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PREFACE

In irrigation, hydrology and water management in general, the accurate measure-
ment of flow rates is a central problem.

Critical flow structures of various types have been designed for this purpose,
each having its own special advantages and disadvantages. Broad crested weirs
are popular for their sturdiness and for their ability to pass through floating
debris and sediment loads during floods. On the other hand friction losses are
not insignificant as some length of crest and walls is exposed to the flowing
water masses. For practical purposes such losses are accounted for by the
introduction of a discharge coefficient into a formula which is derived under
the assumptions of a constant energy level and critical flow in a cross section
over straight streamlines.

It is a well known fact that this discharge coefficient is not a constant and
many empirical studies have been carried out in order to determine its
dependance on the changing geometry of the flow pattern.

In order to penetrate into the fundamental aspects of this discharge coefficient
it is however essential to realize that the assumption of critical flow and
straight streamlines is an approximation and that the essence of friction losses
should be studied in the development of boundary layers both laminar and turbu-
lent as a function of the flow pattern and the surface roughness of the
measuring structure.

On this basis the present study was initiated in our Laboratory in close
cooperation with Mr. Kalkwijk of the Civil Engineering Department of the Delft
University. His actual support in the construction of the model and his stimulat-
ing comments during the study have been highly appreciated.

As a first attempt Mr. Vierhout's study was limited to the most simple case of

a flat horizontal crest with a rounded off upstream nose and parallel vertical
side walls.

Not all final answers could be provided for the many questions which arose in
this study which required an unusual high accuracy of measurement. Due to a
restricted accuracy of the measurement of flow rates some results of this

study are more of a qualitative than of a quantitative nature. However, a number
of interesting facts have been discovered and helpful techniques have been

developed which will stimulate further research.



A principal aspect of boundary layer development is its effect on scaling in
the calibration of measuring structures by model studies. It is felt that

Mr. Vierhout's work will specially prove its value in the further study of this
scaling effect.

D.A. Kraijenhoff van de Leur,

Head of department.



ABSTRACT

In this report a review is given of boundary layer theory and its application
to the analytical derivation of a discharge relationship of broad-crested weirs
with a rectangular control section. A general method is proposed to derive the
boundary layer displacement thickness on the crest from measured velocity
profiles, for which two small-scale laboratory models of different sizes have
been used. Special attention is paid to the boundary layer development on flat
plates in infinite fluids as compared with the development in accelerating flow
over the weir. The discharge coefficients derived from an application of criti-
cal depth theory allowing for boundary layer growth on the crest are compared
with experimental coefficient data, obtained from the laboratory models. No
recommendations for the dimensions of the weir in its use as a field structure
for flow measurement are made in this report. It was found that a positive
pressure gradient at the upstream end of the weir initialy caused the boundary
layer to develop faster than in the comparative case of a flat plate in an
infinite fluid. The drawdown and consequent negative pressure gradient towards
the downstream end of the crest prevent the boundary layer to grow further and

even reduce it.
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1. INTRODUCTION

During the past few years, séveral attempts have been made at analytically
determining the discharge relationship of broadcrested weirs with horizontal
crest (virtually straight and parallel flow over the weir), where the flow will
change from subcritical into supercritical. The corresponding depth is called
the critical depth and it occurs at the critical section. The purpose of these
studies is to explain the difference between the actual (viscous-fluid) and the
theoretical maximum discharge (frictionless case of non-viscous fluid) by means
of the critical depth theory. The ratio of these two discharges is the discharge
coefficient which consequently will always be smaller than unity for these
structures.

Ippen {1} was the first to introduce the concept of the boundary layer displace-
ment thickness on the crest of the weir. He proposed a discharge equation for
broad-crested weirs with rounded off nose and rectangular control section, in
which the original specific head is corrected by the displacement thickness.
Delleur {2} theoretically investigated the boundary layer development on the
crest and compared it with the development of the boundary layer on a flat plate
in an infinite fluid at zero incidence. He found the first boundary layer to
develop more slowly than the latter one. Hall {3} derived a discharge relation-
ship on the principle of the Ippen equation for a square-edged broad-crested
weir. Although one may doubt whether the application of this equation to a
case where separation of flow occurs at the square entry edge is permitted,

the results agree well with experimental data. Harrison {4} proved the Ippen
equation by applying the principle of maximum discharge and analytically
derived curves for the boundary displacement thickness on a flat plate in an
infinite fluid {5}. He inserted the so obtained relative displacement thickness
in the Ippen equation, assuming the critical depth to occur at the downstream
end of the crest and the absence of a pressure gradient along the boundary. He
compared the theoretical discharges with experimental data of some previous
investigators and arrived at satisfactory agreement. Kalkwijk {6} showed that
on the basis of different principles and assumptions nearly identical discharge
relationships can be derived, however with different expressions for critical
depth. The discharge relationships only differ in a coefficient which is a
measure for the shape of the velocity profile and consequently for the boundary
layer growth. He also gives a general method to determine the discharge of weirs

with arbitrary shapes and, for the particular case of a broad-crested weir with



vertical side walls he obtains the Ippen equation. Since no computations of the
boundary layer growth on the crest have been made so far, the results for boun-
dary layers in infinite fluids can be used. Kalkwijk {6} and Harrison {14} wonder
about the nature of the influence of the negative pressure gradient (acceleration
of flow) along the boundary layer on the displacement thickness. They both state
that the actual discharge can not be analytically determined, as long as the
actual boundary layer development on the crest is not known.

In 1971 Smit {7} started to investigate the flow characteristics of a broad-
crested weir model using a weir-table of 40 cm length and a rounded off upstream
edge in the laboratory of Hydraulics and Catchment Hydrology at Wageningen. The
measurement of velocity profiles and shear distribution with Pitot and Preston
tubes respectively, were tested and improved by Smit and Pitlo {8} as the
research progressed. Initialy the electronical recording equipment did not
produce the required results, but accuracy could be increased by Gaasbeek {9}.
On the basis of the experiences of Smit and the research of previous investi-
gators, the laboratory research on boundary layer development was continued

by means of a renewed scale model of a broad-crested weir. The structurées of
stainless steel considered in this report have vertical sidewalls, a broad
horizontal crest of either 40 or 120 cm length, preceded by a rounded nose, so
that separation of flow is avoided and a nearly parallel flow over the weir
occurs. The principle aims of this study were to measure the actual growth of
the boundary layer on the crest of the broad-crested weir and to compare the
findings with modern boundary layer theory, for which purpose this relatively
simple structure offers a good oppertunity. Therefore an attempt is made to
develop a general velocity distribution model, from which the boundary layer
displacement thickness and velocity distribution coefficients could be easily
derived. In addition pressure and shear stress distribution are investigated.
Furthermore, a summary is given of the most important analytical derivations

of discharge relationships allowing for boundary layer growth on the crest, while
the Ippen equation is proved by applying the principle of minimum energy.

The consequences of using either the actual boundary layer on the crest or the
corresponding theoretical boundary layer on plates in infinite fluids for the
analytical discharge determination are investigated. However, it was not the

aim of this study to review the limits of application for flow measurement of
this structure, as it was proposed by British Standard 3680 {10}. Furthermore

no attempt is made to develop a mathematical model which describes the boundary
layer growth on the crest.

It must be emphasized that although this study sheds some light on the complexity



of boundary layer effects in the considered measuring devices, there still
remain some important questions, which can only be answered by extensive and

accurate experiments in which velocity and pressure distributions are measured

simultaneously.
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2. ANALYTICAL DERIVATION OF A DISCHARGE RELATIONSHIP FOR BROAD-CRESTED WEIRS

2.1. Non-viscous fluid

Neglecting the energy dissipation (friction losses) in a relatively short and
abrupt transition (weir) in open channels as compared to the internal conversion
of energy (acceleration), then a unique head-discharge relationship can easily
be derived for the modular range of flow.
The specific energy-head Ho above the crest assuming non-curvature of stream-—
lines (straight and parallel), can be defined as follows:

2

o 2
H =D+ (a) 3—=D + (a) 23— (ans1.00) (1)
o 2g 28A2

in which D = waterdepth, u = the average velocity in the considered cross

section, g = acceleration of gravity, a = the energy velocity distribution
coefficient

- -_;— I7 u3da),
uA A

Q = discharge rate and A = wet cross section (see Fig. 1).

Fig. 1 The broad-crested weir
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Applying the principle of minimum energy whereby a constant flowrate Q has to

be discharged:

dH ‘ 2
- - 55=0
gA

It follows that for broad-crested weirs with a rectangular control-section
'(A = B.D. and B = width of the weir):

and the critical depth Dc which occurs for the minimum value of Ho is:

2
1/3
D_ = (—95) / i
gB
From this it follows that for Ho {19}:
(min)
2 D 3
H =D +J__'- . . = "'D EEEEEEEE) (Za)
o, . c 2 3 2 2 ¢
(min) gB Dc
which yields for the critical velocity ﬁ;:
- _ .t }
uc g . Dc L I I B (3)
or in a more conventional form:
Ye
Fl‘=——¥ = l R EEE R K] (38.)
(gd,)

(the Froude number Fr equals unity for critical conditions). As stated before,
the assumption is made that the energy head of the critical section equals the
original energy head in the approach channel Ho and thus:
1

H = Ho + P
1 (min)
in which P = crest height (see fig. 1). (From here on the original specific
head is denoted by Ho, omitting the subscript (min).)
If the crest section becomes critical, it is possible to determine the relation-

ship between the theoretical discharge rate ch and the specific energy head HO:

th _ _- - 3/2 4
Q BLDc-uc B.Dc -8 ee s s v 00 (4)
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or in a more commonly used form for the rectangular broad-crested weir:

Q= B . (-§-) . g . H vovs s sibg et THED)

2.2. Viscous fluid

2.2.1. Correction coefficients

On account of practical purposes one shoud adjust the theoretical discharge
relationship (4a) to the effects of viscosity and flow curvature. In order

to make this discharge relationship (4a) more operational for discharge
measurements in open water courses or channels, it is often written as follows:

3/2 )

2 3/2
Q=Cy.C .B. (3 o BN il

sessssense (3)

; : 14 3/2
in which C = (Ho/h)

charge coefficient to adjust for the effects of friction forces of the viscous

, h = measured head upstream the crest and CD = dis-

fluid and curvature of streamlines overhead the crest. The value of CD was

found to be almost constant (= 0.96) for the following limitations {10}:

0.008 < HO/L < 0.33

h
h+p

0.18 < < 0.36

in which L = crest-length (fig. 1).

2.2.2. Boundary layer development on the crest

In the ideal case of a non-viscous fluid as mentioned in 2.1. it is assumed
that an undisturbed potential flow will occur above the crest. This means that
for rectilinear and parallel streamlines the velocity in a cross section per-
pendicular to the crest will be constant. Near the boundary however a layer of
fluid is decelerated because of the resistance to flow caused by the shear at
the wall. This relatively thin layer, in which the velocity deviates from the
constant ambient velocity, is called boundary layer and can develop in either
laminar or turbulent flow. The growth of boundary layers can be theoretically

analysed on the basis of a hypothetical flow system {21}.
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Fig. 2. Boundary layer development on a flat plate in an infinite fluid

If a flat plate is placed (Fig. 2) parallel to the streamlines in an infite
fluid with a constant ambient velocity u in the main stream, a velocity gradient
%g-will develop near the flat plate. This gradient depends on the roughness of
the plate (shear stress) and the degree of turbulence in the mainstream. The
velocity very close to the wall becomes zero and the consequential tangential
shear stress causes perturbations and instability of flow, which will expand in
the downstream direction (Fig. 2). The outer edge of the thus formed boundary
layer can be defined arbitrarily as the location where the local velocity equals
997 of constant velocity u in the main stream. The numerical value of the boun-
dary layer thickness §, in practice will be very difficult to determine, because
the distance to the point where the influence of the boundary is negligible

can never be measured exactly. (The velocity in the boundary layer approaches
the constant velocity u asymptotically!). It is further assumed, that outside
the boundary layer the flow is irrotational (auX/By = auy/Bx) and therefore
potential, for which the energy equation of Bernoulli applies:

2
+ y + P_ - constant
o4

e

(p = local pressure and p = density of fluid).
In order to be able to quantify the characteristics of the boundary layer in a
more convenient way than by its thickness & alone, the concept of boundary layer

displacement thickness (Sd) is introduced. The displacement thickness is defined
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as the distance over which the wall has to be theoretically displaced in order
to discharge the same amount of fluid as in the case of undisturbed potential
flow. From Fig. 3 it follows how Sd can be expressed in terms of velocity

distribution and boundary layer thickness.

y

5
¢ .U

%

Fig. 3 Boundary layer displacement thickness

In order to meet the requirement of continuity according to the above mentioned

definition, one can write if U is the velocity for y = §:
D
Of u(y)dy - U(D-sd) eevss s (6a)

or, since U is constant outside the boundary layer:

ofd u(y)dy - U(G - 5d) secc s e (6b)
from which one can deduce Gd:

5, = 501 - Byay (6¢c)

d o U ® o 90 00 0 e

It is obvious that the boundary layer displacement thickness can be determined
more accurately than the boundary layer thickness, since a small change of &
only causes a negligible change of Gd. Evidently Gd is a useful measure to
quantify the shape of the velocity distribution in the boundary layer and its
thickness. Flow problems in which the boundary layer effects may have great
influence (viscous-effects not negligible!), such as weir-or spillway flow, can
be analysed theoretically by considering the total flow pattern as potential
(irrotational), while at the same time supposing the boundary (crest) to be

displaced over a distance Gd {21}.
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A second characteristic of a boundary layer is the momentum thickness Gm.
According to the definition of momentum, a small fluid element with a mass of

(pudy) possesses the momentum over a differeﬁtial time At of:
(pudy) . u . At

The same fluid element has in case of absence of a boundary layer (non-viscous)
a momentum equal to (pudy) . U . At. The change in momentum as a result of the

friction force at the boundary is therefore:
)
Of pu(U-u)dy Pee s e (7)
and because of the continuity principle:

§ 2 - Su. _u
of pu(U = u)dy = pU Gm. or Gm = of U(l U)dy Tew wiite sae 1CTA)Y
A third characteristic often used in the boundary layer theory, is the energy
thickness Ge:

2

S u u
of ﬁ-(] -U_z)dy cessscsscse (8)

Regarding the change in momentum flux along the boundary (7) and bearing in mind
Newton's second law of motion, the following expression can be derived {21}:

$

p-‘& I u(U - u)dy e n s vt (99
y =o0 o

=, du
o s dy

T

in which T, = shear stress (or tractive force) at the boundary and y = dynamic
vicosity.

In order to derive the shape and thickness of the boundary layer from equation:
(9), a numerical integration of measured velocity profiles is required.
Schlichting {11} obtained from experiments with a flat plate in an "infinite"
fluid the following expression for a laminar boundary layer (Rx= %5 < 3.105,

v = kinematic viscosity):

- -1 cevessees (10)
R
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in which x = the distance from the upstream edge of the plate.

The local dimensionless friction factor ce (or drag coefficient) then becomes:

To 0.66

T - AR
£ v?/2 ;;1 _

and the corresponding total friction factor Cf over a length x is:

= F/B.x _ 1.328
P U2/2 R :
p'e

c

£ shewsninss "CHE)

in which F = ofx‘?; Bdx (total mean shear force) and B = width of plate.

For the turbulent boundary layer (Rx > 106) over a hydraulic smooth boundary,
Prandtl and Blasius were able to derive the thickness § on the basis of the

one-seventh power law of velocity distribution:

$ . 0377 .4 c. = 0.074 (13)
x F7_5- f RT-S- es s scssece
b3 b3
Schlichting {11} also stated that:
2 Gm
Cf = x e 0% 0000000 (14)

Granville {12} and Schlichting {11} gave the following implicit equation of the

total friction factor, for rough as well as smooth boundaries:

0.544 } 1 1
- 5.61C + 0.638 = - 1In( + )
cf; k B.Ne 484 X cfi

in which k = the equivalent roughness

sessss (15)

6height of Nikuradse.

Granville shows further that, if H = 32’ then follows:
m

H 1 '
H-l _'_‘1; R (]6)
6;64—
u

}

T
in which H = a shape factor of the boundary layer and u, = (52) is the shear

velocity.

Harrison {5} shows how the relative boundary layer displacement thickness Gd/x on

a flat plate, without a velocity gradient outside the boundary layer (ambient
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velocity remains constant), depends on the total friction factor C._.

f
From equation (14) and (16) it follows that:
§ C
d £
-x— = S e e s (17)

u
; b 3
2{1 - (6.64 u—)}

Together with equation (15) the relative displacement thickness of turbulent
boundary layers can be calculated for hydraulic smooth as well as hydraulic
rough boundaries.

For the transition from laminar into turbulent boundary flow, 3.105 < Rx < 106,

Dhawan and Narasimha {13} give the following relation:

8 5. - (x - x.) BT
ol m ) =iy e w E. . d P 1 1+
X X X (x - xt)
0.8,2
Yy = 1 - 0:412{(R, - R)/5R """} cevsescss (18a)
——Ilaminair transition turb—
w R Sy—
o i T //"-
— - —
o — o= |
Xg —_= X
Fig. 4 Transition boundary layer
in which GdL = the laminar boundary layer displacement thickness at a distance
x from the upstream edge of the plate.
GdT = the turbulent dito.
X, = the place of transition
- [ ]
R, . xt)/v
Y = weight factor

Harrison {5} established useful curves for the relative boundary layer dis-
placement thickness as a function of R and x/k (relative roughness) on the

basis of equation (15), (17) and (18). The transition curves were calculated
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5

for the utmost limits of Rt(3.10 and 106). These curves were slightly modified

hg Ackers {14} (see Fig. 5.).
d

/%
0.012
0.011 \
0010 \
0009 ==
o L o
\ AT
0008 A
\ }&" '¥Q° A/—__i__—-—-’—/
1 3y d 00
0.007 ¥ 7
' 4 /r e R L
0006 \ ,/ (]~ Z’”’:,\A“(
-
\ ‘ ) 7 ol
0005 Ne,. l / 1/
% , / // 4 AT
0004 N v =
/ e f |00
’ -
0003 =
0002 -
Xk op |
}xl @] q NF‘"""—--
0.001
104 105 3.10% 106 107 108

length Reynolds number Ry =Ux/v

FIG. 5 Relative boundary layer displacement thickness:
laminar transition curves for Rt=3.10% and R¢=106

(A.J.M. Harrison 1967)
— — —Correction published by Ackers
Along the crest of a broad-crested weir, the boundary layer will develop in a

rather similar way, however with two major differences:

- negative pressure gradient in the flow direction and therefore an acceleration
in that direction (%£»< 0);

- no rectilinear and parallel streamlines at the upstream and downstream parts
of the crest and consequent deviations from hydrostatic pressure distribution.

The question arises to what extent the effects of pressure gradient and flow

curvature do affect the boundary layer development on the crest, in comparison

to the hypothetical boundary layer development on a flat plate in an infinite

fluid. According to Delleur {2} one should expect a boundary layer on the crest

to be less developed than the one on a flat plate (see section 3.3.1.).
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2.2.3. Discharge relationship

Ippen was the first one to take into account the boundary layer development on
the crest while considering the discharge relationship of broad-crested weirs
with a rounded-off nose. Although he did not give a derivation of the resulting
relationship (in which the original specific head and the width of the weir were
merely corrected for the boundary layer displacement thickness Gd), one can
easily show in different ways, that the Ippen—equation may be considered a good

approximation.

Fig. 6 Definition sketch

Assuming, for example, potential flow outside the boundary layer on the weir,

the velocity U outside the boundary layer then is:
U = {Zg(HO - D)}i sxunnsnes C19)

Because of the continuity principle and supposing the crest displaced over a
distance Gd:

Q= (A - Ws,) . U A ¢10))

in which W = wet perimeter and Gd = the average displacement thickness, which

is defined as follows:

- 1 _u
Gd = W'HA (1 u)dA
Equating (19) and (20) it follows for the specific energy head Ho on the crest
and by approximation in the approach channel as well:

2

H = D+ Q - ceeeeee.. (21)
2g(A - WS )
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With the assumption that the crest section becomes critical at a certain point

and by the application of the principle of minimum energy, equation (21) yields:

=2

dH
2 {B.D=- (B+2D) 8}

. d_
dp

- 1= aD

0

&P

o Q% (B - 26,)

3 = l ® %0 000000 (22)
g(A, - W, 6,)
in which B = the width of the rectangular weir and the suffix c denotes the
critical state of flow. Substituting (22) into (21) yields:
(Ac -W

c Gd)
Ho = Dc + Z(B— 26d) ® 8 0 0 0 00 (23)

the same result as found by Ackers {14}.
Transforming (23) we find:

Z(Ho - Dc) (B = 26d) =B . Dc - (B + 2Dc)6d sessssess (23a)
or
B.G
_ 2 d
Dc =3 Ho + 308 = 26d) sevanwens (28)
Because B >> Gd one may rewrite (24) as an approximation:
J24 sl 52 -
Dc-§H°+36d>3H° ®ses e e 0 e (243)

which is equal to the result of Harrison {4}, who, however, applied the prin-
ciple of maximum discharge for a given depth.

From (20) it follows:

Q=1{B.D - (B+2 )6} . {280, - p )} eeeeeens (25)
and transforming (24a):

H -D =—(H_ - Gd) vesssssss (25a)

Finally, by eliminating Dc from (25), (25a) and (23a) we obtain the following

expression:
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3/2 3/2

=gt . 3. @ -

3 « (B - 26d) esescases (26)

a’
which is the so called Ippen-equation {l}. In deriving equation (26) it was
assumed that 6d does not depend on the water depth D, which is only justified
for turbulent boundary layers along hydraulic rough walls, since in that case
Gd does not depend on the velocity U (and hence the depth) outside the boundary
layer {5}.

Kalkwijk {6} shows us, that different basic assumptions lead to nearly the same
discharge relationships for critical depth measuring devices with arbitrary
shape, however with different expressions for critical depth. Starting with the
continuity and momentum equation of a long wave and assuming that the mean

velocity in the control section is equal to the propagation velocity of a long

wave:
3 (uA) 2A
ax + at = 0 s seesone (27)
2’ -
YT RN TGS NN S (28)
at ax ax p 80 00000

in which u = the mean velocity in a cross-section, ;o = the average shear-stress
at the boundary and B = the momentum—-flux coefficient, which is defined as
follows:

2

[f uPak = o A
A

the direction of the characteristics belonging to the set of partial differen-
tial equations (27) and (28) can be found by the determinant method, in which

dA = B.dA and B is considered constant with x (is positive in the flow direction),

since 28 is not known:
ox
2 3
dx _ ot 4 re2 - g)n + 8A
it Bu + {(B Bu + =1

(B = the top width in an arbitrary prismatic cross section). Disturbances
downstream of the critical section can not move in the upstream direction if

%% equals zero and therefore:
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Q=A . u =A(— ; eesscssse (29)
c !

If one considers critical weir flow as a gradually varied flow, equation (28)

for steady flow becomes:

2 dp
[fuaa+ A = - =2 R a0

d_
dx A P

After transformation of (30) and introduction of the momentum thickness Gm’ one

obtains the backwater curve {6}:

Wt 2
___0. + E_ d_ (5 - 6)
P 2" dmYd m
o _ _ A (31)
dx 2' ZW(6 — 6) ® o 00 00 00
ga- 2 s —S— B
A2 A

Application of the principle, that critical flow occurs where %g»becomes

infinite (vertical flow profile), results into the following discharge

relationship:

4
8A,

Q=A

‘ wohmsenss AOE
© |Bt1 + 2 (5, - 5}

From the more common equation for steady gradually varied flow (normal back-

water curve), one can derive the same equation as (29):

Wt 2
(o]

B e v d8
dD _ "o pgA 2g dx
d—-x- = 2 L BRI ) (33)
P i
gA
(So = bottom slope)
& 4 %g tends to infinity, equation (33) yields:
o}
Q=Ac .uc-Ac(‘E es 00 s e o (34)

Application of the minimum energy principle yields the wellknown result. The

specific energy head is: 2

2gA
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dH
setting 332 = (0, one gets:
gA_ |
Q-AC(E) L L B B ) (35)

Harrison {14} has shown, that a can be expressed in terms of energy thickness

Ge and displacement thickness Gd:
a - sa % se fg)
D B D B
a - e esscsnee (36)
26 3
a - 6d _~d )
B B

which is logical, since o depends on the shape and thickness of the boundary

layer.

Yen and Wenzel {15} obtained the following backwater equation by application

of the energy equations for steady gradually varied flow:

2
g -g -4 do
dd .. o e 2g dx
K g 2 -.oooco»-o (37)
]
gA

(Se = energy slope)

from which we can derive a similar discharge relationship to (35).

It is not possible to prove theoretically, which of the above mentioned deri-
vation procedures is the most justified. Therefore Kalkwijk {6} introduced a
general approximative discharge relationship for critical-depth - measuring
weirs with arbitrary shape:

gA

, 4
Q= Ac {TT—:Tﬁjiz& (0 <€ << 1) P g i )

which represents in fact a relationship between critical depth Dc and Q.

If Dl is the approximate critical depth that results from:

Q= Alq?_q cesmessen L39)

then it follows from (39) and (21), after ignoring second order terms (compare

also with equation (23)):
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This expression is valid for any critical depth channel control; equating (39)
and (40) one obtains for the specific case of a rectangular control section
again the Ippen—equation (26).

From (38) and (40) follows an expression for the critical depth Dc:

i
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mln‘o»

i3 i3
D —-3-Ho (1+-§'€

2
ky )<-3-Ho s e s e (41)

o

By a procedure similar to the equating of (39) and (40) Kalkwijk {6} succeeded

in deriving a discharge relationship for any arbitrary shape with a correction

for the boundary layer development, such as for instance for triangular cross
: : o

section with top angle ¢ :

4.5/2

Q= &%yt @ - — e

S SN N RPN )
sin (%) d 4

Although the resulting discharge relationship of rectangular cross section is
in accordance with equation (26), the expression for the critical depth Dc (41)
is different from the expression (24a), for which no reason can be found.

On the other hand Harrison {i4} shows that a slightly different concept of
deriving a discharge relationship, also results in Dc < % Ho. However, the
theoretical determination of the critical depth is of minor importance in this
study, since it does not affect the earlier produced discharge relationships,

and it will therefore not be further discussed.

2.2.4. Theoretical and experimental values of the discharge coefficient CD

Hall {3} applied the Ippen-equation (26) in the case of a sharp edged broad-
crested weir. He made assumptions for the place and height of the so-called

"separation bubble", which occurs just after the upstream edge of the weir-

crest and he derived the following expression:

_ L 0.25.0.8 -0.2
(1-¢p = 0.069(§; 1.0 + 2.84 RHO )

Although in principle the Ippen-equation does not allow for separation bubbles
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(separation of flow), Hall observed that the computed values of C_ fit in very

D
well with the experimental CD—values.

On the basis of experimental data taken from Bazin, Woodburn and others,
Harrison {4} compared observed CD-values with computed values by application

of the Ippen-equation:

8 s, 3/2

N Q e (1 -9 e - 4
O = 3 s =a-240 Ho)
(-3-) -8 . B.H

saw s (h)

In order to obtain the values of Gd’ Harrison used the theoretical values of
the relative boundary layer displacement thickness on a flat plate {5}. Here
too, the agreement between experiment and theory was satisfactory, as for
example can be seen in Fig. 7. Harrison observed significant disagreement only
between computed and measured CD-values for heigh HO/L values (depending on
the ratio R/Ho). The exact determination of Gd causes a problem, since the
transition Reynolds number Rt is not known. However, the maximum error in CD’
which is introduced with Rt ranging between 3.105 and 106 amounts to 1%, as an

average, {4} and {14}.

1.00 T
I ]10‘ °
=3Ix
%'2'".'—‘-'—“—‘—0‘0“'.’" —
° 90 0 ©

095 . #

F4

8
®
0.90 ’
®
085 'A/
i
Cd x®
2
<
080 *: Koy
5 oBazin series 116
_.‘? ° e Bazin series 117 5
0.75 c(1-2%9L 1% L, —
l —F ca=0-2F g10-F )
0.70
010 0.20 0.30 0.40 050 0.60 0.70

Ho/L

Fig.7 Discharge coefficient data: Bazin
(A.J.M. Harrison 1968)

Recently Lakshmana Rao et.al. {24} designed a new type of streamlined broad-
crested weir without a horizontal crest. The theoretically obtained CD-values,
which were corrected for the boundary layer growth on the weir, were compared

with experimental observations and the agreement was found to be satisfactory.
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2.2.5. Curvature effects of streamlines

One of the starting-points when developing a discharge relationship was the
assumption of rectilinearity of parallel streamlines over the crest. It is
obvious that this assumption does not hold for great values of the relative
specific head Ho/L’

BSI publications {10} show that CD does not remain constant if HO/L » 0.33,
but will increase as a result of the increasing curvilinearity of the stream-
lines over the weir, with consequent pressure reduction. Harrison stated that
the assumption of rectilinear and parallel flow can only produce an error of
about 0.5% in the computed discharge. In general one may expect that stream-
lined weir shapes possess heigher discharge coefficients as a consequence of

lower drag characteristics and curvilinearity of flow.

Besides the curvature, the streamlines over the weir will converge slightly
towards the downstream end of the crest, with a consequent increase of velocity
in the direction of flow. The positive velocity gradient (%% > 0) represses
the perturbations (instability) with in the boundary layer, which prevent the
boundary layer to develop as fast as on a flat plate in an infinite fluid

%% = 0). These phenomena were already recognized by Nikuradse {17} and con-

firmed in experiments by Delleur {2}.

Finally, the curvature of flow at the upstream edge of the weir (contraction
of streamlines), which is influenced by the radius R of the rounded-off nose,
influences the CD-values (pressure reduction). According to Harrison {4} CD
has to be a function of the dimensionless ratio R/Ho‘ Assuming that the radius
of the curvature of a streamline varies linearly with the depth at the begin-
ning of the horizontal crest, Jaeger {22} derived for two-dimensional irro-

tational flow:

gu o B

dy R + My

in which u = velocity along the streamline at elevation y, M = a constant for
any y (for broad-crested weir == 6) which is a measure of the curvature of
flow and:

| - :
2. 32 4 3 128, - b)) - '/,

- 4
CD QE) « B Ho = = {R + Mho (R + Mho) « R ¥ waiee (48Y

in which h = water depth at the beginning of the horizontal crest (see Fig. 6).
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It can be proved {4} that CD decreases with increasing values of R/Ho for a

constant value of L/Ho.

In general one can state that as regards influencing the discharge coefficient
curvature of flow over the weir can be a more predominant factor than the

viscous effects (form resistance).

2.2.6. Scale effects of modelling and dimensional analysis

If the flow characteristics of a measuring device are being determined in a
laboratory scale model, one has to meet the requirement of dynamical similarity
in order to allow for scale-effects. Neglecting the viscous effects as compared
" to gravity and pressure forces (forces of inertia), the requirement becomes:
(le'T_Z)pr

4

3
(gL 7)o

(0313)m (pl

-2
t:)m

(in which the suffixes pr and m denote prototype and model respectively), or
the equality of the Froude number:

{ U } ={—u{} R N ) (49)

(gL)I or (g)*

In this particular study the viscous effects may not be neglected (friction
forces, boundary layer!), so that in fact the dynamic similarity of model and
prototype also requires the equality of Reynolds numbers. In addition, only
laminar or transition boundary layers are formed in the laboratory scale models,
which makes it difficult to predict the influence of wall roughness in the
prototypes. (Field devices operate at higher values of Rt than can be covered

in laboratory installations!).

In order to-overcome these difficulties and to adjust for boundary layer

effects in scale models, one can introduce a new requirement of similarity:

) §
a, _ %
grg = g:q cmanienss s £50)
m pPT
At the same time one has to fulfil the requirement of dynamic similarity (49)

and having a scale ratio of length, 1/L = N, it follows for the length Reynolds

number which has to be persued in the model:
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N3/2(Rx)pr A

R), =
For (Rx)m < 3.105 the wall roughness has no influence on the boundary layer
development. If (R.x)m > 3.105, a combination of requirement (50) and (Sl)ayields
a value for the relative roughness (E) , which can easily be seen in the ;g -
curves (F1§ 5). The curve which passes through the point of intersection of
the line (——9 = constant and (Rx)m = constant defines the value of Q—) and
as a consequence the equivalent roughness height k, which has to be applled in
the model. This type of laws of scale is also applicable in models of closed

conduits (Harp diagram of Nikuradse!)

Since CD is a function of the relative boundary layer displacement Gd/x = f(Rx' %),

one may expect C, to be a function of some dimensionless groups.
Dimensional analysis involving the use of the Pi - theorem yields the following

result:

b d f
Q= f(Ho,galhp’B’L’k) f(Ha’g ,uc,p sBe kg)

3=a+b-c-3d+e+f+g
~ ] ==19b ¢
0=c+d
Solving these equations yields:
3/2 i
e - w5, &, &, &
o o o

The leftside of this expression can be rewritten as follows:

H

= = mg,( ),( ),( )} cereeenes (52)

C . B

D
from which can be seen that C, is a function of some dimensionless groups, in
which Rg may be considered as a particular Reynolds number. It is obvious that
one can perform the dimensional analysis with other groups of variables and add,

for instance U, P and R.
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3. EXPERIMENTAL SET-UP AND RESULTS

3.1. Description of experimental set-up and measuring equipment

The experimental set-up consisted of two consecutive models of rectangular broad-
crested weirs with a weir-height P = 25 cm, which were both placed in an
approach flume of 50 cm width and 180 cm length (see Fig. 8).

The weir-tables were made of stainless steel and had a length of 40 cm and

120 cm respectively. Both had a rounded off nose with radius R = 10 cm. The
discharges were measured with a volumetricaly calibrated V-notch, while the
velocity profiles were measured with a so-called "wall-Pitot" tube, which was
attached to a sledge, moving along a rail in the flow direction and perpendicu-
lar to it. The dynamic and static tube were both connected to the legs of a
sensitive differential membrane manometer (d.m.m.) for measurement with a
maximum reach of Ap = 100 cm column. The signal of the d.m.m. was electroni-
cally amplified and recorded with a volt-meter. Since this d.m.m. reacts very
quickly to small changes in pressure due to turbulance in flow, it proved
necessary to filter the electrical signal of the d.m.m. in order to reduce

the fluctuations in registration. It was possible to improve measurement
recordings during the experiments and reference is made to Note Nr. 23 {9}.

The local velocity at time t in a turbulent flow may be written as:
u. = u+u' s 6 msm g CO3Y

in which u = the mean velocity and u't = the deviation of the mean velocity
at time t. The electronical recording equipment reproduces the mean velocity
over a differential time of either 10 or 100 seconds in percentage of the maximum

velocity, which is computed by:
o = el2gap )t evnnoi {54
max max ok

in which g = 9.80665 (m/secz), Apmax = maximum pressure difference which can
be registrated by the d.m.m. and C = energy loss correction factor of the
"wall-Pitot" tube.

A correction for the energy losses of the dynamic tube, which becomes particu-
lary significant for low velocities, has to be applied to the "wall-Pitot" tube.

For a detailed description reference is made to Note Nr. 16 {8}. In this Note
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measured velocity profiles:

Q (1/sec) -

100 and 80 1.000
70 and 65 1.010
50 and 25 1.035

Table II: Applied average correction factors for "wall-Pitot" tube

‘The accuracy of the velocity measurement is mainly affected by methodological
errors (e.g. improper setting of the tubes) and sampling errors. The latter
amount to + 0.5%Z of the maximum pressure difference (and thus maximum velocity)
for measurements on the short weir table (L = 40 cm), while for the long weir

table (L = 120 cm) the accuracy of measurement could be increased upto + 0.05%.

In principle it is possible to analyse the velocity measurements by means of

a graphical method of regression i.e. a graphically fitted curve through the
observation points, minimizing deviations from this line. Since this method

does not give an accurate and objective determination of the parameters, and is
in addition very time consuming,an attempt has been made to find a model of
regression, which would enable a convenient analytical method of determining the
parameters of the model (analytical curve fitting). The knowledge of the ana-
lytical or emperial formulas for velocity distribution forms the basis for the

desired model of regression.

In the hydraulics of open channels {24} some semi-analytical resistance
equations for the velocity distribution of turbulent flow along either hydraulic
smooth or hydraulic rough boundaries are known. The most common equation is the

general logarithmic formula of Prandtl-von Karman:

u _ 2.303
K

u

log (zw) sesweenns (D0
% y

in which y = the distance above the boundary, y' = the distance of the point of
zero velocity above the boundary and k = von Karman turbulence constant (x=0.4).
Using empirically determined expressions for y' (Nikuradse) in equation (56),

yields for smooth boundaries:
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it is shown the "wall-Pitot" tube indicates velocities which are on an average
2% lower than those measured with a standard Pitot tube. In order to obtain
some numerical values of C, which could be applied in this particular study,
some complete series of velocity profiles were measured in a cross section on
the weir-crest (see also Fig. 21). The average value of C is computed as

follows:

: 5 f. e
Qad Cav . IIA udA and u = (2g Ap) o0 ¥eoqoniilidh)
in which Qad = the adjusted discharge rate in the laboratory installation and
Cav = the average correction factor of the "wall-Pitot" tube.

The obtained results are shown in Table I:

Adjusted discharge Length of Discharge rate derived C
rate (1/sec) weir crest from velocity profiles =y
28 23.9317 1.0427
40 cm
50 48.6110 1.0278
65 64.3835 1.0096
80 120 cm 79.8554 1.0018
100 99.9594 1.0004

Table I: Calibration of 'wall-Pitot" tube

Measurements of vertical pressure distributions above the crest were also per-
formed in order to get an idea of the curvature of flow over the crest. There
fore the static tube and a watercolumn with a constant head (reference level)
were both connected with the legs of the d.m.m. and the local pressure can be

found by substracting the counter pressure.

3.2. Results of measurements. and data processing

For the measurement of the velocity distributions inside the boundary layer on
the crest, the pressure fluctuations were averaged over a differential time of
100 sec. Outside the boundary layer, where the fluctuations were considerably

less, an average over 10 sec. proved to be sufficient. Refering to the calibra-

tion as indicated in table I, the following corrections were applied to the
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u,.y
B B8 Tog () s i (8T)
u v
*

and for rough boundaries:
Y = 5,75 1log (X) + 8.5 didanasss (58)
u* k

According to Harrison {5} the transition from hydraulic smooth to hydraulic

rough boundaries occurs between the following limits:

u, . k
v

An alternate commonly used law of velocity distribution for turbulent flow over
a smooth boundary is the one-seventh power formula of Blasius:
uy 1/7 u . R

= 8.67 () (R, = —— < 10°) e il e LRy

el

%

Recently a new mathematical model for the velocity distribution in turbulent
flow was developed by Willis {16 } using an error function approximation to the

kinematic eddy viscosity, i.e. the Gaussian distribution function:

Pg y
y 1 -t7/2
Z = f e dt
Ym (2")I

- 00
in which ¥. ™ depth of flow in which the velocity reaches maximum value (U = um)
and Pg = Gaussian standard normal depth variable. The final form of the dimen-

sionless velocity defect expression then becomes:

-P 2/2
m _1.668 1 &

B L1l - e }  sesdsesin t{60)
“x <8 n m!

Willis shows that expression (60) gives a good agreement between predicted and
measured velocities all over the flow profile and is even more reliable than
the Prandtl-von Karman model (56) for the inner region of the turbulent boundary

layer (y/ym < 0.2).

Although the previously mentioned equations (56, 59 and 60) have been utilized
extensively for the analytical description of fluid flow phenomena, some uncer-
tainties are encountered in applying these mathematical models to the particular

case of weir flow.
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First: the derivation of these models is based on the assumption of uniform flow.
Secondly: the mathematical models are applicable only to completely developed
boundary layers (such as in open channels or closed conduits) or, as may be
stated as well, only to velocity distributions within the boundary layer

(ym =8 and U = um).

Consequently, these mathematical models are not suitable to the analytical des-
cription of the whole of velocity distributions in the non-uniform flow with
incompletely developed boundary layers of the broad-crested weir, but they may
certainly be applied to the region within the boundary layers 116} (determina-

tion of boundary shear from velocity measurements).

By trial and error an appropriate model of regression was developed for this
particular study, which (though without direct physical significance) might be
considered as an extension of the Prandtl-von Karman model. This applied model
of regression:

3

lny + a, (1n.y)2 + a, (lny)3 = I a, (lny)1 for y >0 ..... (70)

u(y) = a, + a
i=o

1
a; = regression coefficient (i = 0,1,2,3)

seems adequate to fit most of the observed velocity profiles on the weir-crest.
In order to analytically determine the regression coefficients one has to

minimize the sum of squares of departure S:

N 3 2
S= z {u- - Z a (lny) } R (71)
j=1 3 i=0

(in which uJ = observed value of velocity and N = number of observed points)

with respect to the coefficients a; (1 = 0,152,3)s

The solution of the thus obtained set of four linear equations (———-= 0) gives
the required coefficients. This generating procedure could be executed by a

CDC - 3200 computer, for which a FORTRAN IV program has been written, in which the
linear equations are solved with the Gauss-elemination method (see Fig. 23).

The regression function (70) can in principle be enlarged to a higher degree
polynomial function with respect to the reduced independent variable ln (y)
(natural logarithm), but this does not seem to improve the goodness of fit, which

can be measured and tested by the Chi-square test.

Some typical examples of velocity distribution function, which are fitted to

the observed points of measurement, are shown in the figures 9 - 15; it can be
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noticed that the regression model (70) permits an appropriate description of
the velocity distributions, except in some cases where a region of serious
divergence occurs near the free water surface (see for example Fig. 12 B).
It can be seen from this example that the goodness of fit can "artificially"
be improved by omitting some points from the region where high observation

density occurs.

Regarding the velocity profiles it is obviously not always possible exactly
to indicate the thickness of the boundary layer. However, an attempt is made
to develop a general procedure to compute the boundary layer displacement

thickness from the adjusted velocity distribution functions. In Fig. 14A for
example, the regression function (70) proves to have a maximum value for y =
6.07 cm, which allows the following approximate computation of the displace-

ment thickness:

y=D u - y=8 u y=6.07 G
6d - f (l - ﬁ)dy s f (l - ﬁ)dy = f (1 - ﬁ')dy ss e es s (72)
y=o y=o y=o

The previously mentioned FORTRAN IV computer program (see Fig. 23) carries out

the numerical integration of °fsudy according to the Simpson rule (with a

maximum of 2'! integration intervals) and U follows from du/dy = 0 so that
y=6.07 3

f {l —llj- z ai(lny)l}dy y>0 eses s (73)
y=0 i=o0

(2]
]

u(o) = o for y = o

Since this velocity profile in Fig. 14A shows an almost constant velocity
outside the boundary layer (rectilinearity of flow), the exact value of the
upper integration limit in (73) does not seriously affect the outcome of the
integral. A second error might occur because of the boundary condition u(0) = 0,
which is added to the numerical integration procedure. This of course is not

in accordance with regression model (70), since the function (u)y tends to
negative infinity as y approaches zero, the intercept at the y-ordinate being

2

very small (< 10 © cm). The thus introduced error proved to be less than -0.2%

of Gd. It may therefore be concluded that the proposed procedure of determining
the boundary layer displacement thickness is sufficient for the purpose of
this study. By a similar procedure of numerical integration (Simpson, FORTRAN 1IV),

the average velocity u and the velocity coefficients a and B were also computed.
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The velocity distribution profiles at the upstream and the downstream ends of
the weir-crest however, do not show a constant velocity outside the boundary
layer due to flow curvature (Fig. 9, 10B, 11, 12A, 13 and 14B). According to
the definition, the boundary layer displacement thickness can be found by
considering the velocity distribution without the viscous effects of the fluid
(undisturbed potential flow). In the previous case of approximate rectilineari-
ty of flow no problems are encountered, but if strong curvature of streamlines
occurs it will be difficult to predict the undisturbed velocity profile (un-
disturbed here means: the imaginary velocity distribution which is not "dis-

turbed" by friction effects of the boundary).

Therefore, we now consider the Euler-equation for two-dimensional flow in the

vertical direction, normal to the streamlines {19}:

2
- -1 2 _ ¥ _ u
0 = > 5n gan p se s 000 (74)

in which.p = local pressure, n = co-ordinate in the direction normal to the
flow, y = elevation above the horizontal boundary and r = radius of curvature
of streamline. The gradient of the piezometric head in the n-co-ordinate direc-

tion thus becomes:

a(P— + y) 2
_PST_ - _l;_ N ¢ )

Since r tends to infinity near the boundary (crest), the piezometric head there
becomes approximately constant and the tangent of the pressure distribution
line consequently equals unity, which can be clearly seen in the observed
pressure distribution profiles in the figures 16 an 17. From this, one can
draw the conclusion, that rectilinearity of flow may be assumed to up a
distance of 2 to 3 cm above the crest which means a practically vertical undisturbed
velocity profile within this region, such as for instance is indicated in

Fig. 14B. As a result of these considerations, the,determination of the
boundary layer thickness § (in profiles where curvature of flow exists) has
been approached by drawing a vertical tangent to the maximum value of the

curve (%% = 0), where upon the displacement thickness Gd has been computed by

a procedure similar to the previously proposed one (73) (see also Fig. 12A and
13). It sometimes occurs that the shape of the obtained regression function

(70) is such that the derivative of u(y) with respect to y becomes zero for

y > D (continues increasing for y < D).
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Drawing, in those cases, (an example is given in Fig. 15A) a vertical tangent
to the imaginary extreme value of u(y), has not much influence on the further

computation of Gd (%% = 0 for y = 20 cm in Fig. 15A).

It is possible to deduce the boundary layer thickness from the pressure distri-
bution profiles. If hence, the flow is potential outside the boundary layer,

then the total energy head Hp should be constant here:

2
H = P, y + % = constant
P 4 2g

Comparing the direct measured pressure (%Ebd with the pressure derived from the

adjusted velocity profiles (Hp - % _ y), it can be stated for the region with-

2g
in the boundary layer (no potential flow):

2
P & (& o=
By < W -5-7)
The region of divergence between the direct measured and the deduced pressures
in the boundary layer, is roughly indicated in Fig. 16 and 17 by 8P. The strong
deviation from hydrostatic pressure (curvature of flow) at the beginning of the

horizontal crest (x = 0) may also be noticed in Fig. 16.

Shear stress at the boundary along the axis of symmetry of the crest and
around the side walls of several cross-sections was measured with a Preston
tube, from which T, can be calculated as follows:

T d2 2

log 2 7 = -1.396 + %-1og 5%%9—
4pv

with restrictions:

2
4.5 < log 3—2—?— < 6.5

in which the external diameter of the dynamic tube d = 3mm. For experimental
data from the long weir-table (L = 120 cm) with adjusted discharge rates of
80 and 100 1l/sec, T, was also deduced from the velocity distribution law of
Prandtl-von Karman for smooth boundaries (57). The following physical magni-

tudes were used in the computations:
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pgo = 998.23 (kg/m>)
v g0 .= 1.03 1% alteic)

The totality of processed experimental data is reproduced in the tables

III A, B, C and IV A, B, C. On line 16 the corresponding value of the relative
boundary layer displacement thickness §;/x on a flat plate in an infinite fluid
is indicated, as computed by Harrison {5}. It was therefore assumed that the
transition from a laminar to a turbulent boundary layer occurs for Rt = 3.]05.
This is justified according to Schlichting {11}, since the flow in the approach
flume is already preponderantly turbulent. The equivalent roughness height k
was assumed to be IO-Sm, according to the average value for rolled stainless
steel. On line 18 it shows the total energy head Hp =D+ a ﬁzl2g, which in
fact only has validity, when hydrostatic pressure exists. Finally, the CD-value
on line 19 follows from the application of the Ippen-equation (26), whereby

6d is taken from line 13.
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Analysis of experimental data for short weir-table

L = 40 cm Q = 25 1/sec HO/L = .2420
1 X (cm) 5 15 20 25 30 35
2 D (cm) 7.06 6.08 5.87 5.74 5.46 5.14
3 A (cm?) 353.0  304.0 293.5 287.0  273.0 257.0
A 70.82  82.24 85.18 87.11  91.58 97.28
5 W (cm) 64.12  62.16 61.74 61.58  60.92 60.28
6 R (cm) 5.51 4.89 4.75 4.66 4.48 4.26
u,
7 R= th 3.8 10% 3.9 10* 3.9 10 3.9 10 4.0 10* 4.0 10%
8 U fem/sec) 75.09  83.97 88.41 91.04  94.98 101.67
9 R=LX 3.65 10 1.22 10° 1.72 10° 2.21 10° 2.77 10° 3.45 10°
10 a 1.0158 1.0133  1.0199  1.0198 1.0202  1.0212
1 1.0102  1.0099  1.0099  1.0099 1.0099  1.0103
12 Frl= .861 1.076 1.134 1.172 1.263 1.384
From measure-
ment
13 6y (cm) .061 .040 .037 .28 .036 .032
14 8 /x 0123 .0026 .00183  .00114 .00119  .00093
15 =/k 5000 15000 20000 25000 30000 35000
Theor.
16 84/x .0090  .0050 .0042 .0037  .0032 .0023
I_JZ
17 o 52 (em) 2.60 3.49 3.77 3.95 4.36 4.93
18 1 (cm) 9.66 9.57 9.64 9.69 9.82 10.07
19 ¢, (Ippen) 9881  .9923 .9929 9945 9931 .9937
7
20 T, (N/m™)
Preston tube - - - - - -
2
21 T, (N/m")
velocity

profile
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Ahalysis of experimental data for the short weir-table
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L = 40%m Q = 50 1/sec H /L = .3875
I X (el 2.5 5 10 15 20 25 32.5 35
2 D (cm) 12.28 11.82 10.99 10.30 9.72 9.22 8.42 8.12
3 A (ew®) . 614.0 591.0 549.5 515.0 486.0 461.0 421.0 406.0
4 5 (em/sec) 81.43 84.60 90.99 97.09 102.88  108.46  118.76  123.15
5W (cm) 74.46 73.64 71.98 70.60 69. 44 68.44 66. 84 66.24
6 R (cm)  8.25 8.03 7.63 7.29 7.00 6.74 6.30 6.13
7R = ueR o 652 104 6.60 10° 6.74 10% 6.87 10*  6.99 10* 7.09 10% 7.26 10* 7.33 10°
Vv
8 U (cm/sec) 92.54 91.56 94.93 99.93 105.35  111.21  123.02  131.99
9 R =U.x  2.24 10% 4.46 10 9.22 10% 1.46 10°  2.05 10° 2.70 10° 3.88 10° 4.49 10°
Vv
10 o 1.0249  1.0219  1.0127  1.0144 1.0143  1.0140  1.0211  1.0210
18 1.0115  1.0105  1.0099  1.0029 1.0028  1.0026  1.0103  1.0103
12 Fr' .751 .795 .884 .696 1.057 1144 1.320 1.394
from measurement
13 6, (cm)  .048 .058 104 .128 .126 124 .093 .063
14 6,/x 01919  .01165  .01165  .0104 .00853  .00495  .00285  .00179
15 fk 2500 5000 10000 15000 20000 25000 32500 35000
theor.
16 5,/x L0114 .00815  .0058 .0045 .0038 .0033 .0025 .0022
aZ
17 o g (cm) 3.47 3.73 4.10 4.87 5.47 6.08 7.34 7.89
18 1 (cm)  15.75 15.55  15.09 15.17 15.29 15.30 15.76 16.01
19 C_ (Ippen) .9934 9920  .9857 .9825 .9827 .9830 .9873 .9914
20 Preston
2
C (N/m)  2.36 2.33 2.45 2.74 2.97 3.25 3.58 4.42

21 TO(N/HF)

velocity
profile




TABEL III C

Analysis of experimental data for short weir-table

L =40 cm Q = 70 1/sec HO/L = .4788
I X (cm) 2.5 5.0 10 15 20 25 30 35
2 D (cm) 15.45 14.97 14.09 13.22 12.34 11.69 11.10 10.20
3 A (ecm?)  772.5 748.5 704.5 661.0 6.17.0  584.0 555.0 510.0
43 (cm/sec) 90.61 93.52 99.36 105.90  113.45  119.76  126.13  137.25
5 W (cm) 80.90 79.94 78.18 76.44 74.68 73.38 72.20 70.40
6 R (cm)  9.55 9.36 9.01 8.65 8.26 7.97 7.69 7.24
u.
7R - th 8.4 10* 8.5 10 8.7 10® 8.9 10 9.1 10 9.3 10% 9.4 10% 9.6 10
8 U (cm/sec) 97.55 96.55 99.50 105.28  111.48  117.50  127.26  138.67
9 R = 935 2.37 10% 4.68 10* 9.66 10% 1.53 10° 2.16 10° 2.85 10° 3.71 10° 4.71 10
10 o 1.0256  1.0221  1.0198  1.0125  1.0134  1.0128  1.0201  1.0211
118 1.0117  1.0106  1.0098  1.0099  1.0023  1.0099  1.0099  1.0103
12 Fr' .745 .780 .853 .939 1.033 1.130 1.221 1.386
from measurement
13 6, (cm)  .065 .082 .077 .089 .102 .085 .080 .055
14 6,/x .0261 L0164 .00766  .00597  .00511  .00340  .00265  .00156
15 x/k 2500 5000 10000 15000 20000 25000 30000 35000
theor.
16 6,/ L0110 .0079 .0057 .0045 .0037 .0032 .0026 .0021
ﬁz
17 o g2 (em) 429 4.56 5.13 5.79 6.65 7.41 8.11 9.81
18 H (cm)  19.47 19.53 19.22 19.01 18.99 19.10 19.21 20.01
19 ¢, (Ippen) .9923 .9903 .9910 .9894 .9880 .9900 .9906 .9936
20 Preston
2
() - = . . - = . -

21 TO(N/mZ)

velocity
profile
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Analysis of experimental data for long weir-table

L =120 cm Q = 65 1/sec Ho/L = ,1551
1 X (cm) 5 20 40 60 80 100 115
2D (cm) 15.44 12.45 11.50 11.47 11.45 11.18 9.69
3 A (em?)  772.0 622.5 575.0 573.5 572.5 559.0 484.5
43 (cm/sec) 84.20 104.42  113.04  113.34  113.54 116.28  134.16
5 W (cm) 80.88 74.90 73.00 72.94 72.90 72.36 69.38
6 R (cm)  9.55 8.31 7.88 7.86 7.85 7.73 6.98
u.
7R= th 7.81 10* 8.42 10 8.65 10* 8.65 10® 8.65 10* 8.73 10% 9.09 10%
8 U (cm/sec) 92.50 103.50  114.64  117.36  116.78 121,46 142.47
9 R="2% 450 10% 2.02 10> 4.4510° 6.84 10 9.07 10° 1.18 10° 1.59 10°
10 o 1.0202  1.0145  1.0405  1.0421  1.0420 1.0413  1.0408
118 1.0099  1.0029  1.0199  1.0205  1.0205 1.0203  1.0201
12 Fr' .691 .949 1.085 1.091 1.098 1.133 1.404
from measurement
13 6, (cm)  .065 .109 177 . 264 259 .207 .166
14 8, /x 01301  .00545  .00442  .00440  .0032 .00207  .00145
15 x/k 5000 20000 40000 60000 80000 100000 115000
theor.
16 6,/x .0081 .0037 .0021 .0023 .0023 .0024 .0024
ﬁz
17 a o (cm) 3.69 5.64 6.78 6.83 6.85 7.18 9.55
18 1 (cm)  19.13 18.09 18.28 18.30 18.30 18.36 19.24
19 ¢, (Ippen) .9922 .9869 .9789 .9685 .9690 .9752 .9801
20 Preston
2
 (N/m)  2.58 2.93 3.09 2.84 2.58 3.01 4.79

21 TO(N/mZ)

velocity
profile
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TABEL IV B

Analysis of experimental data for long weir-table

L =120 cm Q = 80 1/sec HO/L = .1746
I X (cm) 5 20 40 60 80 100 115

2D (em)  17.01 14.79  13.39 13.07 12.95 12.55 11.03

3 A (cm?) 850.5 739.5  669.5 653.5 647.5 627.5 55155

b (emfeec)ds o6 108.18  119.49 122.42  123.55 127.49  145.06
5W (cm)  84.02 79.58  76.78 76.14 75.90 75.10 72.06

6 R (cm) 10.12 9.29 8.72 8.58 8.53 8.36 7.65

u.

7R~ th 9.24 10* 9.76 10* 1.01 10* 1.02 10* 1.02 10° 1.03 10° 1.08 10°
8 U (cm/sec)100.00  110.64  121.33 124.20  126.59 130.45  149.49

9 R = 935 4.85 10% 2.15 10° 4.71 10°  7.23 10 9.83 10° 1.26 10° 1.67 10°
10 1.0213  1.0407  1.0409 1.0413  1.0424 1.0422  1.0210
118 1.0103  1.0200 1.0201 1.0203  1.0206 1.0205  1.0102
12 Fr' .735 917 1.064 1.103 1.119 1.173 1.409
from measurement

13 6, (cm)  .081 .168 .295 .266 .315 .285 126

14 6, /x .0162 .0084  .0074 0044 .0039 .0029 .0011

15 x/k 5000 20000 40000 60000 80000 100000 115000
theor.

16 8,/x .0078 .0037  .0022 .0023 .0024 .0024 .0024

=2

17 a 5= (cm) 4.61 6.21 7.58 7.96 8.11 8.64 10.95

18 H (cm) 2162 21.00  20.97 21.03 21.06 21.19 21.98

19 ¢, (Ippen).9910 9814 .9674 .9706 .9652 .9685 .9860

20 Preston

TO(N/mZ) 2.90 3.02 3.46 3.32 3.20 3.55 5.53

21 TO(N/mZ)

velocity 1.57 2.70 3.14 3.98 3.72 3.74 2.26
profile
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Analysis of experimental data for long weir-table

L = 120 ‘c Q = 100 1/sec H /L = .2024

1 g lew) 5 20 40 60 80 100 115

2 D (cm) 19.99 17.62 15.76 15.05 14.73 14.14 12.60
3 A (cui’) 999.5 881.0 788.0 752.5 736.5 707.0 630.0
4% (cm/sec) 100.05  113.51  126.90  132.89  135.78 141.44  158.73
5 W (cm) 89.98 85.24 81.52 80.10 79.46 78.28 75.20
6 R (cm) 11.11 10.34 9.67 9.39 9.27 9.03 8.38

u.

7R = th 1.07 10° 1.14 10° 1.19 10° 1.21 10° 1.22 10° 1.24 10° 1.29 10°
8 U (cm/sec) 107.17  114.07  129.20  135.25  138.94 146.61  163.50
9 R = 935 5.20 10% 2.21 10° 5.02 10° 7.88 10° 1.08 10® 1.42 10° 1.83 10°
10 o 1.0240  1.0127  1.0144  1.0407  1.0410 1.0158  1.0217
11 8 1.0110  1.0019  1.0029  1.0201  1.0201 1.0036  1.0105
12 Fr' .723 866 1.024 1.116 1.153 1.205 1.443
from measurement

13 6, (cm) .075 .129 .266 247 .258 .216 118
14 8,/x 01505  .00645  .00665  .00414  .00323 .00213  .00104
15 x/k 5000 20000 40000 60000 80000 100000 115000
theor.

16 6,/ .0076 .0037 .0021 .0022 .0023 .0024 .0024

62
17 o g2 (em)  5.23 6.65 8.33 9.37 9.79 10.62 13.12
18 H) (cm) 25.22 24.27 24.09 24,42 24.52 24.76 25.72
19 C (Ippen) .9924 .9896 .9732 .9751 .9740 .9785 .9879
20 Preston
TO(N/mz) 3.77 3.26 3.75 3.89 3.89 4.18 6.39
21 TO(N/mZ)
velocity 1499 1.97 2.23 4.22 4.27 4.25 3.43

profile
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3.3. Discussion of the results and conclusions

3.3.1. Boundary layer thickness on the crest

From the analysis of the experimental data (table III and IV), it can be seen
that the boﬁndary layer displacement thickness increases gradually at the up-
stream end of the horizontal crest (x = 0), reaches its maximum value approxi-
mately at the middle of the crest (x = 4L) and decreases again towards the
downstream end.

Two typical examples are shown in Fig. 18A and 18B. When studying these figures
the different scales of waterdepth and displacement thickness should be kept in
mind. In all cases, except for the case of the short weir-table (L = 40 cm) with
the relatively low flow rate of Q = 25 1/sec, the observed boundary layer on the
crest develops faster than on a plate in an infinite fluid. However, towards

the downstream end of the weir the displacement thickness drops below the
corresponding one in an infinite fluid. The experimentally resolved values of
the relative boundary layer displacement thickness fg_proved to be at most four
times as high as the corresponding values of Eg_on.g plate in an infinite fluid,
with Rt = 3.505 and k = 10—5 m, such as comp&ﬁed by Harrison {5}. This observa-
tion appears to be in contradiction to the previous statement of Delleur {2} and
Nikuradse {17} i.e. that the boundary layer on the crest will develop more slow-
ly than in an infinite fluid, because of the negative pressure gradient (%2 < 0)
that occurs in the measuring section (acceleration of flow) of the weir. For
this apparent contradiction some possible explanations can be found, when
assuming that the numerical analysis of the adjusted velocity distribution
profiles gives a realistic idea of the boundary layer displacement thickness

on the crest.
$
. d . . ’
1. In using the-;— -curves from Fig. 5 an error in assessment of the relative

roughness height %-causes an error in the resulting relative displacement
thickness, on condition that the boundary layer is not laminar (Rt > 3.105).
Since the roughness height of the weir table, k, is not precisely known and

can only be accurately established from fully developed flow in open channels
of pipes, the assumed value of 10-5 m is doubtful and therefore the comparative
values of fg on flat plate are doubtful as well. Nevertheless, a relatively
great incréhse of k (for instance 10—4 m) has not much influence on the result-
ing gg -value since the boundary layer is preponderantly laminar or just about
to become turbulent (R.x < Rt) and consequently the error in assessment of k

does not explain the discrepancy between theoretically predicted values of the
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displacement thickness and experimental results. The question also arises from
which point the distance x should be measured on the crest, in order to allow

a justified comparison between experimental and theoretical values of Eﬂ,'
Although some experiments by Hall {3} and Guersmey {25} indicate that ¥he boun-
dary layer originates a short distance before the upstream end of the horizomtal
crest the error in assessment of the distance x is of minor importance and
certainly does not explain the above mentioned discrepancy, because of the

additional major effect of the flow curvature at the entrance of the structure.

2. The choice of the transition Reynolds number, too, is of some importance for
the determination of the theoretical Eg.-value. However, this Rt-value cannot
be accurately estimated, but it is kngwn that it is reduced by an increase in
the roughness of the crest and side walls or the freestream turbulence, while
it is increased by a favourable pressure gradient. Moreover, Rt—values higher
than the here assumed value of Rt = 3.105 lead to even bigger differences between
experimental and theoretical values of fg_, because the boundary layer remains
laminar for a longer period of time. Itxmay be concluded that the choice of

Rt = 3.105 might be doubtful, but on the other hand does not explain the dis-
crepancy mentioned above. The transition from laminar into turbulent boundary
layer at Rt = 3.105 occurs for the short weir-table near the end of the crest
(25 cm < x < 35 cm) and for the long weir-table already within halfway of the

crest (20 cm € x < 40 cm).

3. From the two-dimensional velocity distribution across the weir in Fig. 21 it
can be seen that the maximum velocity gradient on the crest occurs at approxi-
mately 5 cm from the side walls, which is in accordance with the measured shear
stress distribution around crest and side walls (Fig. 22). It may therefore be
concluded, that the boundary layer development on the center-line of the crest
is influenced by the frictional resistence of the side walls. Of course this
influence is absent in the case of a flat plate in an infinite fluid. The
average displacement thickness over the wet cross-section will therefore be
less than the displacement thickness measured on the center-line of the crest:

D
u u
IS (l - ‘I—I')dA < /(- ﬁ)dy
A o

1
W
Possibly the frictional resistance of the side walls (rotational flow in a plamne
parallel to the crest) is a favourable condition for the boundary layer develop-

ment on the center line of the crest, which is maximal there (see Fig. 21).
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Consequently this effect should be taken into account when comparing boundary
layer growth on the center line of the crest and growth on plates in infinite
fluids.

4. Regarding the water surface profiles and pressure head levels on the weirs

(Fig. 18A and B give examples) some useful observations can be made:

a. At the upstream end of the crest the surface profile curvature changes
from convex upwards to concave downwards, and furthermore changes back
again (drawdown curve) to convex upwards at the downstream end.

b. Changes in sign of curvature (points of inflection) occur at the positions
for which the ratio Holx is approximately 0.8 and 0.2, the points of in-
flection coinciding with hydrostatic pressure distribution.

c. The pressure head upstream of the first point of inflection (Ho/x <~ 0.8)
is below the water surface and a strong positive pressure gradient exists
here. Between the first and the second point of inflection (v~ 0.8 < Ho/x
0.2) the pressure distribution is virtually hydrostatic, the converging
practically straight streamlines are the cause of a negative pressure
gradient (%g»< 0). At the downstream end (Ho/x <~~s 0.2) the drawdown of
the water level causes a very strong negative pressure gradient, with pres-
sure heads far below the water surface and the pressure head being zero
for x = L. (See also Harrison {5}).

It may be concluded that at the upstream end of the crest, the boundary layer is

enabled to develop faster than on a flat plate in an infinite fluid, because of

the favourable positive pressure gradient, which depends largely on the ratios

Ho/P and Ho/R' (Compare also equation 48 in section 2.2.5.) In the region where

the surface profile is concave downwards, the boundary layer displacement thick-

ness remains almost constant, while the influence of the negative pressure gra-
dient on the development of §, probably works against the favourable influence

of the concave surface profile (with consequent slight positive pressure gradient,
see also velocity profiles in Fig. 15). Unfortunately this cannot be proved,
because no accurate pressure head recordings are available. The drawdown of the
water surface and the consequent pressure gradient at the end of the weir, cause
the boundary layer to decrease rapidly. The shape of the flow profile and the
crest pressure heads are mainly responsible for the observed behaviour of the
boundary layer on the crest and are probably the main reasons for the previously
mentioned discrepancy between boundary layer developments on a weir crest and on

a flat plate in an infinite fluid. For low heads (Ho/P < 0.6), the positive

pressure gradient sharply decreases which explains the exceptional case for
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L = 40 m and Q =25 1/sec., where this discrepancy does not occur.

3.3.2. Shear stress distribution

The shear stress measured with the Preston tube over the center line of the
crest, does not show a uniform increase with increasing velocity (see fig. 18),
which is possibly due to the transition from laminar into turbulent boundary
layer.

The comparitive values of Ty (see table IV B and C) which are deduced from the
velocity distribution within the boundary layer according to the Prandtl-von
Karman velocity model for turbulent flow along smooth boundary, deviate strongly
from the directly measured values. However, it must be taken into account that
in fitting a regression line to the observation points within the boundary layer,

the slope of the resulting line and hence the shear velocity

u, = (:—o)i

is very much influenced by inaccuracy of measurement. Moreover, Willis {16} has
shown that the Prandtl-von Karman model can deviate rather much from velocities
measured very close to the wall. Shear stress distribution measurements by Gosh
and Roy {16} show the same discrepancy between the Preston-tube measurements of

T and those deduced from velocity distributionms.

3.3.3. Comparative discharge coefficients

If one wishes to determine the discharge coefficient of a broad-crested weir

from the analytically derived equation (Ippen):

§ §
d X d x \3/2
x— . 'E) (1 = e== . -l{_ ssseee s (76)

c,= - =
o

D
the question immediately arises which distance should be used for the determina-

tion of the relative displacement thickness Eg (Fig. 19).
X
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Fig. 19 Discharge coefficient data

According to the theory, the section where the flow becomes critical has to be
reduced by the average displacement thickness multiplied by the wet perimeter

(20). Hall {3} states, that §, reaches its maximum at a position where critical

conditions occur and he assumgs this to be not far from the upstream edge of the
crest (because of separation of flow). Harrison {4} and Kalkwijk {6} assume,
when using the results for boundary layers in infinite fluids, that critical
conditions occur at the end of the measuring section, and therefore the length
of the weir L should be inserted in the CD-equation (76). (The error in assess-—
ment of the roughness height will have greater influence on the resulting value

of Gd!).
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Adjusted |Lengthl| D_ = 2/3 H_ Fr' = 1 D, = Des0.715 location
Discharge| of a
Rate weir-

table

Qad P Dc x Dc X Dc X gf maxnmuﬂ
d

m3/sec cm cm cm cm cm cm cm cm
0.025 40 6.46 5-15 7.06- 6.08 5-15 6525 5-15 5-15
0.050 40 10.24 15-20 | 10.30- 9.72 15-20 | 10.02 15-20 15-20
0.070 40 12.76 15-20 13.22-12.34 15-20| 12.73 15-20 15-20
0.065 120 12.40 20| 12.45-11.50 30-501| 12.05 30-40 40-60
0.080 120 13.96 30-40 | 14.79-13.39 30-50 | 14.00 30-40 30-50
0.100 120 16.20 30-40 | 17.62-15.76 30-40 | 16.10 30-50 30-50

Table V: Location where critical

depths occur (x = distance measured from upstream

end of the horizontal crest).

In table V the locations are indicated where the critical state of flow should

occur on the crest, when different principles are applied. The theoretical cor-

rection for boundary layer effects on the critical depth:

c

2
D =-3-H°1€

e << H
o

is very small, relative to the depth of flow and has therefore hardly any

influence on the section where critical conditions occur. From the normal draw-

down curve (33) in section 2.2.3. another criterion for the critical depth can

be derived:

Fr'

Bi . u

e
(g - Dc)i

= Bi . Fr

1

which is indicated in table III and IV on line 12 (see also Fig. 18). When the

the empirically developed formula for the critical depth is applied on a free

overfall structure {20}, a very good agreement with the two other criteria will

be obtained:

Ulm

0.715
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in which De = end - or brinkdepth.

The three criteria show a rather good agreement, if one realizes the limits of
accuracy. -2
(Even Hp =D + o %E reaches a minimum value in the same section, table III and
IV, line 18). The first conclusion that can be drawn, is that the location of
the position at which critical conditions occur, is within halfway of the crest,
regardless of the different weir sizes. Furthermore, the crest section where

the displacement thickness is maximal (also indicated in table V), virtually
coincides with the critical section and in addition, Gd does not change for

x/L- > 0.3.

The effect of the distance x, that corresponds with the used displacement thick-
ness, on the computed CD—value, is shown for two typical examples in Fig. 20.
For the short weir table, the differences are of no importance and amount to a
maximum of + 0.5%, while on the long weir table the differences are much greater
(maximum + 2.07). However, in the section where critical conditions occur

(0.3 < X/L 2 0.6) the CD-values remain almost constant.

1.00 T T " . P
2(1-2% %)% x )3
- Cp=(1-2 % B)(1 - Ho)
A
[=]
3)
0.99
=
@
2
-
S o098 b - ‘/
-3 \ A )<A
e g ~
E \A// el oy
2 597 L=40cm L=120cm
® N s Q=701/sec  Q=100(/sec
-!d from velocity distribution o—o A—a
%d corresponding value on a flat plate o-—o A— —A
0.96 A . 1 . 1 i " 1 1 J
0.2 0.4 06 08 1.0

relative length X/L

Fig. 20 Boundary layer development on the crest as related to CD
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Fig. 20 also shows the comparative CD-values as derived from the theoretical

boundary layer displacement thickness in infinite fluids by means of equation
(76). It may be noticed that the greatest deviations of the resulting CD-values
from the earlier mentioned CD-values (with dd deduced from velocity distribution)
occur at the long weir-table, the maximum relative deviation being about

1.8% for %-= 0.33, which lies just within the critical section.

In table VI several significant values of CD, computed on the basis of different
criteria for the relative displacement thickness, are compared with the

experimental discharge coefficient CDex data:

C ex _ Qad
D 2,3/2 ; 3/2
(3) g =B Ho
max th
2 § §
u ex d m d th

Q4 h L P % B, H/L C, = 1) ¢, O 2. G H, /P
13/sec m m m m m
0.025 .0957 0.40 0.25 .0011 .0968 .2420 .9739 .0123 .9881 .0023 .9844 .3872
0.050 .1503 = - .0032 « 1535 .3875 .9755 .00853 .9825 0022 .9894 .6140
0.070 . 18063 = - .0052 .1915 .4788 .9801 .00511 .9880 .0021 .9913 .7660
.065 .1816 1.20 0.25 .0045 .1861 .1551 .9735 .00440 .9685 .0024 .9670 7444
.080 .2033 = = .0062 .2095 .1746 .9788 .00390 .9652 .0024 .9695 .8380
. 100 .2345 = = .0084 2429 .2024 .9801 .00665 .9732 .0024 .9722 .9716

Table VI: Comparison between several discharge coefficients.

le 6d : maximum value of Gd which has been measured

2. 6d : theoretical value of Gd’ as computed for a flat plate in an infinite
fluid, with x = L.

The accuracy of the experimental values CDex can be estimated in the following
way: adjusting the discharge (V-notch) in the laboratory model, an error in
the reading of the water level in a stilling well is made, with an average of
+ 0.03 cm on an average head of 30 cm, which yields a relative error of 0.17.
Assuming that the same error can be made in reading the head Ho (stilling well)
in the approach flume, then the total relative error in CDex amounts to:

3/2 3/2

R.E = (0.1) + (0.1) = 0.067%

If furthermore, an error of 0.5% in the rating curve of the V-notch is present,
then the final relative error in CDex will, in the most unfavourable case, be
0.56%.
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From table VI and Fig. 19, it may be concluded, that the agreement between
values of CDex and CDm (on basis of 6dmax/x) for the long weir-table

(L = 120 cm, Ho/L < 0.20) is good, with a maximum relative deviation of 0.7%,
which is in the same order as the measurement error in CDex‘ Despite the doubt-
ful assumption of using theoretical boundary layer growth in infinite fluids for
the analytical determination of the discharge coefficient (on the basis of

th/L), the differences between the values of CDth and CDm are of minor
: 3 max

d

d in the centre line is not representative (too

§
iiportance. Since CDe > CDm the values of § are obviously too high, which
might be due to the fact that §
high) for the whole crest.

On the other hand it must be taken into account, that the CD-equation was
obtained by assuming thatléd is independent of the depth of flow D, which is
only true for high Reynolds numbers and for rough boundaries. This does not
apply to the here used scale models. With experiments on the short weir-table

X and CDm or CDth is stronger, and

(L = 40 cm), the divergence between CDe
amounts to a maximum of 1.5 7.

Two possible reasons can be indicated:
1. The velocity measurements on the short weir table were less accurate and
the introduced errors could not be easily reproduced.

2. The limit of validity of the CD-equation (76) might be exceeded for Ho/L
ranging between 0.24 and 0.50 on the short weir-table, since the theory of

analytical discharge coefficients assumes straight and parallel flow on the

crest.

m ex . .. max .
The fact that CD > CD indicates however, that the observed 6d is too small.
This might be due to too low velocity measurements caused by improper setting

of the "wall-Pitot" tube. Here again the differences between CDm and CDth are

of relatively minor importance.

Unfortunately the number of available discharge coefficient data is too small
to be of absolute statistical significance, and no reliable band width of

scatter or accuracy of agreement with theory can be found.
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I read values

of v; and u,

!

II "Least-squares polynomial curve fit"

1. transforming variable v; and forming powers of lnyi
2. developing coefficients and constant terms of the normal equations
3. Gauss—elimination,back solution and printing results; a,, u(y), correlation

coefficients and Chi-square parameters.

!

III "Boundary layer displacement thickness"

1. derivative of u(y) with respect to y, which yields the boundary layer
thickness

2. if du(y)/dy # 0 for y > 0, go to V

3. numerical integration of adjusted velocity profile function u(y) with
Simpsons Rule, containing Richardsons deferred approach to the limit

11

(2

4. printing results: §, U, Sq» Gd/x and R

! -

intervals)

[
IV "Other significant analysis"

1. numerical integration of adjusted velocity profile

2. printing results: u, a, B, Fr' and CD

Y

V "Alternative computation of boundary layer thickness"

1. second derivative of u(y) with respect to y, if du(y)/dy # 0 for y > 0,
yields alternative value of §
2. numerical integration, etc.

3. printing results: §, U, § Gd/x and Rx

d’
4. return to IV or END

Fig. 23 Schematic description of FORTRAN IV program (CDC-3200) for data

processing.
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3.3.4. Conclusions

1. The measuring equipment used (Pitot-tubes and electronical recording)
allow a realistic view of the shape of the velocity distributions on the
rectangular broad- crested weir, with a long horizontal crest. More accurate

calibration of the "wall-Pitot" tube should improve the results of measurement.

2. The applied regression model for the velocity distribution function (third
degree polynominal function with respect to the natural logarithm of the
independent variable y) allows a satisfactory adjustment of the velocity
measurements as well as the possibility to determine efficiently a number of

characteristic shape factors of the velocity profile.

3. The boundary layer displacement thickness on the crest of the weir for

x/L < 0.8 proved to be higher than the corresponding values of §, resulting

from boundary layer theory on a flat plate in an infinite fluid,ddespite the
theoretical considerations of Delleur {2} and Kalkwijk {6}, that the boundary
layer on the crest would develop more slowly because of the unfavourable

negative pressure gradient. The main reasons for this must be sought in con-

clusions 4 and 5.

4. From a theoretical point of view it is not allowed to comsider the boundary
layer development on the crest of the weir as similar to the development of

a boundary layer on a flat plate in an infinite fluid, since pressure and flow
conditions are not comparable.

The favourable positive pressure gradient at the entrance of the weir and
probably the concave downwards flow profile as well (with a consequent positive
pressure gradient) cause the boundary layer at the upstream half of the crest
to develope more rapidly than it does on a flat plate, whilst the negative
pressure gradient at the downstream end of the crest (x/L > 0.2) reduces the
boundary layer to a point where the corresponding displacement thickness drops
even below the corresponding one of a flat plate in an infinite fluid. However,
only more accurate measurements of the actual longitudinal pressure distribution
on the crest can prove whether these assumptions about the pressure gradient

are reasonable.

3. The boundary layer displacement thickness on the crest, which is measured
on the center line of a cross section, is higher than the average displacement
thickness along the wet perimeter of the cross section. Inserting the one
dimensional displacement thickness on the centerline in the Ippen-equation

therefore results in too low values of CD.
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6. The location of the position at which critical conditions occur, is not
at the end, but within halfway of the measuring section. As a matter of fact,
the assumption that critical conditions occur at the end of the crest, is

based on straight and parallel flow over the weir.

7. The agreement between discharge coefficients computed on the basis of the
Ippen-equation (inserting measured values of the boundary layer displacement
thickness) and experimental coefficient data of the long weir-table (HO/L < 0.20)
was found to be satisfactory. The exact distance from the upstream end of the
crest where the measured displacement thickness was obtained from, has (within

a certain range, 0.3 < %-< 0.7) not much influence on the computed CD-value.

The validity of the Ippen-equation for the experimental data of the short
weir-table (Ho/L > 0.24) is doubtful. However the number of available data is
insufficient and has to be increased in order to yield more reliable information.
Moreover, the limit at which the critical depth theory ceases to hold, does not
only depend on the ratio HOIL, but also on the second significant parameter

describing the flow over the weirs, i.e. the ratio HO/P.

8. If the results for boundary layers in infinite fluids (non-accelerating
flow) are used in order to compute the discharge coefficients (with x = L) for
weirs with low relative heads (HO/L < 0.25), the agreement with experimental
coefficient data is satisfactory (relative deviation less than 1%). Without
using laboratoy scale models, this method allows an appropriate prediction of
the actual discharge of field installations, if one is not interested in a one

percent accuracy.

9. From the experiments on the long weir-table it can be seen, that the
difference between theoretical discharge (frictionless case of non-viscous
fluid) and actual discharge amounts to a maximum of 2.6% (CDex = 0.974), which
is assumed to be the result of viscous'effects. The CDth-value in that case
(in which the results of boundary layers in infinite fluids are used -Harrison-),
amount up to 0.967 (3.37 less than unity). This means that thevreduction in
discharge as a consequence of the boundary layer effects, can be estimated by
the proposed method of Harrison {4} and Kalkwijk {6} with a relative error

of approximately 25%. For the experiments on the short weir-table this error
is even more than 50%. It must however be borne in mind, that during the expe-
riments a complex combination of instrumental, methodological, personal and
sampling errors are introduced, which are difficult or even impossible to

reproduce.
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LIST OF SYMBOLS

The following symbols were adopted for use in this Paper:

>

area of wet cross section

parameter of regression model for velocity distribution

width at water level or width of a rectangular cross section

e average correction factor of the "Wall-Pitot" tube

O 0O =W w

correction coefficient in discharge relationship to measured head over

the weir

Standard discharge coefficient

total dimensionless friction factor (or drag coefficient)

.

local dimensionless friction factor

0
Fh

suffix referring to critical state

depth of flow on crest

: end depth or brink depth

: external diameter of dynamic tube of Preston

Lo B = PR = B = B

: total shear over a certain distance

Fr or Fr': Froude number

f : function

g : acceleration due to gravity

H : shape factor of boundary layer

Ho : specific energy head above the crest

Hol : total energy head in the approach channel

Hp : energy head outside the boundary layer

h : measured head upstream of weir crest

ho : depth of flow over the weir at the upstream edge of the crest

k : equivalent roughness height of Nikuradse

L : lenght of horizontal crest. L also denotes dimension of length in proto-
type structure

1 : denotes dimension of length in model

ln  : natural logarithm

log : decimal logarithm

M : constant, which is a measure for the curvature of flow at the upstream

end of the crest

m : suffix for model
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ratio of length of scale model in relation to prototype
coordinate in the direction normal to the flow in the Euler-equations
crest-height (above the bottom or the approach channel)

Gaussian standard normal depth variable

local pressure

suffix for prototype

discharge rate

theoretical discharge rate

adjusted discharge rate in laboratory

radius of rounded off nose at entrance of weir

Reynolds number based on hydraulic radius Rh

Reynolds number based on specific head Ho

hydraulic radius ‘

length Reynolds number

transition Reynolds number

radius of curvature of streamlines

sum of squares of departures

bottom slope

energy slope

free-stream velocity outside the boundary layer or velocity at outer
edge of the boundary-layer.

point velocity in x direction at distance y from boundary
instantaneous velocity at time t in turbulent flow

velocity at which y = Yo

average velocity in a cross section

shear velocity

time dimension in prototype

elapsed time or time dimension in model

wet perimeter

coordinate in the direction of flow, measured along the boundary
distance from upstream edge of the crest or flat plate to the point where
the transition from laminar into turbulent boundary layer starts
vertical distance above the weir crest

vertical distance above the weir crest where u = u,

energy velocity distribution coefficient

momentum velocity distribution coefficient

weight factor for transition boundary layer
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boundary layer thickness

boundary layer displacement thickness
momentum thickness of the boundary layer
energy thickness of the boundary layer
coefficient

von Karmans turbulence coefficient
dynamic viscosity

kinematic viscosity

density of fluid

shear stress at the flow boundary

top angle of V-shaped broad-crested weir
function

suffix for approximated critical section
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