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Abstract—With the introduction of automated driving systems
come benefits such as the improvement of traffic safety. However,
with an increasing level of automation in vehicles also comes
an increase in interaction with in-vehicle technology by drivers
while they are meant to supervise the automated driving sys-
tems. Due to more interaction with in-vehicle technology and
a vigilance decrement of the driver in Level 2 driving, an
increase in reaction time of the driver is seen when intervention
is needed by the means of a take over request. This delay in
reaction by the driver opposes the benefit of the introduction
of automated driving systems and causes hazardous situations.
To try and circumvent the effect of vigilance decrement, this
paper attempts to demonstrate the reduction of noticing time
of the Hands-On-Wheel warning message for drivers of Level 2
vehicles while interacting with in-vehicle technology through the
implementation of a gaze-contingent interface. The results of this
experiment indicate a 79.3% lower noticing time of the Hands-
On-Wheel warning message when the stimulus is placed in a gaze-
contingent manner, while the participants engage in secondary
tasks on the in-vehicle technology. The placement of the stimulus
on the head unit when the participant is already looking at it
reduces the primary task load of touching the steering wheel
and causes for the stimulus to be seen quicker as compared to a
static interface. However, the performance of the secondary task
seems to decrease when using a gaze-contingent interface. This
is due to the intrusive nature of the placement of the stimulus,
which demands the driver to store information regarding the
secondary task in their working memory while they attend to the
primary task. Despite the decline in secondary task performance,
the reduction of noticing times of time critical messages when
placed in a gaze-contingent manner could be beneficial to the
safety of autonomous driving functions where the driver has a
vigilance task and is engaging in secondary tasks.

Index Terms—Gaze-contingent, Eye tracking, Interface, Au-
tonomous driving

I. INTRODUCTION

For Level 2 partial driving automation, vehicles have au-
tomated lateral and longitudinal vehicle motion control as
defined by the Society of Automotive Engineers. In practice,
this could translate into functionalities such as adaptive cruise
control (ACC) and automated lane keeping (ALK). Such
systems are considered to be a driver support system where

the driver is still responsible for (some) of the dynamic
driving task. With active ACC and ALK, the driver does not
have to give any speed or steering control input as that is
automated. However, it is expected of the driver to supervise
the partial driving automation system and execute general
object and event detection in case the support system is unable
to function. In such a case, the driver needs to be able to
respond appropriately [1].

The implementation of automated driving systems such as
the ACC and ALK functionalities in Level 2 driving brings
along a multi-faceted set of benefits. The main benefit being
the improvement of traffic safety by reducing human induced
traffic incidents through the use of systems such as ACC and
ALK. Other benefits consist of traffic congestion reduction,
improvement in fuel economy and travel time reduction [2].

However, with an increasing level of driver support, drivers
tend to shift their attention from the road to execute other
non-driving related tasks (NDRT). Especially interaction with
in-vehicle technology (IVT) such as radio and infotainment
system interaction seem to increase in the presence of Level
2 automated driving systems (ADS) [3].

In an on-road study with activated Level 2 functionalities,
video data shows that drivers are complacent and over-trust the
ADS by not adhering to their responsibilities of monitoring
the support system. This increased interaction with IVT is
clear evidence for the inefficiency of humans as a monitory
component in a dynamic driving task [4]. Especially in the case
of Level 2 driving, where transitions from automated driving to
manual driving occur regularly, the engagement in non-driving
related tasks can be problematic.

These transitions from automated driving to manual driving
are facilitated by a take over request (TOR). This process can
be decomposed into three different stages [5]:

1) Noticing time: defined as the moment in time when the
driver’s gaze moves away from the secondary task until
it fixates on the time critical warning message on the
display/interface.



2) Hands-On-Wheel time: defined as the time from the
fixation on the stimulus until the driver touches the
steering control.

3) Intervention time: defined as the time from the first
steering control touch to the first steering control input.

Once exposed to a take over request, the driver has to go
through the above mentioned three stages. However, when
engaging in secondary tasks under Level 2 driving, it takes
significantly longer (x 1.5 sec) [6] for drivers to go through
all three steps. This can result into dangerous situations with
a proven higher amount of collisions in high density traffic
[7].

When considering the aim of automated driving systems,
it is to try and provide safety benefits. However, the use
of such automated systems also force the driver into a
supervisory role. When a driver is meant to supervise said
automation, they are required to keep their visual attention in
a situation in which not a lot changes or happens. From the
vigilance studies done by Mackworth. [8], it was concluded
that human operators do not perform well in such situations.
The likelihood of the detection of abnormalities by human
operators actually deteriorates as a function of time. As one
can imagine and as has been proven by Mackworth [8],
the longer an operator has to supervise a situation where in
nothing noteworthy changes, the less probable it is that the
operator will detect a signal when needed [8].

When translating this phenomenon onto the take over
process, this could impose new safety hazards. The inattention
of the operator during their vigilance task contradicts with
the added benefits of using automated driving systems. This
is paradox is described as the “ironies of automation” [9],
which describes that a human operator with monitoring tasks
over an automated system brings additional complexities with
it together with the planned benefits of automation.

Considering this potential safety hazard due to inattention,
it is worth wile to attempt to mitigate the ironies of automation
by trying to minimize the effect of engaging in non-driving
related tasks on transitions as mentioned in Eriksson and
Stanton [6]. One way of alleviating the shortcomings of
vigilance by drivers of vehicles equipped with ADS, is to
keep the signal rate with which the driver has to pay attention
artificially high, as is recommended by Bainbridge [9].
Current vehicles equipped with Level 2 automated driving
systems attempt to keep the drivers’ attention as a supervisor
to the system through the display of an optical warning
signal. This warning signal demands the driver to touch the
steering wheel to ensure the driver is still aware of its Level
2 supervisory tasks according to the timeline as depicted in
fig. 1.

The optical warning indicates hands and the steering
control with an (optional) additional explanatory text that tells
the driver to place their hands on the steering control. This is
standardized according to Regulation No 79 of the Economic
Commission for Europe of the United Nations [10], and is a
mandatory feature for any steering control assist systems.

The optical warning, specified as the Hands-On-Wheel
(HOW) message, needs to be displayed at tgow,s after
the driver has not been holding the steering control for up
to 15 seconds with activated Level 2 ADS functionalities
(SAuto)- If the driver has seen the HOW message, they
need to react and touch the steering control to eliminate the
warning message and continue in partial autonomous driving
SAuto- The driver has 30 seconds from tyow,s onward to
react, after which the HOW message will turn red and an
additional acoustic warning message will be added. This
instance is depicted as time instance t oW, critical 1N SCENArio
B for when the warning remains unnoticed (see fig. 1. The
system will maintain this level of warning message for a
duration of 30 seconds, represented by Sci-iticqr. After the 30
seconds in S¢yiticqr Without a driver response, the ADS will
be deactivated in a safe manner and the vehicle will come to
a halt in a safe place. This is indicated by Sg.y. in fig. 1.
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Fig. 1: Timeline of the driver optical warning signal through
the various states of the automated driving system. Scenario
A describes the progression of events when the stimulus is
noticed by the driver. Scenario B the events after an unnoticed
stimulus.
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Fig. 2: Schematic display of different stages of a take over
request and Hands-On-Wheel request.

As mentioned, the use of such an optical warning system
like the HOW message is used to help keep the attention of
drivers of Level 2 vehicles. However, it can be expected that
due to the driver’s distraction by the IVT in Level 2 driving,
a prolonged Hands-On-Wheel time due to engagement in
secondary tasks occurs. This is assumed because of the
similarity between the TOR and HOW stages the driver has
to undertake, as can be seen in fig. 2.

This prolonged THow can be problematic and hazardous,
as mentioned by Radlmayr et al. [7]. Therefore, it is key



to try and minimize this side effect of the implementation
of Level 2 ADS functionalities. As can be seen in fig. 2,
Trow comprises of two temporal components; the noticing
time ty,: and Hands-On-Wheel time tyow. Attempting
to lower the Tyow of a driver in a Level 2 vehicle while
interacting in-vehicle technology can be therefore be achieved
by lowering either of the mentioned temporal variables.

The aim and scope of this paper lies with attempting
to reduce the noticing time, tno, of the Hands-On-
Wheel warning message for drivers of Level 2 vehicles
while interacting with in-vehicle technology through the
implementation of a gaze-contingent interface.

If the Hands-On-Wheel warning message is displayed in a
gaze-contingent manner, it is hypothesized that the noticing
time of the warning message will be lower in Level 2 driving
while interacting with in-vehicle technology as compared
to noticing times of the same warning message in a static
interface under the same driving conditions.

This hypothesis is based on the experimental results
achieved by Pomarjanschi et al. [11] whom explored the
possible benefits of using gaze guidance in (simulated) driving
in safety-critical situations. In a simulated distracted driving
scenario, their participants were exposed to potentially danger-
ous events. These events were highlighted with (temporally
transient) gaze-contingent cues when the subjects were not
looking at the dangerous event to direct the driver’s attention
to it. This resulted in shorter reaction times and noticing times
of the events when making use of the gaze-contingent cues
[11].

Using the same principle of gaze-contingent placement of
stimuli, this research hypothesizes to achieve the same result
of shorter noticing times of time-critical events, such as the
Hands-On-Wheel warning message.  Secondarily, when in-
troducing a gaze-contingent interface while interacting with in-
vehicle technology, it is hypothesized that the intrusive nature
of the gaze-contingent cue might also affect the participants’
ability to utilize the IVT as wanted. Therefore, it is also key
to monitor the performance of the participants’ non-driving
related task and assess whether the gaze-contingent interface
has an effect on this.

II. METHOD
A. Participants

Participants of this experiment consisted of 16 Mercedes-
Benz employees (8 female, 8 male) with a mean age of
28.63 years (SD = 7.43). All participants have a valid driver’s
license and have given informed consent to participate in this
experiment.

B. Apparatus

This experiment will simulate two scenarios in which the
participant is driving on a highway with activated Level 2
functions in a Mercedes-Benz vehicle. This means that the
participant does not need to provide longitudinal or lateral

control during the experiment, as it is simulated that Active
Steering Assist (ALK) and Distronic+ (ACC) is in use in
the Mercedes-Benz simulated vehicle. Both scenarios will
take place in the same experimental setup that consists of
various components; the seating buck, displays, eye trackers,
interface, stimulus and developmental software.

(a) Seating buck with external display placed in front of the dashboard
consisting of the steering control, head unit and instrument cluster.

(b) Placement of the Tobii Pro Nano eye tracker below the head unit
(left) and above the instrument cluster (right).

Fig. 3: Complete experimental setup.

1) The seating buck: The seating buck consists of a
physical cabin model of a Mercedes-Benz vehicle. This
structure is fully equipped with a driver, passenger and back
seat. The front row is also equipped with a dashboard-like
structure containing the displays, with on the the driver side
pedals for longitudinal control and a steering-wheel in place
for lateral control. The configuration can be seen in fig. 3a.

2) The displays: The displays are embedded into the
seating buck to simulate the instrument cluster and the
head unit. Together, the two displays make up the interface.
Display specifications and placement details are disclosed in
Appendix V-C. For this experiment, the passenger display
has been kept out of the scope. In addition to the seating
buck displays, an additional large external display has been
positioned in front of the seating buck to provide a visual
stimulus for simulated driving on highway roads. This display
does not play a role in either the primary or secondary task
of this experiment. However, it does add to the perceptual
fidelity of the experiment by bringing the perception of the
participant in the simulator as close as possible (within means
available) to the perceivable reality [12] of a driver of a Level



2 vehicle.

3) The eye trackers: The eye trackers that are used in this
experiment are two Tobii Pro Nano screen-based trackers that
measure the x and y position of a person’s gaze at a sample
frequency of 60 Hz. One eye tracker is placed above the
instrument cluster and the other below the head unit. The offset
of both eye-trackers are recorded in the Tobii Pro Eye Tracker
Manager for calibration purposes. The positioning of the eye
trackers can be seen in fig. 3b.
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(a) Mercedes-Benz NTG?7 interface on the instrument cluster.
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(b) Mercedes-Benz NTG7 interface on the head unit

Fig. 4: The base interface used in the experiment which
facilitates the secondary tasks and displays the stimulus.

4) The interface: The interface used in this experiment
uses components of the NTG7 Mercedes-Benz interface and
comprise of the instrument cluster (IC) and the head unit
(HU). The instrument cluster, as can be seen in fig. 4a,
has the G-force disc in the centre of the interface. At the
top of the interface, the speed is indicated as well as the
activation of the ADS, which are the active steering assist
and Distronic+ in this case. The head unit, as can be seen in
fig. 4b, consists of the basic NTG7 home screen with a menu
bar at the bottom. The menu bar comprises of some basic
climate control functionalities and options to go into the app
menu. This experiment only makes use of the app menu,
where the participants can find the non-driving related tasks
to be executed during the experiment as a secondary task.

These interface features make up the base of the two
different interfaces that will be tested against each other in
this experiment, the static NTG7 interface and the gaze-
contingent NTG7 interface. Both interfaces will display the
stimulus of the Hands-On-Wheel warning message according

to the timeline in fig. 6b. The difference between the static and
gaze-contingent interface is the placement of the stimulus.

The static interface will always display the stimulus,
at tgow,s, in the centre of the instrument cluster. The
gaze-contingent interface will always display the stimulus, at
tmow,s as well. However, in contrary to the static interface,
the stimulus will be placed in the centre of the display the
participant is looking at {mow,s, limited to the instrument
cluster and head unit. This is done by checking the change in
2 and y position at timestamp t gow,s. If the participant is not
looking at either screen, meaning that there is no change in x
and y coordinates, the stimulus will be shown on the display
with the latest gaze activity prior to tzow,s. The schematic
representation of the development of the Hands-On-Wheel
warning message is depicted in fig. 5.

Both interfaces have been prototyped using ProtoPie and
ProtoPie Connect. The details of this prototyping process can
be found in Appendix V-A.

5) The stimulus: The stimulus, known as the Hands-On-
Wheel warning message, itself comprises of a pictorial mes-
sage of the steering control with two hands gripping the wheel.
The hands start out to be blue at tgow,s and turn red 30
seconds after ¢ zow,s. The hands on the steering control in the
stimulus start flashing red 30 seconds after ¢ yow,criticar- The
auditory messages are left out of the scope for this experiment.
However, it has been included in the experimental setup to
enhance the fidelity and adhere to the regulations imposed by
the Economic Commission for Europe of the United Nations.
The auditory message is only introduced at tgow,criticals
30 sec after the introduction of the visual stimulus. Therefore,
it is assumed that the impact of the gaze-contingent placement
of the visual stimulus is not effected by the auditory message.

Furthermore, as the stimulus is depicted at t{gow,s, a blur
is eased in to mask the interface background of the stimulus.
The timeline of the stimulus is summarized in fig. 6.

The stimulus is removed from either the instrument cluster
or the head unit once the steering wheel is touched by the par-
ticipant. This will be removed manually by the experimenter
through the Wizard of Oz approach, where the experimenter
fills in for a piece of (missing) technology to create the same
experience for the participant of the experiment [13]. The
stimulus is removed through a touch of a button on a keyboard
out of sight from the participant. This is due to the lack of
sensors in the seating buck that can detect touch in the steering
wheel.

C. Procedure

All participants undergo the experiment twice, under two
different conditions: Condition A is the control condition
which tests the static NTG7 interface. Condition B tests the
gaze-contingent NTG7 interface, making this a within-subject
experiment. The participants take place in the seating buck in
the driver’s seat, where after both eye trackers are calibrated
to their respective screen using the Tobii Pro Eye Tracker
Manager.
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Fig. 5: Schematic representation of the development of the Hands-On-Wheel warning message, referred to as stimulus, over
time. Both the gaze-contingent and the static path of the logic are displayed in the same figure to show the similarity between

the two interfaces.
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(a) Optical representation of the Hands-On-Wheel warning message
as displayed on the head unit. The instrument cluster will depict the
identical stimulus when it is placed there.
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(b) Timeline of the optical and acoustic development of the Hands-
On-Wheel warning message. This includes the same temporal marks
as in fig. 1 on the x-axis.

Fig. 6: Overview of the stimulus presented at tgow,s.

The participant takes position in the driver seat 71.5 cm
behind the instrument cluster. The IC has a resolution of 900
x 2400 pixels with a height of 11 cm. The eye tracker is
placed 5 cm above the instrument cluster. The head unit is
placed 78.6 cm in front of the participant, 29.3 to the right of
the instrument cluster. This screen has a resolution of 1728

x 3088 pixels with a height of 23.2 cm. The eye tracker
is placed 5 cm below the head unit. When the stimulus is
triggered, it will be displayed in the centre of either display.

The experiment consists of a primary and a secondary task
the participants have to execute. Completing all tasks in both
the static and gaze-contingent interface takes 30 minutes.

The primary task of the participant is to touch the steering
wheel as soon as they are exposed to the Hands-On-Wheel
warning message. Once they have done this, the warning
message will be removed from the interface and the participant
can continue with their secondary task. The warning message
repeats itself during the execution of the secondary task as
elaborated upon in 6b.

The experiment simulates Level 2 driving which means
besides the primary task, the participant does not need to
interact with the steering control nor the gas pedals.

The secondary tasks of the participant consists of the
non-driving related tasks to simulate in-vehicle technology
interaction and the mental workload that comes with attaining
situation awareness when driving using partial automation
[16]. According to Chen et al., using (partial) automation in
driving comes with a certain mental workload. The secondary
tasks have been selected accordingly to simulate said mental
workload and attempt to increase behavioral fidelity of the
participants. These tasks consist of the AOSPAN and 1-back
task and are explained to the participant through an example
trial run prior to the data collection. Next, participants execute
three trials of the AOSPAN task and three trials of the 1-back
task on the head unit while the external display shows a video
of simulated high way driving. While performing the tasks,
the stimulus is displayed according to fig. 6b after which the
primary task is ought to be executed.

After the in total six consecutive trials of both secondary
tasks are completed in the static NTG7 interface, the same
tasks are then repeated in the gaze-contingent interface once
again. The order in which conditions A and B are tested
alternates between participants.
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Fig. 7: Schematic representation of the secondary tasks of which the participants will first do a practice trial of each task
before the recording of the performance starts. Each participant will thereafter do three trials of each task.

1) The AOSPAN task: The Automated Operation Span
Task exposes the participants to various simple mathematical
problems which have to be answered. The participants are then
shown a letter which they have to remember. This is repeated
five times, after which the participants are required to recall all
five letters that have been presented after the math problems
[14]. To clarify, the schematic representation of the AOSPAN
task can be seen in fig. 7a. This task will be displayed on the
head unit during the experiment.

2) The I-back task: In the 1-back task, the participant is
exposed to a letter that is displayed on the head unit. The
participant has to determine whether the letter that is currently
being shown is the same as the letter that has been shown one
letters back [15]. To clarify, the schematic representation of the
1-back task can be seen in fig. 7b. This task will be displayed
on the head unit during the experiment.

D. Independent variable

The independent variable is the adaptability of the NTG7
interface that is used in the experiment. Condition A uses the
static NTG7 interface which always places the stimulus on
the instrument cluster. Condition B uses the gaze-contingent
NTG7 interface which places the stimulus on the display
where the participant is looking. The independent variables
are also annotated by the dashed boxes in fig. 5.

E. Dependent variables

Mean noticing times of stimulus, tn,: [sec]: The main
dependent variable that will measure the performance of the
newly implemented gaze-contingent NTG7 interface is the
noticing times of the stimulus. The noticing time is defined
through means of the determined fixations on the stimuli.

These fixations are obtained from the measured z and y
coordinates.  First, the missing coordinates due to blinking
or other instances with no eye tracking measurements are
restored through linearly interpolating adjacent data points.
A median filter with a 100 ms interval is used on the x
and y coordinates to remove noise [17]. From this, the time
derivative is calculated for each participant to determine the
gaze velocities © and y. The gaze velocity is determined as
the euclidean vector of the individual velocity components
of the x and y coordinates. Using equation 1, the angular
velocity is determined as the Euclidean distance of the & and
y components. Where, fs is the sampling frequency of the
eye tracker and ¢ denotes the factor converting pixels to visual
degrees (see eq. 2). In equation 2, h.,, represents the height
of the display in centimeters, h,;, the vertical resolution of
the display in pixels and D the distance to said display.

0; = fopr/ a2 + 42 (1)
4 arctan(hey,, /2D
pix

The gaze velocity data is then filtered to discriminate
between saccades and fixations. First, any gaze velocity data
above 1000 deg/sec is eliminated for being physiologically
impossible for the human eye to reach [18]. Second, a saccade
velocity threshold of 2000 pixz/sec is assumed [17]. Any
gaze velocity above this threshold is classified as a saccade.
Additionally, any gaze velocity below the saccade velocity
threshold is assumed to be a fixation if it adheres to a minimum
fixation duration threshold of 50 ms [19]. For each of the
established fixations, a median z and y position is determined



to conclude a fixation location. If the fixation is within bounds
of the displayed stimulus, then the start time of the fixation
can be used to assume when the stimulus has been noticed. For
this specific experiment that means that the median = and y
location has to lie within the bounds of 750 < x < 1650,
118.725 < y < 781.275 for the instrument cluster and
1094 < =z < 1994, 553.725 < y < 1216.225 for the head
unit.  The noticing times of the stimulus is defined in three
different manners:

1) The noticing time can be defined as the time difference
between the stimulus start time, ¢ ow,s, and the closest
fixation start time after the stimulus, Fix.josest- This
describes the moment a participant moves their gaze
from elsewhere to the stimulus.

2) The noticing time can be defined as zero when the
participant is already fixated at the right location when
the stimulus is presented. This is when the fixation
occurs before the stimulus is presented and the fixation
duration exceeds the difference between the fixation start
time and the stimulus start time.

3) The noticing time can be defined as NAN when the
participant’s reaction to the stimulus is recorded before
a fixation takes place. It is then assumed that the partic-
ipant has seen the stimulus in their peripheral vision.

One of the three above mentioned definitions establish
a noticing time for each instance a stimulus is represented
for each participant. The pseudo code of the above defined
noticing times can be seen in fig. 8. The resulting noticing
times are averaged for each participant for each condition
to reach the desired metric of mean noticing time of the
stimulus, ;.

Noticing times, tyo¢
# Find closest fixation to HOWg
Fixclosest= find_nearest (Fixgtart, HOWg)

# Determine preliminary noticing times, tyot

tNot = Fixciosest— HOWs

# Determine if participant was already fixated on stimulus
for i in range (0, len (tyot))
# If noticing times is negative and the duration
of the fixation exceeds the start time of the stimulus
if (tyoe (i) < O AND abs (tyor(i))) < Fixguration (i)
# Noticing time assumed to be zero
tnot (1) == o

# Determine if participant has noticed stimulus through
peripheral vision
for i in range (0, len (tyot))
# If the end of the stimulus is earlier in time than
the closest fixation to the screen
if (HOWg (i) < FiXcjosest (1)
# Noticing time for that stimulus cannot be
determined
tyot (1) == nan

Fig. 8: Pseudo code: a display of how the three defined
noticing times will be distinguished in the code.

Performance of AOSPAN task, Paospan [%]: The
performance of the AOSPAN task is expressed in a
percentage of correctly answered questions. This includes
both the correctly answered mathematical problems and
recollected letters. The order with which the letters are
remembered is insignificant and does not influence the score.
The score of all mathematical problems and letters of all three
trials are summarized into a percentage of correct answers out
of the total asked questions per participant for each condition.

Performance of 1-back task, P)_pqci [%]: The performance
of the 1-back task is expressed in a percentage of correctly
remembered letters. All letters of all three trials are
summarized into a percentage of correct answers out of the
total asked questions per participant for each condition..

Percentage of stimulus seen through peripheral vision, PV
[%]: As mentioned in the third definition of the noticing time
of the stimulus, it can be assumed that occasionally partici-
pants see the stimulus through peripheral vision. The amount
of times this occurs per participant is taken as a percentage of
the total amount of presented stimuli per participant for each
condition.

F. Analyses

Due to a small sample size of participants, it is key to
chose an appropriate statistical test that can help determine
if the found differences are statistically significant. The first
step in this, is to determine the nature of the data and whether
it can be assumed to be normally distributed. This is done
by executing the Shapiro-Wilk test with an assumed p-value
of 0.05. The null-hypothesis is that the data used for the
dependent variables is normally distributed.

o If p < 0.05: then the null hypothesis can be rejected and

the data can be assumed to not be normally distributed.

e If p > 0.05: then the null hypothesis cannot be rejected

and the data could be normally distributed.

TABLE I: Shapiro-Wilk test for normality of all dependent
variables in each condition

Dependent variable w P
tNot,s 0.917 0.151
tNot,g 0.696  0.000153
PAoSPAN,s 0.886  0.0473
Paospan,g 0.957 0.610
P1_Back,s 0.861 0.0197
Pl—Back,g 0.696 0.000153
PV 0.867 0.0246
PVy 0.849 0.0246

Four dependent variables, with each two sub data-sets
of the static and gaze-contingent data, have been exposed
to the Shapiro-Wilk test. For all the four main variables,
at least one of both subsets can reject the null hypothesis.
Meaning that it can be assumed that the data is not normally



distributed. Therefore, the Wilcoxon Signed Rank Test with
a significance level of 0.05 is used to determine statistical
difference between conditions, since this test is suited for
non-normally distributed data sets [20].

III. RESULTS
A. Statistics

Statistical analysis was performed using a Wilcoxon Signed
Rank test with a significance level of 0.05. This test is chosen
because of the non-normality of the data. After the performed
statistical analysis, the null hypothesis’ for the mean noticing
time ¢y, (eq. 3) and the performance of the 1-Back task
Pi_pacr (eq. 6) can be rejected. This means that these two
dependent variables can be considered significantly different.
The null-hypothesis’ for the other dependent variables (eq. 4
and eq. 5) cannot be rejected and are therefore considered not
significantly different.

Null Hypothesis Hg, tno::

tNot,s = tNot,GO 3)
Null Hypothesis Hy, PV:
PVs = PVge 4)

Null Hypothesis Ho, PAOSPAN:
Paospan,s = Paospan,ac )
Null Hypothesis Hy, Pi_pgck:
Pi_Back,s = Pi—Back,cC 6)
TABLE II: Wilcoxon Signed Rank Test with a significance

level of 0.05 is used to determine statistical difference between
conditions

Dependent variable w P
tNot 0 3.05e-05
PiospPaAN 40.5 0.725
Pi_Back 3.5 2.13e-04
PV 37.0 0.117

B. Aggregate gaze results

Fig. 9 displays the aggregated distribution of all fixation
coordinates of all participants on both displays for each
condition. To achieve this, all x and y coordinates of the
fixations made on the head unit and instrument cluster are
concatenated together for all participants. These coordinates
are plotted in a 2D histogram to create a heat map, with a
specified bin resolution that corresponds to the 0.3° accuracy
of the used Tobii Pro Nano eye trackers.

The heat map shows where on the displays the most fixa-
tions take place. Fig. 9a shows the aggregate fixation locations
of all the participants completing the primary and secondary
tasks using the static NTG7 interface. This clearly shows the
area in yellow on the head unit which the participants fixate

on the most. This area also requires the most attention from
the participants during the secondary tasks as it displays the
questions for the AOSPAN and 1-Back task.

The instrument cluster shows a similar result for the static
NTG?7 interface as seen in fig. 9a, where the fixation location
is concentrated around the centre of the display. This location
corresponds to the placement of the Hands-On-Wheel warning
message that is always displayed on the instrument cluster in
condition A.

Fig. 9b shows the aggregate fixation locations of all partic-
ipants in condition B. At first glance, the heat maps of both
conditions look very similar. Especially the head unit shows
the same concentration of fixations around the same location
where the stimuli and secondary tasks are positioned.

One evident difference between the aggregated fixation lo-
cations of all participants between both conditions, is the gaze
data for the instrument cluster in condition B. It is apparent
from fig. 9b, that the fixation locations are more spread out
over all the participants on the instrument cluster. The area
on which the participants fixate is more diffuse compared
to the more concise area in the static NTG7 interface. This
might indicate that in condition A, the instrument cluster draws
the attention through the Hands-On-Wheel message which is
always placed on the same location. However, in the gaze-
contingent NTG7 interface, the Hands-On-Wheel warning
message is placed on the display which the participants are
looking at at tgow,s. Due to non-driving related tasks on
the head unit, the stimulus is always shown on the head unit
in the gaze-contingent NTG7 interface. This means that any
fixations towards the instrument cluster are voluntary and do
not necessarily serve a purpose towards the secondary task.
Therefore the location of said fixations are more of exploratory
nature and are not as limited as in condition A, where the
fixations seem to concentrate around where the stimuli are
placed and thus serving a purpose towards the primary task.

C. Mean noticing times of stimulus, tno: [sec]

Figure 10 depicts the mean noticing times per participant
tNot, Tor both the static and gaze-contingent NTG7 interface.
The use of a gaze-contingent NTG7 interface while interacting
with in-vehicle technology and engaging in non-driving related
tasks results in statistically significant decrease in mean notic-
ing time %y, at significance level o = 0.05, tested with a
Wilcoxon Signed Rank test.

In condition A, the mean noticing times averages over all
participants to 1.603 sec. Condition B, averages the mean
noticing times of all participants to 0.332 sec. This indicates a
decrease in mean noticing times &y of 79.3% from condition
A to condition B.

Furthermore, the participants seem to be more consistent in
when they notice the stimulus when using the gaze-contingent
interface compared to condition A with the static interface.
This can be seen in the spread of data points in the box plot
of fig. 10 and is also expressed in the standard deviation of
both conditions, where condition A has a standard deviation
of 0.915 and condition B of 0.152.
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Fig. 9: Heat map with on the left the instrument cluster and the head unit on the right.
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Fig. 10: Comparing the mean noticing times ¢y s of the
Hands-On-Wheel warning message in a static NTG7 interface
to the noticing time fNot,Gc in the NTG7 gaze-contingent
interface.

D. Performance of non-driving related tasks

Figure 11 depicts the performance of both non-driving
related tasks performed in the experiment. In fig. 11a, it can
be seen that average performance of the AOSPAN task is

slightly higher in condition A. Using the static NTG7 interface,
the participants have answered 92.1% of the asked questions
correctly. With the gaze-contingent NTG7 interface, there is
a slight decrease in performance with 91.7% of the asked
questions answered correctly. When comparing the AOSPAN
performance in both conditions, using the Wilcoxon Signed
Rank test, it can be found that the difference in performance
is not statistically significant.

For the 1-Back task, there seems to be the same trend in
performance as with the AOSPAN but with a bigger difference
between the two conditions, as seen in fig. 11. In condition
A, where the stimulus is presented on the instrument cluster,
the participants perform better on average. This is also backed
by the statistical significance found between the data sets of
condition A and B using the Wilcoxon Signed Rank test at
significance level 0.05. On average, the participants recollect
81.9% of the correct letters when taking the 1-back task in
the static NTG7 interface. This is 11.7% higher than the
recollection of letters in the gaze-contingent interface.

E. Percentage of stimulus seen through peripheral vision, PV
[%]

Figure 12 shows the amount of times the stimulus is
assumed to be seen through peripheral vision (as is defined in
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Fig. 11: Performance of non-driving related task on the head unit.

chapter II-E and the psuedo code of fig. 8). This is depicted
for both tested conditions of the static and gaze-contingent
NTG?7 interface. In condition A, using the static interface,
on average the participants nudge away the Hands-On-Wheel
message before fixating 30.1% of the times when presented
with the stimulus. In condition B, using the gaze-contingent
interface, this amount was 12.4% less with only a 17.7% of
the stimuli being seen through peripheral vision.

However, the Wilcoxon Signed Rank test concludes that
between the data sets of both conditions lies no statistical
significant difference.

Percentage of stimulus seen through peripheral vision
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Fig. 12: Percentage of stimulus seen through peripheral vision
in condition A and B.

IV. DISCUSSION
A. Mean noticing times of stimulus, tyot

The aim of this research was to reduce the noticing time
of Hands-On-Wheel warning message for drivers of Level 2

vehicles while interacting with in-vehicle technology through
the implementation of gaze-contingent placement of time
critical warning messages.

The results of the experiment show that the mean notic-
ing time of the stimulus is 79.3% lower when placing the
Hands-On-Wheel warning message on the display which the
participant is currently looking at. This is the same trend as
found by Pomarjanschi et al. [11], where participants’ time to
first fixation of a time critical event showed a decrease when
using gaze-contingent cues.

Pomarjanschi et al. [11] have used gaze contingent guidance
in simulated driving to guide the gaze of drivers in safety
critical situations. Similar to this experiment, the drivers in
Pomarjanschi et al. [11] were also subjected to a secondary
(cognitive) tasks to divert the attention of the drivers from
the road. Using gaze contingent guidance to call attention to
potentially hazardous events resulted in shorter noticing times,
safer driving behaviour and fewer collisions [11].

This trend found in the results of this experiment (and in
Pomarjanschi et al. [11]) is concurrent with the theories of
vigilance decrement and mainly justifies the longer noticing
times for the stimulus in the static NTG7 interface. Mackworth
[21] established this phenomenon in 1948 when researching
human vigilance with his clock experiment, where participants
had to detect stimuli in a clock presented at regular time
intervals. This experiment mimicked the vigilance tasks corre-
sponding to look-out duties in the air force and established that
humans become increasingly bad at detecting stimuli during
tasks where not a lot changes [21]. In the case of using static
interfaces for the display of time critical warning messages, the
vigilance decrement would explain the longer noticing times
when the stimulus is presented in a static manner, as this
corresponds with the findings in Mackworth’s [21] research.

The trend of longer noticing times in the static NTG7
interface due to vigilance decrement can be justified through



the occurrence of habituation to the presented stimuli. Habit-
uation is a mechanism that happens in the nervous system
of a human, where the human becomes less responsive to a
repeated stimulus [22], such as the Hands-On-Wheel warning
message in the case of this experiment. What happens there is
that the human brain continuously makes and adjusts a model
of when a stimulus could present itself based on past events.
As humans, we try to extrapolate this mental model into the
future to try and predict when another incoming stimulus
could present itself. If this prediction and the reality coincide,
than the neural response to this stimulus is less [23]. This
is what happens when the stimulus is presented in the static
NTGT7 interface, in which the stimulus is presented in a regular
and unchanged pattern according to fig. 5. Where even the
placement of the stimulus remains unchanged.

The results of this experiment indicate that this vigilance
decrement is less of an issue in the case of the gaze-contingent
NTG?7 interface, even though the stimulus is presented ac-
cording to the same timeline as in the static NTG7 interface.
This can be justified by a result from the same 1948 clock
experiment of Mackworth. Namely, it could be concluded from
his experiment that vigilance decrement can be circumvented
through an interruption between long periods of vigilance. In
the clock experiment, Mackworth noticed that the participants
were able to notice more stimuli when interrupted in their task
through the means of a phone call [21]. Essentially, such an
interruption is mimicked by the gaze-contingent placement of
the Hands-On-Wheel warning message while the participants
complete the secondary tasks on the head unit. The placement
of the stimulus on the head unit while the participant is looking
at said display reduces the resource cost [24] of the primary
task of noticing the Hands-On-Wheel warning message. Ac-
cording to cognitive resource theory [24], reducing the work
load of the primary task by gaze-contingent placement of the
stimulus would minimize the effect of vigilance decrement and
result in lower noticing times of the stimulus.

However, the decrease in noticing times of the stimuli for
the two interfaces is multiple factors larger than as found
in literature of Pomarjanschi et al. [11], where the use of
gaze-contingent guidance only resulted in a 23.0% decrease in
noticing times. This difference between the effect on the notic-
ing times could be due to the nature of the gaze-contingent
cue. Pomarjanschi et al. [11] make use of temporally transient
gaze-contingent cue that guides the gaze from the current gaze
position to the target/stimulus. This research however, uses the
current gaze position at tyow,s to determine the placement
of the stimulus to try and minimize gaze movement of the
participant. This means that guiding the gaze from any location
to the stimulus, as in Pomarjanchi et al. [11], is not needed.
Therefore, the corresponding time it would take to move gaze
would be minimized or even eliminated.

However, to validate this reasoning, additional research
needs to be done on the effect of the gaze-contingent cue
design on noticing times. The research done by Loschky et al.
[25] could in very broad lines insinuate something similar.
Their research into spatial, resolutional, and temporal pa-

rameters affecting gaze behaviour in gaze-contingent displays
concludes that spatial and resolutional parameters of a gaze-
contingent cue has an effect on the gaze performance of a
subject when detecting objects. Their results show that with a
decreasing spatial window size and an increasing blur of the
peripheral surroundings, the more likely it is for someone’s
gaze to be fixated to the window of high resolution [25].

When translating this concept of Loschky et al. [25] to
the comparison between this research paper and that of Po-
marjanchi et al. [11], one can consider the Hands-On-Wheel
warning message to have a smaller spatial window and and
an increasing blur of the peripheral surroundings as compared
to the gaze-contingent cue Pomarjanchi et al. [11]. This could
justify the big difference in decrease in mean noticing times
between the two researches.

However, this reasoning is deduced to a higher abstraction
level through the means of Loscky et al.’s [25] research and
does not necessarily translate directly into driving behaviour.
Therefore, any conclusions from this are considered to be a
nudge in the right direction but still premature for any defini-
tive justification. Therefore, it is advised to further look into
the effect gaze-contingent stimulus design on mean noticing
times.

Another interesting finding is that there is less variability in
the mean noticing times per participant when using the gaze-
contingent NTG7 interface. This could be due to the intrusive
nature of this interface. As the participant is completing the
non-driving related tasks, the gaze-contingent interface will
always interrupt the exercise, forcing the participant to fixate
on the Hands-On-Wheel warning message. However, when
using the static NTG7 interface, the stimulus is always placed
on the instrument cluster. This not only results in scenarios
where the participant does not see the stimulus when it pops
up, it also gives the participant the choice to either fixate on the
stimulus on the instrument cluster right away, or to first finish
their sub task (e.g. one mathematical question of the AOSPAN
task) and then resume to fixate towards the instrument cluster.
This multitude of options is the reason why a bigger deviation
of noticing times can be justified.

B. Performance of non-driving related tasks

The performance of the non-driving related tasks from this
experiment give the same decreasing trend for each condition
in which they were tested. Using the static NTG7 interface, the
participants performed better in both the non-driving related
tasks. However, the performance of the AOSPAN did not show
any significant difference in performance under both condi-
tions, while the performance of the 1-Back was performed
worse in the gaze-contingent interface.

In condition B, the participants were interrupted by the
placement of the stimulus at {yow,s on the same display
as their NDRT. This intrusive, yet gaze-contingent, way of
displaying the stimulus would create the expectation of a
worse performance in NDRT, assuming that the sudden display
of the stimulus would break the participants’ concentration.
The performance data of the AOSPAN task does show this



trend slightly but it is not a statistically significant trend. The
performance of the 1-Back task however does depict this trend
more clearly.

The reason why the performance of the NDRT’s is lower
could be due to the interruptions introduced by the stimulus in
the gaze-contingent interface. Even though the gaze-contingent
placement of the stimuli reduces task load for the primary task
[24], these interruptions increase cognitive workload [26] for
the participants by demanding that they store information in
their working memory regarding the NDRT while they attend
to the Hands-On-Wheel warning message. According to Drews
and Musters [26], people with a low working memory capacity,
are more prone to the negative effects of the interruptions and
would show a tendency to perform worse in the secondary
task. This is however something that needs to be established
beforehand from the participants and cannot be concluded
given the results of the performance of the NDRT’s. However,
the phenomenon discovered by Drews and Musters [26] can
be consciously taken into account when further developing the
gaze-contingent placement of time-critical warning messages.

C. Percentage of stimulus seen through peripheral vision

During the experiments, it has been observed that occa-
sionally the participants react to the Hands-On-Wheel warning
message without actually fixating on the stimulus. One would
expect that this would occur more frequently in condition A,
since the participants are mainly focused on the head unit with
the execution of the secondary task. However, there seems
to be no statistical difference in the proportion of times the
stimulus is seen through the peripheral vision.

D. Conclusion and recommendations

The results of this experiment indicate lower noticing times
of the Hands-On-Wheel warning message when the stimulus
is placed in a gaze-contingent manner, while the participants
engage in secondary tasks on the in-vehicle technology. The
participants that use the gaze-contingent NTG7 interface for
executing the primary task of putting their hands on the
steering control only take 0.332 sec on average to notice the
stimulus. When using the static NTG7 interface, the mean
noticing time of the stimuli is higher at 1.603sec.

These results indicate that the vigilance decrement
that occurs when using the static NTG7 interface can be
circumvented by gaze-contingent placement of the Hands-
On-Wheel warning message. The placement of the stimulus
on the head unit when the participant is already looking at it
reduces the primary task load and causes for the stimulus to
be seen quicker as compared to the static NTG7 interface.

However, the performance of the secondary task seems to
decrease when using the gaze-contingent NTG7 interface.
The 1-Back task conclusively shows a decrease of 11.7% in
performance in the gaze-contingent interface. The AOSPAN
task shows a similar trend however this is considered to be
statistically insignificant. The reason for lower performance
in secondary task is due to the nature of the intrusive
interruption caused by the gaze-contingent placement of the

stimuli. This causes an increase in cognitive workload for the
secondary task, as this interruption forces the participants to
store information in their working memory as they attend to
the primary task.

The current results from this research provides the
opportunity to give real-time gaze-contingent feedback
to the driver. However, this executed research also has
some shortcomings that could be elaborated upon in
further research. Firstly, the experiment can be expanded
to include reaction time as dependent variable instead of
solely focusing on noticing time. That way you can more
realistically measure the effect of gaze-contingent feedback
in time-critical situations that also require an action from the
participant. As mentioned in section I, the action required
when a driver is exposed to a take over request does not only
consist of the noticing time but also the Hands-On-Wheel
time and intervention time. To get a better understanding of
what the effect is of the gaze-contingent placement of time
critical warning messages on the complete take over process,
the two other stages ought to be measured as well. This can
be done by recording the steering control input during the
experiment as well.

Furthermore, this experiment is limited to the distraction of
the participant by the secondary tasks solely on the head unit.
In practice, this meant that the participant’s gaze was mostly
on the head unit throughout the secondary task and therefore
the stimulus was always placed on the head unit as well.
Therefore, the gaze-contingent placement of the stimulus was
not tested on the instrument cluster because the participant’s
gaze was never needed there to complete the secondary tasks
or for any other reason. Hence, this research could benefit
from the expansion of its scope by including interaction
with other displays such as the instrument cluster, passenger
display and heads up display such that the Hands-On-Wheel
warning message is not only displayed on the head unit.

Despite the limitations of this research, the found results
could still have implications on the design of the interfaces
that display time critical warning messages under Level 2
driving conditions. With a general tendency of drivers to
engage more with in-vehicle technology when using ADS
functions [3], the use of gaze-contingent interfaces can clearly
reduce the noticing time of time critical warning messages
instead of the seen longer reaction times in research on take-
over requests [6]. The reduction of noticing times of such
messages when its placed in a gaze-contingent manner could
be beneficial to the safety of autonomous driving functions
where the driver has a vigilance task and is engaging in
secondary tasks.
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V. APPENDIX
A. Interface prototyping

The interface has been built up in different phases.
The design development is done through the use of the
Mercedes-Benz style guide, the interactional development
is done in ProtoPie, the eye-tracking integration is done
through the means of the Mercedes-Benz in-house developed
GazeConnect, the communication between the interfaces of
the head unit and instrument cluster is established through
ProtoPie connect, the execution of the prototypes in the
seating buck is done through ProtoPie Runner and the logging
of all the eye-tracking data is done through the Mercedes-
Benz in-house developed Data Logger. These programs will
briefly be discussed in this appendix to give an idea of the
development cycle of the interface. Figure 13 summarizes the
development cycle.

Development
Style Guide ‘ ProtoPie
Prototype \
HU IC «—Gaze connect

Communication l

‘ ProtoPie Connect J

Distribution \

ProtoPie Runner —> Data Logger

Fig. 13: Development cycle of the interface prototypes used
in the experiment. The blue icons indicate Mercedes-Benz in-
house developed programs and the grey icons are off the shelve
prototyping programs.

The design of the interface comprises of style elements that
are available in the Mercedes-Benz style guide. This guide
contains all elements that are used to build the NTG7 interface,
as individual PNG elements that can be altered according to
Mercedes-Benz’ graphic design to suit specific use. In this
case that meant using the style guide to export things such as
buttons for the AOSPAN/1-Back task, menu bars, and ADS
indicators.

These interface elements are then imported into ProtoPie,
which is an interface prototyping tool for any digital products.
The imported buttons can be triggered by touch (through touch
screen) or any other type of modalities. ProtoPie can then link
an action to a trigger, such as the movement of an image
layer, jump to a different scene, send/receive messages or even

assign values to global variables. These actions can also be
made conditional based on the values of variables. Figure 14
depicts a screenshot of the ProtoPie program to give an idea
of how interactions are built.

For this experiment, ProtoPie was used for the screen
interactions and also the gaze-contingent aspect of the in-
terface on both the head unit and instrument cluster. That
meant that each display had to have their own ProtoPie file
which had to communicate with each other. This could be done
through ProtoPie Connect, which connects various interfaces
that run on multiple devices such that they can communicate.
The communication between the devices is achieved through
send and receive messages where ProtoPie Studio (ProtoPie
Connect) acts a bridge between the two prototypes.

The gaze-contingent element makes use of this external
communication system set up by ProtoPie connect. It revolves
around the eye-tracking measurements that are communicated
to the prototypes by the Mercedes-Benz in-house developed
GazeConnect. The eye-tracking measurements are then locally
stored in a variable in each prototype. The gaze-contingent
element consists of a DETECT trigger, which triggers a
response when it detects a variable change. In the case of
the gaze-contingent element, this variable is the one that eye-
tracking measurements are assigned to. If the gaze is detected
on that prototype, it assigns a 1 to the variable ”"Gaze detected”
and simultaneously sends a message to the other prototype
that assigns a O to the variable “Gaze detected”. Then, as
the variable “Time” elapses, at tgow,s the variable “Gaze
detected” is checked. Using a conditional element in ProtoPie,
the Hands-On-Wheel warning message is then triggered at
trow,s on the display which has a 1 assigned to the variable
”Gaze detected”.

The individual head unit and instrument cluster prototypes
are not only linked through ProtoPie Connect but also need to
be assigned to the hardware in the seating buck. This is done
through the in-house developed ProtoPie Runner software that
is run from the Microsoft Surface in the seating buck. This
piece of software distributes the ProtoPie files to either the
head unit, instrument cluster and even passenger display.
Lastly, all the sent and received messages through ProtoPie
Connect are logged with the in-house developed Data Logger.
This file contains all the data necessary for the data analysis.
Figure 15 shows a snippet of the logged data of one of the
participants.
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these messages are sent ..
Participant 13 S 10 10 10 9 7 9
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B P drivi lated k Participant 14 S 9 9 10 9 8 9
. erformance Of non-driving related tasks G 10 10 10 8 8 8
o . Participant 15 S 8 8 8 9 7 9
In table III, the individual scores to the questions posed to G 9 8 8 7 8 8
the participants in the non-driving related tasks are displayed. Participant 16 S 9 9 9 9 9 7
G 10 10 10 9 8 9

Each participant has executed all the trials twice. Once in the
gaze-contingent interface and once in the static interface. The
scores are therefore also shown in separate rows of table III.

For the AOSPAN task, this score is out of 10 for each trial.
This consists of 5 mathematical problems and 5 letters that
have to be recollected. The 1-Back task score is out of 9 for As mentioned in II-B, the interface comprises of the head
each trial as the participants compare 10 letters to each other unit and instrument cluster. The instrument cluster used in
and thus answering 9 questions whether these letters are the the seating buck is the same that is used in Mercedes-Benz
same or not. series production cars. The head unit is a Microsoft Surface

C. Display specifications and positioning in the seating buck



Pro 7 which has a touch screen mimicking the screen as in
the Mercedes-Benz series production cars. Table IV shows the
dimensions of the used displays in centimeters and in pixels.
These values are used in eq. 2, to determine the factor that
converts pixels to visual degrees.

The placement of the displays are measured as the distance
in centimeters from the head rest of the seat in the seating
buck to the screens. The distance between the centre of the
head unit and the centre of the instrument is 29.3cm. The
other dimensions can be found in table IV

TABLE IV: Display specifications of the interface.

Instrument cluster ~ Head unit
Width [em], wem, 29.3 31.2
Height [cm], hem 11.0 23.2
Width [pix], wpiz 2400 3088
Height [pix], hpix 900 1728
Distance to seat [cm], D 71.5 78.6

D. Procedure of the experiment

1) Open the Data Logger.

2) Distribute the correct ProtoPie files.

3) Open GazeConnect and make sure it is connected to the
correct ProtoPie files.

4) Receive the planned participant.

5) Have the participant sign both consent forms.

6) Tell the participant to take a seat in the front left seat
of the seating buck.

7) Explain what this experiment is about. Guide text is
as follows: First of all, I would like to thank you for
participating in this experiment. Today we want to test
two different interfaces under specific conditions. What
we want to simulate is level 2 driving. That means
that there is automated lane keeping and adaptive cruise
control. So basically that means that when you drive
on the highway, you don’t need to press the gas or
break pedals and also not use the steering wheel. Under
current law however, you are required to every once
in a while touch the steering wheel. But don’t worry,
the interface will tell you when to do this by showing
you this image. [show exemplary image of Hands-On-
Wheel warning message]. In this experiment, the way we
present you this specific warning message will change.
In the meantime, you will have to do some small tasks
on this screen here [point to Head Unit]. I will elaborate
on the specifics of the task a bit later on. There are also
two eye-trackers that you might have noticed. There is
one above the steering wheel and one underneath the
head unit. This eye-tracking data is used live to actually
change the interface, but I also use this data to look at
your gaze behavior and analyze that afterwards. Don’t
worry, it’s not actually filming you. It is just tracking
where you are looking on the display. So in order to get
some good tracking data we need to calibrate both eye
trackers. And we’ll be doing that right now.

8) Calibrate both eye-trackers using the Tobii Pro eye-
tracker manager.
9) Make sure that the Data Logger is running.

10) Start the correct interface according to the script order
(static or gaze-contingent).

11) If starting with the gaze-contingent interface, disable the
gaze-contingent element in the prototype until after the
explanation of the tasks has been completed.

12) Explain both the AOSPAN and 1-back task using the
trial levels.

13) Ask participants if they have understood everything. If
s0, we can start “driving”.

14) Loop the ”Driving video.mp4” on the external display.

15) Press “1” to start logging the eye-tracking data.

16) Press “E” to enable the gaze-contingent element in the
ProtoPie file.

17) Participants starts level 1 of the AOSPAN task.

18) Participants starts level 2 of the AOSPAN task.

19) Participants starts level 3 of the AOSPAN task.

20) Participants starts level 1 of the 1-Back task.

21) Participants starts level 2 of the 1-Back task.

22) Participants starts level 3 of the 1-Back task.

23) Press “0” to end logging the eye-tracking data.

24) Make sure that the logging file from the Data Logger is

saved.

Repeat steps 9-23 for the second interface according to

the script order (static or gaze-contingent interface).

Label the saved Data Logger files according to which

interface they belong.

25)

26)

E. Data analysis plan

This section of the appendix is dedicated to elaborate upon
the data analysis plan for the eye-tracking data that has been
executed to get from the measured z and y coordinates to
noticing times of the Hands-On-Wheel warning message. In
fig. 16, all the steps taken to get from the raw data to the
noticing times are displayed graphically.

As mentioned before, the Data Logger creates a text file with
all the communicated messages between the ProtoPie files.
The first step of the data analysis is to extract the start time
of the Hands-On-Wheel warning messages and eye-tracking
data from the text file with their corresponding timestamps
and append them into data frames.

From the looks of the data, it could be observed that
occasionally the x and y coordinates of the same instance had
slightly different timestamps. Therefore the timestamps of the
x and y coordinate were averaged to the same time instance.

To filter the noise of the eye-tracking data, a median filter
has been used on the z and y coordinates. A median filter of
100 ms interval has been chosen (size 6 at sampling frequency
of 60 hz) to smooth out the data. This is due to the good edge
preservation of median filters while it is still able to filter out
noise on flat regions of the signal [27].
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Fig. 17: The effect of the median filter on the raw = and y
coordinates measured by the eye tracker, where the blue line is
the raw data and orange is the filtered data of one participant.

From this filtered data, the gaze velocity is determined as the
euclidean vector of the individual velocity components of the
x and y coordinates. A graphical representation of this can
be seen in fig. 18. (Angular) velocity and fixation duration
thresholds are then applied to differentiate the saccades from
the noise and fixations. From these fixations, the noticing times
of the Hands-On-Wheel warning messages can be determined
according to fig. 8.
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Fig. 18: Determining individual velocity of the x and y
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components.
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F. Python code: data analysis of gaze-contingent NTG7 interface
#Rhita Addi - Msc. Vehicle Engineering - 4367391

# Importing the necessary libraries
import csv

import pandas as pd

from pandas import Timestamp

import numpy as np

from math import atan2, degrees
from scipy import ndimage, misc

import statistics as st
import matplotlib.pyplot as plt

—-—— Constant variables —-—-—

d_hu: Distance from chair to Head Unit [cm]

h_hu: Height of HU display in [cm]

r_hu: Height of HU display in [pix]

d_ic: Distance from chair to Instrument Cluster [cm]
h_ic: Height of IC display in [cm]

r_ic: Height of IC display in [pix]

H FH HR IR R R R R

fs: Sampling frequency in [Hz]

d_hu = 78.6
h_hu = 23.2
r_hu = 1728
d_ic = 71.5
h_ic = 11.0
r_ic = 900

fs = 60

# Importing gaze contingent CSV file for each participant
# Participants(n); n = 1:16
raw_csv = [i for i in csv.reader (open("datasets/Pl6_g.csv"),delimiter=";")]

# ——— Creating empty data structures ——-—

# hu_x, hu_y: Structures for x and y coordinates of the Head Unit (HU)

# ic_x, 1ic_y: Structures for x and y coordinated of the Instrument Cluster (IC)
# start: Structure for the timestamp at which HOW message starts

# e: Structure for the timestamp at which HOW message ends

# grouped_hu, grouped_ic: Structure for grouping coordinates per screen (HU/IC)
# i_hu, i_ic: Structure for indices per screen (HU/IC)

hu_x, hu_y = [1, []

ic_x, ic_y = [1, I[]

start = []

e = []

grouped_hu, grouped_ic = [], I[]

i_hu, i_iC= [] ’ []

# Defining functions that read the data file and process it
# append () will place new items in the next available space
def process_hu_row (row) :



# HU-entries processing

# Recognizinig GazeConnect.gaze... in the logging file

# Adding timestamp and corresponding x and y values to hu_x/y

# Adding no values to timestamp when no gaze is detected

if row[0] == "GazeConnect.gazeX":
hu_x.append((row[l],row([2]))

if row[0] == "GazeConnect.gaze¥Y":
hu_y.append((row[l],row[2]))

if row[0] == "GazeNotDetected":
hu_x.append((row[1l],None))
hu_y.append((row[1l],None))

def process_ic_row (row) :
# IC-entries processing
# Recognizinig IC.gaze... in the logging file
# Adding timestamp and corresponding x and y values to hu_x/y
# Adding no values to timestamp when no gaze is detected
if row[0] == "IC.gazeX":
ic_x.append((row[l],row([2]))
if row[0] == "IC.gaze¥":
ic_y.append((row[l],row([2]))
if row[0] == "GazeNotDetected IC":
ic_x.append((row[1],None))
ic_y.append((row[1l],None))

def process_misc_entries (row):

# Miscellaneous entries processing
# Recognizing HOW_start in the logging file as HOW starting message
# Adding corresponding timestamp to when HOW_start is found in file
# Recognizing E in the logging file as HOW ending message
# Adding corresponding timestamp to when E is found in file
if row[0] == "HOW_start":
start.append(row[1])
if row[0] == "E":

e.append (row[1])

def group_hu_entries() :
# Grouping x, y and timestamp
prev_no_detection = False
for i in range (len(hu_y)):
tl, t2 = Timestamp (hu_x[i][0].replace(',"',"'")),Timestamp (hu_y[i][0].replace(',"',"'"))
x, y = None, None
if not (hu_x[i][1l] is None):
x= float (hu_x[1i][1].replace(',"', '."))
if not (hu_y[i][1] is None):
y = float (hu_y[i][1l].replace(',"', '."))

# Averaging slightly different timestamps for x and y coordinates
avg = Timestamp ((tl.value + t2.value) / 2.0)

if ((x is None) or (y is None)):
if not (prev_no_detection):
grouped_hu.append((avg, %, V))
prev_no_detection = True
else:
grouped_hu.append ( (avg, x, y))



prev_no_detection = False

def group_ic_entries():
# Grouping x, y and timestamp
prev_no_detection = False
for i in range(len(ic_y)):
tl, t2 = Timestamp (ic_x[i][0].replace(',"',"'")),Timestamp (ic_y[i][0].replace(',"',"'"))
x, y = None, None
if not(ic_x[i][1l] is None):
x= float (ic_x[1i][1].replace(',', '."))
if not(ic_y[i][1l] is None):
y = float(ic_y[i][1l].replace(',"', '."))

# Averaging slightly different timestamps for x and y coordinates
avg = Timestamp((tl.value + t2.value) / 2.0)

if ((x is None) or (y 1is None)):
if not (prev_no_detection):
grouped_ic.append((avg, x, Vy))
prev_no_detection = True
else:
grouped_ic.append((avg, x, Vy))
prev_no_detection = False

def interpolate_hu() :
# Linear interpolation between missing x and y data points
for i in range(l,len(grouped_hu)) :
x,y = grouped_hu[i][1], grouped_hul[i][2]
if ((x is None) or (y is None)):
if not (i == (len(grouped_hu)-1)):
i_x = float ((grouped_hul[i-1][1] + grouped_hul[i+1][1])/2.0)
i_y = float ((grouped_hul[i - 1][2] + grouped_huli + 1]1[2]) / 2.0)
i_t = grouped_hul[i] [0]
i_hu.append((i_t,i_x,i_vy))
else:
i_hu.append(grouped_hu[i])

def interpolate_ic():
# Linear interpolation between missing x and y data points
for i in range (1, len(grouped_ic)):
x,y = grouped_ic[1i][1], grouped_ic[i][2]
if ((x is None) or (y is None)):
if not (i == (len(grouped_ic)-1)):
i_x = float ((grouped_ic[i-1][1] + grouped_ic[i+1][1]1)/2.0)
i_y = float ((grouped_ic[i - 1][2] + grouped_ic[i + 1]1[2]) / 2.0)
it grouped_ic[1] [0]
i_ic.append((i_t,1i_x,i_vy))

else:
i_ic.append(grouped_ic[i])

def clean_data():
# Grouping the functions together that should clean all the raw data files
for row in raw_csv[l:]:
process_hu_row (row)
process_ic_row (row)
process_misc_entries (row)



group_hu_entries()
group_ic_entries()
interpolate_hu()
interpolate_ic()

# Execute all previously defined functions
clean_data ()

# Converting the HOW start time from DateTimeIndex to total amount of seconds

start = pd.to_datetime (start)

Time_series = pd.Series(start)

MicroSeconds = ((Time_series.dt.hour)*«360 + (Time_series.dt.minute) 60 +
Time_series.dt.second) 1000000 + Time_series.dt.microsecond

Seconds = MicroSeconds/1000000

# Converting the HOW end time from DateTimeIndex to total amount of seconds

end = pd.to_datetime (e)

Time_series_e = pd.Series (end)

MicroSeconds_e = ((Time_series_e.dt.hour)*«360 + (Time_series_e.dt.minute) *x60 +
Time_series_e.dt.second) «1000000 + Time_series_e.dt.microsecond

Seconds_e = MicroSeconds_e/1000000

# Delete similar HOW start times
# If the difference between timestamps is less than 0.1 s assume timestamps as identical
Time = pd.DataFrame (Seconds)

Diff = Time.diff ()
unique = (Diff[0] > 0.1)
indices = [i for i, x in enumerate (unique) if x]

# Omit similar timestamps and place in 'Warning' dataframe
for i in range(len(indices)):
indices[i] = indices[i] - 1
indices = np.array (indices)
HOW_filtered = Seconds.loc[indices]
Warning = HOW_filtered.to_frame ()
Warning = Warning.reset_index (drop=True)

# Converting timestamps of x and y coordinates from DateTimeIndex to total amount of seconds
# For HU data

hu = pd.DataFrame (i_hu)

hul[0] = pd.to_datetime (hu[0])

hu[0] = pd.Series (hul0])

hul{0] = (((hu[0].dt.hour)*360 + (hu[0].dt.minute)+60 + hu[0].dt.second) 1000000

+ hu[0].dt.microsecond) /1000000

# For IC data
ic = pd.DataFrame (i_ic)
0] = pd.to_datetime (ic[0])
ic[0] = pd.Series(ic[01])
0 (((1ic[0].dt.hour)«360 + (ic[0].dt.minute)*60 + ic[0].dt.second) 1000000
+ 1c[0].dt.microsecond) /1000000

f—

# Median filter for x and y positions with window of 6

# Based off median filter of 100 ms with sampling frequency of 60 Hz
hu[3] ndimage.median_filter (hu[l], size=6)

hu(4] ndimage.median_filter (hu[2], size=6)



ic[3] = ndimage.median_filter(ic[1], size=6)
i ndimage.median_filter (ic[2], size=6)
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# Plotting raw data vs filtered data with median filter to examine effect of filter
fig, axs = plt.subplots (2, 1, constrained_layout=True)

axs[0].plot (hul0], hul[l])

axs[0] .plot (hul0],hu[3])

axs[0] .set_title (' (filtered) x—-coordinates')
axs[0] .set_xlabel ('Time [s]"')

axs[0] .set_ylabel ('x—coordinates [pix]")

fig.suptitle('Raw X and Y coordinates filtered with a median filter', fontsize=16)

[1].plot (hul[0], hulZ2])

[1].plot (hulO],hul4])

axs[l].set_title(' (filtered) y-coordinates')

[1] .set_xlabel ('Time [sec]')
[1].set_ylabel ('y-coordinates [pix]"')

plt.show ()
# Calculating velocity

# x_dot and y_dot and theta_dot calculations for HU
sample_t = 1/60

xdot_hu = hu[3].diff () / hu[0].diff () # [pix/sec]
ydot_hu = hu[4].diff () / hu[0].diff () # [pix/sec]
vel_hu = np.sqgrt (np.square (xdot_hu) + np.square (ydot_hu)) # [pix/sec]

# Calculating velocity
# x_dot and y_dot and theta_dot calculations for IC

xdot_ic = ic[3].diff () / ic[0].diff () # [pix/sec]
ydot_ic = ic[4].diff() / dic[0].diff() # [pix/sec]
vel_ic = np.sqrt (np.square (xdot_ic) + np.square (ydot_ic)) # [pix/sec]
# Structuring velocities into dataframes

vel_hu = vel_hu.iloc[1:]

vel_hu = vel_hu.to_numpy ()

vel_hu = pd.DataFrame (vel_hu)

vel_ic = vel_idic.iloc[1l:]

vel_ic = vel_ic.to_numpy ()

vel_ic = pd.DataFrame(vel_ic)

# Converting velocities into angular velocity for HU and IC

degpp_hu = degrees (atan2(.5+«h_hu, d_hu)) / (.5+r_hu) # [deg/pix]
angvel_hu = pd.DataFrame (fsx (vel_hu+degpp_hu)) # [deg/sec]
degpp_ic = degrees(atan2(.5+h_ic, d_ic)) / (.5*r_ic) # [deg/pix]
angvel_ic = pd.DataFrame (fs* (vel_icxdegpp_ic)) # [deg/sec]

# Omit physically impossimble saccade

# Filter on saccade velocity threshold

# Omit angular velocity angvel > 1000 degrees/sec
sac_max_hu = (angvel_hu[0] > 1000)

i_sacmaxHU [i for i, x in enumerate (sac_max_hu) if x]



# Setting the saccade velocity threshold at 2000 pixels/sec

sac_threshold_hu = (vel_hul[0] > 2000)
i_sacthresholdHU = [i for i, x in enumerate(sac_threshold_hu) if x]
i_filtered_hu = (np.unique (i_sacmaxHU + i_sacthresholdHU)) .tolist ()

# Omit physically impossimble saccade

# Filter on saccade velocity threshold

# Omit angular velocity angvel > 1000 degrees/sec

sac_max_ic = (angvel_ic[0] > 1000)

i_sacmaxIC = [i for i, x in enumerate (sac_max_ic) if x]

# Setting the saccade velocity threshold at 2000 pixels/sec
sac_threshold_ic = (vel_ic[0] > 2000)

i_sacthresholdIC = [i for i, x in enumerate(sac_threshold_ic) if x]

# The (unique) indices that need to be removed based on threshold values
i_filtered_hu = (np.unique(i_sacmaxHU + i_sacthresholdHU)) .tolist ()
i_filtered_ic = (np.unique (i_sacmaxIC + i_sacthresholdIC)) .tolist ()

#Grouping HU and IC data [Time,X,Y,X filtered, Y filtered, Velocity, Angular velocity]
hu_grouped = hu.iloc[l:(len(hul[:-11))]

hu_grouped.columns = ['Time', 'X', 'Y','X filtered', 'Y filtered']
hu_grouped.loc[:, "Velocity"] = wvel_hu

hu_grouped.loc[:, "Angular velocity"] = angvel_hu

ic_grouped = ic.iloc[l: (len(hul[:-1]))]

ic_grouped.columns = ['Time', 'X', 'Y', 'X filtered', 'Y filtered']
ic_grouped.loc[:, "Velocity"] = vel_ic

ic_grouped.loc[:, "Angular velocity"] = angvel_ic

#Splitting hu_grouped into separate fixations based on filtered saccades
fixations_hu = []
fixations_ic = []

#Add first sub-range
fixations_hu.append (hu_grouped[0:i_filtered_hu[0]-1])
fixations_ic.append(ic_grouped|[0:i_filtered_ic[0]-1])

#Add middle pack of subsets

for i in range(0,len(i_filtered_hul:-11)):
start_hu = i_filtered_huli]
end_hu = i_filtered_huli+l]-1
fixations_hu.append (hu_grouped[start_hu:end_hu])

for i in range(0,len(i_filtered_ic[:-11)):
start_ic = i_filtered_ic[i]
end_ic = i_filtered_dic[i+1]-1

fixations_ic.append(ic_grouped[start_ic:end_ic])

#Add last sub-range
fixations_hu.append (hu_grouped[i_filtered_hul[-1]1:1)
fixations_ic.append(ic_grouped[i_filtered_ic[-11:1)

# Remove empty fixations from list of dataframes
fixations_filtered_hu = [i for i in fixations_hu if not (i.empty) ]
fixations_filtered_ic = [i for i in fixations_ic if not (i.empty) ]



# Dataframe containing information about fixations
# [Fixation start, fixation duration, median X, median Y]
# Filter on minimum fixation duration of 50 ms than
# Filter on specific placement of HOW message
# HU: 1094 < x < 1994, 553.725 <y < 1216.225
# IC: 750 < x < 1650, 118.725 < y < 781.275
fixation_duration_hu = pd.DataFrame ([ (i.iloc[0,0], (i.iloc[-1,0]~-
i.iloc[0,01),
st.median(i['X"']. tOllSt()),
st.median(i['Y'].tolist ())) for i in
fixations_filtered_hu if (i.iloc[-1,0]1-
i.iloc([0,0])
> 0.05 and st.median(i['X"'].tolist())
> 1094 and st.median(i['X'].tolist ())
< 1994 and st.median(i['Y'].tolist())
> 553.725 and st.median(i['Y'].tolist())
< 1216.2257)
fixation_duration_ic = pd.DataFrame([(i.iloc[0,0], (i.iloc[-1,0]~-
i.1loc[0 ]),
st.median(i['X"']. tOllSt()),
st.median(i['Y'].tolist ())) for i in

fixations_filtered_ic if (i.iloc[-1,0]1-
i.1loc[0,0])

> 0.05 and st.median(i['X'].tolist ())

> 750 and st.median(i['X'].tolist ())

< 1650 and st.median(i['Y'].tolist())

> 118.725 and st.median(i['Y'].tolist())
< 781.275])

# Fixation starting times
fixation_ST_hu =fixation_duration_hu.iloc[:,0]

# Function to find nearest value

def find_nearest (array, value):
array = np.asarray (array)
idx = (np.abs(array - value)) .argmin ()
return array[idx]

# Function to find index of nearest value
def find_nearest_idx (array, value):
array = np.asarray(array)
idx = (np.abs(array - value)) .argmin ()
return idx

—-—— Determining noticing times of HOW waring —--
Empty structure for fixation times of HU

Empty structure for fixation times indices of HU
Converting HOW message start times to 1ist
Fixation_time_hu = []

Fixation_time_hu_idx = []

Warning = Warning[0].tolist ()

HH HHR K K

for i in range(0,len(Warning[:-1])):
# Place the nearest idx of fixation start time value to the warning message in list
Fixation_time_hu.append(find_nearest (fixation_ST_hu, Warning[i]))
Fixation_time_hu_idx.append(find_nearest_idx (fixation_ST_hu, Warning[i]))



# Find the location of the selected nearest fixation out of fixation duration 1list

Fixation_duration_neg = []

for i in range (0, len(Fixation_time_hu_idx[:-1])):
Fixation_duration_neg.append(fixation_duration_hu.iloc[Fixation_time_hu_idx[i],1])

# ——— Calculating first iteration of noticing times of HOW message ——-—
# Empty structure for noticing times
NoticingTimes = []
zip_object = zip(Warning, Fixation_time_hu)
for Warning_ i, Fixation_time_hu_1i in zip_object:
# Noticing times = Fixation start time - Warning message start time

NoticingTimes.append ((Fixation_time_hu_i - Warning_i))
NoticingTimes = pd.DataFrame (NoticingTimes)

# Determining noticing times of instances where participant was already looking
# at message

# If noticing times 1is negative AND fixation duration is longer than absolute

# noticing times

# Then noticing times is equal to zero

# ——— HU ——-

for i in range (0, len(NoticingTimes[:-1])):

if (NoticingTimes.iloc[i,0] < 0 and abs(NoticingTimes.iloc([i,01])
< Fixation_duration_neg[i-1]):
NoticingTimes.iloc[i,0] = O

# Select fixation start time nearest to warning message that only take place

# after the message

Fixation_time_upper_hu = []

for i in range (0, len(Warning[:-1])):
# Only take into account fixations that take place after the HOW message
fixation_ST_hu_fil = [x for x in fixation_ST_hu if x > Warning[i]]
Fixation_time_upper_hu.append (find_nearest (fixation_ST_hu_fil, Warningl[i]))

# Calculating second iteration of noticing times

# Adding upper bound noticing times

NoticingTimes_upper = []

zip_object = zip(Warning, Fixation_time_upper_hu)

for Warning_ i, Fixation_time_upper_hu_i in zip_object:
NoticingTimes_upper.append( (Fixation_time_upper_hu_i - Warning_1i))

NoticingTimes_upper = pd.DataFrame (NoticingTimes_upper)

# Calculating third iteration of noticing times

# If participant reacts/ends HOW message before fixation is recognized,
# then peripheral vision is assumed

EndTime_closest = []

for i in range(0,len(Warning[:-1])):
# Only take into account end times of HOW message after HOW message
Seconds_e_fil = [x for x in Seconds_e if x > Warning[i]]

# Find nearest end time of HOW message
EndTime_closest.append(find_nearest (Seconds_e_fil, Warning[i]))

# Append upperbound of noticing times if negative
for i in range (0, len(NoticingTimes)) :
if NoticingTimes.iloc[1i,0] < O:



Fixation_time_hu[i] = Fixation_time_upper_huli]
NoticingTimes.iloc[i,0] = NoticingTimes_upper.iloc[i, 0]

# If noticing times is negative and the end time is later than the upper
# fixation times, then keep upper noticing times
for i in range (0, len(NoticingTimes[:-1])):
if (NoticingTimes.iloc[i,0] < 0 and EndTime_closest[i]
> NoticingTimes_upper.iloc[i,0]):
NoticingTimes.iloc[i,0] = NoticingTimes_upper.iloc[i, 0]

# For all noticing times, 1f end time of HOW message 1s before nearest fixation
# time than peripheral vision is assumed
# Then apply NAN to dataframe
for i in range (0, len(Warning[:-1])):
if EndTime_closest[i] < Fixation_time_huli]:
NoticingTimes.iloc[i,0] = float ("NAN")

PerVision = pd.DataFrame (NoticingTimes.isna () .sum())
# Export Dataframe to csv file
NoticingTimes.to_csv('NoticingTimes_16G.csv')
PerVision.to_csv ('PerVision_16G.csv'")



G. Python code: data analysis of static NTG7 interface

#Rhita Addi - Msc. Vehicle Engineering - 4367391

import csv

import pandas as pd

from pandas import Timestamp
import numpy as np

from datetime import timedelta
from datetime import time
import datetime as datetime
from datetime import datetime
import time

from scipy import ndimage, misc
import statistics as st

import matplotlib.pyplot as plt
from math import atan2, degrees

# ——— Constant variables ——-—

# d_hu: Distance from chalir to Head Unit [cm]
# h_hu: Height of HU display in [cm]

# r_hu: Height of HU display in [pix]

# d_ic: Distance from chair to Instrument Cluster [cm]
# h_ic: Height of IC display in [cm]

# r_ic: Height of IC display in [pix]

# fs: Sampling frequency in [Hz]

d_hu = 78.6

h_hu = 23.2

r_hu = 1728

d_ic = 71.5
h_ic = 11.0
r_ic = 900

#Importing CSV file
raw_csv = [1 for i1 in csv.reader (open("datasets/P13_s.csv"),delimiter=";")]

—-—— Creating empty data structures —-—-—
hu_x, hu_y: Structures for x and y coordinates of the Head Unit (HU)
ic_x, ic_y: Structures for x and y coordinated of the Instrument Cluster (IC)

e: Structure for the timestamp at which HOW message ends
grouped_hu, grouped_ic: Structure for grouping coordinates per screen (HU/IC)

#
#
#
# start: Structure for the timestamp at which HOW message starts
#
#
# i_hu, i_ic: Structure for indices per screen (HU/IC)

hu_x, hu_y = []1, []

ic_x, ic.y = [1, []

start = []

e = []

grouped_hu, grouped_ic = [], []
i_hu, i_ic= [], []

EndTime = []

end = []



# Defining functions that read the data file and process it
# append () will place new items in the next available space
def process_hu_row (row) :
# HU-entries processing
# Recognizinig GazeConnect.gaze... in the logging file
# Adding timestamp and corresponding x and y values to hu_x/y
# Adding no values to timestamp when no gaze 1is detected
if row[0] == "GazeConnect.gazeX":
hu_x.append((row[1l],row[2]))
if row[0] == "GazeConnect.gaze¥Y":
hu_y.append((row[1l],row[2]))
if row[0] == "GazeNotDetected":
hu_x.append((row[1l],None))
hu_y.append((row[1l],None))

def process_ic_row (row) :
# IC-entries processing
# Recognizinig IC.gaze... in the logging file
# Adding timestamp and corresponding x and y values to hu_x/y
# Adding no values to timestamp when no gaze is detected
if row[0] == "IC.gazeX":
ic_x.append((row[1l],row([2]))
if row[0] == "IC.gaze¥Y":
ic_y.append((row[l],row([2]))
if row[0] == "GazeNotDetected_ IC":
ic_x.append((row[1l],None))
ic_y.append((row[1l],None))

def process_misc_entries (row) :
Miscellaneous entries processing
Recognizing HOW_start in the logging file as HOW starting message
Adding corresponding timestamp to when HOW_start is found in file
Recognizing E in the logging file as HOW ending message
Adding corresponding timestamp to when E is found in file
if row[0] == "HOW_end":
end.append (row[1])
if row[0] == "HOW_start":
start.append(row[1])
if row[0] == "E":
e.append (row[1])
if row[0] == "EndTime":
EndTime.append(row[1])
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def group_hu_entries():
# Grouping x, y and timestamp
prev_no_detection = False
for i in range(len(hu_y)):
tl, t2 = Timestamp (hu_x[i][0].replace(',"',"'")),Timestamp (hu_y[i][0].replace(',"',"'"))
x, y = None, None
if not (hu_x[i][1] is None):
x= float (hu_x[1i][1].replace(',"', '."))
if not (hu_y[i][1] is None):
y = float (hu_y[i]l[1l].replace(',', '."))

# Averaging slightly different timestamps for x and y coordinates
avg = Timestamp((tl.value + t2.value) / 2.0)



if ((x is None) or (y is None)):
if not (prev_no_detection):
grouped_hu.append ( (avg, x, y))
prev_no_detection = True
else:
grouped_hu.append( (avg, x, Vy))
prev_no_detection = False

def group_ic_entries():
# Grouping x, y and timestamp
prev_no_detection = False
for i in range(len(ic_y)):

tl, t2 = Timestamp (ic_x[i]1[0].replace(',"',"'")),Timestamp(ic_y[i][0].replace(',"',"'"))

X, y = None, None
if not (ic_x[i][1l] is None):

x= float (ic_x[i][1l].replace(',"', "."))
if not(ic_y[i]1[1] is None):

y = float(ic_yI[i][1l].replace(',', '."))

# Averaging slightly different timestamps for x and y coordinates
avg = Timestamp ((tl.value + t2.value) / 2.0)

if ((x is None) or (y is None)):
if not (prev_no_detection):
grouped_ic.append((avg, %, V))
prev_no_detection = True
else:
grouped_ic.append((avg, x, y))
prev_no_detection = False

def interpolate_hu() :
# Linear interpolation between missing x and y data points
for i in range (1, len(grouped_hu)) :
x,y = grouped_hu[i][1], grouped_hul[i][2]
if ((x is None) or (y is None)):
if not (i == (len(grouped_hu)-1)):
i_x = float ((grouped_hul[i-1][1] + grouped_hul[i+1][1])/2.0)
i_y = float ((grouped_huli - 1][2] + grouped_huli + 1]1[2]) / 2.0)
i_t = grouped_huli] [0]
i_hu.append((i_t,1i_x,i_vy))
else:
i_hu.append(grouped_huli])

def interpolate_ic():
# Linear interpolation between missing x and y data points
for i in range(l, len(grouped_ic)):

x,y = grouped_ic[i][1], grouped_ic[i][2]
if ((x is None) or (y 1is None)):
if not (i == (len(grouped_ic)-1)):

i_x = float ((grouped_ic[i-1][1] + grouped_ic[i+1][1])/2.0)

iy float ((grouped_ic[i - 1]1[2] + grouped_ic[i + 1]1[2]) / 2.0)
i_t = grouped_ic[i][0]

i_ic.append((i_t,i_x,1i_y))

else:
i_ic.append(grouped_ic[i])



def clean_data():
# Grouping the functions together that should clean all the raw data files
for row in raw_csv[l:]:
process_hu_row (row)
process_ic_row (row)
process_misc_entries (row)
group_hu_entries()
group_1ic_entries()
interpolate_hu()
interpolate_ic()

# Execute all previously defined functions
clean_data()

# Converting the HOW start time from DateTimeIndex to total amount of seconds
start = pd.DataFrame (EndTime)

start.columns = ["Time"]

start ["Time"] = pd.to_datetime(start["Time"]) + pd.DateOffset (seconds=15)
Time_series = pd.Series(start["Time"])

MicroSeconds = ((Time_series.dt.hour)*360 + (Time_series.dt.minute) «60 +

Time_series.dt.second) 1000000 + Time_series.dt.microsecond
Seconds = MicroSeconds/1000000

# Converting the HOW end time from DateTimeIndex to total amount of seconds

end = pd.to_datetime (e)

Time_series_e = pd.Series (end)

MicroSeconds_e = ((Time_series_e.dt.hour)*360 + (Time_series_e.dt.minute) *60 +
Time_series_e.dt.second) 1000000 + Time_series_e.dt.microsecond

Seconds_e = MicroSeconds_e/1000000

# Delete similar HOW start times

# If the difference between timestamps is less than 0.1 s assume
# timestamps as identical

Time = pd.DataFrame (Seconds)

Diff = Time.diff ()
unique = (Diff["Time"] > 0.1)
indices = [i for i, x in enumerate (unique) if x]

# Omit similar timestamps and place in 'Warning' dataframe
for i in range(len(indices)):
indices[i] = indices[i] - 1
indices = np.array(indices)
HOW_filtered = Seconds.iloc[indices]
Warning = HOW_filtered.to_frame ()
Warning = Warning.reset_index (drop=True)

# Converting timestamps of x and y coordinates from DateTimeIndex to total

# amount of seconds

# For HU data

hu = pd.DataFrame (i_hu)

hul[0] = pd.to_datetime (hu[0])

hu[0] = pd.Series (hul0])

hul0] (((hul[0].dt.hour)*360 + (hu[0].dt.minute)*60 + hul[0].dt.second)*1000000
+ hu[0].dt.microsecond) /1000000



# For IC data
ic = pd.DataFrame (i_ic)
0 pd.to_datetime (ic[0])
ic[0] = pd.Series(ic[01])
0] = (((ic[0].dt.hour)+360 + (ic[0].dt.minute)*60 + ic[0].dt.second) 1000000
+ 1ic[0].dt.microsecond) /1000000

[—

# Median filter for x and y positions with window of 6
# Based off median filter of 100 ms with sampling frequency of 60 Hz
hu[3] = ndimage.median_filter (hul[l], size=6)

hul[4] = ndimage.median_filter (hul[2], size=6)
ic[3] = ndimage.median_filter(ic[1l], size=6)
ic[4] = ndimage.median_filter (ic([2], size=6)

# Plotting raw data vs filtered data with median filter to examine effect of filter
fig, axs = plt.subplots (2, 1, constrained_layout=True)

0].plot (ic[0], dic[1])

0].plot (ic[0],ic([3])

0] .set_title(' (filtered) x-coordinates')

0] .set_xlabel ('Time [s]"')

0] .set_ylabel ('x—-coordinates [pix]")

fig.suptitle('Raw X and Y coordinates filtered with a median filter', fontsize=16)

[1].plot (ic[0], icI[2])

[1].plot (ic[0]1,1ic[4])

axs[l].set_title(' (filtered) y-coordinates')

[1] .set_xlabel ('Time [sec]')
[1].set_ylabel ('y-coordinates [pix]")

plt.show ()
# Calculating velocity

# x_dot and y_dot and theta_dot calculations for HU
sample_t = 1/60

xdot_hu = hu[3].diff() / hu[0].diff () # [pix/sec]
ydot_hu = hul[4].diff () / hu[0].diff () # [pix/sec]
vel_hu = np.sgrt (np.square (xdot_hu) + np.square (ydot_hu)) # [pix/sec]
# Calculating velocity

# x_dot and y_dot and theta_dot calculations for IC

xdot_ic = ic[3].diff() / ic[0].diff () # [pix/sec]
ydot_ic = ic[4].diff() / dicl[0].diff() # [pix/sec]
vel_ic = np.sqrt (np.square (xdot_ic) + np.square (ydot_ic)) # [pix/sec]

# Structuring velocities into dataframes
vel_hu vel_hu.iloc([1l:]

vel_hu = vel_hu.to_numpy ()

vel_hu = pd.DataFrame (vel_hu)

vel_ic = vel_ic.iloc[1:]
vel_ic = vel_ic.to_numpy ()
vel_ic = pd.DataFrame(vel_ic)

# Converting velocities into angular velocity for HU and IC
degpp_hu = degrees (atan2(.5+«h_hu, d_hu)) / (.5+r_hu) # [deg/pix]



angvel_hu = pd.DataFrame (fs* (vel_huxdegpp_hu)) # [deg/sec]

degpp_ic = degrees(atan2(.5+«h_ic, d_ic)) / (.5+r_ic) # [deg/pix]
angvel_ic = pd.DataFrame (fs* (vel_icxdegpp_ic)) # [deg/sec]

# Omit physically impossimble saccade

# Filter on saccade velocity threshold

# Omit angular velocity angvel > 1000 degrees/sec

sac_max_hu = (angvel_hu[0] > 1000)

i_sacmaxHU = [i for i, x in enumerate (sac_max_hu) if x]

# Setting the saccade velocity threshold at 2000 pixels/sec
sac_threshold_hu = (vel_hul[0] > 2000)

i_sacthresholdHU = [i for i, x in enumerate(sac_threshold_hu) if x]
i_filtered_hu = (np.unique (i_sacmaxHU + i_sacthresholdHU)) .tolist ()

# Omit physically impossimble saccade

# Filter on saccade velocity threshold

# Omit angular velocity angvel > 1000 degrees/sec

sac_max_ic = (angvel_ic[0] > 1000)

i_sacmaxIC = [i for i, x in enumerate (sac_max_ic) if x]

# Setting the saccade velocity threshold at 2000 pixels/sec
sac_threshold_ic = (vel_ic[0] > 2000)

i_sacthresholdIC = [i for i, x in enumerate (sac_threshold_ic) if x]

# The (unique) indices that need to be removed based on threshold values

i_filtered_hu (np.unique (i_sacmaxHU + i_sacthresholdHU) ) .tolist ()

i_filtered_ic = (np.unique (i_sacmaxIC + i_sacthresholdIC)).tolist ()

#Grouping HU and IC data [Time,X,Y,X filtered, Y filtered, Velocity, Angular velocity]
hu_grouped = hu.iloc[1l: (len (hu)-1)]

hu_grouped.columns = ['Time', 'X', 'Y','X filtered', 'Y filtered']
hu_grouped.loc[:, "Velocity"] = vel_hu
hu_grouped.loc[:, "Angular velocity"] = angvel_hu

ic_grouped = ic.iloc[1l: (len(hu)-1)]

ic_grouped.columns = ['Time', 'X', 'Y', 'X filtered', 'Y filtered']
ic_grouped.loc[:, "Velocity"] = vel_ic
ic_grouped.loc[:, "Angular velocity"] = angvel_ic

#Splitting hu_grouped into separate fixations based on filtered saccades
fixations_hu = []
fixations_ic = []

#Add first sub-range
fixations_hu.append (hu_grouped[0:i_filtered_hu[0]-1])
fixations_ic.append(ic_grouped[0:i_filtered_1ic[0]-1])

#Add middle pack of subsets

for i in range(0,len(i_filtered_hul:-11)):
start_hu = i_filtered_huli]
end_hu = i_filtered_hul[i+1l]-1
fixations_hu.append (hu_grouped[start_hu:end_hu])

for i in range(0,len(i_filtered_ic[:-11)):
start_ic = i_filtered_ic[1]
end_ic = i_filtered_ic[i+1]-1



fixations_ic.append(ic_grouped[start_ic:end_ic])

#Add last sub-range
fixations_hu.append (hu_grouped[i_filtered_hul[-1]1:1)
fixations_ic.append(ic_grouped[i_filtered_ic[-1]1:1)

# Remove empty fixations from list of dataframes
fixations_filtered_hu = [i for i in fixations_hu if not (i.empty) ]
fixations_filtered_ic = [1i for i in fixations_ic if not (i.empty) ]

# Dataframe containing information about fixations
# [Fixation start, fixation duration, median X, median Y]
# Filter on minimum fixation duration of 50 ms than

# Filter on specific placement of HOW message

# HU: 1094 < x < 1994, 553.725 < y < 1216.225

# IC: 750 < x < 1650, 118.725 < y < 781.275

f

ixation_duration_hu = pd.DataFrame ([ (i.iloc[O ],(1 iloc[-1,0]-i.iloc[0,0]),
st. medlan [‘ 'lT.tolist ()),
st.median(i['Y'"'].tolist())) for i in
fixations_filtered_hu if (i.iloc[-1,0]1~-
i.iloc[0,0])
> 0.05 and st.median(i['X"'].tolist ())
> 1094 and st.median(i['X'].tolist())
< 1994 and st.median(i['Y'].tolist ())
> 553.725 and st.median(i['Y'].tolist ())
< 1216.225]7)
fixation_duration_ic = pd.DataFrame([(i.iloc[0,0], (i.iloc[-1,0]-1i.iloc[0,01),

st.median(i['X'"].tolist ()),
st.median(i['Y'].tolist ())) for i in
fixations_filtered_ic if (i.iloc[-1,0]1-

i.1loc[0,0])
0.05 and st.median (i [ X'"].tolist ())
750 and st.median(i['X'].tolist())
1650 and st.median(i[‘Y'].tolist())
118.725 and st.median(i['Y'].tolist ())
781.2757)

ANV ANV V

# Fixation starting times
fixation_ ST _hu =fixation_duration_hu.iloc[:, 0]
fixation_ST_ic =fixation_duration_ic.iloc[:,0]

# Function to find nearest value

def find_nearest (array, value):
array = np.asarray(array)
idx = (np.abs(array — value)) .argmin ()
return array[idx]

# Function to find index of nearest value
def find_nearest_idx (array, value):
array = np.asarray(array)
idx = (np.abs(array - value)) .argmin ()
return idx

# ——— Determining noticing times of HOW waring —-—-—
# Empty structure for fixation times of HU



# Empty structure for fixation times indices of HU
# Converting HOW message start times to 1list
Fixation_time_hu []

Fixation_time_hu_idx = []

Fixation_time_ic = []

Fixation_time_ic_idx = []

Warning = Warning["Time"].tolist ()

for i in range (0, len(Warning[:-1])):

# Place the nearest fixation start time value to the warning message in 1list
Fixation_time_hu.append (find_nearest (fixation_ST_hu, Warning[i]))

# Place the nearest idx of fixation start time value to the warning message in 1list
Fixation_time_hu_idx.append(find_nearest_idx (fixation_ST_hu, Warning[i]))

# Place the nearest fixation start time value to the warning message in list
Fixation_time_ic.append(find_nearest (fixation_ST_ic, Warning[i]))

# Place the nearest idx of fixation start time value to the warning message in 1list
Fixation_time_ic_idx.append(find_nearest_idx (fixation_ST_ic, Warning[i]))

# Find the location of the selected nearest fixation out of fixation duration 1list IC
Fixation_duration_neg_ic = []
for i in range (0, len(Fixation_time_ic_idx)):
Fixation_duration_neg_ic.append(fixation_duration_ic.
iloc[Fixation_time_ic_idx([i],1])

# Empty structure for noticing times

NoticingTimes_ic = []

zip_object = zip(Warning, Fixation_time_ic)

for Warning_ i, Fixation_time_ic_1i in zip_object:
# Noticing times = Fixation start time - Warning message start time
NoticingTimes_ic.append((Fixation_time_ic_i - Warning_1i))

NoticingTimes_ic = pd.DataFrame (NoticingTimes_ic)

# Determining noticing times of instances where participant was already

# looking at message

# If noticing times is negative AND fixation duration is longer than

# absolute noticing times

# Then noticing times is equal to zero

# IC

for i in range (0, len(NoticingTimes_ic[:-1])):

if (NoticingTimes_ic.iloc[i,0] < 0 and abs(NoticingTimes_ic.iloc[i,01])
< Fixation_duration_neg_ic[i]):
NoticingTimes_ic.iloc[i,0] = 0

# Select fixation start time nearest to warning message that only take
# place after the message
Fixation_time_upper_ic = []

for i in range(0,len(Warning[:-1])):
# Only take into account fixations that take place after the HOW message
fixation_ST_ic_fil = [x for x in fixation_ST_ic if x > Warning[i]]
if len(fixation_ST ic_fil) != O:
Fixation_time_upper_ic.append(find_nearest (fixation_ST_ic_fil, Warning[i]))
elif len(fixation_ST ic_fil) == 0:

Fixation_time_upper_ic.append(float ("NAN"))

# Calculating second iteration of noticing times



# Adding upper bound noticing times

NoticingTimes_upper_ic = []

zip_object = zip(Warning, Fixation_time_upper_ic)

for Warning i, Fixation_time_upper_ic_i in zip_object:
NoticingTimes_upper_ic.append((Fixation_time_upper_ic_i - Warning_1i))

NoticingTimes_upper_ic = pd.DataFrame (NoticingTimes_upper_ic)

# Calculating third iteration of noticing times

# If participant reacts/ends HOW message before fixation 1s recognized,
# then peripheral vision is assumed

EndTime_closest_ic = []

for i in range (0, len (Warning[:-1])):
# Only take into account end times of HOW message after HOW message
Seconds_e_fil ic = [x for x in Seconds_e if x > Warning[i]]

# Find nearest end time of HOW message
EndTime_closest_ic.append(find_nearest (Seconds_e_fil_ic, Warning([i]))
# Append upperbound of noticing times 1if negative
for i in range(0,len(NoticingTimes_ic)):
if NoticingTimes_ic.iloc[i,0] < O:
Fixation_time_ic[i] = Fixation_time_upper_ic[i]
NoticingTimes_ic.iloc[i, 0] = NoticingTimes_upper_ic.iloc[i, 0]

# If noticing times 1is negative and the end time is later than the upper
# fixation times, then keep upper noticing times
for i in range(0,len(NoticingTimes_ic[:-1])):
if (NoticingTimes_ic.iloc[i,0] < 0 and EndTime_closest_ic[i]
> NoticingTimes_upper_ic.iloc[i,0]):
NoticingTimes_ic.iloc[i, 0] = NoticingTimes_upper_ic.iloc[i, 0]

# For all noticing times, if end time of HOW message is before nearest
# fixation time than peripheral vision is assumed
# Then apply NAN to dataframe

for i in range (0, len (Warning[:-1])):
if EndTime_closest_ic[i] < Fixation_time_ic[i]:
NoticingTimes_ic.iloc[i,0] = float ("NAN")

# The amount of times stimulus is seen through peripheral vision
PerVision = pd.DataFrame (NoticingTimes_ic.isna () .sum())

# Export Dataframes to csv file
NoticingTimes_ic.to_csv('NoticingTimes_13S.csv')
PerVision.to_csv ('PerVision 13S.csv')



Consent Form

PRINCIPAL INVESTIGATORS: RHITA ADDI
Mercedes Benz AG

Purpose of the evaluation: In this study we aim to evaluate the effectiveness of adaptive interfaces.

Procedure:
1. You are asked to sign the consent form.
Interviewer explains the procedure.
You will interact with the interface in the seating buck.
Upon your consent, eye-tracking data will be recorded.
You start the study following the instructions given by the investigator.
You will complete several non-driving related tasks on the interface.

A S

Benefits: The results of this study will be useful for us to evaluate the possibilities of implementing eye-trackers in
UI solutions.

Alternatives to Participation: Participation in this evaluation is voluntary. You are free to withdraw or discontinue
participation.

Cost and Compensation: Participation in this evaluation will involve no cost to you.
Confidentiality: All information collected during the session will be kept strictly confidential. You will be identified

through identification numbers. No publications or reports from this project will include identifying information on
any participant. If you agree to join this study, please sign your name below.

Male Female Other

Participant’s Name Participant’s Gender
Participant’s Age Participant’s Signature Date
Principal Investigator

Fig. 19: Consent form the participants signed to agree with the participation in the experiment.



Declaration of Consent for Recordings and Publication of Images and/or Audio/Video of Legal Adults

Person recorded:

Last name, first name:

The subject matter of this declaration covers photo images made by Daimler AG or its service partners.

| consent to allow photos and videos that were made of me or that | provided to be used by Daimler AG and its affiliates for the following purpose
without compensation and for an indefinite period: Employer Branding

For distribution and public exhibition

On the intranet' / on the Internet (including social media)?/ in internal /external, digital media (offline, e.g. presentations) / for sharing
with the press and other media outlets,

in order to communicate about Daimler as an employer.

In the event that the recordings are used for other purposes, | will be asked to give separate consent.

To the extent that my photo suggests my ethnic background, religion or health (e.g. skin tone, headdress, glasses), my consent also pertains to this

information.
m} My name may be specified in connection with the recordings.
m} My name shall not be specified in connection with the recordings.

The legal basis for processing of personal data is your consent pursuant to Article 6 (1f) of the General Data Protection Regulation (GDPR). This
consent is voluntary. This declaration is governed exclusively by German law.

The contreller for the purpose of data processing is Daimler AG, which is obligated to comply with the requirements of the GDPR. The contreller can
be reached at Mercedesstrasse 120, 70327 Stuttgart, e-mail: dialog@daimler.com*.

The controller may transmit the recordings to service providers that assist it with the creation and distribution of the recordings, e.g. media companies
or IT service providers.

You may contact tristan.fluechter@daimler.com to request the personal infoermation stored about you. Under certain conditions, you can also request
the rectification or erasure of your data. You may also be entitled to a right to restrict the processing of your personal data as well as a right to have
the personal data provided by you disclosed in a structured, commonly used and machine-readable format.

You have the right to lodge a complaint with the data protection officer or a data protection supervisory authority if you feel that the processing of
your personal information violates the GDPR or other laws (Art. 77 of the GDPR). You can reach our data protection officer at: Chief Officer for
Corporate Data Protection, Daimler AG, 70546 Stuttgart, i i

The company limits the storage of your data to the necessary period. For this reason, we regularly delete your personal information as follows: 6 years
after publication.

Place, date Signature of the person recorded

| agree to having my data processed as described above.

| have been informed that | may revoke my consent at any time. The revocation of your consent does not affect the legality of the
data processing that was carried out based on your consent prior to its revocation. Send your revocation to:
Tristan.fluechter@daimler.com.

'The data recipients are Daimler Group companies and other people associated with Daimler's intranet. The recording will thus also be transmitted
outside the EEA. This transmission takes place based on the appropriate data protection guarantees, specifically the Daimler Data Protection Policy:
https: //www.daimler.com/datenschutz/.

2| acknowledge that information on the Internet is accessible around the world and that further use of these photos by third parties cannot be
ruled out as a result. Recordings can be found using search engines and may be linked to other information. They can be copied and further distributed.
This may mean that even after being erased on the original page, information published on the internet can still be found elsewhere.

Fig. 20: Consent form the participants signed to agree with any recordings during the experiment.



