was 0.80 ± 0.094 on the development test set and 0.79 ± 0.13 in the independent test 

set. Lastly, of significance, the performance metrics obtained with the leave-one-out cross-validation and the 

independent test set are closely aligned.          

 

Table 7: Average performance of final models: 52 XGBoost models and 11 SVC models. Performance metrics were obtained from 

predictions on the development test set with leave-one-out cross-validation and on the independent test set.     

 

Performance metric LOOCV Independent test 

AUPRC 0.61 ± 0.25 0.61 ± 0.28 

AUROC 0.92 ± 0.064 0.91 ± 0.090 

Balanced accuracy 0.80 ± 0.094 0.79 ± 0.13 

Sensitivity (recall) 0.68 ± 0.19 0.66 ± 0.26 

Specificity 0.92 ± 0.13 0.92 ± 0.14 

PPV (precision) 0.52 ± 0.21 0.57 ± 0.28 

NPV 0.97 ± 0.033 0.96 ± 0.044 

 

Performance metrics are presented as mean ± standard deviation.  

AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic; LOOCV, leave-one-out cross-

validation; SVC, Support Vector Classifier; XGBoost, Extreme Gradient Boosting   

 

The standard deviations in the observed AUPRCs indicate a substantial variation in performance throughout the 

different models. The variability in performance may be attributed to the class imbalance in the datasets. To 

explore this, the relations between the number and proportion of samples in the ‘unstable HF’ class and the 



27 

 

AUPRC were studied, as illustrated in Figure S3. Both the number and proportion of samples in the ‘unstable HF’ 

class were positively correlated to the AUPRC. The proportion of samples in the ‘unstable HF’ class exhibited a 

moderate but significant correlation to the AUPRC, with Pearson r = 0.52, with p = 1.8*10-5 and Spearman  = 

0.55, with p = 3.1*10-6.  

 

4.6 Feature importance  

 
Of all XGBoost models, the average feature contributions were derived, represented by the gain of each feature. 

Importantly, the average gain was computed only from the subset of models in which the feature was available. 

Figure 9 presents the average feature contributions of all XGBoost models that resulted in a AUPRC > 0.65. In 

descending order, the five most significant features in the independent test set predictions were 24-hour heart rate, 

respiratory rate, impedance, arrhythmia duration and night heart rate.    

 

Figure 9: Bar plot indicating the average feature contributions in the XGBoost models that resulted in a AUPRC >0.65. Each bar 

represents a different feature. The length of the bar represents the gain, which is defined as the relative increase in AUPRC brought 

by a given feature. The sum of all feature gains in a model equals 1. The mean was calculated from the subset of models in which the 

feature was available.   

A) Average feature importance from the leave-one-out cross-validation predictions (n = 29 models).  

 

B) Average feature importance from the independent test set predictions (n = 34 models).  

 

AUPRC, area under precision-recall curve; HR, heart rate, HRV, heart rate variability; LV, left ventricular; S1, first heart sound; S3, 

third heart sound; XGBoost, Extreme Gradient Boosting   
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Case: patient 150  

Patient 150 experienced one episode of HF decompensation. During this episode, the patient presented with signs 

and symptoms of HF decompensation, for which oral diuretic therapy was enhanced. Since the symptoms did not 

resolve, the patient was clinically admitted and received IV diuretic therapy. Thereafter, the patient was 

discharged. The total episode lasted 93 days. Therefore, for the purpose of model development, 93 observations 

of ‘unstable HF’ were at hand. The model development dataset consisted of 423 observations of ‘stable HF’ and 

79 observations of ‘unstable HF’. The remainder of ‘unstable HF’ observations were set aside for the independent 

test set. The SMOTE algorithm was applied to upsample the minority class to achieve an equal class distribution, 

resulting in 423 observations in both classes.  

Figure 10 presents the PR and ROC curves of the XGBoost model retrieved from the leave-one-out cross-

validation. Accordingly, the AUPRC was 0.94 and AUROC was 0.98 on the development test set. On the 

independent test set, the AUPRC was 0.88 and AUROC 0.97 (Table S9).      

 

Figure 10: Precision-recall curve for patient 150  

 

LOOCV, leave-one-out cross-validation; PR, precision-recall; XGB, Extreme Gradient Boosting 

 

The XGBoost model’s average feature gains revealed the most important features. Features with a gain above 

0.04 were, provided in descending order: night heart rate, respiratory rate, 24-hour heart rate, arrhythmia duration, 

impedance, delta impedance and S3. Figure 11 illustrates the trends of the key features from the 60 days preceding 

the episode to the end of the episode.  
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Figure 11: Trend of features from 60 days prior to the episode of HF decompensation (day 0) to the end of the episode. Figure A, B 

and C show an increase in heart rate and respiratory rate, related to increased sympathetic drive. Moreover, increased respiratory 

rate is associated with dyspnea. Figure D) indicates that the patient developed an atrial tachyarrhythmia during the episode. Figure 

E) depicts fluctuating impedance values. The general trend shows an initial decrease which is followed by an increase. Possibly, 

impedance stabilized after diuretic therapy was enhanced. Figure F) illustrates a gradual increase in S3, indicative of elevated filling 

pressures.    
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5 

Discussion  
 

5.1 Discussion of results   

 

The present study was a proof-of-concept for the development of personalized machine learning models for the 

timely identification of HF decompensation. To this aid, two ML classification models were developed for all 

patients, an XGBoost classifier and a SVC. The average performance of both models was moderate, with AUPRC 

on the development test set of 0.50 ± 0.25 for the SVC and 0.60 ± 0.25 for the XGBoost (p = 6.9*10-8). Similar 

results were obtained on the independent test set, 0.57 ± 0.26 for the SVC and 0.63 ± 0.28 for the XGBoost (p = 

1.5*10-3). Whereas the SVC demonstrated higher sensitivity (or recall) on the independent test sets than the 

XGBoost (SVC: 0.76 ± 0.29, XGB: 0.65 ± 0.27, p = 6.1*10-3), the PPV (or precision) of the SVC was significantly 

lower (SVC: 0.41 ± 0.28, XGB: 0.57 ± 0.27, p = 1.3*10-5). Consequently, in general, the XGBoost provides a 

better precision-recall trade-off, and therefore a more robust classification. After selecting the best model for each 

patient, the average AUPRC increased slightly to 0.61 ± 0.25 on the development test set and 0.61 ± 0.28 on the 

independent test set. On average, the models provide high AUROC (0.91 ± 0.090) and a good balanced accuracy 

(0.79 ± 0.13) on the independent test set. However, a sensitivity of 0.66 ± 0.26 and PPV of 0.57 ± 0.28 demonstrate 

the limitations of the models to accurately identify ‘unstable HF’ and suggest room for improvement.  

 

The highly comparable results on the development test set and the independent test set suggest that the models 

were not overfit to the training data. However, the majority of patients (n = 33, 53%) experienced one episode of 

HF decompensation throughout the entire follow-up period. As a consequence, the model is always somewhat 

overfit to detect that episode of HF decompensation. Therefore, it could be of interest to study the models 

developed for patients who experienced multiple episodes during follow-up. Specifically, training the model on a 

single episode and subsequently testing its ability to detect subsequent episodes could be a feasibly strategy. A 

disadvantage of this approach is that it will exacerbate the class imbalance in the datasets.  

 

Notably, the performance metrics demonstrate a significant variability in the performance of the individual 

models. Evidently, for some patients the models have very low predictive ability. It is key to understand why the 

performance of the models demonstrates a substantial variation across different patients. Several potential causes 

may be identified. Firstly, a significant class imbalance may limit the model’s predictive ability. SMOTE was 

applied to help mitigate part of the class imbalance problem. Nonetheless, while synthetically created observations 

are assumed to belong to the minority class, a degree of uncertainty remains whether a synthetic observation is 

truly a minority class sample (63). To explore the relation between the class imbalance and model performance, 

the correlation coefficients between the number of ‘unstable HF’ observations, the proportion of ‘unstable HF’ 

observations and the AUPRCs were computed. Moderate correlation coefficients were found for both the number 

of ‘unstable HF’ observations (Spearman  = 0.50, p = 3.3*10-5) and for the proportion of ‘unstable HF’ 
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observations (Spearman  = 0.55, p = 3.1*10-5). These results suggest that at least part of the variation in model 

performance may be attributed to the class imbalance problem. Secondly, the number of episodes that a patient 

experienced could account for part of the observed variability. Thirdly, a reason for varying model performance 

could be the complex etiology of HF decompensation, which is not captured by the features in all patients. To 

provide a concise answer to this question, the models that perform poorly should be further studied in detail.  

 

For model development, a total of twenty-four features were selected. The individual feature contributions (gains) 

to the XGBoost predictions were highest for 24-hour heart rate, respiratory rate, impedance, arrhythmia duration 

and night heart rate. However, it must be noted that the mean was derived only from the subset of models in which 

the given feature was available. As a result, models that did not use arrhythmia duration for their predictions, since 

no AF or atrial tachycardia (AT) occurred, were excluded from the feature ranking. Moreover, data on LV pacing 

was available for only 16 CRT-D patients. Therefore, the identified significant contribution of arrhythmia duration 

and LV pacing to the predictions applies only to a specific subset of patients. In addition to the aforementioned 

features, other significant features with an average contribution > 0.04 to the test set predictions were S1, S3, 

number of AF/AT episodes, mean ventricular rate during AF/AT, HRV and ‘delta’ impedance. Interestingly, on 

average, the derived ‘delta’ and ‘slope’ features have relatively low individual feature contributions. This suggests 

that these features may not introduce significant new information. These features were included in the models to 

capture the temporal nature of the classification. In future studies, it could be advantageous to investigate 

additional time-domain features (62, 64).  

 

5.2 Future research   

 

The models developed in this study provide a daily classification of the patient’s HF status, as ‘unstable’ or 

‘stable’. When considering further improvements of the models, post-optimization techniques could focus on 

translating the output to a metric more aligned with the clinical practice. For instance, HeartLogic is an alert-based 

algorithm that computes an index value, issuing an alert when the index surpasses the threshold of 16. Conversely, 

Medtronic (Minneapolis, Minnesota, USA) devices are employed with the TriageHF algorithm, which generates 

a monthly risk status (65, 66). This output represents the probability of HF hospitalization within the next 30 days, 

and is translated to a low, medium or high risk status. Effectively, the aim of post-optimization in this context is 

to design conditions that should trigger an alert.  

 

Conceptually, enhanced performance of the personalized models could be achieved by including clinical data 

relevant to HF in the models. Beyond the scope of CIED-derived monitoring, variables that are typically included 

in predictive HF models are age, gender, systolic blood pressure, laboratory values (sodium, creatinine, 

hemoglobin, blood urea nitrogen, N-terminal pro B-type natriuretic peptide), diabetes, NYHA class and ejection 

fraction (67). Of note, another algorithm that has been developed for the purpose of CIED-derived monitoring is 

HeartInsight, produced by Biotronik SE & Co. KG (Berlin, Germany) (68). Notably, this model is adjusted with 

a baseline variable, for which the Seattle Heart Failure Model (SHFM) is used (69). SHFM includes gender, age, 

baseline NYHA, LVEF, medication use, systolic blood pressure, etiology of HF, and multiple laboratory values. 
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For this proof-of-concept study, a SVC and an XGBoost model were developed. In future research it is interesting 

to consider other models as well. The models developed in this study rely on data from previous episodes of HF 

decompensation. Ideally, a model that can predict HF decompensation in patients who have not previously 

experienced an episode would be developed. This approach aligns with anomaly detection, an unsupervised ML 

task that is trained with only ‘normal’ observations (40). Moreover, recent studies with AI models in the field of 

HF care explored with amongst others neural networks, classification and regression trees, long short-term 

memory, Markov models and adaptive boosting (28, 70). Specifically, a Markov model might be a feasible 

approach to consider, given that this model is typically used for problems involving sequential decisions over time 

(71). Lastly, it may be feasible to consider combining the personalized models with models that are trained on 

data of all patients, making use of model ensembling techniques (40).  

 

5.3 Study limitations  

 

A number of limitations of this study should be highlighted. Firstly, several features in the dataset contained a 

significant amount of missing data. Whereas it was concluded that the missing data was not related to the outcome, 

the cause of the missing data was not determined. Thereafter, all missing data were imputed with the median 

value, a relatively simple approach to missing data imputation. Potentially, advanced methods such as k-nearest 

neighbors or tree-based models are more effective strategies (62). Additionally, imputation with median values 

does not take into account the time component of the data.  

 

Secondly, all available features known to be associated with HF decompensation were included in the models. 

However, many of these features are not exclusive to HF decompensation. Including non-specific features in the 

model might constrain its predictive ability. For example, heart rate, HRV and atrial arrhythmia data are not 

uniquely indicative of HF decompensation. A previously developed algorithm, which included these parameters 

along with several other clinical variables, proved ineffective in accurately predicting HF admissions (72). 

 

Thirdly, Bayesian optimization was applied for the purpose of hyperparameter tuning. The defined search spaces 

allowed for a broad range in numerical hyperparameters. Consequently, there is a variety in selected 

hyperparameters throughout the different models. Moreover, the minimal constraints applied to the search space 

may have resulted in combinations of hyperparameters that enable overfitting. Furthermore, given the high  

computational burden of training a SVC, the SVC models were optimized with simply ten iterations and only two 

kernel types were allowed. Therefore, it is possible that the optimal hyperparameters for SVC were not identified.  

 

Finally, the models were trained on episodes of HF decompensation, as detected by the HeartLogic algorithm. 

With this method, the models are to a certain degree trained to mimic HeartLogic’s predictions. The HeartLogic 

guided care path adapted in the LUMC is able to identify episodes of HF decompensation with a sensitivity of 79-

90% and a specificity of 89% (22, 23). The episodes that were undetected by HeartLogic were also included in 

this study. Nonetheless, specifying when an episode of decompensation exactly starts or ends is complex. As the 

mathematical methods behind HeartLogic are unknown, the reasoning behind the start or end date are unclear. In 

addition, in this study, the complex nature of these episodes was simplified to a two-class classification problem. 
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All observations from start to end of the were classified as ‘unstable HF’ and no distinction in severity of the 

episodes was made.  

 

6 

Conclusion 
 

In summary, CIED-derived personalized models were developed for the detection of upcoming HF 

decompensation. For each patient, two machine learning models were developed: an XGBoost model and a SVC 

model. The model with better performance in terms of AUPRC was selected for further evaluation. In general, 

the XGBoost models demonstrated superior performance to the SVC models.  

Overall, the selected models exhibit a moderate performance in classifying patients’ HF status. The high predictive 

performance obtained in a subset of patients advocates for further development of personalized models. However, 

the significant observed variation in performance highlight the need for further investigation on potential causes 

of low performance in order to improve robustness of the models.  
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Supplementary materials  
 

1. Hyperparameter search spaces for Bayesian optimization  

 
The hyperparameter search spaces for Bayesian optimization indicate the allowed ranges within which the 

hyperparameters can be explored.      

 
Table S1: Hyperparameter search space for optimization of the SVC  

Hyperparameter Search space Scale 

C 0.001 – 1000 Real 

Gamma 0.0001 – 1 Real 

Kernel Linear or radial basis function Categorical 

Class weight Balanced, 1:5, 1:10 or 1:15 Categorical 

SVC, Support Vector Classifier 

 

Table S2: Hyperparameter search space for optimization of the XGBoost model  

Hyperparameter Search space Scale 

Learning rate 0.01 – 0.2 Real 

Maximum depth 3 – 10 Integer 

Minimum child weight 1 – 10 Integer 

Subsample 0.5 – 1.0 Real 

Colsample by tree 0.5 – 1.0 Real 

Number of estimators 50 – 300 Integer 

Scale position weight 1 – 10 Real 

XGBoost, Extreme Gradient Boosting  

2. Alert follow-up 

 
Figure S1 and Figure S2 provide a schematic overview of the clinical course of the episodes of HF decompensation 

that were used to derive the outputs of the models; the daily classification of a patient’s HF status as ‘unstable’ or 

‘stable’.    

 
Figure S1: Schematic overview of the clinical actions taken in response to episodes of HF decompensation.  

 

 
HF, heart failure 
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Figure S2: Schematic overview of management of episodes of HF decompensation.  
 

 
 

HF, heart failure; IV, intravenous  

 

3. Class distribution   

 

Table S3 presents the class distribution in the data.  

 

Table S3: Class distribution in data   

 

Study Id Total number of 

observations (n) 

Total number of 

unstable HF 

observations (n) 

Proportion of 

observations in 

unstable HF 

class (%) 

Number of unstable 

HF observations in 

development dataset 

(n) 

Number of 

unstable HF 

samples in 

independent test 

set (n) 

4 2137 10 0.468 8 2 

9 2106 10 0.475 8 2 

10 2051 163 7.95 139 24 

11 1944 328 16.9 279 49 

12 2082 20 0.961 17 3 

20 1823 33 1.81 28 5 

33 1085 89 8.20 76 13 

35 1547 111 7.18 94 17 

37 1316 86 6.53 73 13 

38 1386 120 8.66 102 18 

39 1528 64 4.19 54 10 

42 1345 4 0.297 3 1 

47 996 38 3.82 32 6 

50 1508 604 40.1 513 91 

51 1575 16 1.02 14 2 

55 1095 119 10.9 101 18 

56 1575 187 11.9 159 28 

57 1400 22 1.57 19 3 
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58 1697 92 5.42 78 14 

62 1480 526 35.5 447 79 

69 1644 32 1.95 27 5 

72 1289 40 3.10 34 6 

78 1684 106 6.29 90 16 

81 1340 270 20.1 230 40 

86 1469 106 7.22 90 16 

89 1367 34 2.49 29 5 

90 1358 31 2.28 26 5 

94 1361 98 7.20 83 15 

95 1613 515 31.9 438 77 

96 1281 191 14.9 162 29 

101 1329 32 2.41 27 5 

102 1219 126 10.3 107 19 

109 1043 64 6.14 54 10 

114 990 35 3.54 30 5 

115 994 135 13.6 115 20 

116 955 17 1.78 14 3 

118 945 252 26.7 214 38 

122 858 100 11.7 85 15 

123 822 84 10.2 71 13 

124 832 206 24.8 175 31 

125 945 106 11.2 90 16 

126 768 13 1.69 11 2 

127 809 27 3.34 23 4 

128 792 80 10.1 68 12 

129 696 20 2.87 17 3 

131 678 11 1.62 9 2 

132 781 17 2.18 14 3 

138 697 51 7.32 43 8 

140 669 121 18.1 103 18 

143 586 11 1.88 9 2 

145 517 34 6.58 29 5 

146 503 50 9.94 42 8 

150 498 93 18.7 79 14 

151 499 127 25.5 108 19 

152 472 55 11.7 47 8 

153 443 20 4.51 17 3 

157 298 104 34.9 88 16 

164 619 58 9.37 49 9 

167 601 10 1.66 8 2 

175 94 23 24.5 19 4 

176 129 34 26.4 29 5 

179 112 32 28.6 27 5 
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4. Hyperparameters  

 
Table S4 and Table S5 present the results of the Bayesian hyperparameter optimization. These tables provide the 

hyperparameters that resulted in the highest AUPRC in the validation sets within the 5-fold CV.  

 

Table S4: Overview of selected hyperparameters for the SVC models.   

 
Study Id Scaler k neighbours C Gamma* Kernel Class weight 

4 RobustScaler() 4 0.683 - linear {0: 1, 1: 5}  

9 RobustScaler() 4 0.609 7.75*10-3 rbf {0: 1, 1: 5} 

10 RobustScaler() 4 10.9 - linear balanced 

11 StandardScaler() 4 7.42 1.60*10-4 rbf None 

12 RobustScaler() 4 82.0 0.0680 rbf None 

20 RobustScaler() 4 3.47 0.0110 rbf {0: 1, 1: 15} 

33 StandardScaler() 4 1.04*10-3 - linear {0: 1, 1: 10} 

35 StandardScaler() 4 939 1.36*10-3 rbf balanced 

37 StandardScaler() 4 1.74 - linear {0: 1, 1: 5} 

38 StandardScaler() 4 80.5 - linear balanced 

39 StandardScaler() 3 0.628 - linear {0: 1, 1: 5} 

42 RobustScaler() 1 0.399 0.239 rbf {0: 1, 1: 10} 

47 StandardScaler() 5 200 - linear {0: 1, 1: 5} 

50 StandardScaler() 4 599 5.22*10-3 rbf {0: 1, 1: 10} 

51 StandardScaler() 4 45.1 0.105 rbf {0: 1, 1: 10} 

55 StandardScaler() 3 9.72*10-3 0.624 rbf {0: 1, 1: 5} 

56 StandardScaler() 4 1.71 - linear {0: 1, 1: 5} 

57 RobustScaler() 4 6.09 8.96*10-4 rbf {0: 1, 1: 5} 

58 RobustScaler() 5 109 - linear None 

62 StandardScaler() 4 296 0.0334 rbf {0: 1, 1: 15} 

69 RobustScaler() 4 5.37 - linear {0: 1, 1: 5} 

72 StandardScaler() 4 82.4 - linear None 

78 StandardScaler() 4 0.647 - linear {0: 1, 1: 10} 

81 StandardScaler() 4 0.396 - linear balanced 

86 StandardScaler() 4 0.323 - linear {0: 1, 1: 10} 

89 StandardScaler() 3 6.68 6.28*10-4 rbf balanced 

90 RobustScaler() 4 0.667 - linear {0: 1, 1: 10} 

94 RobustScaler() 4 719 4.25*10-4 rbf {0: 1, 1: 10} 

95 StandardScaler() 5 25.6 - linear balanced 

96 RobustScaler() 4 13.2 - linear {0: 1, 1: 5} 

101 StandardScaler() 3 122 6.25*10-4 rbf {0: 1, 1: 10} 

102 StandardScaler() 5 0.583 - linear balanced 

109 StandardScaler() 3 0.0701 - linear balanced 

114 RobustScaler() 3 174 1.02*10-4 rbf {0: 1, 1: 5} 

115 RobustScaler() 3 4.26 4.79*10-3 rbf balanced 

116 StandardScaler() 4 21.3 6.33*10-3 rbf balanced 

118 RobustScaler() 5 7.60 5.53*10-4 rbf balanced 

122 StandardScaler() 5 2.15*10-3 - linear None 
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123 RobustScaler() 5 5.41 - linear {0: 1, 1: 5} 

124 StandardScaler() 3 0.243 9.45 rbf balanced 

125 StandardScaler() 5 0.736 0.142 rbf None 

126 StandardScaler() 5 0.304 0.0747 rbf {0: 1, 1: 5} 

127 StandardScaler() 3 0.0998 - linear None 

128 StandardScaler() 5 1.66*10-3 0.11 rbf {0: 1, 1: 10} 

129 StandardScaler() 4 7.08 - linear balanced 

131 StandardScaler() 4 22.7 1.79*10-4 rbf {0: 1, 1: 10} 

132 RobustScaler() 4 0.0394 1.65*10-4 rbf balanced 

138 RobustScaler() 4 2.23 5.40*10-3 rbf {0: 1, 1: 10} 

140 StandardScaler() 3 97.3 0.338 rbf balanced 

143 StandardScaler() 4 158 0.0244 rbf balanced 

145 RobustScaler() 3 0.334 - linear None 

146 RobustScaler() 5 0.061 - linear {0: 1, 1: 10} 

150 RobustScaler() 4 0.0337 - linear {0: 1, 1: 10} 

151 RobustScaler() 4 1.38 0.0168 rbf {0: 1, 1: 10} 

152 RobustScaler() 5 1.11 - linear None 

153 StandardScaler() 4 95.2 4.96*10-3 rbf {0: 1, 1: 10} 

157 StandardScaler() 5 951 - linear None 

164 StandardScaler() 5 1.62 0.0188 rbf balanced 

167 RobustScaler() 4 0.075 0.583 rbf {0: 1, 1: 15} 

175 StandardScaler() 4 315 8.55*10-4 rbf None 

176 StandardScaler() 3 6.18*10-3 - linear {0: 1, 1: 10} 

179 StandardScaler() 3 1.39 - linear {0: 1, 1: 10} 

 
SVC, Support Vector Classifier  

*Only applicable to non-linear kernels  

 
Table S5: Overview of selected hyperparameters for XGBoost models.  

   

Study 

Id 

Scaler k 

neigh-

bors 

Learn-

ing rate 

Maximum 

depth 

Minimum 

child 

weight  

Subsample Colsample 

by tree 

Number of 

estimators 

Scale 

position 

weight  

4 StandardScaler() 3 0.200 3 1 0.500 0.699 300 1.00 

9 RobustScaler() 5 0.107 9 8 0.992 0.511 247 1.00 

10 RobustScaler() 3 0.130 3 1 0.500 1.00 300 1.00 

11 RobustScaler() 3 0.200 3 10 1.00 0.804 300 10.0 

12 RobustScaler() 5 0.0958 10 1 0.500 0.500 202 1.00 

20 RobustScaler() 5 0.200 10 10 0.500 1.00 240 10.0 

33 RobustScaler() 3 0.200 5 1 0.661 0.500 50 1.00 

35 RobustScaler() 5 0.0367 10 1 1.00 0.500 247 1.00 

37 StandardScaler() 5 0.200 9 7 1.00 1.00 267 10.0 

38 StandardScaler() 4 0.0828 3 1 1.00 0.500 300 1.00 

39 RobustScaler() 3 0.188 10 1 1.00 0.662 285 1.21 

42 RobustScaler() 1 0.017 3 2 1.00 0.756 74 4.99 

47 StandardScaler() 5 0.200 3 10 0.500 1.00 300 10.0 

50 StandardScaler() 5 0.056 10 1 0.500 1.00 300 10.0 
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51 RobustScaler() 3 0.200 10 1 0.500 1.00 300 10.0 

55 StandardScaler() 3 0.186 5 3 1.00 0.500 50 10.0 

56 RobustScaler() 5 0.200 10 3 0.500 0.501 300 8.97 

57 RobustScaler() 5 0.0783 3 10 1.00 1.00 300 1.74 

58 StandardScaler() 3 0.0948 10 2 1.00 1.00 135 1.00 

62 StandardScaler() 5 0.0255 10 3 1.00 0.500 300 10.0 

69 RobustScaler() 5 0.200 8 1 0.724 0.884 50 10.0 

72 RobustScaler() 3 0.0187 3 1 1.00 1.00 300 10.0 

78 StandardScaler() 5 0.010 4 1 1.00 0.500 210 4.18 

81 StandardScaler() 3 0.010 9 1 0.800 0.500 300 1.00 

86 RobustScaler() 4 0.200 3 9 0.500 0.624 193 10.0 

89 RobustScaler() 4 0.192 10 7 0.848 0.522 297 9.94 

90 RobustScaler() 3 0.200 10 10 1.00 0.500 50 10.0 

94 StandardScaler() 5 0.200 3 10 1.00 1.00 300 4.07 

95 StandardScaler() 4 0.0525 9 1 0.984 0.606 263 9.44 

96 RobustScaler() 3 0.101 7 1 0.500 1.00 300 1.00 

101 RobustScaler() 3 0.200 3 1 0.500 0.500 300 1.00 

102 RobustScaler() 3 0.0511 10 1 0.500 1.00 204 1.00 

109 RobustScaler() 4 0.0757 9 1 1.00 0.500 144 5.25 

114 StandardScaler() 5 0.200 3 4 0.500 0.500 194 1.00 

115 StandardScaler() 3 0.0949 10 1 0.719 0.865 300 10.0 

116 RobustScaler() 3 0.200 3 1 0.500 0.500 300 10.0 

118 RobustScaler() 3 0.200 10 1 1.00 0.500 50 1.00 

122 RobustScaler() 3 0.0704 10 9 1.00 0.634 300 7.91 

123 RobustScaler() 4 0.0593 10 1 0.500 0.500 300 2.95 

124 RobustScaler() 3 0.102 3 1 1.00 0.500 173 10.0 

125 StandardScaler() 5 0.0944 9 1 0.729 0.703 300 10.0 

126 RobustScaler() 5 0.0398 7 5 0.750 0.818 300 10.0 

127 RobustScaler() 5 0.192 6 8 0.536 0.617 242 1.41 

128 RobustScaler() 3 0.0798 8 1 0.500 1.00 233 1.00 

129 RobustScaler() 5 0.200 10 10 1.00 0.923 300 10.0 

131 StandardScaler() 5 0.200 10 1 0.500 0.500 300 10.0 

132 RobustScaler() 3 0.200 4 5 0.886 0.901 103 1.40 

138 RobustScaler() 5 0.184 3 8 0.999 0.500 158 10.0 

140 RobustScaler() 3 0.0262 10 1 0.500 1.00 208 10.0 

143 StandardScaler() 3 0.108 3 1 0.500 0.500 285 10.0 

145 RobustScaler() 5 0.200 10 1 0.500 0.505 239 10.0 

146 RobustScaler() 5 0.200 10 1 0.500 0.500 300 1.00 

150 RobustScaler() 5 0.165 5 1 0.899 0.918 278 6.84 

151 StandardScaler() 4 0.0553 10 10 0.500 1.00 300 10.0 

152 StandardScaler() 4 0.0776 5 1 0.500 0.500 300 7.66 

153 StandardScaler() 5 0.010 5 1 1.00 0.500 300 10.0 

157 StandardScaler() 4 0.196 8 1 0.852 0.500 50 6.32 

164 RobustScaler() 3 0.0636 3 1 0.500 1.00 300 1.00 

167 RobustScaler() 5 0.121 8 1 1.00 0.500 50 5.12 

175 StandardScaler() 5 0.158 4 1 0.569 0.643 219 6.68 

176 RobustScaler() 5 0.200 10 3 0.583 0.961 300 10.0 
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179 RobustScaler() 5 0.200 3 3 1.00 0.500 50 10.0 

 

XGBoost, Extreme Gradient Boosting  

5. Performance evaluation, results obtained with leave-one-out cross-validation   

 
Table S6 and Table S7 provide the performance evaluation of the models, obtained with leave-one-out cross-

validation.   

 

Table S6: Performance of the SVC models for all patients with leave-one-out cross-validation.     

 

Study Id AUPRC AUROC Balanced 

accuracy 

Sensitivity 

(recall) 

Specificity PPV 

(precision) 

NPV 

4 0.160 0.980 0.624 0.25 0.997 0.286 0.997 

9 0.0496 0.915 0.836 0.75 0.923 0.0417 0.999 

10 0.479 0.867 0.787 0.763 0.81 0.259 0.975 

11 0.447 0.799 0.73 0.692 0.768 0.378 0.925 

12 0.581 0.987 0.846 0.706 0.987 0.343 0.997 

20 0.118 0.88 0.758 0.607 0.909 0.109 0.992 

33 0.863 0.986 0.889 0.987 0.791 0.298 0.999 

35 0.646 0.891 0.828 0.734 0.923 0.423 0.978 

37 0.324 0.904 0.837 0.973 0.702 0.186 0.997 

38 0.381 0.867 0.799 0.863 0.735 0.236 0.983 

39 0.284 0.844 0.754 0.833 0.675 0.100 0.989 

42 0.00848 0.745 0.652 0.333 0.971 0.0294 0.998 

47 0.68 0.956 0.891 0.844 0.937 0.346 0.993 

50 0.883 0.908 0.812 0.910 0.714 0.680 0.923 

51 0.0695 0.801 0.499 0.00 0.998 0.00 0.990 

55 0.557 0.932 0.500 1.00 0.00 0.109 0.00 

56 0.455 0.844 0.682 0.987 0.377 0.176 0.996 

57 0.238 0.852 0.769 0.684 0.853 0.0703 0.994 

58 0.662 0.926 0.864 0.795 0.934 0.408 0.988 

62 0.822 0.862 0.786 0.734 0.837 0.713 0.851 

69 0.632 0.987 0.861 0.741 0.98 0.426 0.995 

72 0.276 0.901 0.864 0.824 0.905 0.217 0.994 

78 1.00 1.00 0.999 1.00 0.998 0.968 1.00 

81 0.439 0.769 0.697 0.704 0.689 0.364 0.902 

86 0.350 0.864 0.756 0.933 0.579 0.147 0.991 

89 0.825 0.994 0.982 1.00 0.964 0.414 1.00 

90 0.739 0.991 0.899 0.808 0.989 0.636 0.996 

94 0.434 0.87 0.783 0.867 0.698 0.182 0.986 

95 0.780 0.868 0.787 0.795 0.779 0.628 0.890 

96 0.517 0.886 0.793 0.951 0.635 0.313 0.987 

101 0.869 0.996 0.921 0.852 0.99 0.676 0.996 

102 0.539 0.814 0.775 0.692 0.859 0.361 0.960 

109 0.550 0.851 0.809 0.759 0.859 0.259 0.982 

114 0.248 0.948 0.922 0.967 0.878 0.227 0.999 
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115 0.593 0.897 0.826 0.791 0.861 0.474 0.963 

116 0.424 0.854 0.725 0.5 0.950 0.149 0.991 

118 0.640 0.825 0.738 0.734 0.742 0.508 0.885 

122 0.686 0.916 0.833 0.894 0.772 0.341 0.982 

123 0.726 0.953 0.848 0.986 0.710 0.278 0.998 

124 0.863 0.941 0.858 0.794 0.921 0.768 0.932 

125 0.546 0.913 0.701 0.456 0.947 0.519 0.932 

126 0.278 0.869 0.627 0.273 0.981 0.200 0.987 

127 0.396 0.961 0.884 0.826 0.941 0.328 0.994 

128 0.307 0.798 0.500 1.00 0.00 0.101 0.00 

129 0.0987 0.684 0.577 0.529 0.625 0.0402 0.978 

131 0.116 0.807 0.708 0.667 0.75 0.0405 0.993 

132 0.0656 0.690 0.505 1.00 0.0108 0.0213 1.00 

138 0.572 0.929 0.852 0.977 0.727 0.219 0.998 

140 0.520 0.815 0.661 0.388 0.933 0.563 0.873 

143 0.127 0.890 0.606 0.222 0.99 0.286 0.986 

145 0.683 0.931 0.877 0.828 0.927 0.444 0.987 

146 0.344 0.878 0.752 1.00 0.504 0.18 1.00 

150 0.898 0.960 0.892 0.987 0.797 0.527 0.996 

151 0.510 0.773 0.670 0.972 0.367 0.344 0.975 

152 0.433 0.810 0.781 0.745 0.816 0.35 0.96 

153 0.334 0.896 0.636 0.294 0.978 0.385 0.967 

157 0.669 0.784 0.731 0.716 0.745 0.6 0.831 

164 0.562 0.954 0.887 0.878 0.897 0.467 0.986 

167 0.133 0.138 0.562 0.125 1.00 1.00 0.986 

175 0.644 0.845 0.724 0.632 0.817 0.522 0.875 

176 0.597 0.846 0.500 1.00 0.00 0.266 0.00 

179 0.819 0.927 0.845 0.778 0.912 0.778 0.912 

 

AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic; PPV, positive predictive value; 

NPV, negative predictive value; SVC, Support Vector Classifier   

 

Table S7: Performance of XGBoost models for all patients with leave-one-out cross-validation.  

  

Study Id AUPRC AUROC Balanced 

accuracy 

Sensitivity 

(recall) 

Specificity PPV 

(precision) 

NPV 

4 0.195 0.974 0.686 0.375 0.997 0.375 0.997 

9 0.0341 0.887 0.496 0.00 0.992 0.00 0.995 

10 0.729 0.962 0.797 0.619 0.974 0.677 0.967 

11 0.559 0.85 0.761 0.677 0.844 0.469 0.928 

12 0.86 0.998 0.852 0.706 0.998 0.750 0.997 

20 0.270 0.873 0.717 0.464 0.97 0.220 0.990 

33 0.956 0.995 0.955 0.921 0.988 0.875 0.993 

35 0.736 0.953 0.775 0.574 0.975 0.643 0.967 

37 0.410 0.927 0.757 0.589 0.925 0.355 0.970 

38 0.479 0.895 0.693 0.431 0.955 0.478 0.947 

39 0.377 0.804 0.676 0.37 0.982 0.476 0.973 
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42 0.00314 0.613 0.468 0.00 0.937 0.00 0.997 

47 0.611 0.976 0.887 0.812 0.962 0.456 0.992 

50 0.904 0.928 0.848 0.899 0.798 0.748 0.922 

51 0.230 0.852 0.604 0.214 0.993 0.250 0.992 

55 0.877 0.977 0.942 0.950 0.934 0.636 0.994 

56 0.656 0.906 0.778 0.623 0.933 0.556 0.948 

57 0.163 0.841 0.675 0.368 0.982 0.250 0.990 

58 0.747 0.900 0.845 0.705 0.985 0.724 0.983 

62 0.884 0.903 0.821 0.861 0.781 0.684 0.911 

69 0.726 0.985 0.863 0.741 0.986 0.513 0.995 

72 0.549 0.951 0.856 0.765 0.948 0.321 0.992 

78 0.998 1.00 0.998 1.00 0.996 0.938 1.00 

81 0.602 0.815 0.682 0.422 0.942 0.647 0.866 

86 0.664 0.938 0.845 0.767 0.923 0.437 0.981 

89 0.879 0.995 0.892 0.793 0.99 0.676 0.995 

90 0.832 0.995 0.915 0.846 0.983 0.537 0.996 

94 0.459 0.864 0.740 0.554 0.926 0.368 0.964 

95 0.922 0.953 0.872 0.881 0.863 0.751 0.939 

96 0.585 0.877 0.743 0.568 0.919 0.551 0.924 

101 0.727 0.985 0.828 0.667 0.989 0.600 0.992 

102 0.594 0.888 0.730 0.495 0.966 0.624 0.943 

109 0.703 0.887 0.807 0.630 0.984 0.723 0.976 

114 0.593 0.971 0.789 0.600 0.978 0.500 0.985 

115 0.755 0.938 0.858 0.783 0.934 0.652 0.965 

116 0.392 0.960 0.707 0.429 0.985 0.333 0.990 

118 0.726 0.874 0.768 0.64 0.896 0.692 0.873 

122 0.711 0.919 0.824 0.729 0.919 0.544 0.963 

123 0.978 0.997 0.969 0.958 0.981 0.85 0.995 

124 0.925 0.968 0.896 0.909 0.883 0.719 0.967 

125 0.758 0.957 0.855 0.767 0.942 0.627 0.970 

126 0.147 0.853 0.755 0.545 0.964 0.207 0.992 

127 0.438 0.944 0.767 0.565 0.968 0.382 0.985 

128 0.589 0.89 0.735 0.515 0.955 0.565 0.946 

129 0.344 0.895 0.771 0.588 0.953 0.270 0.987 

131 0.239 0.953 0.717 0.444 0.989 0.400 0.991 

132 0.0343 0.614 0.547 0.143 0.951 0.0588 0.981 

138 0.674 0.966 0.892 0.837 0.947 0.554 0.987 

140 0.579 0.861 0.781 0.796 0.766 0.429 0.944 

143 0.324 0.974 0.717 0.444 0.99 0.444 0.990 

145 0.485 0.937 0.834 0.724 0.944 0.477 0.980 

146 0.581 0.935 0.724 0.500 0.948 0.512 0.946 

150 0.935 0.979 0.915 0.873 0.956 0.821 0.971 

151 0.514 0.785 0.707 0.741 0.674 0.437 0.884 

152 0.616 0.871 0.768 0.617 0.918 0.500 0.948 

153 0.531 0.94 0.822 0.706 0.939 0.353 0.985 

157 0.910 0.948 0.867 0.898 0.836 0.745 0.939 

164 0.593 0.954 0.840 0.735 0.945 0.581 0.972 
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167 0.632 0.881 0.871 0.750 0.992 0.600 0.996 

175 0.700 0.917 0.802 0.737 0.867 0.636 0.912 

176 0.774 0.884 0.803 0.793 0.812 0.605 0.915 

179 0.775 0.909 0.860 0.926 0.794 0.641 0.964 

 

AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic; PPV, positive predictive value; 

NPV, negative predictive value; XGBoost, Extreme Gradient Boosting  

  

6. Performance evaluation, results obtained with independent test set   

 
Table S8 and Table S9 present the performance evaluation of both models. The models are trained on the 

development dataset and tested on the independent test set.  

 

Table S8: Performance of SVC models on the independent test set.  

 

Study Id AUPRC AUROC Balanced 

accuracy 

Sensitivity 

(recall) 

Specificity PPV 

(precision) 

NPV 

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

9 0.0141 0.791 0.459 0.00 0.917 0.00 0.993 

10 0.608 0.932 0.875 0.958 0.792 0.280 0.996 

11 0.407 0.759 0.721 0.694 0.749 0.358 0.924 

12 0.428 0.995 0.995 1.00 0.990 0.500 1.00 

20 0.173 0.791 0.763 0.600 0.926 0.130 0.992 

33 0.829 0.975 0.883 1.00 0.767 0.271 1.00 

35 0.572 0.94 0.883 0.882 0.884 0.375 0.99 

37 0.465 0.927 0.857 1.00 0.714 0.197 1.00 

38 0.359 0.854 0.763 0.778 0.747 0.226 0.973 

39 0.361 0.939 0.868 1.00 0.736 0.147 1.00 

42 0.0556 0.96 0.485 0.00 0.970 0.00 0.995 

47 0.391 0.969 0.962 1.00 0.924 0.353 1.00 

50 0.881 0.891 0.809 0.824 0.794 0.728 0.871 

51 0.792 0.998 0.750 0.500 1.00 1.00 0.996 

55 0.744 0.974 0.500 1.00 0.00 0.109 0.00 

56 0.379 0.857 0.763 0.929 0.598 0.236 0.984 

57 0.112 0.847 0.742 0.667 0.816 0.0500 0.994 

58 0.765 0.977 0.917 0.929 0.905 0.361 0.995 

62 0.841 0.856 0.797 0.734 0.860 0.744 0.854 

69 0.627 0.981 0.890 0.800 0.979 0.444 0.996 

72 0.453 0.979 0.944 1.00 0.888 0.222 1.00 

78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

81 0.489 0.782 0.695 0.750 0.640 0.341 0.912 

86 0.318 0.883 0.749 0.938 0.561 0.143 0.991 

89 0.509 0.990 0.988 1.00 0.975 0.500 1.00 

90 0.963 0.999 0.997 1.00 0.995 0.833 1.00 

94 0.435 0.909 0.811 0.933 0.689 0.192 0.992 

95 0.809 0.893 0.810 0.857 0.764 0.629 0.920 

96 0.450 0.881 0.820 1.00 0.640 0.330 1.00 
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101 0.860 0.997 0.997 1.00 0.995 0.833 1.00 

102 0.365 0.653 0.631 0.421 0.841 0.235 0.926 

109 0.513 0.957 0.959 1.00 0.918 0.455 1.00 

114 0.233 0.950 0.931 1.00 0.861 0.200 1.00 

115 0.535 0.888 0.798 0.750 0.846 0.429 0.957 

116 0.549 0.981 0.663 0.333 0.993 0.5.00 0.986 

118 0.677 0.841 0.739 0.737 0.740 0.509 0.885 

122 0.522 0.857 0.773 0.800 0.746 0.293 0.966 

123 0.911 0.988 0.926 0.923 0.928 0.600 0.990 

124 0.834 0.932 0.807 0.710 0.904 0.710 0.904 

125 0.68 0.925 0.590 0.188 0.992 0.750 0.906 

126 0.551 0.943 0.750 0.500 1.00 1.00 0.991 

127 0.243 0.936 0.854 0.750 0.958 0.375 0.991 

128 0.410 0.860 0.500 1.00 0.00 0.101 0.00 

129 0.428 0.984 0.966 1.00 0.931 0.300 1.00 

131 0.532 0.890 0.710 0.500 0.920 0.111 0.989 

132 0.0314 0.507 0.517 1.00 0.0348 0.0263 1.00 

138 0.518 0.948 0.840 1.00 0.680 0.205 1.00 

140 0.609 0.871 0.621 0.278 0.964 0.625 0.860 

143 1.00 1.00 0.500 0.00 1.00 0.00 0.977 

145 0.854 0.967 0.859 0.800 0.918 0.400 0.985 

146 0.636 0.912 0.812 0.875 0.750 0.292 0.981 

150 0.810 0.945 0.877 1.00 0.754 0.483 1.00 

151 0.386 0.688 0.679 0.947 0.411 0.353 0.958 

152 0.126 0.536 0.443 0.125 0.762 0.0625 0.873 

153 0.656 0.979 0.659 0.333 0.984 0.500 0.969 

157 0.54 0.681 0.609 0.562 0.655 0.474 0.731 

164 0.444 0.937 0.897 0.889 0.905 0.500 0.987 

167 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

175 0.871 0.955 0.705 0.500 0.909 0.667 0.833 

176 0.918 0.973 0.500 1.00 0.00 0.250 0.00 

179 0.86 0.950 0.758 0.6 0.917 0.750 0.846 

 

AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic; PPV, positive predictive value; 

NPV, negative predictive value; SVC, Support Vector Classifier  

 

Table S9: Performance of XGBoost models on the independent test set. 

 

Study Id AUPRC AUROC Balanced 

accuracy 

Sensitivity 

(recall) 

Specificity PPV 

(precision) 

NPV 

4 0.551 0.980 0.750 0.500 1.00 1.00 0.997 

9 0.0251 0.839 0.498 0.00 0.997 0.00 0.994 

10 0.854 0.967 0.885 0.792 0.979 0.760 0.982 

11 0.534 0.842 0.758 0.694 0.823 0.442 0.930 

12 0.655 0.995 0.832 0.667 0.997 0.667 0.997 

20 0.372 0.884 0.683 0.400 0.967 0.182 0.989 

33 0.958 0.996 0.846 0.692 1.00 1.00 0.974 
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35 0.653 0.949 0.769 0.588 0.949 0.476 0.967 

37 0.443 0.949 0.811 0.692 0.930 0.409 0.977 

38 0.470 0.900 0.704 0.444 0.963 0.533 0.948 

39 0.530 0.87 0.695 0.400 0.991 0.667 0.973 

42 0.00275 0.112 0.493 0.00 0.985 0.00 0.995 

47 0.769 0.987 0.892 0.833 0.951 0.417 0.993 

50 0.930 0.939 0.892 0.879 0.904 0.860 0.918 

51 0.633 0.991 0.989 1.00 0.979 0.286 1.00 

55 0.879 0.984 0.924 0.889 0.959 0.727 0.986 

56 0.490 0.883 0.794 0.679 0.909 0.500 0.955 

57 0.0933 0.804 0.657 0.333 0.981 0.200 0.990 

58 0.886 0.99 0.853 0.714 0.992 0.833 0.984 

62 0.891 0.895 0.802 0.835 0.769 0.667 0.894 

69 0.339 0.978 0.792 0.600 0.983 0.429 0.992 

72 0.803 0.988 0.973 1.00 0.947 0.375 1.00 

78 1.00 1.00 0.998 1.00 0.996 0.941 1.00 

81 0.746 0.89 0.719 0.475 0.963 0.760 0.881 

86 0.672 0.932 0.894 0.875 0.912 0.438 0.989 

89 0.758 0.984 0.888 0.800 0.975 0.444 0.995 

90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

94 0.338 0.847 0.630 0.333 0.926 0.263 0.946 

95 0.948 0.964 0.906 0.896 0.915 0.831 0.950 

96 0.539 0.837 0.679 0.414 0.945 0.571 0.901 

101 0.821 0.99 0.897 0.800 0.995 0.800 0.995 

102 0.479 0.845 0.672 0.368 0.976 0.636 0.930 

109 0.786 0.939 0.847 0.700 0.993 0.875 0.980 

114 0.226 0.943 0.665 0.400 0.931 0.167 0.978 

115 0.719 0.942 0.848 0.750 0.946 0.682 0.961 

116 0.794 0.991 0.823 0.667 0.979 0.400 0.993 

118 0.761 0.858 0.811 0.737 0.885 0.700 0.902 

122 0.595 0.913 0.821 0.800 0.842 0.400 0.970 

123 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

124 0.881 0.942 0.893 0.871 0.915 0.771 0.956 

125 0.685 0.930 0.699 0.438 0.960 0.583 0.931 

126 1.00 1.00 0.991 1.00 0.982 0.500 1.00 

127 0.394 0.773 0.862 0.750 0.975 0.500 0.991 

128 0.552 0.877 0.685 0.417 0.953 0.500 0.936 

129 0.683 0.843 0.833 0.667 1.00 1.00 0.990 

131 0.138 0.715 0.745 0.500 0.990 0.500 0.990 

132 0.0893 0.658 0.491 0.00 0.983 0.00 0.974 

138 0.869 0.99 0.959 1.00 0.918 0.500 1.00 

140 0.623 0.866 0.789 0.722 0.855 0.520 0.934 

143 0.0567 0.820 0.500 0.00 1.00 0.00 0.977 

145 0.733 0.984 0.966 1.00 0.932 0.500 1.00 

146 0.445 0.914 0.846 0.75 0.941 0.600 0.970 

150 0.884 0.966 0.86 0.786 0.934 0.733 0.950 

151 0.522 0.703 0.636 0.737 0.536 0.350 0.857 
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152 0.354 0.760 0.773 0.625 0.921 0.500 0.951 

153 0.156 0.885 0.635 0.333 0.938 0.200 0.968 

157 0.797 0.841 0.744 0.625 0.862 0.714 0.806 

164 0.339 0.902 0.625 0.333 0.917 0.300 0.928 

167 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

175 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

176 0.861 0.933 0.767 0.6 0.933 0.750 0.875 

179 0.878 0.883 0.858 0.8 0.917 0.800 0.917 

  

AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic; PPV, positive predictive value; 

NPV, negative predictive value; XGBoost, Extreme Gradient Boosting  

 

7. Relation between model performance and class distribution   

 
Figure S3 illustrates the relation between the performance of the models and the class distribution in the dataset.   

 

Figure S3: Relation between model performance and class distribution in the dataset. The maximum AUPRC is defined as the 

highest AUPRC achieved through leave-one-out cross-validation, either with the XGBoost model or the SVC.  

 

AUPRC, area under precision-recall curve; HF, heart failure; SVC, Support Vector Classifier; XGBoost, Extreme Gradient 

Boosting  


