
 
 

Delft University of Technology

SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

Engelen, Max; Betting, River; Strydis, Christos

DOI
10.1109/ACCESS.2025.3550444
Publication date
2025
Document Version
Final published version
Published in
IEEE Access

Citation (APA)
Engelen, M., Betting, R., & Strydis, C. (2025). SimHH: A Versatile, Multi-GPU Simulator for Extended
Hodgkin-Huxley Networks. IEEE Access, 13, 46865 - 46880.
https://doi.org/10.1109/ACCESS.2025.3550444

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ACCESS.2025.3550444
https://doi.org/10.1109/ACCESS.2025.3550444


Received 13 February 2025, accepted 1 March 2025, date of publication 11 March 2025, date of current version 21 March 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3550444

SimHH: A Versatile, Multi-GPU Simulator for
Extended Hodgkin-Huxley Networks
MAX C. W. ENGELEN1, RIVER BETTING 1, AND CHRISTOS STRYDIS 1,2, (Senior Member, IEEE)
1Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
2Quantum and Computer Engineering Department, Delft University of Technology, 2628 CD Delft, The Netherlands

Corresponding author: Christos Strydis (c.strydis@erasmusmc.nl)

ABSTRACT Computational neuroscience relies on complex mathematical models to simulate brain activity
and decipher underlying biological processes. However, these simulations are computationally intensive,
prompting the exploration of high-performance computing systems as a viable solution to enhance efficiency.
In this work, we introduce SimHH, an extended-Hodgkin-Huxley simulator designed for versatility and
high performance. Leveraging the OpenMPI library, SimHH exhibits exceptional scalability, catering to a
wide spectrum of computing environments. Scalability is optimized through two distinct configurations:
one that distributes all possible cell-compartment potentials among network nodes and another that shares
compartment potentials only among relevant nodes, employingMPIAllgather andAlltoall. Seamless support
for CUDA, CUDA-aware MPI, and NVLink further enhances performance, with communication overhead
minimized through concurrent execution of compute kernels. Benchmarking against various neuron models,
including the challenging Inferior-Olivary Nucleus, demonstrates SimHH’s potential, achieving remarkable
results on up to 256 compute nodes. Notably, large-scale GPU clusters enable the simulation of highly
biologically plausible networks exceeding 10 million cells. Comparative analyses against CPU- and
FPGA-based solutions underscore SimHH’s superiority, boasting a speedup of approximately 150× over
single-threaded CPU implementations, 10× over single-FPGA setups, and 10× over multi-threaded CPU
configurations with 128 threads, all for a fully connected network of approximately 7,000 IO cells.
Additionally, a 7× speedup is attained compared to the established NEST neurosimulator running on
32 nodes, simulating a network of 94,720 Hodgkin-Huxley neurons with gap junctions. These findings
underscore SimHH’s efficacy in advancing computational-neuroscience research by facilitating efficient and
scalable simulation of complex neuronal networks.

INDEX TERMS Computational neuroscience, general-purpose GPU computing, high-performance
computing, neural simulation.

I. INTRODUCTION
Computational neuroscience is the subdiscipline of neu-
roscience concerned with the explanation and prediction
of experimental neuroscientific data. In-vivo and in-vitro
experiments are used systematically and are common tools
in this field. Even though such experiments are effective,
they are often laborious and cumbersome; in certain cases –
for example, when investigating deep brain structures – they
are all but impossible to mount, because of the complexity

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

of these structures and the high amounts of computational
resources required to simulate them.

Computational neuroscientists construct predictive simu-
lations that test scientific theories and predictions by incor-
porating spiking neural network (SNN) models of varying
complexity. These models must be simulated in computing
systems that run specialized simulators. This work presents
a novel, high-performance, scalable neurosimulator called
SimHH, which focuses on the scalability and parallelization
of extended Hodgkin-Huxley (eHH) simulations. These sim-
ulations are known for their high biological plausibility and
high computational intensity. SimHH achieves a high degree

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 46865

https://orcid.org/0000-0001-7050-2194
https://orcid.org/0000-0002-0935-9322
https://orcid.org/0000-0002-3360-9440


M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 1. A: Schematic overview of a neural network of 6 cells (a). Visible is also a single neuron cell (b), and a single cell
compartment with gates in red (c) [1] B: The components, representing the cell-membrane’s biophysical characteristics,
of the Hodgkin–Huxley-type models. The capacitance (CM ) represents the lipid bi-layer. The ion channels are modeled by
linear (gL) and nonlinear (gn) conductances. The voltage sources (En and El ) represent the electrochemical gradients
driving the flow of ions. The current source (Ip) represents the ion pumps and exchangers.

of parallelization by utilizing multiple graphics-processing
units (GPUs) and scalability through deployment on dis-
tributed computing systems utilizing Message Passing Inter-
face (MPI), while still being able to use only the central
processing unit (CPU) in systems without a GPU. SimHH
was used to observe the impact of scalability on actual
simulation speeds. Bottlenecks present in eHH simulations
are explored. Furthermore, and crucially, SimHH supports
extended Hodgkin-Huxley (eHH) models with continuous-
time gap-junction support – which are notorious for the high
computational and communication requirements – and with
highly customizable multicompartmental and ion-channel
support per each neuron. With these features, SimHH can
simulate eHH networks that were previously out of the reach
for neuroscientists. The contributions of this work, thus, are
as follows:

• A new versatile CPU- and GPU-aimed multi-node
neurosimulator for the distributed simulation of eHH
models, with (i) native support for single- and multi-
GPU-optimized continuous-time gap-junction calcula-
tions; (ii) automatic hiding of communication latency;
and (iii) optimized memory use via model-parameter
randomization and model-description reuse, increasing
performance and creating biologically accurate simula-
tions.

• Valuable insights into the differences in performance
between MPI-communication strategies and how to
optimize MPI communication for large-scale neurosim-
ulations.

• A publicly available code-base, made immediately
available for download.1

The remainder of the paper is organized as follows.
Section II provides the background for this work. Related
works are discussed in Section III. Section IV provides
an overview of the SimHH design and implementation,

1https://gitlab.com/neurocomputing-lab, under ‘BrainFrame’

while Section V evaluates SimHH and compares it with
other simulators. A discussion of the results and concluding
remarks are provided in Section VI and VII, respectively.

II. BACKGROUND
On average, the human brain consists of roughly 8.6 ×

1010 (eighty-six billion) neurons [2], and the average
synaptic-connection count among the neurons is 7, 000 [3].
If each graph edge can be represented by 8 bytes of memory,
a sparsely saved graph to capture all of these connections
would require ∼5,000 terabytes of memory. In the current
standard computing systems, this is unrealistic. Fugaku,
the fourth supercomputer on the TOP500 list of the most
powerful computer systems in the world [4], would come
short of that figure by more than 1, 800 terabytes [5].

Nowadays, neuroscientists increasingly rely on Spiking
Neural Networks (SNNs) to simulate biological networks.
SNNs closely mimic natural neural networks. The concept
of time is integrated into the network, together with neuronal
and synaptic states. When a neuron fires, the spike travels
along the synaptic connections and influences connected-
neuron potentials. Neural behavior is bounded by rules
with fixed amplitudes and durations for specific spiking
patterns, and computational models have been developed
to simulate these patterns. Spiking behavior models range
from very basic to complex. A computationally challenging
neuron model is the Hodgkin-Huxley model. For a detailed
discussion of the differences between neural models, refer to
Izhikevich [6]. Fig. 1A shows a schematic overview of the
hierarchical structure of a neural network.

A. HODGKIN-HUXLEY MODELS
Conductance-based models represent a neuron as an elec-
trical circuit, where protein-molecule ion channels are
represented by conductances, and the lipid bilayer is rep-
resented by a capacitor. As such, neuronal behavior can
be represented by a set of ordinary differential equations

46866 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

TABLE 1. Overview of the characteristics of the reviewed subset of neurosimulators that are still active.

(ODEs). Conductance-based models offer biophysically
highly meaningful and measurable results, and are therefore
of great use to computational neuroscientists. However, high
biophysical meaning comes at the cost of high computational
complexity. This complexity poses interesting computational
challenges.

The original conductance-based model was developed by
Hodgkin andHuxley [19], and the equivalent electrical circuit
of the model is presented in Fig. 1B. The basic Hodgkin-
Huxley (HH) model has been extended in various ways to
better reflect the behavior of different types of neurons. One
such extension concerns the neurons of the inferior-olivary
nucleus (IO), which is located in the ventral brain stem
and is essential for the functioning of the cerebellum [20],
[21]. IO neurons are densely coupled through intercellular
connections known as gap junctions, which influence spiking
behavior. Therefore, to simulate IO spiking patterns, gap
junctions must also be represented.

The Inferior-Olive model presented by De Gruijl et al. is an
extended Hodgkin-Huxley (eHH) model that represents IO
neurons in a biophysically meaningful way by extending the
original HH model with gap junctions, custom user-defined
gates, andmultiple compartments per cell [20]. TheDe-Gruijl
IO model is widely used by neuroscientists specializing in
cerebellar functioning, and is therefore an excellent choice for
implementation in a High-Performance Computing (HPC)
simulator.

B. NUMERICAL SOLVERS
As stated before, extended Hodgkin-Huxley models are
described as systems of ODEs, which call for the use of
numerical methods to solve them [22]. Various solving

methods (or solvers) can be used. Christoph et al. [23]
compared different solvers and explored their time-step
requirements – subject to model complexity. Specifically, the
use of exponential-time differencing appears to be suitable for
eHH models. However, it also adds complexity with respect
to the standard explicit time-stepping schemes, which may be
unnecessary in specific cases.

To compare standard time-stepping schemes,
Miedema et al. [1] implemented forward-Euler, 2nd-order
Runge-Kutta, and 3rd-order Runge-Kutta, and showed that
forward-Euler solvers have the lowest execution times for the
edge cases of stability. If one wants to optimize for both speed
and accuracy, there may be more than one Pareto-optimal
solution.

III. RELATED WORK
The landscape of neurosimulators is diverse, with many
tools developed to cater to different neuronal models and
computing architectures. However, there remains a gap in
simulators that offer both scalability across multi-node GPU
systems and efficient handling of biophysically detailed
models, such as HH. The table of existing neurosimulators
(Table 1) highlights the limitations and scope of some
of the most prominent tools, providing a context for the
development of SimHH.

Several neurosimulators, such as CARLsim [16] and
GeNN [15], offer single-GPU-accelerated simulations but
fall short in supporting HH models and multicompartmental
neurons. GeNN, for example, lacks support for multicom-
partmental models, restricting its utility for complex models
such as the Inferior Olive (IO), whereas CARLsim focuses

VOLUME 13, 2025 46867



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

exclusively on spiking neural networks (SNNs) without
support for HH dynamics.

General-purpose simulators such as NEURON [12],
NEST [10], [11], and Brian [13], [14] provide extensive
flexibility by supporting a wide range of neuron models,
including HH and multicompartmental models (except
NEST), and offering compatibility with standard neural
description languages such as NeuroML [24]. However,
this flexibility often comes at the cost of performance. For
instance, although NEURON and NEST can be extended to
multi-node systems, their performance does not scale well
for large-scale HH simulations. Furthermore, most lack full
optimization for GPU platforms or efficient handling of dense
interconnections, such as gap junctions.

Arbor [9] and CoreNeuron [12], both of which support
multicompartmental models and are capable of using mul-
ti-node GPUs, offer some optimizations, including integra-
tion with NeuroML. However, CoreNeuron does not fully
automate the distribution of the network across nodes, leaving
this task to the user, which can hinder its adoption and
scalability, particularly in large networks. Arbor is a new
general-purpose simulator with full support of most popular
model classes. However, its wide scope comes at the cost
of missed opportunities for parallelization and scalability.
SimHH exhibits two key novelties that address these
issues. First, SimHH supports gate-level parallelism, which
can significantly improve the performance for small- and
medium-sized networks. In comparison, Arbor parallelizes
execution per model mechanism (not per ion gate), which
is less flexible. Second, Arbor can only map gap-junctioned
(sub)networks inside a single compute node (with or without
GPU support), in order to eschew performance problems.
In contrast, SimHH attempts to partition arbitrarily shaped
gap-junctioned (sub)networks across multiple nodes, leading
to improved performance (as illustrated in Section V).
Scalability is a critical issue in neural simulations, par-

ticularly when leveraging multi-GPU platforms. Simulators
such as SpiNNaker [17] and flexHH/GenEHH [1], [18]
have explored specialized hardware platforms. flexHH and
GenEHH focus on HH models, with flexHH leveraging Field
Programmable Gate Array (FPGA) acceleration for smaller
networks, whereas SpiNNaker (no HH-model support) and
GenEHH target CPU-based systems for larger network sizes.
However, both fall short in supporting multi-node distributed
computing, limiting their utility for larger, more complex
simulations.

For large-scale simulations (i.e., networks larger than
1,000 neurons), multi-node GPU-based approaches are
essential. Pioneering work by Van der Vlag et al. [25]
introduced a multi-GPU solution for the De-Gruijl IO
model, marking a crucial step in the field. However,
this early implementation was hardcoded, inflexible, and
prone to significant communication overheads, especially
in networks with dense gap-junctions. This communication
bottleneck remains a key challenge for scaling HH-type
models on multi-node platforms. To address these limita-

tions, Jordan et al. [26] explored optimized communication
strategies for high-performance computing (HPC) systems.
Their study demonstrated that sparse neural networks benefit
from more tailored communication methods, such as the
MPI_Alltoallv API, which can outperform broader
techniques such as MPI_AllGather. While Van der Vlag
et al. employed both, they did not offer a comparative
analysis of these approaches, thereby limiting insights
into performance benefits. Despite these advancements, the
challenge of optimizing the communication for dense neural
networks remains largely unresolved. This is particularly
critical for large-scale, multi-node GPU simulations, where
dense connectivity significantly increases communication
demands, thereby hindering scalability. Thus, while the initial
solutions laid the groundwork, future work must focus on
overcoming these communication barriers to enable efficient,
scalable simulations on modern HPC architectures.

In summary, while existing neurosimulators offer various
features and optimizations, there is no current solution that
combines support for HH-class models, multicompartmental
neurons, and dense gap-junction networks with scalability
across multi-node GPU platforms. SimHH aims to address
these gaps by providing a neurosimulator specifically
designed for large-scale, multi-node, GPU-based simula-
tions, optimizing both inter-process communication and
computational efficiency for dense networks such as the
De-Gruijl IOmodel. The table of existing simulators (Table 1)
highlights that none fully meets these needs, positioning
SimHH as a critical advancement in the field.

IV. DESIGN AND IMPLEMENTATION
SimHH, a new simulator for HH-class neurons, improves
over the current state of the art within the distributed,
multi-GPU design space. SimHH uses Compute Unified
Device Architecture (CUDA) and optimizes both intranode
processing and internode communication patterns, with-
out compromising accuracy. For intranode improvements,
we laid out memory to support CUDA-warp alignment (see
Section IV-C1). Gate and compartment updates within a
single timestep update do not depend on each other, and
can therefore be fully parallellized (see Section IV-C2).
Furthermore, by studying the manner in which gap-junction
calculations are performed, we exploit the GPU low-level
architecture in a better way in order to perform the required
sparse matrix-vector calculations (see Section IV-C3).
As for inter-node communications, we observed that there

was much to gain from NVLink (GPU to GPU) communi-
cation. The scalability design explores MPI communications
and intranode-GPU communication. We gained the insight
that using CUDA’s Unified Virtual Addressing (UVA) does
not lead to any benefits, and decided to manually tune
this intranode GPU communication with direct transfers.
MPI is utilized for inter-node communication, which hooks
into GPUDirect Remote Direct Memory Access (RDMA)
for communication. In addition, this work addresses the

46868 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 2. An overview of the neural-network structures supported by this work. In the illustration, two
neurons are shown, each consisting of three compartments. Iapp and Igap can only act on the first
compartment of the chain-style compartment list. The dotted lines represent the expandability of the neural
network.

broader research question regarding the optimization of
communication for large-scale, multi-node GPU simulations.

From bottom to top, the neural model implemented in
SimHH consists of the following five-level hierarchical
structure: gate > channel > compartment > cell > network.
As shown in Fig. 1A, any element can encapsulate multiple
elements of the level directly below it; for instance, a cell can
contain multiple compartments, and a network can contain
multiple cells. This hierarchical structure forms a strong basis
for a flexible and scalable simulator that can efficiently utilize
parallelism.

However, the presence of gap junctions in the De-Gruijl
IO model complicates the design of such a simulator and
underlines our initial reason for using this model in our
experiments. After all, allowing gap junctions to act on
the different compartments converts the dependency prob-
lem from a cell-dependency to a compartment-dependency
problem, since gap junctions allow for interaction between
compartments of different cells. In our design, this problem
was addressed by introducing the following two limitations
on inter-compartment interaction:

1) Externally applied or gap-junction currents can only act
on the first compartment of a cell description.

2) Cell compartments are ordered in a chain following the
order of the cell description.

As explained in Miedema et al. [1], despite the first lim-
itation, the design remains capable of addressing numerous
research questions while fulfilling the requirements of most
HH models. Even though the formulation of flexHH’s
interaction-current supports arbitrary compartment ordering,
its implementation does not. Many HH models, including
the De-Gruijl IO model, do not require such functionality.
GenEHH supports only chain-style compartment ordering.
Our work here followed these design choices.

A. BASIC SIMULATOR STRUCTURE AND LIMITATIONS
Having discussed the design limitations of the simulator,
we can now describe the equations that it solves. A conceptual
illustration of SimHH is shown in Fig. 2. Essentially,
SimHH is a transient simulator that iteratively calculates
the membrane voltage of any number of (compartments
of) arbitrarily connected HH neurons. The derivative of the
membrane voltage of a single compartment i following the
HH formalism can be calculated as shown in Equation (1).
Multiple coinciding currents contribute to this voltage
derivative: (i) an optional, externally applied perturbation
current IApp, (ii) a cumulative current IChannels due to the
essential sodium and potassium (and any other modeled)
ion channels in the cell, (iii) the aggregate current IGap
contributed by other cells or compartments via gap-junction
connections in contact with the compartment (if any), (iv) a
current IMulticomp contributed by neighboring compartments
i + 1 and i − 1 in the multicompartmental chain, and finally
(v) the leakage current of the membrane ILeak, in line with the
HH formalism. The full set of equations is as follows:

dVi
dt

=
IApp,i−IChannels,i − IGap,i − IMulticomp,i − ILeak,i

Cm

(1)

IApp,i =

{
a if stepstart ≤ step < stepend
0 otherwise

(2)

Ichannels,i =

Nchannels−1∑
n=0

(Igchannel [j](V−Vchannel [j]))

×

Mgates[j]−1∏
n=0

yj,ipj,i (3)

VOLUME 13, 2025 46869



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 3. Schematic of the way Equations (2)–(6) need to be combined to yield Equation (1) as well as all intermediate calculations, for a single solver
step of the simulation of a single compartment. All upper-case variables are timestep-dependent. All lower-case variables are constants that are defined
in a JSON configuration file. Inputs are represented with red and outputs with green color. Dotted lines represent the ability to add multiple channels
and/or gates to a compartment.

Imulticomp,i = gmc,c ∗ (
Vi − Vi+1

pi,i+1
−
Vi − Vi−1

pi,i−1
) (4)

Igap,i =

nconnectedcells−1∑
j=0

(wi,j(c0exp(c1

× (Vi − Vj)2)(Vi − Vj)) (5)

Ileak,i = gleak,i × (Vi − vleak,i) (6)

where g∗ are activation variables and c∗ are constants; Cm
is the capacitance of the cell membrane for compartment i;
pi signifies the surface ratio between compartments; wi,j is
the strength of the contribution between compartments i and
j whose respective voltages are Vi and Vj; finally, vleak,i is the
leakage voltage.

The calculation of the individual channel currents depends
on the individual model and is therefore beyond the scope
of this paper. In this work, we use the De-Gruijl IO model
for benchmarking, for which the full set of channel current
equations can be found in the supplement to [20] and in [1].
Gap-junction currents are dependent on a connectivity

list, which can be supplied as an input file by the neuro-
scientist. An alternative option is to use an algorithm to
generate the currents; the neuroscientist then provides the
parameters for this algorithm. The simulator supports two
algorithms: a random-binary (uniformly distributed) and a
random-Gaussian generation of currents. Both were assessed
during the SimHH evaluation.

The elementary function UpdateComp() contains all the
value-update operations described in the aforementioned
equations. The workings of this function are illustrated in
Fig. 3. The equations correspond to those used by flexHH
in [1], apart from the following adaptation: the compartment
now has the option of adding a dedicated calcium ion channel,
instead of needing to model it as another generic channel,
which flexHH and GenEHH require. This choice makes the
channel updates independent of each other and generalizes

the support for calcium ion channels, which leads to better
parallelism.

B. USER INPUT/OUTPUT
JavaScript Object Notation (JSON) was selected as the input
file format for accepting user input as well as the overall
simulator behavior. This decision was made because some
of the required groundwork had already been completed for
GenEHH. JSON is also a widely accepted data format that
can be used without coding knowledge, and there is no limit
to what can be expressed as structured data other than the
efficiency of the American Standard Code for Information
Interchange (ASCII) encoding. In practice, most SNNmodels
use populations of replicated, ‘‘template’’ neuron models.
There are only a few different neuron models per network,
and hence neuron modeling is manageable with JSON.
Connection matrices are currently either generated from
statistical distributions or loaded explicitly from a separate,
raw file. Being able to simulate the full eHH class of neurons
with the configuration is a primary requirement. This is
possible due to the fact that all possible models in the eHH
class of neurons can be described in the flexHH formulations.
Python bindings can also be used to input network parameters
and to control simulator behavior.

When describing neurons, one can replicate the description
of a single cell by adding a multiplier entry to the cell descrip-
tion. However, biological systems are never exact replicas of
one another. Therefore, we allow for a randomization factor
to be added to the conductance and reversal potential of each
channel. The randomization strategy was devised based on
experimental values from peer works in neuroscience andwas
sufficient for realistic simulation runs. Of course, the user still
has the freedom to describe each cell explicitly with different
parameters.

The simulator output can be adjusted according to the
user’s requirements. The compartment potentials and calcium

46870 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

concentrations, channel currents, and gate-activation states
are available to the user on each time step in formatted ASCII
format written to a text file. However, the float-to-ASCII
conversions lead to a higher execution time. To counter this,
the design includes the option of outputting a raw binary
file. The user can set a time-step interval between each
output generation. Higher performance can be achieved by
outputting binary data, particularly with non-local storage
locations. Writing the output to a file can slow down
simulation runs.

C. DESIGN CHOICES FOR PARALLELIZATION
Parallelization refers to design choices that allow for multiple
processes to be executed simultaneously. This greatly reduces
execution time, but can only be achieved when processes
do not have to wait for each other. Memory dependencies
heavily limit parallelization. In our model, the output of each
time step depends on the output of the previous time step.
Therefore, it is evident that different time steps, regardless
of the type or method, must be processed sequentially.
However, within a single time step, neurons that do not
depend on each other can be processed independently. This
offers opportunities for parallelization.

Parallelization at the cell or compartment level yields the
same blocks of calculations per element. Compartment-wise,
parallelization is preferred because it splits up the calcula-
tions into more parallel blocks and does not lose performance
when compartment counts differ across the network cells.
However, there are further opportunities for parallelization
within the compartments: the gap-junction calculations could
benefit from havingmultiple threads available to calculate the
gap-junction current to further parallelize the accumulation
of single connections. Furthermore, the gate updates can be
processed in parallel.

Because of the diversity of calculations and accumulations,
naively creating a separate kernel for each contributing
current in the compartment-update function would not
benefit the performance. Instead, we split the UpdateComp()
function into separate gap-calculation, gate-update, and
compartment-update functions. This division allows for
overlapping communication and calculations when running
on a distributed computing system, which is further explained
in Fig. 4.

SimHH is compatible with CPU-only systems, and makes
use of parallelization on CPU-only systems too. However,
SimHH only reaches its full potential in a multi-GPU setting.
Therefore, the reported performance on CPU-only systems
will serve only as a baseline for comparison.

1) MEMORY ARRANGEMENT TO SUPPORT WARP EQUALITY
CUDA works in a single-instruction-multiple-data (SIMD)
fashion at the streaming-multiprocessor (SM) level. Each
SM executes a Warp of Threads, typically 32. A CUDA
block typically consists of many of these warps to allow
the SM to context switch between warps to hide memory
access times. Because a single instruction is executed for all

threads in the warp, it is crucial to group the same compute
in SM-aligned tasks, to achieve the best parallelism and
full SM occupancy. Mapping this to SimHH, it becomes
clear that compartments or gates should be grouped. The
gap-junction calculations are not affected by this because of
the already similar tasks for each CUDA thread. Combining
multiple memory accesses into a single transaction is referred
to as coalesced memory access or memory coalescing. For
example, in a single transaction, any successive memory of
128 bytes can be accessed by a warp. However, uncoalesced
loads can result inmemory access becoming serialized, which
is detrimental to memory performance. Therefore, it is vital to
bemindful ofmemory coalescingwhen implementing CUDA
kernels. For SimHH this means getting the memory layout
right. As we parallelize over the gate level, it becomes clear
that striding all neuron parameters into memory should be
done with the same stride as we parallelize the compute. CPU
support will also benefit from this arrangement, as it improves
cache performance.

2) GATE AND COMPARTMENT UPDATES
The gate- and compartment-update kernels are implemented
in a straightforward manner. The gate-update kernel has the
same number of threads as there are gates in the neurons.
Each thread is responsible for updating its gate with the
Yupdate() function (see Fig. 3). The compartment-update
kernel does the same at the compartment level, implementing
the complete scheme shown in the figure (with the exception
of the gate updates and gap-junction-connection current
calculation). The gap-junction-connection current is provided
as a direct input by the gap-junction-calculation kernel.
Then, the Yk value is updated to Yk,t+1, which is handled
by the gate-update kernel. This approach allows for full
parallelization of the compute. We then grouped the same
compute paths, resulting in full SM occupancy.

3) GAP-JUNCTION CALCULATIONS
For the gap-junction calculation on the GPU backend,
we took a slightly different approach. For each cell,
an adjustable number N of CUDA threads will be instan-
tiated. All these N threads work together to fetch from
memory and accumulate to a shared result: the gap-junction
current of that specific cell. The accumulations rely on warp-
level primitives, limiting the maximum number of threads
to 32 per cell (one warp). We hypothesized that the system
could benefit from even more threads by utilizing shared
memory for the additions, making it possible to use a full
CUDA thread block. However, we briefly tested this and
observed that, in fact, it did not offer any improvements.
Since the focus is on large-scale network experiments, it is
estimated that the GPU(s) will be fully utilized regardless,
and further division would likely decrease, rather than
enhance, the performance. After all, more threads require
more management in terms of communication and memory.
Sparse gather-scatter operations, and more specifically, the

VOLUME 13, 2025 46871



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 4. Functional overview of the SimHH deployment and execution. Green-colored blocks represent CUDA kernels
on the GPU backend (or CPU functions when the CPU backend is selected), while yellow-colored blocks represent CPU
tasks. White blocks are specific to data management and control flow. All calculations in Fig. 3 are included in the
‘Compartment update’ block, except for gap-junction calculations and gate updates, which have dedicated kernels
represented by the ‘Gap-Junction Calculations’ and ‘Gate Update’ blocks, respectively. This overview is for a single process
with two GPUs connected to one compute node. MPI communication occurs inter-node across multiple compute nodes in
a cluster, with each node running a similar process. For single-GPU nodes, the ‘Inter-node GPU communication’ block can
be seen as a NULL function. Similarly, the ‘MPI communication’ block is a NULL function in single-process execution.

sparse nonlinear coupling described above, can be efficiently
computed within the CUDA framework.

4) GAP-JUNCTION GENERATION
Setting up the network mostly pertains to allocating and
initializing the memory correctly based on the configuration
file. However, if the gap-junction network is generated
according to an algorithm, it is incorporated into the
simulator. Alternatively, when a neuroscientist designs a
connection list herself, she can link a file in the configuration,
and SimHH will read out the connection list.

The generation of the connection graph is important for
the performance experiments of the network. Most end-users
will probably provide their custom-tailored connection lists
that suit their specific needs. Therefore, even though we
optimized the generation for GPU execution, we chose not to
focus on implementing every optimization possible. As stated
before, two schemes are implemented in SimHH: Random-
Binary, shown in Algorithm 1 and 1D-Gaussian, shown in
Algorithm 2. The RandomBinary generation is considered to
be the most challenging interconnection network because of
its unpredictable memory-access patterns.

46872 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 5. Roofline model for the SimHH GPU kernels. Single precision (sp) kernels are presented in this figure. The
exact configuration for the presented results is: 131072 IO neurons, 1% Density for a RandomBinary generated
synaptic-connection network, and the De-Gruijl IO model for each cell in the network. The dots represent
performances, which were measured manually. The created roofline is for a NVIDIA V100 GPU.

Algorithm 1 RandomBinary Generation (Density, Network-
Size)
1: for 0 ≤ NeighborCell < NetworkSize do
2: if rand(0, 1) ≤ Density/NetworkSize then
3: -> Add NeighborCell to TargetCell
4: end if
5: if ConnectionCount ≥ Density then
6: break()
7: end if
8: end for

D. DESIGN CHOICES FOR SCALABILITY
Scalability is of great importance for the SimHH implemen-
tation. A highly scalable application can utilize anything
from a computer at home up to HPC platforms such as
supercomputers from the TOP500 list, while making optimal
use of the available resources. Expanding to multi-node or,
in other words, a multi-process program requires communi-
cation between processes. The analysis of the communication
boils down to the communication of compartment potentials
when gap junctions are utilized. Everything else is known
in each separate process, either by the process ID or by the
input handling that each process performs at startup. It would
be beneficial to perform communication and computing in
parallel. Unfortunately, communication regarding compart-
ment updates is necessarily sequential, simply because each
new time step requires the compartment voltages of the
connected cells. These are available only at the end of the
previous time step. However, the gate updates do not have a
sequential dependency within a time step, and can therefore
be processed simultaneously with communication.

Memory-wise, it is necessary to save all compartment
potentials required for the gap-junction calculations, for every

Algorithm 2 1D-Gaussian Generation (Mean, Variance,
NetworkSize, Density)
1: xd = 1 / (variance * sqrt(2 * PI))
2: yd = -(1 / (2 * pow(variance, 2)))
3: for 0 ≤ Distance < NetworkSize do
4: if (TargetCell − Distance) < NetworkSize then
5: if rand(0, 1) ≤ xd∗exp(pow(distance−mean, 2)∗

yd) then
6: -> Add NeighborCell (TargetCell - Distance)

to connection graph
7: end if
8: end if
9: if TargetCell > Distance then
10: if rand(0, 1) ≤ xd∗exp(pow(distance−mean, 2)∗

yd) then
11: -> Add NeighborCell (TargetCell + Distance)

to connection graph
12: end if
13: end if
14: if ConnectionCount ≥ Density then
15: break()
16: end if
17: end for

local cell-connection list. When utilizing GPUs, this needs to
be in GPU-accessible memory. This can be memory directly
located on a GPU card, but it can also be located in the
Unified Virtual Addressing (UVA) space of a compute node.
Using UVA saves memory on multiple GPU compute nodes,
but leads to worse performance compared to GPU-specific
memory allocation. In general, there is a trade-off between
lower memory use and higher performance. However, for
SimHH, the choice is easy: using the unified memory space

VOLUME 13, 2025 46873



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

leads to such high data latencies compared to the GPU-
specific memory, that using UVA memory will always lead
to worse performance. Distributing these potentials to remote
nodes instead is much simpler, as the remote nodes treat these
values as read-only and do not update them.

Open Multi-Processing (OpenMP) and Open Message
Passing Interface (OpenMPI) were designed to allow devel-
opers to optimize memory access and inter-process commu-
nication, and were therefore selected as support libraries to
create this feature. To communicate between MPI processes,
two strategies are available:

1) Communicate everything to everyone
(MPI_Allgather).

2) Communicate the necessary data only to specific
nodes (MPI_Alltoallv). Each process may send a
different amount of data and provide displacements for
the input and output data.

Measuring the performance using these two strategies
across different types and levels of connectivity will provide
valuable insights for HPC neural simulations of any kind.
We hypothesize that the more localized the connections, the
greater is the performance benefit from the second strategy.
After all, the number of gap junctions that spanMPI processes
is reduced, which lowers the communication overhead. MPI
can be used in a CUDA-aware fashion, enabling direct
access to GPU memory, which enhances the performance
by minimizing data movement. Inter-GPU communication is
handled through peer-to-peer copying, utilizing GPUDirect
with or without NVLink, depending on platform support. The
performance results for eachMPI communication strategy are
presented in detail in Section V.

E. ANALYSIS OF THE PROPOSED DESIGN
1) FUNCTIONAL FLOW
The functional flow of SimHH is broken down into a
functional-level description for a particular system config-
uration, as shown in Fig. 4. The neuronal-network setup
consists of initializing CPU and, when applicable, GPU
memory. Memory management must ensure data correctness
because the system works with separate kernels to perform
gate and compartment updates. A double-buffering system
is necessary to prevent the compartment potentials from the
previous time step from being overwritten by the values of the
current time step. Such a system ensures that all operations
dependent on the old values have a chance to read them
before they are updated: it employs two memory allocations,
where one holds the old values and one holds the updated
values. Therefore, each state of the network, compartment
potentials and calcium concentrations, channel currents, and
gate-activation states are double-buffered. An added benefit
is that we can copy the old values back to system memory
from the first buffer, while simultaneously calculating the
new values. In other words, because of the double buffering,
the GPU-to-CPU data transfers can be performed entirely
concurrently with the execution of the compute kernels. The

double-buffering system is an important design optimization
that is useful not only for neural simulations, but for any type
of simulation where dependencies exist between timesteps,
but not within a single timestep.

2) ROOFLINE-MODEL GPU KERNELS
For the case where a GPU backend is available (i.e., one
or more nodes), we constructed a roofline model to gain
further insight into the specific GPU kernels (see Fig. 5). It is
clear that, in this case, the gap-junction calculation kernel
is heavily memory-bound. The kernel often stalls because it
has to wait for memory accesses. This suggests that there is
still room for performance improvement in the compartment-
and gate-update kernels. Both are, in principle, memory-
bound tasks, but it can be observed that the device does not
achieve peak performance within this bound. This is mainly
because GPU warps are stalling, waiting for dependencies.
The Stall Long Scoreboard is the most frequently
occurring stall, which indicates that memory-access patterns
are not optimal for these kernels. The compartment-update
kernel does not achieve maximum warp occupancy, because
the number of available registers is lower than the optimal
number of registers required per thread, for this specific
neural model.

Possible improvements for the compartment- and
gap-update kernels include better memory-access patterns
by rearranging the memory used for the configuration
parameters, differently, or better shared-memory usage. The
gap-junction calculation kernel is bottlenecked by memory
bandwidth. Efforts can be made to better hide this latency
by adding more compute complexity. The gap-junction
calculations also lack concurrency in the memory accesses,
due to their random nature, which limits the maximum
achievable performance.

V. RESULTS
In this section, we evaluate SimHH in terms of performance,
scalability and various design decisions. We will also provide
a performance comparison to other competitive, state-of-
the-art neurosimulators, in order to demonstrate the merits
of SimHH. Several experiments have been conducted over
a range of neuronal networks based on the IO model to
establish the scalability characteristics. The resources for
the experiments were allocated on Piz Daint, a hybrid Cray
XC40/XC50 system at the Swiss National Supercomputing
Centre (CSCS). Functional validation of the simulator was
conducted using the original De-Gruijl IO model, which is
also the neuron description used for the performance evalua-
tion. The Gaussian distributed gap-junction network is bio-
logically realistic, whereas the Random-Binary distributed
network was mostly added for stress-testing purposes.

A. EXPERIMENTAL SETUP
Piz Daint is the computing platform that was used for this
evaluation. This work exclusively uses the XC50 nodes
which contain an Intel Xeon E5-2690 v3 @ 2.60GHz

46874 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

TABLE 2. Benchmark exploration space. All experiments are performed using IO neurons. .

(12 cores, 64GB RAM) CPU and a single NVIDIA Tesla
P100 16GB GPU. The De-Gruijl IO model was selected
for benchmarking, which provides a fair comparison with
previous works. The full benchmarking configuration is
presented in Table 2.

B. CPU- VS GPU-BACKEND PERFORMANCE
The design of SimHH had a strong focus on the GPU
backend, which is expected to significantly outperform the
OpenMPmulti-threaded CPU backend. The results presented
in Fig. 6 confirm this. Fig. 6 also shows the strong
linear-scaling properties of SimHH, as long as the problem
size is sufficient to fully saturate the capabilities of the
compute node(s).

C. GAP-JUNCTION DISTRIBUTION
As can be seen in Fig. 7, the Gaussian versus Random-
Binary gap-junction results clearly show that the more local
the gap junctions are (relative to the connected neuron), the
better the performance becomes. Clearly, a higher degree of
cache hits contributes to faster simulation times. Conversely,
a higher number of nodes leads to higher overhead costs.
Therefore, as the number of nodes increases, the achievable
gains in simulation time per step decrease. The presented
results are for a GPU backend with the MPI_Allgather
communication option.

D. FUNCTIONAL-FLOW PERFORMANCE
The bottom bar chart in Fig. 8 displays the simulation time
(in seconds) for different numbers of nodes, broken down
into their respective tasks along the critical path, as detailed
in the functional flow diagram in Fig. 4. The top bar chart
shows the execution times for the three GPU kernels. As the
node count increases, the execution times for the gap-junction
calculation and compartment updates (represented by stall
barrier 1) decrease proportionally due to the distributed
computing tasks. Kernel launch times also decrease with
smaller local network sizes, as higher node counts lead to
smaller grid dimensions for each launch. However, MPI
communication times increase with more nodes due to the
additional management overhead of each extra node. The gate
updates (represented by stall barrier 2) are executed
almost entirely concurrently with other tasks and do not

contribute to the critical path, indicating a well-balanced
design for this network configuration.

E. MPI-COMMUNICATION PERFORMANCE
Communication overhead is a crucial metric for distributed
systems, but it is also notoriously difficult to measure
and optimize. Unlike computational resources, users typi-
cally have limited control over the network infrastructure
that connects different processing nodes. This lack of
transparency makes it challenging to identify and address
communication bottlenecks.

When the interconnection architecture is unknown, it is
impossible to ensure that any two nodes are physically close
to each other. Since the cluster network may be used by
other jobs simultaneously, obtaining noise-free performance
results for comparison is very difficult. However, the Piz
Daint network architecture uses a dragonfly topology with
384 nodes per electrical group, thereby eliminating any
interconnection uncertainties within a group. Therefore, the
results obtained by running SimHH on this network are
suitable for comparison.

We hypothesized that locality in the gap-junction network
would result in lower MPI communication times when
using the MPI_alltoallv strategy, while a more ran-
domly distributed network would experience added over-
head, making the MPI_allgather strategy preferable.
Fig. 9 confirms our hypothesis: neither strategy is optimal
for all networks, and the optimal choice depends on
the locality of the gap-junction network. Since it is the
key factor explaining the performance differences between
strategies, the locality of the gap-junction network should
be the guiding metric when it comes to the choice of
strategy.

F. VERSATILITY OF SIMHH
As mentioned previously, SimHH is a versatile eHH simu-
lator. Fig. 10 illustrates the performance of three different
network configurations: the original HH model (without any
gap junctions), the De-Gruijl IO model with three com-
partments and gap junctions, and an eHH description with
1,000 compartments, featuring exponential gap junctions
(1000Comp). The ability of SimHH to simulate such a
broad range of neuronal networks demonstrates its versatility.

VOLUME 13, 2025 46875



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 6. Performance-scalability results of the SimHH GPU and CPU; the GPU benefits are obvious. Results are displayed up to 32 compute nodes. For
the network topology, we used a Random-Binary distribution with a density of 1,000 gap junctions generation with a density of 1,000. Visual aiding lines
are added to show excellent weak-scaling characteristics.

FIGURE 7. Experimental results to determine the impact of a RandomBinary versus 1D-Gaussian distributed gap junction network. The network
configuration has a density of 1000 and the GPU backend is utilized.

It can handle anything from a single compartment with
N gates to M compartments with N gates, as long as it
falls within the subset of supported network configurations
for SimHH.
1000Comp represents a large and complex model. Fig. 10

shows that larger models require more compute resources
and their simulation is therefore slower. However, the
simulation of the 1000Comp model was less than 1000

3 ×

slower than that of the De-Gruijl IO model with three

compartments. This is because kernel initialization and
cache performance do not scale linearly with the network
parameters.

As expected, the 1000Comp model has a considerably
larger memory footprint than the De-Gruijl IO model.
Unfortunately, the results for simulations of this model with
large network sizes on the 2- and 4-node configurations
are not plotted, as these simulations failed to complete due
to insufficient GPU memory. However, they successfully

46876 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 8. Functional-flow performance, in line with Fig. 4. The network was configured to simulations with 524,288 IO neurons
and a density of 1,000 with a Random-Binary distribution. MPI communication utilizes the MPI_AllGather strategy. Results are
shown for 4, 32 and 256 nodes at the Piz Daint compute cluster.

FIGURE 9. MPI communication results, at the Piz Daint compute cluster. The results illustrate the MPI_allgather method versus the MPI_alltoallv
method. It becomes clear that, with a higher rate of locality (Gaussian), the latter becomes favorable.

completed on the 8-node configuration. This underscores that
memory is a scarce commodity and highlights how scaling
across multiple nodes enables the simulation of larger, more
intricate SNNs.

G. COMPARISON OF SIMHH WITH RELATED WORK
Given the abundance of available neurosimulators, a com-
prehensive comparison with all related works is infeasible.
However, Table 3 provides an overview of the landscape,

VOLUME 13, 2025 46877



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

FIGURE 10. Performance, measured as simulation time per step, for the HH model, the De-Gruijl IO model, and a non-biologically meaningful
1000-compartment model. Simulation time varies with increasing neuron complexities in terms of size. Notably, results for the 1000-compartment model
are absent for larger network sizes on the 2- and 4-node configurations due to memory limitations.

TABLE 3. Performance comparison with related works.

including the work presented here, offering insight into the
performance improvements achieved compared to earlier
work. Multiple entries of SimHH were included to allow
for performance comparison on comparable platforms. [27]
To ensure a fair comparison, we utilized the same solver
(forward-Euler) wherever possible, and attempted one-to-one
comparisons of simulation steps. In cases where this was not
feasible, biological time was used as a metric, with SimHH
employing a time step of 0.025 ms.

Each comparison in Table 3 models SimHH’s network
configuration to closely resemble the referenced work.
However, achieving a perfectly fair comparison is not always
possible, because published numbers often indicate differ-
ences in orders of magnitude between various simulators.
It is essential to note that SimHH is a dedicated eHH
simulator, enabling a higher degree of optimization compared

to more general simulators such as Neural Simulation Tool
(NEST) and BRIAN. Furthermore, the superior performance
of SimHH compared to hard-coded IO simulators can be
attributed to better code and kernel designs. The signif-
icant speedup over previous multi-node implementations
(Chatzikonstantis et al. [28] and v/d Vlag et al. [25]) is largely
due to SimHH’s overlapping-kernel design and a generally
more performance-optimized codebase.

VI. DISCUSSION
As described in Section IV-E2, the performance in the
compartment- and gate-update kernels is suboptimal. The
GPU does not achieve peak performance within the memory
bounds defined in the roofline model. Potential improve-
ments include optimizing memory-access patterns, shared-

46878 VOLUME 13, 2025



M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

memory usage or adapting memory allocation based on
configuration parameters. However, additional algorithms
can incur overhead, and full resource usage does not always
equate optimal performance. Large simulations are expected
to get more predictable memory accesses for the local neural
update and the gap-junction updates. This potentially creates
more random lookups, even though – following biology –
the number of connections stays more or less the same and
does not grow with the amount of neurons. So, following this
reasoning, larger models become more predictive in terms
memory accesses.

Section V-G highlights the challenges of achieving a
perfectly fair comparison with previous works due to varying
simulation setups and reported metrics. It should also be
noted that different neurosimulators have different strengths.
While SimHH excels in performance for eHH models when
compared to NEST and BRIAN, these latter simulators
offer broader model support. SimHH’s specialization limits
its applicability to other neuron models. However, SimHH
remains a highly flexible tool for eHH models, offering
superior performance and scalability compared to existing
solutions.

Moving forward, several promising directions emerge.
Investigating the impact of gap-junction network locality
on communication overhead offers insights into the pre-
ferred communication methods. Ongoing CUDA design
enhancements hold potential for further performance gains.
Expanding the simulator’s features to support a wider range
of experiments and incorporating higher-order solvers can
enhance the versatility. In addition, collaborating with neu-
roscientists to simulate human-scale IO models could offer
insights into complex neural dynamics. Exploring strategies
for optimized neuron grouping andmemory allocation should
minimize communication overhead. Grouping could be done
with respect to the compute-power availability for each
grouping. Furthermore, an analysis of energy and hardware
resource utilization could provide valuable insights regarding
the cost-effectiveness of SimHH. Finally, implementing
parsers to convert NeuroML descriptions would streamline
the simulation-setup process and enhance usability.

VII. CONCLUSION
This paper introduces a novel neurosimulator, SimHH,
capable of simulating a wide range of eHH neural networks.
Building upon the work of Miedema et al. and Panagiotou et
al., who developed flexible eHH simulators for specialized
hardware, SimHH offers a distributed-memory implemen-
tation with GPU and CPU backends. This design achieves
outstanding performance for large-scale eHH simulations.
SimHH exhibits high scalability due to its efficient use of par-
allelism. GPU-to-CPU data transfers are done entirely con-
currently with the execution of the compute kernels. SimHH
uses OpenMP and OpenMPI to optimize memory access
and inter-process communication, avoiding the high data
latencies that would come with UVA memory. It can handle
simulations of millions of cells with high connectivity densi-

ties by concurrently performing gap-junction communication
alongside cell computations whenever the network topology
allows. The memory management of SimHH was optimized
to minimize storage requirements. Unnecessary data are
offloaded to the file system during simulation, allowing for
very long biological time simulations without memory limita-
tions. We demonstrated SimHH’s effectiveness in simulating
a challenging inferior-olivary-nucleus model by De Gruijl et
al. Our experiments involved up to 256 nodes, showcasing
linear weak and strong scaling as long as hardware resources
are fully utilized. Two communication schemes were com-
pared for inter-process communication: MPI_allgather
and MPI_alltoallv. MPI_alltoallv outperforms
MPI_allgather for networks with high locality in the
gap-junction graph. Conversely, MPI_allgather is more
efficient for completely random networks because of the
lower overhead. This finding helps to optimize communica-
tion formulti-GPU neural simulations. In conclusion, SimHH
breaks new ground when it comes to performance, while also
providing important insights for future neurosimulators.

ACKNOWLEDGMENT
This paper is partially supported by the European-Union
Horizon Europe R&I program through projects SEPTON (no.
101094901) and SECURED (no. 101095717) and through
the NWO - Gravitation Programme DBI2 (no. 024.005.022).
We would also like to thank Sotirios Panagiotou and Lennart
Landsmeer for their valuable help and input to this work.

REFERENCES
[1] R. Miedema, G. Smaragdos, M. Negrello, Z. Al-Ars, M. Möller, and

C. Strydis, ‘‘FlexHH: A flexible hardware library for Hodgkin–Huxley-
based neural simulations,’’ IEEE Access, vol. 8, pp. 121905–121919,
2020.

[2] S. Herculano-Houzel, ‘‘The human brain in numbers: A linearly scaled-up
primate brain,’’ Frontiers Human Neurosci., vol. 3, p. 31, Nov. 2009.

[3] D. A. Drachman, ‘‘Do we have brain to spare?’’ Neurology, vol. 64, no. 12,
pp. 2004–2005, Jun. 2005. [Online]. Available: https://n.neurology.org/
content/64/12/2004

[4] TOP500. Accessed: Jun. 1, 2024. [Online]. Available: https://www.top500.
org/lists/top500/2024/06/

[5] Fugaku. Accessed: Jun. 1, 2024. [Online]. Available: https://www.r-ccs.
riken.jp/en/fugaku/about

[6] E. M. Izhikevich, ‘‘Which model to use for cortical spiking neurons?’’
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[7] S. Noor, S. A. AlQahtani, and S. Khan, ‘‘Chronic liver disease detection
using ranking and projection-based feature optimization with deep learn-
ing,’’ AIMS Bioeng., vol. 12, no. 1, pp. 50–68, 2025. [Online]. Available:
https://www.aimspress.com/article/doi/10.3934/bioeng.2025003

[8] S. Khan, S. Noor, T. Javed, A. Naseem, F. Aslam, S. A. AlQahtani,
andN. Ahmad, ‘‘XGBoost-enhanced ensemblemodel using discriminative
hybrid features for the prediction of sumoylation sites,’’ BioData Mining,
vol. 18, no. 1, p. 12, Feb. 2025, doi: 10.1186/s13040-024-00415-8.

[9] N.A.Akar, B. Cumming, V.Karakasis, A. Kusters,W.Klijn, A. Peyser, and
S. Yates, ‘‘Arbor—A morphologically-detailed neural network simulation
library for contemporary high-performance computing architectures,’’ in
Proc. 27th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process.
(PDP), Feb. 2019, pp. 274–282, doi: 10.1109/empdp.2019.8671560.

[10] M.-O. Gewaltig and M. Diesmann, ‘‘NEST (NEural simulation tool),’’
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[11] J. Jordan, M. Helias, M. Diesmann, and S. Kunkel, ‘‘Efficient communi-
cation in distributed simulations of spiking neuronal networks with gap
junctions,’’ Frontiers Neuroinform., vol. 14, p. 12, May 2020. [Online].
Available: https://www.frontiersin.org/article/10.3389/fninf.2020.00012

VOLUME 13, 2025 46879

http://dx.doi.org/10.1186/s13040-024-00415-8
http://dx.doi.org/10.1109/empdp.2019.8671560


M. C. W. Engelen et al.: SimHH: A Versatile, Multi-GPU Simulator for Extended Hodgkin-Huxley Networks

[12] P. Kumbhar, M. Hines, J. Fouriaux, A. Ovcharenko, J. King, F. Delalondre,
and F. Schurmann, ‘‘CoreNEURON : An optimized compute engine
for the NEURON simulator,’’ Frontiers Neuroinform., vol. 13, p. 63,
Sep. 2019. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fninf.2019.00063

[13] D. Goodman, ‘‘Brian: A simulator for spiking neural networks in Python,’’
Frontiers Neuroinform., vol. 2, p. 350, Nov. 2008. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/neuro.11.005.2008

[14] M. Stimberg, D. F. M. Goodman, V. Benichoux, and R. Brette, ‘‘Brian
2—The second coming: Spiking neural network simulation in Python
with code generation,’’ BMC Neurosci., vol. 14, no. 1, p. 38, 2013, doi:
10.1186/1471-2202-14-S1-P38.

[15] E. Yavuz, J. Turner, and T. Nowotny, ‘‘GeNN: A code generation
framework for accelerated brain simulations,’’ Sci. Rep., vol. 6, no. 1,
p. 18854, Jan. 2016, doi: 10.1038/srep18854.

[16] L. Niedermeier, K. Chen, J. Xing, A. Das, J. Kopsick, E. Scott, N. Sutton,
K. Weber, N. Dutt, and J. L. Krichmar, ‘‘CARLsim 6: An open source
library for large-scale, biologically detailed spiking neural network
simulation,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2022,
pp. 1–10.

[17] M. Ward and O. Rhodes, ‘‘Beyond LIF neurons on neuromorphic
hardware,’’ Frontiers Neurosci., vol. 16, Jul. 2022, Art. no. 881598.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.
2022.881598

[18] S. Panagiotou, R. Miedema, H. Sidiropoulos, G. Smaragdos, C. Strydis,
and D. Soudris, ‘‘A novel simulator for extended Hodgkin–Huxley neural
networks,’’ inProc. IEEE 20th Int. Conf. Bioinf. Bioeng. (BIBE), Oct. 2020,
pp. 395–402, doi: 10.1109/BIBE50027.2020.00071.

[19] A. Hodgkin and A. Huxley, ‘‘A quantitative description of membrane
current and its application to conduction and excitation in nerve,’’ Bull.
Math. Biol., vol. 52, no. 4, pp. 500–544, Aug. 1952. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/12991237/?tool=EBI

[20] J. R. De Gruijl, P. Bazzigaluppi, M. T. G. de Jeu, and C. I. De Zeeuw,
‘‘Climbing fiber burst size and olivary sub-threshold oscillations in
a network setting,’’ PLoS Comput. Biol., vol. 8, no. 12, Dec. 2012,
Art. no. e1002814.

[21] N. Schweighofer, E. J. Lang, and M. Kawato, ‘‘Role of the olivo-
cerebellar complex in motor learning and control,’’ Frontiers
Neural Circuits, vol. 7, p. 94, May 2013. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fncir.2013.00094

[22] M. V. Mascagni, ‘‘Numerical methods for neuronal modeling,’’ Methods
Neuronal Model., vol. 2, pp. 439–484, Aug. 1989.

[23] C. Börgers and A. R. Nectow, ‘‘Exponential time differencing for
Hodgkin–Huxley-like ODEs,’’ SIAM J. Scientific Comput., vol. 35, no. 3,
pp. B623–B643, Jan. 2013.

[24] P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings,
M. Farinella, T. M. Morse, A. P. Davison, S. Ray, U. S. Bhalla,
S. R. Barnes, Y. D. Dimitrova, and R. A. Silver, ‘‘NeuroML: A language
for describing data driven models of neurons and networks with a high
degree of biological detail,’’ PLoS Comput. Biol., vol. 6, no. 6, Jun. 2010,
Art. no. e1000815.

[25] M. A. V. D. Vlag, G. Smaragdos, Z. Al-Ars, and C. Strydis, ‘‘Exploring
complex brain-simulation workloads on multi-GPU deployments,’’ ACM
Trans. Archit. Code Optim., vol. 16, no. 4, pp. 1–25, Dec. 2019, doi:
10.1145/3371235.

[26] J. Jordan, T. Ippen, M. Helias, I. Kitayama, M. Sato, J. Igarashi,
M. Diesmann, and S. Kunkel, ‘‘Extremely scalable spiking neuronal
network simulation code: From laptops to exascale computers,’’ Frontiers
Neuroinform., vol. 12, p. 2, Feb. 2018.

[27] G. Florimbi, E. Torti, S. Masoli, E. D’Angelo, G. Danese, and
F. Leporati, ‘‘The human brain project: Parallel technologies for biolog-
ically accurate simulation of granule cells,’’ Microprocessors Microsyst.,
vol. 47, pp. 303–313, Nov. 2016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0141933116300515

[28] G. Chatzikonstantis, H. Sidiropoulos, C. Strydis, M. Negrello,
G. Smaragdos, C. I. De Zeeuw, and D. J. Soudris, ‘‘Multinode
implementation of an extended Hodgkin–Huxley simulator,’’
Neurocomputing, vol. 329, pp. 370–383, Feb. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231218312906

MAX C. W. ENGELEN received the M.Sc. degree
in computer engineering from Delft University of
Technology, in 2021. He is currently employed
with the Maxeler IoT Laboratories. He is also
employed as a Research Analyst with the Neu-
roscience Department, Erasmus Medical Center,
The Netherlands.

RIVER BETTING received the B.Sc. degree in
mechanical engineering and the M.Sc. degree in
computer engineering from Delft University of
Technology, in 2015 and 2018, respectively, and
the B.A. degree in history and the M.A. degree
in Russian and Eurasian studies from Leiden
University. They are currently a Research Ana-
lyst with the Neuroscience Department, Erasmus
Medical Center. Their current research interests
include artificial intelligence, computer vision,
and algorithm development.

CHRISTOS STRYDIS (Senior Member, IEEE) is
studied Electronics and Computer Engineering
from the Technical University of Crete, Greece.
He received the bachelor’s diploma (magna cum
laude), in 2003, the M.Sc. degree (magna cum
laude) in computer engineering from Delft Uni-
versity of Technology, The Netherlands, in 2005,
with a minor in biomedical engineering, and the
Ph.D. degree in computer engineering from Delft
University of Technology, in 2011. He holds a

Joint Associate-Professor with the Neuroscience Department, Erasmus
Medical Center, Rotterdam (NL), and with the Quantum and Computer
Engineering Department, Delft University of Technology. He funding
from the ICT Delft Research Centre (DRC-ICT) and Google Inc. He has
supervised multiple B.Sc., M.Sc., and Ph.D. students, and teaches various
bachelor- and master-level courses. His current research interests span the
fields of biologically plausible brain simulations, next-generation neural
implants, and ultrasound-based brain imaging. He has acted as program-
committee member in various international conferences. He has also peer-
reviewed for as well as published manuscripts in well-known international
conferences and journals, and delivered invited talks in various venues. He
has been awarded many national- and EU-level research projects.

46880 VOLUME 13, 2025

http://dx.doi.org/10.1186/1471-2202-14-S1-P38
http://dx.doi.org/10.1038/srep18854
http://dx.doi.org/10.1109/BIBE50027.2020.00071
http://dx.doi.org/10.1145/3371235

