

Delft University of Technology

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles

Blanco, Adrian Fuertes; Shi, Zeshun; Roy, Debraj; Zhao, Zhiming

DOI
10.1007/978-3-031-35995-8_1
Publication date
2023
Document Version
Final published version
Published in
Computational Science – ICCS 2023 - 23rd International Conference, Proceedings

Citation (APA)
Blanco, A. F., Shi, Z., Roy, D., & Zhao, Z. (2023). Improving the Resiliency of Decentralized Crowdsourced
Blockchain Oracles. In J. Mikyška, C. de Mulatier, V. V. Krzhizhanovskaya, P. M. A. Sloot, M. Paszynski, &
J. J. Dongarra (Eds.), Computational Science – ICCS 2023 - 23rd International Conference, Proceedings
(pp. 3-17). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics); Vol. 14073 LNCS). Springer. https://doi.org/10.1007/978-3-031-
35995-8_1
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-35995-8_1
https://doi.org/10.1007/978-3-031-35995-8_1
https://doi.org/10.1007/978-3-031-35995-8_1

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Improving the Resiliency of Decentralized
Crowdsourced Blockchain Oracles

Adrian Fuertes Blanco1, Zeshun Shi1,2 , Debraj Roy1 ,
and Zhiming Zhao1(B)

1 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
adrifuertes@me.com, {d.roy,z.zhao}@uva.nl

2 Cyber Security Group, Delft University of Technology, Delft, The Netherlands
z.shi-2@tudelft.nl

Abstract. The emergence of blockchain technologies has created the
possibility of transforming business processes in the form of immutable
agreements called smart contracts. Smart contracts suffer from a major
limitation; they cannot authenticate the trustworthiness of real-world
data sources, creating the need for intermediaries called oracles. Oracles
are trusted entities that connect on-chain systems with off-chain data,
allowing smart contracts to operate on real-world inputs in a trustworthy
manner. A popular oracle protocol is a crowdsourced oracle, where unre-
lated individuals attest to facts through voting mechanisms in smart con-
tracts. Crowdsourced oracles have unique challenges: the trustworthiness
and correctness of outcomes cannot be explicitly verified. These prob-
lems are aggravated by inherent vulnerabilities to attacks, such as Sybil
attacks. To address this weakness, this paper proposes a reputation-based
mechanism, where oracles are given a reputation value depending on the
implied correctness of their actions over time. This reputation score is
used to eliminate malicious agents from the participant pool. Addition-
ally, two reputation-based voting mechanisms are proposed. The effec-
tiveness of the proposed mechanism is evaluated using an agent-based
simulation of a crowdsourced oracle platform, where a pool of oracles
performs evaluate Boolean queries.

Keywords: Blockchain · Reputation-based consensus · Decentralized
oracle · Voting

1 Introduction

Blockchain technologies can enhance business processes by overcoming the
requirement of trust in contracts through the use of smart contracts. Smart
contracts are programs stored on the blockchain; each invocation that modi-
fies the state of the smart contract will be recorded on the blockchain, making
the transaction immutable and visible to all authorized parties [4]. While smart
contracts can bring trustworthiness and transparency to business processes, they
have one major limitation: they cannot directly authenticate external APIs and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Mikyška et al. (Eds.): ICCS 2023, LNCS 14073, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-35995-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35995-8_1&domain=pdf
http://orcid.org/0000-0001-9163-8023
http://orcid.org/0000-0003-1963-0056
http://orcid.org/0000-0002-6717-9418
https://doi.org/10.1007/978-3-031-35995-8_1

4 A. F. Blanco et al.

make use of real-world data. Trusted entities, called oracles, act as an interface
between the real-world and smart contracts [12].

There exist different types of oracles, depending on the process at hand.
Software oracles can extract data from applications (i.e. web services), hardware
oracles can extract data from the physical world (i.e. IoT devices) and crowd-
sourced oracles can leverage the power of human judgment to make decisions (i.e.
data labeling) [6]. Oracles usually utilize multiple independent data sources, and
the source quality and integrity is a core cause of concern in smart contracts [2].
To make the process sustainable and to incentivize participation, oracles usually
charges a fee for each transaction. The remuneration of oracle tasks can then
be modeled as an economic problem in a market, with oracles exchanging their
labor for a fee. While the market structure creates an incentive for efficient par-
ticipation, it also creates an incentive for malicious interference. The potential
for malicious interference depends on the protocol used and the oracle type. In
this paper, we considered the most popular permissionless, voting-based crowd-
sourced oracles that operate binary tasks (queries with a True or False answer).

The crowdsourcing process involves requesters posting tasks to be completed
by workers. Tasks can be unrelated and workers can choose or be assigned tasks.
In decentralized oracles, requesters and workers are anonymous and independent.
To ensure correctness, multiple workers are assigned to a task and the major-
ity vote is selected as the final answer. Workers who vote with the majority
are rewarded, while others who don’t might lose their deposit. Voting systems
can improve truth-telling and oracle accuracy but create vulnerabilities, such
as manipulation of majority results by malicious actors [16]. These vulnerabili-
ties can be addressed through incentive structures that make malicious behavior
unprofitable or through trust management by estimating the trustworthiness of
individuals and designing voting and participation rules accordingly.

In this paper, three reputation-based mechanisms are introduced to improve
the resiliency of crowdsourced oracles by controlling the participation of agents
and altering the voting mechanism based on reputation. A reputation system is
first designed to reward participants who vote truthfully and eliminate partici-
pants who act maliciously. The simple majority voting system is replaced by a
reputation-based weighted voting system, which is designed to limit the influence
of malicious agents in the event of attacks. Two variations of this system are fur-
ther proposed to tackle Sybil and Camouflage Attacks, respectively. Additionally,
an agent-based simulation of a crowdsourced oracle platform is introduced. The
simulation is used to validate the aforementioned strategies, providing insight
into the resiliency of the system under various attacks. All of the reputation-
based mechanisms are tested under Simple Attacks, Camouflage Attacks, and
Sybil Attacks. Lastly, a novel “certifier” agent is defined as a bounded-rational,
profit-maximizing player, which utilizes past voting outcomes and innate accu-
racy in a probabilistic decision-making model. This design improves upon exist-
ing methods by relaxing rationality assumptions and incorporating stochasticity
into the decision-making process, characteristic of crowdsourcing systems. This
agent is used in the agent-based simulation in an honest certifier role.

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 5

The rest of the paper is organized as follows: Sect. 2 discusses related work
on the resilience of crowdsourced oracles; Sect. 3 presents the reputation-based
model and details the simulation components; Sect. 4 displays the simulation
settings and experiment results; Sect. 5 discusses the obtained results and Sect. 6
concludes the paper.

2 Related Work

The existing frameworks for decentralized crowdsourced oracles can be divided
on whether they tackle vulnerabilities through incentive design or reputation
management. Frameworks that focus on incentive design, such as [1,12] and
[15], propose guidelines on reward quantities [15] or variations on the majority
voting system [1,12] designed to make malicious behavior unprofitable for rogue
agents. These frameworks argue their incentive systems induce truth-telling by
proving honesty is optimal in a Nash Equilibrium. The optimality proof requires
the assumption that all participants are fully rational and have a sufficiently
large accuracy, which might not hold for all agents or tasks in reality [3].

These vulnerabilities still leave room for a reputation-based system to control
unwanted behavior. To our best knowledge, no explicit reputation-based con-
trol system has been proposed for permissionless crowdsourced oracles. Though,
decentralized crowdsourcing platforms [9,10] outline reputation systems to opti-
mize worker [10] and requester [9] behavior, their systems (like traditional crowd-
sourcing) require the verification of output by a third party. Output verification
is useful in a crowdsourcing context, where output quality is easily verifiable,
but it is not feasible to implement in oracle models, where the underlying oracle
output is the closest thing to ground truth itself. This creates the need for a
reputation-based system that is not based on external verification and can be
supported by the oracle’s output.

Reputation-based voting is a popular form of achieving consensus in gover-
nance systems such as [13]. Reputation is used both as a way to deter unwanted
behavior and a way to reward active participants. As users gain relative repu-
tation, their influence increases, since reputation acts as weight in a weighted
voting system. While [12,15] and [1] suggest the use of a reputation-based system
might be a beneficial addition to their incentive systems, no explicit implemen-
tation details are suggested.

A major shortcoming in all the aforementioned protocols is the lack of prac-
tical evidence. While incentive optimization techniques might suggest optimal
parameters, experimental evidence suggests human behavior might not align
with theoretical predictions [3]. The implementation of blockchain-based sys-
tems can be very costly [8], a problem accentuated by the immutability of smart
contracts. This immutability is particularly problematic in incentive design and
reputation management, where parameter choice can have a significant impact
on system performance. This results in a higher potential cost of failure, on top
of the high implementation cost.

6 A. F. Blanco et al.

A solution to high smart contract development costs is using simulation sys-
tems like Agent-Based Model (ABM). They study the properties of complex sys-
tems and have been used for crowdsourcing, voting, and smart contract manip-
ulation. Simulation allows developers to test parameters, strategies, and threats
before deployment, reducing cost and uncertainty [7].

3 Proposed Model

This section explains the components of the proposed model, starting with a
system overview. The design of the agents is covered afterward, followed by a
description of reputation voting and control models. Lastly, experiment evalua-
tion metrics are discussed.

3.1 System Overview

There are two roles in a decentralized crowdsourced oracle: requesters and certi-
fiers. Within the oracle platform, requesters submit queries (q) with an associated
budget to them. Certifiers can then choose to engage in these queries to poten-
tially earn a reward. We assume each query q has an underlying true value of
True (T) or False (F). The objective of the oracle is to reach this true value via a
voting mechanism performed by the certifiers. Since the true value is not known,
certifiers are rewarded based on the value estimated by the oracle. To incentivize
honesty, certifiers submit a participation fee that they are liable to lose if their
behavior does not align with the oracle’s output. The oracles considered in this
paper are permissionless, meaning no approval is required to join the system. To
join the pool, certifiers do have to register with their wallet address, which gives
them a starting reputation and the ability to participate in games.

We assume the queries are of a monitoring nature, meaning a query is con-
stantly being evaluated by requesters and it’s bound to change at any moment.
As noted by [14,15], an example of this would be monitoring the compliance of a
Service Level Agreement (SLA) for cloud computing services, where the oracle is
used to attest for the up-time of the service (certifying whether a violation in the
SLA has occurred or not). These tasks are characterized by a significantly higher
likelihood of the true value being False (no violation has occurred), meaning
true Trues are rare and not guaranteed. For this reason, it is assumed that the
reward associated with voting False is lower than the reward associated with
voting True, as agents are then incentivized to exert more effort when a True
outcome is observed, avoiding a lazy equilibrium in which every agent reports
False for a guaranteed income with minimum effort.

In this context, malicious agents are incentivized to influence the oracle
towards a False outcome, since it is likely to go unnoticed and it guarantees
a low but steady reward. Adversarial agents can influence requesters by either
consistently or overwhelmingly reporting False. If these attacks are successful,

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 7

honest certifiers (who are assumed to be profit-maximizing agents) will be incen-
tivized to also submit False reports, as the expected profit of doing so would
be higher than that of true reporting. We consider three different threat models
which will be described in detail in Sect. 3.4. Besides, the reputation mechanism
is designed to limit malicious agent influence in two ways: by excluding agents
with a bad reputation and by limiting their voting power. The iteration of the
voting game is shown in Fig. 1, and the implementation details are discussed in
Sect. 3.3.

1. Certifier Population

2. Random selection

Selected voters
4. Voting outcome

(True or False)

3. Majority Voting

5. Update reputation

6. Exclude players when

applicable

7. Return to pool

Fig. 1. Diagram showcasing a single iteration of the voting game.

3.2 Agents

Certifiers. Certifiers are assumed to be honest and profit-maximizing players.
Each player i is assumed to have an innate accuracy value γi ∈ [0, 1]. Intuitively
this value represents the ability of the player to assess the query at hand, and
therefore the probability they will be correct about their assessment. Players
use their accuracy to form a private assessment of the query. Additionally, each
player has a fixed memory value mi (mi ≥ 0). Their memory represents their
ability to look at past votes, either through the public transactions stored on the
blockchain or through the memory of past games. An overview of the decision-
making process behind agent’s votes is outlined in Fig. 2.

Each agent balances both their innate accuracy and their memory of past
votes to create a profit expectation of voting truthfully (submitting their private
opinion) or not (submitting the opposite of their private opinion). The balance
between these two parameters is parametrized by a recency bias RB ∈ [0, 1],
which acts as a weight between the profit estimate from private opinion and the
profit estimate from the available voting history. Formally, a certifier Ai with
accuracy γi, memory mi and recency bias RBi submits a vote vi ∈ [F, T]. Ai

will submit T if E[π(vi = T)] � E[π(vi = F)], otherwise they will submit F .
The expected profit of submitting T is calculated as:

E[π(vi = T)]

= Pr(MV = T | vi = T) · π(MVvi=MV = T)

+(1 − Pr(MV = T | vi = T)) · π(MVvi �=MV = F)

8 A. F. Blanco et al.

Pr. True

Pr. False

Observes

Past Outcomes Accuracy

Profit of voting

True

Profit of voting

False

Payoffs

Submit

 profit-maximizing

 vote

Fig. 2. Overview of the decision-making process of an honest certifier.

where MV ∈ [T, F] represents the majority vote, or the vote chosen by the
majority voting process.

If vi = T , the probability of a consensus being formed is:

Pr(MV = T | vi = t)

= RBi · Pr(MV = r | ai = r,memory = mi) + (1 − RBi) · γi

Where Pr(MV = FT | vi = T,memory = mi) measures the expected
likelihood of the consensus being formed around F , given the votes available
to the players’ memory. This is modeled using a Beta-Binomial distribution as
such:

Pr(MV = T | vi = T,memory = mi)

= 1 − BinomialCDF (p, k, n)

The p parameter follows a Beta(α, β) with α =
∑nmemory

i=1 1 · [vi = True] and
β =

∑nmemory

i=1 1 · [vi = False]. Then, k = nplayers ·MajorityThreshold−1, with
the majority threshold being the percentage of votes required for consensus in
a game (50% for the simple majority). Lastly, n is the number of players in a
game.

The profit estimation is identical for E[π(vi = F)], though the payoffs change
and the accuracy value is reversed since it is assumed to refer to the accuracy of
assessing a true True signal.

For the purpose of the simulation, we assume all agents share the same mem-
ory and recency bias. These values are set at 10 for memory, such that agents
have access to the votes cast in the last 10 games, and 0.3 for the recency bias,
such that agents weigh their experience 30% while making a profit estimation.
The accuracy is sampled from a Beta distribution with α = 10 and β = 2.75,
which creates a visual center around 0.85 accuracy, as observed from Fig. 3. This
ensures the majority of agents have relatively high accuracy, with some excep-
tions. Lastly, we assume a simple majority is necessary to achieve consensus.

This formulation ensures that both an agent’s accuracy as well as their expe-
rience are considered in the decision-making process. Additionally, the modeling
of accuracy creates more realistic agents, as real participants are not always
100% accurate and are liable to make mistakes.

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 9

Fig. 3. Histogram including 5000 sampled values from a Beta(α, β) distribution with
alpha = 10 and beta = 2.75

Malicious. Malicious agents are assumed to have 100% accuracy and they
always follow their assigned voting strategy regardless of expected profits. The
voting strategies of malicious agents are outlined in Sect. 3.4.

3.3 Reputation

For each agent, their reputation value Ri, Ri ≥ 0 represents their trustworthi-
ness based on past voting outcomes. All certifiers start with a reputation value
Rs, Rs > 0. As players participate in games, their reputation can increase by R+

if they vote according to the consensus, or decrease by R− if they vote against
the consensus. Rs, R+ and R− are model parameters.

Participation Control. As a way to control malicious agents, agents will be
permanently excluded from the system if their reputation value reaches zero.
This can prevent agents from engaging in a Simple Attack, where agents contin-
uously perform adversarial behavior. Since the behavior is constant and individ-
ual, the attacker is likely to vote against the consensus enough times for them
to be expelled from the pool. This holds true as long as the percentage of the
malicious agent is less than 50%, such that the oracle is likely to produce the
correct result on average.

This does not prevent agents from engaging in Camouflage Attacks or Sybil
Attacks. Agents involved in Camouflage Attacks pretend to be honest until they
achieve a high reputation status when they start attacking the system. Given
their high reputation, if enough malicious agents are in the system, it’s possible
they will influence the oracle’s opinion before their reputation goes to zero. In
Sybil Attacks, an attacker impersonates a large number of players in order to
influence game outcomes. If the attacker floods the pool with enough agents, such
that over 51% of the players in a game are malicious, the oracle will always vote
in accordance with the malicious agents, making it such that their reputation
never reaches zero.

10 A. F. Blanco et al.

Voting Systems. Reputation-based, weighted voting systems can mitigate
Camouflage and Sybil Attacks by redistributing voting power and minimizing
the voting influence of malicious agents. In a simple voting system, every vote
has the same weight, which results in every voter having the same voting power.
In a system with 10 voters, gaining control over 4 votes can already give an
attacker decision power over the system outcome. By weighting votes by a user’s
reputation value, higher voting power is assigned to voters with a proven history
of truthful behavior. This mitigates Sybil Attacks, since all newly created player
accounts will have a relatively low reputation, assuming more experienced play-
ers are participating in the game. This would increase the necessary amount of
players an attacker has to control, which given the random player selection and
a sufficiently large user base, would make this attacks impossible.

The weight of each candidates vote, xi, is calculated as follows:

xi =
Ri∑n
j Rj

, i �= j

The total votes for each outcome can be calculated as follows:

VTrue =
n∑

i=1

xi · vi[vi = True]

VFalse =
n∑

i=1

xi · vi[vi = False]

Then, if VTrue ≥ VFalse the outcome will be decided as True. Otherwise, the
outcome will be decided as False.

While this offers an improvement upon simple voting, weighted voting suffers
from seniority-induced advantages which can disincentive participation. This is
known as the Matthew Effect, which dictates that those who begin with advan-
tage accumulate more advantage over time and those who begin with disadvan-
tage become more disadvantaged over time [5]. The earlier an honest certifier
joins the platform, the more opportunities they will have to gain a reputation.
This leads to the earliest certifiers having disproportionate voting power over
newcomers, which also increases the potential negative influence they can have
over the system if they act maliciously. For example, a player who has played
1010 games, can have 1000 times more voting power than a certifier who has
played 10 games. Despite players not having access to others’ reputation scores,
this could easily disincentive new players from joining the certifier pool. Stratified
voting can solve Matthew Effect by weighting votes relative to the game partic-
ipants, rather than to the whole certifier pool. This can be achieved by dividing
the pool into k different partitions, where agents in each partition are given the
same voting weight. Agents are assigned to partitions depending on their global
reputation value, but since the divisions are made relative to the participants in
the game, an agent with extensive experience can’t have disproportionate voting
power, since their voting power will be the same as the second most reputed

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 11

player in the game. The number of partitions k is a model parameter and it
can be set depending on the number of participants. The relative vote weight
assigned to each partition, wk, is also a model parameter. The combination of k
and wk can affect the ultimate voting power of each agent, though finding the
optimal combination is out of the scope of this paper. For the purpose of this
simulation, a linear weight scale will be tested.

To assign agents to a partition, participants are sorted based on their repu-
tation score and assigned to partition 1 to k, or the closest possible number. The
number of partitions, k, acts as an upper bound, since it cannot be guaranteed
that agents will have different reputation values with random sortition.

Each agent’s weight would then be calculated as follows:

xi = wk, Ai ∈ k

wk = σ(k)

Where the wk is the weight of the partition Ai belongs to and σ defines the
weight scale depending on the partition number. For a linear partition wk = k.

3.4 Threat Models

Three different threat models are considered in this paper: Simple Attacks, Cam-
ouflage Attacks, and Sybil Attacks. Each reputation-based control mechanism
will be assessed under all three threat models.

Simple Attacks. In a Simple Attack, a malicious agent exists passively in the
agent pool, voting False whenever it enters a game. In this attack, a percentage
of the agents in the pool, pa ∈ [0, 1], are malicious, and as pa → 0.5 their
influence surpasses that of honest agents, inducing the oracle to always output
False.

Camouflage Attacks. In the Camouflage Attack, a malicious agent masquer-
ades as an honest agent for nc turns or until it has accrued a high enough
reputation value, Rt. When Ri ≥ Rt the agent starts attacking the system by
always voting False. Since malicious agents are assumed to be 100% accurate
nc = Rt in this model. nc and Rt are model parameters.

Sybil Attacks. In a Sybil Attack, an attacker forges multiple accounts, flooding
the agent pool with malicious agents that always vote False. The number of
malicious agents that enter the pool is parameterized as nf = αn, where n is the
total number of agents in the pool. Since in this model game participants are
randomly selected, α should be larger than one (under simple voting) to perform
a successful attack. The attack lasts for ia ∈ [1, inf] turns.

12 A. F. Blanco et al.

3.5 Rewards

Since the game is assumed to be monitoring in nature, the reward for a True
outcome, πTT , is m times larger than that of a False outcome, πFF . We follow
the payment structure outlined in [15] πFF = 1, and an agent loses the full
amount of their deposit if they vote False when the oracle outputs True, making
πFT = −1. An agent faces no loss when the oracle outputs True and they vote
False, making πTF = 0. We set m = 2, instead of the proposed m = 10, which
increases the influence of attacks while keeping the system accurate without
threats. The payoff matrix is outlined in Table 1.

Table 1. Payoff matrix relating an agent’s payoff relative to the oracle output

Player i Consensus

True False

True 2 −1

False 0 1

3.6 Evaluation

Ground Truth Model. To model accuracy, the underlying truth distribution
needs to be defined. The underlying truth is modeled as a sign square wave,
which oscillates between True (−1) and False (1) in phases. The formulation is
as follows:

S(t) = sgn(sin 2πft)

With the square wave following a duty cycle as duty = sin(mπt+1)
2 . m has been

fixed to 38.8 and f has been fixed to 58 with t = 500. This results in an average
of 40% True periods, such that the majority of agents are able to experience
both outcomes, while the True outcome remains less frequent. A sample of this
signal for 500 periods is shown in Fig. 4.

Fig. 4. Model of a ground truth signal using a square sign wave over 500 periods. The
signal oscillates between 1 and −1, indicating a False and True actual signal.

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 13

Accuracy. The primary measure of success for a single experiment in a sim-
ulation is its accuracy in the final period. The accuracy is measured as the
percentage of iterations in which the oracle predicted the ground truth. For-
mally:

accuracy =
∑n

i=1 1 · [oi = ti]
n

Where n refers to the total number of iterations, oi refers to the oracles
output in iteration i and ti refers to the true signal in iteration i.

4 Experiments and Simulation

This section outlines the details of each experiment performed in this paper
followed by the results.

4.1 Simulation Settings

All simulation experiments share the following parameters:

– 15 voters are randomly selected for each game.
– Each player follows the payoffs aligned in Sect. 3.5.
– Each simulation follows the true signal outlined in Sect. 3.6.
– The voting power distribution is calculated over the last 5 games played by

each agent.

The number of game participants is chosen to be odd which prevents ties
during voting. Additionally, it is sufficiently large such that an average player
will experience enough games to gain a meaningful reputation (or be banned)
and have ample voting opportunities, which could influence their voting choices.

Each of the proposed mechanisms is tested using a Simple Attack, a Camou-
flage Attack, and a Sybil Attack; all compared against a baseline with no inter-
ventions. The Simple Attack is simulated with pa ∈ [0.05, 0.50] in 0.025 intervals.
The Camouflage Attack is simulated with nc = 5 and pa ∈ [0.05, 0.50] in 0.025
intervals. Lastly, the Sybil Attack is simulated with α = 3 and ia ∈ [0, 65] in 5
game intervals. Each Sybil Attack simulation includes 5 attacks. The timing of
attacks is random, with at least 50 games between attacks, such that the system
is under attack at most 50% of the time.

Each attack is tested with increasing pa (Simple and Camouflage) or ia
(Sybil) to test the resilience of the system, as an increased presence of mali-
cious agents impedes the oracle from achieving high accuracy.

Each agent i starts with 1 reputation point, Rs = 1, with R+ = 1 and
R− = 1. On average, an agent can accumulate 15 reputation points, and they
can last a minimum of 1 turn in the agent pool, under participation control.

Due to the stochastic nature of agent decision-making and agent accuracy
sampling, each experiment consists of multiple iterations, with the results being

14 A. F. Blanco et al.

presented as a sample average. Specifically, each experiment consists of 100 iter-
ations, with 500 consecutive games per iteration. In each iteration, a pool of 500
players is generated.

The simulations are built in Python, using the ABM framework MESA [11].

4.2 Participation Control

In the participation control experiments, agents are permanently banned from
the agent pool when their reputation reaches 0, with the intention of spelling
malicious agents when they vote maliciously. The experiment results for each
attack tested are displayed in Fig. 5.

Fig. 5. Participation control simulation results with subfigures displaying the Simple,
Camouflage, and Sybil attacks respectively. The violin plots show the density of average
accuracy values from control and treatment simulations, each with 100 observations.

Simple Attack. The percentage of malicious agents can significantly affect the
accuracy of the system under a Simple Attack, with average accuracy values
decreasing to 50% as pa approaches 0.5. The participation control system helps
mitigate this decline under lower threat levels, resulting in higher average accu-
racy up to pa ∼ 0.25. When pa ∈ [0.25, 0.3], the accuracy under the treatment
becomes uniformly distributed - meaning sampled accuracy is as often very high
as it is very low. In the remaining pa percentages, the population-controlled
simulations have significantly lower accuracy than the control. Camouflage
Attack. The reputation control strategy does not improve resiliency when com-
pared to the control, with the average treatment accuracy being lower than the
control. The lower accuracy is caused by mistake-making honest being elimi-
nated, which then increases the relative percentage of malicious agents once the
camouflage period is over. Sybil Attack. The reputation control mechanism
does not improve resiliency against the simulated Sybil Attacks.

4.3 Weighted Voting

In the weighted voting experiments, simple majority voting is replaced with
weighted voting, with reputation values acting as weights. By giving more rep-
utable agents (which are likely to be honest certifiers) higher voting power, the
oracle is expected to produce more accurate results under threat. The experiment
results for each attack tested are shown in Fig. 6.

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 15

Fig. 6. Weighted voting simulation results with subfigures displaying the Simple, Cam-
ouflage, and Sybil attacks respectively. The violin plots show the density of average
accuracy values from control and treatment simulations, each with 100 observations.

Simple Attack. The weighted voting strategy increases resiliency compared to
the control, being able to maintain a higher average accuracy under larger pa

values. The strategy results in significantly increased accuracy until pa ∼ 0.35,
and maintains a relatively higher accuracy for the remaining pa. Camouflage
Attack. The weighted voting strategy consistently achieves higher average accu-
racy than the control, demonstrating it is effective in increasing resiliency against
a Camouflage Attack. Sybil Attack. A weighted voting system can improve
resiliency against Sybil Attacks. Although simulations using this system show
increased average accuracy under all attack lengths, the differences are lower
than under other attacks.

4.4 Stratified Voting

In the stratified voting experiment, agents are assigned to k partitions, which
dictate their relative voting power. Each game will consist of up to 5 partitions
(k = 5) with linear voting power differences between partitions. By assigning
linear weights between partitions, individual agents have less voting power when
compared to weighted voting, which is intended to limit the voting power of more
experienced agents. The experiment results for each attack tested are shown in
Fig. 7.

Fig. 7. Stratified voting simulation results with subfigures displaying the Simple, Cam-
ouflage, and Sybil attacks respectively. The violin plots show the density of average
accuracy values from control and treatment simulations, each with 100 observations

Simple Attack. The stratified voting strategy increases resiliency when com-
pared to the control. Simulations using stratified voting result in significantly

16 A. F. Blanco et al.

higher accuracy until pa ∼ 0.3, maintaining an average accuracy higher than
90%. From pa ∼ 0.3, the stratified voting simulations result in higher or equal
average accuracy. Camouflage Attack. The stratified voting strategy shows
higher average accuracy than the control under a Camouflage Attack. Sybil
Attack. The Stratified voting strategy can increase the oracles’ resiliency under
a Sybil Attack. The efficacy is lower than that showcased by the weighted voting
strategy, particularly for higher attack lengths.

5 Discussion

Results from all experiments show that an increase in malicious agents leads to
a decline in oracle accuracy across all threat models, revealing the vulnerabil-
ity of the crowdsourced oracle without threat prevention. Participation control
improves resiliency for lower pa levels under Simple Attack, however it worsens
accuracy under Camouflage and Simple Attacks due to malicious agents exploit-
ing the control mechanism. Alternative voting mechanisms improve resiliency
against Simple Attacks, but still produce low accuracy as pa approaches 0.5.
Simple weighted voting is the only mechanism to significantly improve resiliency
under Sybil Attacks, due to the importance of players with large reputation val-
ues. The high accuracy seen under Camouflage Attack suggests that 500 game
periods are insufficient to observe Matthew Effect. The efficacy of Weighted and
stratified voting systems remains to be tested over longer simulation cycles.

6 Conclusion

In this paper, we propose three reputation-based methods to improve the
resiliency of crowdsourced oracles. We leverage simulation techniques to test
the validity of the proposed methods under multiple threat models. A bounded-
rational agent model was also introduced, enabling the simulation to capture
oracles dynamics over time. Finally, we discuss the strengths and weaknesses of
the mechanism proposed, highlighting the mechanism behind them based on the
simulation results.

In future work, we plan to expand the simulation scope by modeling the self-
selection process of participants to individual games. This is expected to affect
all reputation-based mechanism, as agents are incentivized to explicitly increase
their reputation scores in order to gain voting power (which is not possible under
random selection). The direction of this effect (increasing or decreasing resilience)
is expected to depend on the integrity of the agent pool, as self-selection will
empower honest agents and dishonest agents alike, possibly leading to extreme
results in either direction. We also aim to implement different weighting functions
for the stratified voting method, as results suggest that relative voting power
differences are a key aspect of the improvement in resilience. Lastly, we plan
to conduct empirical experiments on crowdsourced oracle systems. During this
experiment, we aim to identify the voting and selection pattern of certifiers,
which would serve to inform the selection and decision-making process of the
model. These experiments would also serve as validation of the simulation model.

Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles 17

Acknowledgements. This research is funded by the European Union’s Horizon
2020 research and innovation program under grant agreements 825134 (ARTICONF
project), 862409 (BlueCloud project) and 824068 (ENVRI-FAIR project). The work is
also partially supported by LifeWatch ERIC.

References

1. Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania, A.: Astraea:
a decentralized blockchain oracle. arXiv:1808.00528 [cs] (2018). arXiv: 1808.00528

2. Caldarelli, G., Ellul, J.: The blockchain oracle problem in decentralized finance-a
multivocal approach. Appl. Sci. 11(1616), 7572 (2021)

3. Camerer, C.F.: Behavioral Game Theory: Experiments In Strategic Interaction.
Princeton University Press, Princeton (2003)

4. Chen, Y., Meng, L., Zhou, H., Xue, G.: A blockchain-based medical data shar-
ing mechanism with attribute-based access control and privacy protection. Wirel.
Commun. Mob. Comput. 2021, 1–12 (2021)

5. Dannefer, D.: Cumulative advantage/disadvantage and the life course: cross-
fertilizing age and social science theory. J. Gerontol. Series B 58(6), S327–S337
(2003)

6. Di Ciccio, C., Meroni, G., Plebani, P.: On the adoption of blockchain for business
process monitoring. Softw. Syst. Model. 21(3), 915–937 (2022)

7. Janssen, M.A., Ostrom, E.: Empirically based, agent-based models. Ecol. Soc.
11(2) (2006)

8. Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-Hani, A.:
Blockchain smart contracts: applications, challenges, and future trends. Peer-to-
Peer Networking Appl. 14(5), 2901–2925 (2021)

9. Li, C., Qu, X., Guo, Y.: Tfcrowd: a blockchain-based crowdsourcing framework
with enhanced trustworthiness and fairness. EURASIP J. Wirel. Commun. Netw.
2021(1), 168 (2021)

10. LI, M., et al.: CrowdBC: a blockchain-based decentralized framework for crowd-
sourcing. IEEE Trans. Parallel Distrib. Syst. 30(6), 1251–1266 (2019)

11. Masad, D., Kazil, J.: MESA: an agent-based modeling framework. In: 14th
PYTHON in Science Conference, pp. 51–58 (2015)

12. Nelaturu, K., et al.: On public crowdsource-based mechanisms for a decentralized
blockchain oracle. IEEE Trans. Eng. Manage. 67(4), 1444–1458 (2020)

13. Orange: https://www.orangeprotocol.io/
14. Shi, Z., Farshidi, S., Zhou, H., Zhao, Z.: An auction and witness enhanced trust-

worthy SLA model for decentralized cloud marketplaces. In: Proceedings of the
Conference on Information Technology for Social Good, pp. 109–114 (2021)

15. Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A blockchain based
witness model for trustworthy cloud service level agreement enforcement. In: IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1567–1575
(2019)

16. Zhuang, Q., Liu, Y., Chen, L., Ai, Z.: Proof of reputation: a reputation-based con-
sensus protocol for blockchain based systems. In: Proceedings of the 2019 Interna-
tional Electronics Communication Conference, pp. 131–138. ACM, Okinawa Japan
(2019)

http://arxiv.org/abs/1808.00528
http://arxiv.org/abs/1808.00528
https://www.orangeprotocol.io/

	Improving the Resiliency of Decentralized Crowdsourced Blockchain Oracles
	1 Introduction
	2 Related Work
	3 Proposed Model
	3.1 System Overview
	3.2 Agents
	3.3 Reputation
	3.4 Threat Models
	3.5 Rewards
	3.6 Evaluation

	4 Experiments and Simulation
	4.1 Simulation Settings
	4.2 Participation Control
	4.3 Weighted Voting
	4.4 Stratified Voting

	5 Discussion
	6 Conclusion
	References

