

Global climate change

Rising temperature

Excessive GHG emissions

Introduction

Global climate change

Rising temperature

Excessive GHG emissions

Introduction

Global emissions

Shifting towards circular design strategies

From linear

To circular

Introduction

Global climate change

Rising temperature

Excessive GHG emissions

Introduction

Urban heat island effect

Mitigated by urban nature

Urbanisation

Introduction

Main objective

Design a *low-tech*, three-dimensional, *circular* façade cladding system (product) utilising *waste materials* and which fosters *biodiversity* in urban environments in the Netherlands

A low-tech system ...

... creates **awareness** by involving people

... has **educational potential** for children

Research question

"How can a low-tech, three-dimensional, circular façade cladding

system be made utilising waste materials and fostering biodiversity

in urban areas in the Netherlands?"

Design question

"How can various biodiversity fostering functions be implemented in a three-dimensional, circular façade cladding system, designed according to low-tech design principles, aiming to foster local biodiversity in urban areas in the Netherlands?"

Methodology

Introduction

Design Concept

Circular design approaches

Modularity

Design for Disassembly

Circular design approaches

Modularity

Standardisation

Replace and repair single modules

Various configurations

Circular design approaches

Facilitate change and dismantlement

Recover components and materials

Reuse, reassemble and recycle

Design for Disassembly

Green wall typologies

Design Concept

Green wall typologies

Green facades

Living walls

Is a circular façade **system** that consists of modular **modules** ...

... made from two-dimensional elements ...

... which are attached to a secondary grid structure fixed on the façade.

These modules are filled with the so-called *BioPods*.

The Design

The Modules

The shape

From a paper origami model...

The shape

... to shape experimentations...

The shape

... leading to the final modules

Three standardised modules

Constructed from five standardised components

Base element

Perpendicular elements

The size

Manageability for users & Biodiversity species' requirements

Enabling nine unique orientations

Generating an intriguing 3D language

Endless configurations create various inner spaces

The principle

To foster urban flora and fauna

The Design

The BioPods

Nesting boxes for birds

Bat boxes

Other bird facilities

Planters (various sizes)

Insect hotels

Climbing vegetation

Nesting boxes for birds

Other bird facilities

House Sparrow

Bushbreeders

Starling

House Martin

Great Tit & Blue Tit

Swift

Bat boxes

Common Dwarf Bat

Insect hotels

Planters (various sizes)

Climbing vegetation

Biodiversity requirements

Procreation

Residence

Safety

Connection

Nutrition

Diversity

Biodiversity requirements

Procreation

Residence

Safety

Connection

Nutrition

The Design

BioPod designs

Modular pods

Organic pods

Modular BioPods

Nesting boxes

Insect hotels

Small planters

Large planters

The principle

Organic BioPods

Bird feeders

Planters

Nesting material

The Connections

Module assembly

One module

Base element

Perpendicular elements

Module assembly

Interlocking the components

Fixing the connectors

The 3D printed connector

U-shape for required flexibility

Openings for bolts

Integrated clamping hook

The 3D printed connector

Fixing the BioPods to the Modules

Fixing the BioPods to the Modules

Manufacturing & Materialisation

Materialisation

Reclaimed materials

Location & time dependant

Materialisation

Timber

Plastics

HPL

Limestone

Ceramics

Concrete plywood

Textiles

Metal fence

Manufacturing

Low-tech manufacturing of (planar) components

Sawing

Laser cutting

Die cutting

3D printing

Lifecycle of the system

Choosing a design location & fitting system configuration

The Design

Select materials

The Design

Manufacture components

The Design

Assembly of the system's components

The Design

Repair and maintenance

The Design

Disassembly of the system

The Design

Quality check of the components for future use

The Design

Design example

Selecting a case study school in Delft

Het Mozaïek (Voordijkshoorn)

Het Mozaïek (Hof van Delft)

Gabriël school

Max Havelaar school

The Design

Biodiversity Matrix

Biodiversity Matrix

Gabriel school Biodiversity Map

A North-east North-west North-east South-east South-east South-east E

Empty modules

Bird facilities

Bird nesting boxes

Vegetation

Insect hotels

Bat boxes

The Design

Main objective

Design a *low-tech*, three-dimensional, *circular* façade cladding system (product) utilising *waste materials* and which fosters *biodiversity* in urban environments in the Netherlands

Low-tech design principles

Circular design strategies

High potential for utilising waste materials

Biodiversity implementations

Recommendations for future research

Circularity

Material testing with prototypes

End-of-life cycle analysis

User involvement

Recommendations for future research

Biodiversity

Optimisation tool for location specific design configurations

Research on (large-scale) benefits

User involvement

