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Abstract
Climate change causes alterations in large scale mass transport patterns in the ocean, cryosphere
and hydrology. The Gravity Recovery and Climate Experiment (GRACE) satellite mission which has
been operational in the years 2002-2017 has already improved our understanding of large scale mass
transport on Earth, but improvement of data quality is still needed. This will increase the quality of our
current estimates of the effects of climate change on one hand and help in the validation and initiation
of climate models on the other, which improves the accuracy of future predictions.

Noise in GRACE Level-2 data (monthly gravity field solutions) is caused by various reasons. The
measurements themselves are already executed and their quality is fixed but better data processing
algorithms and background models can reduce the current noise level. This is also relevant for the
GRACE Follow On mission which might have a higher measurement precision. Over the ocean, these
GRACE monthly solutions ideally only show mass exchange between continents and ocean and effects
of self-attraction and loading. Therefore, the signal over the ocean is expected to consist predominantly
of a linear trend and a seasonal variability. For certain oceanic regions this is not the case. In these
areas still a signal variance representing interannual differences in the mass-derivative and large resid-
uals with respect to a low-pass filtered signal are observed. This low-pass filtered signal contains only
signals of a frequency lower than the semiannual cycle. These signal variance and residuals are un-
expected and can be caused by inaccuracies in the currently applied oceanic background models in
GRACE data processing.

For various Release 5 and Release 6 monthly solutions the noise variance, signal variance and
residuals as aforementioned are estimated. The noise and signal variance are estimated by Variance
Component Estimation (VCE). Additionally, numerical experiments are performed to analyze different
regularization functionals and set-ups in the VCE. The oceanic regions where the largest signal variance
and residuals are observed correlate. These areas are for GRACE Release 5 data the Baltic Sea, Black
Sea, Arafura Sea, East Siberian Arctic Shelf, Argentine Basin and Hudson Bay. For GRACE Release
6 data a significant drop of this signal variance and residuals can be observed for the Hudson Bay and
East Siberian Arctic Shelf.

Consequently, the oceanic background models for these releases are compared against each other
and against the Global Tide and Surge Model (GTSM) which is a 2D hydrological model based on the
Delft3D Flexible Mesh software developed by Deltares. For the whole ocean both 3/6-hourly time-series
and monthly time-series are analyzed. For the shallow regions up to 200 m, the Black Sea and the
Red Sea, GTSM shows significant differences with respect to the current applied oceanic background
models. When comparing the oceanic background models of different releases it can be observed that
the regions where the signal variance and residuals decreased for GRACE Release 6 with respect to
Release 5 correlate to regions where the differences between these models is significant. This indicates
that oceanic background models do significantly influence the quality of GRACE monthly solutions over
the ocean.

Furthermore, it is investigated whether it can be expected that GTSM will improve the GRACE
monthly solutions. For this, monthly time-series of the current applied oceanic background models are
added back to the GRACE monthly solutions; consequently, by GTSM computed monthly time-series
are removed. Compared to GRACE Release 5 monthly solutions, GTSM shows a reduction in the signal
variance and residuals for the Hudson Bay, East Siberian Arctic Shelf, Black Sea, Baltic Sea, North Sea,
Arafura Sea and certain parts of the Arctic and Southern ocean. Compared to GRACE Release 6, a
reduction in the signal variance and residuals is observed for the East Siberian Arctic Shelf, Black Sea,
Baltic Sea, North Sea and Arafura Sea. For these regions it is most expected that GTSM can improve
GRACE monthly solutions. Since the quality of monthly solutions over the oceans is clearly influenced
by the oceanic background models significant alterations in GRACE monthly solutions are expected
for the shallow regions up to 200 m, Black Sea and Red Sea when applying GTSM in the GRACE
data processing. Whether these will be improvements or not should be analyzed by implementing
GTSM-based 3-hourly time-series in the GRACE data processing to create a new GRACE Level-2
data product.
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1
Introduction

In this chapter the context and some theoretical background for the research will be given. The problem
will be described in a separate section which leads to the goal of this research. Thereafter, the main
question of this research and the sub-questions follow together with an outline for this report.

1.1. Context

Impacts of climate change are among others visible in large-scale mass transport. Melting of land
ice, increasing and intensifying drought periods at certain land areas and sea level rise [12] [39] are
examples of large-scale mass transport. In the context of climate change, accurate measurements of
large-scale mass transport are useful for at least two reasons. Firstly, to have good estimates of the
current effects of climate change and secondly to validate and initiate climate models which can provide
future predictions.

An example of the need to have accurate measurements of mass transport is in the scope of sea
level rise. It has to be known when the sea level with respect to land will increase by what amount.
Countries as for example The Netherlands should make their protection mechanisms on time (for ex-
ample figure 1.1) and eventually evacuate (parts of) their country on time. The range in predicted sea
level rise is large. According to IPCC [40] global mean sea level has risen at an average rate of 1.7
(1.5-1.9) mm/y between 1900 and 2010 and at an average rate of 3.2 (2.8-3.6) mm/y between 1993
to 2010. For the Dutch coast, current projections in sea level rise for 2100 with respect to 1995 are
0.3 m (lower bound) to 2.0 m (upper bound) if the global temperature rise is 2°C by 2100. If the global
temperature rise is 4°C by 2100 the upper bound is 3.0 m. [34] The range between upper and lower
bound is among others large due to the unknown level of increased ice melt at Antarctica. [34] Accurate
measurements of each contributing process to sea level rise are needed to improve the predictions.

1



2 1. Introduction

Figure 1.1: Possible consequences for the Netherlands at the time of sea level rise of several meters: an impression by Carof
Beeldleveranciers [72].

For the period 2002-2017 measurements of large scale mass transport were made by the Gravity
Recovery and Climate Experiment (GRACE) [32]. This experiment gives estimates of large scale mass
transport in the Earth’s system at the monthly and longer time-scales. Since the launch of GRACE in
2002, satellite gravimetry has been widely used for this type of observations [4] and it is one of the
most important ways to study large-scale mass transport in the Earth’s system [24]. GRACE gives
insight in to what extent the melt of glaciers and ice sheets, and changes in hydrology are contributing
to sea level rise. [48] GRACE distinguishes these from changes caused by thermal expansion of the
water. Measurements by GRACE can thus contribute to the determination and prediction of the effects
of climate change in especially the ocean and cryosphere.

1.2. Gravity Recovery and Climate Experiment
The GRACE mission is a satellite mission which has been operational in the period March 2002 to
October 2017. The principal objective of the GRACE mission is to obtain accurate estimates of the
mean and time-variable gravity field of the Earth. [10] It has as setup two twin satellites orbiting one
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behind the other with a distance of about 220 𝑘𝑚 in between [32]. This can be seen in the artist’s
impression in Figure 1.2. The twin spacecraft co-orbit in a near circular, near polar orbit (orbit inclination
= 89°, eccentricity = 0.001) and started at an initial altitude of 500 𝑘𝑚. [23]

Figure 1.2: GRACE satellites: an artist’s impression [33].

The distance between the two satellites changed by small accelerations and decelerations of the
satellites due to varying mass below these spacecrafts [32] since a local increase in mass leads to an
increase of the gravitational attraction on a satellite [3]. The gravitational field of the Earth is determined
by how Earth’s material is distributed throughout the Earth’s system. Mass is not equally distributed
due to a varying material density distribution which also varies over time [3].

The changes in distance between the two satellites can be in the order of kilometers and are mea-
sured by a microwave ranging system (a K-band ranging system) with a micrometer precision [10] [37]
[23]. The range change data are processed to produce monthly mean solutions of the Earth’s exte-
rior gravitational potential [10] which are provided as Level-2 data product. For this ancillary data are
needed. These are measurements of non-gravitational forces such as atmospheric drag and solar ra-
diation pressure by an accelerometer [32] [10], measurements of the satellite orientation and position
which are determined by two star cameras and a GPS receiver [10], and data from background models.

The changes in Earth’s gravitational potential give an estimate of the mass movement (changes in
the distribution of mass) taking place in the Earth’s system. [35] The by GRACE provided Level-2 data
product consists of monthly mean gravity field solutions and thus gives an indication of mass transport
at the monthly and longer time-scales. Furthermore, the spatial resolution of GRACE based estimates
of mass transport is 300 − 400 𝑘𝑚 [23]. Estimates of mass transport retrieved from this Level-2 data
product are thus averaged over an area of the size of two times the Netherlands and a month of time
[32].

GRACE has improved our understanding of changes in underground water, melting ice sheets, sea
level rise and solid earth changes [32]. A few discoveries by GRACE in its active period are [32]:

• A third of the largest groundwater basins is rapidly depleted.
• Greenland looses about 280 gigatons of ice per year.
• Antarctica looses about 120 gigatons per year.
• Both Greenland and Antarctica show increasing melt rates.
• The sea level drop and change in precipitation pattern caused by the 2011 La Niña event.
• The movement of viscous mantle material under the Earth’s crust due to water mass changes

near the surface like ice sheet loss and groundwater depletion and thereby caused changes in
Earth’s rotation.
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Importantly the GRACE mission covers the whole Earth’s surface and it observes mass re-distribution
directly without needing additional information [23]. The GRACE mission gives insight in changes of
mass of water and solid Earth at locations where humans cannot go. [32]

After the success of the GRACE mission, GRACE Follow-On (GRACE-FO) was launched in May
2018 to continue the data record of GRACE. The GRACE-FO is equipped with an additional ranging
instrument beside the K-band ranging system, a laser ranging interferometer, which is expected to
produce more accurate measurements. [32] The measurement precision of the distance between the
two satellites influences the accuracy of the derived gravity field solutions and thus using a laser ranging
instrument might lead to a better spatial resolution and accuracy of the gravity field solutions. [28] The
GRACE-FO furthermore uses three star camera’s instead of two for the attitude control and this makes
the attitude determination more robust. [28] The accelerometer and GPS receiver are also evolved
versions of the ones used for GRACE. [28]

1.3. Problem statement
GRACE solutions are used in the interpretation of various geophysical processes in the Earth’s system
and calibration of geophysical models. [79] Therefore, improvements in the quality of these solutions
is desirable. Some points of improvement are related to the mission itself and can only be improved in
a future mission and thus for a different time span. Other points of improvement are related to the data
processing. Reduction of error sources in the data processing can improve GRACE solutions also for
the period 2002-2017. This research focuses on an error source in the data processing.

This error source in currently available GRACE solutions is related to the problem of temporal alias-
ing. [80] Temporal aliasing is caused by high frequency mass variations which are present in hydrology,
atmosphere and ocean. [80] [35] [79] These high frequency geophysical phenomena induce short-term
variations in the external gravitational potential which can even be in the order of a few hours. These
can not be captured by the GRACE satellites because their repeat period is much larger and can
consequently alias in the GRACE solutions when not appropriately removed from the measurements.
Various geophysical background models are considered to estimate and remove the high-frequency
geophysical phenomena to overcome the problem of temporal aliasing. [29] Unfortunately, the models
are not perfect and their errors can alias in the final GRACE solutions.

Over the ocean, the most dominant contributors to the temporal aliasing are the oceanic tides of
the daily and sub-daily period and non-tidal variations in both atmosphere and ocean at the scale of
a few hours. [53] Short-term oceanic water redistribution can induce deviations of the sea surface
heights from their mean values by several meters. [15] Over the oceans, all signals not related to mass
exchange between land and ocean and effects due to self-attraction and loading should be removed
from GRACE measurements. This would results in a signal of predominantly a linear trend and sea-
sonal variability. Regions where this is not the case are expected to suffer from aliasing errors due to
inaccurate background models.

Temporal aliasing, due to inaccuracies in the ocean tide model and the non-tidal ocean and atmo-
sphere models [28] [80] [23] [79], is one of the dominant contributors to the error in GRACE monthly
solutions beside inaccuracies in the inter-satellite distance measurements [80] and accelerometer error
[28] [23]. In the context of the GFO, which might show intersatellite ranging measurements of higher
accuracy, the dominant barriers to further improve the gravity field solutions are the temporal aliasing
errors and accelerometer noise. [80] [53] [79] [28] All these error sources contribute to the total noise
in GRACE monthly solutions.

Ditmar et al. [25] introduced a method to estimate and reduce the level of the random noise in
GRACE monthly solutions. This method is based on Variance Component Estimation (VCE) with in-
clusion of a regularization functional. In a similar way to them, the noise in GRACE monthly solutions
will be estimated in chapter 3. The regularization in their proposed method is in the time domain and
based on the minimization of Month-to-month Year-to-year Double Differences (MYDD). This regular-
ization functional will be discussed in further detail in section 2.1. By considering this regularization
functional in the VCE, signal variance can be estimated which represents interannual differences in
the mass-derivative. This signal variance is expected to be zero over the oceans when all tidal and
non-tidal variability are properly modeled and removed. In chapter 3 it can be observed that this is not
the case. GRACE monthly solutions are thus in need for improvement over the ocean, and especially
in regions of high signal standard deviation.
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This research focuses on the part of the temporal aliasing caused by inaccuracies in tidal and non-
tidal oceanic background models. At the moment, separate models are used for the tidal part (for
example EOT11a and FES2014b) and the non-tidal part which is provided as a so-called Atmosphere
and Ocean De-aliasing product (AOD1B). In this research it is investigated whether the Global Tide and
Surge Model (GTSM) has the potential to improve GRACE monthly solutions. This model is recently
developed by Deltares and is a global ocean model that includes both tidal and meteorological forcing.
When this model is more accurate than the currently used oceanic background models, it might be able
to decrease the aliasing errors in GRACE monthly solutions

One improvement of GTSM with respect to the currently used oceanic background models might be
that the non-linear interaction between tidal and meteorological forced dynamics is included in GTSM.
Another advantage of GTSM is that is has a unstructured computational grid. This grid has smaller grid
cells (∼5 km) in shallow coastal areas and larger grid cells (∼ 50 km) in deep ocean parts [51]. Also, in
areas with high bathymetry gradients like at ocean ridges and trenches there is a grid densification. [41]
This can reduce the problem of inadequate (too rough) discretization in the horizontal direction. Some
other differences with respect to the currently used oceanic background models is that GTSM is a 2D
horizontal (2DH) model instead of a 3D model and that the internal time-step of the model is maximal
2.5 minutes instead of 20-90 minutes in the currently applied oceanic background models. GTSM will
be discussed in detail in section 4.1.2. It will be investigated how GTSM performs in comparison to the
oceanic background models currently used in GRACE data processing and if it might be advisable to
use GTSM in future to create better GRACE monthly solutions.

1.4. Research question, sub-questions and outline report
This research is about the quality of GRACE Level-2 data and about the performance of GTSM com-
pared to the oceanic background models currently used in the generation of GRACE Level-2 data
product.

The main question for this research is:

(i) What is the global distribution of the quality of GRACE Release 5 and 6 monthly solutions and (ii)
is it expected that these solutions will be improved by the use of the Global Tide and Surge Model as
oceanic background model?

The quality of GRACE Level-2 data is assessed in different ways. Firstly, noise variance in the
GRACE Level-2 data is estimated for the whole world. Secondly, a signal variance is estimated. This
signal variance quantifies interannual differences in the mass-derivative which should be close to zero
over the ocean. Thirdly, residuals with respect to a low-pass filtered signal or analytical function are
estimated for certain GRACE Level-2 data. The low-pass filtered signal contains only frequencies
smaller than the semi-annual cycle. The analytical function contains only a linear trend and seasonal
variability. Over the ocean, these residuals should also be close to zero. For a certain region the quality
of GRACE monthly solutions is regarded higher when the estimated noise variance is smaller than the
global average. For a certain oceanic region the quality of GRACE monthly solutions is regarded
higher when the signal variance and residuals are estimated smaller than the oceanic average. After
an analysis of the differences between the GTSM and the currently used oceanic background models,
it is investigated if the signal variance and residuals reduce by the use of monthly time-series generated
by GTSM. This gives an indication if it is expected that GTSM can improve GRACE Level-2 data.

The main question gives rise to four sub-questions which are addressed in the corresponding chap-
ters as explained below. Most of these chapters contain a theoretical and methodological part after
which a part with results and discussion follows. The four sub-questions and the outline of these four
chapters are:

• Which regularization functional should be used in Variance Component Estimation to identify the
noise variance and signal in time-series which consist predominantly of a seasonal variability and
linear trend?

In this chapter the method to estimate noise variance and recover the signal in mass-anomaly
time-series by Variance Component Estimation (VCE) is described. Numerical experiments are
performed to evaluate different set-ups in the VCE among which the use of a different regular-
ization functional. The amount of time-series which are processed together in the VCE is varied
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which is similar to processing multiple time-series derived from GRACE Level-2 data of different
research centers. The influence of the use of multiple time-series, different signals and differ-
ent noise levels, as well as the impact of cross-correlation in noise realizations are investigated.
Conclusions are made about the influence of these differences in simulated time-series and pro-
cessing strategy to the accuracy of the estimated noise variance and recovered signal. When
the regularization functional is used which is based on MYDD minimization, a signal variance
is estimated which represents interannual differences in the mass derivative. Estimates of this
signal variance for different signals are also reported. With this analysis the estimates of signal
and noise variance in future chapters can be better interpreted.
Besides the numerical experiments, VCE is applied to GRACE-based mass-anomaly time-series.
The effect of a different regularization functional or no regularization functional at all in the VCE
set-up is analyzed for the Baltic Sea. For this, the GRACE-based time-series are compared
against a tide-gauge based time-series for this area. The GRACE-based mass-anomaly time-
series are derived from monthly GRACE Release 5 solutions. Basin average time-series are
compared. For this comparison, ocean variability predicted by the oceanic background models
is added to the combined solution retrieved by VCE. Also signal leakage is taken into account by
using scaling factors and output of a hydrological model.

• What are the global distributions of signal and noise variance in GRACE Release 5 and 6 monthly
solutions?

In this chapter the quality of the currently available GRACE monthly solutions is addressed. So-
lutions of different research centers and of different releases are considered. First theoretical dif-
ferences between these solutions in their applied geophysical background models are described
before estimating the noise variance and signal variance for the different GRACE monthly solu-
tions by VCE. When MYDD-minimization is the considered regularization functional in the VCE,
this signal variance represents interannual differences in the mass-derivative. Three Release 5
GRACE monthly solutions (CSR Release 5, GFZ Release 5 and ITSG 2016) and three Release
6 GRACE monthly solutions (CSR Release 6, ITSG 2018 and JPL Release 6) will be considered.
Beside the estimation of noise and signal variance, residuals with respect to a low-pass filtered
signal and an analytical function are estimated for the ITSG monthly solutions. The low-pass
filtered signal contains only frequencies small than the half-year periodicity. The analytical func-
tion is estimated by least-squares and is a combination of a linear trend, annual and semiannual
periodicity. Areas where the noise variance is large w.r.t. the global mean and signal variance or
residuals are large w.r.t. the oceanic mean are identified.

• Which regions show significant differences between 3-hourly, 6-hourly and monthly mass-anomaly
time-series generated by GTSM and those generated by the oceanic background models cur-
rently used in GRACE data processing?

In this chapter GTSM is described and differences in modeling strategy between GTSM and the
currently used oceanic background models are listed. Then the method to convert GTSM output
to make it comparable to the currently used background models is described. This means that
the inverted barometer effect, the presence of a static residual atmospheric pressure field and the
subtraction of a long-term mean have to be taken into account in a similar way when considering
time-series by GTSM. For the monthly time-series comparison GTSM output is compared to both
the non-tidal product only and the combination of non-tidal and tidal products provided by GRACE
data processing centers. For this, GTSM is run with only meteorological forcing and both tidal
and meteorological forcing. For the 3-hourly and 6-hourly time-series comparison GTSM is only
compared to only the non-tidal product. Also a frequency analysis is performed for these 3-
hourly and 6-hourly time-series comparison to observe in which frequency range the differences
are larger.

• For which regions does the quality of GRACE monthly solutions increase by the use of monthly
mass-anomaly time-series generated by GTSM?

In this chapter the method of addition and subtraction (MAS) to the GRACE Level-2 data is ex-
plained. By adding monthly mass-anomaly time-series generated by the currently used oceanic
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background models and consequently removing monthly mass-anomaly time-series generated
by GTSM from the Level-2 data it is investigated if GTSM has a potential to improve the lat-
ter. This is done for the combination of tidal and non-tidal products as well as for the non-tidal
product only. It is investigated if the signal variance and residuals (as described for the second
sub-question) decrease for certain areas. Also the bathymetry is considered in this comparison
by showing the changes versus bathymetry. Time-series of monthly time-series before and after
the MAS are shown to observe the effect in the time domain.

After these four chapters, a chapter with conclusions and recommendations follows.





2
Estimation of signal and noise in

mass-anomaly time-series

This chapter is about the first sub-question:

• Which regularization functional should be used in Variance Component Estimation to identify the
noise variance and signal in time-series which consist predominantly of a seasonal variability and
linear trend?

This question is assessed to find a good VCE set-up for the analysis of GRACE-based monthly
solutions in the chapter 3. Furthermore, results shown in this chapter lead to a better interpretation
of the results shown in chapters 3 and 5. First, the method to estimate signal and noise in mass-
anomaly time-series by using Variance Component Estimation (VCE) will be described. This description
is adapted from Koch and Kusche [45] and Ditmar et al. [25]. In this chapter two types of mass-
anomaly time-series are considered. The first type are synthetic data. These mass-anomaly time-
series are a combination of a self-defined signal and white noise. The second type are GRACE-based
mass-anomaly time-series. By applying VCE different mass-anomaly time-series can be combined to
compose a new mass-anomaly time-series by assigning appropriate weights to the original ones. The
VCE allows also a regularization functional to be incorporated. One of the regularization functionals
which will be investigated is the one that minimizes the year-to-year difference of the time-derivative of
mass-anomalies. This regularization functional is proposed and analyzed by Ditmar et al. [25].

True mass-anomaly time-series derived from GRACE monthly solutions consist over the ocean
predominantly of a seasonal variability and linear trend. The GRACE-based mass-anomaly time-series
also contain a certain amount of noise which can be cross-correlated. Numerical experiments with the
synthetic data are performed to investigate by which VCE set-up noise and signal are estimated best
for time-series which resemble GRACE-based mass-anomaly time-series over the ocean. The self-
constructed signal in the mass-anomaly time-series are varied in the size of amplitude of the annual
variability since the size of seasonal variations is different for different regions. Also two types of short-
term signals are considered in the construction of mass-anomaly time-series to investigate how well
these signals can be estimated by VCE. These short-term signals can be true signals in GRACE-based
mass-anomaly time-series or an indication of an error in these time-series. Since the size of the noise in
GRACE monthly solutions is regionally different, time-series are constructed with different noise levels.
Because a part of the noise in GRACE monthly solutions can be cross-correlated, also time-series are
constructed with cross-correlated noise. The numerical experiments will thus be performed to analyze
the effect of:

• processing a different number of mass-anomaly time-series together
• using different regularization functionals or no regularization at all
• processing mass-anomaly time-series with different noise levels
• processing mass-anomaly time-series with or without cross-correlated noise
• processing mass-anomaly time-series with an annual variability of different amplitude

9



10 2. Estimation of signal and noise in mass-anomaly time-series

• processing mass-anomaly time-series which show short-term variations like an instantaneous
increase in mass in a certain year or an increased amplitude of annual variations within a half-
year interval

To investigate the effect of the use of a different regularization functional in the VCE for true GRACE-
based mass-anomaly time-series a certain area is selected to compare the combined mass-anomaly
time-series against a mass-anomaly time-series measured by a different technique. The chosen area is
the Baltic Sea. For the Baltic Sea, the combined (regularized) mass-anomaly time-series retrieved from
three input time-series using VCE are compared to a tide-gauge derived mass-anomaly time-series.
This area is chosen because for this area a comparison of a GRACE-based time-series against a tide-
gauge based time-series is already performed by Virtanen et al. [69]. Therefore, a tide-gauge based
time-series, a hydrological leakage time-series and a steric signal for this area are available which
makes it possible to do a similar comparison. Furthermore, it can be observed that the basin-average
mass-anomaly time-series for this area consists mainly of a linear trend and seasonal variability which is
similar to our assumption for the construction of the synthetic data. Furthermore, it is assumed that the
basin-average time-series for the Baltic Sea is representative for oceanic signals in general because
of the presence of a linear trend and seasonal variability in this time-series. The applied method by
Virtanen et al. [69] will be described as well as how the method in this study deviates from their study.

2.1. Theory
In this section the method to combine several mass-anomaly time-series into one and simultaneously
estimate the noise variance of these time-series will be described. In this research, these mass-
anomaly time-series are derived from GRACE monthly solutions or they are synthesized data resem-
bling GRACE-based mass-anomaly time-series. These mass-anomaly time-series are thus supposed
to be available for the same total period. When considering GRACE-based mass-anomaly time-series,
different GRACE solutions are provided by several research centers. These GRACE solutions should
contain the same signal but are different by containing their own errors due to different data processing
strategies of the research centers. In this chapter first synthetic data resembling GRACE-based mass-
anomaly time-series are considered. The method which will be used to combine the mass-anomaly
time-series into one is based on the VCE technique [45]. By introducing a set of pseudo-observations
besides the mass-anomaly time-series, regularization can be incorporated. Different regularization
functionals are addressed.

2.1.1. Combination of mass-anomaly time-series and regularization
The combined mass-anomaly time-series 𝐻 (𝑡) will be found by minimizing the following objective func-
tion:

Φ[𝐻] =∑∑
∈

1
𝜎 (𝐻 (𝑡 ) − 𝐻 ) + 1

𝜎 Ω [𝐻] , (2.1)

where 𝑃 is the number of mass-anomaly time-series, 𝑁 is the set of observation moments of the
specific dataset 𝑖, 𝐻 is the mass-anomaly of the specific dataset 𝑖 at observation moment 𝑗, 𝑡 is
the time in years corresponding to observation moment 𝑗, 𝐻 (𝑡) is the combined and/or regularized
mass-anomaly as a continuous function of time, Ω [𝐻] is the regularization functional, 𝜎 is the noise
variance of data set 𝑖 and 𝜎 is the error variance of the pseudo-observations. The pseudo-observation
equations are defined in line with the chosen regularization functional. The error variance of the pseudo-
observations thus represent how much the regularized signal deviates from a signal which totally meets
the requirements of a certain regularization functional. This error variance of the pseudo-observations
will also be called signal variance in the following sections and chapters. Equation 2.1 holds when it is
assumed that the data noise and the noise in the pseudo-observations is white. When no regularization
is included the last term in equation 2.1 is absent.

The regularization functional Ω [𝐻] represents the regularization used. The regularization function-
als that will be addressed in this chapter are the Tikhonov zero-order, first-order and second-order
functionals, as well as the regularization functional proposed in [25] which minimizes the year-to-year
differences of the time-derivative of mass-anomaly.
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The zero-order Tikhonov regularization functional is defined as:

Ω [𝐻] = ∫ [𝐻 (𝑡)] 𝑑𝑡 (2.2)

with𝐻 (𝑡) the regularized mass-anomaly time-series. When this functional is used, the mass-anomalies
themselves will be minimized. This will favor a solution close to zero.

The first-order Tikhonov regularization is defined as:

Ω [𝐻] = ∫ [�̇� (𝑡)] 𝑑𝑡, (2.3)

where �̇� (𝑡) is the time-derivative of the regularized mass-anomaly time-series. When this functional
is used the time derivative of mass-anomaly will be minimized. Since in this chapter the temporal
sampling of input data is one month, the month-to-month differences are minimized in practice. In this
way solutions that are relatively flat (i.e. constant) will be favored.

The second-order Tikhonov regularization is defined as:

Ω [𝐻] = ∫ [�̈� (𝑡)] 𝑑𝑡, (2.4)

where �̈� (𝑡) is the second time-derivative of the regularized mass-anomaly time-series. When this
functional is used, month-to-month double differences are minimized in practice. In this way solutions
that are smooth (i.e. with a constant slope) will be favored. [7]

The regularization functional proposed in [25] is defined as follows:

Ω [𝐻] = ∑∫ [�̇� (𝑘 + 1 + 𝜏) − �̇� (𝑘 + 𝜏)] 𝑑𝜏, (2.5)

where 𝐾 is the total number of years considered and 𝜏 the time in years (0 ≤ 𝜏 ≤ 1) of a specific year
k. By applying this regularization functional, month-to-month year-to-year double differences will be
minimized in practice. The regularization functional is based on the expectation that GRACE-based
mass-anomaly time-series show predominantly a combination of a seasonal variability and linear trend.
So with this choice the bias introduced by regularization will be reduced. [25] When referring to this
regularization functional the term MYDD (Month-to-month Year-to-year Double Difference) will be used.

2.1.2. Description of the linear functional models
The input data for the regularization and noise estimation method are mass-anomaly time-series in
meters of equivalent water height (EWH). The mass-anomaly time-series can be GRACE-based and
available for each grid point in the spatial domain or simulated time-series. The mass-anomaly time-
series are considered as data vectors which contain both signal and noise. The data vectors are
represented by d for each mass-anomaly time-series 𝑖. The data vectors can be related to an unknown
vector (x), which is the discrete analogue of 𝐻 (𝑡) in equation 2.1. By VCE, this vector x is estimated
as a combined and/or regularized mass-anomaly time-series. The notation for the estimate of this
unknown vector is x̂. The following description of the linear functional models is based on Koch and
Kusche [45], Ditmar et al. [25] and Aster et al. [7].

The linear functional model which relates the data vectors to the unknown vector x is:

A x = d for each 𝑖 (2.6)

with A the design matrices. This matrix contains only zeros and ones in such a way that there is a
one-to-one relation for each epoch between mass-anomalies in the vectors d and x. When d and x
have the same length this would exactly result in an identity matrix. Otherwise, A contains as many
ones as the length of d and their location in the matrix A is determined by the epochs of the data
vector d .

The noise covariance matrices of the data vectors can be represented as:

C = 𝜎 P (2.7)
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with P the known weight matrices of the data vectors d which are in this case defined as identity
matrices because it is assumed that the data noise is white. Furthermore, 𝜎 are unknown noise
variances to be estimated for each data vector d .

An additional set of linear equations is added to the linear functional model 2.6 when regularization
is used. This additional set of linear equations is related to the chosen regularization functional and
defined as follows:

Dx = 0, (2.8)

where D is the finite-difference analog of the differentiation operator present in the squared brackets in
the integrals of equations 2.2, 2.3, 2.4 and 2.5. So D depends on the chosen regularization functional.

When the zero-order Tikhonov regularization functional is used, matrix D becomes the identity ma-
trix:

⎡
⎢
⎢
⎢
⎣

1 0 0 0 0 … 0
0 1 0 0 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 0 0 1 0
0 … 0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

. (2.9)

When the first-order Tikhonov regularization functional is selected, matrix D becomes:

⎡
⎢
⎢
⎢
⎣

−1 1 0 0 0 … 0
0 −1 1 0 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 0 −1 1 0
0 … 0 0 0 −1 1

⎤
⎥
⎥
⎥
⎦

. (2.10)

When the second-order Tikhonov regularization functional is preferred, matrix D becomes:

⎡
⎢
⎢
⎢
⎣

1 −2 1 0 0 … 0
0 1 −2 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 1 −2 1 0
0 … 0 0 1 −2 1

⎤
⎥
⎥
⎥
⎦

. (2.11)

When the regularization functional proposed by Ditmar et al. [25] is used, matrix D becomes:

⎡
⎢
⎢
⎢
⎣

1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 … 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 … 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1

⎤
⎥
⎥
⎥
⎦

. (2.12)

Furthermore, since it is assumed that the pseudo-observations are contaminated by white noise,
their noise covariance matrix becomes:

C = 𝜎 P , (2.13)

where P is defined as an identity matrix and 𝜎 is an unknown signal variance to be estimated. Since
the pseudo-observations are always zero, the noise variance of the pseudo-observations can be inter-
preted as signal variance.

2.1.3. Finding the noise variances and the regularized solution
The finite-difference analog of the objective function (equation 2.1) is:

Φ[x] =∑ 1
𝜎 (d − A x) P (d − A x) + 1

𝜎 (Dx) P (Dx) , (2.14)

where A are identity matrices. When no regularization is applied the term (Dx) P (Dx) is absent
in equation 2.14.
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By minimizing function 2.14, the least-squares solution x̂ of the combined system of the linear
equations 2.6 and 2.8 can be found. This estimate x̂ of the unknown vector x which is the combined
and/or regularized mass-anomaly time-series can be found by solving the normal equations [45]:

(∑ 1
𝜎 A P A + 1

𝜎 D P D) x̂ =∑ 1
𝜎 A P d . (2.15)

Accordingly, the expression to estimate vector x̂ becomes:

x̂ = (∑ 1
𝜎 A P A + 1

𝜎 D P D) ∑ 1
𝜎 A P d . (2.16)

The noise variances 𝜎 and the signal variance 𝜎 can be estimated with the VCE method. This
method is iterative. First, initial estimates �̂� and �̂� of respectively 𝜎 and 𝜎 are defined to be 1 𝑚
taking into account that the mass-anomaly time-series are given in meters of EWH. From these initial
noise variances, an initial estimate x̂ can be computed with equation 2.16. Then the iterative procedure
starts. Updated estimates of the noise variances can be computed as follows:

(�̂� ) = 1
𝑛 − �̂� (d − A x̂) P (d − A x̂) for each 𝑖 (2.17)

with 𝑛 the length of the data vector d and

�̂� = 𝑡𝑟𝑎𝑐𝑒 [ 1
(�̂� )

A P A (∑ 1
(�̂� )

A P A + 1
(�̂� ) D P D) ] .

And in a similar way:

(�̂� ) = 1
𝑚 − �̂� (Dx̂) P (Dx̂) (2.18)

with 𝑚 the number of pseudo-observations and

�̂� = 𝑡𝑟𝑎𝑐𝑒 [ 1
(�̂� ) D P D(∑ 1

(�̂� )
A P A + 1

(�̂� ) D P D) ] .

The improved estimates of the noise variances 𝜎 and the signal variance 𝜎 are then used to com-
pute an improved estimate x̂ with equation 2.16, etc. This iterative process by successively using the
expressions 2.17, 2.18 and 2.16 can be continued until convergence. Convergence is achieved when:

|(�̂� ) − (�̂� ) |

(�̂� )
≤ 𝜖 for each 𝑖 and

|(�̂� ) − (�̂� ) |
(�̂� ) ≤ 𝜖 (2.19)

and/or the maximum number of iterations is reached. In this research 𝜖 = 0.001 is used and the
maximum number of iterations is defined to be 100.

2.2. Numerical study
In this section numerical experiments are presented. These numerical experiments are performed to
investigate the effect of using a different number of time-series and different regularization functionals
or no regularization at all in the VCE technique. The synthetic time-series are constructed as a com-
bination of a signal and a time-series of white noise. The signal always contains a seasonal variability
and linear trend. Additionally, signals with a non-seasonal variability are considered. The constructed
time-series have different signal-to-noise ratios and contain cross-correlated or uncorrelated noise.
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2.2.1. Generating noisy time-series
The noisy time-series are generated by adding white noise to a certain signal. In table 2.1 all combi-
nations of signal and added noise are shown. For each combination 1000 realizations are synthesized
to make the obtained statistics sufficiently representative.

Each signal contains a linear trend and seasonal variations. The linear trend is defined to be 2.1
𝑚𝑚/𝑦 which is the part (66%) of the global mean sea level rise for the period 1993-2010 which is not
due to thermal expansion reported by IPCC [39]. Also Wouters et al. [77] reported that between 2002
and 2012 60-80% of the global mean sea level rise can be explained by mass change (and 20-40%
is caused by thermosteric sea level rise). They showed a mass-induced global mean sea level rise
of 1.6 mm/y for the period 2003-2013 as measured by GRACE. For the North Pacific they showed
a mass-induced sea level rise of 3.2 mm/y for the period 2003-2013 as measured by GRACE. The
chosen linear trend of 2.1 𝑚𝑚/𝑦 for the numerical experiments is thus also in the reported range by
Wouters et al. [77]. The seasonal variability is defined as:

𝐻 = −𝐴 sin (2𝜋𝑡 ) (2.20)

in which 𝐻 is the mass anomaly of time-series 𝑖 at time 𝑡 . The time is defined in years and the period
under consideration is 2003-2013. Since all constructed time-series have mass anomaly values at the
same moments in time, 𝑗 is not dependent on 𝑖. Furthermore, 𝐴 is the amplitude as defined in table 2.1.
The considered amplitudes are on the one hand based on observed amplitudes in GRACE based time-
series considered in Chapter 3, which show peak-to-peak amplitudes of 3 − 5 𝑐𝑚. On the other hand
they are selected by taking into account GRACE based seasonal variability reported by Chambers et al.
[13]. They reported global ocean mass variations of a 8.4 ± 1.1 𝑚𝑚 annual amplitude for the period
August 2002 to December 2003. Furthermore, Dobslaw et al. [27] reported that the seasonal variation
of globally averaged ocean bottom pressure due to barystatic sea-level variability is about 1 hPa which
is equivalent to about 1 cm EWH. Therefore, the chosen peak-to-peak amplitudes for the numerical
experiments are 1, 2, 3 and 4 𝑐𝑚.

Table 2.1: Considered combinations of signal and noise

Amplitude of
seasonal
variability

(cm)

Step
function in

signal

Amplified
seasonal
variability
during a
half-year

Standard
deviation of
white noise

(cm)

Cross-
correlated

noise

0.5 No No 1.0 No

0.5 No No 1.5 No

0.5 No No 2.0 No

0.5 No No 2.5 No

1.0 No No 1.0 No

1.0 No No 1.5 No

1.0 No No 2.0 No

1.0 No No 2.5 No

1.5 No No 1.0 No

1.5 No No 1.5 No

1.5 No No 2.0 No

1.5 No No 2.5 No

1.5 Yes No 1.0 No

1.5 Yes No 1.5 No

1.5 Yes No 2.0 No

1.5 Yes No 2.5 No

1.5 No Yes 1.0 No
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Table 2.1: Considered combinations of signal and noise

Amplitude of
seasonal
variability

(cm)

Step
function in

signal

Amplified
seasonal
variability
during a
half-year

Standard
deviation of
white noise

(cm)

Cross-
correlated

noise

1.5 No Yes 1.5 No

1.5 No Yes 2.0 No

1.5 No Yes 2.5 No

1.5 No No 1.0 Yes

1.5 No No 1.5 Yes

1.5 No No 2.0 Yes

1.5 No No 2.5 Yes

1.5 Yes No 1.0 Yes

1.5 Yes No 1.5 Yes

1.5 Yes No 2.0 Yes

1.5 Yes No 2.5 Yes

1.5 No Yes 1.0 Yes

1.5 No Yes 1.5 Yes

1.5 No Yes 2.0 Yes

1.5 No Yes 2.5 Yes

2.0 No No 1.0 No

2.0 No No 1.5 No

2.0 No No 2.0 No

2.0 No No 2.5 No

Oceans do not only show seasonal variations and a linear trend. This can for example be ob-
served in time-series shown in chapter 3. Non-seasonal variability can be caused by for example an El
Niño or La Niña. [77] [13] Not only regionally interannual sea level variations are observed. Even the
global mean sea level (GMSL) shows interannual variations [13] and it is more likely that interannual
variations in GMSL are due to changes in water cycling between oceans and continents than due to
changes in heat storage [77]. Another example of a non-seasonal variability is a sudden big melt of
ice sheets of Greenland or Antarctica. To analyze the effect of non-seasonal and non-linear signals
in the time-series two types of such signals are included for the time-series with a seasonal variability
of 3 𝑐𝑚 peak-to-peak amplitude. The considered two types of non-linear and non-seasonal signals
are a sudden step-wise increase in mass-anomaly and an amplification of the seasonal variability dur-
ing a half-year period by a foctor of 2. The sudden increase in mass anomaly is a step of 6 𝑚𝑚 of
EWH at a random moment in the set of times 2003.5, 2004, 2004.5, ..., 2012, 5 𝑦𝑟. The amplification of
the seasonal variability during a half-year period happens for a randomly chosen interval from the set
2003.5−2004, 2004.5−2005, 2005.5−2006, ..., 2012.5−2013 𝑦𝑟. Examples of the constructed signals
can be found in figure 2.1.
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Figure 2.1: Examples of constructed signals for the numerical experiments.

Finally, white noise is added to the constructed signals. The standard deviation of this noise is 1,
1.5 , 2 or 2.5 𝑐𝑚 as can be seen in table 2.1. These values are chosen based on estimates of standard
deviation of random noise in real data as shown in chapter 3. The global averages of these estimates
ranged between 1.3 and 3.4 𝑐𝑚 for GRACE Release 5 data and between 1.0 and 1.6 𝑐𝑚 for GRACE
Release 6 data. For the signals with a seasonal variability of 3 𝑐𝑚 amplitude, data-realizations with
both cross-correlated and uncorrelated noise are constructed. Data-realizations with cross-correlated
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noise are constructed by adding exactly the same time-series of white noise to the signal for a certain
realization. Each of the 1000 realizations thus contain a different noise realization but the time-series
considered together (2, 3 or 4) in the VCE are exactly similar by containing the same signal and same
noise. The long-term mean over the total simulation period is subtracted from the constructed mass
anomaly time-series.

2.2.2. Determination of noise variance and bias in combined and/or regularized
mass-anomaly time-series

For all created time-series as shown in table 2.1, the effect of various regularization functionals (no reg-
ularization, zero-order, first-order, second-order Tikhonov regularization and the MYDD minimization,
and various numbers of time-series (1, 2, 3 or 4) are analyzed. Note that when only one time-series is
used in the VCE method, regularization is a must. It is investigated how different signal-to-noise ratio’s,
correlation in noise and interannual variations in the signal influence the quality of the different VCE
set-ups. For this, the estimated noise, the noise reductions and introduced biases will be reported.

The standard deviation of random noise is estimated by the VCE method explained in section 2.1.3.
These estimates will be reported together with the actual standard deviations of random noise (table
2.1). Since for every signal 1000 data realizations are made the mean and standard deviation (std)
of the estimated noise standard deviation will be reported. Consequently, the root mean square error
(RMSE) of the combined and/or regularized solutions is computed. The RMSE contains both regular-
ized random noise and the introduced bias to the true signal [25].

To estimate biases noise-free mass-anomaly time-series are combined according to equation 2.16.
Noise-free time-series are combined to have no leakage of noise in the bias estimates. The signal and
noise variances in this equation are the ones estimated by VCE. For the combined and/or regularized
time-series consequently the bias in the amplitude of seasonal variability, the linear trend and eventually
step function or the amplification of the seasonal variability are estimated. These parameters are re-
estimated by using least-squares. Consequently, the true parameters are subtracted from these re-
estimated ones and the difference is regarded as bias. For both the RMSE and the bias the mean and
corresponding standard deviation based on the 1000 data realizations are reported.

Finally, when the MYDD minimization is used, also the estimate of the signal standard deviation
(�̂� ) will be reported. In this way, it is possible to see the influence of the level of simulated random
noise, the cross-correlation of noise and the number of simultaneously processed time-series to the
estimated signal standard deviation.

The true signal standard deviations are also computed and reported. These are computed in two
steps as shown in equation 2.21 and 2.22:

s = Dd , (2.21)

where d is the time-series of noise-free data, D is the MYDD operator as defined in 2.12, and

𝜎 = √ 1
𝑁 − 13 ∑ (𝑠 ) , (2.22)

where𝑁 is the length of the time-seriesd and 𝑠 are elements of the vector s. Since 1000 realizations
of noise-free data are realized the mean of 1000 𝜎 values will be reported as the true signal standard
deviation. Note that in the case of no interannual variability the 1000 realizations of noise-free data are
exactly similar and is not necessary to calculate a mean 𝜎 .

2.3. Case study for the Baltic Sea
This section is about the comparison of GRACE-based time-series against a tide-gauge based time-
series for the Baltic Sea. This comparison is performed to investigate the effect of a different regular-
ization functional in the context of real GRACE data. First an experiment performed by Virtanen et al.
[69] is explained. It is described, since the experiment in this research is very similar. Then the exact
methodology of the experiment in this research follows and adjustments to their experiment are men-
tioned. The Baltic Sea is chosen because of the availability of a basin-average tide-gauge time-series,
a time-series of leakage due to hydrological phenomena and a time-series of the steric effects for this
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area. Also, it can be observed that the GRACE-based unregularized time-series for this area contain
a linear trend and seasonal variability besides some noisy higher frequency fluctuations which seem
representative for the ocean in general.

2.3.1. Comparison of a GRACE based time-series to a tide-gauge based time-
series

This theoretical section is about an experiment performed by Virtanen et al. [69]. The exact period for
which all time-series were constructed and reported is April 2003 to December 2006. Virtanen et al.
[69] computed GRACE-based mass-anomaly time-series from CSR Release 4 Level-2 data provided
which were provided set of Stokes coefficients. The solutions up to degree 60 were used. For this
conversion they used the following equation:

Δ𝐻 (𝜃, 𝜆) =∑ ∑ 𝑎𝜌 (2𝑙 + 1)
3 (1 + 𝑘 ) 𝜌 Δ�̄� , �̄� , (𝜃, 𝜆) , (2.23)

where Δ𝐻 (𝜃, 𝜆) are mass-anomalies in equivalent water height (EWH), 𝜃 is the geocentric co-latitude,
𝜆 is the longitude, 𝑎 is the Earth’s mean radius, 𝜌 is the Earth’s mean density, 𝜌 is the water density
defined as 𝜌 = 1000 𝑘𝑔/𝑚 , 𝑘 are the load Love numbers [70], �̄� , are temporal variations of the
provided Stokes coefficients and �̄� , (𝜃, 𝜆) are the 4𝜋-normalized surface spherical harmonics. The
degree and order of the temporal surface spherical harmonics and Stokes coefficients are represented
by 𝑙 and 𝑚 respectively. Equation 2.23 resembles 3.18 which is the equation used in this research to
convert temporal variations of Stokes coefficients to mass anomalies in EWH. The difference is that
Virtanen et al. [69] assume that mass transport takes place at the surface of the sphere with as radius
the Earth’s mean radius. In this research it is assumed that mass transport takes place at a sphere but
it is assumed that this sphere is different for each latitude. The full explanation can be found in section
3.1.3.

To compute basin averages time-series for the Baltic Sea Virtanen et al. [69] adapted a method
explained by Swenson and Wahr [64]. In this method basin averages were computed by using an
averaging kernel which was defined by the convolution of a Gaussian filter with a function describing
the basin (1 inside the basin, 0 outside the basin). The chosen Gaussian filter in this process was a
Gaussian filter of 400 km half-width. Before calculating the basin averages, they added the oceanic
part from the AOD1B Release 4 product to the CSR Release 4 Level-2 data to restore the non-tidal
ocean variability (which is not present in the Level-2 data). This oceanic part contains the inverted
barometer effect. By adding this oceanic part back to the CSR Release 4 Stokes coefficients and
afterwards computing the basin averages with the averaging kernel, more weight was given to the non-
tidal variability in the middle of the basin than at the borders. Since this choice is not explained, the
non-tidal variability in the next section will be added back in a different manner by giving equal weight to
regions in the middle or at the borders of the Baltic Sea. In contrast to Virtanen et al. [69] no Gaussian
filter will be used for the products representing tidal and non-tidal ocean variability. Furthermore, the
GRACE derived mass-anomaly time-series were detrended using linear regression to remove the long-
term variability due to for example post-glacial rebound or sea-level rise for the considered period April
2003 to December 2006.

The Baltic Sea shows mass variation due to both internal redistribution of water and water exchange
with the North Sea which are both mainly driven by atmospheric pressure and wind. [69] Virtanen
et al. [69] estimated sea-level anomalies from monthly tide-gauge data from the Permanent Service for
Mean Sea Level (PSMSL). The sea-level anomalies were estimated from 22 to 26 tide-gauge stations
available depending on the month. For each tide-gauge a reference value was defined as the intercept
at 2000.0 𝑦𝑟 from a regression line through the whole length of the tide-gauge record (2003-2006).
This reference value was subtracted from each tide-gauge time-series. Then a monthly time-series of
sea surfaces over the entire Baltic Sea was constructed by fitting minimum-curvature-surface splines
through the time-series at each tide-gauge. Consequently, spatial averages from these sea surfaces
were computed by using an exact kernel (1 inside basin, 0 outside basin). These spatial averages were
regarded as the basin averages derived from the PSMSL data. For the comparison to the GRACE-
based time-series the linear trend for the period April 2003 - December 2006 was removed at the end.

The steric contribution to sea-level variation was estimated by using Ocean Model for Circulation and
Tides (OMCT) [66] which includes variations in temperature and salinity. The steric anomalies were
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obtained by computing differences between sea-level and the oceanic contribution to ocean bottom
pressure. Virtanen et al. [69] consequently did not apply a steric correction to the PSMSL derived sea-
level anomalies since the steric contribution showed a peak-to-peak amplitude of 8 cm and this was
considered to be small. In contrast with them, the steric correction is applied in this research. For this,
their reported time-series of the steric contribution to sea-level variations are considered.

Since the Baltic Sea is relatively small (area 390000 𝑘𝑚 [69]) and a Gaussian filter of 400 km half-
width is used, signal leakage will clearly be present in the basin averages derived from the GRACE
Level-2 data. This signal leakage is both from land to sea and from sea to land.

The basin average mass-anomalies retrieved when using an averaging kernel can not directly be
compared to mass-anomalies derived from the tide-gauges. The use of an averaging kernel causes a
smaller basin average mass-anomaly due to sea-to-land signal leakage. By using the same averaging
kernel to a uniform layer of water in the Baltic Sea, Virtanen et al. [69] derived a scaling factor of
4.0 by which the GRACE based mass-anomalies were multiplied to compare them to the tide-gauge
mass-anomaly time-series.

To remove signal leakage from land to the Baltic sea, Virtanen et al. [69] derived estimates of
surrounding mass variability by using the hydrological model GLDAS (Global Land Data Assimilation
System [58]) is reported by them. The gridded mass anomalies of hydrological origin were converted to
the spectral domain and consequently converted back to basin average mass-anomalies by using the
same averaging kernel as for the GRACE Level-2 data. By using the averaging kernel a Gaussian filter
of 400 km half-width is implicitly applied in the conversion from spectral to the spatial domain. Finally,
this leakage signal from land was multiplied by the scaling factor 4.0, consistently with the scaling factor
for the GRACE data. The maximum degree of the conversion to the spectral domain of the gridded
mass anomalies of hydrological origin is not reported. It is assumed that this was 60 since the use of
exactly the same scaling factors.

2.3.2. Comparison of several combinedGRACE-based time-series to a tide-gauge
based time-series

In this section the method to derive mass-anomaly GRACE-based time-series for the Baltic Sea (basin
average time-series) in this research is explained. This method deviates on some aspects from the
method described in the previous section. Similar to the above described method, tidal and non-tidal
variability including the inverted barometer effect should be added back to the GRACE-based time-
series to be able to make comparisons against the tide-gauge based mass-anomaly time-series. In
this research, the basin-average mass-anomaly time-series are derived from the combined (and reg-
ularized) GRACE Release 5 solutions. GRACE Release 6 solutions are not considered since none of
the AOD1B Release 6 products still included the inverted barometer effect. Therefore, it is for GRACE
Release 6 solutions not possible to restore the total non-tidal variability including the inverted barometer
effect.

The considered Release 5 GRACE Level-2 data are CSR Release 5, ITSG 2016 and GFZ Release
5. From these Level-2 data mass-anomaly time-series are computed on a 0.5 °equiangular grid in
geodetic coordinates time-series. The exact description of this conversion can be found in section
3.2.1. A Gaussian filter of 400 km half-width is applied in this conversion and the total period under
consideration is January 2003 - March 2016. Consequently, by VCE the combined mass-anomaly
time-series are derived. The considered regularization techniques are Tikhonov first-order and MYDD
minimization. Also a combined time-series is derived without regularization. Tikhonov zero-order and
second-order are not considered since the numerical experiments (section 2.2) showed that these
regularization techniques performed worse in the context of time-series containing predominantly a
seasonal variability and linear trend. In the VCE the number of mass-anomaly time-series processed
together is 3.

To compute the basin average of mass-anomaly at a certain time-step the following equation is
used:

Δ𝐻 =
∑ ∈ Δ𝐻 (𝜗 , 𝜆 ) sin (𝜗 )

∑ ∈ sin (𝜗 ) , (2.24)

where Δ𝐻 is the basin average of mass-anomaly at a certain time-step for region 𝑖 which is in this
case the Baltic Sea. Furthermore, 𝜗 and 𝜆 are the geodetic colatitude and longitude of a point 𝑗
which is contained in region 𝑖. Since in further chapters equation 2.24 is applied for different regions,
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the indication with 𝑖 is now introduced. First applying a Gaussian filter of 400 𝑘𝑚 half-width in the
computation of mass-anomalies from Stokes coefficients and then computing a basin average with
equation 2.24 is the same as the application of an averaging kernel as done by Virtanen et al. [69]
when:

• The definition of the borders of the ocean is exactly the same.
• The points (representing 1 inside and 0 outside the basin) are defined at the same equiangular

grid.
• The distances between these points are approximated in the same manner by using the sin (𝜗 )

term.
It is not known whether this is the case for Virtanen et al. [69]. It is likely that my way to compute basin
averages is due to some of the differences itemized above not exactly similar to the computation of
basin averages by them. It is assumed that these differences are that small that it is still justified to
compare the GRACE-based time-series derived in this research to the tide-gauge derived time-series
by Virtanen et al. [69].

The non-tidal and tidal products to restore the tidal and non-tidal ocean variability removed from
GRACE Level-2 data are AOD1B GAB Release 5 and Ocean Tides Release 5. These tidal and
non-tidal products are added to the combined (regularized) mass-anomaly time-series derived from
the original GRACE Level-2 data and not to the GRACE Level-2 data themselves. The GAB co-
efficients of AOD1B Release 5 are used since these represent non-tidal ocean variability including
the inverted barometer effect. In contrast to Virtanen et al. [69], also tidal variability for the ocean is
added back because there might be some monthly mean tidal variability unequal to zero. This monthly
mean tidal variability is also present in the monthly mean values of PSMSL. The GAB coefficients
and monthly mean tidal variability are downloaded from ftp://ftp.tugraz.at/outgoing/ITSG/
GRACE/ITSG-Grace2016/monthly/monthly_background. ITSG defines the monthly mean val-
ues independent of the length of the data acquisition for the GRACE Level-2 data. Missing days in
the production of the GRACE Level-2 data are ignored. The monthly mean values of tidal and non-
tidal variability provided by ITSG thus represent the total length of a month. The GAB coefficients are
provided up to degree 100 and the monthly mean values of ocean tidal variability are provided up to
degree 120. To add back the non-tidal and tidal ocean variability the Stokes coefficients are converted
to mass-anomalies at the same 0.5°equiangular grid as for the GRACE Level-2 data but without apply-
ing a Gaussian filter. The low order Stokes coefficients for the tidal and non-tidal products are retained.
Consequently, the basin averages are computed with equation 2.24. It is assumed that the computa-
tion of basin averages will compensate for the presence of the Gibbs phenomenon which arises when
no Gaussian filter is used.

Since the maximum degree for the AOD1B GAB Release 5, Ocean tides Release 5 products and
GRACE Release 5 data is different and no Gaussian filter is used in the computation of ocean tidal
and non-tidal mass-anomaly time-series, different scaling factors have to be derived to compensate for
the sea-to-land signal leakage. These scaling factors should be applied to the different mass-anomaly
time-series prior to their summation. The scaling factors are derived by defining a uniform water-level
for the Baltic Sea (1 inside the Baltic sea, 0 outside the Baltic Sea), converting this to Stokes coefficients
and consequently recomputing mass-anomalies from these Stokes coefficients. The basin average of
the uniform water-level (which is in this case 1) divided by the basin averages from the recomputed
mass-anomalies gives the scaling factor. These scaling factors are computed for truncation to degree
120, truncation to degree 100, truncation to degree 60 and the combination of truncation to degree 60
and applying a Gaussian filter of 400 km half-width. These scaling factors are reported in section 2.4.2.

To remove the signal leakage from land to ocean from the GRACE-based mass-anomaly time-series
the GLDAS derived leakage signal as reported by Virtanen et al. [69] is used. This reported time-series
was by them constructed as described in section 2.3.1. In this study a scaling factor of 3.78 is derived
for basin average mass-anomaly time-series for the Baltic Sea when the associated Stokes coefficients
are truncated to degree 60 and a Gaussian filter of 400 km half-width is applied in the conversion (as
shown in section 2.4.2). The signal leakage from land to ocean is subtracted from the GRACE-based
mass-anomaly time-series by using this factor 3.78 (which is not exactly equal to 4.0 as reported by
Virtanen et al. [69]). The difference in scaling factors can be due to a bit different definition of the
borders of the Baltic sea or a different resolution of the grid of the spatial domain (in this study the
distance between grid points is 0.5 °). When the definition of the borders of the Baltic Sea in this study
is different with respect to the study of Virtanen et al. [69] other hydrological signals might leak into the

ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/monthly/monthly_background
ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/monthly/monthly_background
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basin average mass-anomalies. Nevertheless, since the difference in scaling factors (4.0 and 3.78) is
small, the GLDAS derived leakage signal (as reported by Virtanen et al. [69]) is multiplied by the factor
3.78 consistently with the GRACE derived mass-anomaly time-series.

For the comparison of the GRACE-based basin average mass-anomaly time-series to the tide-
gauge time-series as reported by Virtanen et al. [69], the GRACE-based time-series are detrended
for the period April 2003 - December 2006. The long-term mean and linear trend for this period are
removed. If there is a linear trend in the non-tidal oceanic variability, this is also removed. While
Virtanen et al. [69] did ignore the steric contribution to this tide-gauge derived time-series, in this study
the steric contribution will be subtracted from the tide-gauge derived time-series. The steric contribution
presented by Virtanen et al. [69] is used for this correction. The RMSE of the GRACE-based basin
average mass-anomaly time-series are computed with respect to the tide-gauge based signal (including
removal of the steric signal).

2.4. Results and discussion
2.4.1. Numerical study
In the following two figures (2.2 and 2.3) the estimates of the standard deviation (std) of random noise
are shown. Each shown estimate is the mean of the 1000 realizations and is divided by the true noise
standard deviation of the time-series to show how close the estimates are to the true values. The
estimates are obtained by using the VCE method. Various setups in the VCE method are analyzed by
using different numbers of time-series and different regularization techniques. The standard deviation
of the estimated noise standard deviations as well as all other standard deviations of the reported
results in this section can be found in appendix A.

Figure 2.2: Estimated noise standard deviation divided by the true noise standard deviation of the time-series. Different combi-
nations of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The
signals differ in amplitude of the seasonal variability.
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Figure 2.3: Estimated noise standard deviation divided by the true noise standard deviation of the time-series. Different combi-
nations of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The
signals contain the same linear trend and seasonal variability but differ in interannual variability (none, step function or amplified
seasonal variability during half-year).

It can be observed that the noise standard deviation is estimated at almost equal quality when the
MYDD minimization, zero-order Tikhonov or no regularization is used when 2 or more time-series are
processed together in the VCE method. For MYDD minimization noise was equally well estimated
when one time-series was used as input in the VCE method. It can be seen that for different signal to
noise ratios and for different types of signal (with or without interannual variations) the noise is equally
well estimated. The standard deviation of the estimated noise standard deviation (appendix A) shows
no big difference for the different combinations of signal, true noise and VCE method setup and are
5 − 17 % of the estimated noise standard deviation.

The RMSE of the combined and/or regularized solutions can be found in figures 2.4 and 2.5. The
RMSE is divided by the true noise standard deviation of the time-series to have an estimate of the noise
reduction after applying the VCE method.
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Figure 2.4: RMSE divided by the true noise standard deviation of the time-series. Different combinations of signal and noise are
shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals differ in amplitude of the
seasonal variability.
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Figure 2.5: RMSE divided by the true noise standard deviation of the time-series. Different combinations of signal and noise
are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals contain the same
linear trend and seasonal variability but differ in interannual variability (none, step function or amplified seasonal variability during
half-year).

In figures 2.4 and 2.5 it can be observed that the noise reduction (RMSE divided by the true noise
std) is larger when more time-series are processed together in the VCE method. It can be expected that
the combined and/or regularized time-series become more close to the true one when more noisy time-
series are processed together. When more time-series are processed together the combination of the
noise time-series (deviations from the true signal) might cancel out more since the combined solution is
computed from more data vectors (equation 2.16). Furthermore, the lowest RMSE can be found when
MYDD minimization is used as the regularization technique even when the signal contains interannual
variability. From low to high RMSE the order in the regularization techniques is: MYDD minimization,
Tikhonov second-order, Tikhonov first-order, Tikhonov zero-order, none. When there is no interannual
variability, it seems logical that MYDD minimization shows the lowest RMSE since this regularization
technique is tailored for time-series that contain only a linear trend and seasonal variations [25], which
is exactly the case when there is no interannual variability. The other regularization techniques aim for
a regularized solution that is either close to zero (Tikhonov zero-order), constant (Tikhonov first-order)
or linear (Tikhonov second-order).

It cannot be excluded that the regularized solution retrieved with the MYDD minimization shows a
low RMSE while ignoring the interannual variability. Therefore, it is important to look into the biases
in the parameters of interannual variability. The biases in linear trend and in amplitude of seasonal
variability are shown in figures 2.6, 2.7, 2.8 and 2.9. Again the mean biases of the 1000 realizations
are shown and the standard deviations of the biases can be found in appendix A. In the case of signals
containing interannual variability, the biases in the parameters of interannual variability (step function
and amplified amplitude of seasonal variability during half-year period) can be found in figures 2.10 and
2.11.The bias in the amplitude of seasonal variability is divided by the true amplitude of the seasonal
variability to compare the magnitude of the bias for signals with different amplitudes.
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Figure 2.6: Bias in the linear trend of the combined and/or regularized solution. Different combinations of signal and noise are
shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals differ in amplitude of the
seasonal variability.

Figure 2.7: Bias in the linear trend of the combined and/or regularized solution. Different combinations of signal and noise
are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals contain the same
linear trend and seasonal variability but differ in interannual variability (none, step function or amplified seasonal variability during
half-year).
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Figure 2.8: Bias in the amplitude of seasonal variability of the combined and/or regularized solution divided by the true amplitude
of seasonal variability. Different combinations of signal and noise are shown in the y-direction. Different setups in the VCE
method are shown in the x-direction. The signals differ in amplitude of the seasonal variability.

Figure 2.9: Bias in the amplitude of seasonal variability of the combined and/or regularized solution divided by the true amplitude
of seasonal variability. Different combinations of signal and noise are shown in the y-direction. Different setups in the VCE
method are shown in the x-direction. The signals contain the same linear trend and seasonal variability but differ in interannual
variability (none, step function or amplified seasonal variability during half-year).
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Figure 2.10: Bias in the step-wise increase in mass-anomaly of the regularized solution. Different combinations of signal and
noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction.

Figure 2.11: Bias in the amplified seasonal variability during half-year of the regularized solution. Different combinations of signal
and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction.

From figures 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11 it can be observed that when no regularization is
applied, no bias arises in the combined time-series. This is as expected. Therefore, when applying
the VCE method to real mass anomaly time-series, it might be advisable to use multiple time-series
and no regularization. Although, the noise reduction for this combined time-series is smaller than for
regularized combined time-series (as observed in figures 2.4 and 2.5), the combined time-series will
have no bias and might therefore be more realistic.

From the biases in figures 2.6, 2.7, 2.8 and 2.9, one can conclude that when no interannual variability
is present, the MYDD-minimization is the best regularization technique in the VCE method by showing
the smallest bias in linear trend and amplitude of seasonal variability. This is expected since MYDD
minimization is tailored for a time-series which can have a seasonal variability and a linear trend. The
other regularization functionals are not tailored for a time-series which include a seasonal variability.
The general pattern which can be observed is that biases in amplitude of seasonal variability and linear
trend increase for a smaller signal-to-noise ratio. This can be due to stronger regularization when the
signal-to-noise ratio is smaller.

When a step function is present the linear trend is badly estimated when a step function is in the
signal (figure 2.7) if MYDD is used as the regularization technique. Since MYDD minimization aims for a
regularized solution with a linear trend, it is likely that this step function leaks into the regularized solution
as increased linear trend. This could also cause the bias in linear trend when Tikhonov second-order
regularization is used. These biases in linear trend increase with increasing noise level. This might be
due to a larger weight of the regularization for a higher noise level, which leads to a regularized solution
with less conservation of the step function and, therefore, a larger linear trend.

The bias in parameters of interannual variablity (figures 2.10 and 2.11) are the highest when MYDD
minimization is used. In this case, the bias in amplified seasonal variability during half-year ranges
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between 86% and 97% of the true signal for the considered scenario’s. The bias in step function ranges
between 58% and 88% of the true signal. Such high biases can be due to the fact that MYDD is tailored
for a time-series without interannual variability by assuming consistency of variations in neighboring
years. When the regularization is strong a regularized solution might arise which largely lacks the
interannual variability. Especially when the interannual variability happens at the beginning or end of
the time-series, the regularized solution might be quite close to the whole time-series expect for the
first or last year and then the bias in a parameter of interannual variability might be almost equal to the
true size of this parameter. The other regularization techniques are more general and do not aim to
preserve seasonal variations and therefore might change less in quality when an interannual variability
is present.

If substantial interannual variablity is present in the signal it might be better to use Tikhonov first-
order as the regularization technique or no regularization at all. When Tikhonov first-order regularization
is used, the noise reduction is larger (figures 2.4 and 2.5) with respect to the case without regulariza-
tion. On the other hand, the Tikhonov first-order regularization shows a large bias in the amplitude of
seasonal variability (almost equal to true seasonal variability) if noise is relatively large (figures 2.8 and
2.9). This can be expected since this regularization flat, which damps the seasonal variability. In any
case, it is better to consider multiple time-series in the VCE to have lower biases (when a regularization
is used) and larger noise reductions. It can still be doubted if it is better to use the Tikhonov first-order
regularization instead of MYDD minimization if interannual variability is present since former shows
lower biases in parameters of interannual variability but larger biases in the amplitude of seasonal vari-
ability and linear trend. The choice of the regularization functional thus depends on the expected or
known signal in the time-series under consideration.

The RMSE and estimated noise standard deviation in the experiments of cross-correlated noise
can be found in figures 2.12 and 2.13. The experiments performed with cross-correlated noise showed
that when multiple time-series are used the cross-correlated noise is almost totally regarded as signal
by the VCE technique. This can be concluded since the noise standard deviation is estimated as 0
m EWH or nearly 0 m EWH so a regularization is switched off and the RMSE of the combined and/or
regularized solution is almost equal to the noise standard deviation. Only for the specific case of using
two time-series as input for the VCE, a high noise level and using Tikhonov second-order regularization,
the estimated noise level is not negligible (at most 10% of the actual one). Therefore, it might be
advisable to estimate the noise in time-series by using only one time-series and MYDD minimization
as the regularization technique because then cross-correlated noise can be identified as noise. When
in real mass-anomaly time-series the noise level is estimated differently depending on whether one
or more time-series are considered as input, one must be careful about cross-correlated noise which
might be present to a high amount.



2.4. Results and discussion 29

Figure 2.12: Estimated noise standard deviation divided by the true noise standard deviation of the time-series. Different com-
binations of signal and noise are shown in the y-direction. When multiple time-series are considered in the VCE the noise in the
time-series is fully cross-correlated. Different setups in the VCE method are shown in the x-direction. The signals contain the
same linear trend and seasonal variability but differ in interannual variability (none, step function or amplified seasonal variability
during half-year).

Figure 2.13: RMSE divided by the true noise standard deviation of the time-series. Different combinations of signal and noise
are shown in the y-direction. When multiple time-series are considered in the VCE the noise in the time-series is fully cross-
correlated. Different setups in the VCE method are shown in the x-direction. The signals contain the same linear trend and
seasonal variability but differ in interannual variability (none, step function or amplified seasonal variability during half-year).
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Now, a discussion about the estimated signal standard deviation when MYDD minimization is used
as the regularization technique follows. The obtained results can be found in figures 2.14, 2.15 and
2.16. When there is no interannual variability, it would be expected that the signal standard deviation
is zero since the signal is defined in terms of the pseudo-observations which are MYDDs. It can be
observed that in practice this is not the case. When more time-series are considered in the VCE, the
signal standard deviation becomes lower and for a higher noise level in the time-series the estimated
signal standard deviation becomes higher. A lower signal standard deviation for more considered time-
series seems logical since the noise reduction is better when more time-series are considered and the
regularized signal will be closer to the true one, thus showing a smaller signal standard deviation. An
increase in the signal standard deviation for higher noise levels can be the result of more leakage of
the noise into the regularized solution. More noise leakage into the regularized solution results in a
higher signal standard deviation. Although the signal standard deviation is not exactly zero, it is quite
close to zero and the signal standard deviation divided by the noise standard deviation is at maximum
1.2% in these numerical experiments.

When an interannual variability is present in the time-series (figures 2.15 and 2.16), the estimated
signal standard deviation is higher than in the absence of an interannual variability. This seems right.
Nevertheless, when the estimated signal standard deviations are compared to the true ones, it can be
observed that these are much smaller. Since the signal standard deviation represents how the com-
bined regularized solution deviates from a signal containing only a linear trend and seasonal variability,
this can be expected. In the regularized solution the interannual variability (present in the true signal)
will be partly damped when MYDD minimization is applied. The influence of the number of considered
time-series in the VCE is not clear. It can be observed that when one time-series is considered the
signal standard deviation increases a bit for higher true noise levels which is similar to the observa-
tions made when signals without interannual variability were considered. When multiple time-series are
considered in the VCE, it seems that there is a certain minimum in the estimated signal standard devi-
ation for each number of considered time-series. This minimum can be the combination of two effects.
An increase in estimated signal standard deviation for higher noise levels might be due to leakage of
noise in the regularized time-series. A decrease in the estimated signal standard deviation for higher
noise levels might be due to stronger regularization and thus more damping of the signal of interannual
variability. This has to be taken into account when considering real mass-anomaly time-series since
a similar signal of interannual variability might be estimated different when the noise level is different.
When observing the 5 and 95 percent quantiles of the estimated signal standard deviation, the range
seems quite large. For the lowest considered noise levels (noise standard deviation of 1 cm) it seems
that considering more time-series gives a better estimate of the signal standard deviation. The regular-
ized signal might contain more of the interannual variability and be more close to the true signal when
more time-series are considered. Therefore it might be better to consider multiple time-series in the
VCE.
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Figure 2.14: Estimated signal standard deviation for a signal without interannual variability by using MYDD minimization as the
regularization technique in the VCE and different numbers of time-series. The true standard deviation of the white noise is shown
in the x-direction. The shaded area is the region between the 5 percent and 95 percent quantiles of the estimated signal standard
deviation.

Figure 2.15: Estimated signal standard deviation for a signal with interannual variability (in this case a step function) by using
MYDD minimization as the regularization technique in the VCE and different numbers of time-series. The true standard deviation
of the white noise is shown in the x-direction. The shaded area is the region between the 5 percent and 95 percent quantiles of
the estimated signal standard deviation.
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Figure 2.16: Estimated signal standard deviation for a signal with interannual variability (in this case an amplified amplitude
of seasonal variability during half-year) by using MYDD minimization as the regularization technique in the VCE and different
numbers of time-series. The true standard deviation of the white noise is shown in the x-direction. The shaded area is the region
between the 5 percent and 95 percent quantiles of the estimated signal standard deviation.

In figure 2.17 the estimated standard deviation in the case of correlated noise and no interannual
variability is shown. In appendix A the cases with interannual variability and correlated noise can
be found. These are shown in the appendix since these are very similar to the figure 2.17. It can
be observed that in the case of fully cross-correlated noise, the estimated signal standard deviation
is two times the true noise standard deviation. Cross-correlated noise does thus show up as signal
variance. When interpreting estimates of signal standard deviation, one must understand that these
contain cross-correlated noise.

Figure 2.17: Estimated signal standard deviation for a signal without interannual variability by using MYDD minimization as the
regularization technique in the VCE and different numbers of time-series. The true standard deviation of the white noise is shown
in the x-direction. The shaded area is the region between the 5 percent and 95 percent quantiles of the estimated signal standard
deviation. The noise in the considered time-series is fully cross-correlated.
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2.4.2. Case study for the Baltic Sea
In this section the results with respect to the case study for the Baltic Sea are presented and discussed.
The computed scaling factors for the Baltic Sea can be found in table 2.2:

Table 2.2: Computed scaling factors for the Baltic Sea for Stokes coefficients truncated at different degrees, with and without the
use of a Gaussian filter.

Truncation to
degree

Gaussian filter of
400 km half-width

Scaling factor

60 Yes 3.778

60 No 1.749

100 No 1.355

120 No 1.251

In figure 2.18 for the period January 2003 - March 2016 the basin average mass-anomaly time-series
derived from the considered GRACE Level-2 are shown together with the mass-anomaly time-series
regularized MYDD-minimization. From this figure you can get an idea of the influence of VCE with
inclusion of a regularization functional for the Baltic Sea. It can be observed that the original mass-
anomaly time-series are in the most extreme cases increased or reduced by about 15 cm. Furthermore,
it can be observed that a linear trend and seasonal variability are clearly visible in these time-series.
On the other hand, also interannual variability can be observed in the size of the seasonal variability
for each year. The scaling factor of 3.78 is already applied in the time-series shown in figure 2.18 and
2.19. Without the scaling factor the amplitude in these time-series is about 5 cm. In section 3.3 the
noise standard deviation for the Baltic Sea is estimated in the range 1-2.4 cm for GRACE Release
5 solutions. The signal-to-noise ratio in this time-series is thus quite larger than for the numerical
experiments. This might explain why the MYDD-minimization retains the interannual variability which
is present in the time-series. When the signal-to-noise ratio is larger less regularziation is expected.
In figure 2.19 the combined (regularized) mass-anomaly time-series are shown which are obtained
with the 3 considered VCE set-ups. It can be observed that different regularization techniques lead to
differences in the basin average mass-anomaly time-series in the order of only a few centimeters. At
the epochs when no GRACE Level-2 data are available the largest differences between the regularized
solutions can be found. These epochs are visible in 2.18 as data gaps in the unregularized time-series.

Figure 2.18: Basin averages for the Baltic Sea for different GRACE Release 5 solutions (CSR Release 5, ITSG 2016, GFZ
Release 5 ) and the regularized time-series retrieved by VCE with MYDD-minimization as regularization technique. Note that
the scaling factor of 3.78 is already applied.
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Figure 2.19: Basin averages for the Baltic Sea for different combined (regularized) time-series retrieved by VCE of GRACE
Release 5 solutions (CSR Release 5, ITSG 2016, GFZ Release 5 ). VCE without regularization and with MYDD-minimazation
and Tikhonov first-order regularization functionals are considered. Note that the scaling factor of 3.78 is already applied.

In figure 2.20 the combined (regularized) mass-anomaly time-series for the Baltic Sea are shown
together with the tide-gauge based mass-anomaly time-series for the period April 2003 - December
2006. The signal leakage from the land to the ocean is removed by subtracting the GLDAS basin
average time-series from the regularized solutions. The tidal and non-tidal ocean variability is added
back by using the mass anomaly time-series derived from the AOD1B GAB Release 5 and Ocean
tides Release 5 product. The steric signal is removed from the tide-gauge derived time-series. It can
be observed that all three regularized solutions are quite close to the tide-gauge based mass-anomaly
time-series. The RMSE with respect to the tide-gauge based time-series for the different regularization
techniques can be found in table 2.3. Tikhonov first-order shows the smallest RMSE. You might that
you can preliminary conclude that Tikhonov first-order regularization is the best regularization technique
for the Baltic Sea. But, since the RMSE’s corresponding to the different VCE-setups are quite close,
it might be better to draw no conclusions about a better VCE set-up for the Baltic Sea. The errors in
the tide-gauge based mass-anomaly time-series or in the modeled hydrological signal may be larger
than the differences between the regularized mass-anomaly time-series. The differences between the
different regularization techniques are also a lot smaller than the differences with respect to the tide-
gauge derived mass-anomaly time-series. Furthermore, the considered period is quite short (shorter
than 4 years) and it would be better to examine a longer period. It can only be concluded that the
different combined (regularized) solutions are quite close (in the order of a few cm) to the tide-gauge
based time-series including the irregular features. As it was already mentioned, the largest differences
between the regularized solutions can be observed in the months when no GRACE data are available.
In the period April 2003 - December 2006 only one data-gap for June 2003 is present. This is only one
month of the in total 45 months of the considered period and therefore it is not right to draw conclusions
about which regularization technique performs better at data gaps. For this specific data-gap June
2006 MYDD-minimization performs better than Tikhonov-first order with a deviation of 0.6 and 6.3 cm
to the tide-gauge based value respectively.
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Figure 2.20: Basin averages for the Baltic Sea for different combined (regularized) time-series retrieved by VCE of GRACE Re-
lease 5 solutions. VCE without regularization and with MYDD-minimazation and Tikhonov first-order as regularization functionals
are considered. Tidal and non-tidal variability is added back to the regularized solutions and the hydrological leakage signal from
the surrounding land is subtracted (GLDAS). The tide-gauge based time-series is shown in green (PSMSL- Steric).

Table 2.3: RMSE with respect to a tide-gauge based mass-anomaly time-series for the Baltic Sea for various regularized solutions
retrieved from GRACE Release 5 Level-2 data.

Monthly solutions Regularization technique RMSE w.r.t. tide-gauge
based time-series

CSR Release 5, ITSG 2016,
GFZ Release 5

None 5.862
Tikhonov first-order 5.537
MYDD-minimization 5.826

2.5. Summary and remarks
Based on the numerical study it seems that Tikhonov zero-order and Tikhonov second-order regular-
izations are not advisable in the analysis of real mass anomaly time-series. When the signal contains
only a linear trend and seasonal variability and no interannual variability, it is best to use the MYDD min-
imization to identify the noise variance and signal best. When the signal contains beside a linear trend
and seasonal variability also an interannual variability, it might be better to use Tikhonov first-order or
no regularization. For the highest noise reduction and lowest biases it is advisable to consider more
time-series. Cross-correlated noise is never identified as noise when multiple time-series are consid-
ered in the VCE. The use of one time-series and MYDD minimization as regularization technique is
the best when you want to identify cross-correlated noise as noise although this cross-correlated noise
might be signal in reality. For the estimation of signal standard deviation with MYDD minimization it
seems better to use multiple time-series though the influence of (cross-correlated) noise in these esti-
mates must not be neglected. Noise might leak in the estimated signal variance and cross-correlated
noise shows itself almost fully up as signal variance instead of noise variance.

Real mass-anomaly time-series for the Baltic Sea show besides a linear trend and seasonal variabil-
ity also a large amount of interannual variability. When comparing the real mass-anomaly time-series
to a tide-gauge based time-series, it seems that Tikhonov first-order regularization, MYDD minimization
and no regularization perform very similar. Even MYDD minimization seems to retain the interannual
variability in the mass-anomaly time-series. This might be due to a higher signal-to-noise ratio for the
Baltic Sea than in the numerical experiments.

Based on these results, Tikhonov zero-order and Tikhonov second-order regularizations will not be
considered further in the next chapter. Furthermore, noise variance (and signal variance) will only be
estimated by considering one or three mass-anomaly time-series. Consideration of two mass-anomaly
time-series does not seem to give more insight. When MYDD minimization is applied, the estimated
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signal variance represents interannual differences in the mass-derivative. Estimates of this signal vari-
ance seem interesting for the analysis of GRACE-based mass-anomaly time-series over the ocean.
Therefore, it is advisable to consider MYDD minimization in the next chapter.



3
Quality of GRACE Release 5 and 6

monthly solutions
This chapter is about the second sub-question:

• What are the global distributions of signal and noise variance in GRACE Release 5 and 6 monthly
solutions?

The quality of several GRACE monthly solutions is assessed by estimating signal and noise vari-
ance in the GRACE-based mass-anomaly time-series. These are estimated according to the method
described in the previous chapter. Since this estimate of signal variance represents interannual dif-
ferences in the mass-derivative this is used as estimate of the quality of GRACE monthly solutions
over the ocean. For the GRACE monthly solutions which show the lowest estimated noise variance,
the quality is even assessed in a different manner. For these solutions residuals are computed with
respect to a low-pass filtered signal or analytical function. The low-pass filtered signal contains only
periodical signals of frequencies lower than the semi-annual periodicity. The analytical function is a
by least-squares estimated signal containing only a linear trend, semi-annual and annual periodicity.
Therefore, the residuals can also give an indication of the quality of the GRACE monthly solutions over
the ocean.

This chapter begins with a theoretical section which is mainly about Earth’s gravitational potential
and the conversion of Stokes coefficients to mass anomalies at the Earth’s surface. Since this concept
and conversion are basic knowledge needed to understand the available GRACE Level-2 data product
and its use, this will be explained. Consequently, sets of Stokes coefficients of different research centers
will be addressed. Thereafter the method to estimate the quality of these datasets is described in detail
before analyzing the results.

3.1. Theory
In this section first the Earth’s gravitational potential and its representation in spherical harmonics is ex-
plained. Then spherical and ellipsoidal coordinates are shortly reviewed. This description of the Earth’s
gravitational potential provides underlying knowledge which is needed to understand the GRACE Level-
2 data product and the way how it is provided. Consequently, the method to convert time-series of
Stokes coefficients to time-series of mass-anomalies is described. Then the sets of Stokes coefficients
provided by different research centers which are analyzed in this research are discussed. Afterwards,
degree-1 and C20 Stokes coefficients are shortly addressed because these coefficients are retrieved
from a different source.

3.1.1. Earth’s gravitational potential
A link between gravitational field and gravitational potential is given in equation 3.1:

∇𝑉 = g, (3.1)

37
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where ∇ is the first-order vector differential operator, 𝑉 in 𝑚 /𝑠 is the gravitational potential and g
in 𝑚/𝑠 is the gravitational field. [23] Gravitational potential at a certain location represents the work
done by gravitation in order to move a unit mass from infinity (where 𝑉 = 0) to that location. [60]
Gravitational potential is a harmonic function in vacuum since it satisfies Laplace equation there. The
gravitational potential in a 3-D vacuum domain can thus be determined if the potential or its normal
derivative is known at the boundary of this domain. [23] Now, the Earth and its exterior gravitational
potential will be considered. When atmospheric mass is ignored [60] and the gravitational potential or
its normal derivative is known at a closed surface enclosing the Earth, the gravitational potential can
be computed at any point above this surface and between this surface and the Earth itself. [23]

Since it is assumed that Earth’s gravitational potential satisfies Laplace equation outside the Earth’s
system, it can be described by a linear combination of harmonic base functions. These harmonic base
functions can be defined in spherical coordinates and are called solid spherical harmonics [23]:

𝐻 , (𝑟, 𝜃, 𝜆) = ( ) 𝑃 ,| | (cos (𝜃)) {
cos (𝑚𝜆) if 𝑚 ≥ 0
sin (|𝑚|𝜆) if 𝑚 < 0

= ( ) 𝑌 , (𝜃, 𝜆) ,

(3.2)

where 𝑅 is the Earth’s mean equatorial radius (6378137.0 𝑚 [71]), 𝜆 (longitude), 𝜃 (geocentric co-
latitude) and 𝑟 (geocentric radius) are the spherical coordinates, 𝑙 the degree and 𝑚 the order of the
solid spherical harmonic 𝐻 , (𝑟, 𝜃, 𝜆), 𝑃 , are the associated Legendre functions and 𝑌 , (𝜃, 𝜆) are the
surface spherical harmonics. The explicit expression for the associated Legendre functions is [50]:

𝑃 , (𝑥) = 2 (1 − 𝑥 )
⌊ ⌋

∑ (−1)
(2𝑙 − 2𝑘)!

𝑘! (1 − 𝑘)! (𝑙 − 𝑚 − 2𝑘)!𝑥 . (3.3)

When the associated Legendre functions are scaled such that the norm of the corresponding surface
spherical harmonics is 4𝜋, the associated Legendre functions 𝑃 , become fully-normalized associated
Legendre functions �̄� , . This scaling is applied as follows:

�̄� , (cos (𝜃)) = 𝑃 , (cos (𝜃)) {
√2𝑙 + 1 if 𝑚 = 0

√2 (2𝑙 + 1) ( )!
( )! if 𝑚 ≠ 0

(3.4)

In this way the solid spherical harmonics become scaled too, but they remain harmonic. [23] The
fully-normalized associated Legendre functions can be computed by a recursive scheme [5]:

�̄� , (𝑡) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1 if 𝑚 = 𝑙 = 0
𝑢√3 if 𝑚 = 𝑙 = 1

𝑢√ �̄� , (𝑡) if 𝑚 = 𝑙 ≥ 2

𝑎 , �̄� , (𝑡) if 0 ≤ 𝑚 = 𝑙 − 1
𝑎 , �̄� , (𝑡) − 𝑏 , �̄� , (𝑡) if 0 ≤ 𝑚 ≤ 𝑙 − 2

(3.5)

where

𝑢 = √1 − 𝑡

𝑎 , = 2
√1 + 𝛿 ,

𝑚 + 1
√(𝑙 − 𝑚) (𝑙 + 𝑚 + 1)

𝑏 , = 1
√1 + 𝛿 ,

√(𝑙 + 𝑚 + 2) (𝑙 − 𝑚 − 1)
√(𝑙 − 𝑚) (𝑙 + 𝑚 + 1)
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with 𝛿 , is the Kronecker delta:

𝛿 , = {
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗 (3.6)

Earth’s exterior gravitational potential can now be described as a linear combination of the scaled
solid spherical harmonics �̄� , (𝑟, 𝜃, 𝜆). When it is assumed that the Earth’s gravitational potential ap-
proaches 0 when 𝑟 → ∞ [23], this combination is unique. This linear combination of the scaled solid
spherical harmonics is:

𝑉 (𝑟, 𝜃, 𝜆) =∑ ∑ �̄�( ), �̄� , (𝑟, 𝜃, 𝜆) =∑ ∑ �̄�( ), (𝑅𝑟 ) �̄� , (𝜃, 𝜆) =
𝐺𝑀
𝑅 ∑ ∑ �̄� , (

𝑅
𝑟 ) �̄� , (𝜃, 𝜆)

(3.7)
with �̄� , (𝜃, 𝜆) the 4𝜋-normalized surface spherical harmonics and �̄� , = �̄�( ), the fully-normalized
spherical harmonic coefficients of Earth’s exterior gravitational potential which are also called Stokes
coefficients. The parameter 𝑀 is the Earth’s mass which is 5.9723 ⋅ 10 𝑘𝑔 [76]. These coefficients
are dimensionless. Earth’s exterior gravitational potential and thus the Stokes coefficients are variable
in time due to mass movement and exchange between Earth system components. [10] Monthly mean
values of these Stokes coefficients up to a certain degree and order are provided as GRACE Level-2
product.

A surface spherical harmonic of order 𝑚 = 0 is constant along a given latitude and called zonal. A
surface spherical harmonic of order 𝑚 = ±𝑙 is constant along a given longitude and called sectorial.
[23]

3.1.2. Coordinate systems
Geocentric coordinates (also called spherical coordinates) are useful to represent the position of a point
on a sphere [68]. In figure 3.1 the geocentric latitude 𝜓, longitude 𝜆 and r which is the geocentric radius
of the point can be seen. When latitude is defined in degrees, geocentric co-latitude 𝜃 is defined as
90∘ − 𝜓 [23]. For the Earth it is not practical to define heights with respect to a sphere [68].

Figure 3.1: Geocentric coordinates , and r [68].

An ellipsoid is a better approximation for the shape of the Earth than a sphere. Geodetic coordinates
(also called ellipsoidal or geographic coordinates) are useful to represent the position of a point with
respect to an ellipsoid. [68] In figure 3.2 the geodetic latitude 𝜙, longitude 𝜆 and h which is the height
of a point above a reference ellipsoid (ellipsoidal height) can be seen.
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Figure 3.2: Geodetic coordinates , and h [68].

A commonly used coordinate reference system is the World Geodetic System 1984 (WGS84). The
WGS84 is geocentric in the sense that the center of mass of the total Earth’s system (including ocean
and atmosphere) coincides with the center of WGS84. [38] The z-axis is defined in the direction of IERS
Reference Pole (IRP). The x-axis is along the intersection of the IERS Reference Meridian (IRM) and
the plane passing through the origin and normal to the Z-axis. The y-axis completes the right-handed,
Earth-fixed orthogonal coordinate system. The WGS84 ellipsoid has the same origin and with respect
to this ellipsoid longitude and geodetic latitude can be defined. The semi-major axis and flattening of
(𝑓) the WGS84 ellipsoid are defined as 𝑎 = 6378137.0 𝑚 and 𝑓 = . respectively.

3.1.3. Conversion of Stokes coefficients to mass anomalies at the Earth’s sur-
face

Equation 3.7 shows the relation between the Earth’s exterior gravitational potential and the Stokes
coefficients. Accordingly, temporal variations in the Earth’s gravitational potential can be related to
temporal variations of the Stokes coefficients:

Δ𝑉 (𝑟, 𝜃, 𝜆) = 𝐺𝑀
𝑅 ∑ ∑ Δ�̄� , (

𝑅
𝑟 ) �̄� , (𝜃, 𝜆) . (3.8)

The temporal variations of Stokes coefficients can be expressed as function of temporal variations
of Earth’s density distribution (Δ𝜌 (𝑟, 𝜃, 𝜆)) [24]:

Δ�̄� = 𝑅
𝑀 (2𝑙 + 1) ∫ ∫ ∫ ( 𝑟𝑅) Δ𝜌 (𝑟, 𝜃, 𝜆) 𝑑𝑟 �̄� (𝜃, 𝜆) sin (𝜃) 𝑑𝜃 𝑑𝜆. (3.9)

This density (Δ𝜌 (𝑟, 𝜃, 𝜆)) includes contributions from the atmosphere, solid Earth and water stored on
land and in the ocean. [65] The load-induced deformation will be taken into account by load Love
numbers [70]. When it is assumed that all mass transport takes place in a thin layer near the Earth
surface and when it is assumed that this thin layer is a sphere of radius 𝑅 , the inner integral of equation
3.9 can be rewritten [24]:

∫ ( 𝑟𝑅) Δ𝜌 (𝑟, 𝜃, 𝜆) 𝑑𝑟 ≈ ∫ ( 𝑟𝑅) Δ𝜌 (𝑟, 𝜃, 𝜆) 𝑑𝑟 ≈ (𝑅𝑅 ) Δ𝜎 (𝜃, 𝜆)
(3.10)

with Δ𝜎 (𝜃, 𝜆) temporal variations in surface density (i.e., temporal variations in mass per unit area).
Since Earth is not a rigid body and hydrological and oceanic load deform the solid Earth [65], vari-

ations in gravitational potential are a combination of the direct effect of mass transport and the elastic
deformation of the solid Earth [24]. To account for this effect, the load Love numbers (𝑘 ) [70] are in-
troduced. In this research, these load Love numbers are retrieved by linear interpolation of a set of
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load Love numbers for 𝑙 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 29, 30, 40, 50, 70, 100, 150, 200 presented by
them. The combination of equations 3.9 and 3.10 while including the load Love numbers is:

Δ�̄� , = 𝑅
𝑀 (2𝑙 + 1) ∫ ∫ (1 + 𝑘 ) (𝑅𝑅 ) Δ𝜎 (𝜃, 𝜆) �̄� (𝜃, 𝜆) sin (𝜃) 𝑑𝜃 𝑑𝜆

= 𝑅 (1 + 𝑘 )
𝑀 (2𝑙 + 1) (

𝑅
𝑅 ) ∫ ∫ Δ𝜎 (𝜃, 𝜆) �̄� (𝜃, 𝜆) sin (𝜃) 𝑑𝜃 𝑑𝜆,

(3.11)

where 𝑘 are the load Love numbers.
The temporal variations in surface density can also be expanded as a series of 4𝜋-normalized

surface spherical harmonics [23]:

Δ𝜎 (𝜃, 𝜆) =∑ ∑ Δ�̄�( )
, �̄� , (𝜃, 𝜆) (3.12)

with �̄�( )
, appropriate Fourier coefficients defined as:

�̄�( )
, = 1

4𝜋 ∫ ∫ Δ𝜎 (𝜃, 𝜆) �̄� (𝜃, 𝜆) sin (𝜃) 𝑑𝜃 𝑑𝜆. (3.13)

By combining equation 3.11 and 3.13 the following relation between the Stokes coefficients and the
Fourier coefficients �̄�( )

, :

�̄�( )
, = 𝑀 (2𝑙 + 1)

4𝜋𝑅 (1 + 𝑘 ) (
𝑅
𝑅 ) Δ�̄� , . (3.14)

The temporal variations in surface density can be related to mass anomalies in EWH by the following
equation [43]:

Δ𝐻 (𝜃, 𝜆) = Δ𝜎 (𝜃, 𝜆)
𝜌 (3.15)

with 𝜌 the density of water which is in the conversion from the temporal variations of Stokes coefficients
to mass anomalies in EWH defined as 𝜌 = 1000 𝑘𝑔/𝑚 . Combining equation 3.12, 3.14 and 3.15
gives the following relation between the mass anomalies in EWH and the temporal variations of Stokes
coefficients becomes:

Δ𝐻 (𝜃, 𝜆) =∑ ∑ 𝑀 (2𝑙 + 1)
4𝜋𝑅 (1 + 𝑘 ) 𝜌 ( 𝑅𝑅 ) Δ�̄� , �̄� , (𝜃, 𝜆) . (3.16)

The radius of the thin layer sphere 𝑅 still has to be defined. Ditmar [24] recommends to use a locally
spherical approximation. This means that that 𝑅 is chosen differently for each latitude and corresponds
to the distance from the center of the Earth to the WGS84 reference ellipsoid. So it is still assumed
that the mass transport takes place at a sphere but for each latitude a different sphere is considered.
When this locally spherical approximation is used the ratio ( ) becomes:

( 𝑅𝑅 ) =
⎛

⎝

√1 − 𝑒 sin (𝜃)
1 − 𝑓

⎞

⎠

(3.17)

with 𝑓 = . the flattening and 𝑒 = √2𝑓 − 𝑓 the eccentricity of the WGS84 reference ellipsoid [38].
The relation by which in this chapter the temporal variations of the Stokes coefficients are converted to
time-series of mass-anomalies is:

Δ𝐻 (𝜃, 𝜆) =∑ ∑ 𝑀 (2𝑙 + 1)
4𝜋𝑅 (1 + 𝑘 ) 𝜌

⎛

⎝

√1 − 𝑒 sin (𝜃)
1 − 𝑓

⎞

⎠

Δ�̄� , �̄� , (𝜃, 𝜆) . (3.18)
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Note that in equation 3.18 geocentric coordinates are present. If mass-anomalies at a grid in geode-
tic coordinates are calculated, the geodetic coordinates are first transformed to geocentric coordinates
before applying equation 3.18. Furthermore, the degree 𝑙 does in reality not to go until infinity. Stokes
coefficients are always provided up to a certain maximum degree.

3.1.4. GRACE Release 5 and 6 Level-2 data
In this section first the method to produce Level-2 data is described. Several research centers produce
these GRACE Level-2 data. A description of the GRACE Level-2 data which are considered in this
research follows.

GRACE Level-2 data

GRACE Level-2 data considered in this research are addressed in this section. GRACE Level-2 data
represent monthly average values of Earth’s exterior gravitational potential and thus high-frequency
geophysical signals have to be removed to prevent temporal aliasing of the high frequency signals in the
monthly solutions. Various background models are used to model these high-frequency signals. The
considered GRACE Level-2 data differ among others in the background models used in the production
of these data. Also the considered days or part of days of which measurements are used to produce
the monthly solutions differ for the different available GRACE Level-2 data.

In the processing of the GRACE, data estimates are made of updates to an in advance best-known
model of Earth’s exterior gravitational potential. [10] This in advance best-known model is also called
the Background Model. This Background Model contains a set of background models among which
the long-term mean Earth’s exterior gravitational potential, background models for solid, ocean and
pole tides and for atmospheric and non-tidal oceanic variability. The modeled geophysical phenomena
are available at different and sometimes variable resolution in time and space. From this Background
Model predictions of the difference in gravitational field between the two satellites are computed. To-
gether with the difference in non-gravitational accelerations between the satellites [23] predictions of the
observables which are first-derivatives or second-derivatives of the inter-satellite distance are made.
These predictions of the observables differ from the true observables and this difference between the
observed and predicted values is called the residual. This residual contains geophysical phenomena
not modeled by the set of background models and model errors. [10] Furthermore, the residual also
contains measurement errors.

From the residuals a residual gravitational field can be constructed. The update of the prior model of
Earth’s gravitational potential is made by least-squares fitting the gravitational field through the residuals
for the time span of about a month. This update for a certain month indicates changes in the gravitational
field which are not modeled. [10] The GRACE Level-2 data which are considered in this research are
the sum of the described update and the long-term mean Earth’s exterior gravitational potential (which
is a part of the Background Model).

GRACE Release 5 and 6 solutions

Differences between GRACE Release 5 and 6 Level-2 data are related to differences in the data-
processing among which the use of different background models. ITSG solutions are also considered
in this research and they are not officially provided as Release 5 or 6 data. In this thesis ITSG solutions
will be categorized as Release 5 and 6 according to the AOD1B product (Release 5 or 6) used in the
data processing. In tables 3.1 and 3.2 the considered GRACE Level-2 data and the main background
models used for the production of these data are shown.
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Table 3.1: Considered Release 5 GRACE Level-2 data and the main background models used in the production of these data
(long-term mean of Earth’s exterior gravitational potential and background models for the solid Earth tides, ocean tides, pole
tides, ocean pole tides, atmospheric tides and non-tidal atmosphere and ocean variability). [8] [54] [17]

Name CSR Release 5 ITSG 2016 GFZ Release 5

Research institute Center for Space
Research, The
University of Texas at
Austin

Graz University of
Technology

GFZ German Research
Centre for Geosciences

Long-term mean gravity
field model

GIF48 n/a EIGEN-6C

Solid Earth tide IERS 2010 IERS 2010 IERS 2010

Ocean tide GOT4.8 and FES2004 EOT11a EOT11a

Pole tide IERS 2010 IERS 2010 IERS 2010

Ocean pole tide Desai 2002 [21] Desai 2004 Desai 2002 [21]

Atmospheric tide Ray, Ponte 2003 [57] van Dam, Ray 2010
[67]

Biancale, Bode 2006
[11]

Atmoshpere and ocean
non-tidal variations

AOD1B RL05 AOD1B RL05 AOD1B RL05

Table 3.2: Considered Release 6 GRACE Level-2 data and the main background models used in the production of these data
(long-term mean of Earth’s exterior gravitational potential and background models for the solid Earth tides, ocean tides, pole
tides, ocean pole tides, atmospheric tides and non-tidal atmosphere and ocean variability). [9] [55] [78]

Name CSR Release 6 ITSG 2018 JPL Release 6

Research center Center for Space
Research, The
University of Texas at
Austin

Graz University of
Technology

Jet Propulsion
Laboratory, California
Institute of Technology

Long-term mean gravity
field model

GGM05C n/a GSM05C

Solid Earth tide IERS 2010 IERS 2010 IERS 2010

Ocean tide GOT4.8 and FES2004 FES2014b Desai 2006 [22]

Pole tide IERS 2010 IERS 2010 IERS 2010

Ocean pole tide Desai 2002 [21] Desai 2004 Desai 2002 [21]

Atmospheric tide Ray, Ponte 2003 [57] AOD1B RL06 Ray, Ponte 2003 [57]

Atmoshpere and ocean
non-tidal variations

AOD1B RL06 AOD1B RL06 AOD1B RL06

3.1.5. Degree-1 and C20 coefficients
The center of mass of the Earth’s system moves with respect to the center of its figure. [61] This process
is known as geocenter motion. This geocenter motion is represented by time variations in the degree-1
Stokes coefficients. Since the GRACE satellites orbit the center of mass of the Earth’s system [62], the
GRACE Level-2 data product lacks these degree-1 Stokes coefficients.

The C20 coefficients also reflect large-scale mass redistribution within the Earth’s system and these
coefficients represent the its flattening [61] [63]. For example, the flattening is increased by ice sheet
melt but decreased by the Glacial Isostatic Adjustment (GIA) [63]. Since the C20 coefficients show large
uncertainties [16], it is a common practice to replace the GRACE-based C20 estimates with alternatives
derived from a different technique.

The degree-1 and C20 Stokes coefficients which are used in this were produced by Y. Sun with the
GRACE-OBP approach [62]. In that study data from the GRACE satellite mission, an Ocean Bottom
Pressure model and a GIA model were combined. The GRACE monthly solutions of CSR were used
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for this and thus different sets of degree-1 and C20 coefficients are produced for the different releases.
The degree-1 and C20 coefficients where the Glacial Isostatic Adjustment (GIA) signal is restored are
used for this research. This means that the coefficients represent total mass transport including the
mass transport due to GIA. This is similar to the other degree Stokes coefficients used in this research.
The degree-1 and C20 coefficients are produced by the use of CSR Release 5 and 6 GRACE solutions

3.2. Method
In this section the steps in the computation of mass-anomaly time-series from the available GRACE
Level-2 is described as well as the set-up in the VCE to estimate the signal and noise in these mass-
anomaly time-series. Furthermore, noise and signal are estimated for certain continental and oceanic
regions. The definition of these regions is reported. Also the method to estimate non-seasonal signals
and high-frequency signals in GRACE Level-2 data can be be found in this methodological section.

3.2.1. Computation of mass-anomaly time-series from different GRACE Level-2
data

The considered GRACE Level-2 data as described in section 3.1.4 are downloaded from the websites
reported in table 3.3. The considered GRACE Level-2 data are those for the period January 2003 until
March 2016. Some GRACE Level-2 data sets also contain a monthly solution for May 2015. Since for
May 2015 only 11 days of data are used, the monthly solution of May 2015 is not considered for any
set of GRACE Level-2 data.

Table 3.3: The source of the considered GRACE Level-2 data.

Name GRACE Level-2 data retrieved from:

CSR Release 5 ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05/

ITSG 2016 ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/
monthly/monthly_n60

GFZ Release 5 ftp://icgem.gfz-potsdam.de/01_GRACE_monthly/GFZ%
20Release%2005/unfiltered/

CSR Release 6 ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL06/

ITSG 2018 ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2018/
monthly/monthly_n60

JPL Releae 6 ftp://podaac.jpl.nasa.gov/allData/grace/L2/JPL/RL06/

The Level-2 product is provided in the form of a set of Stokes coefficients up to a certain degree.
Sets of Stokes coefficients up to degree 60 were downloaded. There is an exception for the GFZ
Release 5 solutions. Since a variant of these solutions complete to degree 60 does not exist, the
solutions complete to degree 90 were downloaded and truncated at degree 60. This approach might
introduce extra errors as compared to the solutions complete to degree 60 from the very beginning.

The Release 5 GRACE Level-2 data have to be corrected for an inconsistency in the AOD1B product
used for the generation of these data. The atmospheric part of the AOD1B Release 5 product is based
on operational analysis data from the European Center for Medium-Range Weather Forecast (ECMWF)
Integrated Forecast System (IFS). [30] This numerical weather prediction model is upgraded at specific
moments to include improvements in the physical model, the numerics, the data assimilation scheme
and to accommodate new observing technologies. [30] Such changes in the modeling process may
lead to inconsistencies in the time-series of model states as for example surface pressure. Jumps in
atmospheric surface pressure occurred at the following times:

• between 2006-01-29 18h and 2006-01-30 00h

• between 2010-01-26 00h and 2010-01-26 06h

• between 2015-05-12 00h and 2015-05-12 06h

These jumps in surface pressure propagate into the GRACE Level-2 data. Therefore, the monthly grav-
itational field solutions have to be corrected. This correction can be applied by using additional products

ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05/
ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/monthly/monthly_n60
ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2016/monthly/monthly_n60
ftp://icgem.gfz-potsdam.de/01_GRACE_monthly/GFZ%20Release%2005/unfiltered/
ftp://icgem.gfz-potsdam.de/01_GRACE_monthly/GFZ%20Release%2005/unfiltered/
ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL06/
ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2018/monthly/monthly_n60
ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2018/monthly/monthly_n60
ftp://podaac.jpl.nasa.gov/allData/grace/L2/JPL/RL06/
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called GAE, GAF and GAG products (available from: ftp://podaac.jpl.nasa.gov/allData/
grace/docs/). To correct the monthly gravity solutions the GAE, GAF or GAG products have to be
subtracted from the available Release 5 GRACE Level-2 products.The GAE, GAF and GAG products
have to be used for the following periods:

• GAE from February 2006 (included) till January 2010 (included).

• GAF from February 2010 (included) till May 2015 (included)

• GAG after May 2015

Afterwards the corrected Stokes coefficients can be turned to mass-anomaly time-series in the same
manner as for the Release 6 GRACE Level-2 data. The AOD1B Release 6 product used in the pro-
duction of Release 6 GRACE Level-2 data is already corrected for the jumps in atmospheric pressure.

In the processing of GRACE Level-2 data, first the Degree-1 and C20 coefficients are replaced by
Degree-1 and C20 coefficients produced by Sun et al. [62] (as explained in section 3.1.5). Thereafter,
the long-term mean (i.e. the mean in the period from January 2003 until March 2016) of each Stokes
coefficient is subtracted.

Consequently, the Stokes coefficients are turned into GRACE-based mass-anomalies by using
equation 3.18. To reduce the noise in the monthly solutions a Gaussian filter of 400 𝑘𝑚 half-width
is applied. Due to the filtering the accuracy of the derived mass-anomalies becomes higher, but the
spatial resolution becomes lower. [65] Mass-anomaly time-series are calculated on a 0.5 °equiangular
grid in geodetic coordinates.

3.2.2. Chosen set-up in the VCE and computation of regional estimates
In chapter 2 various VCE set-ups were tested. From the conclusions made in this chapter the fol-
lowing set-ups are considered for the analysis of the GRACE-based mass-anomaly time-series (table
3.4). Considering a different number of time-series is done because of the possible presence of cross-
correlated noise.

Table 3.4: Various set-ups for the VCE to analyze GRACE-based mass-anomaly time-series.

Regularization
technique

Number of
considered
time-series

Considered data

MYDD 3 CSR Release 5, ITSG 2016, GFZ
Release 5

Tikhonov first-order 3 CSR Release 5, ITSG 2016, GFZ
Release 5

None 3 CSR Release 5, ITSG 2016, GFZ
Release 5

MYDD 1 CSR Release 5

MYDD 1 ITSG 2016

MYDD 1 GFZ Release 5

MYDD 3 CSR Release 6, ITSG 2018, JPL
Release 6

MYDD 1 CSR Release 6

MYDD 1 ITSG 2018

MYDD 1 JPL Release 6

The standard deviations of the noise (and in the case of MYDD minimization also the signal standard
deviations) are estimated for a 0.5 °equiangular grid in geodetic coordinates. From these estimates
global mean values, mean values for only oceanic or continental regions and mean values for specific
oceanic or continental parts are calculated. The mean noise or signal standard deviation for a certain

ftp://podaac.jpl.nasa.gov/allData/grace/docs/
ftp://podaac.jpl.nasa.gov/allData/grace/docs/
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region is calculated as follows:

𝜎 = √
∑ ∈ (𝜎 (𝜗 , 𝜆 )) sin (𝜗 )

∑ ∈ sin (𝜗 ) , (3.19)

where 𝜎 is the mean standard deviation for a certain region 𝑖. 𝑀 is the set of points in region 𝑖 and 𝜗
and 𝜆 are the geodetic colatitude and longitude of a point 𝑗. The definition of the considered regions
follows in the next section.

Furthermore the estimated signal standard deviation will be shown versus bathymetry. The bathymetry
is derived from GTSM 4.1.2. Ocean depths are categorized in bins of 100 m. Then each location of the
ocean is assigned to a specific depth bin. For each bin the average signal standard deviation for that
depth bin is calculated by taking into account the weight of a certain grid cell by the factor sin (𝜃). This
is similar to the use of equation 2.24 but then a bin is considered as a region. For each oceanic region
(see 3.2.3), the estimated signal standard deviation is plotted versus bathymetry. To plot the standard
deviation of the difference mass-anomaly time-series versus bathymetry buffer zones are incorporated
in the analysis. This should reduce the signal leakage from land to ocean which is present in the es-
timated signal standard deviation. Two different buffer zones (200 and 400 km) are incorporated in
the analysis to disregard the areas close to the coast where the signal leakage is the largest. The two
buffer zones are shown in figures 3.3 and 3.4.

Figure 3.3: A 200 km buffer zone along the coast.
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Figure 3.4: A 400 km buffer zone along the coast.

3.2.3. Definition of oceanic and continental regions

To compute the oceanic mean and continental mean of the estimated signal and noise standard devi-
ation the function is_land from the Python module
mpl_toolkits.basemap is used. This function is defined in line with coastline data from the Global
Self-consistent, Hierarchical, High-resolution Shoreline Database (GSHHS) [74]. In this definition,
points in lakes are also considered as being part of the oceanic and not the continental region.

When computing mean values for separate parts of the ocean and continental regions, a different
source of coastline data is used. The definition of continental regions and oceanic parts is based on
Natural Earth data [52]. For both land and ocean Natural Earth data the medium scale data (version
4.1.0) are considered. The 119 oceans and seas of the medium scale data are then categorized in
oceanic parts described in Monaco [49]. Some small seas are categorized separately to be able to
compute regional averages for specific regions where either high noise standard deviation is observed
or which are close to Europe. In the analyses of this chapter these small oceanic regions are the Gulf
of Thailand, Arafura Sea, Black Sea and Baltic Sea. In chapter 4 and 5 the North Sea is considered
as a separate area of the North Atlantic Ocean because this area seemed specifically of interest in
those chapters. In the definition of continental regions Greenland is considered as a separate region.
Furthermore, Europe and Asia are considered as one continental region. The defined continental
regions and oceanic parts (including the North Sea) can be found in figures 3.5 and 3.6 respectively.
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Figure 3.5: Polygons which define the continental regions for the computation of regional averages.

Figure 3.6: Polygons which define the oceanic parts (including the North Sea) for the computation of regional averages.

3.2.4. Estimation of non-seasonal and high-frequency residuals in ITSGmonthly
solutions

Since ITSG monthly solutions show a lower noise level with respect to CSR, GFZ and JPL solutions,
the quality of these monthly solutions are separately assessed. This is done by estimating the RMSE
with respect two types of signals. One type is a seasonal signal. The other type is a low-pass filtered
signal. The two methods are considered below.

The first considered method makes use of least-squares estimation. By least-squares estimation
a linear trend, annual and semi-annual signal are estimated for the ITSG monthly time-series at each
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grid point. Consequently the Root Mean Square Error (RMSE) of the original monthly time-series is
computed with respect to the by least-squares estimated signal. The Bessel’s correction is not applied.
This RMSE is visualized globally as well as versus bathymetry. Also regional average values for the
ocean are computed in the same manner as for the estimated noise and signal standard deviation.

For the second considered method the monthly time-series are first interpolated to a monthly equal
sampling to fill the data gaps. For this the Python function scipy.interpolate.interp1d is used.
The chosen interpolation method is cubic spline interpolation. Consequently the Fourier transform is
computed for the interpolated monthly time-series. All computed amplitudes belonging to frequencies
larger than 2 cycles per year are put to zero before applying the inverse Fourier transform. In this
way the interpolated monthly time-series are low-pass filtered. Then the RMSE is computed with re-
spect to the low-pass filtered monthly time-series. This RMSE is visualized globally as well as versus
bathymetry. Also regional average values for the ocean are computed. In this context the term high-
frequency is related to frequencies higher than the semi-annual cycle.

3.3. Results and discussion

In this section the noise and signal standard deviation estimated by VCE are shown for different GRACE
solutions. For GRACE Release 5 solutions different regularization techniques in the VCE are consid-
ered. For both GRACE Release 5 and GRACE Release 6 the noise and signal are also estimated
by considering only one time-series in the VCE with MYDD minimization as regularization technique.
Finally, the estimated residuals for ITSG monthly solutions as described in section 3.2.4 are shown and
discussed.

Estimates of signal and noise standard deviation for GRACE Release 5 solutions

A selection of the estimates of signal and noise standard deviation for different GRACE Release 5
solutions and different VCE set-ups can be found in figures 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12. A total set
of figures containing all estimates can be found in Appendix B. In tables 3.5 and 3.6 regional averages
of the estimates of signal and noise standard deviation can be found.
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Figure 3.7: Estimated noise standard deviation for GRACE Release 5 solutions (CSR Release 5, GFZ Release 5, ITSG 2016)
by considering three mass-anomaly time-series in the VCE and MYDD minimization as regularization technique.
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Figure 3.8: Estimated noise standard deviation for GRACE solution CSR Release 5 by considering three mass-anomaly time-
series (CSR Release 5, ITSG 2016, GFZ Release 5) in the VCE and Tikhonov first-order as regularization technique.

Figure 3.9: Estimated noise standard deviation for GRACE solution CSR Release 5 by considering three mass-anomaly time-
series (CSR Release 5, GFZ Release 5, ITSG 2016) in the VCE and applying no regularization.

Figure 3.10: Estimated noise standard deviation for GRACE solution CSR Release 5 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.
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Figure 3.11: Estimated signal standard deviation for GRACE Release 5 solutions by considering three mass-anomaly time-series
(CSR Release 5, GFZ Release 5, ITSG 2016) in the VCE and MYDD minimization as regularization technique.

Figure 3.12: Estimated signal standard deviation for GRACE solution CSR Release 5 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.
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Table 3.6: Regional averages of estimated signal standard deviation in cm EWH for different GRACE Level-2 data and different
VCE setups. The VCE setups differ in the number of considered time-series (one or three) in the estimation process.

GRACE Level-2 data CSR
Release
5, GFZ
Release
5, ITSG
2016

CSR
Release
5

GFZ
Release
5

ITSG
2016

Total area 1.338 0.791 0.750 0.844

Only ocean 0.864 0.313 0.335 0.315

Only land 2.096 1.393 1.297 1.497

Arafura Sea 2.837 0.513 0.591 0.738

Arctic Ocean 2.236 0.513 0.523 0.502

Baltic Sea 3.210 0.616 0.474 0.506

Black Sea 3.518 1.297 1.478 1.274

Gulf of Thailand 1.661 1.160 0.484 1.024

Indian Ocean 0.576 0.270 0.283 0.256

Mediterranean Sea 1.431 0.583 0.511 0.689

North Atlantic Ocean 0.614 0.310 0.313 0.343

North Pacific Ocean 0.602 0.263 0.319 0.254

South Atlantic Ocean 0.953 0.244 0.204 0.254

South China and
Archipelagic Seas

1.023 0.574 0.687 0.641

South Pacific Ocean 0.434 0.158 0.242 0.125

Southern Ocean 1.218 0.345 0.378 0.338

Africa 1.764 0.963 0.930 1.189

Antarctica 1.140 0.737 0.727 0.747

Australia 2.147 1.262 1.195 1.442

Eurasia 1.790 1.153 1.040 1.199

Greenland 1.672 1.377 1.417 1.436

North America 2.009 1.332 1.178 1.457

South America 3.655 2.684 2.530 2.807

From these figures and tables several observations can be made. Firstly, the noise level in GRACE
solution GFZ Release 5 is a lot larger than for GRACE solutions CSR Release 5 and ITSG 2016. This
is observed for the different regularization techniques in the VCE and also when considering only one
or three mass-anomaly time-series in the VCE with MYDD minimization as regularization technique.
For example, the global mean noise standard deviation is 1.7 times larger w.r.t. CSR Release 5 and
2.6 times larger w.r.t. ITSG 2016 when three time-series and MYDD-minimization are considered in
the VCE.

As previously told, the GRACE Level-2 data are produced by different research centers. Which
part in the processing is the cause of these large differences in estimated noise in these GRACE
Level-2 data is difficult to say. The different GRACE solutions were made by making use of different
background models (see table 3.2). Besides that, the non-gravitational forces which influence the inter-
satellite distance and the measurements of the satellite orientation and position are incorporated in a
different way into the production of the monthly mean solutions. [47] Also the considered measurements
of inter-satellite distance are different. Differences in time epochs where the inter-satellite distance
measurements are considered might arise by a different way of selecting the measurements of sufficient
quality. Furthermore, there are differences in the computational procedures.
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A second observation which can be made is that the noise level in general is lower near the poles
and increases towards the equator. Effectively, when one considers an area of a certain size near the
equator or near the poles, the GRACE satellites fly over the area near the poles more often than over
the one near the equator. Also the angle between the flight paths near the poles is larger than near the
equator. Both reasons induce a lower noise level near the poles than near the equator.

Furthermore, a striping pattern in North-South direction in the estimated noise standard deviation
can be observed in the figures of estimated noise standard deviation (figures 3.7, 3.8, 3.9, 3.10). In
section 1.3 it was already stated that the zonal Stokes coefficients are more accurate than the sectorial
ones due to the nearly polar orbit of the GRACE satellites. For the production of monthly mean solutions
measurements along certain longitudes might be considered more often during a month. This might
arise biases in the estimated sectorial Stokes coefficients. Less accurate sectorial Stokes coefficients
for certain orders might produce this striping pattern in noise standard deviation. But one should also
keep in mind in mind that the estimates of noise might deviate from the true noise. According to Dobslaw
et al. [26] and Nie et al. [53] the temporal aliasing by inaccurately taking into account high-frequency
variations by using inaccurate background models in the Level-2 data production is partly responsible
for the meridional stripes in GRACE gravity field solutions. The striping pattern in these solutions might
result in more constant estimated noise standard deviation along a certain longitude and more rapid
variations in the estimated noise standard deviation along a certain latitude.

Now different VCE setups are compared in the estimation of signal and noise. When a different
number of mass-anomaly time-series considered in the VCE with MYDD minimization as regulariza-
tion technique, it can be observed that when only one solution solution is considered the signal stan-
dard deviation becomes lower whereas noise standard deviation increases. When only one solution
is considered all deviations from the regularized solution (which consists predominantly of a seasonal
and linear trend) are estimated as noise. When multiple solutions are considered and there is cross-
correlation in the deviations from a seasonal and linear trend between these solutions, this shows up
predominantly as signal variance. This was observed in section 2.4. Cross-correlated noise or sig-
nal can not be separated by the VCE with MYDD minimization as regularization technique. So when
mass-anomaly time-series contain cross-correlated noise, it is expected that a high signal standard
deviation would be estimated when three mass-anomaly time-series are considered and a high noise
standard deviation would be estimated when one mass-anomaly time-series is considered in the VCE.
Therefore, the difference between figures 3.11 and 3.12 is interesting since it gives an indication of
cross-correlated noise which might be caused by inaccurate background models.

When comparing the estimates of noise standard deviation by considering different regularization
techniques it can be observed that in general the noise standard deviation is estimated a bit lower
when Tikhonov first-order instead of MYDD minimization is used. When considering the CSR Release
5 solutions the global mean noise standard deviation goes down by 5.7%. A smaller noise estima-
tion by Tikhonov first-order with respect to MYDD was also observed in section 2.4 for the numerical
experiments when the signal-to-noise ratio (amplitude of seasonal variability divided by true noise stan-
dard deviation) increased. In turn, applying no regularization gives lower estimates of noise standard
deviation than Tikhonov first-order (on a global mean basis by 11%). The mass-anomaly time-series
considered in the VCE might all differ more from a regularized solution than from the combined solution
when no regularization was applied. This could explain why the estimated noise for certain locations
is estimated smaller the case when no regularization is applied compared to the cases where regular-
ization is applied.

An exception can be observed in the mass-anomaly time-series derived from ITSG 2016 where no
regularization leads to lower noise estimates than Tikhonov first-order regularization. When Tikhonov
first-order is used as regularization technique the estimated noise is 13% lower than the case where
no regularization is applied in the VCE (on the basis of the global mean). It might be the case that
the ITSG 2016 solutions are in time more constant than CSR Release 5 and GFZ Release 5 (i.e.
show little fluctuations in mass-anomaly over time). When Tikhonov first-order is used as regularization
technique the regularized solution is aimed to become close to a constant value since the slope of the
mass-anomaly time-series at every moment is minimized. When ITSG 2016 shows less fluctuations in
mass-anomaly over time compared to CSR Release 5 and GFZ Release 5, ITSG 2016 could be closer
to the regularized solution and the estimated noise standard deviation for this solution can become
very small. For ITSG 2016 it could thus be the case that this solution is more close to the regularized
solution (obtained by using Tikhonov first-order) than to only a combined solution of ITSG 2016, GFZ
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Release 5 and CSR Release 5. The Tikhonov first-order regularization might thus favor the quality of
ITSG 2016 data.

When looking at the estimates of signal standard deviation for certain regions it can be identified
where the signal standard deviation is relatively large. These are:

• South America
• The Southern part of Africa
• The area around the river Mississippi
• Baltic Sea
• Black Sea
• Arafura Sea (including Gulf of Carpentaria)
• East Siberian Arctic Shelf
• Argentine Basin
• Hudson Bay

For the region near the Mississippi river and also for South America it might be that a signal of inter-
annual variability is present since the river basins in those areas might contain interannual variability
in water mass. High signal standard deviations for the regions Baltic Sea, Black Sea, Arafura Sea,
East Siberian Arctic Shelf and Argentine Basin might indicate that the oceanic background models
for those regions are in need for improvement. When the oceanic background models would perform
very well, the signal standard deviation over the ocean would be almost 0 since the oceanic signals
(when cleaned from high-frequency variations due to atmospheric and tidal forcing) should then con-
tain almost only a linear trend and seasonal variability. Ideally, the GRACE-based time-series over
the oceans only show changes of mass between the ocean and land and effects of self-attraction and
loading which would both result in predominantly a linear trend and seasonal variability. When oceanic
background models make wrong predictions, these wrong predictions might alias into the GRACE-
based mass-anomaly time-series. Also, when the oceanic background models for these regions are of
insufficient quality, a part of the ocean variability due to wind, atmospheric pressure and tidal forcing
might still be in the GRACE monthly solutions because it is not or only partly removed. These pre-
dominantly high-frequency oceanic variabilities (periods smaller than a month) then also alias in the
mass-anomaly time-series. The aliasing can cause a higher estimated signal standard deviation since
the aliasing can result in interannual differences in the mass-derivative in the time-series. For the Hud-
son Bay, it might be the case that the presence of sea ice during a part of the year is not good enough
taken into account in the oceanic background models. This might be a reason for less accurateness
of the considered oceanic background model in the Hudson Bay. The regions of large signal standard
deviation might indicate areas for improvement in the oceanic background models.

The figure of signal standard deviation (figure 3.11) can also be compared to results presented by
Dobslaw et al. [27]. A by them presented figure (fig. 8) reflects the impact of physical processes cur-
rently not included in the AOD1B Release 5 product. A high impact can be observed for the Argentina
Basin, Hudson Bay, Sargasso Sea, Baltic Sea, a part of the East Siberian Arctic Shelf, Bering Strait and
several areas around Antarctica. Since the AOD1B Release 5 product is produced by using a global
ocean circulation model which excludes meso-scale variability and small-scale eddies the product is
particularly inaccurate in energy-rich areas of the ocean. [27] The excluded physical processes might
explain the high signal standard deviation observed in figure 3.11 for the Argentina Basin, Hudson Bay,
Baltic Sea and East Siberian Arctic Shelf. This contributes to the reasoning that high signal standard
deviations show up in regions where the de-aliasing product is inaccurate.

Another figure shown by Dobslaw et al. [27] (fig. 6b) indicated areas of lower accuracy of AOD1B
Release 5. This figure showed an exceptionally low accuracy for the Arctic ocean. The Arctic Ocean
also does show a high signal standard deviation compared to the open ocean (figure 3.11). One reason
of inaccuracy is the incorrect practice of the inverse barometric correction for this area. Due to the
narrow straits to the Atlantic and Pacific Ocean the reaction of the ocean to the changes in atmospheric
pressure might be later or smaller. Also high inaccuracies are shown for the Arafura Sea, the Gulf of
Thailand, the East China Sea, the Hudson Bay, the Baltic Sea, the Black Sea, the North sea and several
regions near Antarctica (in the vicinity of the Antarctic Circumpolar Current). Again, many areas of high
inaccuracy for the AOD1B Release 5 product are similar to regions of high signal standard deviation
estimated in this research. Inaccuracies in the AOD1B Release 5 product for certain regions cause
inaccuracies in the GRACE-based mass-anomaly time-series. When the same de-aliasing product
is used, these inaccuracies show up as the same residual signal. Therefore it seems logical that
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the regions presented by Dobslaw et al. [27] are similar to regions of high signal standard deviation
presented in this research.

Estimates of noise and signal standard deviation for GRACE Release 6 solutions

A selection of the estimates of signal and noise standard deviation for different GRACE Release 6 so-
lutions and different VCE set-ups can be found in figures 3.13 and 3.14. A total set of figures containing
all estimates can be found in Appendix B. Figure 3.15 shows the differences in estimated signal stan-
dard deviation for GRACE Release 5 and GRACE Release 6 solutions. In tables 3.7 and 3.8 regional
averages of the estimates of signal and noise standard deviation can be found.
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Figure 3.13: Estimated noise standard deviation for GRACE Release 6 solutions (CSR Release 6, ITSG 2018, JPL Release 6)
by considering three mass-anomaly time-series in the VCE and MYDD minimization as regularization technique.
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Figure 3.14: Estimated signal standard deviation for GRACE Release 6 solutions by considering three mass-anomaly time-series
(CSR Release 6, ITSG 2018, JPL Release 6) in the VCE and MYDD minimization as regularization technique.

Figure 3.15: Difference in estimated signal standard deviation for GRACE Release 6 (CSR Release 6, ITSG 2018, JPL Release
6) solutions and GRACE Release 5 solutions (CSR Release 5, ITSG 2016, GFZ Release 5).
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Table 3.7: Regional averages of estimated noise standard deviation in cm EWH for different GRACE Level-2 data and different
VCE setups. The VCE setups differ in the number of considered time-series (one or three) in the estimation process.

GRACE Level-2 data CSR Release 6 ITSG 2018 JPL Release 6
No. of considered
time-series

3 1 3 1 3 1

Regularization
technique

MYDD MYDD MYDD

Total area 1.188 1.501 1.047 1.314 1.618 1.961

Only ocean 1.200 1.448 1.071 1.298 1.654 1.919

Only land 1.156 1.628 0.982 1.353 1.524 2.060

Arafura Sea 1.707 2.543 1.162 1.860 1.702 2.509

Arctic Ocean 0.990 1.555 0.639 1.235 0.828 1.453

Baltic Sea 0.995 2.441 0.956 2.315 1.165 2.429

Black Sea 1.097 2.969 0.999 2.772 1.463 3.197

Gulf of Thailand 1.330 2.011 1.102 1.763 1.792 2.435

Indian Ocean 1.243 1.466 1.094 1.303 1.663 1.917

Mediterranean Sea 1.205 1.643 1.070 1.484 1.762 2.268

North Atlantic Ocean 1.211 1.384 1.094 1.265 1.810 2.009

North Pacific Ocean 1.180 1.363 1.064 1.238 1.650 1.869

South Atlantic Ocean 1.192 1.574 1.143 1.494 1.707 2.082

South China and
Archipelagic Seas

1.311 1.692 1.061 1.397 1.773 2.213

South Pacific Ocean 1.207 1.361 1.128 1.263 1.738 1.929

Southern Ocean 1.201 1.544 0.807 1.115 1.212 1.568

Africa 1.233 1.672 1.054 1.369 1.793 2.297

Antarctica 0.905 1.138 0.557 0.782 0.797 1.082

Australia 1.317 1.818 1.023 1.445 1.790 2.264

Eurasia 1.091 1.540 0.954 1.330 1.428 1.897

Greenland 0.927 1.062 0.586 0.773 0.828 1.112

North America 1.126 1.462 0.866 1.175 1.341 1.801

South America 1.306 2.153 1.302 1.858 1.819 2.812
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Table 3.8: Regional averages of estimated signal standard deviation in cm EWH for different GRACE Level-2 data and different
VCE setups. The VCE setups differ in the number of considered time-series (one or three) in the estimation process.

GRACE Level-2 data CSR
Release
5, GFZ
Release
5, ITSG
2016

CSR
Release
6, ITSG
2018,
JPL
Release
6

CSR
Release
6

ITSG
2018

JPL
Release
6

Total area 1.338 1.442 0.821 0.864 0.787

Only ocean 0.864 0.994 0.321 0.361 0.302

Only land 2.096 2.190 1.449 1.512 1.391

Arafura Sea 2.837 2.195 0.572 0.794 0.665

Arctic Ocean 2.236 1.843 0.474 0.525 0.488

Baltic Sea 3.210 3.666 0.617 0.566 0.559

Black Sea 3.518 4.690 1.159 1.169 1.170

Gulf of Thailand 1.661 2.455 1.158 1.082 1.190

Indian Ocean 0.576 0.871 0.275 0.311 0.265

Mediterranean Sea 1.431 1.541 0.610 0.673 0.635

North Atlantic Ocean 0.614 0.781 0.357 0.387 0.337

North Pacific Ocean 0.602 0.753 0.266 0.304 0.238

South Atlantic Ocean 0.953 1.352 0.276 0.306 0.244

South China and
Archipelagic Seas

1.023 1.326 0.571 0.686 0.509

South Pacific Ocean 0.434 0.609 0.160 0.211 0.123

Southern Ocean 1.218 1.112 0.359 0.414 0.352

Africa 1.764 1.860 1.117 1.278 1.048

Antarctica 1.140 1.168 0.709 0.741 0.699

Australia 2.147 2.135 1.362 1.444 1.355

Eurasia 1.790 1.943 1.155 1.204 1.122

Greenland 1.672 1.650 1.385 1.362 1.319

North America 2.009 2.001 1.392 1.487 1.349

South America 3.655 3.809 2.767 2.787 2.636

Again it can be observed that the noise standard deviation decreases towards the poles. The
estimated noise in Release 6 solutions is in general estimated lower than for the Release 5 solutions.
This might be due to a better performance of the background models or improved data processing
techniques. From the three considered GRACE Release 6 solutions, the estimated noise is again the
lowest for CSR and ITSG.

When looking at the signal standard deviation for Release 6 (figure 3.14) and the difference in signal
standard deviation between Release 5 and 6 (figure 3.15), it can be observed that the signal standard
deviation goes down for the Hudson Bay, the East Siberian Arctic Shelf, the Gulf of Carpentaria and
parts of the Arctic and Southern Ocean. In other regions no improvements can be observed. The
region south to Africa shows a clear increase of the signal of interannual variability compared to the
Release 5 solutions. One could think that the oceanic background models considered for Release 6
perform worse in this area. Since the estimated signal standard deviation is influenced by the noise
level, comparing the estimated signal standard deviations for Release 5 to Release 6 is not totally
correct. A larger cross-correlation between different products (which can also be a cross-correlation
in noise) will result in less applied regularization and thus a higher signal standard deviation. It could
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be that the three Release 6 solutions are more cross-correlated and that less regularization is applied
for these solutions which causes higher values of signal standard deviation. But regions which show a
very strong sign of reduction or increase of the signal standard deviation might still give an indication
where the different Releases are better or worse. When even correlations can be found to a different
type of unexpected signals (as will be done in the section which is about residuals in ITSG solutions),
the distribution of estimated signal standard deviation can become more reliable. When considering
one instead of three mass-anomaly time-series in the VCE a similar observation can be made that a
large part of the estimated signal standard deviation then shows up increased noise.

In figure 3.16 the signal standard deviation is shown versus bathymetry. It can be observed that the
patterns of signal standard deviation versus bathymetry are very similar for release 5 and 6 but that the
estimated signal standard deviation for Release 6 is in general higher. A larger signal standard deviation
can be observed for the shallowest regions. Also when a buffer zone is included the signal standard
deviation is larger for the shallow regions. A larger signal standard deviation in shallow regions might
thus not only be due to leakage signals from the continents. It must be kept in mind that these estimated
signal standard deviations are influenced by the noise level. Therefore, no strong conclusions can be
made with just these estimated signal variances.

Figure 3.16: Estimated signal standard deviation for GRACE Release 6 (CSR Release 6, ITSG 2018, JPL Release 6) solutions
and GRACE Release 5 solutions (CSR Release 5, ITSG 2016, GFZ Release 5). The estimated signal standard deviation for
Release 5 (red) and Release 6 (blue) are shown versus bathymetry for the total ocean.

Estimation of non-seasonal residuals in ITSG solutions
In figures 3.17 and 3.18 the RMSE for the ITSG monthly solutions (ITSG-2016 and ITSG-2018) is
shown. This is the RMSE of the monthly time-series with respect to a seasonal signal. This seasonal
signal is estimated by least-squares estimated and a combination of a linear trend and a semi-annual
and annual variability. Figure 3.19 shows the difference between figures 3.17 and 3.18. In table 3.9
regional average RMSE’s for the considered oceanic regions can be found. By comparing the global
plots of estimated signal standard deviation with the global plots of RMSE for the ITSG solutions similar
global patterns are observed. The East Siberian Arctic Shelf, Baltic Sea, Black Sea, Argentine Basin,
Hudson Bay, Gulf of Thailand and Argentine Basin show both a high RMSE as well as a high signal
standard deviaton for Release 5. For Release 6, both the signal standard deviation as well as the
RMSE decrease clearly for the regions Hudson Bay, the East Siberian Arctic Shelf and Arafura Sea
with respect to Release 5. It is not strange that there is much correlation between regions of high/low
RMSE and signal standard deviation. The signal standard deviation gives an indication of the amount
of interannual differences in the mass-derivative and the RMSE gives an indication of the size of the
residuals w.r.t. a seasonal signal. The non-seasonal residuals are likely varying over the years although
this does not have to be the case. The other way around, areas of larger estimated signal variance
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should (if correctly estimated) show up as residuals with respect to a seasonal signal. If the estimated
signal variance are primary due to non-ITSG monthly solutions this correlation does not hold.

Except for the Black Sea the RMSE goes down for ITSG 2018 with respect to ITSG 2016. For a
large extent this can be due to a decrease of the noise in Release 6 solutions with respect to Release
5 solutions. The regions of extreme improvement over the oceans (Hudson Bay, East Siberian Arctic
Shelf and Arafura Sea) seem likely due to a change of oceanic background models.

Figure 3.17: Estimated RMSE for ITSG 2016. The RMSE is estimated with respect to a by least-squares estimated signal
containing only a linear trend and annual and semi-annual periodicity.

Figure 3.18: Estimated RMSE for ITSG 2018. The RMSE is estimated with respect to a by least-squares estimated signal
containing only a linear trend and annual and semi-annual periodicity.
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Figure 3.19: Difference in estimated RMSE between ITSG 2018 and ITSG 2016. The RMSE is estimated with respect to a by
least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.

In figures 3.20 the estimated RMSE for ITSG 2016 and ITSG 2018 are shown versus bathymetry for
the total ocean. As for the estimates of signal standard deviation, the RMSE patterns versus bathymetry
are quite similar for the different releases and only of different magnitude. Also an increase of RMSE
in shallow regions can be observed. When observing figures of RMSE versus bathymetry for specific
regions, the South Pacific Ocean (figure 3.21) shows a clear difference between ITSG 2016 and ITSG
2018. For the shallow regions up to about 750 m the non-seasonal residuals are larger for ITSG 2018
with respect to ITSG 2016. This might be the region below New Zealand which corresponds to this
depth and shows a larger non-seasonal residuals for ITSG 2018.

Figure 3.20: Estimated RMSE for ITSG solutions versus bathymetry for the total ocean. The RMSE is estimated with respect to
a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.
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Figure 3.21: Estimated RMSE for ITSG solutions versus bathymetry for the South Pacific Ocean. The RMSE is estimated with
respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.

Regarding the estimation of signal standard deviation and computation of RMSE for ITSG solutions
it must be said these quantities do not always indicate regions of lower or higher quality. First of all
the estimates of signal variance might not correlate to the true signals variance. Furthermore, a part of
these estimates (signal standard deviation and RMSE w.r.t. a seasonal signal) might be a true mass-
anomaly signal. For example, the seasonal periodicity might be shifted in time between the years and
might be of different size for different size due to for example an increased melt for a certain year.
Periodicities of more than a year will show up in the true signal standard deviation and non-seasonal
residuals. It might be better not to categorize these long-term patterns as an unexpected signal/residual
over the oceans.

Estimation of high-frequency residuals in ITSG solutions

In this section again RMSE values for ITSG are shown. Now the RMSE is computed with respect to a
low-passed monthly time-series. By this, regions of high-frequency residuals (frequencies larger than
2 cycles per year) can be identified. With respect to the previous two sections this might give different
results since now signals of a periodicity larger than a year will not show up as an unexpected residual.

In figures 3.22,3.23,3.24 the RMSE values with respect to the low-pass filtered signal can be ob-
served. The regional values of RMSE for oceanic regions can be found in table 3.9. Most regions of
high non-seasonal residuals and high-frequency residuals are similar. Therefore, also the regions of
large high-frequency residuals correlate with the global patterns of signal variance. The size of the un-
expected residuals is reduced when changing from non-seasonal to high-frequency residuals. This is
logical since all low-frequency signals of a periodicity larger than a half year are no part of the residuals
w.r.t. the low-pass filtered signal.

The the Arafura Sea seems an exemption in the correlation between non-seasonal and high-frequency
residuals. For the Arafura Sea, the non-seasonal residuals dropped down by 33% while the high-
frequency residuals dropped down by only 15%. This might indicate a reduction of low-frequency
signal over the Arafura Sea for ITSG-2018 w.r.t. ITSG-2016.
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Table 3.9: Regional averages of the RMSE in cm EWH for ITSG monthly solutions. The RMSE in column 2 and 3 is estimated with
respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity. The RMSE
in column 4 and 5 is estimated with respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual
cycle are retained).

RMSE w.r.t. seasonal signal RMSE w.r.t. low-pass filtered signal
ITSG 2016 ITSG 2018 ITSG 2016 ITSG 2018

Total Ocean 1.745 1.577 1.248 1.076

Arafura Sea 3.523 2.437 2.169 1.854

Arctic Ocean 2.430 2.159 1.811 1.567

Baltic Sea 2.819 2.748 2.011 1.933

Black Sea 3.878 3.869 1.922 1.973

Gulf of Thailand 3.742 3.691 2.036 1.792

Indian Ocean 1.684 1.506 1.206 1.014

Mediterranean Sea 2.309 2.012 1.444 1.172

North Atlantic Ocean 1.689 1.539 1.221 1.075

North Pacific Ocean 1.583 1.415 1.180 1.003

South Atlantic Ocean 1.744 1.627 1.274 1.152

South China and
Archipelagic Seas

2.280 2.091 1.351 1.126

South Pacific Ocean 1.504 1.378 1.130 0.989

Southern Ocean 1.969 1.705 1.334 1.057

Figure 3.22: Estimated RMSE for ITSG 2016. The RMSE is estimated with respect to a low-pass filtered signal (frequencies
smaller than or equal to the semi-annual cycle are retained in the low-pass filtered signal).
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Figure 3.23: Estimated RMSE for ITSG 2018. The RMSE is estimated with respect to a low-pass filtered signal (frequencies
smaller than or equal to the semi-annual cycle are retained in the low-pass filtered signal).

Figure 3.24: Difference in estimated RMSE between ITSG 2018 and ITSG 2016. The RMSE is estimated with respect to a
low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass filtered signal).

In figures 3.25 and 3.26 the estimated RMSE for ITSG 2016 and ITSG 2018 are shown versus
bathymetry for the total ocean and Southern Ocean. It can also be observed that the computed RMSE’s
for ITSG 2018 are in general lower than for ITSG 2016 over the whole range of depths. From both the
figures of RMSE versus bathymetry and global plotted RMSE it can be seen that in general the high-
frequency signal is lower for Release 6 than for Release 5. Since this is a general pattern over almost
the whole ocean it seems that this is largely due to a general noise reduction for Release 6 with respect
to Release 5.

Again the RMSE does increase for the shallow regions when observing the RMSE versus bathymetry
for the total ocean. For the South Pacific Ocean an exception can be observed. The shallow regions
(respectively up to 1 km and 500 m) of the South Pacific Ocean seem to contain less high-frequency
residuals than the deeper regions for ITSG 2016 and ITSG 2018.
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Figure 3.25: Estimated RMSE for ITSG solutions versus bathymetry for the total ocean. The RMSE is estimated with respect to
a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained).

Figure 3.26: Estimated RMSE for ITSG solutions versus bathymetry for the South Pacific Ocean. The RMSE is estimated with
respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained).

3.4. Summary and remarks
For GRACE Release 5 solutions the estimated noise is the lowest for ITSG 2016 after which CSR
Release 5 and GFZ Release 5 follow. For GRACE Release 6 solutions the estimated noise is the lowest
for ITSG 2018 after which CSR Release 6 and JPL Release 6 follow. The estimated noise generally
reduces towards the poles. When one instead of three mass-anomaly time-series is considered in the
VCE global patterns of estimated signal standard deviation show up as global patterns in the estimated
noise standard deviation.

Over the oceans, the signal standard deviation is largest for the regions: Baltic Sea, Black Sea,
Arafura Sea (including Gulf of Carpentaria), East Siberian Arctic Shelf, Argentine Basin and Hudson
Bay. Although the estimates of signal standard deviation are influenced by the noise level (as observed
in the previous chapter), areas of large signal standard deviation might indicate oceanic regions where
the quality of the GRACE monthly solutions is lower. Especially, because the global patterns of esti-
mated signal standard deviation correlate with the global patterns of the residuals w.r.t. to a low-pass
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filtered signal and seasonal signal for ITSG solutions. GRACE Release 6 solutions show with respect
to Release 5 a significant decrease in signal standard deviation over for the Hudson Bay and East
Siberian Arctic Shelf. These areas also show a significant decrease in both types of residuals.

Since the estimated signal standard deviation and RMSE’s are non-zero over the oceans, the
GRACE Level-2 data products are still in need for improvement over the oceanic regions and especially
in the shallow regions (up to 200 m, which include the Baltic Sea, East Siberian Arctic Shelf, Gulf of
Thailand and Arafura Sea), the Argentine Basin and the Black Sea. Signal leakage from land to ocean
might cause an increase of the estimated signal standard deviation and residuals in the coastal areas.





4
Comparison of GTSM to oceanic

background models currently used in
GRACE data processing

This chapter is about the third sub-question:

• Which regions show significant differences between 3-hourly, 6-hourly and monthly mass-anomaly
time-series generated by GTSM and those generated by the oceanic background models cur-
rently used in GRACE data processing?

This question is assessed because this gives an indication of the regions where GTSM performs
significantly differently from the currently used oceanic background models. These regions are the
ones where the use of GTSM can potentially alter GRACE monthly solutions. After a short introduction
about oceanic processes, GTSM will be introduced. Thereafter which theoretical differences between
GTSM and the currently used oceanic background models are listed. Then the method to create mass-
anomaly time-series (3-hourly, 6-hourly and monthly) from raw GTSM output is described. For the
monthly time-series also the method to convert the mass-anomaly time-series to the spherical domain
is described. Finally, the time-series comparison is performed and regions of large differences are
identified.

4.1. Theory
In this theoretical section first some basic knowledge about ocean variability is provided. After this,
GTSM will be described. Then the currently used oceanic background models are described and
differences in the modeling strategy are listed.

4.1.1. Ocean variability
In GRACE data processing oceanic background models are used to remove rapid oceanic signals from
the measurements. As a result the oceanic signal observed in GRACE monthly solutions would ideally
only contain mass exchange between continents and ocean and self-attraction and loading effects.
Each ocean variability which should be removed is listed below [42]:

• Tides. Tides of many frequencies exist due to the combined gravitational forces of the Sun and
Moon. The tidal constituents can be categorized in semidiurnal, diurnal and long-period. Although
the tide generating forces are well known, the tidal ranges and phases depend on location. The
shape, size and depth of a sea or ocean basin determines to a high extent the tidal range at a
certain location.

• Storm surges. Storm surges are pressure and wind driven changes of the water elevation with
a spatial scale similar to the storm which generates the surge. The wind for a storm surge is
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sustained and has a constant direction [2]. Compared to tides, the characteristic time is generally
shorter and the area smaller.

• Density-driven currents. When density-driven currents induce changes in the oceanic bottom
pressure these should be removed from GRACE data. An example of a large-scale density-
driven current is the thermohaline circulation.

Furthermore, all processes listed above influence each other and non-linear interaction between
these effects exists. For GRACE Release 5 and Release 6 monthly solutions separate oceanic back-
ground models are used to model the tidal and non-tidal part of ocean currents. In GTSM storm surges
and tides are modeled at the same time by which non-linear interaction between these two processes
is taken into account. On the other hand, in GTSM density-driven currents are not modeled since the
water density in GTSM is constant.

4.1.2. Global Tide and Surge Model
The Global Tide and Surge Model (GTSM) simulates 2D hydrodynamics on a global scale as it is a
global application of Delft3D-FM [44] [6]. The Delft3D Flexible Mesh software is developed by Deltares.
GTSM is a 2-dimensional application of this software. By this 2D model water depth is calculated for
each grid cell [6]. The variables in the governing equations are depth-averaged [6]. Since GTSM is a 2-
dimensional model and thus the density for a water column is constant, it is categorized as a barotropic
model. GTSM models flow and transport phenomena due to tidal and meteorological forcing.

Governing equations
In GTSM the governing equations are [41] [19] [44]:

𝜕ℎ
𝜕𝑡 + ∇ ⋅ (ℎu) = 0 (4.1)

𝜕u
𝜕𝑡 + f × u+ 1ℎ (∇ ⋅ (ℎuu) − u∇ ⋅ (ℎu)) =

− 𝑔∇ (𝜉 − 𝜉 − 𝜉 ) + ∇ ⋅ (𝜈 (∇u+ ∇u )) + 𝜏ℎ + 𝜏ℎ + 𝜏
𝜌 ℎ −

1
𝜌 ∇𝑝

(4.2)

Equation 4.1 is the conservation equation for mass. Since the water mass is constant in GTSM
(there are no sources of addition or removal of water), the right term in equation 4.1 is 0. Equation 4.2
is the conservation equation for momentum. The term ℎ is the instantaneous water depth (the water
column height). The velocity vector is represented by u, the time by 𝑡, the horizontal viscosity by 𝜈,
gravity (which is constant in the model) by 𝑔, the water level (which is the water column minus the
bathymetry) by 𝜉, the water density by 𝜌 and the effect of the Coriolis force by f×u where f = 2Ω with
Ω the Earth rotation vector. When u is represented as a combination of a velocity in the East and North

direction, the term f × u becomes f × u = 2𝜔 sin (𝜙) [0 −1
1 0 ]u. When no forcing is applied the water

level 𝜉 is at each location 0. Therefore the internal vertical reference for the model is an equipotential
surface.

The dissipation terms are 𝜏 and 𝜏 . The term 𝜏 represents dissipation through bottom friction
which is the main mechanism of dissipation in shallow waters. [41] The term 𝜏 represents dissipation
through internal tides. This dissipation mechanism is dominant in deep waters where tides travel across
a steep topography and where the water is stratified. [41] The tidal period oscillations which arise in
the surfaces of equal density induce flow in different directions at different depths. [2] So it can be clear
that the internal tidal currents and the associated dissipation is parametrized.

The term 𝜉 represents the equilibrium tide which can be computed from the tide generating forces.
The term 𝜉 is related to self-attraction and loading (SAL). In the model the self-attraction is related
to the gravitational attraction of the water on itself. The loading is the deformation of the ocean floor
due to the weight of the ocean column. In GTSM the SAL effects are modeled by implementing the
SAL equations as published by Kuhlmann et al. [46]. [18] No actual deformation of the ocean bottom
floor is modeled and the bathymetry is kept constant in the model. The water level output of GTSM
thus represents the decrease/increase of the total water column (ℎ) and does not include changes in
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ocean bottom floor (the loading effect). SAL effects like the attraction of water to large mass changes
like those due to ice sheet melting are not included in the model.

Two terms 𝜏 and − ∇𝑝 in the momentum equation represent the effect of the wind and
atmospheric pressure. These terms will be discussed in the next section. Of course equation 4.2 is
limited and much more terms are present there. These are for now neglected because their role is
considered minor.

Meteorological forcing
The meteorological forcing in GTSM is derived from the ERA5 meteorological reanalysis product [36]
of the European Center for Medium-range Weather Forecast (ECMWF). This product is available at
hourly sampling and 31 km resolution. The ERA5 meteorological data are interpolated to a 0.3∘ grid.
This 0.3∘ grid of wind and pressure data is applied as meteorological forcing in GTSM.

The influence of the wind on the flow is implemented as a shear stress (𝜏 ). [20] This shear stress
is computed from the wind speed at 10 m above the surface, density of air and a wind drag coefficient.
This wind drag coefficient is computed computed according to the Charnock formulation [14] and for this
a Charnock coefficient should be implemented in GTSM. The Charnock coefficient used in this model
is 0.041. The term − ∇𝑝 represents the influence of the atmospheric pressure. [19] Because of
the minus term in from to the gradient in atmospheric pressure (𝑝 ), a locally high pressure region
will lead to a flow away from this region.

Bathymetry and computational grid
The bathymetry in GTSM is implemented as the depth with respect to mean sea level. The bathymetry
data are a combination of different sources. The General Bathymetric Chart of the Ocean 2014 (GEBCO
2014) [73] is used as main data source. For Europe and the region around Australia the EMODnet
bathymetry [1] and a dataset of Whiteway [75] are implemented. [6] For regions to the south of -60∘
latitude the Bedmap2 dataset [31] is used to incorporate regions below the permanent ice shelves near
Antarctica. These regions are considered as ocean in the modeling. The bathymetric data are conse-
quently interpolated onto the computational grid. [51] The bathymetry implemented in GTSM can be
found in figure 4.1. This figure is made by subtracting for a certain time-step the water level from the
instantaneous water column height.

Figure 4.1: Bathymetry in GTSM.

The Delft3D-FM software allows for a flexible and unstructured grid. The grid cells are of different
size for different areas. The size of the grid cells depends on the bathymetry. For deep regions the grid
cells have a resolution of about 50 km and for shallow regions the grid cells have resolution of about 5
km. [51] Furthermore, for regions where the gradient of the topography is large the grid cells are also
refined. [41] This improves the modeling of dissipation due to internal tides. The combination of small
grid cells in shallow and topographically complex regions and larger grid cells for the deep ocean gives
a good combination of computational time and accurate modeling. The unstructured grid is built up of
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triangles and quadrangles. In figure 4.2 the refinement towards the shallow regions can be seen. The
coordinate reference system for GTSM is WGS84 and the latitude in GTSM is thus a geodetic latitude.

Figure 4.2: Grid densification in shallow regions in GTSM (blue represents deep regions, red represents shallow regions).

4.1.3. Atmosphere and Ocean non-tidal De-aliasing product

The Atmosphere and Ocean non-tidal De-aliasing product (AOD1B) product contains an oceanic and
atmospheric part. Only the oceanic part is considered in this research. The oceanic part is constructed
by the use of an oceanic background model which is different for the different for AOD1B Release 5 and
6. These oceanic background models which model the non-tidal changes in oceanic bottom pressure
are discussed in this section.

For the AOD1B Release 5 product the Ocean Model for Circulation and Tides (OMCT) is used
[30]. OMCT is a baroclinic model [79]. For the AOD1B Release 6 product the Max-Planck-Institute
for Meteorology Ocean Model (MPIOM) is used [26]. This model is also a baroclinic ocean circulation
model. In a baroclinic ocean model the density can be different for different water depths. The changes
in vertical density distribution and their influences on the flow are included in the model. [29] In MIPIOM
also precipitation and radiation are included to account for thermodynamic processes. An example of
a primarily baroclinic phenomenon is an El Niño. In table 4.1 differences between the three models
(GTSM, OMCT and MPIOM) are listed.
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Table 4.1: Differences between the ocean models OMCT, MPIOM and GTSM [30] [26] [56] [6] [41] [51] [35].

Ocean model OMCT MPIOM GTSM

Dimensions 3D 3D 2DH

Spatial resolution 1.0∘ x 1.0∘ grid, 20
vertical layers

1.0∘ tri-polar grid, 40
vertical layers

Locally refined grid: 5-50
km

Temporal resolution 20 minutes 90 minutes Up to 2.5 minutes

Topography ETOPO5 ETOPO5 Combination of GEBCO
2014, EMODnet, dataset
of Whiteway [75] and
Bedmap2

Spin-up time 265 years followed by
real-time simution of 12
years

499 years followed by
real-time simulation of
21 years

real-time simulation of
16 days

Atmospheric data for the
period 2001-2016

Operational analysis
data from ECMWF
Integrated Forcast
System (IFS) (data
extracted every 6 hours
at 0.5∘ grid)

2001-2006: ECMWF
ERA-Interim re-analysis
data (3-hourly available
from short-term
forecasts from the
reanalysis at 0.75∘ grid)

ECMWF ERA5
reanalysis data
(available every hour at
a spatial resolution of 31
km)

2007-2016: Operational
analysis data from
ECMWF IFS

Atmospheric forcing

Atmospheric surface
pressure

Atsmospheric surface
pressure

Atmospheric pressure

Horizontal wind speed
and direction at 10 m

Horizontal wind speed
and direction at 10 m

Horizontal wind speed
and direction at 10 m

Temperature at 2 m Temperature at 2 m
Temperature at 10 m Dew point at 2 m
Sea surface temperature Short-wave incoming

radiation at the surface
Freshwater fluxes
(precipitation minus
evaporation)

Precipitation

Specific humidity Cloud cover

Includes a
dynamic-thermodynamic
sea ice model

Yes Yes No

Simulation of ocean
dynamics under the
Antarctic ice -shelves

Yes No Yes (considered as
ocean)

Conservation equations
for heat and salt

Yes Yes No

Includes SAL effects
(self-attraction of the
water column on itself
and deformations of the
sea-floor)

Yes No Yes

The method to compute the AOD1B product from the ocean model output is now described in
order to be able to compute a similar product from the model output of GTSM. Two types of AOD1B
products are produced. One at an hourly time-scale and one of monthly mean values. The months
over which averages are taken to compute the monthly means are determined in according to the days
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considered to create the GRACE Level-2 data product. Therefore, every research center provides their
own monthly de-aliasing products since the considered days for each month to produce the GRACE
Level-2 data product differs for each research center. The monthly AOD1B products are thus based
on the same time-series but the considered days in a month to compute the monthly mean is different
for each research center.

To create the AOD1B Release 5 product OMCT is run without taking into account tidal induced
ocean dynamics. The OMCT is thus run to simulate oceanic mass-redistribution’s due to thermohaline
and wind- and pressure driven circulation. To create the AOD1B OBA Release 5 product (6-hourly)
and AOD1B GAD Release 5 product (monthly) the following steps are followed [30]:

• Running the model and storing the atmospheric and water column contribution to the oceanic
bottom pressure (OBP) separately and 6-hourly at the 1∘ grid of the model. The epochs are 0h,
6h, 12h, 18h.

• Computation of block mean values of the water column contribution to the OBP.

• Interpolation of the water column contribution to OBP to a 0.5∘ grid.

• Removal of the long-term mean (the mean of the years 2001-2002) for each location.

• Removal of the ocean mean water column contribution to the OBP at each time. This is the mean
in space.

• Computation of block mean values of the atmospheric surface pressure (the input) at the 0.5∘
grid.

• Removal of the long-term mean (the mean of the years 2001-2002) of the atmospheric surface
pressure time-series at each location.

• Removal of the mean atmospheric pressure for the whole Earth at each time step.

• Combination of the residual water column contribution to the OBP and the residual atmospheric
surface pressure. This combination represents the inverse barometric correction.

• Removal of the S2 tide from the 6-hourly time-series at each location.

• Land regions are assigned 0 Pa.

• Conversion of the total OBP fields at every time step to Stokes coefficients up to d/o 100. These
are the OBA coefficients of AOD1B Release 5.

• Computation of the monthly mean values from the OBA coefficients. This is the AOD1B GAD
Release 5 product.

The AOD1B GAD Release 5 product does thus contain a static residual pressure field of the atmo-
sphere over the ocean for each time step. This static residual pressure over the oceans is equal to
the mean atmospheric pressure over the ocean minus the mean atmospheric pressure for the whole
Earth. A reported deficiency of the OMCT is that it does not include barystatic sea-level changes (which
are present due to changes of the total mass of the ocean) and small-scale eddies which have an im-
portant contribution to the OBP changes in energy rich areas of the ocean[27]. Dobslaw et al. [27]
also reports that over the Arctic Ocean the inverse barometric correction might be inaccurate since the
adjustment to the changes in pressure might be slower or less due to the narrow straits through which
water can flow to the Pacific or Atlantic Ocean. This inaccurate inverse barometric correction might
also be an inaccuracy for AOD1B Release 6 and the products derived from GTSM which are created
in this research.

When creating the AOD1B Release 6 product MPIOM is run by applying atmospheric forcing only.
Therefore, no luni-solar induced tides of the ocean are modeled. The tidal patterns which can be
observed in the model output of MPIOM are due to atmospheric tides. To create the AOD1B OCN
Release 6 product (3-hourly) and AOD1B GAB Release 6 product (monthly) the following steps are
followed [26]:
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• Running the model and storing the total OBP 6-hourly. The epochs are 0h, 3h, 6h, 9h, 12h, 15h,
18h, 21h.

• Removal of the atmospheric surface pressure forcing from the total OBP.

• Removal of the ocean mean water column contribution to the OBP at each time.

• Removal of 12 tidal constituents from the 3-hourly time-series at each location. The removal of
the tidal constituents is done for each year separately. The 12 tidal constituents can be found in
table 4.2.

• Removal of the long-term mean (2003-2014) for each location.

• Removal of 12 tidal constituents from the 3-hourly atmospheric surface pressure time-series at
each location.

• Removal of the long-term mean (2003-2014) of the atmospheric surface pressure at each loca-
tion.

• Applying inverse-barometric correction to the OBP values by adding the local atmospheric pres-
sure minus the ocean mean atmospheric pressure at each location.

• Conversion of the total OBP fields at every time step to Stokes coefficients up to d/o 180. These
are the OCN coefficients of AOD1B Release 6. This conversion is applied by assuming that all
mass variability takes place at the reference ellipsoid described in the IERS conventions 2010.

• Computation of the monthly mean values from the OCN coefficients. This is the AOD1B GAB
Release 6 product.

Table 4.2: 12 tidal constituents removed from AOD1B OCN Release 6 product.

Tidal constituent Frequency (∘/h)

P1 14.9589314

S1 15.0000000

K1 14.0410686

N2 28.4397295

M2 28.9831042

L2 29.5284789

T2 29.9589333

S2 30.0000000

R2 30.0410667

T3 44.9589300

S3 45.0000000

R3 45.0410700

The AOD1B GAB Release 6 product does not contain a static residual pressure field of the atmo-
sphere over the ocean. The AOD1B GAB Release 6 product represents monthly means of the ocean
dynamic contribution to the OBP.

4.2. Method
In this section first some details about the conversion of the AOD1B and ocean tide products to mass-
anomaly time-series is provided. Afterwards, configurations in GTSM are listed like the spin-up period
and the type of output requested. Then the method to make the model output similar to the AOD1B
product is described. A separate section about the conversion of the mass-anomaly time-series to
Stokes coefficients follows. After this, the analysis techniques to compare the separate products are
described.
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4.2.1. Computation of mass-anomaly time-series from ocean tide and AOD1B
products

The ocean tide and AOD1B products are provided up to a different degree. The Release 5 ocean
tide product is provided up to degree 120, the Release 6 ocean tide product up to degree 180, the
AOD1B Release 5 GAD product up to degree 100 and the AOD1B Release 6 GAB product up to
degree 180. For consistency, all products are truncated at degree 100. This is at the cost of the
spatial resolution of certain products. To convert the truncated products to mass-anomaly time-series
a method similar to the method described in section 3.1.3 is applied (see equation 3.18). In contrast
to the method described in section 3.1.3 no long-term is subtracted from the Stokes coefficients before
the conversion into mass-anomaly time-series. The mass-anomaly time-series are computed at a 0.5∘
equiangular grid. For the AOD1B OBP Release 5 coefficients, the ocean mean is not zero. Therefore,
for each epoch the ocean mean is subtracted from the grid of mass-anomalies at that epoch. The
ocean mean is computed similarly to equation 2.24 with as region the total ocean.

4.2.2. Configurations in GTSM
The version of Delft3D-FM which is run is 1.1.270.54102. For each year GTSM is run separately.
Every year has a spin-up period of 16 days so each run starts at the year before 16 December at
0:00h. For each year GTSM is run twice: one time with only meteorological forcing and one time with
both meteorological and tidal forcing. The type of output which is requested is water level. This water
level represents the difference between the instantaneous water column height and the predefined
bathymetry. Two types of output are created: monthly mean output for each grid cell and 3-hourly output
at a 0.5∘ equiangular grid. The 3-hourly output at a 0.5∘ equiangular grid consists of both values for the
water level and the atmospheric surface pressure. This 3-hourly output is stored for the run of GTSM
with only meteorological forcing. Since the ocean tide products are only available as monthly means,
the 3-hourly output of the run of GTSM with both meteorological and tidal forcing is not considered. The
monthly mean output at the computation grid is stored for both runs of GTSM (with only meteorological
forcing and with the total forcing). The stored parameter at the computation grid is in this case only
water level. The monthly mean output is created according to the length of a calendar month. This
choice is made since the products are compared against de-aliasing products and ocean-tidal products
provided by the Graz University of Technology and they use the length of a calendar month to compute
their monthly mean products. GTSM is run for the years 2001 until 2016.

4.2.3. Creation of GTSM products comparable to the AOD1B products
To create a 6-hourly product comparable to the AOD1B OBA Release 5 product the following calcula-
tions are performed:

• For each epoch of the years 2003, 2004, 2005, 2006 and 2007 the water level and atmospheric
surface pressure values are converted to block mean values at a 0.5∘ equiangular grid by com-
puting the average of the four corner points at each location.

• For each of the following years 2003, 2004, 2005, 2006 and 2007 time-series of water level and
atmospheric surface pressure are summed for each location of the newly created 0.5∘ equian-
gular grid. This summation is performed after dividing the atmospheric surface pressure by the
gravitational acceleration and density of water as defined in GTSM. The predefined gravitational
attraction and density of water in GTSM are 9.81 𝑚/𝑠 and 1024 𝑘𝑔/𝑚 .

• For each epoch the ocean mean is computed and consequently removed.

• For each location the yearly mean is subtracted. (Later on, for each year separately comparisons
are made between the GTSM and AOD1B products in the hourly scale.)

• The time-series are then multiplied by 1024 𝑘𝑔/𝑚 and divided by 1000 𝑘𝑔/𝑚 to convert the
time-series in mass-anomaly time-series in EWH.

• For each location the linear trend, annual cycle and the 12 tidal constituents listed in table 4.2 are
estimated by least-squares. Consequently the periodic signal of the S2 tide is removed from the
mass-anomaly time-series.
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To create a 3-hourly product comparable to the AOD1B OCN Release 6 product the same steps are
followed as for the creation of 6-hourly product comparable to the AOD1B OBA Release 5 product. The
only difference is that now all calculations are performed for 3-hourly output and not 6-hourly output.
Furthermore, the last step of the removal of tidal constituents due to the atmospheric tides is different.
Instead of only removing the S2 tide, all 12 tidal constituents listed in table 4.2 are removed from the
mass-anomaly time-series.

The created 3/6-hourly product from GTSM is not converted into Stokes coefficients. In the com-
parison of the monthly time-series it was observed that the conversion of GTSM output into Stokes
coefficients and back did not give new insights about regions where the different models are more
different/similar. Only the small scale features disappeared. When the product derived from GTSM is
directly compared to an AOD1B which is truncated at degree 100, incorrectly small scale differences
between the products can be observed. When GTSM output is converted to the spherical domain
and back these small scale differences disappear. Since the conclusions about the regions where the
different models are more different/similar did not change by the conversion to the spherical domain
and back, it did not seem needed to convert the 3/6-hourly created product of GTSM to the spherical
domain and back. This also saved computation time.

To create a monthly product comparable to the AOD1B GAD Release 5 product the following cal-
culations are performed:

• For each epoch the water level values are converted to block mean values at a 0.5∘ equiangu-
lar grid by computing the average of all computational grid cells present in a certain region of
0.5∘x0.5∘.

• Since certain regions of 0.5∘x0.5∘ size did not contain a computational grid cell (in the Arctic
region) or did only contain grid cells representing land areas during the time of computation, in-
terpolation is needed. In the predefined 0.5∘ equiangular grid containing the block mean values,
first land regions are given value 0. Then linear barycentric interpolation is applied to fill all loca-
tions in the 0.5∘ equiangular grid. For this the Python function scipy.interpolate.griddata
is used.

• The time-series are multiplied by the density predefined in GTSM and consequently divided by
1000 𝑘𝑔/𝑚 in order to get mass-anomaly time-series in m EWH.

• From the hourly atmospheric forcing data a monthly mean atmospheric pressure time-series is
computed for each location of the 0.3∘ equiangular grid.

• Linear barycentric interpolation is applied to the atmospheric forcing data to interpolate to a 0.5∘
equiangular grid. For this again the Python function scipy.interpolate.griddata is used.

• At each monthly epoch the mean oceanic atmospheric surface pressure is removed from the
interpolated atmospheric surface pressure time-series and the residual pressure is consequently
divided by the gravitational acceleration of 9.81 𝑚/𝑠 and density of 1000𝑘𝑔𝑚 . The resulting
product is the monthly time-series of the inverse-barometric correction in m EWH.

• For each location and at each time the inverse-barometric correction is applied to the monthly
water level time-series at the 0.5∘x0.5∘ grid.

• For each location the long-term mean (2001-2002) of the monthly time-series is removed. The
long-term mean is computed by weighting the different months according to their length.

• For each monthly epoch the ocean mean of the mass-anomaly field is removed. Then for each
monthly epoch the ocean mean of the AOD1B GAD Release 5 product is added. As previously
stated, this ocean mean represents the residual atmospheric pressure over the ocean (ocean
mean atmospheric pressure minus global mean atmospheric pressure).

The same steps as above are followed when creating a monthly product comparable to the com-
bination of the products AOD1B GAD Release 5 and ocean tide Release 5. This monthly product is
computed from GTSM output when it is forced with both atmospheric and tidal forcing. No separate
ocean tide product was computed from GTSM. This is not done because when GTSM was run with only
tidal forcing strange features were observed in the Arctic Ocean, Southern Ocean and South Atlantic



80 4. Comparison of GTSM to oceanic background models currently used in GRACE data processing

Ocean. These strange features were locally very large mass-anomalies of about half a meter EWH
which build up during each year. When GTSM is run with only tidal forcing and the monthly means
are stored as output these signals are unexpected. Likely these strange features arise due to errors
in the models which should be solved. For the year 2003, global plots of monthly mean values for the
cases where GTSM is run with only meteorological forcing, only tidal forcing and total forcing are made.
These figures can be found in appendix D. These are just raw output data of water level. Locations
which are non-flooded land areas are still present in these figures as positive values of water level.

To create a monthly product comparable to the AOD1B GAB Release 6 product the same steps as
for the monthly product comparable to the AOD1B GAD Release 5 are applied. The only differences
are in the last two steps. Instead of removing a long-term mean computed from the years 2001-2002,
a long-term mean computed from the years 2003-2014 is removed. Furthermore, for each monthly
epoch the ocean mean of the mass-anomaly field is removed and no ocean mean from an AOD1B
product is consequently added.

The same steps as for the creation of a monthly product similar to the AOD1B GAB Release 6
product are followed when creating a monthly product comparable to the combination of the products
AOD1B GAB Release 6 and ocean tide Release 6. This monthly product is computed from GTSM
output when it is forced with both atmospheric and tidal forcing.

To compare the GTSM-based monthly time-series to the AOD1B monthly products the time-series
are converted to Stokes coefficients up to degree 100 and consequently converted back to mass-
anomalies in the spatial domain. These steps reduce the spatial resolution of the mass-anomaly time-
series created from GTSM and makes the spatial resolution of the GTSM-based monthly time-series
similar to the AOD1B products (which are truncated at degree 100). The conversion of mass-anomalies
to Stokes coefficients is described in the next section. The conversion back to the spatial domain is
again performed with equation 3.18.

4.2.4. Conversion of mass-anomaly time-series at a structured grid to Stokes
coefficients

This section is about the conversion of temporal variations of mass in EWH at a structured grid to
temporal variations of Stokes coefficients. The temporal variations in mass are always 0 at gridpoints
which are at land.

Coordinate conversion of gridpoints in structured grid
When the structured grid is defined in geodetic coordinates (which is for example the case for output
retrieved from GTSM which uses WGS84 as coordinate reference system) the geodetic colatitudes
first have to be converted to geocentric colatitudes since for all equations in the sections 4.2.4 and
4.2.4 the colatitude is the geocentric colatitude. With the following equation geodetic colatitudes can
be converted to geocentric colatitudes [24]:

𝜃 = 𝐴𝑇𝐴𝑁2 (sin (𝜃 ) , (1 − 𝑓) cos (𝜃 )) (4.3)

where 𝜃 is the geocentric colatitude, 𝜃 is the geodetic colatitude, 𝑓 = . is the Earth’s flattening
according to WGS84 [59] and where:

𝐴𝑇𝐴𝑁2 (𝑦, 𝑥) =
⎧⎪
⎨⎪⎩

arctan ( ) if 𝑥 > 0

arctan ( ) + 𝜋 if 𝑥 < 0
if 𝑥 = 0

In equation 4.3 it is assumed that 0 < 𝜃 < 2𝜋 (i.e., the structured grid of geodetic coordinates has
no grid points at the poles). By using equation 4.3 a structured grid of geodetic coordinates can be
turned into a structured grid of geocentric coordinates. In the following sections 𝜃 always refers to the
geocentric colatitude.
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Relation between Stokes coefficients and mass anomalies in EWH
The temporal variations of Stokes coefficients can be expressed as function of temporal variations of
mass in EWH (Δ𝐻 (𝜃, 𝜆)) as explained in section 3.1.3:

Δ𝐶 = 𝑅
𝑀 (2𝑙 + 1) ∫ ∫ (1 + 𝑘 )⎛

⎝

1 − 𝑓

√1 − 𝑒 sin (𝜃)
⎞

⎠

𝜌 Δ𝐻 (𝜃, 𝜆) �̄� (𝜃, 𝜆) sin (𝜃) 𝑑𝜃 𝑑𝜆

(4.4)
For this equation it is assumed that all mass transport takes place in a thin layer at the surface of the
Earth and that this surface is the WGS84 reference ellipsoid.

Computation of Stokes coefficients from mass anomalies in EWH at structured grid
The integrals in equation 4.4 can be numerically approximated:

∫ ∫ (1 + 𝑘 )⎛

⎝

1 − 𝑓

√1 − 𝑒 sin (𝜃)
⎞

⎠

𝜌 Δ𝐻 (𝜃, 𝜆) �̄� (𝜃, 𝜆) sin (𝜃) 𝑑𝜃 𝑑𝜆

≈ ∑ ∑ (1 + 𝑘 )⎛

⎝

1 − 𝑓

√1 − 𝑒 sin (𝜃 )
⎞

⎠

𝜌 Δ𝐻 (𝜃 , 𝜆 ) �̄� (𝜃 , 𝜆 ) sin (𝜃 ) Δ𝜃 Δ𝜆

(4.5)

where 𝜃 is the series of in value increasing colatitudes of the structured grid, 𝜆 is the series of in value
increasing longitudes of the structured grid and where:

Δ𝜃 =
⎧

⎨
⎩

(𝜃 − 𝜃 ) /2 + 𝜃 if 𝑗 = 1
(𝜃 − 𝜃 ) /2 + 𝜋 − 𝜃 if 𝑗 = 𝑗
(𝜃 − 𝜃 ) /2 if 1 < 𝑗 < 𝑗

(4.6)

Δ𝜆 = {
(𝜆 − (𝜆 − 2𝜋)) /2 if 𝑖 = 1
((𝜆 + 2𝜋) − 𝜆 ) /2 if 𝑖 = 𝑖
(𝜆 − 𝜆 ) /2 if 1 < 𝑖 < 𝑖

(4.7)

If the set of longitudes is equidistant (which is the case in the considered structured grids), equation
4.7 reduces to:

Δ𝜆 = 2𝜋
𝑖 (4.8)

To compute the temporal variations of Stokes coefficients from temporal variations of mass-anomaly
in EWH at a structured grid in geocentric coordinates the numerical approximation shown in equation
4.5 is used. The resulting equation to compute the Stokes coefficients becomes:

Δ𝐶 = 𝑅
𝑀 (2𝑙 + 1) ∑ ∑ (1 + 𝑘 )⎛

⎝

1 − 𝑓

√1 − 𝑒 sin (𝜃 )
⎞

⎠

𝜌 Δ𝐻 (𝜃 , 𝜆 ) �̄� (𝜃 , 𝜆 ) sin (𝜃 ) Δ𝜃 Δ𝜆

(4.9)
with 𝜃 and 𝜆 in value increasing series and Δ𝜃 and Δ𝜆 defined as in equations 4.6 and 4.7.

4.2.5. 3/6-hourly time-series comparison between GTSM and AOD1B products
To compare the 3/6-hourly GTSM product to the 3/6-hourly AOD1B products the yearly mean is sub-
tracted from the mass-anomaly grids computed from the AOD1B products. This is done for each of the
considered years 2003, 2004, 2005, 2006 and 2007 separately. For each locations at the 0.5∘ equian-
gular grid a difference time-series is computed by subtracting the mass-anomaly time-series derived
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from GTSM from the mass-anomaly time-series of AOD1B. From this difference time-series the stan-
dard deviation is computed. Since the mean difference is 0, the computed values are equal to RMS
differences. Consequently, for each year the standard deviation of the difference in mass-anomaly is
plotted globally. Besides this, regional average std’s of the differences in mass-anomaly time-series
are reported. These are computed by using equation 3.19. Furthermore the std’s of the differences
in mass-anomaly are shown versus bathymetry to see whether differences between the models are
larger for certain ocean depths. For this, all locations are categorized in depths of bin width 100 m.
Consequently the average standard deviation for each bin is computed according to equation 2.24 by
considering a bin as an area.

Again buffer zones are incorporated in the analysis when the standard deviation of the difference
mass-anomaly time-series are plotted versus bathymetry. Although the buffer zones are in the previous
chapter introduced because of signal leakage from land to ocean, still buffer zones are included in this
analysis. The Gibbs phenomenon, which is present due to the large changes in mass-anomaly at the
coast (land is always defined as 0 m EWH) for the AOD1B products, could result in large differences
close to the coast with respect to the GTSM time-series. Although, the Gibbs phenomenon is present
over large areas, it is the largest close the coast so a buffer zone might partly reduce the differences
caused by the Gibbs phenomenon. Furthermore, since the AOD1B products are truncated to degree
100 a part of the oceanic signal leaks into the land by the reduction of the spatial resolution. Therefore,
it is not a good idea to incorporate the regions close to the coast in the analysis of the difference mass-
anomaly time-series. Therefore, again two different buffer zones (200 and 400 km) are incorporated in
the analysis to disregard the areas close to the coast.

Besides an analysis of the differences between GTSM and the AOD1B products at the hourly scale,
AOD1B Release 5 OBP and AOD1B Release 6 OCN are compared directly. Besides the removal of the
yearly mean for both products and the removal of the ocean mean for AOD1B Release 5 removal, two
additional adaptations have to be performed to make the comparison. AOD1B Release 6 OCN time-
series must be reduced to a 6-hourly time-series. For AOD1B Release 5 OBP all 12 tidal constituents
as observed in table 4.2 should be removed since these are also removed from AOD1B Release 6
OCN. Furthermore, to observe for which area which of the models (OMCT, MPIOM and GTSM) are
more close in performance, distance plots will be constructed where distances represent differences
between certain models. To make these distance plots, normalization of the standard deviations is
needed. Therefore, for each region the standard deviations of the difference time-series are divided
by the standard deviation of the difference time-series between AOD1B Release 5 OBP and AOD1B
Release 6 OCN. For consistency, a new difference time-series is computed between AOD1B Release 5
OBP and GTSM where all 12 tidal constituents according to table 4.2 are removed in both time-series.
In the distance plot the standard deviation of this difference mass-anomaly time-series will be used
instead of the standard deviation of the difference time-series between AOD1B Release 5 OBP and
GTSM where only the S2 tidal constituent was removed. In this way, the distances in the distance plot
represent differences between the different models without differences which are due to atmospheric
tides.

Apart of the above described comparison of 3/6-hourly time-series a Fourier analysis is performed
to see whether the GTSM showed signals of different frequency than the currently considered oceanic
background models in GRACE data processing. The Fourier analysis is performed for separate oceanic
regions. For this, first the mean time-series for each region is calculated with equation 2.24. Conse-
quently the Fourier analysis is performed and amplitude spectra are made. The shown amplitudes are
harmonic coefficients. It is also analyzed if the models are more different in the low or high frequen-
cies. For this the standard deviation of the differences in amplitude are computed for certain frequency
ranges. Low frequencies are defined as being lower than 1/31 cycles per day and high frequencies
higher than this value. This choice is made to observe whether the time-series differ more in the sub-
monthly frequencies or in frequencies with a period larger than a month. Since the AOD1B Release 6
product is 3-hourly the maximum frequency for this time-series is 4 cycles per day instead of 2 cycles
per day for the AOD1B Release 5 product. For consistency, the frequency range between 1/31 and 2
cycles per day is also analyzed for the differences in amplitude between AOD1B Release 6 and GTSM.
The standard deviations of the difference in amplitudes (AOD1B product minus GTSM) for a certain
frequency range is reported. Also the ratio of the standard deviation of the difference in amplitudes for
the low and high frequency is reported.
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4.2.6. Monthly time-series comparison between GTSM and AOD1B products
For the monthly time-series comparison the time span of the considered monthly time-series is Jan-
uary 2003 - March 2016. For each locations at the 0.5∘ equiangular grid a difference time-series is
computed by subtracting the mass-anomaly time-series deduced from GTSM from the mass-anomaly
time-series of AOD1B. Four GTSM derived mass-anomaly time-series are considered which were made
in order to compare GTSM against AOD1B GAD Release 5, AOD1B GAD Release 5 + Ocean tides
Release 5, AOD1B GAB Release 6 and AOD1B GAB Release 6 + Ocean tides Release 6. From this
difference time-series the standard deviation is computed. The standard deviation of the difference
in mass-anomaly is plotted globally. Besides this, regional average std’s of the differences in mass-
anomaly time-series are reported. Also the std’s of the differences in mass-anomaly are shown versus
bathymetry. A similar distance plot as described in section 4.2.5 is constructed for the monthly time-
series by normalizing to the standard deviation of differences between AOD1B GAD Release 5 and
AOD1B GAB Release 6. To compute monthly difference mass-anomaly time-series between AOD1B
GAD Release 5 and AOD1B GAB Release 6, the AOD1B GAD Release 5 time-series are adapted to
make those consistent to the AOD1B GAB Release 6 time-series. For this, for each epoch the ocean
mean is subtracted from the AOD1B GAD Release 5 time-series. Furthermore, for both time-series
(AOD1B GAD Release 5 and AOD1B GAB Release 6) the same long-term mean (January 2003 -
March 2016) is subtracted.

4.3. Results and discussion
This section is about the comparison of time-series computed by the currently used oceanic background
models in GRACE data processing and time-series computed by GTSM. First the 3/6-hourly time-series
are compared. Thereafter, the frequency analysis of the 3/6-hourly time-series follows. Afterwards, the
monthly time-series are discussed.

4.3.1. 3/6-hourly time-series comparison
Since the results for the years 2003, 2004, 2005, 2006, 2007 are very similar. Therefore, figures for
only the year 2003 are shown in this section.

In figures 4.3, 4.4 and 4.5 the standard deviations of the difference mass-anomaly time-series are
shown globally. In table 4.3 and 4.4 regional average standard deviations are shown. In general it can
be observed that GTSM does differ more from AOD1B Release 5 OBP than from AOD1B Release 6
OCN. From the globally plotted standard deviations it can be observed that GTSM clearly differs more
from AOD1B Release 5 OBP than from AOD1B Release 6 OCN for the regions:

• Hudson Bay
• East Siberian Antarctic Shelf
• Arctic Ocean
• Southern Ocean
• Arafura Sea
• Baltic Sea
Except for the Baltic Sea, the list above shows regions where GRACE Release 6 solutions showed

a smaller signal variance than GRACE Release 5 solutions. In the regions (Hudson Bay and East
Siberian Antarctic Shelf) where it seems that GRACE Release 6 solutions are better than GRACE
Release 5 solutions, GTSM is more close to the AOD1B Release 6 than AOD1B Release 5 product.
For these regions it is thus also expected that GTSM can improve the GRACE Level-2 data of Release
5. From the globally plotted standard deviations and table 4.3 it can be clearly observed that GTSM
differs less from AOD1B Release 5 OBP than from AOD1B Release 6 OCN for the Gulf of Thailand
and the North Sea. The regions where a clear difference in quality between Release 5 and Release 6
GRACE Level-2 data is observed (Hudson Bay and East Siberian Arctic Shelf, see figures 3.15, 3.19
and 3.24) correlate to regions where the AOD1B products differ significantly (see figure 4.5). This
makes it likely that the oceanic background models do significantly influence the quality of GRACE
Level-2 data. When observing

Regions which show in general large differences between GTSM and the AOD1B products are:
• Arctic Ocean
• Baltic Sea
• Black Sea
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• North Sea
• Gulf of Thailand
• Arafura Sea
• Bering Strait
• Hudson Bay
• Red Sea
• Coastal regions around Eurasia in general

The list above goes along with mostly shallow regions (see figure 4.1). In figure 4.7 where the
standard deviation of the difference time-series is plotted versus bathymetry it can also be observed
that differences are larger for shallow regions. The regions where no differences are observed between
mass-anomaly time-series computed by GTSM and mass-anomaly time-series of the AOD1B products
are regions where no improvement can be made by switching to GTSM in GRACE data processing. For
the large open oceans (Atlantic, Pacific) less potential improvements are expected since the standard
deviation of the difference mass-anomaly time-series is only 1.8-2.0 cm EWH. When comparing figure
4.5 with figures 4.3 and 4.4, it can be observed that in general the regions of large differences are
similar for the three considered models. These differences might also be due to differences in phase
of similar signals. In table 4.4 it can be observed that the differences between AOD1B OBP Release
5 and GTSM are smaller when from both time-series all 12 tidal constituents (table 4.2) are removed.
A part of the differences between AOD1B OBP Release 5 and GTSM are thus due to differences in
the response to atmospheric tides. In figure 4.6 a distance plot is shown for the monthly time-series to
visualize table 4.4. From this figure it can be easily observed that for most regions GTSM is closer to
AOD1B OCN Release 6 than AOD1B OBP Release 5.

Figure 4.3: Standard deviation of the 6-hourly difference mass-anomaly time-series for the year 2003. This difference mass-
anomaly time-series is computed by subtracting GTSM from AOD1B OBP Release 5.
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Figure 4.4: Standard deviation of the 6-hourly difference mass-anomaly time-series for the year 2003. This difference mass-
anomaly time-series is computed by subtracting GTSM from AOD1B OCN Release 6.

Figure 4.5: Standard deviation of the 6-hourly difference mass-anomaly time-series for the year 2003. This difference mass-
anomaly time-series is computed by subtracting AOD1B OBP Release 5 (after removal of 12 tidal constituents) from AOD1B
OCN Release 6.
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Table 4.3: Regional averages of the standard deviation in cm EWH of the difference mass-anomaly times-series at the hourly
scale. The results for the difference mass-anomaly time-series for the years 2003, 2004, 2005, 2006 and 2007 are shown.

AOD1B Release 5 OBP - GTSM AOD1B Release 6 OCN - GTSM
Year 2003 2004 2005 2006 2007 2003 2004 2005 2006 2007

Total ocean 2.565 2.525 2.559 2.540 2.587 2.276 2.235 2.257 2.290 2.282

Arafura Sea 8.773 7.976 7.884 8.555 8.734 6.451 5.935 5.630 6.959 6.077

Arctic Ocean 5.763 5.637 5.744 5.624 5.991 4.077 3.999 4.407 4.338 4.260

Baltic Sea 14.671 15.477 15.925 13.202 18.417 9.828 10.227 10.426 9.401 11.727

Black Sea 8.379 8.801 9.123 9.328 8.520 8.791 7.360 8.872 8.989 7.562

Gulf of
Thailand

6.136 5.201 6.409 5.068 5.907 8.509 7.274 8.257 7.259 9.376

Indian Ocean 2.387 2.226 2.233 2.410 2.274 2.345 2.292 2.180 2.347 2.303

Mediterranean
Sea

2.496 2.696 2.495 2.563 2.366 2.169 2.103 2.152 2.086 2.283

North Atlantic
Ocean

1.623 1.559 1.628 1.540 1.613 1.518 1.512 1.570 1.508 1.572

North Pacific
Ocean

1.846 1.984 1.919 1.885 1.856 1.816 1.857 1.783 1.772 1.762

North Sea 6.863 7.307 8.349 7.693 8.388 8.429 8.605 8.862 8.592 9.396

South Atlantic
Ocean

2.068 1.955 2.026 2.051 2.064 1.877 1.842 1.817 1.989 1.898

South China
and
Archipelagic
Seas

2.681 2.515 2.691 2.704 2.745 3.139 3.058 3.209 3.173 3.415

South Pacific
Ocean

1.933 1.944 1.947 1.890 1.831 1.764 1.716 1.685 1.684 1.657

Southern
Ocean

2.988 2.964 3.009 3.032 3.002 2.557 2.523 2.620 2.658 2.544



4.3. Results and discussion 87

Table 4.4: Regional averages of the standard deviation in cm EWH of difference mass-anomaly times-series at the hourly scale.
Results for the difference mass-anomaly time-series for the year 2003 are shown. Note that a distinction is made between AOD1B
OBP time-series where only the S2 tide is removed and where all 12 tidal constituents according to table 4.2 are removed. In all
cases the GTSM time-series are made consistently to the specific AOD1B products (by removal of specific atmospheric tides).

AOD1B OBP
Release 5 -
GTSM

AOD1B OBP
Release 5 (12
tidal
constituents
removed) -
GTSM

AOD1B OCN
Release 6 -
GTSM

AOD1B OCN
Release 6 -
AOD1B OBP
Release 5 (12
tidal
constituents
removed)

Total ocean 2.565 2.495 2.276 2.143

Arafura Sea 8.773 8.485 6.451 8.236

Arctic Ocean 5.763 5.723 4.077 5.328

Baltic Sea 14.671 14.665 9.828 10.610

Black Sea 8.379 8.378 8.791 6.018

Gulf of Thailand 6.136 6.085 8.509 8.250

Indian Ocean 2.387 2.330 2.345 1.657

Mediterranean Sea 2.496 2.479 2.169 2.157

North Atlantic Ocean 1.623 1.549 1.518 1.229

North Pacific Ocean 1.846 1.746 1.816 1.451

North Sea 6.863 6.794 8.429 8.122

South Atlantic Ocean 2.068 2.000 1.877 1.723

South China and
Archipelagic Seas

2.681 2.510 3.139 3.102

South Pacific Ocean 1.933 1.835 1.764 1.428

Southern Ocean 2.988 2.936 2.557 2.652
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Figure 4.6: Distance plot where distances represent normalized differences between different ocean models. For each region
the regional average std (as reported in table 4.4) is divided by the regional average std of difference time-series between AOD1B
OBP Release 5 and AOD1B OCN Release 6. The considered time-series are at the hourly scale and are those where all 12 tidal
constituents are removed according to table 4.2.
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Figure 4.7: Standard deviation of the 3/6-hourly difference mass-anomaly time-series versus bathymetry for the year 2003. These
difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release 5 (red) and subtracting
GTSM from AOD1B OCN Release 6 (blue).

The standard deviation of the difference time-series versus bathymetry are also plotted for each
region separately. Three regions (Southern Ocean, Indian Ocean and South Atlantic Ocean) are shown
in figures 4.8, 4.9 and 4.10. These three regions show not such a clear sign of larger standard deviation
for shallow regions. So there are also some deep regions where GTSM significantly differs from the
currently used oceanic background models. A full list of standard deviation versus bathymetry for the
considered oceanic regions can be found in Appendix C. Since GTSM has a grid densification in shallow
regions it is expected that GTSM performs better in shallow regions and thus differ more from the
currently used oceanic background models. It could be that the deeper areas in the Southern Ocean,
South Atlantic Ocean and Indian Ocean are in steep regions where also grid densification in GTSM is
present. It could be that because of this grid densification in GTSM in these regions, GTSM performs
better than the currently used oceanic background models. Other reasons are also be possible for
differences in performance. For example, it could be that in these areas pressure-induced currents
are present which are not modeled by GTSM or that dissipation mechanisms are modeled differently
which also influence the (remaining) flow. Differences in the models indicate that it is expected that
one of the models is better, but this does not have to be the case. When models differ significantly it is
also possible that both models are inaccurate but for different reasons. For the South Atlantic Ocean
(figure 4.10) it an increase of the difference can be observed around 6000 m depth. In figures 4.3 and
4.4 it can be observed that in the Argentine Basin the differences between the models are large and
according to figure 4.1 the depth is also reaching 6000 m in this area. So the increase of differences
around 6000 m might correlate to the Argentine Basin. In general, it must be mentioned that sometimes
the amount of locations per bin can be very small (for example for the bins of large depth). It could be
that the bins to which a small amount of locations is categorized are more erroneous. A large standard
deviation for one location will not be averaged out by the other locations categorized in the same bin
when there are only a few locations categorized in a certain bin.
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Figure 4.8: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
Southern Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release
5 (red) and subtracting GTSM from AOD1B OCN Release 6 (blue).

Figure 4.9: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
Indian Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release 5
(red) and subtracting GTSM from AOD1B OCN Release 6 (blue).
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Figure 4.10: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
South Atlantic Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP
Release 5 (red) and subtracting GTSM from AOD1B OCN Release 6 (blue).

4.3.2. Fourier analysis of basin average 3/6-hourly time-series

After performing a frequency analysis to the basin average mass-anomaly time-series for each region,
differences in the amplitude spectra of the different models are calculated. The standard deviation
of the differences in amplitudes for the low and high frequency regions are consequently separately
calculated. In table 4.5 the standard deviation of the differences in amplitudes for different oceanic
regions are shown. It can be observed that for the large oceanic regions (Arctic Ocean, Indian Ocean,
South Atlantic Ocean, Pacific Ocean) except the North Atlantic Ocean and Southern Ocean the stan-
dard deviation of differences in amplitude for the frequencies lower than 1/31 cycles per day are larger
for AOD1B Release 6 than for AOD1B Release 5. Also the ratio’s of std’s (low/high (limited)) are larger
for AOD1B Release 6 than for AOD1B Release 5 for these regions. Also for some other regions (Gulf
of Thailand, Mediterranean Sea, North Sea, South China and Archipelagic Seas) this is the case. It
seems that for most regions AOD1B Release 5 (compared to AOD1B Release 6) differs more from
GTSM in the low frequencies. This can explain why GTSM is in general more close to AOD1B Release
5 than to AOD1B Release 6 for monthly time-series (which is discussed in section 4.3.3). In the high
frequency range (1/31 - 2 cycles per day) GTSM differs more from AOD1B Release 5 than AOD1B
Release 6 expect for the regions Black Sea, Gulf of Thailand, North Sea and Southern Ocean. From
table 4.5 it can also be observed that the ratio of std’s goes up for AOD1B Release 6 when the high
frequencies are not limited to a maximum frequency of 2 cycles per day. This implies that there are
less differences in the high frequencies range of 2-4 cycles per day than in the range 1/31-2 cycles per
day.
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Table 4.5: Standard deviation in cm EWH of the differences in amplitudes after performing a frequency analysis to basin average
mass-anomaly time-series. The low frequencies have as maximum 1/31 cycles per day. The high frequencies are unlimited or
limited to a maximum frequency of 2 cycles per day.

AOD1B Rl 5 OBP - GTSM AOD1B Rl 6 OCN - GTSM
Std for
low
frequen-
cies

Std for
high
frequen-
cies

Ratio of
std’s
(low/high)

Std for
low
frequen-
cies

Std for
high
frequen-
cies
(limited)

Ratio of
std’s
(low/high
(limited))

Std for
high
frequen-
cies

Ratio of
std’s
(low/high)

Arafura Sea 0.969 0.146 6.653 0.505 0.107 4.728 0.077 6.530

Arctic Ocean 0.260 0.034 7.752 0.377 0.027 14.208 0.019 20.110

Baltic Sea 1.156 0.245 4.716 0.817 0.237 3.450 0.174 4.682

Black Sea 0.995 0.147 6.748 0.894 0.151 5.932 0.107 8.327

Gulf of
Thailand

0.704 0.134 5.242 2.477 0.156 15.839 0.113 21.918

Indian Ocean 0.111 0.019 5.871 0.130 0.017 7.508 0.012 10.608

Mediterranean
Sea

0.225 0.079 2.841 0.349 0.043 8.176 0.030 11.528

North Atlantic
Ocean

0.086 0.016 5.418 0.058 0.015 3.992 0.010 5.616

North Pacific
Ocean

0.082 0.013 6.457 0.159 0.011 15.064 0.008 21.071

North Sea 0.431 0.118 3.642 1.151 0.175 6.583 0.123 9.335

South Atlantic
Ocean

0.070 0.016 4.358 0.077 0.014 5.491 0.010 7.718

South China
and
Archipelagic
Seas

0.115 0.027 4.302 0.252 0.026 9.888 0.018 13.964

South Pacific
Ocean

0.067 0.013 5.288 0.086 0.010 8.998 0.007 12.629

Southern
Ocean

0.144 0.028 5.180 0.143 0.029 4.876 0.021 6.803

In figures 4.11, 4.12, 4.13 and 4.14 frequency analyses for the North Pacific Ocean and the Mediter-
ranean Sea are shown. In general, it can be observed that the amplitudes for the lower frequencies are
larger for all considered ocean models than for the higher frequencies. The energy distribution over
high and low frequencies is thus quite similar for the different ocean models. Since a frequency anal-
ysis is performed for basin average mass-anomaly time-series, it is expected that signals of smaller
wavelength are more damped than signals of larger wavelength. Especially for the large ocean basins
as for example the North Pacific Ocean it can be that signals of small wavelength are averaged out
since similar signals with a different phase are present in the same ocean basin.

When comparing the amplitude spectra for the North Pacific Ocean, it can be observed that AOD1B
Release 5 OBP product indeed contains the S1 tide (due to atmospheric tidal forcing). To make GTSM
output comparable to the AOD1B Release 6 OCN product the tidal signals of frequencies of table 4.2
were removed. It seems that the method to remove the tides from GTSM output by least-squares
estimation works well since for example the S1 and M2 tides are clearly removed from the signal for
the North Pacific Ocean. For the lowest frequencies (up to 1/31 cycles per day) it seems that GTSM is
more different from AOD1B Release 6 OCN than from AOD1B Release 5 OBP which corresponds to
the results presented in table 4.5. When comparing the amlitude spectra for the Mediterranean Sea it
can be observed that the differences in amplitudes for the frequency range 0.04-0.5 cycles per day is
quite large for AOD1B Release 5 OBP and GTSM. These are differences in the high frequencies and
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thus contributes to the observation that AOD1B Releaes 5 OBP differs more from GTSM in the higher
frequencies than AOD1B Release 6.

Figure 4.11: Frequency analysis of basin-average mass-anomaly time-series (year 2003) for the North Pacific Ocean. The
considered time-series are derived from the AOD1B Release 5 OBP product and GTSM forced by only meteorological forcing.
For all frequencies the amplitudes (harmonic coefficients). The absolute difference of the amplitudes is shown in purple. A
moving average of 3 elements is applied to the amplitude spectra. The gray vertical line is at 1/31 cycles per day.

Figure 4.12: Frequency analysis of basin-average mass-anomaly time-series (year 2003) for the North Pacific Ocean. The
considered time-series are derived from the AOD1B Release 6 OCN product and GTSM forced by only meteorological forcing.
For all frequencies the amplitudes (harmonic coefficients). The absolute difference of the amplitudes is shown in purple. A
moving average of 3 elements is applied to the amplitude spectra. The gray vertical line is at 1/31 cycles per day.
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Figure 4.13: Frequency analysis of basin-average mass-anomaly time-series (year 2003) for the Mediterranean Sea. The
considered time-series are derived from the AOD1B Release 5 OBP product and GTSM forced by only meteorological forcing.
For all frequencies the amplitudes (harmonic coefficients). The absolute difference of the amplitudes is shown in purple. A
moving average of 3 elements is applied to the amplitude spectra. The gray vertical line is at 1/31 cycles per day.

Figure 4.14: Frequency analysis of basin-average mass-anomaly time-series (year 2003) for the Mediterranean Sea. The
considered time-series are derived from the AOD1B Release 6 OCN product and GTSM forced by only meteorological forcing.
For all frequencies the amplitudes (harmonic coefficients). The absolute difference of the amplitudes is shown in purple. A
moving average of 3 elements is applied to the amplitude spectra. The gray vertical line is at 1/31 cycles per day.

4.3.3. Monthly time-series comparison
In figures 4.15 and 4.16 the standard deviations of the monthly difference mass-anomaly time-series
are shown globally. The monthly mass-anomaly time-series for these figures are a combination of both
tidal and meteorological-forced dynamics. The global pattern of the calculated standard deviations was
similar for the monthly mass-anomaly time-series of only meteorological-forced dynamics. The globally
calculated standard deviations for these time-series can be found in Appendix C. In Appendix C also
a global plot of the standard deviations of the monthly difference mass-anomaly time-series between
AOD1B GAB Release 6 and AOD1B GAD Release 5 can be found. The monthly time-series have
as duration January 2003 until March 2016. In table 4.6 the regional average standard deviations are
shown. Again a distance plot is made to visualize the regional differences between GTSM, AOD1B
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GAD Release 5 and AOD1B GAB Release 6. This distance plot can be found in figure 4.17. In figures
4.18 and 4.19 the standard deviations are plotted versus bathymetry for the whole ocean.

Figure 4.15: Standard deviation of the monthly difference mass-anomaly time-series. This difference mass-anomaly time-series
is computed by subtracting GTSM (run with both tidal and meteorological forcing) from the AOD1B GAD Release 5 product plus
the ocean tide Release 5 product.

Figure 4.16: Standard deviation of the monthly difference mass-anomaly time-series. This difference mass-anomaly time-series
is computed by subtracting GTSM (run with both tidal and meteorological forcing) from the AOD1B GAB Release 6 product plus
the ocean tide Release 6 product.
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Table 4.6: Regional averages of the standard deviation in cm EWH of the difference mass-anomaly times-series. The results for
the difference mass-anomaly time-series for the hourly time-series (for the year 2003) and the monthly time-series are shown. For
the monthly difference time-series only meteorological-forced dynamics and the combination of tidal and meteorological-forced
dynamics are considered.

Std of hourly time-
series differences

Std of monthly time-series differences

AOD1B
Release 5

OBP -
GTSM

AOD1B
Release 6

OCN -
GTSM

AOD1B
Release 5

GAD -
GTSM

AOD1B
Release 6

GAB -
GTSM

AOD1B
Release 5

GAD +
Ocean
tides -
GTSM

AOD1B
Release 6

GAB +
Ocean
tides -
GTSM

AOD1B
GAB

Release 6
- AOD1B

GAD
Release 5

Total ocean 2.565 2.276 1.430 1.505 1.595 1.672 1.340

Arafura Sea 8.773 6.451 7.034 6.553 7.822 6.847 5.472

Arctic Ocean 5.763 4.077 3.142 2.383 3.101 2.648 2.803

Baltic Sea 14.671 9.828 6.834 4.438 7.029 4.809 4.372

Black Sea 8.379 8.791 6.791 5.603 6.934 5.618 6.158

Gulf of Thailand 6.136 8.509 4.391 8.242 5.328 9.412 6.287

Indian Ocean 2.387 2.345 1.309 1.640 1.502 1.791 1.194

Mediterranean
Sea

2.496 2.169 1.158 1.944 1.354 2.066 1.594

North Atlantic
Ocean

1.623 1.518 0.860 0.916 1.043 1.091 0.841

North Pacific
Ocean

1.846 1.816 0.957 1.133 1.173 1.311 0.897

North Sea 6.863 8.429 2.603 3.489 2.805 3.530 3.332

South Atlantic
Ocean

2.068 1.877 1.057 1.191 1.249 1.378 1.193

South China and
Archipelagic
Seas

2.681 3.139 2.294 3.097 2.563 3.368 2.432

South Pacific
Ocean

1.933 1.764 0.908 0.990 1.061 1.126 0.917

Southern Ocean 2.988 2.557 1.951 1.645 2.231 1.819 1.833
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Figure 4.17: Distance plot where distances represent normalized differences between different ocean models. For each region
the regional average std (as reported in table 4.6) is divided by the regional average std of difference time-series between AOD1B
GAD Release 5 and AOD1B GAB Release 6. The considered time-series are at the monthly scale.
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Figure 4.18: Standard deviation of the monthly difference mass-anomaly time-series versus bathymetry for the total ocean.
These difference mass-anomaly time-series are computed by subtracting GTSM (run with only meteorological forcing) from
AOD1B GAD Release 5 (red) and subtracting GTSM (run with only meteorological forcing) from AOD1B GAB Release 6 (blue).

Figure 4.19: Standard deviation of the monthly difference mass-anomaly time-series versus bathymetry for the total ocean.
These difference mass-anomaly time-series are computed by subtracting GTSM (run with both tidal and meteorological forcing)
from AOD1B GAD Release 5 + ocean tide Release 5 (red) and subtracting GTSM (run with both tidal and meteorological forcing)
from AOD1B GAB Release 6 + ocean tide Release 6 (blue).

It can be observed that the global patterns of small and large differences between GTSM and the
AOD1B products are similar for the 3/6-hourly time-series and monthly time-series (see figures 4.3,
4.4, C.8 and C.9 and table 4.6). The largest differences are thus observed for shallow regions up to
200 m and the Red Sea, Black Sea and Arctic Ocean. The magnitude of the differences is smaller
for the monthly time-series than for the hourly time-series. When considering monthly time-series the
standard deviation is calculated from the differences of monthly mean values. In the monthly mean
values high frequency signals (frequencies of a period smaller than a month) are largely (or totally)
averaged out. Therefore, it is logical that the standard deviation of the difference mass-anomaly time-
series are smaller for the monthly than the 3/6-hourly time-series.

For the regions where GRACE Level-2 data product for Release 6 seems better than for Release
5 (Hudson Bay and East Siberian Antarctic Shelf) the monthly time-series of GTSM are more close
to AOD1B GAB Release 6 than to AOD1B GAD Release 5. For most regions (except Baltic Sea,
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Black Sea, Arctic Ocean, Southern Ocean and Arafura Sea) GTSM shows on the monthly scale more
agreement with AOD1B GAD Release 5. This can also be observed in figure 4.17. In section 4.3.2
it was already observed that GTSM differed in general less from AOD1B OBP Release 5 than from
AOD1B OCN Release 6 for the frequencies smaller than 1/31 cycles per day. So it seems that GTSM
is in the low frequencies more close to AOD1B GAD Release 5 and in the high frequencies more close
to AOD1B GAB Release 6. Also from the plotted signal standard deviations versus bathymetry (figures
4.18 and 4.19) it can be observed that the monthly GTSM time-series are on the monthly scale close
to AOD1B Release GAD 5 than AOD1B GAB Release 6 except for swallow regions up to a depth of
approximately 350 m.

From table 4.6 it can also be observed that when GTSM is run with both tidal and meteorological
forcing, it differs more from the AOD1B product + ocean tide product than when it is only run with
meteorological forcing and compared to the AOD1B product only. Clearly the ocean tides are mod-
eled differently by the currently used ocean tide background models and GTSM. It is also possible
that non-linear interactions between tides and meteorological-forced dynamics in GTSM are a part
of these differences since the GTSM time-series is compared against a combination time-series of a
separately modeled ocean tide and meteorological-forced signal. Also from figures 4.18 and 4.19 it
can be observed that for all depths the differences become larger when the tidal signals are included.
Since non-linear interaction is more dominant in the swallow regions, it seems that the large differ-
ences arising when tidal signals are included are mostly due to a different way of tidal modeling (and
not predominantly due to the non-linear interaction present in GTSM).

4.4. Summary and remarks
For both 3/6-hourly time-series and monthly time-series the largest differences between the considered
oceanic models (GTSM, OMCT and MPIOM) can be found in shallow areas up to 200 m, Red Sea,
Black Sea and Arctic Ocean. Differences in computed mass-anomaly time-series by the different mod-
els can have a large variety of reasons. For example, especially in shallow regions, the bathymetry
has a large influence on the velocity and the bathymetry in the models might be quite different. Fur-
thermore, the discretization in space is very different and GTSM has significantly finer grid cells in the
shallow areas. A different parametrization of turbulence might cause large differences in energy rich
parts of the ocean. In general, the differences between the models can also be due to the different
applied meteorological forcing to the models or a different method to model dissipation mechanisms.
Differences in dissipation due to bottom friction might also result in larger differences between the
models in predominantly shallow areas. The inclusion of a sea ice model in the ocean model and the
inclusion of pressure-driven flows (when the ocean model contains variations in water density) might
be contributing to the differences in and near the Arctic Ocean. It is difficult to state which reasons are
dominant.

It seems that GTSM is more close to AOD1B Release 5 than AOD1B Release 6 for the low fre-
quencies (up to 1/31 cycles per day). This can be both observed in the frequency analysis of the
3/6-hourly time-series as well as in the differences in observations for the time-series at the hourly and
monthly time-scale. The monthly time-series show in general smaller differences than the 3/6 hourly
time-series. For monthly time-series, the ocean mean std’s are 1.4 and 1.5 cm for respectively AOD1B
Release 5 and AOD1B Release 6. For 3/6-hourly time-series these std’s 2.6 and 2.3 cm.

The regions where significant differences between GTSM and currently used oceanic background
models are observed are an indication of regions where improvements or deteriorations to the GRACE
Level-2 data product can occur when changing to GTSM in GRACE data processing. Therefore, in
predominantly the shallow regions up to 200 m, Black Sea, Red Sea and Arctic Ocean changes in
the GRACE Level-2 data product are most expected when changing to GTSM. Significant differences
between the AOD1B Release 5 and AOD1B Release 6 products can be observed for the regions
where the quality of GRACE Release 6 solutions is clearly higher than the quality of GRACE Release
5 solutions (Hudson Bay and East Siberian Arctic Shelf). This indicates that the oceanic background
models do influence the quality of GRACE Level-2 data.





5
Potential improvements to GRACE

monthly solutions by the use of GTSM
This chapter is about the identification of regions where it is expected that GRACE monthly solutions
will be improved by changing to GTSM as oceanic background model in GRACE data processing. The
sub-question for this section is:

• For which regions does the quality of GRACE monthly solutions increase by the use of monthly
mass-anomaly time-series generated by GTSM?

No new theory will be covered in this chapter. Only the method to identify regions of expected improve-
ments or detoriations is explained. In this method monthly time-series are used which are generated
by GTSM. From chapter 4 it seems that tides are modeled differently by GTSM and the current applied
oceanic background models. These differences could also be due to non-linear interaction between
tidal and meteorological forced dynamics which are present in GTSM. Therefore, two types of monthly
mass-anomaly time-series are considered. The first type is retrieved by applying both tidal and me-
teorological forcing to GTSM. The second type is retrieved by applying only meteorological forcing to
GTSM. After the explanation of the method, the results are presented and discussed.

5.1. Method
In this section it is explained how GRACE Level-2 data are modified to estimate which oceanic regions
are expected to be improved by considering GTSM as oceanic background model in GRACE data
processing. Monthly time-series from GTSM are produced according to the method described in section
4.2.3. Both versions (with and without tidal forcing) are considered in this chapter. Version 1 relates
to the version where GTSM is forced by both meteorological and tidal forcing. Version 2 relates to the
version where GTSM is forced by only meteorological forcing. The GTSM-based monthly time-series
are turned into Stokes coefficients up to degree and order 60 according to the method described in
section 4.2.4.

The GRACE Level-2 data CSR Release 5, CSR Release 6, ITSG 2016, ITSG 2018, GFZ Release 5
and JPL Release 6 are turned to mass-anamolies at a 0.5∘ equiangular grid using the method described
in section 3.2.1. Also the considered period (2003-2016), removal of long-term mean and the use of
a Gaussian filter (400 km half-width) are similar. The monthly ocean tide and monthly AOD1B product
provided by ITSG are the considered data-sets to be add back to the GRACE Level-2 data. The AOD1B
products at the hourly scale are provided by GFZ, but ITSG provides their own monthly mean products
of these AOD1B products at the hourly scale. The tidal and non-tidal products are also provided as
a set of Stokes coefficients. These are truncated to degree 60 before the conversion into to mass-
anomaly time-series. This conversion is applied using a method similar to that described in section
3.2.1. In contrast to section 3.2.1, the low-degree Stokes coefficients are retained and not replaced or
removed for these tidal and non-tidal products. The GTSM-based Stokes coefficients are converted
back to mass-anomaly time-series in a similar way. This includes the use of the Gaussian filter of 400
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km half-width, retaining low-degree Stokes coefficients and removal of the long-term mean (January
2003-March 2016) for each particular Stokes coefficient.

For each grid point of the 0.5∘ equiangular grid the mass-anomaly time-series retrieved from the
AOD1B (and tidal) products are added to mass-anomaly time-series retrieved from the GRACE Level-
2 data. Consequently the mass-anomaly time-series retrieved from the created GTSM products are
removed. When both the AOD1B and tidal product are added back the GTSM-based version 1 prod-
uct is removed. When only the AOD1B product is added back the GTSM-based version 2 product is
removed. This addition and subtraction of time-series gives (apart from rounding errors) edited mass-
anomaly time-series exactly similar to time-series computed from edited Stokes coefficients (computed
by addition and subtraction of Stokes coefficients of the different products). This will be named the
method of addition and subtraction (MAS). For the GRACE Level-2 data CSR Release 5, GFZ Release
5 and ITSG 2016 the considered non-tidal and tidal products to be added back are AOD1B GAD Re-
lease 5 and ocean tide Release 5 as provided by ITSG. For the GRACE Level-2 data CSR Release
6, JPL Release 6 and ITSG 2018 the considered non-tidal and tidal products to be added back are
AOD1B GAB Release 6 and ocean tide Release 6 as provided by ITSG. The GTSM product which is
added back depends on both the consideration of the tidal product or not and on the consideration of
Release 5 or 6 GRACE Level-2 data. The Release 5 and 6 variants of GTSM vary by the removal of a
different long-term mean and inclusion or not of a residual mean atmospheric pressure over the ocean.
Version 1 and 2 relate to GTSM monthly time-series where GTSM is run with both tidal and meteoro-
logical forcing (version 1) or with only meteorological forcing (version 2). In table 5.1 an overview of
the added products can be found. The GTSM-based product which is consequently removed is always
the product which is constructed similarly to the added products.

Table 5.1: Overview of the products which are added back to GRACE monthly solutions in the addition part of the MAS to create
edited GRACE monthly solutions.

GRACE monthly
solution

Release 5 (edited
version 1)

Release 5 (edited
version 2)

Release 6 (edited
version 1)

Release 6 (edited
version 2)

Added products AOD1B GAD
Release 5 and
ocean tide
Release 5

AOD1B GAD
Release 5

AOD1B GAB
Release 6 and
ocean tide
Release 6

AOD1B GAB
Release 6

For all edited mass-anomaly time-series the signal variance is estimated by VCE while considering
three mass-anomaly time-series in the VCE and using MYDD-minimization as regularization technique.
For edited ITSG solutions, the residuals with respect to a low-pass filtered signal and analytical func-
tion are similarly estimated as described in section 3.2.4. Again all types of unexpected signals and
residuals are shown globally as well as versus bathymetry. Regional average values are reported too.

5.2. Results and discussion

In figures 5.1, 5.4, 5.7, 5.10 the changes in signal standard deviation due to the application of the MAS
to GRACE Release 5 and GRACE Release 6 solutions are shown globally. In figures 5.2, 5.5, 5.3,
5.6,5.8, 5.11, 5.9 and 5.12 the changes in the residuals (with respect to a low-pass filtered signal or
analytical function) due to the application of the MAS to ITSG 2016 and ITSG 2018 are shown globally.
In tables 5.2, 5.3 and 5.4 regional averages of the changes in the unexpected signals and residuals
are shown.
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Figure 5.1: Difference in estimated signal standard deviation between edited GRACE Release 5 solutions (CSR Release 5
(edited version 1), ITSG 2016 (edited version 1), GFZ Release 5 (edited version 1)) and original GRACE Release 5 solutions
(CSR Release 5, ITSG 2016, GFZ Release 5 ).

Figure 5.2: Difference in estimated RMSE between ITSG 2016 (edited version 1) and ITSG 2016. The RMSE is estimated with
respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.

Figure 5.3: Difference in estimated RMSE between ITSG 2016 (edited version 1) and ITSG 2016. The RMSE is estimated with
respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass
filtered signal).
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Figure 5.4: Difference in estimated signal standard deviation between edited GRACE Release 6 (CSR Release 6 (edited version
1), ITSG 2018 (edited version 1), JPL Release 6 (edited version 1)) solutions and original GRACE Release 6 solutions (CSR
Release 6, ITSG 2018, JPL Release 6).

Figure 5.5: Difference in estimated RMSE between ITSG 2018 (edited version 1) and ITSG 2018. The RMSE is estimated with
respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.

Figure 5.6: Difference in estimated RMSE between ITSG 2018 (edited version 1) and ITSG 2018. The RMSE is estimated with
respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass
filtered signal).
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Figure 5.7: Difference in estimated signal standard deviation between edited GRACE Release 5 solutions (CSR Release 5
(edited version 2), ITSG 2016 (edited version 2), GFZ Release 5 (edited version 2)) and original GRACE Release 5 solutions
(CSR Release 5, ITSG 2016, GFZ Release 5 ).

Figure 5.8: Difference in estimated RMSE between ITSG 2016 (edited version 2) and ITSG 2016. The RMSE is estimated with
respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.

Figure 5.9: Difference in estimated RMSE between ITSG 2016 (edited version 2) and ITSG 2016. The RMSE is estimated with
respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass
filtered signal).
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Figure 5.10: Difference in estimated signal standard deviation between edited GRACE Release 6 (CSR Release 6 (edited version
2), ITSG 2018 (edited version 2), JPL Release 6 (edited version 2)) solutions and original GRACE Release 6 solutions (CSR
Release 6, ITSG 2018, JPL Release 6).

Figure 5.11: Difference in estimated RMSE between ITSG 2018 (edited version 2) and ITSG 2018. The RMSE is estimated with
respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity.

Figure 5.12: Difference in estimated RMSE between ITSG 2018 (edited version 2) and ITSG 2018. The RMSE is estimated with
respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass
filtered signal).
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Table 5.2: Regional averages of estimated signal standard deviation in cm EWH for different GRACE Level-2 data before and
after the MAS. For Release 5 the signal standard deviation is determined by considering CSR Release 5, GFZ Release 5 and
ITSG 2016 time-series together in the VCE. For Release 6 the signal standard deviation is determined by considering CSR
Release 6, JPL Release 6 and ITSG 2018 time-series together in the VCE.

Signal standard deviation
Release 5 Release 6 Release 5

(edited
version 1)

Release 6
(edited

version 1)

Release 5
(edited

version 2)

Release 6
(edited

version 2)

Total Ocean 0.864 0.994 0.811 1.100 0.772 1.003

Arafura Sea 2.837 2.195 2.474 2.497 2.618 2.651

Arctic Ocean 2.236 1.843 1.643 1.975 1.537 1.720

Baltic Sea 3.210 3.666 2.798 2.960 2.955 3.127

Black Sea 3.518 4.690 2.829 2.836 2.828 2.834

Gulf of Thailand 1.661 2.455 1.921 2.594 1.913 2.564

Indian Ocean 0.576 0.871 0.626 0.996 0.615 0.923

Mediterranean Sea 1.431 1.541 1.466 1.993 1.559 2.094

North Atlantic Ocean 0.605 0.761 0.659 0.878 0.610 0.764

North Pacific Ocean 0.602 0.753 0.673 0.919 0.617 0.801

North Sea 1.154 1.742 0.929 1.284 0.912 1.194

South Atlantic Ocean 0.953 1.352 0.973 1.417 0.952 1.361

South China and
Archipelagic Seas

1.023 1.326 1.125 1.520 1.151 1.525

South Pacific Ocean 0.434 0.609 0.467 0.696 0.432 0.615

Southern Ocean 1.218 1.112 1.022 1.307 0.862 1.034
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Table 5.3: Regional averages of the RMSE in cm EWH for ITSG monthly solutions before and after applying the MAS. The
RMSE is estimated with respect to a by least-squares estimated signal containing only a linear trend and annual and semi-
annual periodicity.

RMSE w.r.t. seasonal signal
ITSG 2016 ITSG 2018 ITSG 2016

(edited
version 1)

ITSG 2018
(edited

version 1)

ITSG 2016
(edited

version 2)

ITSG 2018
(edited

version 2)

Total Ocean 1.745 1.577 1.789 1.656 1.750 1.613

Arafura Sea 3.523 2.437 4.325 4.047 4.480 4.207

Arctic Ocean 2.430 2.159 2.306 2.175 2.239 2.098

Baltic Sea 2.819 2.748 2.738 2.537 2.814 2.625

Black Sea 3.878 3.869 4.035 3.791 4.036 3.794

Gulf of Thailand 3.742 3.691 3.682 3.493 3.559 3.380

Indian Ocean 1.684 1.506 1.738 1.591 1.714 1.571

Mediterranean Sea 2.309 2.012 2.357 2.202 2.404 2.248

North Atlantic Ocean 1.688 1.536 1.746 1.600 1.688 1.529

North Pacific Ocean 1.583 1.415 1.674 1.506 1.627 1.453

North Sea 1.782 1.758 1.825 1.629 1.826 1.590

South Atlantic Ocean 1.744 1.627 1.760 1.658 1.744 1.632

South China and
Archipelagic Seas

2.280 2.091 2.358 2.278 2.344 2.256

South Pacific Ocean 1.504 1.378 1.553 1.438 1.515 1.404

Southern Ocean 1.969 1.705 1.949 1.821 1.824 1.681
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Table 5.4: Regional averages of the RMSE in cm EWH for ITSG monthly solutions before and after applying the MAS. The RMSE
is estimated with respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in
the low-pass filtered signal).

RMSE w.r.t. low-pass filtered signal
ITSG 2016 ITSG 2018 ITSG 2016

(edited
version 1)

ITSG 2018
(edited

version 1)

ITSG 2016
(edited

version 2)

ITSG 2018
(edited

version 2)

Total Ocean 1.248 1.076 1.259 1.132 1.232 1.098

Arafura Sea 2.169 1.854 1.788 1.618 1.831 1.691

Arctic Ocean 1.811 1.567 1.637 1.629 1.621 1.592

Baltic Sea 2.011 1.933 1.785 1.630 1.847 1.698

Black Sea 1.922 1.973 1.579 1.308 1.572 1.300

Gulf of Thailand 2.036 1.792 2.140 1.849 2.129 1.834

Indian Ocean 1.206 1.014 1.225 1.072 1.215 1.055

Mediterranean Sea 1.444 1.172 1.427 1.294 1.445 1.313

North Atlantic Ocean 1.219 1.071 1.245 1.123 1.214 1.079

North Pacific Ocean 1.180 1.003 1.251 1.093 1.207 1.048

North Sea 1.358 1.345 1.323 1.155 1.318 1.131

South Atlantic Ocean 1.274 1.152 1.283 1.190 1.265 1.171

South China and
Archipelagic Seas

1.351 1.126 1.365 1.181 1.368 1.177

South Pacific Ocean 1.130 0.989 1.151 1.031 1.123 0.996

Southern Ocean 1.334 1.057 1.297 1.141 1.209 1.045

In figures 5.1, 5.4, 5.7, 5.10, 5.3, 5.6, 5.9 and 5.12 it can be observed that the regions where the
signal standard deviation changes due to the MAS are similar to the regions where the residual with
respect to a low-pass filtered signal for ITSG solutions changes (in direction, not in size). This is not
surprising since the signal standard deviation is a measure for interannual differences in the mass-
derivative. Therefore high-frequency signals (which do not repeat yearly) will also show up in this
estimate of signal standard deviation. For GRACE Release 5 solutions the MAS decreases the signal
standard deviation and the residual w.r.t. a low-pass filtered signal for the regions Gulf of Carpentaria,
Baltic Sea, Black Sea, North Sea, East Siberian Arctic Shelf, Hudson Bay and parts of the Arctic and
Southern Ocean. For GRACE Release 6 solutions the MAS decreases this signal standard deviation
and the residual w.r.t. a low-pass filtered signal for the regions Gulf of Carpentaria, Baltic Sea, Black
Sea, East Siberian Arctic Shelf and North Sea. These regions where the signal standard deviation and
the residuals w.r.t. low-pass filtered signal become lower indicate regions where improvements are
most expected when applying GTSM in GRACE data processing.

When the types of MAS (version 1 and version 2) are compared it can be observed that the estimates
of signal standard devation and residuals for both Release 5 and Release 6 solutions decrease for
especially the regions in and close to the Arctic and Southern Ocean for version 2. In general, it
seems that most regions (except the Arafura Sea, Baltic Sea, Mediterranean Sea, South China and
Archipelagic Seas) improve more when the tidal forced dynamics are not taken into account. This
might indicate that the monthly mean values of the tides are worse modeled by GTSM than by the
currently used ocean tide models. This might also indicate that there is some non-linear interaction
showing up in the monthly means. Since the monthly means contain predominantly the lowest tidal
frequencies (solar semiannual, solar annual) actually not so much differences in the estimated standard
deviation and residuals are expected when comparing version 1 with version 2. The tidal forcing of
these low frequencies should be exactly similar for each year. Maybe these differences in estimated
signal standard deviation and residuals are caused by differences in the modeled tides of frequencies
of roughly a month or half a month (like the lunar monthly). The effect of these tides is partly present
in the monthly means since the length of the month over which an average is computed is not exactly
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equal to the period or a multiple of the period of these tides.

Most regions where the signal standard deviation and the residual w.r.t. low-pass filtered signal
change correlate to regions where also the non-seasonal variability changes. But there are some
regions (for example Black Sea and Arafura Sea/Gulf of Carpentaria) where this correlation is not
present. It seems that there are after the MAS some yearly repeating patterns in the Arafura Sea/Gulf
of Carpentaria which cannot be described by sine and cosine functions representing only an annual
and semi-annual periodicity. In figure 5.13 as ITSG time-series before and after the MAS for a location
in the Gulf of Carpentaria are shown. It can be observed that the MAS introduces more interannual
variability on the long-term while high-frequency irregularities are reduced. These signals show up as
residuals w.r.t. the seasonal signal but not as residuals w.r.t. the low-pass filtered signal because long-
term signals cause the interannual variability. It seems that the signal standard deviation is also more
sensitive to interannual differences of high-frequency than low-frequency because the signal standard
deviation decreases for the Arafura Sea. For this, you can also observe the regularized solutions for
the same location in the Gulf of Carpentaria in figure 5.14. Since some long-term variability might be
true-signal, it might be possible that also for the Gulf of Carpentina (Arafura Sea) the GRACE Level-2
data can be improved when changing to GTSM.

Figure 5.13: Time-series of ITSG solutions before and after the MAS. The average mass-anomaly time-series for a square region
in the Gulf of Carpentina are shown.
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Figure 5.14: Time-series of regularized solutions estimated from GRACE monthly solutions before and after the MAS. The
average mass-anomaly time-series for a square region in the Gulf of Carpentina are shown.

For the North Sea, Baltic Sea and Black Sea, both GRACE Release 5 and 6 monthly solutions
improve due to the MAS by showing a decrease in the signal standard deviation and the residual w.r.t.
low-pass filtered signal for those areas. In general it can be expected that GTSM might perform better
than the currently applied oceanic background models for the regions around Europe. Since GTSM
is developed by a Dutch company, it seems logical that more validation of the model has been per-
formed for regions near The Netherlands and around Europe (also because of the available verification
data). Maybe GTSM could be used in GRACE data-processing for the regions around Europe (except
Mediterranean Sea) and currently used oceanic background models still for the other regions.

To observe the influence of the MAS for some other locations the regularized time-series are shown
before and after applying the MAS to GRACE monthly solutions. This is done for a location in the North
Sea (figure 5.15), Black Sea (figure 5.16) and Indian Ocean (figure 5.17). For the North Sea and Black
Sea clearly a reduction in the high-frequency variability can be observed. For the North Sea it can be
observed that also a long-term trend is altered for Release 5. A change in phase of the seasonal signal
can be observed for Release 6. The time-series for the Indian Ocean are shown since the amplitude
of the seasonal variability increases due to the MAS. These figures show that the MAS can change the
seasonal variability and long-term trend in the mass-anomaly time-series.
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Figure 5.15: Time-series of regularized solutions estimated from GRACE monthly solutions before and after the MAS. The
average mass-anomaly time-series for a square region in the North Sea are shown.

Figure 5.16: Time-series of regularized solutions estimated from GRACE monthly solutions before and after the MAS. The
average mass-anomaly time-series for a square region in the Black Sea are shown.
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Figure 5.17: Time-series of regularized solutions estimated from GRACE monthly solutions before and after the MAS. The
average mass-anomaly time-series for a square region in the Indian Ocean are shown.

Changes of the unexpected signals and residuals versus bathymetry can be observed in figures
5.18, 5.19, 5.20 (for the Total Ocean), 5.21, 5.22, 5.23 (for the Arctic Ocean), and 5.24, 5.25, 5.26 (for
the South Atlantic Ocean). When observing these figures, it can be observed that on a global mean
basis the unexpected signals decrease up to a depth of about 450 m. For the Arctic Ocean GTSM
seems improve the GRACE Release 5 Level-2 data over the whole ocean basin when the buffer zones
are not considerd. Actually, it is not expected that GTSM would perform better in the Arctic Ocean since
no dynamic sea-ice model is included in GTSM (which is included in OMCT and MPIOM). It could be
that (the implementation of) the dynamic sea-ice model in OMCT and MPIOM is not that good. For the
shallow regions in the South Atlantic Ocean (up to about 2000 m depth) GRACE 6 solutions seem to
improve by GTSM (figures 5.24 and 5.26). When looking at figures 5.10 and 5.12 these improvements
might correlate to the region just below the Argentine Basin. There can be various regions why GTSM
performs better than OMCT and MPIOM for this area. Maybe it is due grid densification.



114 5. Potential improvements to GRACE monthly solutions by the use of GTSM

Figure 5.18: Difference in estimated signal standard deviation versus bathymetry for the total ocean. The differences in estimated
signal standard deviation for edited (version 2) GRACE Release 5 and original GRACE Release 5 solutions are shown in red
and for edited GRACE Release 6 and original GRACE Release 6 solutions in blue.

Figure 5.19: Difference in estimated RMSE for ITSG solutions versus bathymetry for the total ocean. The RMSE is estimated
with respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity. The
differences in RMSE for ITSG 2016 (edited version 2) and ITSG 2016 are shown in red and for ITSG 2018 (edited version 2)
and ITSG 2018 in blue.

Figure 5.20: Difference in estimated RMSE for ITSG solutions versus bathymetry for the total ocean. The RMSE is estimated
with respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass
filtered signal). The differences in RMSE for ITSG 2016 (edited version 2) and ITSG 2016 are shown in red and for ITSG 2018
(edited version 2) and ITSG 2018 in blue.
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Figure 5.21: Difference in estimated signal standard deviation versus bathymetry for the Arctic Ocean. The differences in
estimated signal standard deviation for edited (version 2) GRACE Release 5 and original GRACE Release 5 solutions are
shown in red and for edited GRACE Release 6 and original GRACE Release 6 solutions in blue.

Figure 5.22: Difference in estimated RMSE for ITSG solutions versus bathymetry for the Arctic Ocean. The RMSE is estimated
with respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual periodicity. The
differences in RMSE for ITSG 2016 (edited version 2) and ITSG 2016 are shown in red and for ITSG 2018 (edited version 2)
and ITSG 2018 in blue.

Figure 5.23: Difference in estimated RMSE for ITSG solutions versus bathymetry for the Arctic Ocean. The RMSE is estimated
with respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in the low-pass
filtered signal). The differences in RMSE for ITSG 2016 (edited version 2) and ITSG 2016 are shown in red and for ITSG 2018
(edited version 2) and ITSG 2018 in blue.
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Figure 5.24: Difference in estimated signal standard deviation versus bathymetry for the South Atlantic Ocean. The differences
in estimated signal standard deviation for edited (version 2) GRACE Release 5 and original GRACE Release 5 solutions are
shown in red and for edited GRACE Release 6 and original GRACE Release 6 solutions in blue.

Figure 5.25: Difference in estimated RMSE for ITSG solutions versus bathymetry for the South Atlantic Ocean. The RMSE
is estimated with respect to a by least-squares estimated signal containing only a linear trend and annual and semi-annual
periodicity. The differences in RMSE for ITSG 2016 (edited version 2) and ITSG 2016 are shown in red and for ITSG 2018
(edited version 2) and ITSG 2018 in blue.

Figure 5.26: Difference in estimated RMSE for ITSG solutions versus bathymetry for the South Atlantic Ocean. The RMSE is
estimated with respect to a low-pass filtered signal (frequencies smaller than or equal to the semi-annual cycle are retained in
the low-pass filtered signal). The differences in RMSE for ITSG 2016 (edited version 2) and ITSG 2016 are shown in red and for
ITSG 2018 (edited version 2) and ITSG 2018 in blue.
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5.3. Summary and remarks
The method of addition and subtraction (MAS) to GRACE monthly solutions by the use of monthly
time-series generated by GTSM is a first step in the assesment whether GTSM can improve GRACE
monthly solutions. On the basis of the MAS it seems that GRACE Release 5 solutions can improve
by GTSM for the regions: Gulf of Carpentina, Baltic Sea, Black Sea, North Sea, East Siberian Arctic
Shelf, Hudson Bay and parts of the Arctic and Southern Ocean. On the basis of the MAS it seems
that GRACE Release 6 solutions can improve by GTSM for the regions: Gulf of Carpentina, Baltic
Sea, Black Sea, East Siberian Arctic Shelf and North Sea. The results of the MAS are different when
also the tidal dynamics are included or not. This might indicate that tides are modeled significantly
different or that a significant amount of non-linear interaction is present in GTSM. The regions where
the monthly mean time-series of one model seem to be better than another in the context of GRACE
Level-2 data are also an indication of regions where a certain model can potentially be improved. For
this improvement it must be known why the models compute different time-series for those areas. Then
it can be known what could be changed in the set-up of the model.

Most clear improvements to both GRACE Release 5 and Release 6 monthly solutions can be ob-
served for some regions around Europe: Baltic Sea, Black Sea and North Sea. These shallow areas
correspond to areas of large grid densification in GTSM. This could be a possible reason why GTSM
performs better in these areas. A better observed performance could also be due to a possibly better
implemented bathymetry in GTSM. More general reasons might also be possible like for example dif-
ferences in the applied meteorological forcing. GRACE Release 5 monthly solutions are by the MAS
clearly improved for the Hudson Bay and East Siberian Arctic Shelf. These areas correlate to regions
where GTSM was more similar to AOD1B Release 6 than AOD1B Release 5 products (both on the
hourly and monthly scale).

Figures of monthly (regularized) times-series show that phase and the amplitude of the seasonal
variability as well as long-term trends can be significantly altered by the MAS. This can be observed
beside a diminution of high-frequency fluctuations (periods smaller than the semi-annual cycle). It is
remarkable that changes in the quality of GRACE Level-2 data are already observable on the basis of
GTSM-based monthly mean time-series. This indicates that GRACE Level-2 data can be significantly
altered (and possibly improved) when considering GTSM as oceanic background model in GRACE
data processing for several regions. It is expected that the consideration of GTSM time-series at the
hourly scale can result in even larger alterations in the GRACE Level-2 data.





6
Conclusions and recommendations

In this chapter first all sub-questions are answered before answering the main question. Thereafter,
recommendations regarding future research follow.

6.1. Conclusions regarding the sub-questions
The sub-questions will be answered one by one.

• Which regularization functional should be used in Variance Component Estimation to identify the
noise variance and signal in time-series which consist predominantly of a seasonal variability and
linear trend?

In a numerical study, four regularization functionals (Tikhonov zero-order, Tikhonov first-order,
Tikhonov second-order and MYDD minimization) are considered besides applying no regulariza-
tion in the VCE. In this numerical study, time-series are constructed as a combination of a signal
and noise realization. When the signal in the time-series does only contain a seasonal variability
and linear trend the MYDD minimization is the regularization technique which restores the true
signal best (and thus identifies the true signal best). When a larger number of time-series is
considered in the VCE, the true signal is restored better. When signals also contain a signal of
interannual variability like a step function or an amplified amplitude of the annual signal during half
a year, Tikhonov first-order regularization or signal retrieval without a regularization show better
results by yielding no or smaller biases in the signal of interannual variability. Noise variance is
best estimated by MYDD minimization for both time-series containing signals with and without an
interannual variability. When multiple time-series are considered as input, cross-correlated noise
is identified as signal variance. The estimated signal variance is also influenced by the magnitude
of uncorrelated noise.
A case study for the Baltic Sea is performed where GRACE-based mass-anomaly time-series are
compared against a tide-gauge based mass-anomaly time-series. These GRACE-based basin-
average mass-anomaly time-series contain interannual variability beside an evident linear trend
and seasonal variability. For the period April 2003 to December 2007 time-series retrieved by ap-
plying Tikhonov first-order regularization, MYDD minimization, and no regularization in the VCE
are compared against the tide-gauge based time-series. The Tikhonov regularization technique
results in a mass-anomaly time-series closest to the tide-gauge based mass-anomaly time-series
and thus seems to identify the true signal in mass-anomaly time-series best. This can be because
of the presence of interannual variability in the water level variations in the Baltic Sea. The differ-
ences between Tikhonov first-order, MYDD minimization and applying no regularization are very
small (in the order of a few millimeters EWH) compared to the difference between the GRACE-
based and tide-gauge based time-series which are in the order of 5-6 cm. Since the precision
and accuracy of the tide-gauge based time-series is unknown and the differences between the
considered regularization functionals are very small, the results of this experiment are preliminary.

• What are the global distributions of signal and noise variance in GRACE Release 5 and 6 monthly
solutions?

119
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To identify regions of smaller or higher quality in GRACE monthly solutions signal and noise
variance are estimated for these solutions. This is done for three Release 5 GRACE monthly
solutions (CSR Release 5, GFZ Release 5 and ITSG 2016) and three Release 6 GRACE monthly
solutions (CSR Release 6, JPL Release 6 and ITSG 2018). The estimated noise variance for
Release 6 solutions is generally lower than for Release 5 solutions. For both releases ITSG
solutions show the lowest estimated noise variance. In general the estimated noise variance is
smaller over the poles compared to lower latitudes. This is due to a higher sampling frequency
over the poles and a larger angle between ascending and descending satellite tracks over the
polar areas. The consideration of MYDD-minimization, Tikhonov first-order and no regularization
in the VCE give similar conclusions about the global distribution of the noise. When only one
time-series is considered in the VCE instead of three, global patterns of estimated signal variance
(which were estimated when three time-series were used as input) show up in the global patterns
of estimated noise variance.
For GRACE Release 5 solutions large signal variances are observed for the Baltic Sea, Black
Sea, Arafura Sea (including Gulf of Carpentaria), East Siberian Arctic Shelf, Argentine Basin and
Hudson Bay. For these areas the signal standard deviation is about 3-5 cm EWH w.r.t. the global
mean of 0.86 cm EWH. GRACE Release 6 solutions show a clear decrease in this signal standard
deviation for the Hudson Bay and East Siberian Arctic Shelf. For most other regions, the signal
standard deviation increases for GRACE Release 6 solutions. For both GRACE Release 5 and
6 solutions, the signal standard deviation increases for shallow regions. For the shallow coastal
regions, this might be (partly) due to signal leakage from land to ocean. Since the estimated signal
standard deviation is influenced by the magnitude of the noise it is not totally fair to compare the
absolute values of signal standard deviation.
Since ITSG solutions show the lowest noise, two extra methods are applied to assess the quality
of these solutions. Firstly, the RMSE is estimated w.r.t. an analytical function. This analytical
function is a by least-squares estimated signal containing a linear trend and seasonal variability.
Secondly, the RMSE is estimated w.r.t. a low-pass filtered signal. In the low-pass filtered signal
only signals of frequency lower than the semi-annual cycle are retained. The non-seasonal and
high-frequency residuals decrease in general for Release 6 compared to Release 5. This reduc-
tion can be due to an improvement of the oceanic background models or due to a decrease in
noise in general for Release 6 compared to Release 5. Large non-seasonal and high-frequency
residuals are observed for for the Baltic Sea, Black Sea, Hudson Bay, Arafura Sea, Gulf of Thai-
land, Argentine Basin and East Siberian Arctic Shelf, which are similar to the regions of large
signal standard deviation. For Release 6 the non-seasonal and high-frequencies residuals do
clearly decrease for the Hudson Bay and East Siberian Arctic Shelf. The correlation between the
estimates of signal variance and residuals makes it likely that the estimates of signal variance
indicate regions of lower quality in GRACE Level-2 data. The presence of strong non-seasonal
and high-frequency residuals and signal variance in certain oceanic regions show that GRACE
Level-2 data are still in need of improvement for these areas.

• Which regions show significant differences between 3-hourly, 6-hourly and monthly mass-anomaly
time-series generated by GTSM and those generated by the oceanic background models cur-
rently used in GRACE data processing?

Generally the 3/6-hourly time-series computed by the Global Tide and Surge Model (GTSM) are
more similar to the MPIOM model used for Release 6, than the OMCT model used for Release
5. Regions where GTSM is significantly closer to MPIOM than OMCT are the Hudson Bay, East
Siberian Arctic Shelf, Arctic Ocean, Southern Ocean, Arafura Sea and Baltic Sea. For the Hud-
son Bay and East Siberian Arctic Shelf, these regions are consistent with regions where the
GRACE Release 6 solutions showed better results than GRACE Release 5 solutions. Since also
the differences between the time-series of MPIOM and OMCT are significantly different for these
two areas, it seems that the oceanic background models do significantly influence the quality of
GRACE Level-2 data. Regions where in general the differences between GTSM and the cur-
rently used oceanic background models are large are the shallow regions (up to about 200 m
depth), the Red Sea and the Black Sea. This is both the case for the 3/6-hourly time-series and
monthly time-series. Regions of large differences are the regions where significant improvements
or detoriations of the GRACE Level-2 data product can be expected.
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When considering the monthly time-series, it is observed that GTSM is closer to OMCT than
to MPIOM except the following regions: Baltic Sea, Arafura Sea, Black Sea, Southern Ocean
and Arctic Ocean. At the monthly time-scale, GTSM is in general closer to OMCT than MPIOM
which is in contrast to the short-term scale. A frequency analysis of the 3/6-hourly time-series
supports this finding. On the monthly scale, the differences between GTSM (containing both
meteorological-forced and tidal dynamics) and the combination of currently used tidal and non-
tidal oceanic background models are larger than the differences between GTSM (containing only
meteorogical-forced dynamics) and the non-tidal oceanic background model. Because these
differences already arise in the monthly means, it seems that the tides are modeled significantly
differently by GTSM and the currently used oceanic tidal background models.

• For which regions does the quality of GRACE monthly solutions increase by the use of monthly
mass-anomaly time-series generated by GTSM?

As a first attempt to identify regions where GTSM might improve GRACE monthly soutions,
monthly time-series of the currently used oceanic background models are added to GRACE
monthly solutions after which GTSM-based time-series are subtracted. This addition should re-
store the ocean variability which is primarily removed in the production of GRACE monthly solu-
tions. This method of addition and subtraction (MAS) is both performed with and without taking
the tidal dynamics into account. The GRACE solutions show after the MAS in general a smaller
signal variance and smaller non-seasonal and hih-frequency residuals when the tidal dynamics
are not taken into account. Therfore, the rest of this paragraph is about the results obtained by
the MAS with only non-tidal variability.
After applying the MAS to GRACE Release 5 solutions it can be observed that the estimated
signal variance decreases significantly for the Hudson Bay, East Siberian Arctic Shelf, Gulf of
Carpentaria, Black Sea, Baltic Sea, North Sea and certain parts of the Arctic and Southern Ocean.
The signal variance decreased in general for shallow regions up to a depth of about 450 m.
These regions and depths are similar to those where the high-frequency residuals of ITSG 2016
decrease by the MAS. These regions which show both a reduction in signal variance and high-
frequency residuals indicate regions where it is expected that GTSM will improve the GRACE
Level-2 data.
After applying the MAS to GRACE Release 6 solutions, the signal variance increased in general
except for the Baltic Sea, Black Sea, North Sea, Gulf of Carpentaria, the East Siberian Arctic Shelf
and some parts in and close to the Arctic and Southern Ocean. For ITSG 2018 high-frequency
signals decreased after the MAS for the same regions except the regions in and close to the
Arctic and Southern Ocean. Therefore, it is expected that GTSM will improve GRACE Release
6 monthly solutions for the Baltic Sea, Black Sea, North Sea, Gulf of Carpentaria and the East
Siberian Arctic Shelf.
When observing time-series before and after the MAS it can be observed that GTSM can, beside
reducing some of the high-frequency variability, change long-term patterns and change the size
and phase of the seasonal variability in certain areas.

6.2. Main conclusions
The main question for this research is:

(i) What is the global distribution of the quality of GRACE Release 5 and 6 monthly solutions and (ii)
is it expected that these solutions will be improved by the use of the Global Tide and Surge Model as
oceanic background model?

The GRACE monthly solutions which are accessed are CSR Release 5, ITSG 2016, GFZ Release
5, CSR Release 6, ITSG Release 2018 and JPL Release 6. The estimated noise variances for all these
solutions decrease towards the poles. In several oceanic regions unexpected signal and residuals are
present which indicate a lower quality of the GRACE monthly solutions for these areas. Unexpected
signal is estimated as a signal variance which represents interannual differences of the mass-derivative.
For Release 5, this estimated signal variance is the largest for the oceanic regions Hudson Bay, East
Siberian Arctic Shelf, Baltic Sea, Black Sea, Argentine Basin, Gulf of Carpentaria and Arctic Ocean.
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These regions correlate to regions of large high-frequency and non-seasonal residuals in ITSG 2016
solutions. Although the signal variance reduce for the Hudson Bay, East Siberian Arctic Shelf and Gulf
of Carpentaria for GRACE Release 6 solutions, the ocean is far from being free from the unexpected
oceanic signals. Also for GRACE Release 6 solutions the global patterns of signal variance correlate to
the global patterns of high-frequency and non-seasonal residuals in ITSG 2018 solutions. The presence
of unexpected signal and residuals in oceanic regions indicates that both GRACE Release 5 and 6
solutions are still in need for improvement over the ocean.

The Hudson Bay and East Siberian Arctic Shelf are areas where large reductions in unexpected
signal and residuals can be observed. These areas correlate to areas where the differences between
currently applied oceanic background is significant. The MAS also influences the quality of the GRACE
monthly solutions. Both these observations suggest that the quality of GRACE Level-2 data is signifi-
cantly influenced by the oceanic background models. When applying the MAS, GTSM shows improve-
ments with respect to GRACE Release 5 monthly solutions for the regions: Hudson Bay, East Siberian
Arctic Shelf, Arafura Sea, Black Sea, Baltic Sea, North Sea and parts of the Southern and Arctic Ocean.
With respect to GRACE Release 6 solutions improvements are observed for the regions: Black Sea,
Baltic Sea, North Sea, Arafura Sea and East Siberian Arctic Shelf. Since for some regions GRACE
monthly solutions are already positively influenced by differences in the oceanic background models
on the monthly mean basis, it is expected that for these regions GRACE Level-2 data will be improved
when GTSM is considered in the GRACE data processing. The areas where the 3/6-hourly time-series
between GTSM and currently applied oceanic background models differ in the order of a decimeter are
the swallow regions up to 200 m, Black Sea and Red Sea. For these regions it is expected that the
quality of the GRACE Level-2 data will be altered most. To test whether GTSM may indeed improve
the GRACE Level-2 data over the ocean the model has to be included directly in the GRACE data
processing.

6.3. Recommendations
Regarding the numerical experiments performed in order to identify the best regularization technique,
it has to be said that the performed numerical experiments are limited in scope. More combinations of
signal and noise could be investigated. Especially different forms of interannual variability should be
exploited to have better knowledge of how the estimated signal standard deviation depends on noise.
For the noise realization, it would be better to include the possibility of different noise levels for different
solutions. Since in reality different GRACE monthly solutions contain a different amount of random
noise, it would be good to include these differences in noise level in the construction of synthetic data.

The best way to identify which regularization technique is the best to use in the VCE, is to compare
GRACE Level-2 data against mass-anomaly time-series retrieved by other measurement techniques.
Then it can be observed how the regularization techniques perform in the context of real mass-anomaly
time-series. These mass-anomaly time-series can contain a wide range of types of interannual variabil-
ity which might easily be oversimplified in the construction of synthetic data. Therefore, experiments
similar to the comparison against the tide-gauge based mass-anomaly time-series for the Baltic Sea
are recommended to perform for different oceanic regions and for longer time intervals. It is also rec-
ommended to compare GRACE Level-2 data against by altimetry determined (and steric corrected)
time-series. This will make the analysis of different regularization techniques more representative.

Regarding the comparison against the tide-gauge based time-series for the Baltic Sea a reduction
of the errors in the tide-gauge time-series could be considered to make a comparison of higher quality.
This could be achieved by re-processing the tide-gauge data and by modeling the steric effect yourself.
Also better hydrological modeling is recommended since the currently used hydrological model lacks
mass variations assocaited with groundwater and open water bodies.

Testing even more regularization functionals, like a functional which minimizes the differences in the
second time-derivatives between consecutive years, would also be interesting since the minimization of
the differences in first time-derivatives penalizes acceleration in the mass-anomaly time-series. Since
sea-level rise is accelerating, it could be better to apply a regularization functional which will retain this
type of signal.

Regarding the quality estimation of GRACE Level-2 data the following improvements could be im-
plemented. It would be better to exactly compute the correlation between the estimated signal variance
and residuals. At the moment, global maps are visually compared and regional mean values are com-
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pared. Based on mostly a visual inspection of the global maps, it is concluded that the regions of large
signal variance and large residuals correlate. This should be made more exact by computing the cor-
relation for each grid point. Furthermore, when observing the estimated parameters versus bathymetry
the largest considered buffer zone is 400 km. Since a Gaussian filter of 400 km half-width is applied
also areas which are further than 400 km away from the coast still contain signal leakage from the land.
It would be better to consider larger buffer zones too.

The comparison of oceanic background models (both 3/6-hourly and monthly times-series) has
been done quite thoroughly. Nevertheless, the frequency analysis could be improved. It would be
better to perform a frequency analysis for each grid point in an ocean basin. Consequently, an average
amplitude spectra for several area’s could be computed. This would overcome the problem of averaging
out signals of short wavelength.

A more in-depth analysis of the modeling process of the different models is advisable. This may
explain the differences between the models present at certain locations, which is still not known well. If
it is better understood why the models are performing differently in specific regions, it might be possible
to improve the models over these areas. By this, both the currently used oceanic background models
and GTSM might be improved by incorporating certain features of the best performing model into the
other.

Furthermore, GTSM with only tidal dynamics was not compared to the currently used oceanic tide
models due to several strange features of the former model. These features were observed in the
Arctic Ocean, Southern Ocean and South Atlantic Ocean. This might be an evidence of errors in GTSM
which should be fixed. Since the differences between GTSM (meteorological-forced) and the non-tidal
background models are smaller than the differences between GTSM (tidal and meteorological-forced)
and the combination of the non-tidal and tidal background models it would be interesting to identify
the differences in tidal modeling separately. Also, when the issue of GTSM run with only tidal forcing
is solved, estimates of the non-linear interaction between tidal and meteorological forced dynamics in
GTSM can be made and analyzed. This can improve the understanding of the observed differences
between GTSM and the currently applied oceanic background models.

The most important recommendation is to incorporate the GTSM-based 3-hourly time-series (similar
to the 3-hourly time-series made in this research) in GRACE data processing, to create a new Level-2
data product, and assess the quality of this Level-2 data product. Only then the real improvements
or deteriorations by using GTSM instead of the currently applied oceanic background models can be
accessed. Now, only monthly means are added and subtracted from the GRACE Level-2 data for the
whole Earth. Firstly, this does not take into account high-frequency differences between the models.
Secondly, in GRACE data processing the predictions of the oceanic background models are used in
combination with the satellites location. Therefore, to compare monthly mean values for each location is
incorrect, since only the predictions of the ocean model in the moment where the satellites are overflying
are taken into account in the data processing. Differences in the models occurring at locations and times
when the satellites are not in the neighborhood are not important differences in the context of GRACE
Level-2 data. Of course, differences in the models are roughly similar over time, but for a precise
investigation whether GRACE Level-2 data can be improved by GTSM, the location of the satellites at
each specific time should be taken into account.





A
Standard deviations of reported results

in section 2.4

Figure A.1: Standard deviation of estimated noise standard deviation divided by the true noise standard deviation of the time-
series. Different combinations of signal and noise are shown in the y-direction. Different setups in the VCE method are shown
in the x-direction. The signals differ in amplitude of the seasonal variability.
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Figure A.2: Standard deviation of estimated noise standard deviation divided by the true noise standard deviation of the time-
series. Different combinations of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in
the x-direction. The signals contain the same linear trend and seasonal variability but differ in interannual variability (none, step
function or amplified seasonal variability during half-year).
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Figure A.3: Standard deviation of RMSE divided by the true noise standard deviation of the time-series. Different combinations
of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals
differ in amplitude of the seasonal variability.
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Figure A.4: Standard deviation of RMSE divided by the true noise standard deviation of the time-series. Different combinations
of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals
contain the same linear trend and seasonal variability but differ in interannual variability (none, step function or amplified seasonal
variability during half-year).
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Figure A.5: Standard deviation of the bias in the linear trend of the combined and/or regularized solution. Different combinations
of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals
differ in amplitude of the seasonal variability.
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Figure A.6: Standard deviation of the bias in the linear trend of the combined and/or regularized solution. Different combinations
of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the x-direction. The signals
contain the same linear trend and seasonal variability but differ in interannual variability (none, step function or amplified seasonal
variability during half-year).
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Figure A.7: Standard deviation of the bias in the amplitude of seasonal variability of the combined and/or regularized solution
divided by the true amplitude of seasonal variability. Different combinations of signal and noise are shown in the y-direction.
Different setups in the VCE method are shown in the x-direction. The signals differ in amplitude of the seasonal variability.

Figure A.8: Standard deviation of the bias in the amplitude of seasonal variability of the combined and/or regularized solution
divided by the true amplitude of seasonal variability. Different combinations of signal and noise are shown in the y-direction.
Different setups in the VCE method are shown in the x-direction. The signals contain the same linear trend and seasonal
variability but differ in interannual variability (none, step function or amplified seasonal variability during half-year).
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Figure A.9: Standard deviation of the bias in the step-wise increase in mass-anomaly of the combined and/or regularized solution.
Different combinations of signal and noise are shown in the y-direction. Different setups in the VCE method are shown in the
x-direction.

Figure A.10: Standard deviation of the bias in the amplified seasonal variability during half-year of the combined and/or regular-
ized solution. Different combinations of signal and noise are shown in the y-direction. Different setups in the VCE method are
shown in the x-direction.
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Figure A.11: Standard deviation of estimated noise standard deviation divided by the true noise standard deviation of the time-
series. Different combinations of signal and noise are shown in the y-direction. When multiple time-series are considered in the
VCE the noise in the time-series is fully cross-correlated. Different setups in the VCE method are shown in the x-direction. The
signals contain the same linear trend and seasonal variability but differ in interannual variability (none, step function or amplified
seasonal variability during half-year).

Figure A.12: Standard deviation of RMSE divided by the true noise standard deviation of the time-series. Different combinations
of signal and noise are shown in the y-direction. When multiple time-series are considered in the VCE the noise in the time-
series is fully cross-correlated. Different setups in the VCE method are shown in the x-direction. The signals contain the same
linear trend and seasonal variability but differ in interannual variability (none, step function or amplified seasonal variability during
half-year).
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Figure A.13: Estimated signal standard deviation for a signal with interannual variability (in this case a step function) by using
MYDD minimization as the regularization technique in the VCE and different numbers of time-series. The true standard deviation
of the white noise is shown in the x-direction. The shaded area is the region between the 5 percent and 95 percent quantiles of
the estimated signal standard deviation. The noise in the considered time-series is fully cross-correlated.

Figure A.14: Estimated signal standard deviation for a signal with interannual variability (in this case an amplified amplitude
of seasonal variability during half-year) by using MYDD minimization as the regularization technique in the VCE and different
numbers of time-series. The true standard deviation of the white noise is shown in the x-direction. The shaded area is the
region between the 5 percent and 95 percent quantiles of the estimated signal standard deviation. The noise in the considered
time-series is fully cross-correlated.
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Figure B.1: Estimated noise standard deviation for GRACE Release 5 solutions (CSR Release 5, GFZ Release 5, ITSG 2016)
by considering three mass-anomaly time-series in the VCE and Tikhonov first-order as regularization technique.
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Figure B.2: Estimated noise standard deviation for GRACE Release 5 solutions (CSR Release 5, GFZ Release 5, ITSG 2016)
by considering three mass-anomaly time-series in the VCE and applying no regularization.



138 B. Complete set of figures of estimated signal and noise in chapter 3

Figure B.3: Estimated noise standard deviation for GRACE solution GFZ Release 5 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.

Figure B.4: Estimated noise standard deviation for GRACE solution ITSG 2016 by considering one mass-anomaly time-series
in the VCE and MYDD minimization as regularization technique.

Figure B.5: Estimated signal standard deviation for GRACE solution GFZ Release 5 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.
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Figure B.6: Estimated signal standard deviation for GRACE solution ITSG 2016 by considering one mass-anomaly time-series
in the VCE and MYDD minimization as regularization technique.

Figure B.7: Estimated noise standard deviation for GRACE solution CSR Release 6 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.

Figure B.8: Estimated noise standard deviation for GRACE solution ITSG 2018 by considering one mass-anomaly time-series
in the VCE and MYDD minimization as regularization technique.
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Figure B.9: Estimated noise standard deviation for GRACE solution JPL Release 6 by considering one mass-anomaly time-series
in the VCE and MYDD minimization as regularization technique.

Figure B.10: Estimated signal standard deviation for GRACE solution CSR Release 6 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.

Figure B.11: Estimated signal standard deviation for GRACE solution ITSG 2018 by considering one mass-anomaly time-series
in the VCE and MYDD minimization as regularization technique.



141

Figure B.12: Estimated signal standard deviation for GRACE solution JPL Release 6 by considering one mass-anomaly time-
series in the VCE and MYDD minimization as regularization technique.





C
Supplementing set of figures for section

4.3

Figure C.1: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
Arafura Sea. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release 5
(red) and subtracting GTSM from AOD1B OCN Release 6 (blue).
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Figure C.2: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
Arctic Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release 5
(red) and subtracting GTSM from AOD1B OCN Release 6 (blue).

Figure C.3: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
Mediterranean Sea. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release
5 (red) and subtracting GTSM from AOD1B OCN Release 6 (blue).
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Figure C.4: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the North
Atlantic Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release 5
(red) and subtracting GTSM from AOD1B OCN Release 6 (blue).

Figure C.5: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the North
Pacific Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Release 5
(red) and subtracting GTSM from AOD1B OCN Release 6 (blue).
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Figure C.6: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
South China and Archipelagic Seas. These difference mass-anomaly time-series are computed by subtracting GTSM from
AOD1B OBP Release 5 (red) and subtracting GTSM from AOD1B OCN Release 6 (blue).

Figure C.7: Standard deviation of the 3/6-hourly difference mass-anomaly time-series (year 2003) versus bathymetry for the
South Pacific Ocean. These difference mass-anomaly time-series are computed by subtracting GTSM from AOD1B OBP Re-
lease 5 (red) and subtracting GTSM from AOD1B OCN Release 6 (blue).
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Figure C.8: Standard deviation of the monthly difference mass-anomaly time-series. This difference mass-anomaly time-series
is computed by subtracting GTSM (run with only meteorological forcing) from the AOD1B GAD Release 5 product.

Figure C.9: Standard deviation of the monthly difference mass-anomaly time-series. This difference mass-anomaly time-series
is computed by subtracting GTSM (run with only meteorological forcing) from the AOD1B GAB Release 6 product.

Figure C.10: Standard deviation of the monthly difference mass-anomaly time-series. This difference mass-anomaly time-series
is computed by subtracting the AOD1B GAD Release 5 product (after removal of the ocean mean) from the AOD1B GAB Release
6 product.
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Figure D.1: Monthly mean output at the computational grid for different runs of GTSM for the year 2003. The runs differ in the
applied forcing to the model. The third plot is a difference plot of the first and second plot. The monthly mean values for January
are shown.
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Figure D.2: Monthly mean output at the computational grid for different runs of GTSM for the year 2003. The runs differ in the
applied forcing to the model. The third plot is a difference plot of the first and second plot. The monthly mean values for February
are shown.
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Figure D.3: Monthly mean output at the computational grid for different runs of GTSM for the year 2003. The runs differ in the
applied forcing to the model. The third plot is a difference plot of the first and second plot. The monthly mean values for March
are shown.
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Figure D.4: Monthly mean output at the computational grid for different runs of GTSM for the year 2003. The runs differ in the
applied forcing to the model. The third plot is a difference plot of the first and second plot. The monthly mean values for April
are shown.
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Figure D.5: Monthly mean output at the computational grid for different runs of GTSM for the year 2003. The runs differ in
the applied forcing to the model. The third plot is a difference plot of the first and second plot. The monthly mean values for
December are shown.
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