
 

IOMAC'13 
5

th
 International Operational Modal Analysis Conference 

2013 May 13-15 Guimarães - Portugal 

 

IDENTIFICATION OF MULTIPLE LOCALIZED 

FORCES ON A FOOTBRIDGE 

Kristof Maes
1,2

, E. Lourens
3
, K. Van Nimmen

1,4
, E. Reynders

1
, P. Van den Broeck

1,4
, P. Guillaume

5
, G. 

De Roeck
1
, and G. Lombaert

1
 

ABSTRACT 

An existing joint input-state estimation algorithm is extended for applications in structural dynamics. 

The estimation of the input and the system states is performed in a minimum-variance unbiased way, 

based on a limited number of response measurements and a system model. An additional method is 

proposed to identify the noise statistics, which are needed for the joint input-state estimation procedure 

and which can be used to quantify the uncertainty on the estimated forces and system states. The 

proposed methodology is illustrated using data from an in situ experiment on a footbridge. 
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1. INTRODUCTION 

For civil engineering structures, knowledge of the dynamic loads is crucial to design purposes. Very 

often these dynamic loads are not well known or cannot be measured directly, e.g. wind loads or 

footfall excitation. Inverse identification techniques may then be used to identify the unknown forces. 

The joint input-state estimation algorithm proposed in this work is an extension of an existing 

algorithm proposed by Gillijns and De Moor [1], which was used for applications in structural 

dynamics by Lourens et al. in [2]. The algorithm has the structure of a Kalman filter [3], except that 

the true value of the input is replaced by a minimum-variance unbiased estimate. As opposed to many 

existing state estimation algorithms, e.g. [4, 5], no assumptions about the dynamic evolution of the 

forces are needed. The application of the algorithm is restricted to the linear domain.   

The noise statistics are essential when using the proposed joint input-state estimation algorithm, 

especially when quantification of uncertainty on the estimation is aimed. Several methods have been 

proposed in the literature to identify the noise statistics, both offline [6] and online [7, 8, 9]. Very 

often, in structural dynamics applications, operational loads (e.g. wind loads) are modeled as 
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stochastic noise processes. This can be directly taken into account for the noise identification 

procedure, which then boils down to a force identification problem.   

This paper consists of a theoretical part, followed by a practical illustration. Firstly, a brief overview 

of system models as commonly used in structural dynamics is given. Secondly, the joint input-state 

estimation algorithm is presented. Thirdly, a method for the identification of noise statistics 

corresponding to the operational loads is proposed. The methodology is finally illustrated for the 

practical case of a footbridge, where multiple forces are identified.  

2. MATHEMATICAL FORMULATION 

2.1. System model 

Consider the continuous-time governing equations of motion for a linear structure discretized in space: 

                                    (1) 

where            is the vector of displacements,  ,   and                denote the mass, 

damping and stiffness matrix, respectively, and            is the excitation vector. The excitation is 

factorized into an input force influence matrix                  and the vector          

representing the    force time histories.  

After performing a modal decomposition, and assuming proportional damping, the decoupled 

governing equations of motion in modal coordinates become 

                                   (2) 

where              is the vector of modal coordinates.                is a diagonal matrix 

containing the terms        on its diagonal, where    and    are the natural frequency and modal 

damping ratio according to mode  , respectively.                is a diagonal matrix, containing the 

natural frequencies    on its diagonal.                is a matrix with the eigenvectors of the 

structure    as columns. In many cases, modally reduced order models are applied, i.e. the matrices  , 

 , and   only contain the contribution of a limited number of structural modes, denoted by   . Note 

that the modes can be either determined from a first principle model or directly identified from 

measurements on a structure.  

The decoupled equations can be written into state-space form, which after time discretization yields: 

                     (3) 

where             and             (       ),    is the sampling time step, and   is the total 

number of samples. The state vector      consists of the modal displacements and velocities: 

       
    

     
  (4) 

When using a zero-order hold assumption on the force, the expressions for   and   are given by: 

       
  

     
                  

  
     

 
  

 
 

    
  (5) 

The output vector is generally written as 

                                   (6) 
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Where   ,   , and                 are selection matrices indicating the degrees of freedom 

corresponding to the acceleration, velocity, and displacement measurements, respectively. Eq. (6) is 

transformed into its state-space form, using Eq. (2): 

                   (7) 

The expressions for the state-output matrix   and the direct transmission matrix   are given by 

                                        (8) 

When process noise and measurement noise are added to Eq. (3) and Eq. (7), respectively, a discrete-

time combined deterministic-stochastic state space description of the system is obtained: 

                           (9) 

                         (10) 

2.2. Joint input-state estimation 

An existing joint input-state estimation algorithm for linear systems with direct feedthrough [1] is 

extended in order to include the correlation between the process noise      and the measurement noise 

    , which is often important for structural dynamics applications. The system under consideration is 

described by Eq. (9) and Eq. (10). The noise processes            and            are assumed to be 

zero mean and white, with known covariance matrices  ,  , and  : 

   
    

    
      

     
      

  

   
        (11) 

with    ,     and        for     and 0 otherwise. 

Joint input-state estimation consists of estimating the forces      applied to the system and the 

corresponding system states     , from a set of response measurements     . A state estimate         is 

defined as an estimate of     , given the output sequence          

 
. The corresponding error 

covariance matrix, denoted as       , is defined as                               
 
 . An input estimate 

        and its error covariance matrix         are defined in a similar way. For the estimation procedure, 

an initial unbiased estimate          is assumed to be known, as well as its error covariance matrix 

       . The estimate          is assumed independent of      and      for all  . Finally, it is also 

assumed that the rank of the direct transmission matrix   equals the number of applied forces   . 

The filtering algorithm is initialized using the initial state estimate          and its error covariance 

matrix        . Hereafter, it propagates by computing the force and state estimates recursively in three 

steps, i.e. the input estimation step, the measurement update and the time update: 

Input estimation 

                 
      (12) 

             
    

  
       

   (13) 

                                 (14) 

                
    

  
 (15) 

Measurement update 

              
      

    (16) 

                                                       (17) 

                                       
      

  (18) 

                  
                  (19) 
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Time update 

                                (20) 

                    (21) 

              
              

               
   

 

                    
                 

 
  (22) 

In the equations above, the system is assumed to be time-invariant. The algorithm can, however, also 

be applied to time-variant systems by indexing the system matrices, i.e.     ,     ,     , and     . 

2.3. Estimation noise statistics 

In structural dynamics applications, very often operational loads, e.g. wind loads, are modeled as 

stochastic noise processes. The corresponding noise terms are then far more important than sensor 

noise, and the noise statistics  ,  , and  , under the assumption of white noise processes, can be 

estimated from a preliminary vibration experiment where only noise sources are present (      ).  

For the noise identification procedure, the noise sources are modeled as a set of stochastic forces      . 

This implies that the ambient forces are assumed to be concentrated in a limited number of structural 

nodes. The power spectral density (PSD) of the forces      
                   at frequency   is 

obtained from the PSD of the measured structural response                    and the frequency 

response function (FRF) matrix                 , as follows: 

     
                      (23) 

where    denotes the Moore-Penrose pseudo-inverse of a matrix and    denotes the Hermitian 

transpose of a matrix. Defining the PSD of a sampled time series as 

                               
    , (24) 

where 

                     
    (25) 

The force PSD      
   , obtained from Eq. (23), equals the force covariance matrix            

               
   , under the assumption of a stationary discrete-time white noise process. This holds 

for each frequency. The noise covariance matrices are calculated as: 

 
  

   
    

 
 
                  (26) 

In the literature, several methods have been proposed to estimate the cross-PSD of two sampled time 

series      and      [10, 11]. For the remainder of this paper, the correlogram approach [12] is used to 

calculate the output PSD        from a set of output measurements. The FRF matrix can be obtained 

from an updated finite element model of the structure or can be directly obtained from system 

identification techniques. 

For a frequency  , the number of modes significantly contributing to the response can become less 

than the number of stochastic forces to be estimated (    
). The problem of estimating the force PSD 

from a set of output measurements then becomes ill-posed and rank deficient. As a consequence, 

modeling errors and measurement errors will result in an erroneous estimate of the force PSD. The 

stochastic force covariance matrix is estimated hereafter by averaging the force PSD over a number of 

frequencies where the ill-posedness of the problem is minimal. The accuracy and effectiveness of the 

algorithm at a frequency   is therefore assessed based on an algorithm proposed by Fabunmi [13]. 



5
th
 International Operational Modal Analysis Conference, Guimarães 13-15 May 2013 

 

5 

3. IN SITU EXPERIMENT ON A FOOTBRIDGE 

In this section, the effectiveness of the force identification procedure is investigated by means of an in 

situ experiment on a footbridge, located in Ninove (Belgium). It is a two-span cable-stayed steel 

bridge (Figure 1) with a main and secondary span of 36 m and 22.5 m, respectively.  

 

Figure 1 The footbridge in Ninove, Belgium. 

The system matrices are constructed from an updated FE model of the bridge. The FE model is 

updated using a set of experimental modal parameters and considering the stiffness of the neoprene 

bearings, the bridge deck, the pylons, and the effective stiffness of the cables as updating variables. 

The experimental modal parameters are obtained through an output-only system identification, based 

on ambient vibrations due to, amongst others, wind. The output-only data, collected at 56 

measurement locations along the bridge deck, have been processed using the reference-based data-

driven stochastic subspace identification algorithm (SSI-data/ref) [14]. Table 1 presents a comparison 

between the experimentally identified modal characteristics and those calculated from the updated FE 

model. The experimental modal damping ratios     and the MAC values [15] between the measured 

mode shapes and the ones obtained from the updated FE model are shown as well.  

Table 1 Comparison between the experimentally identified modal characteristics and the modal characteristics 

of the updated FE model (   : identified natural frequency,    : identified modal damping ratio,     : undamped 

natural frequency updated FE model,  : error      w.r.t.    ,    : MAC-value). 

Mode No.                                          

1 2.97 1.18 2.90 -2.39 0.98 

2 3.06 1.92 3.09 1.03 0.94 

3 3.79 0.78 3.71 -2.02 0.92 

4 - - 5.02 - - 

5 6.00 0.68 5.84 -2.75 0.99 

6 - - 7.01 - - 

7 6.93 0.59 7.15 3.14 0.92 

8 7.99 0.78 7.68 -3.90 0.99 

9 - - 8.61 - - 

10 - - 9.60 - - 

11 9.73 1.12 9.99 2.63 0.81 

12 10.86 1.21 10.59 -2.46 0.91 

13 - - 11.74 - - 

14 12.55 1.96 12.81 2.05 0.93 

15 13.57 0.66 13.13 -3.23 0.91 

16 14.71 0.58 13.95 -5.20 0.91 

17 13.86 0.58 14.15 2.07 0.91 

18 - - 15.65 - - 

19 - - 17.00 - - 

20 18.58 0.44 18.02 -3.02 0.84 

21 17.15 1.06 18.49 7.81 0.91 
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A reduced-order discrete-time state-space model is constructed from the updated finite element model 

of the footbridge, applying a zero order hold assumption on the force. The model includes the first 21 

eigenmodes of the FE model, listed in Table 1. For each of the 21 modes, the mass normalized mode 

shape is assumed to be known from the FE model. For the 14 modes identified using the SSI 

procedure, the natural frequency as well as the modal damping ratio are taken as the identified values. 

For each of the remaining, unidentified modes, the natural frequency is determined using an H1 

transfer function estimation procedure [12], whereas the modal damping ratio is obtained by 

performing a manual updating procedure. 

A set of vibration experiments was performed on the footbridge, considering both exogenous and 

ambient excitation. For the first set of experiments, with exogenous excitation, the bridge was excited 

by hammer excitation and/or harmonic excitation by two pneumatic artificial muscles. Originally 

sampled at 200 Hz, all data used in the inverse calculations are resampled at a lower sampling rate in 

order to include only frequencies within the range of the modes included in the model. Using a 

decimation factor of 5, the data are lowpass filtered using a Chebyshev type I filter at 16 Hz and 

subsequently resampled at 40 Hz. Since the working range of the accelerometers has its lower bound 

at 0.5 Hz, all measured signals are additionally high-pass filtered using an eighth order Chebyshev 

type I filter with a cutoff frequency of 0.5 Hz. 

3.1. Estimation noise statistics 

The data used in the following analysis contain the response of the footbridge to ambient excitation. 

The measurement setup is shown in Figure 2. The response data consist of the vertical (z-direction) 

and lateral (y-direction) acceleration measurements for each of the five sensor locations, collected 

using wired accelerometers. A time period of 500 s is considered. As an example, the vertical 

acceleration at node 27 is shown in Figure 3. 

 

Figure 2 Overview measurement setup ambient excitation. Sensor positions are indicated in blue. 

(a)  (b)  

Figure 3 (a) Time history and (b) frequency content up to 20 Hz, of the vertical accelerations at node 27 

(accelerations due to ambient excitation). 

The response data and the system model are now used to estimate the ambient force covariance 

matrix, hereby applying the method as proposed in section 2.3. For each acceleration signal a 

stochastic force is assumed, acting at the same node and along the same direction. In this way, a set of 

10 stochastic forces is estimated from 10 acceleration measurements. The averaged force PSD values, 

which are a measure for the force covariance matrix, are shown in Figure 4. Since the force covariance 

matrix has real elements, the averaging is performed for the modulus of the PSD values over the 

frequency range where the ill-posedness of the problem is minimal (see section 2.3). 
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Figure 4 Estimated stochastic forces covariance matrix in [N
2
] (Vi: vertical force and Hi: lateral force node  ). 

In general, the lateral force components Hi are characterized by a larger variance than the vertical 

force components Vi. This is expected, since the ambient loads mainly consist of wind loads. The 

largest force variance occurs at node 27, both for the vertical and the lateral force component and, in 

addition, both force components are strongly correlated. The covariance matrix obtained seems to be 

reasonable and can now be used to calculate the noise covariance matrices.  

3.2. Force identification 

The data used in the following analysis are obtained during the excitation of the footbridge by two 

vertical hammer forces at the bridge deck, one at node 27 and one at node 48. The measurement setup 

is shown in Figure 5. A time period of 25 seconds is considered, containing one impact at both nodes. 

The forces time histories and the corresponding frequency content are shown in Figure 6.  

 

Figure 5 Overview measurement setup force identification. Sensor positions are indicated in blue, hammer force 

locations are indicated in red. 

(a)  (b)  

Figure 6 (a) Time history and (b) frequency content up to 20 Hz, of the hammer forces applied vertically to the 

bridge deck (blue: node 27, green: node 48). 

The force identification is performed using the joint input-state estimation algorithm, proposed in 

section 2.2. The acceleration measurements taken into account are the vertical accelerations at nodes 

27 and 48, i.e. the two driving point accelerations. The noise covariance matrices  ,  , and   are 

calculated from the estimated stochastic force covariance matrix, obtained from section 3.1. The initial 

state estimate          is assumed zero and its error covariance matrix         is assigned a diagonal 

matrix with values of      on its diagonal. This large value indicates the high level of uncertainty 

regarding the initial state estimate. For the analysis, the force locations and directions are assumed 

known.  
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The reconstructed forces are characterized by a low frequency drift. This is due to the fact that only 

acceleration measurements are taken into account, but also to the large influence of ambient excitation 

at low frequencies. For frequencies up to 2.6 Hz, the ambient excitation becomes more important than 

the hammer force, in this way giving rise to a large error on the identified force signals. The low 

frequency drift is removed by applying a fourth order Butterworth high-pass filter with a cutoff 

frequency of 2.6 Hz to the identified force signals. The measured force signal is filtered using the 

same filter. 

The results of the force identification are shown in Figure 7 and Figure 8, for the hammer forces at 

node 27 and node 48, respectively.  

(a)  (b)  

Figure 7 (a) Complete time history and (b) detail of the time history of the identified hammer force at node 27 

(blue: measured, red: identified).  

(a)  (b)  

Figure 8 (a) Complete time history and (b) detail of the time history of the identified hammer force at node 48 

(blue: measured, red: identified). 

Both for the force applied at node 27 and at node 48 a very good correspondence between the 

measured and the identified force signals is obtained. 

The uncertainty on the identified force signals can be quantified by means of the force error 

covariance matrix         (see Eq. (15)). The diagonal elements of this matrix are a measure for the 

variance of the estimation error and are used to define an uncertainty bound on the results obtained. 

Since only acceleration measurements are taken into account, the low frequency content of the force 

cannot be retrieved from the data. As a consequence, the error covariance matrix         grows 

unbounded. By adding displacement or strain measurements, the error covariance matrix does no 

longer grow unbounded and this approach yields an uncertainty bound on the estimation. This is, 

however, not illustrated for the case of the Ninove footbridge, since no displacement or strain 

measurements are available. 

4. CONCLUSIONS 

An existing joint input-state estimation algorithm was extended for applications in structural 

dynamics. The algorithm can be used to identify forces applied to a structure when their positions are 

known. In addition, a method was proposed to identify the process noise and measurement noise 

characteristics, which are needed for the joint input-state estimation procedure. The methodology was 

illustrated for a set of data collected from an in situ experiment on a footbridge. Multiple hammer 

excitation forces have been identified from a limited set of acceleration data. The identified force 

signals are a very good estimate of the true applied forces.  
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