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Abstract

This thesis investigates the potential of data-driven modelling to enhance wind farm
monitoring, control, and operations and maintenance (O&M) strategies by leveraging the
extensive SCADA data generated by offshore wind farms. Focusing on the Lillgrund off-
shore wind farm, the study develops regression-based surrogate models using XGBoost,
artificial neural networks, and Gaussian process regression to predict two critical targets:
the blade root flapwise and tower bottom fore-aft damage equivalent loads. All models
are found to effectively capture the underlying patterns from the input features. Among
them, XGBoost consistently outperforms the others in terms of prediction accuracy, com-
putational efficiency, and robustness. Its superior performance is further validated across
multiple preprocessing settings and operational scenarios, including its capacity to gen-
eralise across turbines and exploit spatial information. Finally, the applicability of the
models is demonstrated through a simplified use case that estimates fatigue damage over
a specific period. The findings underline the value of integrating machine learning-based
surrogate models into operational workflows to reduce O&M costs and support decision-
making in wind farm management.
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CHAPTER 1

Introduction

Wind Power has been proven to be a sustainable, efficient, and profitable renewable energy
source with a significantly smaller environmental impact compared to fossil fuels. The
advancements in wind turbine technology, as well as the global shift towards renewable
energy sources, have propelled the rapid development of wind energy in the past 25 years,
rendering it one of the top five electricity production sources globally (see Fig. 1.1).

Figure 1.1: Electricity production by source, World. [1]

Denmark has been a leader in the advancement of wind energy, generating 19.41 TWh of
electricity from wind in 2023, almost three times more than the second-largest electricity
source (Bioenergy) [1].

In recent years, emerging trends have started to jeopardise the momentum that has been
steadily built over decades. A combination of macroeconomic challenges and increasing
costs of commodities and capital has led to a rise in the overall expense of wind energy
projects, challenging market growth. Despite these challenges, 2024 marked yet another
record year for wind energy with 117 GW of new installations worldwide [2]. This growth
was mainly driven by onshore wind farms(109 GW), which present a well-established and
mature technology supported by a robust global supply chain.

However, given the constraints of limited land availability, the continued expansion of
onshore wind energy is expected to encounter significant obstacles in the future. Therefore,

2



1.1. Topic description 3

it is essential to strongly promote the development of offshore wind energy to support the
achievement of the European Union’s carbon neutrality target by 2050. Nevertheless,
the aforementioned market adversity in combination with immature infrastructure and a
troublesome supply chain led to a decline in the installation of new offshore wind farms
by 26% in 2024 compared to 2023 [2].

Thus, it is evident that reducing the operational costs, and, by extension, the levelized cost
of energy (LCOE) of offshore wind farms is essential to ensure the long-term viability of
the market, support its continued growth, and enable meaningful contributions to global
sustainability objectives.

1.1 Topic description
This project aims to reduce the high operational costs of offshore wind farms by har-
nessing the extensive data they generate. The research focuses on developing data-driven
methods to improve efficiency, including surrogate models that estimate key statistical
properties regarding turbine response, such as damage equivalent loads (DEL), based on
data from all turbines within the farm. Various machine-learning techniques are trained
to predict these target values using operational data from the entire wind farm. Key
learning outcomes include proficiency in large-scale data processing, feature selection,
hyperparameter tuning, and quantitative model performance evaluation.

The work makes use of an existing dataset from the Lillgrund offshore wind farm [3]
provided by Vattenfall as part of the TWAIN EU project [4], aiming to reveal hidden
patterns that can optimise wind farm monitoring, control strategies, and operations and
maintenance (O&M) planning. Through exploratory analyses, this thesis will contribute
to more cost-effective and efficient offshore wind farm operations.

1.2 Aim of the thesis & Relevance
In real-world engineering, dealing with expensive and delicate machinery often makes
it challenging or prohibitively costly to measure certain parameters that provide insight
into performance or structural safety. This has driven significant interest in surrogate
models in recent years. Surrogate models are approximate mathematical models that are
designed to efficiently and cost-effectively replicate the behaviour of a system with an
adequate degree of accuracy, offering an estimation of characteristics that define the wind
farm performance.

Accurately predicting the DEL on wind turbine blades or towers through surrogate mod-
els, as opposed to direct measurement via strain gauges, offers the potential to significantly
reduce operational costs. This is achieved by enabling predictive maintenance, facilitating
lifetime extension assessments, and supporting the optimisation of control strategies. Ac-
cordingly, the objective of this thesis is to develop surrogate models capable of estimating
DEL based on various measurement data (SCADA). The approach is based on regres-
sion analysis, which involves modelling the relationship between multiple input variables
(SCADA data) and a single target variable (DEL) at corresponding time instances. A
flowchart of this process is depicted in Fig. 1.2.
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Figure 1.2: Schematic of the DEL estimation process.

Although there has been extensive research on simulated wind turbine data in the past
years, applying a surrogate model to estimate key properties, such as the DEL, based
on real SCADA data has not been thoroughly investigated. Thus, it would be of great
interest to explore if such an application is possible and which regression methodology is
the most suitable.



CHAPTER 2

Background & state-of-the-art

This chapter provides an overview of the field and presents state-of-the-art research related
to surrogate modelling and regression analysis applied to wind farm data. In Chapter 1,
a brief review of the current state of the wind energy sector was presented, followed by
an introduction to the research topic, including the project’s objectives and its broader
significance. The purpose of this chapter is to establish the theoretical background and
review relevant literature, thereby reinforcing the motivation and relevance of the study.
Finally, the research questions addressed in this thesis are outlined.

2.1 Damage equivalent load
The assessment of the structural lifetime of a wind turbine is a critical aspect of both
the design and operational phases. A key challenge in this process lies in quantifying the
fatigue damage experienced by turbine components due to stochastic and highly variable
loading conditions. Fatigue damage results from cyclic and varying stresses over time,
which, although often below the material’s ultimate strength, can lead to progressive
degradation and eventual failure.

To evaluate fatigue damage, high-frequency load measurements, often from blade root
moments or tower base moments, are analysed using dedicated time-series analysis tech-
niques. The rainflow counting algorithm proposed by Endo T. & Matsuishi M. [5] is the
most common method for extracting stress cycles from such load time-series. It identi-
fies and classifies individual load cycles based on their amplitude, thereby enabling the
transformation of a complex load history into a set of discrete load ranges.

From the rainflow matrix, the Damage Equivalent Load (DEL) is derived. The DEL is
defined as a constant-amplitude load that, applied for a fixed number of cycles, would
produce the same fatigue damage as the actual variable load history. It serves as a scalar
representation of fatigue severity, facilitating load comparisons across different operational
periods or turbine configurations. The DEL for a given load time series is calculated as:

DEL =
(∑n

i=1 niS
m
i

Nref

)1/m

(2.1)

Where:

• Si is the load range of the ith cycle.

• ni is the number of occurrences of that cycle.

• m is the Wöhler exponent (dependent on the component material).

• Nref is the number of reference cycles.

5
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To estimate the remaining useful life of a component, the Palmgren-Miner rule [6] is
applied. This linear damage accumulation model states that the total damage D is given
by:

D =
n∑

i=1

ni

Ni

= 1
K

n∑
i=1

niS
m
i (2.2)

Where Ni is the number of cycles to failure at load range Si, and K is a fatigue strength
coefficient related to the material. Failure is predicted to occur when D ≥ 1.

Consequently, the DEL plays a pivotal role in fatigue analysis and structural health
monitoring. It enables engineers to condense a complex load history into a single rep-
resentative metric, which can be used for design certification, control optimisation, and
post-construction evaluations. Notably, DEL is instrumental not only in the design phase
of new turbines but also in lifetime extension studies of existing wind farms. In such
studies, historical SCADA or load data is analysed to determine whether the accumu-
lated fatigue damage allows for safe operation beyond the original design life.

In the present thesis, DEL serves as the primary target variable for predictive mod-
elling. Specifically, the flapwise blade root moment and tower fore-aft moment DELs are
estimated using SCADA data and machine learning techniques, enabling scalable and
non-intrusive lifetime assessment frameworks.

The fatigue damage calculation is explained more thoroughly in [7] & [8]. A flowchart
which illustrates the DEL computation is presented in Fig. 2.1.

Figure 2.1: Schematic of the DEL calculation process.
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2.2 Literature review
In this section, a discussion of the state-of-the-art is conducted in the field of surrogate
modelling within the context of wind energy. Several peer-reviewed articles and scientific
reports were examined, and the most critical findings are presented with respect to three
main aspects: the objectives of the models, the modelling approaches employed, and the
type of data utilised. The reviewed literature demonstrates that surrogate models have
been widely adopted in wind energy applications such as wind farm layout optimisation,
wake characterisation, performance monitoring, fault detection, and fatigue load estima-
tion.

Surrogate models have shown particular promise in the field of wind turbine performance
assessment and fault detection. Lyons and Göçmen [9] proposed a machine learning-based
methodology that leverages SCADA data from individual turbines and their neighbours
to identify performance anomalies at the wind farm scale. Their approach enables timely
maintenance interventions and improves energy trading strategies through more accurate
power output predictions. The methodology was validated using two days of SCADA
data from the Horns Rev I offshore wind farm. Similarly, Papatheou et al. [10] utilised
SCADA data from the Lillgrund wind farm to monitor significant performance events.
By applying artificial neural networks (ANNs) and Gaussian Process Regression (GPR),
they constructed individualised reference power curves for each turbine and successfully
detected deviations using simple control charts.

In the context of fatigue load estimation, Hlaing et al. [11] investigate the use of prob-
abilistic deep learning models, such as Bayesian neural networks (BNN), Monte Carlo
dropout, and deep ensembles, for virtual load monitoring in offshore wind farms. Their
approach combines SCADA and accelerometer data to predict damage equivalent loads
while also quantifying predictive uncertainty. Using a two-year dataset from five turbines
in a Belgian offshore wind farm, the models were trained on one year and tested on a sec-
ond with different operational conditions. The study highlights the ability of these models
to generalise across distributions and to signal high uncertainty under out-of-distribution
scenarios. Notably, deep ensembles demonstrated the best balance between predictive
accuracy and uncertainty calibration, supporting the practical value of uncertainty-aware
models in industrial asset management.

Noppe et al. [12] present a virtual sensing framework for estimating the full structural
load on offshore wind turbines (OWTs), combining SCADA data with accelerometer and
strain measurements. Their method separates the loading contributions into quasi-static
loads, predicted from SCADA-based thrust estimation models, and dynamic loads, de-
rived using a modal decomposition and expansion technique applied to tower-mounted
accelerometer data. The combination of these two components enables the reconstruc-
tion of the full strain history at fatigue-critical locations, even those below sea level and
otherwise inaccessible, such as near the mudline of monopile foundations. The concept is
validated on real data from a Belgian offshore wind farm, demonstrating good agreement
between predicted and measured strains over a short validation period. This approach
illustrates the potential of hybrid data-driven and physics-informed models for lifetime
assessment and structural health monitoring in existing offshore wind assets.

Complementing this line of work, Weijtens et al. [13] propose a fleet-leader-based strategy
to enable farm-wide fatigue assessment using in-situ measurements from a limited number
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of instrumented turbines. By equipping select turbines in the Northwind offshore wind
farm with strain gauges and accelerometers, and calculating damage equivalent loads at
10-minute resolution, the authors demonstrate that turbine-level fatigue progression can
be estimated and extrapolated to non-instrumented units. The study underscores the
importance of accounting for turbulence and site-specific dynamics, such as wave loading,
and concludes that while the fleet-leader concept is promising, further refinement of em-
pirical extrapolation techniques is required. This approach highlights a scalable direction
for integrating physical measurements and surrogate models into long-term structural
health monitoring and life extension strategies.

Additionally, several studies have highlighted the superiority of probabilistic machine
learning models over conventional lookup-based approaches. For instance, a recent study
by Miao et al. [14] proposed a Gaussian Process (GP) regression model to predict damage
equivalent loads under yaw-misaligned conditions. Compared to traditional look-up table
(LUT) methods, the GP approach achieved substantial improvements in accuracy (up to
51.87% RMSE reduction for flapwise blade root moments) due to its ability to capture the
highly nonlinear relationship between yaw misalignment and fatigue loads. The model
was trained using simulated data from wind farm scenarios that explicitly accounted for
wake interactions, underlining the importance of including yaw-induced flow effects in
DEL prediction.

Artificial Neural Networks remain a popular choice for fatigue load modelling. Schröder
et al. [15] showed that a feedforward neural network with two hidden layers could esti-
mate flapwise blade root DELs more accurately and efficiently than a polynomial chaos
expansion (PCE) model using data from HAWC2 [16] simulations.

However, alternative algorithms have emerged that offer significant improvements in both
accuracy and computational efficiency regarding wake modelling and power prediction
tasks. For example, Extreme Gradient Boosting (XGBoost) has demonstrated superior
performance over ANNs in such functions. In a study by Nakhchi et al. [17], XGBoost
not only yielded lower mean deviations in power prediction (0.94% vs. 2.15% for ANN),
but also achieved drastically faster training and inference times; 87.5% and 98% faster,
respectively. These advantages make XGBoost highly attractive for real-time applications
in yaw-controlled wind farms, where computational speed is critical.

The scalability of XGBoost is further confirmed in a comparative study by Purohit et
al. [18], which evaluated Support Vector Regression, ANN, and XGBoost in predicting
wake velocity and turbulence intensity. While all models achieved CFD-level precision,
XGBoost distinguished itself as the most efficient and scalable, particularly suitable for
large datasets. Although the study was limited to standalone turbines with uniform
inflow and did not address wake interactions, it reinforces the model’s practical relevance
in surrogate modelling pipelines.

A direct comparison of surrogate model types specifically for DEL and power prediction
is offered by Gasparis et al. [19], who evaluated Linear Regression, ANN, and Gaussian
Process Regression. Their study showed that GPR consistently outperforms the other
two models in predicting both short-term damage equivalent loads and electrical power.
This reinforces the growing consensus around the effectiveness of GPR in fatigue-related
modelling tasks due to its ability to model uncertainty and capture complex nonlinear
relationships.
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Alternative modelling strategies, particularly polynomial-based surrogates, have also been
explored. Dimitrov et al. [20] and Murcia et al. [21] investigated polynomial regression
approaches on synthetic datasets to estimate key statistical quantities such as fatigue
damage and uncertainty propagation. The latter study employed Monte Carlo simulations
to construct polynomial response surfaces, offering computational efficiency at the expense
of reduced accuracy and flexibility compared to machine learning methods.

The applicability of the Response Surface Methodology (RSM) to structural load es-
timation was examined by Toft et al. [22]. Their results show that while RSMs can
accurately estimate fatigue and ultimate loads for site-specific wind turbine configura-
tions, the model uncertainty is notably higher when applied to ultimate load calculations.
This underscores the need for caution when deploying surrogate models in extreme load
estimation scenarios.

Lastly, a comprehensive review by Kusiak et al. [23] provides an extensive overview
of recent advances in data-driven modelling for wind power systems, covering aspects
such as operation, condition monitoring, and fault detection. Their work emphasises
the increasing role of intelligent models in optimising wind farm operation, improving
reliability, and reducing downtime.

Looking ahead, data-driven Wind Farm Flow Control (WFFC) emerges as a promising
frontier in wind energy research. Göçmen et al. [24] provide a comprehensive review of
this rapidly evolving field, highlighting the integration of surrogate models, reinforcement
learning, and advanced analytics to improve wind farm adaptability, energy yield, and load
management. The study emphasises the pivotal role of surrogate modelling in bridging
the gap between high-fidelity simulations and real-time operational control. While the
potential of data-driven WFFC is significant, the authors identify key challenges related
to data quality, cybersecurity, and algorithm robustness that must be addressed to enable
field-scale implementation. Overall, the review underscores that the synergy between data
science and wind farm control not only enhances current methodologies but also paves
the way toward more intelligent, resilient, and sustainable wind energy systems.

2.3 Summary and thesis motivation
Collectively, these studies underscore the growing relevance of surrogate modelling tech-
niques in wind energy research and practice. The most relevant contributions from the
reviewed literature are summarised in Table 2.1.
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Table 2.1: Literature review summary of surrogate modelling techniques for estimating
key performance indicators of wind turbines.

Author(s) Data Method Prediction
Target

Main Finding

Lyons &
Göçmen [9]

SCADA ANN Power
• Enables timely maintenance and op-

timised energy trading.
• Local SCADA input (neighbouring

turbines) outperforms single-turbine
and full-farm data.

Papatheou et
al. [10]

SCADA ANN, GPR Power
• Possible to monitor significant events

affecting turbine performance.
• ANN and GPR showed similar power

prediction performance.

Hlaing et al.
[11]

SCADA BNN, Deep
Ensembles

DEL
• Supports the use of probabilistic deep

learning models for industrial asset
management.

Noppe et al.
[12]

SCADA ANN Loads
• Demonstrates the potential of hybrid

data-driven and physics-informed
models for lifetime assessment and
structural monitoring.

Miao et al. [14] Generated GPR DEL
• GPR significantly outperforms tradi-

tional LUT methods.

Schröder et al.
[15]

Generated ANN, PCE DEL
• ANN predicts blade DELs faster and

more accurately than PCE.

Nakhchi et al.
[17]

Generated XGBoost,
ANN

Power
• XGBoost is more accurate and faster

in yaw-misaligned wind farm predic-
tions.

Purohit et al.
[18]

Generated XGBoost,
ANN, SVR

Wake velocity
& TI • Similar performance across models.

• XGBoost is efficient and scalable for
large datasets.

Gasparis et al.
[19]

Generated ANN, GPR,
LR

DEL, Power
• GPR outperforms ANN and linear re-

gression models.

Dimitrov et al.
[20]

Generated PCE, GPR,
QRS

DEL
• GPR outperforms other surrogate

models.

Murcia et al.
[21]

Generated PCE Power, DEL
• Polynomial response surfaces can

capture global turbine behaviour.
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The overview presented in Table 2.1 reveals several noteworthy trends and gaps in the
current literature on surrogate modelling in wind energy. First, it becomes evident that
the majority of existing studies rely on synthetic datasets derived from low or high-fidelity
simulations. While these methods offer controlled conditions for model development, they
fail to capture the complexity and variability inherent in real-world turbine operation.
Consequently, there remains a distinct need for studies applying surrogate models directly
to SCADA data, which are more representative of operational uncertainties and real
turbine behaviour.

Another key observation is the underexplored potential of XGBoost in the context of fa-
tigue load estimation. Although XGBoost has demonstrated superior accuracy and com-
putational efficiency in power and wake velocity prediction tasks, its application to DEL
prediction remains unexamined. This creates an opportunity to assess its performance
in a domain where fast inference and robust pattern recognition are especially valuable,
particularly for real-time monitoring or large-scale deployment. Moreover, while power
prediction and AEP optimisation dominate the focus of many surrogate modelling studies,
DEL estimation is comparatively less investigated. Given the importance of DEL in tur-
bine lifetime extension studies and predictive maintenance strategies, this gap highlights
an important opportunity for further research. A model capable of accurately estimating
DEL using only SCADA data would provide significant value for asset management and
structural integrity assessments.

Lastly, the table shows that ANNs are widely adopted due to their flexibility and general
applicability across tasks, whereas GPR consistently performs well but tends to incur
higher computational costs. Polynomial-based methods seem effective, though their effec-
tiveness must still be evaluated using real SCADA data. Evaluating the performance of
these diverse methods (ANN, GPR, XGBoost, and Polynomial regression) on real SCADA
data thus offers an insightful comparison of model accuracy, complexity, and generaliz-
ability under practical conditions.

2.4 Research questions
Building on the preceding discussion, this thesis addresses the key research gaps identi-
fied in the literature review, particularly those related to surrogate modelling using real
SCADA data and the estimation of fatigue loads. In this context, the project aims to
investigate these gaps by formulating and answering the following research questions:

1. What is the most suitable data-driven modelling approach for accurately predicting
damage equivalent loads using SCADA data from operational wind turbines?

2. How do different data characteristics, such as input feature composition, data vol-
ume, and signal pre-processing, affect the performance and generalizability of sur-
rogate models for DEL prediction?

3. To what extent can spatial information from neighbouring wind turbines enhance
the accuracy of surrogate models across a wind farm?

These research questions are evaluated based on algorithms that are described in Chap-
ter 3 and the results are reported and discussed in Chapter 4.



CHAPTER 3

Data & Methodology

In this chapter, a comprehensive analysis of the dataset and the modelling approach is
presented. The chapter is structured into three main sections. The first section, Dataset,
introduces the SCADA-based data used for training, validation, and testing of the models,
including a detailed description of the input and target variables. The second section,
Pre-processing, outlines the steps taken to clean, scale, and split the data to ensure it
is suitable for modelling. This includes the application of scaling techniques, removal of
outliers, and dataset splitting methods. The third section, Models, describes the machine
learning algorithms employed (XGBoost, ANN and GPR) along with the configurations,
architectures, and hyperparameter tuning strategies adopted for each. Additionally, a
simpler Polynomial Regression model is tested to provide a baseline reference for evalu-
ating the performance of more advanced techniques. Finally, the evaluation framework
is presented, including the metrics and plots used to assess model performance and error
behaviour. This chapter forms the methodological foundation for the subsequent analysis
in Chapter 4.

3.1 Dataset
The dataset used in this study originates from the Lillgrund offshore wind farm, located
off the southern coast of Sweden. Commissioned in 2007, Lillgrund comprises 48 Siemens
wind turbines, each with a rated power capacity of 2.3 MW, resulting in a total installed
capacity of 110 MW. As one of Sweden’s earliest large-scale offshore wind projects, it
represents a mature and operationally stable wind farm environment. The site provides
a valuable real-world dataset for the development and evaluation of data-driven models
aimed at understanding and predicting structural loads and performance metrics in off-
shore wind energy systems. A photograph of Lillgrund wind farm with the prestigious
Øresund bridge in the back is shown in Fig. 3.1.

12
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Figure 3.1: Lillgrund wind farm, picture from Vattenfall.

The geographical location of the wind farm at a macro scale, along with the detailed
layout of its wind turbines, is illustrated in Fig. 3.2.
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Figure 3.2: Lillgrund wind farm on the map (left) and wind turbine layout (right).

As one can see in Fig. 3.2, Lillgrund wind farm consists of a near-rectangular layout with
eight rows and up to eight turbines per row. Among the 48 turbines, six are equipped
with load sensors, specifically turbines B06, B07, B08, C08, D07, and D08. These are
referred to as the load turbines and provide access to high-frequency structural load mea-
surements. The available load signals include the blade root flapwise bending moment
and the tower fore-aft and side-side bending moments. The dataset spans three years from
10 November 2019 to 13 November 2022 and is composed of 10-minute statistical sum-
maries. Each data record contains a rich set of SCADA channels, including time stamps,
wind speed, active power output, nacelle orientation (Nacelle Position), blade pitch an-
gle, generator rotational speed (RPM), structural loads, and various other operational
and environmental parameters.
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Due to confidentiality agreements with the stakeholders, Vattenfall and Siemens, opera-
tional data related to wind turbine power and loads cannot be disclosed. Consequently,
such data are presented solely in normalised form in the plots deemed essential for the
analysis in this study.
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Figure 3.3: Lillgrund wind rose at hub height [25].

The wind rose presented in Fig. 3.3 illustrates the wind direction distribution, and WSW
and SW as the dominant wind directions.

Having introduced the general characteristics of the Lillgrund offshore wind farm, the fo-
cus now shifts to evaluating the dataset itself. A range of statistical and visual assessments
is conducted to gain insight into the quality and behaviour of the recorded signals. These
include the computation of basic descriptive statistics such as the mean and standard de-
viation across all turbines, as well as various visualisations, including signal distributions
and their relationship with wind speed. For brevity, this section presents a selection of
plots for key variables that serve as indicators of data quality and consistency. Specifically,
the plots against wind speed are shown for turbine B07 only, due to space limitations.
These include variables such as active power, pitch angle, and structural loads. Addition-
ally, histograms of the target variables, namely, the blade root flapwise DEL and the tower
fore-aft moment DEL, are included to illustrate their distribution within the dataset.

The distribution of these variables as a function of wind speed is presented in Fig. 3.4,
Fig. 3.5 & Fig. 3.6. All plots are based on SCADA 10-minute mean signals from turbine
B07, with the exception of the DEL plots, which are derived from high-frequency load
measurements processed into equivalent fatigue loads over each 10-minute interval. These
visualisations offer a first indication of the consistency and physical plausibility of the
signals across the wind speed range and serve as a basis for the subsequent modelling
efforts.
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Figure 3.4: Mean active power (left) and mean pitch angle (right) against wind speed for
B07.

Figure 3.5: Mean blade root flapwise moment (left) and mean tower fore-aft moment
(right) against wind speed for B07.

Figure 3.6: Blade root flapwise moment DEL (left) and tower fore-aft moment DEL (right)
against wind speed for B07.

The plots in Fig. 3.4, Fig. 3.5 & Fig. 3.6 provide a visual overview of key operational and
structural load variables as a function of wind speed for turbine B07. The active power
curve follows the expected theoretical trend, increasing with wind speed until rated con-
ditions are reached and then plateauing. However, several points deviate from the typical
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power curve, including instances of zero power production at wind speeds above cut-in,
and below-rated power outputs at wind speeds exceeding 20 m/s. These outliers likely
correspond to periods of curtailment, implemented for load reduction or other opera-
tional constraints, and are further examined in the following section. The pitch angle
curve similarly shows the anticipated trend of increasing blade pitch beyond rated wind
speed. A small number of anomalous points, possibly associated with manual shutdowns
or experimental campaigns, are also observed. The mean structural load trends, specifi-
cally the blade root flapwise moment and the tower fore-aft moment, are consistent with
physical expectations. Both quantities increase with wind speed up to the rated region
(approximately 11 m/s) and then gradually decline as pitch control reduces aerodynamic
loading. Again, scattered deviations from this behaviour suggest occasional divergence
from normal operation. Finally, the DELs for both the blade root flapwise and the tower
fore-aft moments show a clear dependence on wind speed, generally increasing across the
range. A pronounced peak appears in the rated wind speed region, consistent with ele-
vated unsteady loading due to the control region shift. Additionally, for the tower fore-aft
DEL, a secondary peak is visible in the low wind speed region, though less prominent.

To further assess the quality and distribution of the target variables used in the modelling
phase, histograms of the structural loads are examined. These are shown in Fig. 3.7 &
Fig. 3.8. For the blade loads, only the flapwise bending moment at the blade root is
available and is therefore used as the sole target variable. In the case of the tower, both
fore-aft and side-side bending moments are recorded. However, for simplicity purposes,
only the fore-aft moment DEL is used as the predictive target, given its strong correlation
with the side-side component.
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Figure 3.7: Blade flapwise DEL histogram for each wind turbine. The capital letters refer
to each blade signal and n is the number of datapoints.
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Figure 3.8: Tower FA moment DEL histogram for each wind turbine and n the number
of datapoints.
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The histograms provide a basic but informative sanity check, revealing the range and
shape of the DEL distributions. Regarding the blade flapwise DEL for each load turbine,
they are presented in Fig. 3.7, while the corresponding tower fore-aft DEL histograms are
shown in Fig. 3.8. Overall, the distributions of the blade DELs are fairly consistent across
the different turbines and blade signals, indicating a generally uniform loading behaviour.
Nonetheless, several anomalies are observed. For instance, the B blade of turbine B06
displays a high concentration of unrealistically low DEL values, suggesting a likely strain
gauge malfunction. A similar, albeit less severe, pattern is observed in the B blade of
turbine C08. Furthermore, for turbine D08, all blade signals exhibit three distinct peaks
in the mid-to-high DEL region. This irregularity is attributed to a prolonged shutdown
period during the early months of 2022, most likely related to maintenance activities (see
Fig. 3.9). Additionally, the A blade signal is missing from turbine B07; however, the
remaining blade signals exhibit comparable distributions and similar data availability.
Based on these observations, the A blade signal is selected as the target variable for all
turbines except B07, where the B blade signal is used instead. A datapoint in this context
refers to a single row in the SCADA dataset, representing the recorded measurements and
signals at a specific timestamp.

Turning to the tower DEL histograms, the distributions are generally bell-shaped and cen-
tred around a dominant peak, reflecting stable load patterns across the fleet. However,
variations in peak amplitude and shape are noticeable between turbines. In particular,
turbine D08 again shows an irregular pattern with two distinct peaks, which can be
traced back to its extended shutdown in early 2022 (see Fig. 3.9). A secondary peak is
also observed in turbine B08, likely resulting from a combination of curtailment events
and experimental campaigns conducted on that unit. Despite these localised irregulari-
ties, the tower DEL signals are consistent in terms of their overall shape and volume of
available data, further confirming the reliability and suitability of the dataset for subse-
quent modelling efforts. Lastly, one can observe that the C08 tower load data is missing
from the dataset.

Fig. 3.9 presents the time series and corresponding 30-day rolling averages of five key
mean SCADA signals for turbine D08 over the full duration of the dataset. These include
wind speed, active power, pitch angle, nacelle position, and generator speed. A distinct
operational anomaly is observed at the beginning of 2022, where a prolonged period of
approximately 2.5 months is characterised by zero active power output and significantly
elevated pitch angles. This pattern strongly suggests a manual shutdown, likely due to
maintenance or other operational constraints. The impact of this period of non-standard
operation on model performance is further examined in Chapter 4.
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Figure 3.9: 30-Day rolling average for key mean signals of D08 SCADA.

3.2 Pre-processing
After the initial data sanity check presented in the previous section, where key opera-
tional and structural load signals were visually and statistically assessed, further data
preparation steps are required before the modelling phase. This section describes the
pre-processing workflow applied to the dataset to ensure its quality, consistency, and suit-
ability for supervised learning. First, a set of filtering techniques is employed to isolate
data corresponding to normal turbine operation and to exclude outliers or anomalous
behaviour. Subsequently, two critical procedures are detailed in dedicated subsections:
feature scaling, which scales the input variables to comparable numerical ranges, and
dataset splitting, where a quantile binning technique is used to generate balanced and
representative training, validation, and test sets. These steps form a crucial foundation
for achieving reliable and generalizable model performance.

When developing a regression model based on real-world measurement data, it is critical to
ensure that the input data is both representative and free from outliers or anomalies that
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could compromise model performance. Such anomalies may appear to originate from a
different underlying physical process than the one generating the bulk of the data, thereby
impairing the model’s ability to generalise effectively [26]. To address this, a data filtering
step is essential prior to model training, aimed at identifying and removing clusters of
data points associated with distinct physical behaviours. Morrison et al. [27] investigate
the influence of filtering on the wind turbine power curve by comparing four anomaly
detection methods. Their findings indicate that the Gaussian Mixture Model (GMM)
offers slightly improved accuracy, although the optimal method ultimately depends on
the specific objectives of the analysis. According to Lin et al. [28], anomalies in wind
turbine SCADA data typically fall into three main groups, which any effective clustering
or filtering strategy should be designed to capture:

• Group 1 : No power production above cut-in wind speed, typically indicative of
manual turbine shutdown.

• Group 2 : Stable and continuous sub-rated power output due to curtailment strate-
gies.

• Group 3 : Scattered irregularities arising from sensor faults or signal noise, which
deviate from the expected operational patterns.

These groups can be visualised through the B07 power curve using the raw unfiltered
data in Fig. 3.10. The black circle corresponds to Group 1, while the red and green circles
correspond to Groups 2 and 3, respectively.

Figure 3.10: Unfiltered B07 power curve with the anomaly groups.

To ensure that the dataset used for model training accurately reflects the normal opera-
tional behaviour of the wind turbine, a filtering procedure, referred to as normal operation
filtering, is applied. This process is designed to remove anomalous or non-representative
data points that could adversely affect the model’s predictive capability. The filtering is
carried out in three sequential steps.

First, all entries containing missing values (NaNs) are excluded from the dataset. Since
machine learning models cannot handle undefined values in either the input or target
variables, these datapoints are unusable and thus discarded.
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Second, a threshold-based filter is applied to remove datapoints with zero or negative
power output. Specifically, any record with mean active power below a predefined minimal
threshold is assumed to reflect turbine inactivity or measurement error and is consequently
excluded.

The third and most nuanced step involves the application of a GMM [29] for unsuper-
vised clustering. A GMM is a probabilistic approach that assumes that all the data points
are generated from a mixture of several Gaussian distributions with unknown parame-
ters and enables the identification of data clusters associated with abnormal operational
states, particularly those corresponding to curtailment events (Group 2) and irregular
anomalies due to sensor faults or noise (Group 3), as described by Lin et al. [28]. By
detecting and removing these clusters from the dataset, the filtering process isolates the
datapoints most representative of standard turbine operation, thereby likely improving
the reliability and interpretability of the subsequent modelling phase. In addition to the
GMM, alternative clustering methods available in the scikit-learn library [29], such
as DBSCAN and KMeans, were also evaluated. Furthermore, the hierarchical DBSCAN
(HDBSCAN) algorithm, implemented via the hdbscan library [30], was tested. However,
none of these methods demonstrated the same level of effectiveness and robustness as
GMM in capturing the relevant operational clusters.

The efficiency of GMM in identifying the anomaly groups, illustrated in Fig. 3.10, is
presented in Fig. 3.11.

Figure 3.11: Unfiltered B07 power curve (left) and GMM clustered B07 power curve
(right). n is the number of datapoints.

Fig. 3.11 compares the unfiltered (left) and clustered (right) power curves for turbine
B07, as part of the GMM-based anomaly detection process. The number of clusters is the
only user-defined parameter required by the GMM, while the algorithm autonomously
infers the cluster structure based on the data distribution. As shown in the right sub-
figure, the GMM effectively isolates a distinct cluster (Cluster 0) comprising datapoints
that deviate from normal operation and thus is discarded. These include instances of
curtailment, signal noise, and sensor malfunction, corresponding to Groups 2 and 3 in the
previously defined theoretical classification. Although these conditions arise from different
physical mechanisms, grouping them poses no issue, as all such datapoints are ultimately
discarded. It should also be noted that Group 1, representing zero power output above
cut-in wind speed, is absent from the clustered plot, having been removed manually before
the clustering step.
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Figure 3.12: Unfiltered power curves.

Figure 3.13: Filtered power curves.
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Having established the full filtering methodology, including NaN removal, negative power
filtering, and GMM-based clustering, it is now applied to all load-measuring turbines in
the dataset. The resulting power curves are presented in Fig. 3.12 and Fig. 3.13. Fig. 3.12
displays the power curves after only NaN values have been removed, while Fig. 3.13 shows
the cleaned power curves following the complete filtering process. Although the filtering
substantially improves the clarity of the power curves, particularly by removing outliers
and non-representative datapoints, a considerable spread remains in the sub-rated wind
speed region, indicating persistent variability and uncertainty in turbine behaviour prior
to rated operation.

It is important to note that the filtering shown here pertains specifically to the blade
flapwise DEL models. The only difference compared to the tower models lies in the signals
used for NaN filtering, while the resulting power curves are qualitatively consistent across
both cases. Additionally, turbine C08 does not contain tower load data and is therefore
excluded from the corresponding tower DEL filtering and modelling steps.

In addition to the visual assessment of the filtered power curves, a quantitative summary
of the filtering process is also essential to evaluate its impact on the dataset size and
consistency across turbines. Fig. 3.14 provides such a summary by illustrating both the
absolute number of datapoints before and after the full filtering procedure, as well as the
percentage of data removed. Here, the unfiltered datasets refer to those containing only
the initial NaN filtering, while the filtered datasets have undergone all three steps: NaN
removal, negative power filtering, and GMM clustering. The proportion of removed dat-
apoints ranges from approximately 14% to 31%, with turbine D08 exhibiting the highest
filtering percentage. This is consistent with the previously discussed extended shutdown
period in early 2022 (see Fig. 3.9). These results confirm that a substantial and usable
portion of the dataset is preserved for subsequent modelling.
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Figure 3.14: Number of data points of the unfiltered and filtered datasets (left) and
filtering percentage (right) for all the wind turbines regarding the blade model datasets.

3.2.1 Dataset split
To ensure that the predictive models generalise well to unseen data and are evaluated in a
statistically consistent manner, the dataset is divided into three distinct subsets: training,
validation, and test sets. These subsets are created using a stratified approach based on
the target variable through the use of the KBinsDiscretizer from the scikit-learn
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library [29]. The goal of this approach is to preserve the distributional characteristics of
the target variable across all splits and avoid training the model on operational regimes
that differ significantly from those found in the validation or test data.

Specifically, the target variable is first discretised into 10 quantile-based bins. This ensures
that each bin contains approximately the same number of datapoints, capturing the full
range of operational loads. Stratified sampling is then performed on these bins to generate
balanced splits. The data is first divided into 90% training and validation, and 10%
test data. The 90% subset is then further split into 70% training and 20% validation
data, resulting in an overall split of 70%-20%-10% for training, validation, and test sets,
respectively. This process is repeated separately for each wind turbine and each target
signal (blade or tower DEL).

To validate the effectiveness of this approach, three types of distributions are compared
across the three datasets for the B07 blade model. Fig. 3.15 shows the probability den-
sity functions of the wind speed using fitted Weibull distributions for each split. The
alignment of these distributions confirms that the wind conditions are similarly repre-
sented across training, validation, and test sets. In parallel, Fig. 3.15 also displays the
normalised histograms of the target variable (DEL) for each split. The close agreement in
the shape and range of the distributions further demonstrates that the quantile binning
technique successfully balances the structural load characteristics across the datasets.
Lastly, Fig. 3.16 demonstrates that the distributions of the nacelle position (proxy for
wind direction) signal across the different data splits are closely aligned, indicating good
agreement in the wind direction parameter as well. While the plots shown here pertain
specifically to turbine B07, similar visual inspections are performed for the dataset splits
of all other turbines to ensure consistency in load and wind speed distributions across
the different subsets. These checks confirm that the datasets used for model training and
evaluation reflect comparable physical and operational conditions, thereby supporting fair
and robust model assessment.
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Figure 3.15: Weibull distributions (left) and target variable histograms (right) concerning
B07 blade flapwise DEL dataset splitting.
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Figure 3.16: Nacelle position distribution across the B07 blade flapwise DEL datasets.

3.2.2 Scalers
Feature scaling is a fundamental step in preparing data for machine learning, particularly
for algorithms sensitive to the magnitude and distribution of input variables. Apply-
ing appropriate scaling ensures that all features contribute equally to the model training
process and that the model converges more efficiently during optimisation. Without scal-
ing, variables with larger numeric ranges can dominate the learning process, potentially
leading to suboptimal performance.

Several scaling techniques are evaluated using the scikit-learn library [29]. Each
method transforms the data differently, according to its underlying assumptions and in-
tended robustness:

• Standard Scaler: Transforms each feature to have zero mean and unit variance.
The transformation follows:

xscaled = x − µ

σ
(3.1)

where µ is the sample mean and σ the standard deviation.

• MinMax Scaler: Scales features to a fixed range, typically [0, 1]. The transfor-
mation is given by the following two equations:

σ = x − xmin

xmax − xmin
(3.2)

xscaled = σ · (xmax − xmin) + xmin (3.3)

where xmin and xmax are the minimum and maximum values of the feature.

• Robust Scaler: Reduces the influence of outliers by scaling features using the
median and the interquartile range (IQR):

xscaled = x − median
IQR

(3.4)

making it more robust to heavy-tailed distributions or extreme values (outliers).
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• Log Scaler: A custom scaler implemented to transform only the target variable by
applying a natural logarithm:

xscaled = ln(x) (3.5)

This transformation is particularly useful for compressing the scale of skewed data
with a large dynamic range, a common characteristic in structural load signals.

All scalers are tested in various combinations for both input features and target variables
across the three regression models considered. The selection of the optimal scaler is based
on model performance, determined by training each model and evaluating its prediction
accuracy.

The final choices are as follows:

• XGBoost: StandardScaler for both input and target variables.

• ANN: StandardScaler for both input and target variables.

• GPR: MinMaxScaler for both input and target variables.

It is important to emphasise that while differences in performance were observed between
the scalers, they were generally modest. This indicates that a well-trained and suffi-
ciently flexible data-driven model should not be overly sensitive to the choice of scaler.
Nonetheless, selecting a scaling method consistent with the model architecture and data
characteristics can contribute to enhanced numerical stability and more efficient conver-
gence.

3.3 Models
This section presents the regression models evaluated for predicting structural loads on
wind turbines based on SCADA data. Three distinct modelling approaches are consid-
ered: Extreme Gradient Boosting (XGBoost), Artificial Neural Networks (ANN), and
Gaussian Process Regression (GPR). The choice was made based on the literature review
conducted in Chapter 2. In addition, a simpler Polynomial Regression model is included
as a baseline reference to assess the added value of more complex machine learning al-
gorithms. Each subsection outlines the theoretical foundations of the respective model,
discusses its strengths and limitations in the context of wind turbine load prediction,
and details its implementation in Python, including the libraries used and the strategy
for hyperparameter tuning. The hyperparameter tuning process described in this section
is performed for all case studies presented in the Results & Discussion chapter, except
the Generalisability case study, where models are deliberately tested in their tuned form
without further optimisation. In addition to model development, this section introduces
the evaluation framework used to assess performance. Quantitative metrics are employed
to compare predictive accuracy, while a set of visual tools is used to gain further insight
into model reliability and potential sources of bias. Together, these components form
the basis for a robust and comprehensive model comparison in the subsequent Results &
Discussion chapter (Chapter 4).

3.3.1 XGBoost
XGBoost (Extreme Gradient Boosting) [31] is a tree-based ensemble learning algorithm
widely recognised for its high efficiency, scalability, and robust predictive performance.
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It has become a benchmark model in many regression and classification tasks due to its
ability to handle large datasets, accommodate missing values, and capture complex, non-
linear interactions between features. Another key strength of XGBoost lies in its ease
of implementation, with well-documented libraries available in Python, including flexible
support for hyperparameter tuning and early stopping.

A primary limitation of XGBoost, as with many tree-based ensemble methods, is its
reduced model interpretability. While tools exist to extract feature importance or par-
tial dependencies, the model’s internal decision logic remains difficult to fully interpret,
especially in high-dimensional settings.

Conceptually, XGBoost differs from traditional ensemble methods such as Random Forest
Regression [32] in the way decision trees are constructed. In Random Forests, multiple
trees are built independently and in parallel, with each tree trained on a sample of the
data. The final prediction is then typically obtained by averaging the outputs of all trees.

In contrast, XGBoost employs a sequential learning strategy where trees are added one
at a time. Each new tree is trained to predict the residual errors (i.e., the shortcomings)
of the ensemble built so far. This boosting approach allows the model to iteratively refine
its predictions, often leading to higher accuracy with fewer trees. Illustrative diagrams of
the structural difference between XGBoost and Random Forests are presented in Fig. 3.17
& Fig. 3.18, respectively.

Figure 3.17: Random Forest Regressor structure [33].
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Figure 3.18: XGBoost structure [18].

In the present study XGBoost model is implemented using the xgboost Python library
and trained on the scaled input and target variables. To optimise model performance, a
hyperparameter tuning process is carried out using the Optuna framework [34]. Specifi-
cally, the TPESampler (Tree-structured Parzen Estimator) [35] is employed, which lever-
ages a Bayesian optimisation strategy rather than exhaustive grid search.

This approach incrementally builds a probabilistic model of the objective function and
uses it to identify promising regions of the hyperparameter space. Unlike traditional
grid search, which explores all combinations uniformly, Bayesian optimisation focuses
on evaluating hyperparameters that are more likely to improve performance based on
prior trials. This significantly reduces computational cost while still yielding competitive
results. However, it does introduce the risk of converging to a local minimum if the search
space is highly irregular.

Model configurations are compared based on the mean absolute error (MAE) computed on
the validation set. This choice of metric ensures that each configuration is evaluated with
a focus on minimising the average magnitude of prediction errors without over-penalising
outliers.

The following hyperparameters are included in the tuning process alongside their respec-
tive tested values:

• colsample_bytree [0.6, 0.8, 1.0]: Specifies the fraction of features to be randomly
sampled for each tree; helps prevent overfitting by introducing feature-level ran-
domness.

• learning_rate [0.05, 0.1, 0.2]: Controls the contribution of each tree to the final
model; smaller values improve robustness but require more boosting rounds.

• max_depth [3, 6, 9] : Sets the maximum depth of each individual decision tree;
deeper trees capture more complexity but increase the risk of overfitting.

• alpha [0.0, 0.1, 1.0]: Adds L1 regularization on leaf weights; promotes sparsity in
the model and can improve generalization.
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• n_estimators [800, 1000, 1500] : Determines the total number of boosting rounds
(i.e., trees) to be built.

• subsample [0.6, 0.8, 1.0]: Defines the fraction of training samples used for each
boosting iteration; introduces instance-level randomness to enhance generalisation.

The hyperparameter tuning process is repeated for 100 trials in parallel across 12 workers.
Once the best configuration is identified, the final XGBoost model is retrained using the
full training dataset and the optimal set of hyperparameters.

3.3.2 Artificial Neural Network
Artificial Neural Networks (ANNs) are a class of machine learning models inspired by
the structure and functioning of the human brain. They are particularly well-suited
for modelling complex, non-linear relationships in high-dimensional data. In this work,
the ANN is implemented using the TensorFlow library [36], and it is structured as a
feedforward network composed of sequential layers of neurons. The goal of the network is
to approximate a continuous function that maps the input features to the target structural
loads.

Each neuron performs a weighted sum of its inputs, followed by the application of a
nonlinear activation function. For a single neuron, this operation can be expressed as:

z =
n∑

i=1
wixi + b, a = ϕ(z) (3.6)

where xi are the input features, wi are the associated weights, b is the bias term, z is
the linear combination of inputs and ϕ(z) is a non-linear activation. These activation
functions allow the network to learn complex and highly nonlinear mappings.

Fig. 3.19 illustrates a typical ANN architecture. The red nodes on the left represent
the input layer, which receives the scaled SCADA features. The blue nodes in the middle
represent the hidden layers, where the network processes the input data through weighted
combinations and non-linear activation functions to extract patterns and relationships
that are not immediately visible from the raw inputs. Finally, the green node on the right
denotes the output layer, which produces the network’s prediction; in this case, a single
output representing the predicted load value (e.g., blade DEL or tower DEL).
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Figure 3.19: Example of an ANN architecture.

Advantages:

• Highly flexible and capable of modelling complex non-linear relationships.

• Scalable to large datasets and adaptable to a variety of input-output configurations.

Limitations:

• Computationally expensive to train, especially with deep architectures or large hy-
perparameter spaces.

• Sensitive to hyperparameter choices such as network depth, layer width, activation
functions, learning rate, and batch size, making tuning a critical step for successful
application.

The ANN used in this study is implemented using the TensorFlow and Keras libraries
and is optimised using the Optuna framework [34], like the XGBoost. The network follows
a sequential architecture comprising an input layer, three fully connected hidden layers,
and a single-node output layer for regression. The number of neurons and activation
functions in each hidden layer are treated as tunable hyperparameters.

The hyperparameter search space includes the following:

• units_1, units_2, units_3 [32, 64, 96, 128]: Number of neurons in each of the
three hidden layers, sampled in increments of 32.

• activation_1, activation_2, activation_3 [’leakyrelu’, ’tanh’]: Activation func-
tion applied after each hidden layer; either leaky ReLU for unbounded outputs or
tanh for smoother, bounded transformations.

• learning_rate [1e-4, 1e-2] (log-uniform): Learning rate of the Adam optimiser,
sampled on a logarithmic scale to balance convergence speed and stability.

In contrast to the XGBoost model, where mean absolute error (MAE) is used for valida-
tion, the ANN uses mean squared error (MSE) as the validation loss function. Although
MSE penalises outliers more heavily than MAE, empirical results from several turbines
showed that MSE led to improved predictive performance. This choice encourages the
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network to fit high-magnitude errors more carefully, which can be beneficial in load pre-
diction tasks where certain operational conditions produce large load values.

To support efficient and stable training, two Keras callbacks are included:

• EarlyStopping: Stops training if the validation loss does not improve for 50 epochs,
and restores the weights from the best epoch, helping to prevent overfitting.

• ReduceLROnPlateau: Reduces the learning rate by a factor of 0.5 after 10 stagnant
epochs, allowing the model to refine its convergence in later stages of training.

The network is trained with a batch size of 512. This relatively large batch size is chosen
to take advantage of computational efficiency. While large batches can result in slower
convergence, this is balanced by training over up to 500 epochs, enabling the model to
learn effectively over time.

The hyperparameter optimisation is carried out using the Optuna framework [34] over
100 trials. TPESampler is again used as the default Bayesian optimisation strategy. Un-
like traditional grid search, which exhaustively explores all parameter combinations, the
Bayesian approach incrementally models the objective function and focuses the search on
promising regions of the hyperparameter space. As a result, not all configurations are
tested; instead, Optuna prioritises evaluating those most likely to improve model perfor-
mance based on prior outcomes. Once the optimal configuration is identified, the final
model is retrained from scratch using the full training set and the selected hyperparam-
eters, with both callbacks activated to support stable and efficient training. The model
training is always assessed by plotting the training and validation loss over the number of
epochs (see Fig. 3.20); if both curves decrease steadily without divergence, this indicates
successful training and the absence of overfitting.
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Figure 3.20: Training & validation loss of the B07 blade flapwise DEL model.

3.3.3 Gaussian Process Regression
Gaussian Process Regression (GPR) is a non-parametric, probabilistic machine learning
method that defines a distribution over possible functions that fit a given dataset. Unlike
parametric models, which assume a specific mathematical form for the function (such as
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a linear or polynomial model), a Gaussian Process (GP) does not commit to any fixed
equation. Instead, it assumes that the function could take many possible shapes and
defines a probability distribution over all these possible functions, even before seeing any
data. This allows GPR to capture complex and non-linear relationships while providing
uncertainty estimates for its predictions.

Formally, a GP is defined such that any finite collection of function values follows a
multivariate normal distribution. For a function f(x), the GP is fully specified by a mean
function m(x) and a covariance function k(x,x’), also known as the kernel. The kernel
encodes assumptions about the function’s smoothness, periodicity, or other structural
properties. Mathematically, this is described by the following equation:

f(x) ∼ GP(m(x), k(x, x′)) (3.7)

An illustrative example of Gaussian Process regression is shown in Figure 3.21, where a si-
nusoidal true function is approximated using a limited number of noisy observations. The
GP not only learns a smooth regression mean that fits the data, but also provides confi-
dence intervals (quantiles) indicating the model’s uncertainty. This ability to model both
predictions and their associated uncertainty makes GPR especially useful in applications
where understanding model confidence is critical.

Figure 3.21: Illustration of Gaussian Process Regression [37].

Advantages:

• Straightforward implementation.

• Strong predictive accuracy, particularly in low-data regimes.

• Naturally incorporates uncertainty estimation through posterior variance.

Limitations:

• Computationally expensive, scaling as O(n3) in time and O(n2) in memory with
respect to the number of training samples n.
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• Requires careful selection and tuning of the kernel function, which significantly
influences model behaviour and performance.

• Less suitable for very large datasets unless sparse approximations or scalable vari-
ants are used.

In this study, Gaussian Process Regression is implemented using the GPy library [38]. Due
to the computational limitations of standard GPR, which scales poorly with dataset size, a
Sparse Gaussian Process Regression (SGPR) model is employed. Rather than computing
the full n × n covariance matrix, SGPR introduces a smaller set of representative points
known as inducing points to approximate the full GP posterior. This approximation
significantly reduces both the computational and memory complexity:

• Time: from O(n3) to approximately O(m2n).

• Memory: from O(n2) to O(mn).

Here, m is the number of inducing points, with m ≪ n. The number of inducing points is
a user-defined parameter; higher values yield better approximation accuracy but increase
computational cost. When m = n, the full GPR model is recovered.

Another key design choice in GPR is the kernel function, which encodes the model’s
assumptions about the function it is trying to learn, such as smoothness, periodicity, or
linearity. The kernel plays a central role in shaping the GP’s behaviour and is arguably
the most critical hyperparameter. Several kernel combinations were evaluated for turbine
B07 to identify the optimal predictive accuracy:

• RBF (Radial Basis Function): A highly flexible and smooth kernel that assumes
infinite differentiability. While effective in capturing subtle trends, it is prone to
overfitting, especially in noisy datasets.

• Matern32: A more realistic alternative to the RBF, allowing for less smoothness.
It yields more robust performance in noisy, real-world data like SCADA, where some
degree of irregularity is expected.

• Matern32 + White: This combination adds a White kernel, which explicitly
models uncorrelated observation noise. This is particularly useful for SCADA data,
where sensor noise and signal fluctuations are common.

• (RBF + Linear) * Bias: A composite kernel that combines a smooth non-linear
trend (RBF) with a linear component, scaled by a bias term. This setup can model
both long-term trends and fine-grained fluctuations while adjusting for global offset.

After comparative testing, the Matern32 + White kernel yielded the best overall perfor-
mance, both in terms of predictive accuracy and computational efficiency. Its ability to
model both structured patterns and measurement noise makes it especially suitable for the
SCADA load data used in this study. For this reason, it was selected as the default kernel
configuration for all wind turbines. Due to time constraints, kernel evaluations were only
conducted on turbine B07, but the chosen configuration was applied consistently across
the entire dataset.

The number of inducing points was set to 2500, which provided a practical trade-off be-
tween approximation quality and training time. The model was optimised for 20 iterations
using the built-in optimiser in GPy, with a fixed random seed to ensure reproducibility.
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3.3.4 Polynomial Regression
Polynomial regression is a classical regression method that extends linear regression by
allowing the model to fit non-linear relationships between the input features and the target
variable. Instead of modelling the target as a linear function of the inputs, polynomial
regression introduces higher-order terms and interaction effects by transforming the input
space. This enables the model to capture curved trends while still using a linear least-
squares fitting procedure.

Formally, given an input vector x = [x1, x2, . . . , xp], a degree-3 polynomial regression
model estimates the target variable y as:

ŷ = β0 +
p∑

j=1
βjxj +

p∑
j=1

p∑
k=j

βjkxjxk +
p∑

j=1

p∑
k=j

p∑
l=k

βjklxjxkxl (3.8)

Where the terms include combinations of input features raised to powers up to the chosen
polynomial degree. The result is a model that remains linear in the parameters β, but
nonlinear in the original input space.

In this study, polynomial regression is implemented using the scikit-learn library [29].
A degree-3 polynomial is used, which expands the original feature set to include all cubic
terms and lower, including interactions. The modelling pipeline is constructed as follows:

• Only the mean values of the SCADA input variables are selected to reduce dimen-
sionality and avoid excessive term proliferation.

• Input and target variables are scaled using StandardScaler to ensure numerical
stability during fitting.

• The input matrix is expanded using PolynomialFeatures(degree=3) to generate
the full set of polynomial terms.

• A linear regression model (LinearRegression) is then fitted to the transformed
input matrix and scaled target.

• Predictions on the test set are made and relevant performance metrics are calculated.

Although this model does not match the flexibility or scalability of modern machine
learning methods, it provides a useful baseline. Its simplicity and closed-form solution
make it computationally efficient, and it helps highlight the performance improvements
achieved by more advanced models such as XGBoost, ANN, and GPR.

3.3.5 Metrics
After having thoroughly discussed the models used in this study, it is essential to define the
performance metrics used to evaluate their accuracy. These quantitative metrics allow
for a structured comparison of model performance in Chapter 4 and help to highlight
strengths and limitations across different algorithms and target variables.

Each metric offers a unique perspective on performance and comes with its own advantages
and drawbacks. For instance, the Mean Absolute Percentage Error (MAPE) may become
unstable or biased when actual values are close to zero, while the Normalised Root Mean
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Squared Error (NRMSE) can over-penalise large outliers that may not significantly impact
the operational utility of the model.

The following four metrics are employed to evaluate and compare model performance:

• Coefficient of Determination R2:

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (3.9)

Where yi is the true value of the target variable for sample i, ŷi is the predicted
value from the model for sample i, and ȳ is the mean of the actual target values
across n samples. This metric indicates how well the model explains the variance
in the target data. A value of 1 corresponds to perfect predictions, while a value of
0 indicates that the model performs no better than the mean of the data.

• Mean Absolute Percentage Error (MAPE):

MAPE = 100%
n

n∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (3.10)

MAPE expresses the prediction error as a percentage of the actual value, which
makes it interpretable and useful for comparing across different scales. However, it
becomes unreliable when the target variable exhibits low values as the percentage
increases substantially.

• Normalised Root Mean Squared Error (NRMSE):

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

σy

(3.11)

Where σy is the standard deviation of the actual values. NRMSE provides a scale-
free error metric that highlights relative model accuracy, but like RMSE, it is sen-
sitive to large errors.

• Mean Absolute Error (MAE):

MAE = 1
n

n∑
i=1

|yi − ŷi| (3.12)

MAE measures the average magnitude of the errors without considering their direc-
tion. It is less sensitive to outliers than RMSE or NRMSE and provides a robust
measure of general prediction accuracy. In some figures (e.g., Fig. 4.10), the abso-
lute prediction error is visualised instead. This is equivalent to MAE but shown per
sample, without averaging over the entire dataset.

Additionally, some plots visualise related error forms:

• Prediction Error (PE):
PE = yi − ŷi (3.13)

• Signed Percentage Error (Signed PE):

Signed PE = yi − ŷi

yi

× 100% (3.14)
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These quantities help assess whether the model tends to over- or under-predict and how
that bias varies across operating conditions such as wind speed (see Fig. 4.9).

Although all four metrics are computed during model evaluation, only R2, MAPE, and
NRMSE are reported in the final model comparison tables in Chapter 4. This combination
of metrics was chosen to balance interpretability, sensitivity to different types of error,
and robustness:

• R2 captures how well the model explains variance in the data.

• MAPE provides intuitive percentage-based errors, useful for practical interpretation.

• NRMSE gives a normalised error sensitive to large deviations, ensuring that signif-
icant under- or over-predictions are penalised appropriately.

This combination of performance metrics ensures a well-rounded evaluation of both the
accuracy and reliability of the models across various wind turbines and load targets.

3.3.6 Visual evaluation
While quantitative performance metrics are essential for comparing model accuracy, they
alone are not sufficient for a comprehensive evaluation. To fully understand a model’s
strengths and limitations, a combination of numerical metrics and visual assessments is
necessary. Plots offer critical insights into aspects that metrics may obscure, such as
systematic bias, over- or under-prediction, and the distribution of errors across different
wind speeds or wind directions. They also help reveal how model errors vary with opera-
tional conditions and whether the predictions are well-calibrated. Such visualisations are
presented in Chapter 4 to complement the metric-based evaluation and provide a more
complete picture of model performance.



CHAPTER 4

Results & Discussion

This chapter presents a comprehensive evaluation of various case studies designed to ad-
dress the central research questions posed in this thesis. These questions aim to assess
the predictive capabilities of data-driven models for damage equivalent loads in opera-
tional wind turbines, with particular attention to the effects of data composition, model
architecture, and spatial information. The analysis explores how these factors influence
model accuracy, generalisability, and overall operational relevance.

The three research questions outlined in Chapter 2 serve as the backbone of this investi-
gation:

1. What is the most suitable data-driven modelling approach for accurately predicting
damage equivalent loads using SCADA data from operational wind turbines?

2. How do different data characteristics, such as input feature composition, data vol-
ume, and signal pre-processing, affect the performance and generalisability of sur-
rogate models for DEL prediction?

3. To what extent can spatial information from neighbouring wind turbines enhance
the accuracy of surrogate models across a wind farm?

To address these questions, a series of targeted case studies is conducted, each exploring
a distinct aspect of the modelling problem. Table 4.1 summarises the individual case
studies and the specific scientific inquiries they aim to resolve.

Table 4.1: Overview of case studies and associated scientific inquiries.

Case Study Scientific Inquiry
Feature Importance Which input features (signals) mostly influence the accuracy?

Model Comparison What is the best model to predict the DEL on a wind turbine?

Filtering How heavily does the filtering affect the model performance?

Dataset Size How does the quantity of data affect the model’s predictive accu-
racy?

Local Configuration How does the input of the neighbouring wind turbines affect the
results?

Neighbouring DEL How much can the accuracy be improved if the DEL of a neigh-
bouring wind turbine is used as input?

Generalisability How does the model accuracy change when it is tested on SCADA
from a different wind turbine?

Fatigue Damage Estimation How can predicted DEL values be translated into cumulative fatigue
damage over a given operational period, and how accurately do the
models estimate this damage?
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The first research question is tackled primarily through the Model Comparison and
Fatigue Damage Estimation case studies. The former compares different regression
models, namely XGBoost, ANN and GPR, to identify the most effective architecture for
DEL prediction. The latter demonstrates the practical application of these models by
converting predicted DELs into accumulated fatigue damage over a selected time series.
This final case study illustrates how such predictions can support long-term asset integrity
evaluations and decision-making regarding turbine lifetime extension.

The second research question motivates several case studies that systematically alter
the data configuration, including Feature Importance, Filtering, and Dataset Size.
These studies investigate how different preprocessing steps, input variables, and sample
sizes influence model robustness and accuracy. The third research question guides the
Local Configuration, Neighbouring DEL, and Generalisability case studies, all of
which evaluate the impact of spatial information and cross-turbine generalisation.

Each case study (except for the last one) is repeated for two distinct output targets:
the blade flapwise DEL and the tower fore-aft moment DEL. This dual analysis ensures
that conclusions remain consistent across structurally different load channels. Except for
the Model Comparison and Fatigue Damage Estimation, which necessitate cross-model
evaluation, the other case studies employ the XGBoost algorithm due to its balance
between predictive power and computational efficiency.

Operational Relevance and Motivation of Each Case Study
• Feature Importance: This case study identifies the most influential SCADA fea-

tures affecting DEL prediction. From a business perspective, this insight can guide
sensor prioritisation and data acquisition strategies, enabling operators to focus
on the most informative measurements for condition monitoring and digital twin
applications.

• Model Comparison: By comparing the performance of different machine learn-
ing models, this study determines the most suitable modelling technique for DEL
estimation. The findings can inform the selection of algorithms in digital monitor-
ing platforms, ensuring the right trade-off between accuracy, interpretability, and
computational cost.

• Filtering: Investigating how preprocessing through filtering affects model perfor-
mance, this case study directly addresses operational decisions concerning data
quality control and preprocessing pipelines. Understanding its impact allows for
standardising signal conditioning procedures across datasets and projects.

• Dataset Size: This study quantifies the sensitivity of model accuracy to the
amount of training data. Its business relevance lies in answering how much his-
torical data must be collected before a reliable surrogate model can be deployed,
thus guiding data management and storage policies.

• Local Configuration: This case investigates whether incorporating SCADA sig-
nals from neighbouring turbines improves model performance. The results have
implications for farm-wide monitoring strategies, where centralised modelling may
benefit from spatially integrated data streams.

• Neighbouring DEL: By using the actual DEL of neighbouring turbines as an
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additional input, this study examines the potential performance gain from partial
load data availability. In practice, this supports hybrid monitoring solutions where
high-fidelity data from a few turbines helps predict loads across the fleet.

• Generalisability: Evaluating model performance when applied to a different tur-
bine’s SCADA data tests the robustness of learned models across assets. This study
addresses scalability and transferability, critical for developing universal models de-
ployable across different turbines or farms.

• Fatigue Damage Estimation: This final case study demonstrates how predicted
DELs can be converted over time to estimate cumulative fatigue damage. By apply-
ing the surrogate model to a selected test-period time series, the analysis showcases
the practical end-use of DEL prediction: estimating fatigue damage and assessing
whether the turbine is on track to meet, exceed, or fall short of its design life. This
supports informed decisions around lifetime extension, fatigue-critical maintenance,
and risk assessment.

Collectively, these case studies offer a structured framework for understanding the be-
haviour of surrogate DEL models under varying operational and data conditions. The
findings not only answer the core scientific inquiries but also translate into actionable
insights for wind farm operators seeking to implement predictive maintenance and struc-
tural health monitoring at scale.

4.1 Feature Importance
In this section, the influence of various SCADA-derived variables and their statistical
descriptors on the predictive accuracy of the regression models is assessed. Given the large
number of available signals (exceeding 170), it is impossible to perform a comprehensive
feature importance or correlation analysis using purely mathematical methods without
first narrowing down the input space. Therefore, an initial screening of variables is made
based on physical insight into which operational parameters are most likely to influence
wind turbine loading, either blade or tower loads. For each selected variable, key statistical
metrics (minimum, maximum, mean, and standard deviation) are extracted and evaluated
for their contribution to the model’s performance.

The five variables selected for the feature importance study, as well as the corresponding
justification for their choice, are:

• Wind Speed (U): Wind speed directly determines the aerodynamic forces acting
on the rotor blades and tower. Higher wind speeds lead to increased loads and
fatigue cycles, making it a primary driver of DEL.

• Active Power (Pactive): Active power output reflects the turbine’s operating condi-
tion and regime(below-above rated region) and indirectly captures the aerodynamic
efficiency and control strategy. Variations in power correlate with load fluctuations,
especially under partial load or curtailment scenarios.

• Pitch angle (θp): Blade pitch angle controls the aerodynamic loading on the blades.
Changes in pitch, especially during dynamic events like shutdowns or gusts, signif-
icantly affect the loading of the blade and as a result, of the tower.

• Nacelle Position (θnac): The nacelle position indicates the orientation of the wind



4.1. Feature Importance 40

turbine, effectively defining the direction in which the turbine is facing. In this study,
it is used as a proxy for wind direction, as the dedicated wind direction signal was
deemed unreliable based on multiple validation checks. By incorporating nacelle
position, the model gains insight into the turbine’s wake exposure and specifically,
whether it is aligned with the wake of an upstream turbine, which can significantly
affect the inflow conditions and resulting loads.

• Generator Speed (ωgen): Although closely correlated with active power, the gen-
erator speed can possibly offer additional dynamic and transient information that
reflects the turbine’s control behavior and drivetrain response, both of which are
relevant to understanding load fluctuations and fatigue accumulation.

To identify potential correlations among the input features and understand their contri-
bution to the prediction of blade flapwise and tower fore-aft DELs, the Random Forest
Classifier (RFC) method of the scikit-learn library [29] is employed. This approach trans-
forms the continuous DEL targets into categorical bins, enabling the use of a classification
algorithm to estimate feature importance. The RandomForestClassifier is an ensemble
method that builds multiple decision trees using random subsets of data and features,
and aggregates their predictions through majority voting. It is known for its robustness
against overfitting, ability to handle high-dimensional data, and its built-in mechanism
for ranking features based on their influence on the model’s decisions. However, it may
sometimes produce inconclusive or unstable importance rankings when features are corre-
lated or when the target variable is noisy. The results of the feature importance analysis
are visualised in Fig. 4.1, where each bar indicates the relative importance of a feature in
predicting the binned DEL classes.
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Figure 4.1: Feature Importance using RFC & targeting B07 blade flapwise DEL.
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From Fig. 4.1, the results appear to be inconclusive. While Generator Speed (max) and
Wind Speed (std) emerge as the most influential features, their corresponding mean values
rank significantly lower in importance. This outcome is somewhat counterintuitive, as
the mean and standard deviation of a variable are inherently related statistical measures.
Typically, one would expect their contributions to model performance to be of comparable
magnitude.

Another popular method used for feature importance in the machine learning world is the
SHAP (SHapley Additive exPlanations) [39] values method. SHAP is an approach based
on game theory which aims to explain the prediction of an instance(in this study, a row
in the SCADA dataset) by computing the contribution of each feature to that prediction.
These contributions are called SHAP values, and they sum up to the difference between
the model’s output for that instance and the average prediction over the training dataset
(Eq. (4.1)).

f(x) = ϕ0 +
M∑

i=1
ϕi (4.1)

where f(x) is the model prediction for an input vector x, M is the number of input
features, ϕ0 is the mean prediction over all training data and ϕi is the SHAP value for
feature i.

The SHAP value quantifies how much each feature i contributed to the prediction f(x) for
this instance. It is the average marginal contribution of each feature across all possible
subsets of features, and it is calculated through Eq. (4.2), which is a computationally
expensive equation(exponential in the number of features).

ϕi =
∑

S⊆F \{i}

|S|! (|F | − |S| − 1)!
|F |!

[
fS∪{i}(xS∪{i}) − fS(xS)

]
(4.2)

where F is the full set of features, S is a subset not containing i and fS(xS) is the model
trained or approximated on the subset S.

Since the XGBoost is used, the shap.TreeExplainer SHAP method is applied as it is
specifically optimised for decision tree-based models. The TreeSHAP [40] is a polynomial-
time algorithm which avoids enumerating all 2M feature subsets, thereby substantially
reducing computational cost. The results of the method are shown in Fig. 4.2.
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Figure 4.2: Feature Importance using TreeSHAP & targeting B07 blade flapwise DEL
with XGBoost.

Fig. 4.2 depicts the 10 most influential features according to the TreeSHAP algorithm.
Although the first two are in agreement with the RFC method, the rest appear in a
different order, which shows inconsistency and increases the doubt regarding the validity
of both approaches. Therefore, in order to safely conclude on which features should be
used as input to the models, XGBoost models are trained on different input features and
their performance is compared.

The feature groupings are thoughtfully selected based on physical insight, with the goal of
capturing potential interactions and uncovering complex relationships among variables.
The tested combinations are presented Table 4.2.
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Table 4.2: Feature importance cases with XGBoost targeting B07 blade flapwise DEL
and tower moment FA DEL.

Case Number Input Features (Blade Model) Input Features (Tower Model)
1 U (mean, std) U (mean, std)

2 U (mean, std)
Pactive (mean, std)

U (mean, std)
Pactive (mean, std)

3 U (mean, std)
θnac (mean)

U (mean, std)
θnac (mean)

4 U (mean, std)
Pactive (mean, std)
θp (mean, std)

U (mean, std)
Pactive (mean, std)
θp (mean, std)

5 U (mean, std)
Pactive (mean, std)
ωgen (mean, std)

U (mean, std)
Pactive (mean, std)
ωgen (mean, std)

6 U (mean, std, min, max)
Pactive (mean, std, min, max)

U (mean, std, min, max)
Pactive (mean, std, min, max)

7 U (mean, std)
Pactive (mean, std)
θp (mean, std)
θnac (mean, std)
ωgen (mean, std)

U (mean, std)
Pactive (mean, std)
θp (mean, std)
θnac (mean, std)
ωgen (mean, std)

8 U (mean, std)
Pactive (std)
θp (mean)
θnac (mean, min, max)
ωgen (mean, std, max)

–

9 U (mean, std, min)
Pactive (min, max)
θp (max)
θnac (mean, max)
ωgen (mean, max)

–

10 U (mean, std, min, max)
Pactive (mean, std, min, max)
θp (mean, std, min, max)
θnac (mean, std, min, max)
ωgen (mean, std, min, max)

U (mean, std, min, max)
Pactive (mean, std, min, max)
θp (mean, std, min, max)
θnac (mean, std, min, max)
ωgen (mean, std, min, max)

One can notice in Table 4.2 that the cases are identical for the blade & tower models except
for cases 8 & 9 which refer to the 10 most influential features according to the RFC and
SHAP analysis, respectively. This analysis is conducted only for the blade model. The
reasoning for the case selection and the corresponding investigation are presented below.

• Case 1: This case uses only the wind speed (mean and std), representing the most
fundamental input for load prediction. Wind speed directly governs the aerody-
namic forces acting on the turbine, and thus is expected to be the most influential
factor based on physical understanding. This baseline case serves as a reference for
evaluating the added value of other variables.

• Case 2: Active power (mean and standard deviation) is added to the wind speed
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inputs, as it captures the energy conversion efficiency and turbine operating region.
Below rated wind speed, mean power is strongly correlated with loading, while above
rated, power remains constant, and variations in standard deviation become more
informative. This case explores whether power output complements wind speed in
improving DEL predictions.

• Case 3: The nacelle position mean is introduced alongside wind speed to represent
the turbine’s yaw alignment. Since the dedicated wind direction signal is unreliable,
nacelle position provides critical insight into wake effects, specifically, whether the
turbine is operating in the wake of another, which strongly influences loading.

• Case 4: Pitch angle (mean & std) is included to enrich the model’s understanding
of the turbine’s control response, particularly in the above-rated region. While
active power varies below rated, pitch adjustments dominate above rated, bridging
an information gap in the power signal. The standard deviation may also offer
insight into load cycling and variability over the averaging interval.

• Case 5: Generator speed is introduced to assess its marginal contribution beyond
active power. While the two signals are generally correlated, generator speed may
provide additional information on transient dynamics and drivetrain behaviour,
which can influence fatigue loading. This case tests whether the added dynamic
input improves prediction accuracy.

• Case 6: This case enhances the model with full range statistics (mean, std, min, and
max) for wind speed and active power. Including these metrics enables the model
to better capture the variability and extremes in operational conditions, which are
particularly relevant for predicting load amplitudes contributing to DEL.

• Case 7: A balanced feature set is selected, incorporating all five physical vari-
ables, but limiting each to mean and standard deviation. This configuration aims
to retain physical interpretability while reducing the input dimensionality by ap-
proximately 50% compared to the full-feature case, testing the trade-off between
model complexity and performance.

• Case 8: In this case, the model is trained using the top 10 most influential features
as determined by the feature importance scores from the RFC method. This ap-
proach serves as a data-driven alternative to the physics-based feature selection in
previous cases, allowing for comparison between expert knowledge and algorithmic
ranking. It helps evaluate whether a model guided by statistical importance can
match or exceed the performance of physically motivated inputs.

• Case 9: This case uses the 10 most influential features identified via SHAP values.
By comparing this model to both the RFC-based and physics-informed cases, the
study explores how well this game-theoretic approach aligns with physical under-
standing and whether it yields superior predictive performance compared to RFC.

• Case 10: The most comprehensive configuration, this case includes all selected
variables with their full statistical descriptors. It serves as an upper-bound sce-
nario, designed to evaluate whether supplying the model with maximum available
information yields the best predictive performance.

To balance computational cost and ensure a representative assessment of generalisability,
wind turbine B07 is selected as the target for the feature importance analysis. Positioned
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centrally within the wind farm and surrounded by neighbouring turbines, B07 frequently
experiences waked inflow from multiple directions. Accordingly, the models predict the
blade flapwise DEL in the blade-focused analysis and the tower fore-aft moment DEL in
the tower-focused analysis.

4.1.1 Blade models
In this section, the feature importance results concerning the blade models are presented
and discussed. The model performance for each case, described by the relevant metrics,
is depicted in Table 4.3.

Table 4.3: Feature importance case results with XGBoost, targeting B07 blade flapwise
DEL.

Case
Number

R2 [%] MAPE [%] NRMSE [–]

1 76.05 19.02 0.489

2 86.30 13.28 0.370

3 89.82 11.58 0.319

4 87.95 12.72 0.347

5 87.27 12.83 0.357

6 88.11 12.63 0.345

7 94.93 8.22 0.225

8 95.03 7.97 0.223

9 95.19 8.12 0.219

10 95.44 7.89 0.214

The feature importance analysis for the blade flapwise DEL model reveals insightful trends
regarding the predictive value of different SCADA inputs. Starting with a baseline, Case
1 demonstrates that using only wind speed statistics results in very low model accuracy.
This reinforces the understanding that while wind speed is the primary external driver
of aerodynamic loads, it alone is insufficient to capture the complexity of a wind turbine
load response.

In Case 2, the addition of active power significantly improves model performance, indicat-
ing that power output, especially below rated wind speed, is a key proxy for operational
state and energy capture efficiency. However, Case 3 shows that nacelle position (used
here as a proxy for wind direction) is an even more influential feature. Its inclusion leads
to a substantial increase in model accuracy, underlining the importance of capturing wake
effects and turbine orientation, particularly for centrally located turbines like B07.

Cases 4 & 5 investigate the added value of pitch position and generator speed, respec-
tively. While both features contribute marginal improvements, their impact is not as
pronounced, suggesting that their role may be more supportive than essential in predict-
ing blade loading. Similarly, Case 6, which includes the full range (min/max) of wind
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speed and power, does not yield a significant accuracy gain, implying that the mean
and standard deviation are already sufficient to capture most of the relevant statistical
variability.

Case 7 presents a condensed input set that includes all five core variables (wind speed,
active power, pitch angle, nacelle position, and generator speed), each with its mean
and standard deviation. Despite using only half the features of Case 10 (which includes
full statistical descriptors), Case 7 achieves nearly the same level of accuracy. Case 10
remains the most accurate overall, but the marginal performance gain does not justify
the increase in input dimensionality and computational cost.

To benchmark against purely data-driven approaches, Cases 8 & 9 use the top 10 fea-
tures selected by Random Forest and SHAP-based algorithms. These models perform
comparably to Case 7, but do not offer interpretability grounded in wind turbine physics
and technology. Moreover, their reliance on statistical associations rather than causal
understanding makes them less reliable across varying turbines, especially when feature
interactions are present.

In conclusion, Case 7 is selected as the optimal input configuration for the blade model in
subsequent analyses. It provides a strong balance between model accuracy and computa-
tional efficiency, while maintaining physical transparency and generalisability. Compared
to the exhaustive Case 10 and the algorithmic feature selection methods (8 & 9), Case
7 offers a more practical and interpretable foundation for operational modelling of wind
turbine DELs.

4.1.2 Tower models
In this section, the feature importance results concerning the tower models are presented
and discussed. The relevant performance metrics are presented in Table 4.4.

Table 4.4: Feature importance case results with XGBoost, targeting B07 tower moment
FA DEL.

Case Number R2 [%] MAPE [%] NRMSE [–]
1 62.92 19.45 0.609

2 79.42 14.45 0.454

3 78.58 13.94 0.463

4 84.63 13.49 0.392

5 82.37 13.52 0.420

6 83.42 13.39 0.407

7 90.66 10.05 0.306

8 – – –

9 – – –

10 92.21 9.36 0.279

The feature importance analysis for the tower fore-aft DEL prediction follows a similar
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trajectory to the blade model, though some differences in variable influence emerge. As
expected, Case 1, which includes only wind speed statistics, performs poorly and serves
as a reference baseline. The addition of active power in Case 2 results in a substantial
performance gain, reaffirming its strong correlation with structural loading under varying
wind conditions.

Interestingly, while the nacelle position remains an important feature in Case 3, its impact
on tower loading is less pronounced than in the blade model. This may reflect the tower’s
more global structural response, which is less sensitive to wake-induced asymmetries than
the blades. In contrast, Case 4 reveals that pitch angle plays a more prominent role in
tower DEL prediction compared to blades. When added alongside wind speed and active
power, pitch significantly improves model accuracy, likely due to its impact on thrust,
which directly affects the tower base moments.

Generator speed in Case 5 and statistical range descriptors in Case 6 provide minor but
consistent improvements. Notably, unlike in the blade model, the inclusion of min and
max values appears more beneficial here, likely because tower loading is influenced by the
amplitude of force fluctuations.

Case 7, which uses a reduced input set of mean and standard deviation for key variables,
shows a marked drop in performance relative to Case 10. In this context, the increase in
input dimensionality and computational demand in Case 10 is justified by the significantly
better model accuracy. The full statistical descriptors (mean, std, min, max) for all
selected variables allow the model to more accurately capture the loading variability that
drives tower fatigue.

In conclusion, Case 10 is selected as the preferred input configuration for tower moment
FA DEL prediction for the subsequent analyses. While more computationally intensive, it
seems to yield the most accurate results, and its benefits outweigh the added complexity.
The tower model appears to benefit more from comprehensive input data.

Interestingly, the tower models demonstrate consistently lower predictive accuracy com-
pared to the blade models. Specifically, when evaluating Case 10 (which includes all
available input features), the tower model exhibits a 3% decrease in R2, a 1.5% increase
in MAPE, and a 30% increase in NRMSE relative to the blade model. This result is rather
counterintuitive, as one might expect blade loads to be more challenging to predict due to
the blades’ complex dynamics, higher flexibility, and greater susceptibility to deflection
and vibration-induced fluctuations. The fact that this expectation is not reflected in the
results may point to lower quality or higher uncertainty in the tower load measurements,
potentially stemming from sensor placement or calibration issues.

4.2 Model Comparison
As the input features have been selected based on the considerations discussed in Sec-
tion 4.1, this section proceeds with a comprehensive evaluation of the models introduced
in Section 3.3, examining their performance in terms of accuracy, robustness, and compu-
tational cost. The model training, validation and testing is based on the filtered dataset
(see Section 3.2). The comparison relies on the evaluation metrics defined in Section 3.3.5
as well as relevant plots for visual assessment. For clarity, the analysis is structured into
two subsections, focusing on the prediction of blade and tower moment DELs, respectively.
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4.2.1 Blade models
In this section, the results of the blade flapwise DEL models, along with the relevant
plots, are presented and discussed. The performance metrics for each model are displayed
in Table 4.5, Table 4.6 & Table 4.7.

Table 4.5: R2 scores [%] of blade models using internal data. Green highlights the best
model, red the worst.

Wind Turbine XGBoost ANN GPR Polynomial
B06 95.31 94.65 95.20 85.62
B07 94.93 94.85 94.85 83.06
D07 93.43 93.01 93.02 77.11
D08 95.01 94.82 95.02 87.13
C08 94.52 94.68 94.48 81.95
B08 94.80 94.59 94.44 81.46

Table 4.6: MAPE [%] of blade models using internal data. Green highlights the best
model, red the worst.

Wind Turbine XGBoost ANN GPR Polynomial
B06 8.77 9.41 8.95 16.82
B07 8.22 8.50 8.47 16.25
D07 8.39 8.78 8.60 16.41
D08 8.81 8.86 8.90 15.38
C08 8.57 8.63 8.74 16.11
B08 8.77 9.19 9.19 17.50

Table 4.7: NRMSE [-] of blade models using internal data. Green highlights the best
model, red the worst.

Wind Turbine XGBoost ANN GPR Polynomial
B06 0.217 0.231 0.219 0.380
B07 0.225 0.227 0.227 0.412
D07 0.256 0.264 0.264 0.478
D08 0.223 0.228 0.223 0.359
C08 0.234 0.231 0.235 0.425
B08 0.228 0.233 0.236 0.431

Three key observation emerge from examining Table 4.5, Table 4.6 & Table 4.7:

• Polynomial regression is insufficiently expressive, as evidenced by its consistently
lower performance across all turbines. This supports the hypothesis that the un-
derlying relationships in the data are highly non-linear and complex, justifying the
use of more sophisticated data-driven models.
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• All advanced models (XGBoost, ANN, GPR) demonstrate strong predictive ca-
pability, with comparable performance across turbines. Their similar metrics indi-
cate that the information contained in the data is captured sufficiently by all three
algorithms.

• XGBoost achieves the best performance in almost all of the wind turbines and
performance metrics, slightly outperforming the other models in terms of accuracy
while also offering lower computational cost. Its robustness and ease of implemen-
tation further reinforce its suitability for this task.

The average and the range of the performance metrics across all wind turbines are sum-
marised in Table 4.8, which confirms the marginally better performance of XGBoost
against the other two models.

Table 4.8: Model performance summary for blade flapwise DEL prediction across all wind
turbines.

Metric Statistic XGBoost ANN GPR

R2 [%] Mean 94.67 94.43 94.50
Range 93.43 – 95.31 93.01 – 94.85 93.02 – 95.20

MAPE [%] Mean 8.59 8.90 8.80
Range 8.22 – 8.81 8.50 – 9.41 8.47 – 9.19

NRMSE [-] Mean 0.231 0.236 0.234
Range 0.217 – 0.256 0.227 – 0.264 0.219 – 0.264

After presenting the quantitative performance metrics, the analysis now turns to a visual
inspection of model behaviour. Relevant plots are used to assess predictive accuracy,
detect potential biases, and better understand the models’ strengths and weaknesses.
The plots corresponding to the B07 wind turbine are presented and discussed. As B07 is
situated centrally within the wind farm, it consistently operates under waked conditions,
making its results more representative of general turbine behaviour.
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Figure 4.3: B07 blade flapwise actual & predicted DEL against wind speed based on the
three models.

Fig. 4.3 illustrates the predictive performance of the three models across the full range of
wind speeds. Overall, the models demonstrate strong agreement with the actual values,
successfully capturing the majority of the variance and trends in the data. However, a
slight tendency towards overprediction is observed, which is noticeable at the lower part
of the graphs where the predicted values (orange) consistently appear above the actual
values (blue). This subtle bias suggests a small systematic error that may warrant further
investigation or model refinement.
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Figure 4.4: B07 blade flapwise predicted vs actual DEL based on the three models with
point density colorbar using the Gaussian KDE method.

Fig. 4.4 further supports the models’ ability to capture the underlying variance in the
data, as indicated by the relatively tight clustering of points around the ideal 1:1 fit line.
This alignment reflects a strong overall agreement between predicted and actual values.
Nonetheless, a consistent trend is observed across all models: a tendency to overpredict for
lower DEL values (below approximately 0.2 normalised DEL) and underpredict for higher
DELs. This pattern is visualised by the Best Linear Fit line initially lying above and
then dipping below the ideal fit line, suggesting a slight non-linearity in model behaviour
across the DEL range.

The colorbar represents point density, computed using the gaussian_kde method from
the scipy.stats library [41], which estimates the underlying probability density function
based on the spatial distribution of data points. The kernel density estimation provides a
smooth, continuous approximation of the data concentration across the two-dimensional
parameter space. While the density values are unitless, higher values indicate regions
with greater clustering of data points. However, the Point Density score displayed on the
colorbar axis does not represent raw point counts, nor does it maintain strict proportional
relationships between values. Due to the inherent smoothing properties of the Gaussian
kernel, the density metric should be interpreted qualitatively rather than quantitatively.
Consequently, while higher density scores reliably indicate regions of greater data concen-
tration, direct numerical comparisons are not valid. The density estimates are therefore
best utilised for identifying relative patterns and trends in the data distribution rather
than for precise quantitative analysis.
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Figure 4.5: B07 blade flapwise DEL error distribution based on the three models.

Fig. 4.5 illustrates the distribution of prediction errors for the three models. All models
exhibit a symmetric, bell-shaped distribution centred around zero, which closely resem-
bles a normal distribution and indicates generally unbiased predictions. However, the
XGBoost model shows a noticeably denser concentration of errors near zero (reaching bin
frequencies close to 1000) compared to around 800 for the other two models. This observa-
tion aligns with its superior error metrics discussed previously. As defined in Section 3.3.5,
negative prediction errors indicate overprediction, while positive errors correspond to un-
derprediction.
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Figure 4.6: B07 blade flapwise DEL absolute percentage error against predicted DEL
based on the three models with point density colorbar using the Gaussian KDE method.

Fig. 4.6 presents the relationship between the absolute percentage error (APE) and the
predicted DEL values. A clear trend emerges: APE tends to decrease as the predicted DEL
increases, indicating that low-magnitude predictions contribute disproportionately to the
overall MAPE. This supports the hypothesis that, while MAPE is an intuitive and widely
used metric, it can be misleading in scenarios with small target values. Consequently,
MAPE should not be the only error metric used in model performance assessment; it is
essential to consider at least one complementary metric(such as NRMSE or MAE) for a
more balanced evaluation of model performance.
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Figure 4.7: B07 blade flapwise DEL prediction error against wind speed with point density
colorbar using the Gaussian KDE method.

While Fig. 4.6 illustrates the magnitude of percentage errors, it does not reveal how these
errors vary with wind speed. Fig. 4.7 addresses this limitation by displaying the prediction
errors as a function of wind speed, enhanced with a point density colorbar. The largest
absolute errors are observed around 10 m/s, which aligns with the transition into the rated
operating region(where turbines begin regulating power and loads), introducing greater
system complexity and increasing model error. In contrast, errors at lower wind speeds
(below approximately 7-8 m/s) are generally smaller in magnitude and tightly clustered
around zero, as reflected by the high-density band near the center.

Fig. 4.4 & Fig. 4.3 suggest a subtle model bias across different wind speed ranges. To
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investigate this further, it is important to examine how the statistical properties of the
prediction errors vary with wind speed. However, as seen in Fig. 4.7, the number of data
points (number of rows in the SCADA dataset) becomes sparse at higher wind speeds,
limiting the statistical reliability of any conclusions drawn in those regions. To address
this, Fig. 4.8 presents the number of test samples available within each wind speed bin,
defined in 1m/s intervals (e.g., 3.5-4.5m/s, 4.5-5.5m/s etc.), to assess the data coverage
and support the interpretation of wind speed-dependent error trends.
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Figure 4.8: Datapoints per wind speed bin for the B07 blade test dataset.

Fig. 4.8 clearly illustrates the decreasing number of data points with increasing wind
speed. To ensure statistical reliability in the analysis, a threshold of 50 datapoints per
bin is set as the minimum requirement. Based on this criterion, the boxplots in Fig. 4.9
are generated only up to the 18 m/s wind speed bin.
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Figure 4.9: B07 blade flapwise DEL signed percentage error against wind speed using
boxplots based on the three models. The central line in each box indicates the median
signed percentage error, while the box spans the interquartile range (25th to 75th per-
centiles). Whiskers extend to 1.5 times the interquartile range, and outliers which exist
outside this range are not shown.

The boxplots in Fig. 4.9 reveal no evidence of strong model bias across the wind speed
range. However, a subtle tendency toward overprediction is observed in all three models,
as indicated by the median error line lying slightly below zero for most wind speed bins,
particularly those below 13 m/s. This confirms the initial hypothesis of mild overpredic-
tion bias based on Fig. 4.4 & Fig. 4.3. The overall signed percentage errors remain within
the range of -30% to +30% for all models, reinforcing their comparable performance as
previously quantified by error metrics. Notable spreads in error distribution are observed
near the rated region (8-11 m/s), due to the increased complexity related to the power &
load regulation regime change. A second region of increased spread appears at low wind
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speeds, not due to large absolute errors, but rather due to the low DEL values in this
range, as supported by the density plot in Fig. 4.7.
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Figure 4.10: B07 blade flapwise DEL error distribution against wind direction(10◦ bin)
based on the three models.

Lastly, Fig. 4.10 illustrates the absolute prediction error of the three models as a function
of wind direction, aiming to assess potential directional bias. The absolute prediction
error varies between approximately 70 and 120 kNm across different wind sectors, likely
reflecting the influence of upstream turbines inducing wake effects on B07 and compli-
cating the blade flapwise DEL prediction. Despite this variation, all three models exhibit
consistent performance trends across all directions, indicating no strong directional bias.
XGBoost maintains a slight but consistent advantage, achieving the lowest errors across
all wind sectors and thereby reaffirming its superior predictive accuracy.

In summary, all three models demonstrate comparable predictive accuracy for blade flap-
wise DEL, with R2 values around 94.5% and closely aligned MAPE and NRMSE scores.
This indicates that the underlying patterns in the data are effectively captured by the
models. Among them, XGBoost emerges as the most practical choice for subsequent case
studies due to its slightly superior performance, combined with its robustness, simplicity,
low computational cost, and fast inference time, making it more suitable for repeated
application across multiple business scenarios. The visual analyses further support these
findings, revealing no signs of significant bias in any model, but rather a subtle and
consistent tendency toward overprediction across the wind speed range for all the models.
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4.2.2 Tower models
This section presents and discusses the results of the tower fore-aft moment DEL models,
accompanied by the corresponding plots. In addition to discussing model-specific insights,
this section also highlights key differences in model behaviour between the blade and tower
cases, offering further perspective on the suitability of each regression methodology. The
performance metrics for each model are summarized in Table 4.9, Table 4.10 & Table 4.11.
As discussed in Section 3.1, C08 is excluded from this analysis as it lacks the relevant
tower sensor data.

Table 4.9: R2 scores [%] of tower models using internal data. Green highlights the best
model, red the worst.

Wind Turbine XGBoost ANN GPR Polynomial
B06 92.45 91.92 91.48 76.65
B07 92.21 91.21 90.89 71.84
D07 92.24 91.74 91.20 70.19
D08 94.24 93.41 93.29 80.00
B08 93.73 93.25 92.95 70.83

Table 4.10: MAPE [%] of tower models using internal data. Green highlights the best
model, red the worst.

Wind Turbine XGBoost ANN GPR Polynomial
B06 8.70 9.38 9.66 16.62
B07 9.36 10.15 10.52 20.53
D07 9.07 9.40 9.97 21.39
D08 9.67 10.66 10.85 20.60
B08 8.93 9.46 9.81 23.33

Table 4.11: NRMSE [-] of tower models using internal data. Green highlights the best
model, red the worst.

Wind Turbine XGBoost ANN GPR Polynomial
B06 0.275 0.284 0.292 0.483
B07 0.279 0.297 0.302 0.531
D07 0.279 0.287 0.297 0.546
D08 0.240 0.257 0.259 0.447
B08 0.250 0.260 0.265 0.540

The results of the tower models, summarised in Table 4.9, Table 4.10 & Table 4.11 reflect
trends similar to those observed in the blade model analysis. Polynomial regression again
proves inadequate, confirming the need for more expressive models to capture the complex,
non-linear relationships in the data. All advanced models(XGBoost, ANN, and GPR)
demonstrate strong and comparable predictive performance, suggesting that the input
features are informative across turbines. Notably, XGBoost consistently outperforms the
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other models with a wider performance margin than in the blade model case, further
highlighting its robustness, efficiency, and suitability for this task. However, the overall
accuracy of the tower models is slightly lower than that of the blade models, which
may indicate higher uncertainty or reduced quality in the tower moment measurements,
possibly due to sensor placement or calibration limitations, as discussed in Section 4.1.2.

Table 4.12 presents the average as well as the range of each metric, representing the tower
model performance across all wind turbines, further confirming the consistently superior
performance of XGBoost compared to the other two models.

Table 4.12: Model performance summary for tower fore-aft moment DEL prediction across
all wind turbines.

Metric Statistic XGBoost ANN GPR

R2 [%] Mean 92.97 92.31 91.96
Range 92.21 – 94.24 91.21 – 93.41 90.89 – 93.29

MAPE [%] Mean 9.15 9.81 10.16
Range 8.70 – 9.67 9.38 – 10.66 9.66 – 10.85

NRMSE [-] Mean 0.245 0.277 0.283
Range 0.240 – 0.279 0.257 – 0.297 0.259 – 0.302

As in the blade model comparison, the analysis proceeds with a visual inspection to assess
model accuracy and potential biases. Plots for the B07 turbine are presented, as its
central location in the farm exposes it to consistent wake effects, making it representative
of general turbine behaviour.
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Figure 4.11: B07 tower fore-aft moment actual & predicted DEL against wind speed based
on the three models.

As before, Fig. 4.11 is used for an initial visual assessment of the tower fore-aft moment
DEL predictions. All three models seem to successfully capture the variance in the data
across the full wind speed range. However, a slight underprediction is observed at very
low wind speeds (around 4 m/s), a pattern that is examined in more detail later in this
section.
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Figure 4.12: B07 tower fore-aft predicted vs actual DEL based on the three models using
the Gaussian KDE method.

The observations from Fig. 4.12 plots closely mirror those made for the blade models
in Fig. 4.4. The predicted values are generally well-aligned with the actual values, as
indicated by the clustering of points around the 1:1 fit line. A consistent pattern is
observed across all models: slight overprediction at low DEL values and underprediction
at higher DELs, reflected by the Best Linear Fit line lying above the ideal fit line initially
and falling below it at higher values.

The error distribution plots in Fig. 4.13 for the tower models show similar patterns to those
observed in the blade analysis. All three models produce error distributions that resemble
a normal distribution, centered around zero and exhibiting a clear bell-shaped form.
XGBoost once again demonstrates superior performance, with a sharper concentration of
errors near zero. Its distribution peak reaches approximately 1600 datapoints, compared
to 1200-1400 for ANN and GPR, indicating a higher frequency of low-error predictions.

Fig. 4.14 depicts the absolute percentage error against predicted DEL and shows a familiar
trend: APE decreases with increasing DEL, while relatively high APE values, and even
some quite large outliers, are observed at lower DEL magnitudes. This behaviour is
consistent with earlier observations and raises the question of whether the elevated APE
is primarily due to the small magnitude of DELs or genuinely poor model performance in
the low wind speed region. This issue is investigated further in Fig. 4.15.
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Figure 4.13: B07 tower fore-aft moment DEL error distribution based on the three models.

Figure 4.14: B07 tower fore-aft moment DEL absolute percentage error against predicted
DEL based on the three models using the Gaussian KDE method.
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Figure 4.15: B07 tower fore-aft moment DEL prediction error against wind speed with
point density colorbar using the Gaussian KDE method.

Fig. 4.15 offers a lot of insight. Similar to the blade model case, the majority of prediction
errors in the error scatter plot are concentrated around zero. However, unlike Fig. 4.7,
the largest spread here occurs at low wind speeds, with a smaller spread observed near
the rated region. This indicates that the tower models struggle more in the low wind
speed regime, likely due to transient loading conditions associated with turbine start-up
or shutdown. Consequently, the high APE observed at low DEL values in Fig. 4.14 is not
merely a result of small magnitudes, but rather reflects genuinely higher prediction errors
in this region.
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Figure 4.16: Datapoints per wind speed bin for the B07 tower test dataset.

Fig. 4.16 shows the number of datapoints against the wind speed for every wind speed
bin. As with the blade case, wind speeds up to 18 m/s satisfy the threshold of at least
50 datapoints per bin. To further investigate the potential bias identified in Fig. 4.11
& Fig. 4.12, boxplots of signed percentage error versus wind speed are generated and
presented in Fig. 4.17.

The boxplots in Fig. 4.17 reveal no clear indication of systematic bias in any of the models.
The median error lines remain close to zero and exhibit no consistent tendency toward
over- or underprediction. As observed in previous plots, the largest errors occur at low
wind speeds, particularly around 4 m/s, where the percentage error values range from
50% to +50%. Above 5 m/s, the prediction errors decrease substantially, generally falling
within the 30% to +30% range across all models. XGBoost once again demonstrates
superior performance, exhibiting a narrower error spread compared to ANN and GPR.
Additionally, the increased variability near the rated wind speed region (around 11 m/s)
is more pronounced in the ANN and GPR models.
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Figure 4.17: B07 tower fore-aft moment DEL signed percentage error against wind speed
using boxplots based on the three models. The central line in each box indicates the
median signed percentage error, while the box spans the interquartile range (25th to 75th
percentiles). Whiskers extend to 1.5 times the interquartile range, and outliers which
exist outside this range are not shown.

The plot of absolute prediction error against wind direction in Fig. 4.18 reveals trends
similar to those observed in the blade model case. All three models exhibit comparable
prediction error patterns across wind directions, with XGBoost consistently achieving the
lowest error values in each sector. A notable difference from Fig. 4.10 is that, in this case,
the north-west (NW) and south-east (SE) directions stand out as the sectors associated
with the highest prediction errors across all models. This suggests a stronger directional
dependence of error in the tower moment predictions.
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Figure 4.18: B07 tower fore-aft moment DEL error distribution against wind direction(10◦

bin) based on the three models.

In conclusion, the tower moment models demonstrate strong and consistent performance
across all three modelling approaches, with R2 values in the range of 92-93% and MAPE
between 9-10%, supported by similarly close NRMSE scores. These results confirm that
the models effectively capture the underlying patterns in the data. Among the candi-
dates, XGBoost consistently outperforms the others across all metrics and visual diag-
nostics, reinforcing its selection for the subsequent case studies due to its high accuracy,
robustness, low computational cost, and ease of implementation. Notably, no systematic
bias is observed in any of the models, affirming their reliability across varying operational
conditions. When compared to the blade model results, the tower models exhibit lower
accuracy, which is a somewhat counterintuitive outcome given that blade loads are typ-
ically more dynamic and complex due to structural flexibility. Furthermore, while the
blade models tend to struggle near the rated wind speed region, the tower models show
greater prediction errors in the low wind speed regime, highlighting varying challenges in
load estimation between the two cases.
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4.3 Filtering
As analysed in Section 4.2, XGBoost was identified as the most suitable model for pre-
dicting both the flapwise blade and tower fore-aft moment DEL signals. Consequently, it
is selected as the primary model for conducting the subsequent exploratory case studies.
This section investigates the impact of data filtering on model performance, focusing on
how different levels of signal preprocessing influence prediction accuracy. Three distinct
filtering scenarios are considered:

(a) Unfiltered case, where only rows with missing values in the input or target variables
are removed.

(b) Normal Operation filtering, which excludes datapoints with negative power and
applies Gaussian Mixture Model clustering, as described in Section 3.2.

(c) Start-up & Shutdown filtering, which introduces an additional criterion: data-
points are discarded if the mean active power is greater than zero while the minimum
active power is zero, thereby capturing periods when the turbine was either starting
up or shutting down. This condition is likely to affect particularly the tower model
robustness in low wind speed conditions, where the errors are significantly high as
described in Section 4.2.2.

To ensure a consistent and fair comparison between the three filtering scenarios, a com-
mon test dataset is employed across all cases. This test dataset is derived by applying
a 70-20-10 train-validation-test split to the Start-up & Shutdown filtered dataset, which
represents the strictest level of filtering. The timestamps corresponding to this test split
are then used to identify and remove the same datapoints from the Unfiltered and Normal
Operation datasets. This approach guarantees that no test samples, either fully or par-
tially, are included in the training or validation sets of any scenario, thus avoiding data
leakage. After the removal of these test instances, the remaining data in the Unfiltered
and Normal Operation cases is repartitioned using an 80-20 train-validation split. This
methodology allows for an unbiased evaluation of the impact of each filtering strategy on
model performance.

For clarity, the section is divided into two subsections, the Blade & Tower models, dis-
cussing the results of the blade flapwise & tower fore-aft moment DEL respectively.

4.3.1 Blade Models
This section presents and discusses the results obtained for the blade flapwise DEL predic-
tion models. Table 4.13 reports the performance metrics of the XGBoost models for each
individual wind turbine under all three filtering scenarios, while Table 4.14 summarises
the average performance across all turbines per scenario. Additionally, to investigate the
extent of data reduction introduced by each filtering method, the number of training
samples (rows) retained in each case is also reported in Table 4.13.
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Table 4.13: Filtering case results using XGBoost targeting the blade flapwise DEL. The
datapoints refer to the number of rows in the respective training dataset.

Wind
Turbine

Unfiltered Normal Operation
Filtering

Start-up & Shutdown
Filtering

B06 R2 = 94.83 %
MAPE = 8.73 %
NRMSE = 0.227
Datapoints: 79,224

R2 = 94.92 %
MAPE = 8.64 %
NRMSE = 0.225
Datapoints: 64,702

R2 = 94.82 %
MAPE = 8.74 %
NRMSE = 0.228
Datapoints: 57,948

B07 R2 = 94.38 %
MAPE = 8.15 %
NRMSE = 0.237
Datapoints: 92,494

R2 = 94.38 %
MAPE = 8.13 %
NRMSE = 0.237
Datapoints: 78,093

R2 = 94.38 %
MAPE = 8.16 %
NRMSE = 0.237
Datapoints: 71,094

D07 R2 = 93.03 %
MAPE = 8.44 %
NRMSE = 0.264
Datapoints: 80,994

R2 = 92.97 %
MAPE = 8.45 %
NRMSE = 0.265
Datapoints: 66,648

R2 = 92.96 %
MAPE = 8.48 %
NRMSE = 0.265
Datapoints: 60,140

D08 R2 = 95.01 %
MAPE = 8.67 %
NRMSE = 0.223
Datapoints: 74,442

R2 = 94.89 %
MAPE = 8.74 %
NRMSE = 0.226
Datapoints: 49,590

R2 = 94.88 %
MAPE = 8.84 %
NRMSE = 0.226
Datapoints: 45,722

C08 R2 = 94.33 %
MAPE = 8.36 %
NRMSE = 0.238
Datapoints: 78,123

R2 = 94.36 %
MAPE = 8.32 %
NRMSE = 0.237
Datapoints: 58,684

R2 = 94.42 %
MAPE = 8.37 %
NRMSE = 0.236
Datapoints: 53,443

B08 R2 = 94.58 %
MAPE = 8.67 %
NRMSE = 0.233
Datapoints: 80,652

R2 = 94.62 %
MAPE = 8.64 %
NRMSE = 0.232
Datapoints: 63,263

R2 = 94.62 %
MAPE = 8.68 %
NRMSE = 0.232
Datapoints: 58,686

Table 4.14: Average performance metrics across all turbines for each filtering scenario
using XGBoost, with blade flapwise DEL as the target variable.

Metric Unfiltered Normal
Operation
Filtering

Start-up &
Shutdown
Filtering

R2 [%] 94.36 94.36 94.35

MAPE [%] 8.50 8.49 8.55

NRMSE [-] 0.237 0.237 0.237

As shown in Table 4.13 & Table 4.14, the application of filtering, despite resulting in a
substantial reduction in the number of training datapoints, has a negligible impact on
the predictive performance of the XGBoost models. Across all filtering scenarios, the
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performance metrics remain remarkably consistent, with variations in R2, MAPE, and
NRMSE being marginal. These results further support the findings from the previous
sections regarding the robustness of the XGBoost algorithm. The model demonstrates a
strong capacity to generalise, maintaining high accuracy even when trained on datasets
that include points potentially outside of normal operating conditions, such as those
encountered during start-up or shutdown or various curtailment scenarios. This suggests
that the inclusion of such uncommon data does not degrade performance, nor does it
confuse the learning process of the model.

4.3.2 Tower Models
This section presents and discusses the results for the tower fore-aft moment DEL pre-
diction models. Table 4.15 displays the performance metrics of the XGBoost models for
each wind turbine across the three filtering scenarios, while Table 4.16 provides the corre-
sponding average metrics over all turbines. To assess the impact of each filtering approach
on the training dataset size, the number of training samples retained after cleaning is also
included in Table 4.15.

Table 4.15: Filtering case results using XGBoost targeting the tower moment FA DEL.
The datapoints refer to the number of rows of the respective training dataset.

Wind
Turbine

Unfiltered Normal Operation
Filtering

Start-up & Shutdown
Filtering

B06 R2 = 93.65 %
MAPE = 8.13 %
NRMSE = 0.252
Datapoints: 81,608

R2 = 93.49 %
MAPE = 8.14 %
NRMSE = 0.255
Datapoints: 68,436

R2 = 93.52 %
MAPE = 8.16 %
NRMSE = 0.254
Datapoints: 60,893

B07 R2 = 93.43 %
MAPE = 8.77 %
NRMSE = 0.256
Datapoints: 93,098

R2 = 93.51 %
MAPE = 8.71 %
NRMSE = 0.256
Datapoints: 80,068

R2 = 93.35 %
MAPE = 8.85 %
NRMSE = 0.258
Datapoints: 72,569

D07 R2 = 93.35 %
MAPE = 8.47 %
NRMSE = 0.258
Datapoints: 87,283

R2 = 93.44 %
MAPE = 8.43 %
NRMSE = 0.256
Datapoints: 73,791

R2 = 93.26 %
MAPE = 8.56 %
NRMSE = 0.260
Datapoints: 66,292

D08 R2 = 94.98 %
MAPE = 9.17 %
NRMSE = 0.224
Datapoints: 74,232

R2 = 94.93 %
MAPE = 9.15 %
NRMSE = 0.225
Datapoints: 52,856

R2 = 94.88 %
MAPE = 9.15 %
NRMSE = 0.226
Datapoints: 48,604

B08 R2 = 95.25 %
MAPE = 8.52 %
NRMSE = 0.218
Datapoints: 82,224

R2 = 95.17 %
MAPE = 8.56 %
NRMSE = 0.220
Datapoints: 63,032

R2 = 95.17 %
MAPE = 8.54 %
NRMSE = 0.220
Datapoints: 58,022
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Table 4.16: Average performance metrics across all turbines for each filtering scenario
using XGBoost, with tower moment FA DEL as the target variable.

Metric Unfiltered Normal
Operation
Filtering

Start-up &
Shutdown
Filtering

R2 94.13 94.11 94.04

MAPE 8.61 8.60 8.65

NRMSE 0.242 0.242 0.244

The results Table 4.15 & Table 4.16 show that the choice of filtering scenario has only a
marginal effect on the predictive performance of the tower fore-aft moment DEL models.
The differences in R2, MAPE, and NRMSE across the three cases are minimal, confirming
the robustness and consistency of XGBoost when applied to tower data. These findings
align with the blade model results, further highlighting the model’s ability to handle
variability in operational conditions without loss of accuracy.

Notably, the extended shutdown period observed for turbine D08 in early 2022 (Chapter 3)
does not appear to hinder the model’s ability to predict either the blade or tower DEL.
The D08 models demonstrate comparable performance even in the unfiltered case.

4.4 Dataset size
Following the analysis of the filtering effect on model performance in Section 4.3, this
section provides an investigation of how the volume of training data influences predictive
accuracy. This case study addresses the scientific inquiry: How does the quantity of data
affect model performance? Due to time constraints, the analysis focuses exclusively on
turbine B07 and employs the XGBoost model. Although Section 4.3 indicated that data
filtering has a limited impact, the present study adopts the normal operation filtered
dataset. This decision stems from the need to ensure that small datasets (5000 & 10,000
datapoints) are not disproportionately influenced by rare operational conditions such as
curtailments or manual shutdowns, which are more prevalent in unfiltered data. The
methodology followed in this section consists of the following steps:

1. The normal operation dataset for B07 is split into training (70%), validation (20%),
and test (10%) sets using quantile binning.

2. The test set is fixed and reused across all dataset size cases to ensure consistency
in evaluation.

3. The remaining data is shuffled and subsets of specific sizes are selected using quantile
binning to construct the combined training-validation set (Xtrain,val).

4. Each Xtrain,val set is then split into 80% training and 20% validation, and the model
is subsequently trained and evaluated. The dataset splits for each case are reported
in Table 4.17.

The results of the study, expressed by the performance metrics, are reported in Table 4.17.
The dataset size influence is visualised in Fig. 4.19 where the R2 & MAPE of each dataset
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size scenario is plotted against the number of datapoints corresponding to the training
dataset.

Table 4.17: Performance metrics for different dataset sizes using XGBoost, targeting B07
blade flapwise and tower moment FA DEL. The dataset split refers to training-validation-
test percentages.

Training
datapoints

Blade Model
(B07)

Tower Model
(B07)

Blade
Split [%]

Tower
Split [%]

5,000
R2 = 92.58 %

MAPE = 9.83 %
NRMSE = 0.272

R2 = 88.60 %
MAPE = 11.49 %
NRMSE = 0.338

40-10-50 43-10-47

10,000
R2 = 93.27 %

MAPE = 9.43 %
NRMSE = 0.259

R2 = 89.08 %
MAPE = 10.83 %
NRMSE = 0.330

54-13-33 55-14-31

20,000
R2 = 93.77 %

MAPE = 9.18 %
NRMSE = 0.250

R2 = 90.06 %
MAPE = 10.36 %
NRMSE = 0.315

64-16-20 66-16-18

40,000
R2 = 94.18 %

MAPE = 8.72 %
NRMSE = 0.241

R2 = 90.98 %
MAPE = 9.83 %
NRMSE = 0.300

71-18-11 72-18-10

60,000
R2 = 94.51 %

MAPE = 8.54 %
NRMSE = 0.234

R2 = 91.35 %
MAPE = 9.63 %
NRMSE = 0.294

74-18-8 75-18-7

80,000
R2 = 94.81 %

MAPE = 8.32 %
NRMSE = 0.228

R2 = 91.67 %
MAPE = 9.50 %
NRMSE = 0.289

75-19-6 76-19-5
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Figure 4.19: R2 & MAPE against number of datapoints for the blade model (left) and for
the tower model (right). The plots refer to the B07 normal operation data using XGBoost.

The results presented in Table 4.17 & Fig. 4.19 confirm the expected trend that increasing
the training dataset size leads to improved model performance for both the blade and
tower models. In particular, a more pronounced improvement is observed in the smaller
dataset sizes, where the gradients of R2 and MAPE are steeper. Nevertheless, even when
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the training set exceeds a full year of operational data, the models continue to benefit
from additional information, albeit with diminishing gains. Importantly, the inclusion
of more data does not appear to introduce noise or confusion into the learning process,
suggesting that the XGBoost model effectively leverages the added samples to enhance
generalisation.

4.5 Local Configuration
The analysis proceeds with the Local Configuration case, which investigates the question:
How does the input from neighbouring wind turbines influence model performance? The
motivation stems from the hypothesis that directional effects in the wind field impact the
accuracy of load predictions. Specifically, it is suspected that increased turbulence from
waked inflow, which is associated with certain wind directions, complicates the estimation
of DEL. This hypothesis is supported by the directional absolute prediction error distri-
bution shown in Fig. 4.20, derived from the model comparison results in Section 4.2.1 for
turbines B07 and B08. The figure reveals that while both models perform similarly when
the wind originates from the NW to E sector, significant discrepancies arise in the E to
NW sector: B07 exhibits much higher prediction errors compared to B08. This difference
can be attributed to the wake-free inflow conditions of B08 in those directions, in contrast
to B07, which consistently operates under waked conditions, as illustrated in Fig. 4.21.
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Figure 4.20: B07 & B08 blade flapwise DEL error distribution against wind direction(10◦

bin) based on XGBoost.
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Figure 4.21: Lillgrund offshore wind farm zoomed in on the wind turbines with DEL data.

To assess the influence of neighbouring wind turbines on model performance, a targeted
local configuration analysis is conducted. Given the time constraints, it is not feasible
to perform this analysis for all turbines with available DEL data. Consequently, turbine
B07 is selected as the representative case. B07 is centrally located within the wind farm
layout (Fig. 4.21), allowing for the assessment of upstream interactions from multiple
wind directions. This configuration is particularly advantageous for identifying direc-
tional dependencies and for examining the potential impact of wake-induced turbulence,
especially in directions aligned with the prevailing wind, as suggested by the site’s wind
rose in Fig. 3.3.

The input features for B07 remain consistent with those defined in the Feature Importance
analysis in Section 4.1. For the blade load models, the selected internal features include
the mean and standard deviation of Wind Speed, Active Power, Nacelle Position, Pitch
Angle, and Generator speed. In contrast, the tower load models also incorporate the
minimum and maximum signals of those variables.

When incorporating signals from neighbouring turbines, only a subset of variables is
considered: the mean values of Wind Speed, Active Power, Nacelle Position, and Pitch
Angle. This feature selection is primarily motivated by the need to reduce computational
cost. To achieve this, the dataset is limited to variables identified as most influential
in the Feature Importance study (Section 4.1), thereby excluding Generator Speed and
higher-order statistical descriptors.

The unfiltered dataset for all the wind turbines is used in order to increase the generalis-
ability of the results while maintaining predicting accuracy (see Section 4.3).

The case study is divided into two subsections, Blade & Tower models, each addressing
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the results for the blade flapwise and tower fore-aft moment DEL, respectively.

4.5.1 Blade models
In this section, the results regarding the performance of the models targeting the B07
blade flapwise DEL are reported and discussed. Table 4.18, Table 4.19 & Table 4.20
present the performance of the local configuration models for predicting the B07 blade
flapwise DEL compared to the B07 internal model while Table 4.21 displays the total
number of datapoints used across the training, validation and test sets for the internal
and local configuration models respectively.

Table 4.18: R2 scores [%] for B07 blade flapwise DEL prediction using internal and local
configuration models with XGBoost.

Turbine Added B07 Internal Local Configuration ∆R2 [%]
D07 95.49 96.09 0.60
C08 95.49 96.38 0.89
B08 95.49 96.14 0.65
A07 95.49 96.06 0.57
A06 95.49 95.72 0.23
B06 95.49 95.91 0.42
D08 95.49 96.38 0.89
All 95.49 96.47 0.98

Table 4.19: MAPE [%] for B07 blade flapwise DEL prediction using internal and local
configuration models with XGBoost.

Turbine Added B07 Internal Local Configuration ∆MAPE [%]
D07 8.28 8.03 -0.25
C08 8.28 7.92 -0.36
B08 8.28 8.02 -0.26
A07 8.28 8.53 0.25
A06 8.28 8.54 0.26
B06 8.28 8.24 -0.04
D08 8.28 7.84 -0.44
All 8.28 8.21 -0.07
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Table 4.20: NRMSE [-] for B07 blade flapwise DEL prediction using internal and local
configuration models with XGBoost.

Turbine Added B07 Internal Local Configuration ∆NRMSE [%]

D07 0.212 0.198 -6.60
C08 0.212 0.190 -10.38
B08 0.212 0.196 -7.55
A07 0.212 0.198 -6.60
A06 0.212 0.207 -2.36
B06 0.212 0.202 -4.72
D08 0.212 0.190 -10.38
All 0.212 0.188 -11.32

Table 4.21: Number of datapoints used in training, validation and test sets for each local
configuration compared to the internal B07 model.

Turbine Added B07 Internal Local Configuration
D07 125,777 106,760
C08 125,777 103,309
B08 125,777 106,253
A07 125,777 51,524
A06 125,777 53,798
B06 125,777 104,935
D08 125,777 98,116
All 125,777 41,717

The first column in each table specifies the local configuration scenario, where each row
corresponds to the inclusion of input data from a specific neighbouring turbine. The final
row (’All’) represents the case in which input from all listed turbines is simultaneously
incorporated. The second column reports the performance metric or number of datapoints
of the internal model using only B07’s own input signals. The third column provides the
corresponding performance metrics for each local configuration. The final column in
Table 4.18, Table 4.19 & Table 4.20 indicate the relative improvement or deterioration of
the model’s predictive performance compared to the internal model. Positive values in
∆R2 and negative values in ∆MAPE or ∆NRMSE suggest improved accuracy with the
inclusion of neighbouring turbine data.

The results in Table 4.18, Table 4.19 & Table 4.20 demonstrate that incorporating input
data from neighbouring wind turbines enhances the predictive performance of the blade
flapwise DEL model. Notably, the most substantial improvements are observed when data
from upstream turbines, particularly those aligned with the prevailing wind direction (C08
and D08), are included. These turbines likely provide additional information about the
incoming flow conditions before it reaches B07, enabling the model to better capture
the effects of wake-induced turbulence and directional variability. The configuration that
includes data from all neighbouring turbines yields the highest overall performance, sug-
gesting that the combined spatial context significantly enriches the model’s understanding
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of the operational situation. This highlights the importance of local flow conditions and
upstream interactions in accurately estimating structural loads.

In addition, it is important to address the observation that MAPE does not consistently
improve across the local configuration models. As previously discussed (Section 3.3.5),
MAPE is a biased metric, as it is strongly influenced by the magnitude of the actual DEL
values and tends to be inflated in cases of low-magnitude predictions. Therefore, relying
solely on MAPE may not accurately reflect improvements in model performance. To
gain a more solid understanding of the impact of local inputs, it is necessary to examine
the distribution of errors with respect to wind direction, as well as the distribution of
prediction errors across the full range of DEL values. A comparative analysis between the
internal and local B07 models, addressing these aspects, is presented in Fig. 4.22.
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Figure 4.22: Directional absolute error distribution (left) and absolute percentage error vs.
predicted DEL (right) for the B07 internal and local (’All’) blade models using XGBoost.

The results illustrated in Fig. 4.22 further validate the superiority of the local config-
uration model. The left subplot shows that the elevated prediction errors previously
observed in the E to NW wind directions are significantly mitigated when incorporating
input from neighbouring turbines. This confirms that upstream information enhances the
model’s ability to handle directional variability, particularly in regions affected by wake
interactions. Moreover, the right subplot demonstrates that the local model consistently
yields lower percentage errors than the internal model, indicating improved accuracy and
generalisation.

This raises the question of why the overall MAPE does not reflect this improvement. The
most plausible explanation lies in the differing sizes of the test datasets (see Table 4.21).
The internal model is evaluated on approximately 12,500 test datapoints, while the local
model’s test set contains around 4,000. This discrepancy may result in a skewed MAPE
for the local model, particularly if it includes a higher proportion of low-DEL values(where
percentage errors are naturally inflated) and lacks sufficient representation in the mid-to-
high DEL range, which would otherwise dampen the overall MAPE.

Thus, while MAPE is often used as an intuitive performance metric, it is sensitive to the
distribution of the target variable and should be interpreted cautiously, especially when
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comparing models trained or tested on datasets of different sizes or compositions. In
this context, the percentage error distribution plot provides a more reliable assessment of
model behaviour, reinforcing the superior performance of the local configuration.

4.5.2 Tower models
This section presents and discusses the results for the models predicting the tower fore-aft
moment DEL of turbine B07. Table 4.22, Table 4.23 & Table 4.24 present the performance
of the local configuration models based on XGBoost.

Table 4.22: R2 scores [%] for B07 tower FA moment DEL prediction using internal and
local configuration models with XGBoost.

Turbine Added B07 Internal Local Configuration ∆R2 [%]
D07 91.64 92.21 0.57
B08 91.64 92.58 0.94
A07 91.64 92.74 1.10
A06 91.64 92.80 1.16
B06 91.64 92.16 0.52
D08 91.64 92.87 1.23
All 91.64 92.61 0.97

Table 4.23: MAPE [%] for B07 tower FA moment DEL prediction using internal and local
configuration models with XGBoost.

Turbine Added B07 Internal Local Configuration ∆MAPE [%]
D07 11.09 10.54 -0.55
B08 11.09 10.12 -0.97
A07 11.09 10.82 -0.27
A06 11.09 11.46 0.37
B06 11.09 10.73 -0.36
D08 11.09 10.18 -0.91
All 11.09 10.13 -0.96

Table 4.24: NRMSE [-] for B07 tower FA moment DEL prediction using internal and local
configuration models with XGBoost.

Turbine Added B07 Internal Local Configuration ∆NRMSE [%]
D07 0.289 0.279 -3.46
B08 0.289 0.272 -5.88
A07 0.289 0.269 -6.92
A06 0.289 0.268 -7.27
B06 0.289 0.280 -3.11
D08 0.289 0.267 -7.61
All 0.289 0.272 -5.88
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Table 4.25: Number of datapoints used in training, validations and test sets for each local
configuration compared to the internal B07 model.

Turbine Added B07 Internal Local Configuration
D07 126,742 112,580
B08 126,742 107,065
A07 126,742 50,330
A06 126,742 52,911
B06 126,742 107,041
D08 126,742 97,284
All 126,742 38,239

Similar to the blade model results, a notable improvement in predictive performance
is observed when incorporating input from neighbouring turbines. To support the error
analysis, the directional distribution of prediction errors and the percentage error variation
across the full range of predicted DEL values are presented in Fig. 4.23.
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Figure 4.23: Directional absolute error distribution (left) and absolute percentage error vs.
predicted DEL (right) for the B07 internal and local (’All’) tower models using XGBoost.

Fig. 4.23 presents a nuanced view of the performance differences between the internal
and local tower models. The directional absolute error distribution (left) indicates that
both models exhibit comparable error magnitudes across most wind directions, with no
substantial advantage observed for the local configuration. This suggests that, in terms
of absolute error, the inclusion of neighbouring turbine data does not lead to significant
improvements.

However, the right subplot, depicting the absolute percentage error against the predicted
DEL, reveals a more favourable outcome for the local model. The percentage errors are
consistently lower across the majority of the DEL range, corroborating the slightly im-
proved MAPE values reported in Table 4.23. Nevertheless, it is important to note the evi-
dent absence of datapoints in the low-DEL region of the local model’s test dataset. Given
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that percentage error is highly sensitive to small denominators, this under-representation
can artificially lower the average MAPE.

This observation reinforces the earlier discussion in the blade model section regarding the
limitations of MAPE as a standalone metric. It highlights the need to consider dataset
composition when interpreting performance metrics, particularly when comparing models
tested on datasets of different sizes or distributions. Overall, while the local model shows
some signs of improved relative accuracy, the findings must be contextualised within the
underlying data characteristics.

4.6 Neighbouring DEL
In this section, the potential of using DEL data from neighbouring wind turbines to
enhance the prediction accuracy of damage equivalent loads (DELs) is explored. The
motivation stems from a practical operational scenario: in a wind farm equipped with load
sensors on each turbine, sensor malfunctions are inevitable. When a sensor fails, data-
driven models become essential to estimate the missing DEL values. The central question
addressed here is whether incorporating DEL measurements from adjacent turbines as
input features can improve the predictive performance of such models. By analysing the
extent of improvement introduced by this additional spatial information, the study aims
to assess the practical value of leveraging turbine interdependencies in real-time condition
monitoring and predictive maintenance strategies.

The methodology adopted in this case study focuses on predicting the DEL for turbine
B06. For each experiment, the model is trained using B06’s internal SCADA features,
specifically wind speed, active power, nacelle position, pitch angle, and generator speed,
augmented with the DEL measurement from a neighbouring turbine. The last case (’All’)
refers to the selection of the DEL of all the previously reported turbines as input. The
objective is to quantify the added predictive value of this additional input by comparing
model performance metrics across different neighbour selections. Importantly, the unfil-
tered dataset (see Section 3.2) is used consistently to secure a fair model comparison. The
selection of B06 is deliberate: it is the most spatially isolated turbine among those with
available load data (see Fig. 4.21). This positioning enables a meaningful investigation
into how the spatial configuration within the wind farm, including the distance between
turbines, influences the predictive utility of neighbouring DEL information. To enhance
clarity, the analysis is divided into two distinct subsections, Blade & Tower models, al-
lowing a focused discussion of each result set.

4.6.1 Blade models
In this section, the results regarding the investigation of the blade flapwise DEL prediction
models are reported and discussed. The performance metrics are presented in Table 4.26,
Table 4.27 & Table 4.28.
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Table 4.26: R2 scores [%] for B06 blade flapwise DEL prediction using internal and
neighbouring turbine DEL input models with XGBoost.

Neighbouring Turbine B06 Internal Neighbour DEL Input ∆R2 [%]
B07 96.23 96.72 0.49
D07 96.23 96.45 0.22
B08 96.23 96.67 0.44
C08 96.23 96.45 0.22
D08 96.23 96.47 0.24
All 96.23 96.94 0.71

Table 4.27: MAPE [%] for B06 blade flapwise DEL prediction using internal and neigh-
bouring turbine DEL input models with XGBoost.

Neighbouring Turbine B06 Internal Neighbour DEL Input ∆MAPE [%]
B07 8.94 8.45 -0.49
D07 8.94 8.61 -0.33
B08 8.94 8.65 -0.29
C08 8.94 8.65 -0.29
D08 8.94 8.85 -0.09
All 8.94 8.31 -0.63

Table 4.28: NRMSE [-] for B06 blade flapwise DEL prediction using internal and neigh-
bouring turbine DEL input models with XGBoost.

Neighbouring Turbine B06 Internal Neighbour DEL Input ∆NRMSE [%]
B07 0.194 0.181 -6.70
D07 0.194 0.188 -3.09
B08 0.194 0.183 -5.67
C08 0.194 0.188 -3.09
D08 0.194 0.188 -3.09
All 0.194 0.175 -9.79

The results from the blade models in Table 4.26, Table 4.27 & Table 4.28 demonstrate
that incorporating neighbouring turbine DEL as an additional input consistently enhances
the predictive performance of the model targeting B06 blade flapwise DEL, albeit with
modest gains. Even turbines positioned relatively far from B06, such as C08 and D08,
which, unlike B06, operate mostly under free-wake conditions, contribute positively to
the model’s accuracy. Notably, the best performance is achieved when the DELs from
all neighbouring turbines are included simultaneously. This suggests that the additional
spatial load information enriches the model’s understanding of the overall loading condi-
tions within the wind farm, leading to improved predictions without introducing noise or
overfitting.
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4.6.2 Tower models
This section presents and discusses the results of the tower fore-aft moment DEL pre-
diction models. The corresponding performance metrics are reported in Table 4.29, Ta-
ble 4.30 & Table 4.31.

Table 4.29: R2 scores [%] for B06 tower FA moment DEL prediction using internal and
neighbouring turbine DEL input models with XGBoost.

Neighbouring Turbine B06 Internal Neighbour DEL Input ∆R2 [%]
B07 91.83 92.79 0.96
D07 91.83 93.48 1.65
B08 91.83 92.44 0.61
D08 91.83 93.55 1.72
All 91.83 94.02 2.19

Table 4.30: MAPE [%] for B06 tower FA moment DEL prediction using internal and
neighbouring turbine DEL input models with XGBoost.

Neighbouring Turbine B06 Internal Neighbour DEL Input ∆MAPE [%]
B07 11.06 9.91 -2.05
D07 11.06 10.05 -1.01
B08 11.06 9.93 -1.13
D08 11.06 10.23 -0.83
All 11.06 9.46 -1.60

Table 4.31: NRMSE [-] for B06 tower FA moment DEL prediction using internal and
neighbouring turbine DEL input models with XGBoost.

Neighbouring Turbine B06 Internal Neighbour DEL Input ∆NRMSE [%]
B07 0.286 0.268 -6.30
D07 0.286 0.255 -10.80
B08 0.286 0.275 -3.80
D08 0.286 0.254 -11.20
All 0.286 0.244 -14.70

Similar to the blade models, the tower fore-aft moment DEL prediction models consis-
tently benefit from the inclusion of neighbouring turbine DEL as an additional input.
However, the magnitude of improvement varies more substantially in this case. The ob-
served gains, from one turbine DEL input, in R2 range from 0.61 to 1.72 percentage
points, while the NRMSE reductions span from 3.8% to 11.2%. Interestingly, turbines
D07 and D08 yield greater improvements with regard to NRMSE than B07 and B08,
although no definitive spatial or operational pattern explains this discrepancy. One plau-
sible explanation lies in the previously discussed limitations associated with tower load
measurements, which may introduce additional noise or variability into the learning pro-
cess. Nevertheless, the combined case, where all neighbouring DELs are included, once
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again provides the best performance, reinforcing the conclusion that incorporating spa-
tial load information enhances the model’s capacity to capture the underlying loading
dynamics.

4.7 Generalisability
The next part of the Results & Discussion chapter investigates the generalisability of data-
driven models across different wind turbines within the same farm. Specifically, it aims
to address the question: How does model accuracy change when tested on SCADA data
from a different turbine than the one it was tuned for? This scenario is highly relevant in
practical settings where data availability or computational constraints might only allow
hyperparameter tuning on a single representative turbine.

As an initial attempt, the XGBoost model configuration optimised using normal operation
data from turbine B07 (see Section 4.3) was directly applied to the test datasets of other
turbines without any retraining. The corresponding results are shown in Table 4.32. As
expected, the performance deteriorates significantly, with R2 drops exceeding 30% and
relative errors (MAPE and NRMSE) increasing by more than 100% in some cases. This
poor transferability is primarily due to spatial variability in operating conditions across the
wind farm. For example, B07 typically operates under wake conditions, while turbines like
B08, C08, and D08 experience more frequent free-stream exposure (see Fig. 4.21). Conse-
quently, a model trained on wake-affected data tends to overestimate loads in free-stream
cases. Moreover, since the scalers were fitted solely on the B07 dataset, discrepancies
in input and output distributions between turbines also lead to unreliable predictions.
These findings clearly demonstrate that directly reusing a trained model across turbines
without any retraining is not viable.

Table 4.32: Generalisability case results with B07 XGBoost blade flapwise DEL prediction
model (no retraining).

Wind
Turbine

Internal Model B07 Model (No
Retrain)

∆R2 [%] ∆MAPE
[%]

∆NRMSE
[%]

B06
R2 = 95.31 %

MAPE = 8.77 %
NRMSE = 0.217

R2 = 80.93 %
MAPE = 19.98 %
NRMSE = 0.437

-14.38 11.21 101.38

D07
R2 = 93.43 %

MAPE = 8.39 %
NRMSE = 0.256

R2 = 59.32 %
MAPE = 23.98 %
NRMSE = 0.638

-34.11 15.59 149.22

D08
R2 = 95.01 %

MAPE = 8.81 %
NRMSE = 0.223

R2 = 70.93 %
MAPE = 25.86 %
NRMSE = 0.539

-24.08 17.05 141.70

C08
R2 = 94.52 %

MAPE = 8.57 %
NRMSE = 0.234

R2 = 63.03 %
MAPE = 24.60 %
NRMSE = 0.608

-31.49 16.03 159.83

B08
R2 = 94.80 %

MAPE = 8.77 %
NRMSE = 0.228

R2 = 70.92 %
MAPE = 24.56 %
NRMSE = 0.539

-23.88 15.79 136.40
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To address this issue, a more pragmatic strategy was evaluated. The B07 XGBoost model
configuration was reused, but the model itself was retrained individually on each turbine’s
internal SCADA and DEL dataset. By fixing the hyperparameters, the computationally
intensive tuning process is avoided, while still allowing the model to adapt to turbine-
specific data distributions. Table 4.33 and Table 4.34 summarise the performance results
for flapwise blade and tower fore-aft moment DEL predictions, respectively. In both
cases, the retrained B07 model achieves nearly identical performance to the internal model
trained and tuned specifically for each turbine. Differences in R2, MAPE, and NRMSE
are negligible; typically within ±0.1%.

Table 4.33: Generalisability case results with B07 XGBoost blade flapwise DEL prediction
model.

Wind
Turbine

Internal Model B07 Model
Retrained

∆R2 [%] ∆MAPE
[%]

∆NRMSE
[%]

B06
R2 = 95.31 %

MAPE = 8.77 %
NRMSE = 0.217

R2 = 95.37 %
MAPE = 8.73 %
NRMSE = 0.215

0.06 -0.04 -0.92

D07
R2 = 93.43 %

MAPE = 8.39 %
NRMSE = 0.256

R2 = 93.40 %
MAPE = 8.40 %
NRMSE = 0.257

-0.03 0.01 0.39

D08
R2 = 95.01 %

MAPE = 8.81 %
NRMSE = 0.223

R2 = 94.99 %
MAPE = 8.81 %
NRMSE = 0.224

-0.02 0.00 0.45

C08
R2 = 94.52 %

MAPE = 8.57 %
NRMSE = 0.234

R2 = 94.55 %
MAPE = 8.55 %
NRMSE = 0.233

0.03 -0.02 -0.43

B08
R2 = 94.80 %

MAPE = 8.77 %
NRMSE = 0.228

R2 = 94.79 %
MAPE = 8.81 %
NRMSE = 0.228

-0.01 0.04 0.00

Table 4.34: Generalisability case results with B07 XGBoost tower FA moment DEL pre-
diction model.

Wind
Turbine

Internal Model B07 Model
Retrained

∆R2 [%] ∆MAPE
[%]

∆NRMSE
[%]

B06
R2 = 92.45 %

MAPE = 8.70 %
NRMSE = 0.275

R2 = 92.41 %
MAPE = 8.69 %
NRMSE = 0.276

-0.04 -0.01 0.36

D07
R2 = 92.24 %

MAPE = 9.07 %
NRMSE = 0.279

R2 = 92.28 %
MAPE = 9.09 %
NRMSE = 0.278

0.04 0.02 -0.36

D08
R2 = 94.24 %

MAPE = 9.67 %
NRMSE = 0.240

R2 = 94.17 %
MAPE = 9.69 %
NRMSE = 0.241

-0.07 0.02 0.42

B08
R2 = 93.73 %

MAPE = 8.93 %
NRMSE = 0.250

R2 = 93.81 %
MAPE = 8.91 %
NRMSE = 0.249

0.08 -0.02 -0.40
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These results suggest that once an optimal configuration is found, it can be effectively
reused across the wind farm by simply retraining the model with turbine-specific data.
This approach drastically reduces computational cost, as hyperparameter tuning, which is
approximately 120 times more time-consuming than training, only needs to be performed
once. On a standard laptop, training the XGBoost model takes only about 20 seconds.
Overall, this generalisability case further reinforces the robustness and consistency of the
XGBoost algorithm, confirming its suitability for deployment in large-scale operational
settings with minimal additional effort.

4.8 Fatigue Damage Estimation
To complement the data-driven modelling results, this section demonstrates how the pre-
dicted DEL values can be used to estimate fatigue damage on wind turbine components.
As discussed in Chapter 2, both DEL and fatigue damage (denoted as D) play a cen-
tral role in assessing structural integrity and potential failure over time. Fatigue damage
serves as an index that, when accumulated linearly over the turbine’s operational life,
may indicate failure once D ≥ 1. The theoretical formulation is given in Eq. (2.2), where
D depends on material properties and structural dimensions through a proportionality
coefficient K, which in this study is unknown.

In the absence of specific material data, a qualitative evaluation can still be conducted
by normalising K = 1, which preserves the relative comparison and does not alter the
overall discussion. Given that the rainflow counting method has been applied and a DEL
time series is available, Eq. (2.2) simplifies to:

D = Neq · DELm (4.3)

Where Neq represents the equivalent number of cycles (set to 600 for 10-minute data
time-series) and m is the Wöhler exponent characterising the material’s fatigue sensitivity.
This formulation enables a consistent and illustrative fatigue damage estimation across
the dataset.

The following analysis presents an illustrative example to demonstrate how fatigue damage
estimation can be approached using model-predicted DEL values. It is important to
note that this is not a rigorous fatigue assessment. A comprehensive evaluation would
require long-term, continuous DEL measurements, careful filtering of specific operational
conditions, and a deeper understanding of the component material properties, all of which
fall beyond the scope of the present study.

Instead, this example serves to highlight the methodology and identify key factors influenc-
ing fatigue damage estimation. A test period of seven consecutive days, from 25-01-2021
to 01-02-2021 (dd-mm-yyyy), is selected from the dataset for this purpose. The remaining
data are used for model development, with an 80-20% split between training and valida-
tion. The target variable is the tower fore-aft moment DEL. Once trained and validated,
the models are evaluated on the extracted test set. The resulting relative errors in DEL
prediction for this test period are illustrated in Fig. 4.24, where the x-axis corresponds to
the day of January 2021. The relative error in DEL prediction is computed as:
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Relative Error = y − ŷ

y
× 100% (4.4)

Where y & ŷ are the actual and predicted DEL values, respectively. Accordingly, negative
values indicate instances where the model overpredicts the actual DEL.
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Figure 4.24: Tower FA DEL relative error against time.

Using the formulation provided in Eq. (4.3), the DEL time series can be converted into
fatigue damage estimates. Based on this transformation, the relative error in damage
prediction is computed for each model. The evolution of the damage relative error over
the test period is shown in Fig. 4.25, providing insight into how model prediction errors
propagate into fatigue damage estimation.
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Figure 4.25: Tower FA Damage relative error against time.

A comparison of the two plots reveals that errors in DEL prediction are significantly
amplified when converted to damage. This amplification is particularly evident in the
pronounced negative peaks observed on the 26th and 29th of January. Such behavior is
expected, as the DEL values are raised to the power of the Wöhler exponent m, which is
set to 4 for the tower moment. Consequently, even moderate errors in DEL estimation
can lead to disproportionately large deviations in damage prediction.
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It is also important to note that this effect would be even more severe if the same analysis
were performed on blade root moments, where the Wöhler exponent is typically taken as
m = 10. This higher exponent would magnify prediction errors to an even greater extent,
making accurate DEL estimation particularly critical for blade fatigue analysis.

To assess the overall impact of these deviations, the cumulative damage over the test
period is shown in Fig. 4.26. This plot provides insight into whether short-term overpre-
dictions result in significant overestimation of cumulative fatigue damage.
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Figure 4.26: Tower FA Cumulative Damage tower against time.

As shown in Fig. 4.26, the ANN and GPR models slightly overestimate the cumulative
damage over the test period, whereas XGBoost tends to underestimate it. Notably, the
pronounced negative peaks observed in Fig. 4.25 do not appear to significantly affect the
cumulative damage. This is because these large relative errors occur at time steps where
the actual DEL values are low. Although the percentage errors are high, their absolute
contribution to cumulative damage is minimal.

In contrast, other prediction errors that are smaller in relative terms but larger in absolute
magnitude can have a more substantial impact on cumulative damage. Such deviations are
not easily visible in Fig. 4.25 but become evident in the cumulative curve. Two instances
of this behaviour can be seen on the 28th and 31st of January, where the predicted damage
curves deviate more noticeably from the actual.

To better illustrate this, the time series of predicted and actual DEL values for 31 Jan-
uary 2021 is presented in Fig. 4.27. This plot highlights how local discrepancies in DEL
predictions translate into differences in cumulative damage over time.



4.8. Fatigue Damage Estimation 87

00
:0

0
02

:0
0

04
:0

0
06

:0
0

08
:0

0
10

:0
0

12
:0

0
14

:0
0

16
:0

0
18

:0
0

20
:0

0
22

:0
0

00
:0

0

Hour

0.00

0.20

0.40

0.60

0.80

1.00
N

or
m

al
iz

ed
D

E
L

[-
]

Actual

XGBoost

ANN

GPR

Figure 4.27: Tower FA DEL time-series against time for the 31-Jan-2021.

Fig. 4.27 provides a noteworthy insight into the temporal accuracy of the model predic-
tions. The large positive DEL peak occurring around 17:00 is well captured by both the
ANN and GPR models, while XGBoost significantly underpredicts it by approximately
40% (the percentage is not calculated based on the plot since it is normalised). Given the
high magnitude of this DEL value, its contribution to fatigue damage is strongly amplified
by the fourth power relationship defined by the Wöhler exponent. This substantial under-
estimation largely accounts for the elevated cumulative damage prediction error observed
for XGBoost on 31 January. In contrast, the closer alignment of ANN and GPR with the
actual DEL results in improved damage estimates for that day and in total.

The overall relative error in cumulative damage prediction across the test period for each
model is summarised in Table 4.35.

Table 4.35: Relative error in cumulative damage prediction for the tower FA moment.

Model Relative Error [%]
XGBoost −6.37
ANN 2.53
GPR 4.14

The results presented in Table 4.35 indicate that ANN and GPR outperform XGBoost in
predicting cumulative fatigue damage for the tower FA moment during the selected test
period. This observation contrasts with earlier findings in this chapter, where XGBoost
generally demonstrated superior performance across conventional error metrics. However,
it is important to emphasise that this evaluation is based on a limited one-week dataset
and is intended solely to illustrate the methodology rather than to provide a definitive
comparison. Despite this, the exercise yields several valuable insights.

First, it highlights that if fatigue damage estimation is the ultimate objective, model
evaluation should be conducted with this metric in mind. This requires selecting rep-
resentative test periods and evaluating performance based on damage-related outcomes
rather than standard regression metrics alone. Second, the analysis underscores the sen-
sitivity of fatigue damage calculations to high DEL values, which are disproportionately
amplified by the Wöhler exponent. This sensitivity would be even greater in blade fatigue
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analysis, where the exponent is typically higher. Ensuring accurate model predictions at
these high-load events is therefore critical. One possible improvement for XGBoost could
be the use of mean squared error (MSE) as the validation loss to increase sensitivity to
extreme values.

Lastly, the importance of robust data preprocessing cannot be overstated. Outliers caused
by sensor faults, calibration issues, or erroneous data processing can significantly skew the
DEL values and, by extension, the damage estimates. Ensuring data integrity is therefore
a prerequisite for any reliable fatigue analysis.

This illustrative case study thus emphasises the need for task-specific evaluation criteria,
careful handling of high-load events, and rigorous data quality assurance when using
data-driven models for fatigue damage estimation.

4.9 Discussion
The case studies presented in this chapter constitute a comprehensive and insightful ex-
ploration of the factors that influence data-driven load estimation in wind turbines. By
systematically investigating model performance, input data characteristics, and turbine-
specific configurations, the analysis has provided valuable perspectives on both the pre-
dictive capacity of machine learning methods and the operational challenges inherent to
wind farm monitoring. Notably, these case studies highlight the critical role of data qual-
ity, input selection, and model robustness in determining reliable outputs, as well as the
need to interpret model results in light of their intended engineering application.

The Feature Importance analysis demonstrates that purely data-driven techniques can
effectively identify relevant input signals, even in the absence of physical interpretability.
However, the relative importance of these features is dependent on the prediction target.
For instance, tower load models appear more sensitive to the range of input variables, a
finding that may reflect the comparatively lower accuracy of the tower dataset used in
this study. This distinction underscores the importance of considering the data fidelity
associated with different structural components when developing prediction models.

In the Model Comparison, advanced machine learning models generally exhibit strong
performance across all targets, with no visible signs of bias. Interestingly, the tower models
achieve lower accuracy despite the relative simplicity of tower dynamics compared to
blades. This outcome contradicts physical expectations and again points to the influence
of data quality. Among the models evaluated, XGBoost consistently outperforms others
in terms of accuracy, efficiency, and robustness, making it the most promising candidate
for fatigue load prediction tasks.

The Filtering experiments reveal that model performance remains largely unaffected by
the inclusion or exclusion of extreme values and outliers, indicating that XGBoost, in par-
ticular, maintains strong generalisation capabilities under varying data conditions. This
robustness is further reinforced by the Dataset Size study, which shows that prediction
accuracy continues to improve with additional data, even beyond one full year. These
findings advocate for maximising data availability when training machine learning models
for fatigue estimation.

In the Local Configuration study, incorporating input from neighbouring wind turbines
aids in reducing prediction errors and enhances overall model accuracy across all wind
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directions. This highlights the benefit of including location-specific measurements to cap-
ture turbine-specific dynamics and localised wind conditions. Similarly, the Neighbouring
DEL case confirms that information from adjacent turbines can enhance model perfor-
mance, suggesting that spatially correlated load patterns exist and can be leveraged in a
multi-turbine modelling framework.

The Generalisability analysis provides evidence that retrained XGBoost models perform
comparably to models that underwent hyperparameter tuning using internal wind turbine
data. This finding is important for operational scalability, as it implies that frequent re-
tuning for each wind turbine is not necessary, thereby reducing computational cost and
complexity in intra-farm applications.

Finally, the Fatigue Damage Estimation study brings the analysis closer to practical imple-
mentation. It illustrates how DEL predictions can be used to estimate cumulative fatigue
damage, aligning the modelling efforts with the ultimate goal of condition monitoring and
lifetime assessment. Importantly, this case highlights that even accurate models can yield
misleading damage estimations if they under- or over-predict high-load events. A more
detailed examination of fatigue estimation uncertainties would be a valuable direction for
future work.

In conclusion, the case studies reveal that model accuracy, data quality, and results inter-
pretability are deeply interconnected. High-quality measurements and careful calibration
are essential to produce reliable load predictions. Moreover, interpreting model perfor-
mance must always be aligned with the end-use objective, whether it be anomaly de-
tection, load monitoring, or fatigue estimation. Ultimately, a thorough evaluation using
appropriate metrics and visualisations tailored to each task is necessary to ensure mean-
ingful and actionable insights from data-driven models in wind energy applications.



CHAPTER 5

Conclusions & Recommendations

This study presented an exploratory analysis using real measurement data from the
Lillgrund offshore wind farm, with the objective of predicting blade root flapwise and
tower bottom fore-aft moment DELs under various operational conditions. The re-
search addressed three central questions. First, it evaluated and compared different
data-driven modelling approaches to identify the most suitable method for predicting
DEL from SCADA data in operational wind turbines. Second, it explored how variations
in data characteristics (including input feature composition, data volume, and signal
pre-processing) affect model performance and generalisability. Third, it investigated the
potential of incorporating spatial information from neighbouring turbines to enhance pre-
dictive accuracy across the wind farm. The findings offered substantive answers to all
three questions and contributed to a better understanding of the challenges and opportu-
nities associated with deploying surrogate models in realistic wind farm settings.

Building upon prior work in the field, which relied primarily on synthetic datasets, this
thesis demonstrated the applicability of machine learning models in operational wind
farms. Among the evaluated methods, all advanced models captured underlying data
patterns effectively, with XGBoost emerging as the most accurate and robust approach,
offering favourable trade-offs between predictive performance, computational cost, and
resilience to noise.

A key finding was the decisive role of data quality in model performance. Models trained to
predict blade root loads performed significantly better than those targeting tower bottom
moments. This discrepancy was attributed to differences in data accuracy; the blade loads
were derived from calibrated outputs provided directly by the manufacturer (Siemens),
whereas the tower load estimates relied on in-house calibration procedures that involved
several assumptions, likely introducing systematic errors.

The Fatigue Damage Estimation case study demonstrated the practical application of the
trained models for estimating fatigue accumulation and conducting lifetime assessments.
This use case highlighted both the benefits and limitations of integrating such models into
an asset management framework, particularly under realistic operating conditions.

Overall, the findings indicated that combining high-quality SCADA data with well-tuned
machine learning models can support the estimation of DELs and contribute meaningfully
to the operation and monitoring of wind farms. In particular, the results underscored the
potential of data-driven approaches to serve as virtual sensors, offering an alternative
to long-term deployment of strain gauges, which require continuous maintenance. This
capability is especially valuable in offshore environments, where operational and main-
tenance costs are considerably higher. The study thus established a solid foundation
for integrating data-driven methods into condition monitoring systems, supporting more
cost-effective and scalable wind farm management.
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Future Work
Due to the time constraints of this thesis project, the work had to be concluded at a
stage where several promising research directions remained unexplored. Nonetheless, the
findings and limitations of this study point toward a number of compelling opportunities
for further investigation.

• Cross-Farm Validation and Model Robustness: A natural next step is to
test the developed models on datasets from other wind farms, particularly those
equipped with larger and more modern turbines, and operating under different
environmental conditions and layout configurations. Such a study would enable
a broader evaluation of model robustness and generalisation capacity, and could
offer insights into the transferability of trained surrogate models across varying
operational contexts.

• Expanded Model Evaluation Across Case Studies: While this thesis applied
XGBoost to all case studies, the application of GPR and ANN was limited to the
Model Comparison case. Extending these models to all case studies would provide a
more comprehensive comparison of their robustness, adaptability, and performance
under different operational and spatial configurations.

• Enhanced Hyperparameter Optimisation for ANNs: The results highlighted
the sensitivity of ANN performance to hyperparameter choices. Future work could
expand the hyperparameter search space, incorporate more complex architectures,
and explore advanced tuning methods. This was not feasible during the thesis due
to the high computational cost, but remains an important area for performance
improvement.

• Direct Optimisation Based on Fatigue Damage: Given that the ultimate
goal of DEL prediction is fatigue damage estimation, future studies should consider
integrating damage computation directly into the model development process. This
could involve redefining the loss function or validation metric to minimise the error
in fatigue damage rather than in DEL. Such an approach may yield models that are
more aligned with the needs of structural lifetime assessments.

• Incorporating Spatial Configuration as Input Features: Although the local
turbine configurations were partially explored, future work could explicitly include
spatial features such as inter-turbine distance and relative angular positioning as
model inputs. These features may help capture wake interactions and directional
dependencies, enabling the models to assign greater importance to relevant upstream
turbines under certain wind conditions.

• Exploration of Uncertainty-Aware Modelling Techniques: To further im-
prove model reliability, future research should explore uncertainty-aware approaches
such as Bayesian Neural Networks (BNNs), deep ensembles, or quantile regression.
These methods not only have the potential to enhance predictive accuracy, as sug-
gested by Hlaing et al. [11], but also to provide uncertainty estimates, which are
critical for decision-making in operational asset management and maintenance plan-
ning.
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