
End-to-End Hierarchical
Reinforcement Learning for
Adaptive Flight Control
A method for model-independent control
through Proximal Policy Optimization with
learned Options
Zhouxin Ge

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft

End-to-End
Hierarchical

Reinforcement
Learning for Adaptive

Flight Control
A method for model-independent control
through Proximal Policy Optimization with

learned Options
by

Zhou Xin Ge
to obtain the degree of Master of Science in Aerospace Engineering

at the Delft University of Technology,
to be defended publicly on Friday August 27, 2021 at 09:30 AM.

Student number: 4272358
Thesis committee: Prof. dr. G.C.H.E. de Croon TU Delft, Chairman

Dr. ir. E. van Kampen, TU Delft, Supervisor
Dr. ir. M.A. Mitici, TU Delft, External Examiner

Cover picture depicting an paper airplane being an abstraction of a realistic airplane - credits: inspired by
[69]

Preface

It’s a wrap! Doing a thesis during the pandemic was a challenge in itself and required some ’adaptivity’ to be
familiar with a new way of working and sharing ideas. This journey has taught me a lot and I could not have
done it without the help of the great people around me.

Erik-Jan, thank you for your support and guidance throughout this project and making time for me in your
holidays. Bart, Marijn and Max thank you for the always fun and ’gezellige’ moments during breakfast, lunch,
fika, and dinner, but also being there for me during the tough moments. Liv, thank you for the moments
where we ’onze eieren kwijt konden’. Laurence, thank you for hosting me in your living room/co-working
space. Daniël, thank you for the reinforcement learning talks and feedback. The ’SpaceGekkies’, thank you
for the fun game nights. To all my other friends, thank you for the laughs and companionship. Finally, Zhoup-
ing, thank you for your honest feedback on my work and my family for putting your confidence in me.

My time as a student has been a blast and has ended now. Thank you all for being there with me. Goodbye
Delft University of Technology and Hello World.

Zhouxin Ge
Rotterdam, August, 2021

iii

Contents

Preface iii

I Scienti�c Article 1

II Preliminary Report (Previously graded under AE4020) 23

1 Introduction 25

2 Research proposal 27
2.1 Field of Research . 27
2.2 Research objective and questions . 28

3 Literature study part I: Fundamentals 29
3.1 Problem analysis of flight control for CS-25 aircraft . 29
3.2 Fundamentals of reinforcement learning . 33
3.3 Policy gradient reinforcement learning . 38

3.3.1 REINFORCE . 39
3.3.2 Actor-Critic Design. 39

3.4 Conclusion . 40

4 Literature study part II: State of the Art 41
4.1 Actor-Critic Design in Deep Reinforcement Learning . 41

4.1.1 Deep Deterministic Policy Gradient . 41
4.1.2 Synchronous and Asynchronous Advantage Actor-Critic. 42

4.2 Actor-Critic in Approximate Dynamic Programming . 43
4.2.1 Adaptive-Critic Design . 43
4.2.2 Incremental Approximate Dynamic Programming . 44

4.3 Policy Optimization algorithms . 45
4.3.1 Trust Region Policy Optimization . 45
4.3.2 Proximal Policy Optimization . 46

4.4 Hierarchical Design in (Deep) Reinforcement Learning . 47
4.4.1 Hierarchical Deep Deterministic Policy Gradient . 48
4.4.2 Hierarchical Intermittent motor control with Deep Deterministic Policy Gradient 49
4.4.3 Option-Critic Architecture . 50

4.5 Conclusion . 52

5 Preliminary Analysis 55
5.1 Agents . 55

5.1.1 Hyperparameter Optimization . 56
5.2 Experiment setup . 58

5.2.1 Environment setup . 58
5.2.2 Reward function . 59
5.2.3 Reward shaping and termination of training . 60
5.2.4 Adaptivity to changing environment dynamics . 60
5.2.5 Sample efficiency . 60

5.3 Results and discussion . 61
5.3.1 Hyperparameter Optimization . 61
5.3.2 Overview of all experiments . 64
5.3.3 Longitudinal control: EXP1 and EXP3 . 65
5.3.4 Lateral control: EXP2 and EXP4 . 68
5.3.5 n-order dynamics and n-order instability . 70
5.3.6 Velocity tracking time traces for EXP3 and EXP4 with c-test 71

v

vi Contents

5.4 Conclusion . 77

III Wrap up 79

6 Conclusions 81

7 Recommendations 85

IV Appendices 87

A Mass-spring-damper model 89

B Flight model 91

C Additional �gures 93

Bibliography 103

I
Scientific Article

1

End-to-End Hierarchical Reinforcement Learning
for Online Adaptive Flight Control

Z.X. Ge ∗

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Aircraft with disruptive designs have no high-fidelity and accurate flight models. At the
same time, developing models for stochastic phenomena for traditional aircraft configurations
are costly, and classical control methods cannot operate beyond the predefined operation points
or adapt to unexpected changes to the aircraft. The Proximal Policy Option Critic (PPOC)
is an end-to-end hierarchical reinforcement learning method that alleviates the need for a
high-fidelity flight model and allows for adaptive flight control. This research contributes to
the development and analysis of online adaptive flight control by comparing PPOC against a
non-hierarchical method called Proximal Policy Optimization (PPO) and PPOC with a single
Option (PPOC-1). The methods are tested on an extendable mass-spring-damper system and
aircraft model. Subsequently, the agents are evaluated by their sample efficiency, reference
tracking capability and adaptivity. The results show, unexpectedly, that PPO and PPOC-1 are
more sample efficient than PPOC. Furthermore, both PPOC agents are able to successfully
track the height profile, though the agents learn a policy that results in noisy actuator inputs.
Finally, PPOC with multiple learned Options has the best adaptivity, as it is able to adapt to
structural failure of the horizontal tailplane, sign change of pitch damping, and generalize to
different aircraft.

Nomenclature

𝑠, 𝑠𝑅, 𝑎,Δ𝑎 = state, state reference, action and incremental action vector
𝜔, 𝜔𝑘 ,Ω = single Option, single Option k and all Options
𝜽 , 𝜽𝝅 , 𝝑, 𝝑𝜷 , 𝝑𝝑 = parameter vector
𝜂, 𝛾, 𝜆, 𝜖 = learning rate, discount rate, variance parameter of GAE and clipping ratio
𝐽𝑥 (𝜽) = objective function of 𝑥 parameterized by parameter vector 𝜽
𝑉,𝑉Ω = state value function and state value function over Options
𝛿𝑉𝑡 , 𝑟𝑡+1 = temporal difference error using 𝑉 and reward at the next time step
𝜋(· | 𝑠) = stochastic policy
𝜇(𝑠, 𝜽), 𝜎(𝜽) = mean and standard deviation parameterized by parameter vector 𝜽
𝜌 = importance sampling ratio
𝜇𝜋 , 𝜇Ω = on-policy state distribution under 𝜋 and Ω
𝐴𝜋 , 𝐴𝜔 , 𝐴Ω = advantage function under policy 𝜋, intra-option policy 𝜔 and over Options Ω
𝑄Ω, 𝑄𝑈 = option-value function and action-value in the context of (𝑠, 𝜔)
𝜋𝜔 , 𝛽𝜔 = intra-option policy, and termination function of Option 𝜔
𝑷,𝑸, 𝑹 = state selector, state weight and action weight matrix
𝑥𝑖 , ¤𝑥𝑖 , ¤𝑥𝑅𝑖 , 𝐹𝑖 = position, velocity, velocity reference and force of mass i
𝑞, 𝑞𝑅, 𝛼, 𝜃, 𝑢, 𝐻, 𝛿𝑒 = pitch rate, pitch rate reference, angle of attack, pitch angle, airspeed, height and elevator deflection

I. Introduction

Recent developments of advanced reinforcement learning methods display promising characteristics that can enable
model-independent, adaptive, and intelligent flight control for passenger carrying aircraft. Model-independent

reinforcement learning can learn from scratch and thereby overcome the model information gap for novel aircraft designs.
A type of passenger carrying aircraft that can benefit from this is aircraft with novel configurations. One category of

∗Graduate Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology

1

3

novel passenger carrying aircraft designs from the Urban Air Mobility (UAM) industry is the highly anticipated electric
Vertical TakeOff and Landing (eVTOL) vehicles. For these designs, the UAM industry expects to lack detailed models
and model information [1]. On the other hand, traditional aircraft configurations have a large backlog of research and
detailed models. Still, creating an accurate model from scratch and developing models that incorporate stochastic
phenomena (e.g., turbulence, birdstrike, and actuator failure) can be costly endeavors. In addition to model-independent
flight control, reinforcement learning can enable adaptive flight control and replace classical control methods. Classical
control methods limit an automatic pilot to be reliable and safe, only for predefined operating points. On the contrary,
an adaptive flight control method allows for an automatic pilot to go beyond predefined operating points, to reduce the
workload for a human pilot, and to improve flight safety during failure (e.g., actuator failure) [2].

A reinforcement learning method that allows for adaptive flight control is called Adaptive Critic Design (ACD)
controllers. ACD’s are learning algorithms tailored for optimal tracking of continuous-time control systems. These
methods have successful implementations for helicopters [3] and fighter jets [4], but are limited to small state spaces
and are dependent on representative simulation models. A family of adaptive methods that alleviate the need for an
accurate dynamic model is called Incremental Approximate Dynamic Programming (IADP). An IADP method such
as Incremental Dual Heuristic Programming (IDHP) has shown successful implementations for missiles [5] and jet
aircraft [6] where the controllers did not require offline training. These IADP methods have proven to be effective in
flight control for small continuous state and action space. Though these methods still have room for improvements and
would profit from extending the controller design to a high-dimensional state space [6]. Also, the IADP methods would
benefit from increased exploration capabilities to cope with unexpected changes to the environment and faster learning
by requiring fewer samples (i.e., high sample efficiency) to learn a policy.

A field of research that can provide a better alternative and improvements for IDHP methods is the field of Deep
Reinforcement Learning (DRL). DRL provides a foundation for research into high-performance methods that largely
depend on Deep Neural Networks (DNN). A method of interest is the Proximal Policy Optimization (PPO) [7] which
is a policy gradient reinforcement learning (PGRL) method that is widely used for its fast learning and exploration
capabilities, which ultimately leads to finding good policies. Policy gradient methods are an intuitive approach for
continuous control of systems and connect the IDHP and DRL methods. While using policy gradient methods for
flight control, attention should be paid to a problem common to IADP methods. The problem being the ’curse of
dimensionality’, where the increase of dimensions will greatly reduce sample efficiency. While high sample efficiency
is desirable for flight control as an aircraft will be able to adjust to new situations in a timely manner.

Hierarchical Reinforcement Learning (HRL) tackles the ’curse of dimensionality’ by structuring and decomposing
the state space of the agent’s environment. Consequently, the agent is able to learn with fewer samples than an
agent without Hierarchical Design [8]. Hierarchical Design can be expressed in a variety of ways by structuring and
decomposing the underlying Markov Decision Process (MDP). The decomposition of the underlying dynamics of an RL
problem is done by breaking it down into multiple ’activities’ followed by a structure that links the multiple activities
in a coherent Hierarchical Design. Three highly regarded Hierarchical Design methods are identified by [9] that all
rely on the theory of Semi-MDP [10]. These methods are the Options [10], MAXQ [11], and Hierarchies of Abstract
Machines (HAM) [12] framework. These HRL methods are frameworks that require the programmer to decompose the
problem into ’activities’. This requires the programmer to have the domain knowledge to identify structures present in
an environment. In adaptive flight control, this structure is not always known beforehand. In addition, it is preferred for
the general applicability of the control design to have an HRL method that can learn to decompose the environment’s
hierarchical structure. A method that automatically decomposes the state space of the environment and does not need
subgoals to be set by the programmer, and thus not requiring prior knowledge in the Hierarchical Design is the Proximal
Policy Option-Critic (PPOC) [13]. PPOC combines the advantage of PPO and the benefits of HRL methods through the
Option-Critic architecture [14] that provides the framework for end-to-end learned Options.

This paper contributes to the development and analysis of end-to-end learned Options for adaptive flight control by
comparing the PPOC against PPO and PPOC with a single Option (PPOC-1). These two methods will be tested on
an extendable mass-spring-damper system and jet aircraft models. The methods are evaluated on sample efficiency,
reference tracking and adaptivity. In addition, it should be noted that analysis for online learning with a Hierarchical
Design is not frequently encountered in literature. In this regard, this is one of the few works that contribute to the
analysis for online adaptive flight control with a Hierarchical Design.

The paper is structured as follows. The theory behind PPOC is explained in section II, subsequently the agent design
is presented in section III. The methodology is given in section IV. The results are found in section V, where the agent is
evaluated for sample efficiency, reference tracking, offline training, offline adaptivity, online learning, online adaptivity,
and transfer learning. The results of the adaptivity tests are discussed in section VI. The research is finalized with the

2

4

conclusions and recommendations in section VII.

II. Fundamentals
This section presents the theory required to understand and create the agent design in algorithm 1.

A. Reinforcement Learning
The Actor-Critic is a reinforcement learning framework that is generally used for continuous control problems. An

Actor is responsible for selecting actions that maximize the expected total performance by receiving a feedback signal
from the Critic. The Critic assesses if the action taken by the Actor has resulted in more or less value. The Actor-Critic
is a policy gradient that updates its parameters using eq. (1). The parameters of the policy are updated using its current
parameter estimate 𝜽𝒕 and adding the gradient of the objective function’s estimate multiplied by the learning rate 𝜂.

𝜽 𝑡+1 = 𝜽 𝑡 + 𝜂∇𝐽 (𝜽 𝑡) (1)

The feedback signal from the Critic to the Actor comes in the form of a Temporal Difference (TD) error 𝛿𝑉𝑡 as
described in eq. (2) which uses a parameterized value function 𝑉 (𝑠𝑡 , 𝝑𝒕). The 𝛿𝑉𝑡 takes the difference between the
current value and the future value using the reward of the next time step 𝑟𝑡+1 and discounting future state value with 𝛾.

𝛿𝑉𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1, 𝝑𝒕) −𝑉 (𝑠𝑡 , 𝝑𝒕) (2)

The policy function is parameterized by a Gaussian distribution described by eq. (3) similar as [15] which makes it
a stochastic policy. The advantage of this parameterization is that it allows the policy to explore in a natural fashion
as opposed to deterministic policies that require exploration noise or signals to find good policies. In addition, the
parameterization creates a continuous action space.

𝜋(𝑎 | 𝑠, 𝜽) � 1
𝜎(𝜽)

√
2𝜋

exp
(
− (𝑎 − 𝜇(𝑠, 𝜽))

2

2𝜎(𝜽)2
)

(3)

The Actor-Critic Design presented here is a one-step TD method that forms a baseline for continuous and model-
independent control. The drawback of one-step TD methods is the bias that is introduced through bootstrapping its
value estimate.

B. Generalized Advantage Estimation
Instead of updating the value estimates by using bootstrapping by means of the TD error, an alternative approach in

updating the policy gradient can reduce bias. The Generalized Advantage Estimation (GAE) [16] in eq. (4) allows for
lower bias than one-step TD methods and reduce variance in policy gradient updates by using sampled trajectories. The
low bias introduced through high 𝛾 allows the policy gradient to converge to better local optima than for higher bias
value estimates. The reduction in variance through high 𝜆 allows for learning with fewer samples. The GAE estimation
allows the state value-based 𝛿𝑉𝑡 defined in eq. (2) to estimate the advantage function. This is permitted, only if the
estimation of the value function is determined by discounting with 𝛾 and based on 𝑎𝑡 resulting from 𝜋(𝑎𝑡 | 𝑠𝑡), then the
𝛿𝑉𝑡 is seen as an estimate of the advantage function of the action 𝑎𝑡 [16]. Note that the TD error is used for estimating
the advantage function and not for the value function.

𝐴𝐺𝐴𝐸 (𝛾,𝜆) (𝛿𝑉𝑡) =
∞∑︁
𝑙=0
(𝛾𝜆)𝑙𝛿𝑉𝑡+𝑙 (4)

GAE estimates the advantage function that is used for the alternative expression of the policy gradient as defined
in eq. (5). The intuition behind role of the adavantage function in eq. (5) is as follows. A positive advantage points
the policy gradient in the direction of reward maximization, thereby increasing the probability of better-than-average
actions. On a final note, as long as the timesteps required to predict the future value is lower than the duration of an
episode, then the 𝛿𝑉𝑡 in GAE updates the policy function in an on-policy fashion. As a consequence, the agent should be
able to learn in an online setting.

∇𝐽 (𝜽) =
∑︁
𝑠

𝜇𝜋 (𝑠)
∑︁
𝑎

∇ ln 𝜋(𝑎 | 𝑠, 𝜽)𝐴𝜋 (𝑠, 𝑎), (5)

3

5

C. Proximal Policy Optimization
The Proximal Policy Optimization (PPO) [7] alternates between sampling a trajectory and optimizing a ’surrogate’

objective function as seen in eq. (6). The sampled trajectories will undergo an optimization process in order to have the
best gradient updates. After a fixed amount of optimization iterations 𝐾 using a minibatch 𝑀 , the policy gets updated,
and a new trajectory from the environment is taken for its next update. Note that 𝐽𝑃𝑃𝑂 (𝜽) in eq. (6) is not equal to
∇𝐽 (𝜽). The objective function of PPO still needs to be differentiated.

𝐽𝑃𝑃𝑂 (𝜽) = Ê𝑡
[
min

(
𝜌𝑡 (𝜽) 𝐴̂𝐺𝐴𝐸

𝑡 , clip (𝜌𝑡 (𝜽), 1 − 𝜖, 1 + 𝜖) 𝐴̂𝐺𝐴𝐸
𝑡

)]
(6)

PPO’s optimization process emulates the process of Trust Region Optimization as implemented in TRPO [17] by
using a first-order iterative optimization method. As a consequence, PPO reduces the sample complexity while retaining
the sample efficiency and guarantee of monotonic improvement seen in TRPO. The emulation is achieved by setting out
a proximal region around a policy probability ratio 𝜌𝑡 (𝜽) = 𝜋 (𝑎𝑡 |𝑠𝑡 ,𝜽)

𝜋 (𝑎𝑡 |𝑠𝑡 ,𝜽old) , where the samples gathered from an old policy
is used to update to a new policy within the proximal region. Note that the use of 𝜌(𝜽) is the same as in the concept of
importance sampling. The ratio 𝜌(𝜽) can become the lower bound of the objective function when the old policy has a
higher advantage than the current policy.

The proximal region set by the clipping ratio 𝜖 ensures the stability of policy updates by not allowing for too large
updates to be applied to the new policy. This is done by clipping 𝜌𝑡 (𝜃) to the proximal region (1 - 𝜖 , 1+ 𝜖). The intuition
behind the clipping in eq. (6) is as follows. In case that the advantage is large and positive, then the upper region assures
that the policy update is not too greedy for actions contributing to reward maximization. If the advantage is large and
negative, then the lower region assures that the updates for actions that do not contribute to reward maximization are
still having a reasonable probability of occurring.

D. Option-Critic Architecture
The Option-Critic architecture [14] automatically decomposes its problem domain into a set of temporally extended

actions, which are called Options [10]. A way of viewing these Options is to see them as a set of sub-policies, with
each having its own variable time scale in which the Option operates depending on its initiation state and termination
condition. For the Options in [10], the initiation state and termination condition needs to be set by the programmer. In
the case of the Option-Critic, the initiation set is omitted, and the termination condition is learned. The aforementioned
sub-policies are also known as intra-option policies 𝜋𝜔 and the variable time scales are now set by their respective
termination function 𝛽𝜔 . The goal of each Option is to maximize the expected return in the current task. The Options
are selected and structured by the main policy called the policy over options 𝜋Ω. The Option-Critic architecture learns
these Options in an end-to-end fashion by applying the policy gradient theorem to the intra-option policies seen in
eq. (7), termination functions seen in eq. (8). The policy learned with the intra-option policy gradient can be any
reinforcement learning method as long as it meets the conditions of the intra-option policy theorem [14].

∇𝐽𝜋𝜔 (𝜃𝑡) =
∑︁
𝑠,𝜔

𝜇Ω (𝑠, 𝜔 | 𝑠0, 𝜔0)
∑︁
𝑎

𝜕𝜋𝜔 (𝑎 |𝑠, 𝜽)
𝜕𝜃

𝑄𝑈 (𝑠, 𝜔, 𝑎) =
∑︁
𝑠,𝜔

𝜇Ω (𝑠, 𝜔|𝑠0, 𝜔0)
∑︁
𝑎

∇ ln 𝜋𝜔 (𝑎 | 𝑠, 𝜽)𝐴𝐺𝐴𝐸
𝜔 (𝑠, 𝑎)

(7)

∇𝐽𝛽 (𝜗𝑡) = −
∑︁
𝑠′,𝜔

𝜇Ω (𝑠′, 𝜔|𝑠1, 𝜔0) 𝜕𝛽𝜔 (𝑠
′, 𝝑)

𝜕𝜗
𝐴
𝛽
Ω (𝑠′, 𝜔) (8)

The name Option-Critic stems from its similarities with the Actor-Critic Design, where the intra-option policies
with their termination functions act as Actors that get selected by a higher level Actor called the policy over options.
The intra-option policy, termination function, and policy over options get feedback from their respective Critics that
estimate the action-value function in the context of a state-option pair 𝑄𝑈 and the advantage function of the policy over
options 𝐴Ω. The latter formulation of the intra-option policy in eq. (7) is taken from [13]. The alternative expression of
the policy gradient performance function in eq. (5) allows us to rewrite the intra-option policy gradient in a form that the
GAE function can be used. In addition, the advantage function in the termination gradient function follows directly
from its derivation.

III. Agent design
The agent design used is elaborated where the specific settings for the agent are found in section IV.

4

6

A. Reward function
A quadratic cost-to-go function is used for continuous optimal tracking control. The implementation is similar to the

one found in [6] and adapted for extra control on the magnitude of actions with the R matrix, as can be seen in eq. (9).
The P and Q matrices allow for multiple states to be tracked and thus enable tracking for continuous MIMO systems.

𝑟𝑡+1 = 𝑟
(
𝑠𝑅𝑡 , 𝑠𝑡+1,Δ𝑎𝑡

)
= − [

𝑷𝑠𝑡+1 − 𝑠𝑅𝑡
]𝑇

𝑸
[
𝑷𝑠𝑡+1 − 𝑠𝑅𝑡

] − Δ𝑎𝑇𝑡 𝑹Δ𝑎𝑡 (9)

Where the state selector matrix 𝑃 defines which states are selected for tracking, 𝑠𝑡 being the state vector at time 𝑡, 𝑠𝑅𝑡
being the reference signals, 𝑄 being the weighting matrix where the magnitude of each entry determines the priority of
tracking with respect to each entry, 𝑅 is the weighting matrix that sets the penalty for the magnitude of the action, Δ𝑎𝑡
being action increment taken at time 𝑡.

B. Learning framework
The learning frameworks used for this research are the Proximal Policy Option Critic (PPOC)[13] and the PPO

implementation of [18]. The PPOC method extends PPO with the Option-Critic in section II.D. As a result, both
frameworks are on-policy methods, meaning that it updates its policy during an episode and learns without requiring
episodes. In this paper, only the PPOC method is presented as the intra-option policy gradient function is the same
as the policy gradient function of PPO. In fig. 1, the Option-Critic agent implemented with PPO as the intra-option
policy is shown, where the differences between PPO and PPOC are indicated by the dashed red line. The algorithmic
description of fig. 1 is given in algorithm 1 and follows directly from the formulas presented here and in section II. As
seen in algorithm 1, PPOC does not use the temporal difference error to update the value estimate. As a consequence,
this avoids introducing bias into the value estimate as is elaborated in section II.B. Instead, the value function uses a
Mean Squared Error (MSE) function to update its estimation.

In fig. 2, the Actor Multi-Layer Perceptron (MLP) for PPOC is provided. There the intra-option policy is shown.
The second head attached to this MLP is the policy over options but is not displayed for clarity. The termination function
and the value function are combined into one MLP similar to the Actor MLP. In both MLP designs, the weights are
shared, which increases sample efficiency. According to [19], this should be implemented in a more precise manner,
though the termination function and the intra-option policy are independently estimated, meaning the functions have
their own MLP and do not share weights which is a requirement for an Option-Critic.

The intra-option policies use the differential entropy of the Gaussian distribution 𝐻𝜋𝜔 , so the entropy bonus is only
dependent on the 𝜎 and on the entropy hyperparameter. The entropy hyperparameter is a weight factor and determines
the exploratory behavior of the policy. The same setup is used for the policy over options but instead uses the Shannon
entropy 𝐻𝜋Ω . The Shannon entropy defines the entropy for discrete random variables that corresponds to the mapping
of states to options performed by the policy over options. All in all, the complete gradient of the objective function for
the PPOC agent then becomes the following expressing that is given in eq. (10) and taken from section II, where 𝑆 is the
entropy coefficient in table 1, 𝐽𝜋Ω is objective of the softmax policy, and 𝐽𝑉Ω is the MSE.

∇𝐽 (𝜽𝝎 , 𝝑𝜷 , 𝜽𝛀, 𝝑𝝑) = ∇𝐽𝑃𝑃𝑂
𝜋𝜔
+ 𝑆𝐻𝜋𝜔 + ∇𝐽𝛽 + ∇𝐽𝜋Ω + 𝑆𝐻𝜋Ω + ∇𝐽𝑉Ω (10)

C. Hyperparameters
In the preliminary analysis, a hyperparameter optimization tool called Optuna [20] was applied to the hyperparameters

in table 1. The results indicate that hyperparameter optimization improves the sample efficiency of both agents but makes
them less comparable. In order to stay within the scope of this research, the optimization and tuning of hyperparameters
are left for detailed controller design. In table 1, the value for each hyperparameter is given. The same learning rate 𝜂 is
used for all required learning rates in algorithm 1.

D. Training strategy
The agent is training in an offline setting, where every episode terminates after 30 seconds of simulation time. The

rewards are non-sparse. This allows the agent to collect a reward per time step. A sampling frequency of 100 Hz is
employed as it is equal to the one used for the jet aircraft used for flight tests at the Delft University of Technology [21].
The training signal for the mass-spring-damper system is a sine signal with an amplitude of 5 𝑚/𝑠 and a frequency of
0.2 Hz. The same signal is used for the aircraft system where the amplitude is equal to 5 ◦/𝑠.

5

7

Environment

Fig. 1 Diagram of PPOC with three Options. The Actor components are in blue. The Critic components are in
orange. A non-hierarchical Actor-Critic agent would only have the Actor and Critic component encircled with a
red dashed line. The concept of Option selection is depicted by a switch with three contacts, where each contact
resembles an Option. Only one Option is selected at a time and a new Option is selected according to 𝜋Ω when
the current Option terminates. Inside the GAE estimation, the 𝛿𝑡 is computed and passed to the GAE estimation
and thus indirectly to the Actor.

...

...

...
...

...
...

𝑠0

𝑠𝑚

𝑒0

𝑒𝑛

𝜔0

𝜔𝑘

𝜇0

𝜇𝑛

Input
layer

Hidden
layer

Hidden
layer

Option
layer

Ouput
layer

Fig. 2 Multi-Layer Perceptron topology of the Actor. The tracking error 𝑒0 results from 𝑃𝑠 − 𝑠𝑅. There are two
hidden layers that each have 64 neurons and a hyperbolic tangent as an activation function. In this case, the
intra-option policy 𝜔0 is activated, indicated with solid lines. The intra-option policy is equal to PPO. The policy
over options is equal to a softmax, which selects which intra-option policy is activated. Each intra-option policy is
estimating a mean. The standard deviation is state-independent. The MLP topology of the Critic has the same
structure but outputs a state value and termination function with a sigmoid function over the output layer.

6

8

Algorithm 1 PPOC: Proximal Policy optimization with Option-Critic
Require:

agent hyperparameters 𝑘 , 𝑇 , 𝜖 , 𝐾 , 𝑀 , 𝜂𝜃𝜋 , 𝜂𝜃Ω , 𝜂𝜗𝛽 , 𝜂𝜗𝜗 , 𝑆, 𝛾, 𝜆
differentiable stochastic intra-option policy parameterization 𝜋𝜔 (𝑎 |𝑠, 𝜽𝝅)
differentiable termination function parameterization 𝛽𝜔 (𝑠, 𝝑𝜷)
differentiable stochastic policy over options parameterization 𝜋Ω (𝜔 |𝑠, 𝜽𝛀)
differentiable option-value function parameterization 𝑉Ω (𝑠, 𝜔, 𝝑𝝑)

1: 𝑠← 𝑠0
2: 𝜔← 𝜋Ω (𝜔 | 𝑠, 𝝑𝝑) with softmax policy
3: while episode ≠ terminal do
4: for iteration = 1, 2, . . . do
5: procedure Run policy 𝜋𝑜𝑙𝑑𝜔 in environment for 𝑇 time steps
6: 𝑎𝑡 ← 𝜋𝜔 (𝑎𝑡 | 𝑠𝑡 , 𝜽𝝅)
7: take action 𝑎𝑡 while in 𝑠𝑡 and observe 𝑠𝑡+1, 𝑟𝑡+1
8: if 𝛽𝜔 terminates in 𝑠𝑡+1 then
9: choose new 𝜔𝑡+1 according to softmax 𝜋Ω (𝜔𝑡+1 | 𝑠𝑡+1, 𝝑𝝑)

10: end if
11: end procedure
12: procedure Options evaluation: Compute advantage estimates for 𝑇 time steps
13: 𝛿𝑡 ← 𝑟𝑡+1 + 𝛾𝑉Ω (𝑠𝑡+1, 𝜔𝑡 , 𝝑𝝑) −𝑉Ω (𝑠𝑡 , 𝜔𝑡 , 𝝑𝝑)
14: 𝐴̂𝐺𝐴𝐸

Ω (𝑠𝑡 , 𝜔𝑡) ← 𝛿𝑡 + 𝛾𝜆𝐴̂𝐺𝐴𝐸
Ω (𝑠𝑡 , 𝜔𝑡)

15: 𝐴̂
𝛽
Ω (𝑠𝑡 , 𝜔𝑡) ←

∑𝑘
𝜔=0 𝜋Ω (𝜔𝑡 | 𝑠𝑡 , 𝝑𝝑)𝑉Ω (𝑠𝑡 , 𝜔𝑡 , 𝝑𝝑) −𝑉𝜔 (𝑠𝑡 , 𝝑𝝑)

16: end procedure
17: procedure Options improvement
18: for 𝜔 = 𝜔0, 𝜔1, ..., 𝜔𝑘 do
19: 𝜃𝑜𝑙𝑑𝜋 ← 𝜃𝜋
20: for 𝐾 optimizer epochs with minibatches 𝑀 do
21: 𝜃𝜋 ← 𝜃𝜋 + 𝜂𝜃𝜋 𝜕𝐽PPO (𝜃𝜋)

𝜕𝜃𝜋

22: 𝜗𝛽 ← 𝜗𝛽 − 𝜂𝜗𝛽

𝜕𝛽𝜔 (𝑠𝑡+1 ,𝝑𝜷)
𝜕𝜗𝛽

𝐴̂
𝛽
Ω (𝑠𝑡 , 𝜔𝑡)

23: 𝜃Ω ← 𝜃Ω + 𝜂𝜃Ω 𝜕 log 𝜋Ω (𝜔𝑡 |𝑠𝑡 ,𝝑𝝑)
𝜕𝜃Ω

𝐴̂𝐺𝐴𝐸
Ω (𝑠𝑡 , 𝜔𝑡)

24: 𝜗𝜗 ← 𝜗𝜗 − 𝜂𝜗𝜗

𝜕(𝐺−𝑉Ω (𝑠𝑡 ,𝜔𝑡 ,𝝑𝝑))2
𝜕𝜗𝜗

25: end for
26: end for
27: end procedure
28: end for
29: end while

Table 1 The hyperparameter values are taken from [18]

Hyperparameter symbol Name Value

𝑘 Number of Options variable per experiment
𝑇 Actor batch 256
𝜖 Clipping ratio 0.2
𝐾 Optimization epochs 10
𝑀 Optimization batchsize 64
𝜂 Learning rate 0.005
𝑆 Entropy coefficient 0.01
𝛾 Discount factor 0.99
𝜆 Variance parameter of GAE 0.95

7

9

IV. Methodology
The PPOC and PPO method are tested on two types of systems: a mass-spring-damper (MSD) system and aircraft.

In testing, a distinction is made between an offline and online setting, where offline means that the agents make use of
episodes during training. Online means that the agents are learning without requiring episodes. First, in section IV.A,
three settings of the PPOC method are tested on an extendable MSD system in an offline setting. The goal of this setup
is to analyze the offline adaptivity and sample efficiency of the PPOC agent compared to PPO. Secondly, in section IV.B,
the proposed method is tested on two aircraft systems. The goal of the second setup is to have a proof-of-concept for
adaptive flight control with PPOC and display the benefits of using learned Options in an online setting.

A. Mass-spring-damper system
Different environments are set up using an extendable mass-spring-damper-N system (MSD-N) to find differences

between these agents. The letter N is replaced by an integer defining the number of serially coupled MSD systems, fig. 3
provides an example of an MSD-3 system. The need for testing on multiple environments stems from the variation in
algorithm performance across environments. In general, the best-performing algorithm across multiple environments
is not always clear. A way to quantify overall algorithm behavior and to have good interpretability is to have an
environment that can be increased in complexity. For this reason, an extendable MSD system is used. The MSD
simulation model can be found [22].

Fig. 3 MSD-3, a mass-spring-damper system with three masses. The image is from [23].

Only two experiments are shown in this paper. These experiments emulate longitudinal control where experiment 1
(EXP1) has a small state space and experiment 2 (EXP2) has a large state space. EXP1 is a single-mass-spring-damper
system with the following state, reference, and action vector eq. (11) with the following P, Q, and R matrices in eq. (12).
EXP2 is a three-mass-spring-damper system with the following state, reference, and action vector eq. (13) with the
following P, Q, and R matrices in eq. (14). For the other experiments, the reader is referred to the technical report
[22]. In the technical report, the EXP2 is renamed to EXP3, and experiments regarding offline adaptivity and sample
efficiency that emulate lateral control can be found.

𝑠 =
[
𝑥1 ¤𝑥1

]𝑇
𝑠 =

[
¤𝑥𝑅1

]𝑇
𝑎 =

[
𝐹1

]𝑇
(11)

𝑷 =
[

0 1
]

𝑸 =
[

1
]

𝑹 =
[

0
]

(12)

𝑠 =
[
𝑥1 𝑥2 𝑥3 ¤𝑥1 ¤𝑥2 ¤𝑥3

]𝑇
𝑠𝑅 =

[
¤𝑥𝑅1

]𝑇
𝑎 =

[
𝐹1

]𝑇
(13)

𝑷 =
[

0 0 0 1 0 0
]

𝑸 =
[

1
]

𝑹 =
[

0
]

(14)

For both experiments, the first mass 𝑚1 needs to follow a sine signal. Adaptivity is tested by changing the internal
dynamics of the mass-spring-damper system. The internal dynamics are changed by switching the sign of the damping
constant. For EXP1, the damping constant is changed from 𝑐1 = 3 to 𝑐′1 = −1. For EXP2, it changes from 𝑐1 = 3 to
𝑐′′1 = −1.5, as the MSD-3 remains stable for 𝑐′1 = −1. The sign change makes the system unstable and provides insight
into how well the agents can adapt to abrupt changes to dynamics. Adaptivity is measured by the recovery success
rate. The recovery success rate is defined by the number of recoveries after changing the internal dynamics at half
the training time. The recovery success rate is measured at the end of the training, whereas the nominal success rate
is measured before the change. An agent has recovered when the reward is within the range of -50 and 0. Sample
efficiency is determined by observing the initial slope of the training curve.

8

10

B. Aircraft system
The aircraft system is a simulation model using general linearized equations of motion describing aircraft motion.

The equations of motion are taken from a technical report published by the Faculty of Aerospace Engineering of the
Delft University of Technology [24]. The stability and control derivatives are taken from the same technical report for
two different aircraft, a jet aircraft during a cruise and a different jet aircraft during an approach. The use of linearized
models provides reliable results for small deviations from the linearization point and using a high sampling frequency.
The simulation is run with a sampling frequency of 100 Hz, see section III.D.

A more elaborate control design is required for flight control than for the MSD system. From initial flight control
experiments, the output resulting from the agent had high frequency and high gain control. These characteristics are
both not desirable for flight control as they will decrease the durability of the actuator and introduce unwanted vibrations.
A working strategy from [25] that allows for more control on the agent’s output is to treat the agent’s outcome 𝒂agent as
an angular velocity and by limiting the velocity with an upper Δ𝒂𝑚𝑎𝑥and lower bound Δ𝒂𝑚𝑖𝑛 of 1deg/𝑠 and −1deg/𝑠 in
eq. (15). Then by integrating using eq. (16) the angular velocity, the actuator deflection gets smoothed out over time,
thus reducing the high frequency. In addition, to discourage the agent from yielding high gain control, a penalty is given
for large action increments.

Δ𝒂 = Δ𝒂min +
(
𝒂agent + 1

) Δ𝒂max − Δ𝒂min
2

(15)

𝒂𝑡 = 𝒂𝑡−1 + Δ𝒂𝑡 (16)

As a result, the following state, reference, and action vector in eq. (17) are used with the P, Q, and R matrices in
eq. (18) for the flight control experiments. The flight control design employs two PID controllers that ultimately provide
a 𝑞𝑅 to the PPOC agent, as seen in fig. 4. In addition, the aircraft’s thrust is controlled through an airspeed controller
embedded in the aircraft.

𝑠 =
[
𝛼 𝜃 𝑞 𝛿𝑒

]𝑇
𝑠𝑅 =

[
𝑞𝑅

]𝑇
𝑎 =

[
Δ𝛿𝑒

]𝑇
(17)

𝑷 =
[

0 0 1 0
]

𝑸 =
[

2
]

𝑹 =
[

1
]

(18)

Longitudinal
Controller

PPOC
PIDPID

+

-

+

-

+

-

-

+

Plant
+

+

Fig. 4 Control Diagram of PPOC for longitudinal flight control.

Similar to the MSD system, the agent for the aircraft system is trained with a sine signal. The sine signal is the
same. Although, the adaptivity is tested differently. First, the agent’s online performance is tested by tracking a height
profile, where the initial height is taken at 2000𝑚, but has no physical relevance as the aircraft are linearized for their
respective linearization conditions. The maneuvers and duration for the height profile are provided in table 2. Secondly,
online adaptivity is tested through three different tests while following a height profile. The first test is a partial loss
of horizontal tailplane at 𝑡 = 50𝑠, more in section V.B.4. The second test is a sign switch of 𝐶𝑚𝑞 at 𝑡 = 50𝑠 and is
equivalent to the 𝑐-test used for the MSD system, see section V.B.5 for the results. The last test transfers the agents to a
Boeing 747-100 during an approach at 𝑡 = 0𝑠, more in section V.B.6.

The PPOC agent’s input-output mapping is assessed after offline training in section V.B.1 and after online learning
in section V.B.3. The assessment will use a linear signal described by eq. (19). The linear signal is passed through
the agent acting as pitch rate or pitch rate reference error. The remaining states are set to zero during the testing. The

9

11

Table 2 Overview of the duration of each segment for the height profile.

segment level climb level descend level

time [𝑠] 5 150 30 45 40

input-output mapping is obtained by fixing the agent’s weights after learning. The output of the agent is evaluated for
five seconds, where each time step is equal to 0.01𝑠.

𝑓 (𝑡) = 2
180

𝜋𝑡 − 5
180

𝜋 (19)

V. Results
The results are built up in two parts. First, in section V.A, the proposed method’s adaptivity is tested in an offline

setting. Secondly, in section V.B, the proposed is trained offline on an aircraft system, and then the method’s adaptivity
is tested in an online setting. For the definition of the online and offline setting see the introduction of section IV. Finally,
the results from this section will be discussed on a higher level in section VI.

A. Mass-spring-damper system
The results concerning offline adaptivity is presented in section V.A.1 and offline sample efficiency in section V.A.2.

All agents are trained for 2400 seconds while using the same offline training setup in section III.D. The training time is
the result of a trial and error process to get good policies.

1. Evaluation of offline adaptivity
A table of the two experiments in the offline training setting is given in table 3, where a total of 20 runs were executed

for each agent. The nominal and recovery phase are within one run. The results in the table should be read as follows for
PPO and EXP1. A total of 18 runs are completed, and 12 of those 18 runs satisfy the definition of a nominal run given
in section IV.A. For these experiments, the PPOC agent shows that it is better at recovering from abrupt changes to its
dynamics than PPO, as the PPOC agent has higher success rates during the recovery phase. The recovery success rates
are especially high for EXP2 for PPOC-4, whereas PPO is not able to recover within the desired reward threshold. The
results suggest that PPOC is more adaptive due to its Options. An intuition that arises from PPOC’s behavior is that the
learned Options stabilize the response to changes and learning of new behavior through switching between Options,
more about this in section V.B. On a final note, the PPO method also has a lower nominal success rate, as the agent
keeps exploring in a quite aggressive manner. For EXP1, it even has two failed runs due to this exploration behavior.

Table 3 Overview of the success rates for offline adaptivity. The experiments are performed for PPO and
PPOC-k, where k defines the amount of Options used for the experiment.

EXP PPO PPOC-2 PPOC-4 PPOC-8
nominal recovery nominal recovery nominal recovery nominal recovery

1 12/18 00/18 19/20 13/20 20/20 20/20 19/20 17/20
2 11/20 00/20 20/20 04/20 20/20 19/20 17/20 18/20

2. Offline sample efficiency and adaptivity
The PPO agent is the most sample efficient method during the nominal training phase, whereas the PPOC agent is

the most sample efficient method during the recovery phase. This observation is supported by looking at the initial
slopes for the first and second half of the learning curve in section V.A.1. To have a better understanding of the sample
efficiency, we zoom in on the results from section V.A.1. The learning curves for EXP1 and EXP2 for the best PPOC
agent and PPO are given in fig. 5. Here the PPO agent shows high sample efficiency for both experiments, whereas the

10

12

PPOC agent is lower. On the contrary, the PPOC agent shows higher sample efficiency for both experiments during the
recovery phase, whereas the PPO agent is not recovering for any of the two experiments. These results show that the
PPOC agent is more adaptive to changes to dynamics and recover from that with a higher sample efficiency than for a
framework that is not using learned Options.

In continuation of zooming in on the results, in fig. 6 the learning curves for all agents for only EXP2 are shown.
Here it is seen that learning Options is beneficial for offline training, though learning too many options impacts the
sample efficiency during the nominal phase. In addition, a tradeoff must be made between higher nominal sample
efficiency or a higher sample efficiency during recovery of unexpected change to internal dynamics.

Fig. 5 Offline training curves of PPOC-4 and PPO for EXP1 and EXP2. Each shaded area indicates the
interquartile range over 20 runs. The line in the shaded area is the mean line over 20 runs.

Fig. 6 Offline training curve of all agents for EXP2. Each shaded area indicates the interquartile range over 20
runs. The line in the shaded area is the mean line over 20 runs.

B. Aircraft system
In this section, the PPOC agent with multiple Options (PPOC-2) is compared against PPOC with a single Option

(PPOC-1) to study the effects and benefits of using multiple Options more closely. Both agents are trained for 3500
seconds while using the same offline training setup in section III.D. The training time is the result of a trial and error
process to get good policies. After training, the agents are put into an online learning setting where the agents need to
track a height profile in a variety of conditions as explained in section IV.B.

1. Evaluation of offline training
The training curves in fig. 7 show that PPOC-1 is consistent for the first eight episodes, and then in a few runs,

PPOC-1 starts exploring. PPOC-2 has a noticeable variation amongst the 20 runs for the first 30 episodes. This indicates
that having multiple Options in this system will result in a higher variance due to multiple intra-option policies that
are not prolonged long enough, as PPOC-1 is – in essence – a single intra-option policy that will never be terminated.
Eventually, both agents converge to a local optimum, as seen after the 30 episodes mark. In addition, the median line
of both agents is comparable, though the PPOC-2 agent is slightly lower. This is consistent with the offline sample
efficiency for the nominal phase in section V.A.

The figures in the left column of fig. 8 show that the agent is capable of following a sine signal without requiring any
excitation signal. The interrelations between the states are consistent with longitudinal aircraft motion and the states are
small enough. Thus reliable inferences can be made about the performance of PPOC for flight control. In the right
column, the state-option response of the policy over options 𝜋Ω is shown. The figures show multiple circles overlapping
each other. This observation is consistent with the cyclic nature of the sine signal. The colors in the overlapping circles
indicate what intra-option policy 𝜋𝜔 are selected by 𝜋Ω for the states. When matching the state-option-action figures to
the time traces then this will give insight into how 𝜋Ω behaves for all states over time. In addition, it provides insight into

11

13

Fig. 7 The learning curves of PPOC-1 and PPOC-2. Each shaded area indicates the interquartile range over 20
runs. The line in the shaded area is the mean line over 20 runs. A longer simulation time will not give better
performance as both agents have reached a local optimum.

how the continuous actions are composed out of the two Options. So the observations of the 𝛼-𝛿𝑒 graph tell us what
Options are selected in the 𝑞-𝛿𝑒 figure. The 𝛼-𝛿𝑒 graph indicates that the 𝜋Ω quite consistently selects either of two
Options for actions that are increasing and decreasing. In the case of the 𝛼-𝛿𝑒 graph, 𝜋Ω selects with a higher probability
𝜔1 for increasing 𝛼 and selects 𝜔0 for decreasing 𝛼. An emphasis on probability should be placed as the 𝜋Ω still selects
𝜔0 for increasing 𝛼. This means that the actions are selected from two different but similar probability distributions that,
on average, create a sine signal and a thick band around the output signal, as seen in the time trace of 𝛿𝑒.

Fig. 8 In the left column, the time traces during offline training evaluation are seen. The right column displays
the states to 𝛿𝑒 figures resulting from the same samples used for the left column. The selected Options are in
color. The Options 𝜔0 and 𝜔1 are indicated in blue and orange, respectively. The black dashed line is the pitch
reference tracking signal. The agent’s performance is evaluated for 60 seconds, displaying that it generalizes and
sustains the aircraft’s dynamics for longer durations.

To study the agent’s response more closely, we zoom in on the agent’s response to a single state. For this a different
approach is applied that results in fig. 9, where the approach is explained in section IV.B. The slope of agent’s response
for 𝑞 matches the slope of the ellipse seen in fig. 8, where the agent increases 𝛿𝑒 for decreasing 𝑞. This corresponds
to the expected aircraft motion as a negative elevator deflection will increase the pitch rate. Looking at the agent’s

12

14

response for 𝑞𝑒 then for a positive error, the aircraft should pitch down using a positive elevator deflection. Vice versa
for a negative error. This behavior is seen in fig. 9. The slopes of the 𝛿𝑒-𝑞 graphs in fig. 9 have the opposite sign, this
indicates that the agent has learned the right relation between the 𝑞 and 𝑞𝑒 which is 𝑞𝑒 = 𝑞 − 𝑞𝑅. All in all, this means
that the agent has had sufficient training and learned a policy that should be able to track a reference signal, more about
this in the next section.

In fig. 9 the 𝛿𝑒-𝑞 graph shows a slight offset from the zero error line for 𝜔0 and 𝜔1. This observation corresponds to
the initial tracking error in fig. 8, which is not equal to zero and results in the agent to immediately compensate for this.
This means that the intra-option policies have learned a bias towards positive 𝑞, where it needs a higher 𝑞 to obtain
an increase in 𝛿𝑒. So the agent is less sensitive for 𝑞 around zero when compared to 𝑞𝑒. Another observation, the Ω
for 𝑞 compensates for the offset created by the intra-option policies by alternating between these policies. In addition,
symmetry in the option selection is observed in the right column. This indicates that Options are chosen for specific
absolute values of 𝑞𝑒 and correspond to the observations made for the 𝛼-𝛿𝑒 figure in fig. 8.

0

50

δ
d
e
g

e
[

]

−50

0

δ
d
e
g

e
[

]
0

50

δ
d
e
g

e
[

]

−50

0

δ
d
e
g

e
[

]

−4 −2 0 2 4

q []
de
s
g

0

50

δ
d
e
g

e
[

]

−4 −2 0 2 4

qe de
s
g

[]

−50

0

δ
d
e
g

e
[

]

Fig. 9 Input and output mapping of PPOC-2 after offline training. The first, second, and third rows are the i/o
mapping of 𝜔0, 𝜔1, and Ω, respectively. The input-output mapping shows successive additions of incremental
actions, so the mapping does not represent the agent’s instantaneous response to a specific value of a state in a
single time step. The mappings relate increasing or decreasing 𝑞 and 𝑞𝑒 to increasing or decreasing 𝛿𝑒.

2. Evaluation of online learning
The PPOC agent is able to track a reference signal not seen during offline training as seen in fig. 10. The PPOC

agent follows a height reference tracking signal using the approach in section IV.B. Though the offline learned behavior
is still visible,as the agent’s actions start small and continue in a sinusoidal manner. The agent’s ability to generalize for
a different reference signal stems from its ability to re-adjusts its parameters in a stable manner as is seen in fig. 11.
There it is seen that relatively large weight adjustments are made at 𝑡 = 0𝑠 and 𝑡 = 150𝑠, as the agent needs to adjust
itself to the change in the reference signal. The stable updates are attributed to the policy iterations that take place
every 2.56𝑠 seen at 𝑡 = 0𝑠. So the weights are adjusted after every 256 time steps. This number corresponds to the
Actor batch hyperparameter, and this is how PPO updates its weights. So PPOC is an online adaptive and thus is able to
generalize for an unseen reference signal.

The input-output mapping of the agent after online learning in fig. 12 is changed when compared to mapping after
offline training. The agent has shifted its response to 𝑞 to the left, which is a consequence of a prolonged climb. The
shift to the left for 𝑞 causes the agent to initiate a negative 𝛿𝑒 for lower 𝑞, causing the aircraft to pitch up earlier. Thus
the agent has learned to pitch up when the aircraft’s pitch rate is a small negative value. In addition, the agent has
learned to sustain, on average, a zero pitch rate during the climb. Finally, looking at the 𝛿𝑒 − 𝑞𝑒 graph, it can be seen
that the agent developed a preference for using 𝜔1 when the error is negative. This indicates that the 𝜔1 policy contains
a mapping that is better at handling negative errors.

In addition, the 𝜋Ω starts to choose Option 𝜔0 more consistently. The 𝐻-𝛿𝑒 figure in fig. 10 shows that Option 𝜔0 is
chosen more frequent during level flight. When matching the position in the time traces for level flight and correlating
this to the 𝑢-𝛿𝑒 and 𝜃-𝛿𝑒 figures. Then it confirms that Option 𝜔0 is the preferred learned policy for level flight. This
observation is confirmed by counting the selected options per segment of the flight profile. In table 4 it is seen that 𝜔0 is
three to ten times more preferred than 𝜔1. A learned PPOC agent can have a learned policy over options that are using
multiple Options or a single Option. In this case, the PPOC agent has learned a policy over Options that uses multiple
options but prefers 𝜔0 over 𝜔1 as is seen in table 4. In the remainder of this paper, we will see the benefits of using
multiple learned Options over a single Option agent.

13

15

Fig. 10 The left column shows the time traces during online learning. The right column displays the states to
𝛿𝑒 figures. The right column displays the states to 𝛿𝑒 figures resulting from the same samples used for the left
column. The selected Options are in color. The Options 𝜔0 and 𝜔1 are indicated in blue and orange, respectively.
The black dashed line is the height tracking reference signal.

Fig. 11 The time traces of the weights are shown for the last layer of the Actor (on the left) and the Critic
network (on the right).

Table 4 An overview of Option selection per segment during online learning.

selection level climb level descend level

𝜔0 419 7683 2127 3441 3587
𝜔1 81 6317 873 1059 413
total 500 15000 3000 4500 4000

14

16

0

50

δ
d
e
g

e
[

]

−50

0

δ
d
e
g

e
[

]

0

50

δ
d
e
g

e
[

]

−50

0

δ
d
e
g

e
[

]

−4 −2 0 2 4

q []
de
s
g

0

50

δ
d
e
g

e
[

]

−4 −2 0 2 4

qe de
s
g

[]

−50

0

δ
d
e
g

e
[

]

Fig. 12 Input and output mapping of PPOC-2 after online learning. The first, second, and third rows are the i/o
mapping of 𝜔0, 𝜔1, and Ω, respectively. The input-output mapping shows successive additions of incremental
actions, so the mapping does not represent the agent’s instantaneous response to a specific value of a state in a
single time step. The mappings relate increasing or decreasing 𝑞 and 𝑞𝑒 to increasing or decreasing 𝛿𝑒.

3. Evaluation of PPOC-2 and PPOC-1 online learning
The PPOC-2 agent is more consistent than its single Option counterpart, as it has a higher success rate and the

standard deviation remains constant, as is seen in fig. 13. Though, PPOC-1 has a much lower standard deviation. The
actions produced by the PPOC-1 agent grow over time and explains the low success rate, as it becomes unstable over
time. Thus using an agent using more than one Option allows for reliable reference tracking. This is also seen for the
offline adaptivity results in section V.A.1.

Fig. 13 Nominal flight operation. Left column PPOC-2 with success rate 99/100. Right column PPOC-1 with
success rate 60/100. The bold line in the center is the average taken over 100 runs. The shaded area is the mean
plus or minus a single standard deviation taken over 100 runs.

15

17

4. Evaluation of PPOC-2 and PPOC-1 during a partial loss of horizontal tailplane
A bird strike can cause considerable damage to the aircraft’s structure. In case a bird hits the horizontal tailplane, it

can reduce control effectiveness. A structural failure to the aircraft’s horizontal tailplane is simulated by reducing the
pitch damping and elevator control effectiveness by 70%. The derivatives related to 𝑞 and 𝛿𝑒 are reduced by 70%.

The PPOC-2 agent shows that it is better at handling a bird strike on its horizontal tail than using a single Option, as
seen in fig. 14. Another observation is that the standard deviation for both agents decreases after the structural failure at
𝑡 = 50𝑠. Though at 𝑡 = 155𝑠, agents both require a larger elevator deflection than for the nominal case in section V.B.3
due to the decrease in control effectiveness. For the PPOC-1 agent, this leads to unstable control behavior and leads to a
low success rate. Thus using more than one Option allows for high resilience to unexpected change in pitch damping
and control effectiveness. As a result, this leads to sustained and stable flight control during a partial loss of horizontal
tailplane.

Fig. 14 Partial loss of horizontal tailplane at 𝑡 = 50𝑠. Left column PPOC-2 with success rate 99/100. Right
column PPOC-1 with success rate 68/100. The bold line in the center is the average taken over 100 runs. The
shaded area is the mean plus or minus a single standard deviation taken over 100 runs.

5. Evaluation of PPOC-2 and PPOC-1 with sign switch of 𝐶𝑚𝑞

The aircraft response to an abrupt change to internal dynamics of the aircraft is studied by changing the sign of the
pitch damping 𝐶𝑚𝑞 at 𝑡 = 50𝑠, where the pitch motion becomes negatively damped, resulting in increasing oscillatory
flight. The results in fig. 15 show that both agents are tolerant to a negative pitch damping. The negative pitch damping
did not result in a failure of the aircraft as the success rates and time traces are similar to the nominal case. Though
the time traces for both agents are noisier, that is a consequence of the negative pitch damping that forces the agent to
counteract the undamped pitch motion. Accordingly, the 𝛿𝑒 signal is less pronounced at each transition of the segment
when compared to fig. 13. So no additional benefit of using multiple Options is seen here.

6. Evaluation of PPOC-2 and PPOC-1 during a transfer on a different aircraft
A flight controller that generalizes to different flight conditions or different aircraft allows for fast flight control

design. A general flight controller can act as a baseline design. In the context of reinforcement learning flight controllers,

16

18

Fig. 15 Sign switch. Left column PPOC with success rate 98/100. Right column PPOC-1 with success rate
62/100. The bold line in the center is the average taken over 100 runs. The shaded area is the mean plus or minus
a single standard deviation taken over 100 runs.

17

19

this can greatly reduce training time and expand to more complex cases. To this extend, the agents are transferred to an
aircraft that is very different in its dimensions and class. The learned agents are transferred from a small jet aircraft to a
large jet aircraft in an approach configuration instead of a cruise. The main differences in the aircraft’s dynamics are in
the center of gravity, pitch damping, and elevator control dynamics. This requires the agents to adapt their previously
learned policies to output larger elevator deflections.

The PPOC-2 agent successfully transfers its learning to a different aircraft as seen in fig. 16, where the agent uses its
gained experience in a new context. This can be explained by extrapolating the findings in section V.B.3, where the
agent learns to control the large jet aircraft by switching between the learned Options that stabilize the online learning.
On the contrary, the PPOC-1 agent is not able to transfer this experience. Around 𝑡 = 50𝑠, the agent loses control for all
runs as it cannot switch between policies. Although PPOC-2 is successful in transfer learning, it shows reduced tracking
performance, as it lags behind the height tracking reference. All in all, the results in fig. 16 show adaptive control and
promise that it allows for easy transfer to non-linear dynamics.

Fig. 16 Transfer learning of an linearized aircraft model to linearized model of Boeing 747-100 during approach.
Left column PPOC with success rate 100/100. Right column PPOC-1 with success rate 57/100. The bold line
in the center is the average taken over 100 runs. The shaded area is the mean plus or minus a single standard
deviation taken over 100 runs.

VI. Discussions
Surprisingly the anticipated sample efficiency gain through hierarchical reinforcement learning is not realized

for the offline training for both the MSD system and aircraft model. PPOC using a single Option and PPO – a
single policy method – are the most sample efficient, and the sample efficiency of learned Options decreases with
increasing Options. This is explained by the fact that each additional learned Option requires more parameters to be
learned. An additional explanation might be in the fundamental difference in the classical application of Options, where
hand-crafted intra-option policies have prior knowledge embedded in them. Embedding prior knowledge, in general,
allows reinforcement learning methods to be more sample efficient. Summarizing the results with regards to adaptivity,
PPOC with multiple learned Options give higher success rates than PPO for offline adaptivity. In addition, PPOC with
multiple learned Options leads to higher success rates than PPOC-1 during tracking of a height profile while having a

18

20

structural failure of the horizontal tailplane, sign change of pitch damping, and generalizes to a different aircraft. PPOC
is able to extend its learning to a different aircraft without requiring extra offline training. This shows that having more
learned Options result in the ability to generalize over different aircraft. In addition, it allows for a stabilizing effect
during online learning and adaptivity. Thus multiple learned Options allow for more complex control behavior and be
adaptive in a reliable manner.

In regards to reference tracking, the PPOC agent is able to follow the reference signals for both MSD and aircraft
systems in the offline and online setting. Though PPOC is not displaying the desired actuation behavior even after
applying the strategy for integrating the actions, see section IV.B. Two sources that contribute to the noisy output of
the PPOC agent are identified. The first source is the interaction between the termination function and policy over
options causes high frequency switching between Options. As a consequence, PPOC learns a high-frequency control
policy. The second source is the underlying stochastic policy method. This is seen for the PPOC-1 agent, where the
high-frequency output is the result of the Gaussian distribution used for sampling the actions.

The observed high-frequency output can be reduced with the following three approaches. The first is a simple
solution where the high-frequency output can be reduced by passing it through a low pass filter, though this will
introduce lag and less control by the agent. Another more fundamental approach is to have more control over the
stochasticity of the stochastic policies by making the entropy variable with a temperature variable. The last proposed
approach is in the direction of having more control over the switching induced by the termination function. For the
latter, there is an existing method that adds a deliberation cost [26] to the termination gradient. The deliberation cost
lets the agent switch less frequently by incurring a cost for switching.

VII. Conclusions and recommendations
PPOC is capable of learning how to control an aircraft’s inner loop dynamics, though it requires offline training

before it can be applied in an online setting. Still, the method does not require any model information and solely uses
samples resulting from interactions with the model. Multiple on-policy learned Options can enable a deep reinforcement
learning method to have height reference tracking and online adaptivity in the cases of structural failure of the horizontal
tailplane and sign change of pitch damping. In addition, PPOC is able to generalize to a different aircraft by means of
transfer learning. Although, the method does not provide sample efficiency benefits over its non-hierarchical counterpart.
Unfortunately, PPOC is not suitable for flight control due to its high-frequency control input to the actuators as it leads to
reduced durability of the actuators and unwanted vibrations. More research into controlling stochasticity of the stochastic
policies and learning of the termination function can lead to more control over the agent’s output. Consequently, it
should then render the PPOC method suitable for adaptive flight control of novel and traditional aircraft configurations,
where ultimately further research is required that includes the effects of actuator dynamics, non-linear aircraft dynamics,
and flight tests.

References
[1] Silva, C., Johnson, W., Antcliff, K. R., and Patterson, M. D., “VTOL urban air mobility concept vehicles for technology

development,” 2018 Aviation Technology, Integration, and Operations Conference, 2018, pp. 1–16. https://doi.org/10.2514/6.
2018-3847.

[2] Syed, S., Khan, Z. H., Salman, M., Ali, U., and Aziz, A., “Adaptive flight control of an aircraft with actuator faults,” 2014
International Conference on Robotics and Emerging Allied Technologies in Engineering, iCREATE 2014 - Proceedings, 2014,
pp. 249–254. https://doi.org/10.1109/iCREATE.2014.6828374.

[3] Enns, R., and Si, J., “Helicopter trimming and tracking control using direct neural dynamic programming,” IEEE Transactions
on Neural Networks, Vol. 14, No. 4, 2003, pp. 929–939. https://doi.org/10.1109/TNN.2003.813839.

[4] Van Kampen, E., Chu, Q. P., and Mulder, J. A., “Continuous adaptive critic flight control aided with approximated plant
dynamics,” Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2006, Vol. 5, No. August,
2006, pp. 2989–3016. https://doi.org/10.2514/6.2006-6429.

[5] Zhou, Y., Van Kampen, E. J., and Chu, Q. P., “Incremental approximate dynamic programming for nonlinear adaptive tracking
control with partial observability,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 12, 2018, pp. 2554–2567.
https://doi.org/10.2514/1.G003472.

[6] Heyer, S., Kroezen, D., and van Kampen, E., “Online adaptive incremental reinforcement learning flight control for a cs-25
class aircraft,” AIAA Scitech 2020 Forum, Vol. AIAA 2020-1844, American Institute of Aeronautics and Astronautics,

19

21

Reston, Virginia, 2020. https://doi.org/10.2514/6.2020-1844, URL http://resolver.tudelft.nl/uuid:38547b1d-0535-4b30-a348-
67ac40c7ddcchttps://arc.aiaa.org/doi/10.2514/6.2020-1844.

[7] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal Policy Optimization Algorithms,” arXiv preprint
arXiv: 1707.06347, 2017, pp. 1–12. URL http://arxiv.org/abs/1707.06347.

[8] Nachum, O., Lee, H., Gu, S., and Levine, S., “Data-efficient hierarchical reinforcement learning,” Advances in Neural
Information Processing Systems, Vol. 2018-Decem, No. Nips, 2018, pp. 3303–3313.

[9] Barto, A. G., and Mahadevan, S., “Recent Advances in Hierarchical Reinforcement Learning,” Discrete Event Dynamic Systems,
Vol. 13, No. 1–2, 2003, p. 41–77. https://doi.org/10.1023/A:1022140919877, URL https://doi.org/10.1023/A:1022140919877.

[10] Sutton, R. S., Precup, D., and Singh, S., “Between MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning,” ARTIFICIAL INTELLIGENCE, Vol. 112, No. 1-2, 1999, pp. 181–211. https://doi.org/10.1016/S0004-
3702(99)00052-1.

[11] Dietterich, T. G., “Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition,” Journal of Artificial
Intelligence Research, 2000. https://doi.org/10.1613/jair.639.

[12] Parr, R., and Russell, S., “Reinforcement learning with hierarchies of machines,” Advances in Neural Information Processing
Systems, 1998, pp. 1043–1049.

[13] Klissarov, M., Bacon, P.-L., Harb, J., and Precup, D., “Learnings Options End-to-End for Continuous Action Tasks,” arXiv
preprint arXiv: 1712.00004, 2017. URL http://arxiv.org/abs/1712.00004.

[14] Bacon, P.-L., Harb, J., and Precup, D., “The option-critic architecture,” Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 31, 2017.

[15] Degris, T., Pilarski, P. M., and Sutton, R. S., “Model-Free reinforcement learning with continuous action in practice,”
Proceedings of the American Control Conference, 2012, pp. 2177–2182. https://doi.org/10.1109/acc.2012.6315022.

[16] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P., “High-dimensional continuous control using generalized
advantage estimation,” 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings,
2016, pp. 1–14.

[17] Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel, P., “Trust region policy optimization,” 32nd International
Conference on Machine Learning, ICML 2015, Vol. 3, 2015, pp. 1889–1897.

[18] Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol, A.,
Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y., “Stable Baselines,” https://github.com/hill-a/stable-baselines,
2018.

[19] Riemer, M., Cases, I., Rosenbaum, C., Liu, M., and Tesauro, G., “On the Role of Weight Sharing During Deep Option
Learning,” Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 5519–5526.
https://doi.org/10.1609/aaai.v34i04.6003, URL https://ojs.aaai.org/index.php/AAAI/article/view/6003.

[20] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M., “Optuna: A Next-Generation Hyperparameter Optimization
Framework,” Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Association for Computing Machinery, New York, NY, USA, 2019, p. 2623–2631. https://doi.org/10.1145/3292500.3330701,
URL https://doi.org/10.1145/3292500.3330701.

[21] Van den Hoek, M., de Visser, C., and Pool, D., “Identification of a Cessna Citation II model based on flight test data,” Advances
in Aerospace Guidance, Navigation and Control, Springer, 2018, pp. 259–277.

[22] Ge, Z. X., “End-to-End Hierarchical Reinforcement for Adaptive Flight Control,” Tech. rep., Delft University of Technology,
2021.

[23] Buysscher, D., “Safe Curriculum Learning For Linear Systems With Unknown Dynamics In Primary Flight Control,” Tech.
rep., Delft University of Technology, 2021.

[24] Mulder, J. A., Van Staveren, W. H. J. J., Van Der Vaart, J. C., De Weerdt, E., De Visser, C. C., In ’t Veld, A. C., and Mooij, E.,
“Lecture Notes AE3202 Flight Dynamics,” Tech. rep., Delft University of Technology, 2013.

[25] Dally, K., “Deep Reinforcement Flight Control Learning for,” Tech. rep., Delft University of Technology, 2021.

[26] Harb, J., Bacon, P. L., Klissarov, M., and Precup, D., “When waiting is not an option: Learning options with a deliberation
cost,” 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, pp. 3165–3172.

20

22

II
Preliminary Report (Previously graded

under AE4020)

23

1
Introduction

Breakthroughs in the development of autonomous systems caused a resurgence in interest in black box opti-
mization methods such as reinforcement learning. One of the recent historical breakthroughs is the AlphaGo
Zero algorithm [57] that learns from scratch how to play the game of Go and then defeat the world champion
of Go. Interestingly, the key technology – reinforcement learning – enabling this breakthrough was already
invented in the 1950s by Arthur Samuel [60], and in 1961 his algorithm was able to defeat a national checker
champion player in the USA [38]. In that same year, the work of Donald Michie embodied in project MEN-
ACE, described a simple trial-and-error learning system using matchboxes to learn from scratch how to play
tic-tac-toe.

So the development of advanced reinforcement learning methods has come a long way and the current
methods display promising characteristics that can enable intelligent, autonomous, and safe flight control
for passenger carrying aircraft. In addition, it might provide a solution for the model information gap for
novel aircraft designs that are becoming highly feasible through the expected near-term availability of ma-
ture technology. One category of novel aircraft designs from the Urban Air Mobility (UAM) industry, is the
highly anticipated electric Vertical TakeOff and Landing (eVTOL) vehicles. For these novel aircraft configu-
rations, the UAM industry expects to lack detailed model information [53]. On the other hand, traditional
aircraft configurations have a large backlog of research and detailed models. Still, creating an accurate model
from scratch and developing models that incorporate stochastic phenomena (e.g., turbulence, birdstrike, and
actuator failure) can be costly endeavors.

A traditional approach to handle unexpected events is to design an automatic pilot that comprises multi-
ple PID controllers that are tuned for specific operating points [31]. If an unexpected event occurs that is not
in the region of the predefined operating points, then the automatic pilot will hand over control to the human
pilot who will manually control the aircraft. In the case of a failure that results in loss of control, a human pilot
might not have obtained the required situational awareness – as a consequence of a high workload – to get
the aircraft under control in a timely manner. Thus a need is identified for a more advanced automatic pilot
that can go beyond the predefined operating points without requiring a detailed dynamic model. And at the
same time, the advanced automatic pilot – just like the human pilot – must adapt to this unexpected situation
in a timely manner.

Adaptive flight control allows for an automatic pilot to go beyond predefined operating points, to reduce
the workload for a human pilot, and to improve flight safety during failure (e.g., actuator failure) [63]. A
method that alleviates the need for an accurate dynamic model and allows for adaptive flight control is called
Incremental Non-linear Dynamic Inversion (INDI). For INDI, the overall controller becomes significantly less
dependent on accurate aircraft model properties, especially regarding the aerodynamic derivatives [52] [58].
For aerodynamic derivatives, the industry expects to have limited knowledge for UAM vehicles [34]. Another
family of model-independent adaptive controllers is Adaptive Critic Design (ACD) controllers. ACD’s are re-
inforcement learning algorithms tailored for optimal tracking of continuous-time control systems. These
methods have successful implementations for helicopters [18] and fighter jet [65]. A family of methods that
combine the advantages of both INDI and ACD is called Incremental Approximate Dynamic Programming
(IADP). An IADP method such as Incremental Dual Heuristic Programming (IDHP) has shown successful im-
plementations for missiles [80] and jet aircraft [25] where the controllers did not require offline training.

IADP methods have proven implementations in flight control for small continuous state and action space

25

26 1. Introduction

but would profit from extending the controller design to a high-dimensional state space [25]. Also, the IADP
methods would benefit from increased exploration capabilities to cope with unexpected changes to the envi-
ronment and faster learning by requiring fewer samples (i.e., high sample efficiency) to learn a good policy. A
field of interest that can improve IDHP methods is the field of Deep Reinforcement Learning (DRL). DRL pro-
vides a wide body of research into high-performance methods that largely depend on Deep Neural Networks
(DNN), where AlphaGo Zero [57] is a product of this field. Researchers in DRL conduct extensive research
in high-dimensional problems and exploration to improve adaptability in a class of reinforcement learning
methods called policy gradient reinforcement learning (PGRL) methods. Where the Actor-Critic Design pro-
vides a bridge between IADP methods and DRL methods with Actor-Critic Design.

Actor-Critic Design, in general, provides a good baseline for continuous control, though when applied to
adaptive flight control, special attention should be paid to sample efficiency. High sample efficiency allows a
flight control method to adjust to new situations in a timely manner. A field that is known for its Hierarchical
Design approach to tackling the challenge of obtaining high sample efficiency in high-dimensional control
space is Hierarchical Reinforcement Learning (HRL). Where the control space – a state and/or action space
– is decomposed into smaller solution spaces and linked to a hierarchical structure. As a consequence, a
reinforcement learning algorithm with Hierarchical Design can result in faster learning for high-dimensional
problem domains [40]. In the field of Hierarchical Reinforcement Learning, three highly regarded methods
were identified [5] that were common in their reliance on the theory of Semi-MDP [59]. These methods are the
Options [59], MAXQ [16], and Hierarchies of Abstract Machines (HAM) [43] framework. A fourth framework
that was not in this review of Barto [5] – as it does not rely on the Semi-MDP but on the MDP as it is not a
temporal abstraction but a state abstraction – is Feudal Reinforcement Learning [13]. These HRL methods
are frameworks that require the programmer to decompose the problem into ’activities’. This requires the
programmer to have the domain knowledge to identify structures present in an environment. In adaptive
flight control, this structure is not always known. In addition, it is preferred for the general applicability of the
control design to have an HRL method that can learn to decompose the environment’s hierarchical structure.

In this research, the author combines the advantages of Actor-Critic Design with the advantages of Hier-
archical Design. Thereby, the author investigates Hierarchical Policy Gradient Reinforcement Learning (HP-
GRL) methods that learn from scratch. With the proposed method, the author satisfies the following research
objective:

Contribute to the development of a novel model-independent and adaptive controller for a continuous,
high-dimensional, partially observable, and stochastic problem domain by investigating a hierarchical policy
gradient reinforcement learning flight controller for a fixed-wing aircraft that enables sample efficient flight
recovery from unexpected changes to aircraft dynamics.

The research proposal is given in chapter 2, where the research objective is supported by the main re-
search question and sub-research questions. In chapter 3 requirements for flight control and fundamentals
of PGRL techniques are given. The main findings of the thesis are written in article form in part I. A review of
the state-of-the-art PGRL methods and HPGRL methods is provided in chapter 4. In chapter 5 a comparison
is made between a PGRL and an HPGRL technique on a mass-spring-damper system, where special attention
is given to adaptivity, sample efficiency, and reference tracking. Finally, this research concludes in chapter 6
and with a set of recommendations in chapter 7.

2
Research proposal

Following from the introduction, where the research gap is identified, the research proposal is presented
here. First, the field of research is provided in section 2.1. Secondly, an overview of the research objective and
questions is given in section 2.2.

2.1. Field of Research
The modern field of reinforcement learning dates back to the late 1980s by combining three separate research
areas. A research area was studying the concept of learning through trial-and-error and originated from the
psychology of animal learning. Another field was trying to solve various optimal control problems by using
value functions and dynamic programming. Yet another field was looking into temporal-difference methods
which interrelated these two independent fields [61].

Figure 2.1: An overview of the broad research field of modern reinforcement learning with its intersections of other research areas.
According to this diagram the research area Optimal Control is the intersection of Computer Science, Engineering, Mathematics and
Reinforcement Learning. This image is adapted from David Silver [54].

Modern reinforcement learning has seen an expansion and wide adoption in different existing research
areas, that is in neuroscience, psychology, economics, mathematics, engineering, and computer science [54].
The area of interest for this research is where mathematics, engineering, and computer science intersect, as
shown in fig. 2.1. The areas intersect at optimal control and machine learning. For this research, the author
will extract knowledge and techniques from a wide body of literature available in machine learning and apply
this to the field of optimal tracking control for aircraft.

Within the field of reinforcement learning, a distinction is made between model-dependent and model-
independent techniques which can be value-based, policy-based, or both as shown in fig. 2.2. The non-
hierarchical policy gradient methods in this research will be mainly methods with an Actor-Critic Design,
which are model-independent policy gradient agents that are suitable for continuous state-action space.

27

28 2. Research proposal

Figure 2.2: An overview of algorithms in modern reinforcement learning that are characterized by four main aspects: value-based, policy-
based, model-independent and model-dependent. These aspects are not mutually exclusive. The image is inspired from [55].

2.2. Research objective and questions
The research objective is translated into four research questions. The research questions each have several
supporting sub-questions. The four research questions and their sub-questions are formulated as such that
they collectively answer the main research objective. The set of research questions are presented below.

Research objective
Contribute to the development of a novel model-independent and adaptive controller for a continuous, high-
dimensional, partially observable, and stochastic problem domain by investigating a hierarchical policy gradi-
ent reinforcement learning flight controller for a fixed-wing aircraft that enables sample efficient flight recovery
from unexpected changes to aircraft dynamics.

Research questions
1. What are the requirements for a fixed-wing aircraft flight controller?

(a) What are the classical control loops?

(b) What are the state and action spaces for a fixed-wing aircraft?

(c) What are the characteristic dynamic motions of a fixed-wing aircraft?

(d) How should a reinforcement learning problem for flight control be formulated?

2. What are the current state-of-the-art reinforcement learning methods that are suitable for flight con-
trol?

(a) What is the most suitable state-of-the-art policy gradient reinforcement learning technique?

(b) What is the most suitable state-of-the-art hierarchical policy gradient reinforcement learning tech-
nique?

3. What are the benefits of the proposed hierarchical policy gradient technique over the proposed non-
hierarchical policy gradient technique on a mass-spring-damper system when exposed to unexpected
changes?

(a) What is the performance regarding adaptivity?

(b) What is the performance regarding sample efficiency?

(c) What is the performance regarding reference tracking?

4. How should the proposed hierarchical policy gradient method be implemented for flight control of a
fixed-wing aircraft?

(a) What is the performance regarding adaptivity, sample efficiency, and reference tracking when ex-
posed to unexpected changes?

(b) How can sample efficiency be improved?

(c) How can reference tracking be improved?

3
Literature study part I: Fundamentals

Following from the research proposal in chapter 2, the theoretical foundation for this research is set in this
chapter. Where the design practices of an automatic flight control system is elaborated and comes with re-
quirements that is translated into the characteristics that a suitable reinforcement learning method should
adhere to. Consecutively, the fundamentals of reinforcement learning and policy gradient methods will be
given. Ultimately, this chapter aims to set the theoretical of this research by implicitly answering the first
research question and its sub-research question as stated in section 2.2 and restated here:

1. What are the requirements for a fixed-wing aircraft flight controller?

(a) What are the classical control loops?

(b) What are the state and action spaces for a fixed-wing aircraft?

(c) What are the characteristic dynamic motions of Cessna Citation I?

(d) How should a reinforcement learning problem for flight control be formulated?

In answering this research question, an overview of the requirements for flight control resulting from
a problem analysis of flight control for a CS-25 aircraft is provided in section 3.1. This is followed by the
fundamentals of reinforcement learning methods in section 3.2. This chapter puts an emphasis on policy
gradient reinforcement learning in section 3.3 and concludes in section 3.4.

3.1. Problem analysis of flight control for CS-25 aircraft
The requirements for flight control of a fixed-wing CS-25 aircraft are presented in this section with the aim
to implicitly answer the first research question and its sub-research questions. After this section, a reinforce-
ment learning controller can be referred to as an RL agent or agent. The aircraft dynamics described by the
state-space systems will be called the plant or environment of the agent, and the control signal is equivalent
to a action from the agent.

Classical control loops and timescales
In aircraft systems, a human pilot is an intelligent, adaptive, and versatile control system. A human pilot can
assess written, visual and spoken information from displays, weather, terrain, air traffic, air traffic control,
and crew. From these information sources and a specific task, a pilot plans a set of actions to be executed
in a particular order as to go from point A to point B in a safe manner. A set of actions related to controlling
an aircraft are manual control and automatic control. The pilot’s actions related to automatic control are
facilitated through a mode control panel, which allows a pilot to set reference parameters for the autopilot
system.

In general, a human pilot can set reference parameters for heading angle, airspeed, pitch attitude, altitude,
and vertical speed. These reference parameters are also linked to the flight management system. The flight
management system is the center of the aircraft onboard avionics architecture and also interfaces with the
autopilot. The set of reference parameters fixed by the human pilot are also communicated to the flight
management system, which computes a trajectory based on the flight plan, the prevailing conditions, and

29

30 3. Literature study part I: Fundamentals

Figure 3.1: A high level overview of control loops in aircraft employed in commercial aviation and placement of the human-pilot, flight
managements system, and autopilot. Image is adapted from [8].

the optimized operation of the aircraft. From these computations, the flight management system can also
select a reference airspeed, altitude, and engine power settings during all phases of flight for the autopilot.
So an autopilot has two sources for reference parameters, where the values set by the human pilot has the
highest priority. A high level overview of the placement of the human pilot, flight management system, and
autopilot is given in fig. 3.1.

The task of an autopilot is to optimally track a reference signal or hold a target parameter. In fig. 3.2 a
block diagram of an autopilot for lateral control is given that can hold a heading angle. This autopilot design
assures that an aircraft will maintain a reference heading angle using the aileron as actuator for turning and
maintaining a zero side slip angle using the rudder. In this design two controllers are implemented and
one damper to stabilize the aircraft’s Dutch Roll. In this controller design the controller parameters e.g.,
PID values are set by a gain schedule for specific flight conditions and/or using interpolation techniques
to encompasses more flight conditions. In case that an aircraft’s response cannot be controlled by these
techniques a loss of control can occur. During loss of control , in general, the autopilot will hand over control
to the human pilot. In these cases the pilot can be in a high stress situation and this might influence the
pilot’s situational awareness and work load. For safety-critical situations it is desired to ease the work load of
the pilot as to enable flight recovery.

Figure 3.2: Example of two subsystems combined into one, but handled as two subsystems with their own single input and multiple
outputs. This is a heading angle hold mode, this decoupled design can be used for a mass damper spring system with two masses of
which the two masses need to follow a displacement reference each. Image is adapted from [66].

So in case of loss of control, there is a need for an adaptive autopilot. If adhering to the autopilot design
given in fig. 3.2 the adaptive autopilot will replace the heading and roll angle controller. Preferably the adap-
tive autopilot can replace these two separate Single Input Single Output (SISO)controllers by one adaptive

3.1. Problem analysis of flight control for CS-25 aircraft 31

controller as to reduce overhead in the controller architecture and enable more control for the adaptive con-
troller. Another possibility among many, can be an adaptive Multi Input Multi Output (MIMO)controller that
replaces the roll rate controller and yaw damper that resulting in an adaptive controller that has control over
four degrees of freedom of the aircraft.

Another autopilot design concerning the longitudinal motion also using a cascaded control system struc-
ture is presented in fig. 3.3. It has a feedback loop for each cascade and is augmented with a two-time-scale
motion in the closed loop system such that the controller dynamics is a singular perturbation with respect
to the airplane dynamic. In fig. 3.2 stability of fast motion transients is maintained by selection of controller
parameters for the inner loop. While the slow motion behavior of Euler angles have the desired transients per-
formance for tracking tasks. In order to support this an overview of characteristic modes of a Cessna Ce500
’Citation’ with their period and time to damp half the amplitude in table 3.1.

Figure 3.3: An example of a pitch attitude hold autopilot with a two-time scale motion in a closed loop system. Image is adapted from
[66].

State and action space
A general state space representation of linearized aircraft dynamics was taken from [39]. The state space
representation was derived from the following assumptions. The deviations from the initial flight condition
are small enough to permit linearization of the nonlinear aircraft dynamics. A flight condition is characterized
by airspeed and altitude. The aircraft is in steady, straight, symmetric flight. No aerodynamic coupling exists
between the symmetric and the asymmetric degrees of freedom, as long as the deviations and disturbances
remain small.

From these assumptions a state-space representation was derived for the symmetric (or longitudinal)
motion in eq. (3.1) and asymmetric (or lateral) motion in eq. (3.3) taken from [39]. Where the values for Ai j

and Âi j are non-dimensional and based on aircraft parameters, stability derivatives, moments of inertia and
products of inertia. The values for Bi j and B̂i j are non-dimensional control derivatives. In this research
throttle control will be manually controlled and thus will not be part of the action space, but is included in
the state space representation for coherency with the flight management system and autopilot interaction.
The longitudinal states are defined by s lon and the actions by a lon in eq. (3.2). The lateral states are defined
by s l at and the actions by a l at in eq. (3.4).

˙̂u
α̇

θ̇
q̇ c̄
V

=


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




û
α

θ
qc̄
V

+


B11 B12

B21 B22

B31 B32

B41 B42

[
δe

δt

]
(3.1)

s lon =
[

û α θ
qc̄
V

]T

a lon = [
δe δt

]T
(3.2)


β̇

φ̇
ṗb
2V
ṙ b
2V

=


Â11 Â12 Â13 Â14

Â21 Â22 Â23 Â24

Â31 Â32 Â33 Â34

Â41 Â42 Â43 Â44




β

φ
pb
2V
r b
2V

+


B̂11 B̂12

B̂21 B̂22

B̂31 B̂32

B̂41 B̂42

[
δa

δr

]
(3.3)

s l at =
[
β φ

pb
2V

r b
2V

]T

a l at = [
δa δr

]T
(3.4)

32 3. Literature study part I: Fundamentals

Characteristic dynamic motions of Cessna Citation I
The behavior of each eigenmode of an aircraft are different for each flight condition and each aircraft, to give
an idea of the order of magnitude of a period of a few important eigenmodes, an overview of eigenmodes of
the Cessna Ce500 ‘Citation’ at V = 60m/s is given in table 3.1 taken from [39].

Mode Target variable Period [s] Time to damp to half the amplitude [s]
Short Period q 5.59 0.60
Phugoid θ 32.13 81.00
Aperiodic Roll p - 0.22
Spiral β, φ, ψ - 6.78
Dutch Roll p, r 2.00 2.34

Table 3.1: A collection of characteristic modes of Cessna Ce500 ’Citation’ to illustrate to the order of magnitude difference in dynamic
behavior between the inner loop and outer loop variables

Adaptive flight control with reinforcement learning
A need for a adaptive autopilot was identified from the limitations of classical autopilots. To fulfill this need,
a model-independent reinforcement learning technique is chosen to enable an adaptive autopilot for loss of
control situations. The reinforcement learning controller will be embedded in the most inner loop where it
controls angular body rates. Angular body rates have a direct dynamic relation with aircraft control surfaces,
thus exhibits in the lowest learning complexity [24]. If a specific reinforcement learning technique permits,
this reinforcement learning controller will be extended to the outer loop where it will control the Euler angles
taking into account the fast and slow motions as elaborated in table 3.1. The controller built-up is similar to
fig. 3.3.

Figure 3.4: A schematic overview of design stages with regard to plant and controller complexity steps. Image is adapted from [67].

The six degrees of freedom motion of aircraft was uncoupled in longitudinal and lateral motion, this re-
sults in two state-space systems for each uncoupled motion given in eq. (3.1) and eq. (3.3) with their own state
and action spaces eq. (3.2) and eq. (3.4). The first implementation of a reinforcement learning controller will
only consider one of two uncoupled motions, in this case only the longitudinal motions for which a basic
working controller will be designed. After which the plant complexity and controller complexity will be in-
creased by adding the other uncoupled motion in this case, the lateral motions. The scheme shown in fig. 3.4
outlines the design phases as elaborated. The initial scope of the implementation will be on basic working
controllers for each of the uncoupled motions embedded in the inner loop, where a model-independent
reinforcement learning technique for adaptive (fault-tolerant) flight control should perform control re-
configuration actions by performing online re-design of its control settings that derives from the current
state of the plant and the received reward.

3.2. Fundamentals of reinforcement learning 33

3.2. Fundamentals of reinforcement learning
Most modern reinforcement learning techniques can be classified as a combination or extension of three fun-
damental classes of methods that solve for finite Markov Decision Processes (MDP), which is the mathemat-
ical basis of a reinforcement learning problem. Among these classes are Dynamic Programming (DP), Monte
Carlo (MC) and Temporal Difference (TD) methods and these methods aim to solve the value function, each
method having its drawbacks and advantages. In this section, the main elements of a reinforcement learning
method and the aforementioned classes of methods are elaborated.

Markov decision processes
Markov Decision Processes (MDP) are a classical way to formalize sequential decision making in a mathemat-
ically idealized manner that applies to a reinforcement learning problem and for which precise theoretical
statements can be made [61]. In other words, a MDP allows for framing the problem of learning from trial-
and-error interactions to achieve a goal. The trail-and-error interaction can be conceptually described with
an agent (learner and decision maker) that interacts with its environment (comprising everything outside the
agent) as shown in fig. 3.5. The agent environment distinction represents the limit of the agent’s absolute con-
trol, but not its knowledge. According to the agent environment interface, a trial is then executed by an agent
taking an action based on state and error (same as negative reward) information from the environment. So
the states are the basis for making the choices, the actions are the choices made by the agent, and the errors
or rewards are the basis for evaluating these choices.

Figure 3.5: The Agent-Environment Interface describing the interaction between the agent and the environment for one time step. First
the environment provides the agent with state and reward information. Then the agent performs an action based on received state and
reward from the environment. The action from the agent interacts with the environment. The environment provides state and reward
information for the next time step. Image is taken from [61].

For a reinforcement learning problem to be classified as, and be described by, the dynamics of a Markov
Decision Process it needs to possess the Markov Property. A reinforcement learning problem adheres to the
Markov Property when the probabilities given by p in eq. (3.5), completely characterize the environment’s
dynamics. The probability p of each possible value of St , Rt should only depend on the immediately preced-
ing state and action, St−1 and At−1. In addition, all information from the past agent-environment interaction
that contribute to changes of future states should be included as state information. If these two conditions
are met, a reinforcement learning problem is said to have the Markov Property.

p
(
s′,r | s, a

) .= Pr
{
St = s′,Rt = r | St−1 = s, At−1 = a

}
(3.5)

Reward function
The utilization of a reward signal to encompass the idea of a goal is one of the most distinguishing features of
reinforcement learning. By designing the reward signal a specific task for an agent can be set. A well-designed
reward signal will take into account that when the agent maximizes the long term reward, then the agent has
achieved the goal or task. So the rewards should indicate what the agent what needs to accomplish and not
how the agent needs to accomplish it.

The reward can be computed from a discrete or continuous function. Here a continuous function is used
to enable continuous control. The control task is to track a reference signal that is set by the pilot or autopilot,
meaning that the task of the agent is to reduce the error between the measured signal and reference signal as
given in eq. (3.6).

e(t) = x(t)−xd (t) (3.6)

34 3. Literature study part I: Fundamentals

The choice of reward function largely influences how fast the agent learns and what it learns, so varying
the reward function largely influences the behavior of the agent. In this research the focus is mainly on the
techniques used for the agent and not its environmental influences in this case the reward function. Thus a
reward function that is best suited for this research is taken from literature.

A formulation is developed by [28] that gives both feedback and feedforward parts of the control input
simultaneously and thus enables RL algorithms to solve the tracking problems without requiring complete
knowledge of the system dynamics The formulation is an adaptation of the Linear Quadratic Regulator Prob-
lem. For this research a simplified version of this formulation is used as given in eq. (3.7) which is also used
in [25] and section 5.2.2.

rt+1 = r
(
sR

t , st+1
)=−[

P st+1 − sR
t

]T
Q

[
P st+1 − sR

t

]
(3.7)

The LQR reward function leaves room for tuning the P and Q matrices, which depend on the task at hand,
this and amongst other forms of altering the reward function is called reward shaping.

Reinforcement learning methods comprises two elemental functions that make use of the dynamics of
a MDP process. The two elemental functions encode the goal of reinforcement learning methods. The goal
being the search for a policy that achieves a lot of reward over the long run. The two elemental function are
called the policy function and the value function.

Policy function
An agent selects its actions based on states that are received from its environment. The agent translates a
state to an action by using a map of states that correspond to a probability of selecting each possible action,
this is known as a policy. Thus a policy is a probabilistic rule by which the agent selects actions as a function
of states. The policy function π(a | s) defines a probability distribution over a ∈ A (s) for each s ∈ S . The
probabilistic rule is updated through a value function. For a learned value function, it is said that the policy
is improved due its experience over time. A improved policy is created by selecting the action that maximizes
the value function of the original policy as is done in eq. (3.8), this is the procedure of policy improvement.

π′(s) = argmax
a

∑
s′,r

p
(
s′,r | s, a

)[
r +γvπ

(
s′

)]
(3.8)

The approach of action selection used for policy improvement is called greedy, the term greedy describes
a decision procedure that selects actions based on only shortsighted considerations. Greedy approaches
do not consider the possibility that these shortsighted considerations might inhibit future access to better
actions.

Value function
The value function can be computed for a state-value function and a state-action value function. The state-
action value function is predominantly used for Q-learning methods [70] [71] due to the focus on policy gra-
dient methods, the Q-learning methods are not included in this literature review. Thus for sake of simplicity
only the predictions of the state-value functions are given, but can be easily extended to state-action value
functions.

The agent’s goal is to maximize the total amount of received reward. Mathematically speaking, this equals
the maximization of the expected value of the cumulative sum of a received reward signal (a scalar). This is
mathematically expressed in a value function given in eq. (3.9). Where the value function evaluates future
rewards that can be obtained by following a specific or random action resulting from a policy function. De-
pending on the problem setting the value function can prioritize maximizing immediate or delayed reward
by setting this behavior with the discount rate γ ranging from 0 to 1. A value function for following a policy
is given in eq. (3.9) where the value function is equal to the expected return when following a policy. The
expected return depends on future discounted rewards given states at the current time step from the envi-
ronment.

vπ(s)
.= Eπ

[∞∑
k=0

γk Rt+k+1 | St = s

]
, for all s ∈S (3.9)

A challenge in reinforcement learning has been to have a reliable and practical prediction of the expected
return. Different strategies can be applied to determine the value of future rewards or expected return de-
pending on the use-case and desired accuracy. In general, it can be said that the variety of reinforcement

3.2. Fundamentals of reinforcement learning 35

learning techniques are centering around finding appropriate methods that can best approximate optimality
in predicting expected return given specific design requirements.

A fundamental property of value functions used throughout reinforcement learning and dynamic pro-
gramming, for any policy π and any state s, the following consistency condition holds between the value of s
and the value of its possible successor states given by the Bellman equation eq. (3.10)

vπ(s) =∑
a
π(a | s)

∑
s′,r

p
(
s′,r | s, a

)[
r +γvπ

(
s′

)]
, for all s ∈S (3.10)

For each a, s′ and r , the probability is computed, π(a | s)
∑

s′,r p
(
s′,r | s, a

)
, the quantity in brackets is

weighted by that probability, then all possibilities are summed to get an expected value. As a result, the value
function vπ is the unique solution to its Bellman equation. The Bellman equation forms the basis of a variety
of ways to compute, approximate, and learn vπ through the Generalized Policy Iteration.

Generalized Policy Iteration and Approximation of Optimality
A general concept for most reinforcement learning methods that encompasses the process of finding an opti-
mal policy and optimal value function is the Generalized Policy Iteration (GPI). GPI emphasizes the common
denominator of the variety of policy iteration methods, which is that they globally have consecutive inter-
actions between policy evaluation and policy improvement that leads to an approximation of an optimal
value function and optimal policy as depicted in fig. 3.6. The differences in policy iteration methods lies in
the amount of iterations taken within the policy evaluation and the timing of updating the values related to
policy evaluation and improvement.

Figure 3.6: Local interaction between policy evaluation and policy improvement for the Generalized Policy Iteration [61].

A GPI starts with a policy evaluation of a initial policy, this is followed by a policy improvement. If a policy
improvement has been executed that resulted in a new policy π′(s), then a new value function vπ′ (s) can be
computed, that evaluates the policy, this is known as policy evaluation. The new value function will be more
accurate than the original value function vπ(s) and from the new value function a new policy improvement
π′′(s) can take place that results in an even better policy. This procedure of consecutively executing policy
evaluation and policy improvement will eventually result in finding an optimal policy. This procedure of
finding an optimal policy is known as policy iteration and is visualized in fig. 3.7.

The policy iteration continues until the current policy is consistent with a value function that has stabi-
lized, and when the policy is greedy with respect to the current value function (eq. (3.10)). In other words, if
a policy has been found that is greedy with respect to its own evaluation function, then the policy iteration
is stabilized. As a result of this greedy policy and starting with policy evaluation, is that the value function
given by the Bellman equation will equal the Bellman optimality equation eq. (3.11). Thus, the optimal value
function v∗(s) is found as first.

v∗(s) = max
a

∑
s′r

p
(
s′,r | s, a

)[
r +γv∗

(
s′

)]
(3.11)

The advantage of starting with optimizing the value function is that it allows for organizing and structur-
ing the search for optimal policies by enabling the consistency condition of the Bellman equation to apply
indirectly for the policy function. All in all, meaning that the policy and value function are optimal for rein-
forcement learning methods that use policy iteration procedures that include policy evaluation and policy
improvement.

36 3. Literature study part I: Fundamentals

Figure 3.7: Global interaction between policy evaluation and policy improvement, resulting in a monotonic improvement of policy and
value function visualized as a iterative process. Where the blue line depicts the error and the blue dots on each line a iteration of its
respective function [61].

In approximating optimal behavior, there may be many states that the agent faces with such a low proba-
bility that selecting suboptimal actions for them has little impact on the amount of reward the agent receives.
The online nature of GPI in reinforcement learning makes it possible to approximate optimal policies in ways
that put more effort into learning to make good decisions for frequently encountered states, at the expense
of less effort for infrequently encountered states. This is one key property that distinguishes reinforcement
learning from other approaches to approximately solving MDPs.

Finding an optimal policy through GPI, is dictated by its value function. In this regard three main rein-
forcement learning methods can be clearly and distinctively identified by their method of computing, ap-
proximating or learning the value function. These methods being Dynamic Programming (requires complete
and accurate model), Monte Carlo (not well suited for step-by-step incremental computation), and temporal
difference learning (require no model, fully incremental, but more complex) these methods differ in effi-
ciency and speed of convergence. The relationship between these methods is a recurring theme in the theory
of reinforcement learning. In addition, these ideas and methods blend into each other and can be combined
in many ways. The TD(λ) algorithm, seamlessly unifies TD with MC.

In some cases, GPI can be proved to converge, most notably for the classical DP methods that we have
presented in this chapter. In other cases convergence has not been proved, but still the idea of GPI improves
our understanding of the methods

Dynamic Programming
Dynamic Programming (DP) is a family of algorithms that form an fundamental foundation for the under-
standing of reinforcement learning methods throughout literature. Thus aspects of DP methods already have
been elaborated in the form of the value function and the Generalized Policy Iteration.

DP methods can compute optimal policies when given a perfect model of the environment. Computa-
tion of the optimal policy is enabled through recursive relationships expressed in the Bellman equation in
eq. (3.10).Where the Bellman equations are turned into step-by-step update rules that improve the approxi-
mation of the value function, given in eq. (3.10). The solution to Bellman equations can be seen as a system
of equations with each state having its own equation. So if there a n states, then there are n equations in
n unknowns. Then taking the Bellman optimality equation eq. (3.11) and given that the dynamics of the
environment are known, the nonlinear system of equations is solved and a optimal value function v∗(s) is
obtained. Though this approach is straightforward, it is tedious and requires great computational effort. An
iterative approach to this policy evaluation process reduces the computational effort. Then a optimal policy is
found with less computational effort using the iterative policy evaluation in the Generalized Policy Iteration.

This approach of solving the Bellman optimality equation is seldom directly useful. As it involves an ex-
haustive search where it is required to look ahead at all possibilities, followed by computing the probabilities
of occurrence and the expected returns. In addition, solutions for Dynamic Programming methods rely on at
least three assumptions that are seldom true in practice: firstly, the dynamics of the environment need to be
known accurately; secondly, enough computational resources are required to complete the computation of
the solution; and thirdly, the Markov property needs to be adhered to.

Monte Carlo, Temporal Difference learning and Policy Gradient methods can be viewed as attempts to

3.2. Fundamentals of reinforcement learning 37

achieve much the same effect as DP, namely solving the Bellman optimality equation, only with less compu-
tation and without assuming a perfect model of the environment.

Monte Carlo Methods
Monte Carlo (MC) methods are estimation methods that provide ways of solving the reinforcement learn-
ing problem that involve averaging over many random samples of actual or simulated returns. Whereas the
value functions are computed step-by-step from knowledge of the MDP dynamics with DP methods. In MC
methods the value functions are learned from complete sample returns with the MDP. In other words, these
methods do not assume knowledge of the environment’s dynamics. They only require interactions with an
environment from which sample sequences of states, actions, and rewards are collected, this process of col-
lecting sample sequences is called experience.

V (St) ←V (St)+α [Gt −V (St)] (3.12)

The only requirement for the environment model is the ability to generate sample transitions, thus not
requiring the complete set of probability distributions of all possible transitions to be known. The latter
being the case for DP methods. In addition, MC methods update their value function, given in eq. (3.12),
on a episode-by-episode to compute their return Gt and not on a step-by-step basis as is the case with DP
methods. As a result, MC methods do not bootstrap, meaning their value estimates are not updated on the
basis of other value estimates. This may lead to smaller consequences when the Markov property is violated.
The GPI also applies to MC methods to find the optimal value function and policy function, though finding
an optimal policy that maintains sufficient exploration is more challenging for MC control methods when
using action-value function for policy evaluation.

Temporal Difference Learning
Temporal Difference (TD) learning is one of the three fields that make up the field of reinforcement learn-
ing. TD learning interrelated the field of optimal control with psychology of animal learning, where the key
concept is the temporal difference errors δt that are used to estimate an increment in predicted value [61].
For this increment the TD method takes the difference between the one time step ahead return Rt+1+γV (St)
and the current state value V (St). Though this is not possible, as the agent is learning from experience. So
the future return is estimated using the current reward plus the current value estimate and then discounted
with γ. The temporal difference is then calculated by subtracting the future return with the previous value
estimate. The value function update as described is summarized in eq. (3.13).

V (St) ←V (St)+α[
Rt+1 +γV (St+1)−V (St)

]=V (St)+αδt (3.13)

The TD method is similar to the Monte Carlo methods as it learns its value function directly from raw
experience without a model of the environment’s dynamics. In another aspect the TD method is similar to
Dynamic Programming as it bases its updates of the value function using previous estimates – using boot-
strapping. The TD method combines the best of both MC and DP methods, thus enabling the method to
be model-independent by learning through generated experience through interaction with the environment
and the method can be applied online as it can update its value and policy function by just waiting one time
step.

Model-independent and model-dependent
Reinforcement learning problems can be categorized in multiple ways, one of them is to categorize them as
either model-dependent or model-independent methods. In model-dependent methods the agent requires
information about the transition probabilities of the environment to predict the value for the next time steps.
The information about the transition probabilities of the environment can be referred as model information
or dynamics of the environment, this information is either provided or learned by the agent.

In general agents that use an learned model are more sample efficient than model-independent agents.
Model-independent agents can be less sample efficient as they have less information about future values and
thus needs more experience to make better decisions. Model-dependent methods can still result in sample
efficient learning if the model is too complex and results in sample inefficient learning of the model. A rule of
thumb that can be used to decide whether to choose for a model-dependent or model-independent method.
In case that the model is easy to learn then a model-dependent method provides a good baseline, if the

38 3. Literature study part I: Fundamentals

policy is easy to learn then a model-independent method can be a better choice. On a last note, the model-
dependent agents are more reliant on accurate models of the environment, as indicated in chapter 1 thus
model-independent methods are desired for flight control.

3.3. Policy gradient reinforcement learning
Policy gradient reinforcement learning (PGRL) are methods that can learn a parameterized policy that can
select actions without using a value function. PGRL does this by employing gradients to update a policy
parameter vector on each time step θt in the direction of an estimate of the performance gradient ∇J with
respect to the policy parameter that has a step-size α as defined in eq. (3.14). In contrast to Q-learning meth-
ods, policy gradient methods do not have to rely on value functions. If they do use value functions than they
largely rely on state-action value functions. Policy gradient methods used in this study learn a parameterized
policy π(a|s,θ) where action selection can be performed without utilizing action-value functions. Though an
action-value function may still be used to learn policy parameters in order to increase performance of more
complex problems. For J a stochastic gradient ascent method is applied to maximize the performance. Hence
the name policy gradient reinforcement learning. If a reinforcement learning algorithm adheres to eq. (3.14),
then it is a policy gradient method.

θt+1 = θt +α∇̂J (θt) (3.14)

For policy gradient methods to be compatible with existing function approximation methods a challenge
had to be solved. The performance function depends on both action selection and distribution of states cor-
responding to that action selection. Both of these are on their turn affected by the policy parameter. The
Policy Gradient Theorem in eq. (3.15) addresses the unknown effect of policy parameter changes on the state
distribution by excluding the derivative of the state distribution [72] and instead using a steady-state distri-
bution under a policy µ(s) or also known as the on-policy state distribution under π. The Policy Gradient
Theorem provides an analytical expression for the performance gradient with respect to the policy param-
eter in eq. (3.14) and allows for applying stochastic gradient ascent methods to estimate the performance
gradient. Instead of applying a first-order gradient method, a second-order policy gradient method called
natural policy gradient [27] could also be used and classify as policy gradient method. The natural policy
gradient requires less iterations for convergence but needs much more computation per iteration and adds
more complexity, so the focus of this study is mainly on the first-order methods.

∇J (θ) =∑
s
µ(s)

∑
a

qπ(s, a)∇π(a | s,θ) (3.15)

In regard to policy gradient reinforcement learning methods, the performance gradient is always an ap-
proximation – here by definition – as policy gradient reinforcement learning methods are an approximate way
of solving reinforcement learning problems. So throughout this report when ∇J (θ) is used to indicate the per-
formance gradient, then the correct notation should be à∇J (θt) but to improve readability the approximation
sign will be omitted.

An advantage of parameterizing policies using parameterization such as numerical preference is that it
will lead to a natural way of learning optimal stochastic policies. As actions are selected using numerical pref-
erence which are estimated probability distributions that are based on continual dependence of their previ-
ous estimations, whereas action-value methods have no natural way of finding stochastic optimal policies.
As a consequence of using such parameterized policies is that in the limit the stochastic policy can approach
a deterministic policy. In addition, when its chosen for a continuous policy parameterization then the action
probabilities will change smoothly as a function of the learned parameter. Together with the continuous pol-
icy parameterization and the policy gradient theorem, this can provide for strong convergence guarantees,
continuous function approximation and continuous action control when using policy-gradient methods.

Though there are inherent disadvantages to policy gradient methods, as they have poor sample efficiency
and suffer from high variance [61]. A way to tackle high variance is to increase batch size as to reduce variance.
But that in its turn will result in a lower sample efficiency, as it requires more samples. At this point a trade-
off should be made between low variance or high sample efficiency. In addition, there is no mathematical
assurance of converging to a globally optimal solution, thus having the risk of only converging towards local
optima ([72]). So a search for methods that aim to solve for these disadvantages while using policy gradient
methods was initiated and resulted a range of methods that will be presented in section 3.3.1, section 3.3.2
and chapter 4.

3.3. Policy gradient reinforcement learning 39

3.3.1. REINFORCE
REINFORCE is a policy gradient method introduced by Williams [72] can be seen as the simplest policy gra-
dient technique since it directly follows from the Policy Gradient Theorem. Its acronym stands for "REward
Increment = Nonnegative Factor x Offset Reinforcement x Characteristic Eligibility", which is describes the
form of this algorithm in eq. (3.16).

∆wi j =αi j
(
r −bi j

)
ei j (3.16)

Where ∆wi j is the reward increment and nonnegative factor is αi j these corresponds to the second term
in eq. (3.14) and α in eq. (3.14), respectively. In order to go from eq. (3.15) to the expression in eq. (3.16),
then eq. (3.15) needs to be sampled using Monte Carlo. Sampling over the expectation and rewriting results
in the offset reinforcement

(
r −bi j

)
which is the full return minus a baseline function and the Characteristic

Eligibility ei j which is the gradient of the policy divided by the policy function.
The expected update of a policy gradient is equal to the gradient of expected reward, thus that this algo-

rithm is an instance of stochastic gradient ascent. This assures that the algorithm has robust convergence
properties. REINFORCE is using a Monte-Carlo method, which means it updates in retrospect of a finished
episode, thus executes one policy iteration after each episode. Monte-Carlo methods are generally of high
variance and thus produce and result in slow learning, but are unbiased in their estimates. A baseline func-
tion can be used or even a random variable as long as it does vary with the policy parameter. A baseline func-
tion that can greatly speed up learning by reducing the variance of the policy gradient is the state-dependent
value function while still remaining unbiased. This due to the fact that the change in state value function with
respect to the policy parameter is equal to zero.

Though finding a good baseline function in general and in the form of a state value function is another
challenge. So learning the baseline provides a solution, but how the baseline is learned determines if the
policy function will get biased. In the Actor-Critic the value function is learned through bootstrapping by
propagating the temporal difference error as a feedback signal for the Actor network.

3.3.2. Actor-Critic Design
A learned policy is equal to a control law and determines how an agent should act. This is the Actor com-
ponent of Actor-Critic methods. To give this agent extra guidance, it uses a learned state-value function that
is used to estimate if the executed action has added more or less value by providing the temporal difference
error δt (defined in eq. (3.13) to update the Actor, this component is called the Critic. The update rule for
the policy parameter of the Actor-Critic is provided in eq. (3.18). The parameters within the Actor and Critic
functions are often estimated using neural networks, making these functions suitable for differentiation, back
propagation, and high-dimensional state space and continuous action space [62]. The neural network of the
Actor can learn a probability distribution by estimating a mean µ and standard deviation σ of a Gaussian
distribution by using the policy parameterization in eq. (3.17), from which continuous actions are sampled
[14].

π(a | s,θ)
.= 1

σ(s,θ)
p

2π
exp

(
− (a −µ(s,θ))2

2σ(s,θ)2

)
(3.17)

Although the REINFORCE-with-baseline in section 3.3.1 learns both a policy and a state-value function,
it is not considered an Actor-Critic method since its state-value function is only used as a baseline and not as
a Critic. The Critic makes use of bootstrapping as performed in one-step temporal difference methods. The
difference between an Actor-Critic method and REINFORCE lies in the state-value estimate, with REINFORCE
it does not estimate its predicted state value using bootstrapping, thus making REINFORCE an unbiased
method. Bootstrapping for state-value function estimation introduces bias within the Actor-Critic agent but
is a necessary evil for the same reason that bootstrapping Temporal Difference methods are often superior to
Monte Carlo methods, as they substantially reduce variance.

∇J (θ) = δt
∇π (At | St ,θt)

π (At | St ,θt)
(3.18)

A preference for methods with an Actor-Critic Design is identified on its advantages that suit the contin-
uous problem domain and real-life applications. The advantages are that these methods have an analytical
basis, typically learn faster, and interfaces well with existing back-propagation techniques [72]. In addition,
when using a stochastic policy parameterization, then an Actor-Critic agent is able to explore the action space

40 3. Literature study part I: Fundamentals

and have a natural good exploration-exploitation trade-off. The Actor-Critic Design is used as a baseline for
continuous and model-independent control but requires a higher sample efficiency and extension to large
continuous domains to make it more suitable for real-life applications. The search for methods to increase
sample efficiency and scalability of the Actor-Critic Design is set forth in a literature study of the state-of-the-
art in chapter 4.

3.4. Conclusion
The goal of this chapter is to provide an answer to the first research question: The aim of this chapter is to
provide a theoretical foundation of this research by answering the sub-questions of the first research question
in section 2.2 and restated here: What the are requirements for a fixed-wing aircraft flight controller?. And
by elaborating on the fundamentals of reinforcement learning and policy gradient reinforcement learning.

In answering the sub-questions of the first research question, it is found that from design principles of
automatic flight control systems that the focus will be on developing a basic model-independent reinforce-
ment learning controller for the uncoupled motions in the inner control loop. Here, attention should be
paid to the timescales involved in each control loop and thus the controlled state. The uncoupled motions
are symmetric and asymmetric motions that respectively need a controller in the longitudinal and lateral di-
rections. The model-independent reinforcement learning method should perform control reconfiguration
actions that re-design its control settings in an online fashion by using information about the current state of
the environment and the received reward signal.

4
Literature study part II: State of the Art

In this chapter, the state-of-the-art non-hierarchical and hierarchical policy gradient reinforcement learning
methods are presented that built on the fundamentals presented in chapter 3. The methods here are reviewed
with regard to the flight control requirements that were reviewed in the aforementioned chapter, and aims to
answer two sub-research questions that can also be found section 2.2 and restated here:

2. What are the current state-of-the-art reinforcement learning methods that are suitable for flight
control?

(a) What is the most suitable state-of-the-art policy gradient reinforcement learning technique?

(b) What is the most suitable state-of-the-art hierarchical policy gradient reinforcement learning tech-
nique?

In answering the stated research questions, a focus on model-independent Actor-Critic Design is taken,
and in this regard, two fields were identified and elaborated; one being Actor-Critic Design in Deep Reinforce-
ment Learning in section 4.1, and the other being Actor-Critic Design in Approximate Dynamic Programming
in section 4.2. In addition to Actor-Critic Design section 4.3, policy gradient optimization methods have seen
wide adoption in Deep Reinforcement Learning and can be added on top of Actor-Critic Design as will be
elaborated in section 4.3. Another field of methods that are known for providing possible performance im-
provements on existing reinforcement learning methods are Hierarchical Reinforcement Learning methods
through Hierarchical Design, presented in section 4.4. This chapter is concluded in section 4.5 which will
answer the stated research question.

4.1. Actor-Critic Design in Deep Reinforcement Learning
The field of Deep Reinforcement Learning (DRL) is known for its end-to-end learning capabilities by extend-
ing traditional reinforcement learning methods with non-linear function approximators to estimate large and
complex value and policy functions. In DRL, often use is made of Deep Neural Networks (DNN) as the non-
linear function approximator. By extending RL with DNN makes the conventional RL methods more capable
of handling complex environments with high-dimensional and continuous state-action spaces, though this
is not straightforward, especially for policy gradient methods. This sets out two frameworks found in DRL
that focus on policy gradient reinforcement learning with Actor-Critic Design. In section 4.1.1 the Deep De-
terministic Policy Gradient method is elaborated and focuses sample efficiency. In section 4.1.2 the Asyn-
chronous and Synchronous Advantage Actor-Critic framework for stabilized learning is presented where also
a Generalized Advantage Estimation (GAE) function was implemented with an Actor-Critic design.

4.1.1. Deep Deterministic Policy Gradient
The inception of Deep Deterministic Policy Gradient (DDPG) methods was through identification of the ad-
vantages and disadvantages of Deep Q-Learning methods such as Deep Q-Networks (DQN) [36]. DQN’s are
one of the first Q-Learning [71] methods that could harness the advantages of deep neural networks to learn
control policies directly from high-dimensional sensory data. In the past, large and deep neural networks in

41

42 4. Literature study part II: State of the Art

combination with reinforcement learning often resulted in unstable learning. In addition to unstable learn-
ing, to this day, there is no common theoretical framework from which the theoretical performance can be
guaranteed. Thus in the past, the use of large neural network architectures for learning a value or action-value
function was avoided.

The advantages of DQN are clear, though it was found that they are not applicable to physical control
tasks, as these tasks require controllers to handle continuous and possibly high-dimensional action spaces,
whereas Q-Learning methods can only handle discrete and low-dimensional action spaces. The disadvan-
tages and advantages of DQN inspired the development of Deep Deterministic Policy Gradient [33] that uses
the Deterministic Policy Gradient (DPG) [56] algorithm at its foundation while implementing techniques
from DQN to stabilize learning with large neural networks. The two novelties that enabled stabilized learn-
ing with deep neural networks for DQN was the use of a replay buffer [3] and a separate target network for
calculating the return.

The focus of DPG [56] lies in solving the sample inefficiency encountered in policy gradient reinforce-
ment learning applied to high-dimensional action spaces. In general a basic policy gradient method is by
design employing a stochastic policy function. Stochastic policy gradient method are in general less sample
efficient than deterministic policies, as these stochastic gradients may require more samples as it does not
only integrate over state space, but also over the action space. The aim of the authors that introduced DPG
was to have a more sample efficient and stable learning method for high-dimensional tasks while retaining
the exploration behavior of stochastic policies. The answers to this was a Deterministic Policy Gradient that
employs a target policy behavior that learns a deterministic policy from an exploratory behavior policy. This
was enabled by utilizing their main finding that a deterministic policy gradient is in the limit of a stochas-
tic policy gradient as the variance goes to zero. Though this combination of having the best of both worlds
comes at a cost in regards to its applicability for the context of this research. The DPG method only has the
beneficial characteristics as described in an off-policy setting. Off-policy methods are characterized by how
the agent updates their current probability distribution by using a different probability distribution and often
requires multiple samples per policy gradient update.

In flight control, the distribution of unforeseen circumstances during flight is not known and can change
abruptly. An off-policy RL method may not be sample efficient and exploratory enough to adjust its policy
while having to stabilize the aircraft during operation. Thus off-policy RL methods are less applicable for
adaptive flight control during online operation. Though the concept of using a target network to stabilize
learning is insightful for other applications and will be applied to flight control as seen in section 4.2.2.

4.1.2. Synchronous and Asynchronous Advantage Actor-Critic
Asynchronous Advantage Actor-Critic (A3C) is an Actor-Critic method using a simple and lightweight frame-
work that trains deep neural network controllers by asynchronous gradient descent [37]. The asynchronous
method employs parallel actor-learners in value- and policy-based methods that are optimized through asyn-
chronous gradient descent. Employing this asynchronous framework, the authors [37] aims at reducing non-
stationarity and decorrelating the sequence of encountered data by online RL algorithms. The authors mainly
study their framework with deep neural networks that share parameters in combination with parallel actor-
learners. There it was found that these actor-learners have a stabilizing effect on the training of deep neural
network controllers and increase data efficiency during training. A3C was able to execute continuous motor
control tasks as defined in MuJoCo [64].

For practical applications where low training time expressed as wall-clock time – data efficiency – is im-
portant, then A3C would be a good candidate. For flight control, it is important to have a high sample ef-
ficiency and has more priority than a high data efficiency. The use of parallel actor-learners in A3C can be
implemented in the fine-tuning phase during the detailed design phase of a flight controller.

A deterministic and synchronous variant of the A3C was proposed by researchers of OpenAI that yields
the name Advantage Actor-Critic (A2C) [73]. A2C uses a coordinator that is waiting for all Actors to finish with
their iteration and then updates the global parameters altogether. In the consecutive iteration, the agents
start with the same policy. By updating the global parameters altogether using the synchronized gradient
update, the agents are trained in a cohesive fashion, whereas A3C used an asynchronous gradient update.
The cohesive learning of A2C might explain the cases that the agent requires less samples than A3C to learn a
good policy.

In [50] the author found that A2C is learning faster than A3C. Additionally, the author replaced the ad-
vantage function that was used by [37]. Instead, a Generalized Advantage Estimation (GAE) function [49] was
used with the A2C that resulted in even faster learning, as the GAE is a baseline function for policy gradient

4.2. Actor-Critic in Approximate Dynamic Programming 43

methods that can reduce the variance during learning. Additionally, the GAE, when implemented in an Actor-
Critic method provides for tuning of the variance and bias by employing techniques seen in TD(λ)-learning.
When using a GAE function as the baseline for policy gradient methods and introducing a small amount of
bias, then the variance can be greatly reduced. As a result, the learning is faster during the initial phase of
training, making it more sample efficient than methods not using GAE [46].

4.2. Actor-Critic in Approximate Dynamic Programming
Traditionally Dynamic Programming (DP) methods may be considered not practical for very large problems
[61]. The field of Approximate Dynamic Programming (ADP) stems from Dynamic Programming (for more
historical context, see chapter 1). In ADP, the focus is on applying DP methods to large problems that are con-
tinuous and possibly nonlinear by tackling the curse of dimensionality. Limitations concerning the problem
size of DP methods are alleviated by using a neural network for nonlinear function approximation of value
functions and/or policy function, though not limited to neural networks. ADP methods can have critic-only
variants, in section 4.2.1 focus will only be on the Actor-Critic variant that are the Adaptive-Critic Design
methods. Recent developments made it possible to have ACD’s that have online-only training phase this
method is called Incremental Dual Heuristic Programming (IDHP) method and presented in section 4.2.2.

4.2.1. Adaptive-Critic Design
The Adaptive-Critic Design (ACD) methods inherit the advantages of Dynamic Programming and tackle the
disadvantages with a Critic (and sometimes Actor) setup and approximating the value function and, if ap-
plicable, policy function with non-linear function approximators such as neural networks that are updated
using the temporal difference error. The advantages of DP being bootstrapping and their potential to solve
optimal control problems in a principled and mathematical way. ACD methods solve the backward direc-
tion of the ’smart’ exhaustive search performed by DP methods that limited DP methods to be applicable
for real-time control [45]. For ACD, the search is redirected into a forward search by employing a critic net-
work with non-linear function approximation that reduces the dimensions, and computational expense of
the analytical solution of the Bellman’s equation [44].

In general, the Adaptive-Critic Design [45] algorithms, as the name suggests, are centered around alter-
ations of the Critic network that vary in their input, output, or having an Actor network. The three main
variations of ACD’s can be derived from one of its variation being the Global Dual Heuristic Programming
(GDHP). The other two variations are scaled-down versions of GDHP (the more advanced ACD), which are
Dual Heuristic Programming (DHP) and Heuristic Dynamic Programming (HDP). The HDP method is the
most simplest ACD form. One of the differences between these methods lies in the Critic output of the value
function (corresponding to HDP), either being the value function (corresponding to DHP), the derivative of
the value function, or both (corresponding to GDHP). GDHP, , and HDP have Critics that employ a non-linear
function approximation for estimation of a state-value function. The aforementioned methods also have
a variation on their Critics which approximates the state action-dependent value function these methods
are then prefixed with AD- and stands for Action-Dependent, which means that the Critic is estimating an
action-state value function by using the output of an Actor network that is only connected to the Critic. A
complete overview is given in table 4.1, where it is also summarized if either the Critic, Actor, or both need a
state-transition model during training.

Table 4.1: Overview of the different components that makes up the variety of ACD’s, inspired by [24].

.

ACD Critic topology State-transition model requirement
Input Output Actor Critic

HDP s v yes no
ADHDP [s a] q no no

DHP s ∂v
∂s yes yes

ADDHP
[

s a
] [

∂q
∂s

∂q
∂a

]
no yes

GDHP s
[

v ∂v
∂s

]
yes yes

ADGDHP
[

s a
] [

q ∂q
∂s

∂q
∂a

]
no yes

An interesting note is that the simplest ACD with its Action-Dependent variant, Action-Dependent Heurist

44 4. Literature study part II: State of the Art

Dynamic Programming (ADHDP), is equal to the Q-Learning [71] method adjusted for the continuous do-
main and without non-linear function approximation. Like HDP and ADHDP, Q-learning is also not requir-
ing the state-transition probabilities of the environment to be known thus HDP and ADHDP are model-
independent methods. Unfortunately, the ADHDP and HDP and their Critic networks have the potential
in being too coarse. In addition, the DHP and GDHP outperform HDP in success rate and tracking precision
[68]. As a consequence, these methods are often not considered for (large) continuous control problems.

DHP and GDHP fall in the category of Actor-Critic methods known to Deep Reinforcement Learning.
Their Action-Dependent variants are disregarded here as these are Critic-only methods and thus fall out of
the scope of this research. Continuing to DHP and GDHP, their main advantage over HDP is in the direct
estimation of the derivatives of their optimization criterion (cost-to-go function) that is contained in the
derivative of the value function. This is instead of estimating the optimization criterion itself. The informa-
tion provided by these gradients was identified as the key success factor in finding better policies than HDP
methods by [41] and [45]. GDHP differs from DHP in its Critic architecture instead of using just one Critic
network as for DHP and HDP, GDHP employs parallel Critic networks that estimate the value function and
the derivative of the value function separately. The marginal performance gain that comes with additional
computational complexity results in a considerably higher computational cost for GDHP when compared to
DHP. This was considered not a satisfactory trade-off for practical applications [45]. The ability to control
real-time continuous problems through ACD’s still requires a state-transition model of the environment, that
is either learned or provided, for the most powerful methods. The state-transition model is required dur-
ing training of the Critic or Actor or both. A summary for each ACD method is provided in table 4.1. In the
following section, section 4.2.2, the review will mainly focus on the solution to tackle the model-dependent
characteristic of ADP and DHP methods.

4.2.2. Incremental Approximate Dynamic Programming
Traditional ACD’s presented in section 4.2.1 rely on a representative system model that is used during offline
training in order to be the most effective during the online training phase and online operation of a contin-
uous system. Incremental Approximate Dynamic Programming (IADP) methods take away the reliance on a
representative system model and the offline training phase. The main advantage of IADP methods such as In-
cremental Dual Heuristic Programming (IDHP) [80] is in the insight, obtained from adaptive controllers such
as Incremental Nonlinear Dynamic Inversion (INDI) methods [52] [58] [35], that model-dependent methods
can be turned into model-independent methods using online system identification methods such as Recur-
sive Least Squares (RLS) and estimating an incremental model of the environment. This alleviates the need
for an accurate and global environment model by identifying locally the dynamics of the environment during
operation by using only two samples, though the incremental model requires a sufficiently high data sam-
pling frequency for its estimation. IADP methods are considered model-independent as the agent does not
need any a priori information of the environment’s dynamics during training nor online identification of the
global nonlinear environment model, but only the online identified incremental environment model [79].

The opportunity that was identified to use incremental and online identification methods is more of an
alteration to the plant model than in the agent itself. The agents are still using state-transition models of
the environment – though identified online, incremental and local – to train the Actor and Critic networks
of a DHP method. Though the IDHP method in [80] provides adjustments in the Actor and Critic update
rules to facilitate a simpler learning model and to be able to interface with an incremental and online model
estimation of an environment. The IDHP method is seen as an extension Incremental Heuristic Dynamic
Programming (IHDP) [79] [78], but is excluded in this review as the Actor network is not connected to the
environment model. In addition, HDP was seen as inferior to DHP as was explained in section 4.2.1.

The application of IADP methods – and especially IDHP – to aircraft models have been studied. A com-
parison between the IDHP and DHP methods for flight control indicates that IDHP methods accelerate on-
line learning, improve precision in reference signal tracking, and handle a wider range of initial conditions
or states [80]. IDHP has also proven to successfully provide for adaptive control in new and unstable sys-
tems, while DHP fails to, thus it was concluded that IDHP was better equipped for fault-tolerant control.
Though this was mainly studied for a simplified flight model. In another study, the author [25] applied the
IDHP method on a more complex flight model with a high-dimensional state space to enable full-body rate
control, while retaining the aforementioned advantages of IDHP. This was facilitated through a target Critic
network that stabilized learning for larger state spaces, this adaption of target networks can also be seen in
DQN’s [36].

The knowledge gained from research on cascaded Actor networks applied in flight control with ADP meth-

4.3. Policy Optimization algorithms 45

ods [18] and ACD methods [65] was combined with the success of IDHP to enable full altitude control with
measurement noise and atmospheric gust [30]. The results from this research indicate that the introduced
measurement noise added to overall learning stability as it repressed aggressive policy, whereas the cascaded
Actor network was not able to handle the higher dimensional state space as a consequence of incorporating
atmospheric gust in the flight model.

The lessons learned from applications of ADP and IADP methods in flight control; variations of Critic net-
works can facilitate stabilized learning for higher dimensional state spaces, cascaded Actor networks have the
potential to provide full longitudinal flight control, online identification of incremental models contribute to
shorter online learning for model-dependent agents, and vary in experiment setup in regards of kind of con-
troller and testing. The testing is often performed in regards of control precision, adaptability, and robustness
to specifically added model complexities.

Although the ACD and IADP methods are suitable for adaptive flight control, the methods introduced here
learn deterministic policies. Deterministic policies have as a drawback that it needs to incorporate artificial
noise or an exploration signal for learning good exploratory policies [15]. This may require careful analysis of
the noise signals and should be modeled to resemble actual noise from sensors, actuators, and turbulence. As
a result, the performance of these methods relies on satisfactory exploration of the state space by exploration
signals that should guarantee the convergence of learned policies. A desire for a method that by itself learns
a good exploratory policy without persistent excitation is identified here.

4.3. Policy Optimization algorithms
Policy optimization algorithms, in this review, alternates between sampling and optimizing a ’surrogate’ ob-
jective function using stochastic gradient ascent. Sampling happens by collecting a batch of samples from
consecutive agent-environment interactions, called trajectories. Then the sampled trajectories will undergo
an optimization process in order to have the best gradient updates. After a fixed amount of optimization it-
erations, the policy gets updated, and a new batch from the environment is taken for its next update. These
optimization methods allow for a more coherent improvement of the policy, thus reducing variance. The
use of trajectory samples can be seen as a way of using short-term memory that depends on the set horizon
or batch. When setting a long horizon, the policy will improve fewer times than setting a short horizon. In
general, a long horizon will result in better reward maximization, thus a better policy and a short horizon will
result in higher sample efficiency, resulting in a faster learning agent. In this section, two policy optimization
methods are presented, the first being the Trust Region Policy Optimization (TRPO) which is an algorithm
that is based on a theoretical method called Trust Region Optimization in section 4.3.1. The second method
is the Proximal Policy Optimization (PPO) in section 4.3.2, which is a method that approximates the idea and
performance of TRPO.

4.3.1. Trust Region Policy Optimization
Conventional stochastic policy gradient methods and Approximate Dynamic Programming are known to be
sample inefficient and unreliable when applied to high-dimensional control problems, as these methods per-
form one gradient update per data sample. A method that tackles these two main problems is the Trust Region
Policy Optimization (TRPO) [48]. TRPO uses the principles of a second-order iterative numerical optimiza-
tion method called Trust Region. The Trust Region method involves solving hard constraints that demarcate
the optimization process. As such, a trust region is a local area in parameter space where the next optimiza-
tion point (i.e., the current policy) is not far away from a specified point (i.e., old policy) in parameter space.
The distance between these points in parameter space can be quantified using any distance measure. For
TRPO, the Kullback–Leibler (KL) divergence is used as a distance measure that allows for robust and large
updates. KL divergence is also known as relative entropy and is a metric of how a probability distribution
is different from a reference probability distribution. TRPO used a shortcut to make the Trust Region Opti-
mization more practical and applicable for on-policy reinforcement learning by taking the average of all the
hard constraints. As a consequence of the practical implementation of the Trust Region method as an opti-
mization constraint, the optimization process is stable and robust during the on-policy learning process. The
sampling of trajectories reduces the variance of conventional stochastic policy gradient methods. The Trust
Region optimization over the sampled trajectories allows for a stable and reliable policy gradient optimiza-
tion method for stochastic policy gradient methods. TRPO can scale these advantages to high-dimensional
control problems when a base stochastic policy gradient method is using deep neural networks as nonlinear
function approximator.

46 4. Literature study part II: State of the Art

maximize
θ

Êt

[
πθ(at |st)

πθold
(at |st) Ât

]
(4.1)

subject to Êt
[
KL

[
πθold (· | st) ,πθ (· | st)

]]≤ δ (4.2)

The algorithm first collects a sample trajectory, then averages over the samples in the trajectory and con-
structs the estimated objective in eq. (4.1) that needs to be maximized under the constraint in eq. (4.2) that
constrains the size of the policy update, then as the last step, is to approximately solve the constrained op-
timization problem to update the policy’s parameter vector θ. The objective function in the optimization
problem can be seen as a ’surrogate’ objective function, as this should be included in the cost-to-go function
of a reinforcement learning method.

4.3.2. Proximal Policy Optimization
TRPO is a relatively complicated method which makes implementation less practical, and being a second-
order iterative optimization method, it requires more computing time per sample. In addition, it does not
allow neural network architectures with parameter sharing between value and policy function estimation,
thus opting out for additional gains in sample efficiency. However, the sample efficiency and guarantee of
monotonic improvement of TRPO are of great benefit to many continuous control problems. The Proximal
Policy Optimization (PPO) algorithms [50] solve the problems identified with TRPO by emulating its ideas
with a first-order iterative optimization method.

JC PI (θ) = Êt

[
πθ (at |st)

πθold (at |st)
Ât

]
= Êt

[
rt (θ)Ât

]
(4.3)

JC LI P (θ) = Êt
[
min

(
rt (θ)Ât ,clip(rt (θ),1−ε,1+ε) Ât

)]
(4.4)

PPO emulates the idea of Trust Region by setting out a proximal region around an estimated policy prob-
ability ratio as in indicated eq. (4.3), where it uses the concept of importance sampling (also seen in DPG [56]
in section 4.1.1) to obtain the expectation of samples gathered from an old policy under the current policy to
refine its current policy. Equation (4.3) is the performance function of a Conservative Policy Iteration (CPI)
method. This proximal region is set by the clipping ratio ε, as indicated in eq. (4.4), where the performance
function of the CPI method can become the lower bound when the old policy has a higher advantage than the
current policy. The stability of policy updates is ensured by not allowing for too large updates to be applied
to the ’to be updated’ policy. This is done by clipping the probability ratio rt (θ) to the proximal region (1 - ε,
1+ ε). When taking the expectation over a sampled trajectory, then the upper clipping bound makes PPO not
too greedy when having actions that have a large and positive advantage, whereas the lower clipping bound
makes it not too conservative by avoiding actions with a large and negative advantage. An image to illustrate
these clipping bounds is provided in fig. 4.1.

Figure 4.1: "Plots showing one term (i.e., a single timestep) of the surrogate function JC LI P as a function of the probability ratio r, for
positive advantages (left) and negative advantages (right). The red circle on each plot shows the starting point for the optimization, i.e.,
r = 1. Note that JC LI P sums many of these terms" [50]. In the plot JC LI P is indicated as LC LI P .

Here one could argue that PPO is an off-policy method as it samples from the environment using a tra-
jectory created by an old policy. However, policies learned with PPO, update their policy within one policy

4.4. Hierarchical Design in (Deep) Reinforcement Learning 47

iteration, so it is still an on-policy method as PPO learns its policy during interaction with an old policy that is
not that different from the current or the to be updated’ policy. This differs from the current policy and a tar-
get policy used in off-policy methods. So it could be said that PPO is a hybrid as it is in between an on-policy
and off-policy actor method.

The PPO method distinct itself through its simplistic implementation as a first-order iterative optimiza-
tion method that optimizes a surrogate objective with clipping probability ratios. The clipping of the prob-
ability ratios allows for stabilized and sample efficient learning, and exploration can be stimulated by aug-
menting the performance function with an entropy bonus. In addition, PPO allows for shared representations
of the networks of the value and policy function this means that less learning is required as the knowledge is
shared, So this allows for speed up in learning and results in a higher sample efficiency. A way to augment
both value function network parameter sharing and an entropy bonus in a performance function is shown in
eq. (4.5). Where VF stands for value function, S is the entropy bonus, c1 and c2 are coefficients that can be set
based on their relative importance [1].

JC LI P+V F+S
t (θ) = Êt

[
JC LI P

t (θ)− c1 JV F
t (θ)+ c2S [πθ] (st)

]
(4.5)

On a final note, the author [50] implemented PPO with a Generalized Advantage Estimator (GAE) [49]
that was inspired by the use of an advantage function in A2C as proposed in [37] and presented in sec-
tion 4.1.2. The PPO with GAE was then tested on OpenAI environments that used the MuJoCo physics en-
gine, where it showed good results for double inverted pendulum (having non-minimum phase behavior) as
it showed much better sample efficiency than for TRPO with and without A2C. For the more complex and
high-dimensional tasks such as manipulation and locomotion tasks, PPO also outperformed A2C, TRPO with
and without A2C. This shows that the method is scalable to complex and continuous domains.

4.4. Hierarchical Design in (Deep) Reinforcement Learning
Hierarchical Design in Reinforcement Learning or often referred to as Hierarchical Reinforcement Learning
(HRL) and refers to the field that tackles the curse of dimensionality by structuring and/or decomposing
the state and/or action space of the agent’s environment as such that the agent is able to learn with fewer
samples than an agent without Hierarchical Design. Hierarchical Design can be expressed in a variety of
ways by structuring and decomposing the underlying MDP. The decomposition of the underlying dynamics
of an RL problem is done by decomposing it into multiple ’activities’ followed by a structure that links the
multiple activities in a coherent Hierarchical Design.

A few examples of these ’activities’ from literature and their Hierarchical Design can be: the result of
sub-policies defined in a sub-state space, this can be done with the Options framework [59] which allows
the programmer to define sub-policies called Options and let them be structured under a policy over op-
tions. Or an additive combination of value functions with subgoals set by the designer, this can be done with
the Hierarchical Abstract Machines (HAM) [16] framework that allows the programmer to construct multiple
machines that manage action generation. Or by decomposing the value function and bounding the action
space, this can be done with the MAXQ [43] framework that allows the programmer link the sub-tasks in a
tree structure. Or by decomposing the problem with respect to the state space with each having their own
value function and producing an explicit goal for the bottom-level policies this can be done with Feudal Re-
inforcement Learning [13] which allows the programmer to define multiple state-space where each level has
a manager is operating on a more granular part of the state space, thus creating a funnel with increasing level
of detail of the state space.

In the field of Hierarchical Reinforcement Learning, three highly regarded methods were identified [5] that
were common in their reliance on the theory of Semi-MDP [59]. These methods are the Options [59], MAXQ
[16], and Hierarchies of Abstract Machines (HAM) [43] framework. A fourth framework that was not in this
review of Barto [5] – as it does not rely on the Semi-MDP but on the MDP as it is not a temporal abstraction but
a state abstraction – is Feudal Reinforcement Learning [13]. These HRL methods are frameworks that require
the programmer to decompose the problem into ’activities’ this requires the programmer to have the domain
knowledge to identify structures present in an environment. In fault-tolerant flight control, this structure is
not always known. In addition, it is preferred for the general applicability of the control design to have an
HRL method that can learn to decompose the environment’s hierarchical structure.

In this review, the focus is on end-to-end learning of Hierarchical Design through policy gradient rein-
forcement learning. The HAM and MAXQ frameworks have successful implementations with Q-Learning
[43] [16], though they do not have any well-cited implementations with policy gradients for continuous con-

48 4. Literature study part II: State of the Art

trol problems. In addition, these methods require prior knowledge of the environment and its hierarchical
structure. The authors of these methods identified the difficulty that comes with establishing relationships
between the defined ’activities’, and the hierarchical structure of an environment [43] [17]. In this , the HAM
and MAXQ frameworks will not be elaborated as these do not have a proven learning method for their pol-
icy gradient application and – at the time of writing – no end-to-end learning variant of these methods were
found in the literature. For more information about the HAM and MAXQ methods, the reader is advised to
read [43] and [16], respectively.

The focus of this section will be on mainly hierarchical policy gradient reinforcement learning techniques,
as policy gradient techniques is found to be the most suitable technique for continuous and complex real-
world problems, though to render these techniques to be applicable for flight control it needs to be more
sample efficient while remaining adaptive. In increasing the sample efficiency of policy gradient methods, a
look towards Hierarchical Design for policy gradient techniques might provide a solution for sample efficient
and adaptive control for large continuous state spaces [20]. A Deep Reinforcement Learning algorithm with
Hierarchical Design, Hierarchical Deep Deterministic Policy Gradient (h-DDPG) will be presented in section
section 4.4.1 and a variation called Hierarchical Intermittent Deep Deterministic Policy Gradient (HI-DDPG)
in section 4.4.2. In section 4.4.3 a policy gradient implementation of the Options framework, the Option-
Critic Architecture, will be presented.

4.4.1. Hierarchical Deep Deterministic Policy Gradient
A policy gradient method that combines Actor-Critic Design with Hierarchical Design is the novel Hierarchi-
cal Deep Deterministic Policy Gradient (h-DDPG) introduced by [76] that is designed to reuse learned basic
skills. The Hierarchical Design in this method decomposes the problem into a variety of basic skills that can
be learned by Actors of the agent in an end-to-end fashion through a multi-DDPG architecture introduced in
[75]. The multi-DDPG is a single Critic and multi-Actor method that allows for each Actor network to learn
independently of each other. As a result, basic skills can be learned with different requirements and move-
ments. A basic skill is thus an Actor with its own subgoal when it fulfills this subgoal then the Actor is able
to execute a basic task. The multi-Actor architecture in its turn is structured under a dual-Critic structure,
making the Hierarchical Design complete. The duel-Critic enables the compounding of basic skills to solve
for compounded tasks. The duel-Critic has a basic Critic and a meta Critic. The basic Critic is the Critic that is
situated in the multi-DDPG and is tasked with solving basic tasks that result from the mechanics behind the
reward vector that is set by the programmer. At the hierarchical level at which the basic Critic is situated, the
basic skills are able to solve for basic tasks that are not goal-oriented such as rotating a wheel or bending a
joint in a specific direction. The meta Critic focuses on learning compound skills by compounding the basic
skill as a result, the agent is able to solve for compound tasks that are goal-oriented. A compound task would
be to reach a point (x, y, z) in three-dimensional space by using basic skills. An overview with all the discussed
components is provided in fig. 4.2.

Figure 4.2: A Hierarchical Design with Deep Deterministic Policy Gradient, adapted from [76]. The basic Critic layer, indicated in yellow,
needs a reward function – provided by the programmer – that sets the subgoals. The meta Critic layer also needs a reward function that
sets the goal of the agent. Note that the meta Critic receives a more abstract set of states than the basic Critic. So two levels of image
feature abstraction were established to be consistent with the whole Hierarchical Design. Also, note that two kinds of data are used as
state information.

The advantage of this Hierarchical Design is that the skills can be reused for complex tasks and reduces

4.4. Hierarchical Design in (Deep) Reinforcement Learning 49

learning effort for these complex tasks. Another advantage is that the multiple basic skills can be learned at
the same time and that the learning process for both basic skills and compounded skills are learned in one
process and time scale. At the same time, this is a drawback of this method, as both hierarchies are operating
on the same time scale this does not allow for temporal abstraction and decomposition of the environment.

The h-DDPG method acquires high-level skills – compound skills – from a finite set of basic skills. The
method adopted a discrete action space on the higher level for combining these basic skills into compound
skills. As a result of the discrete domain on the high-level, low-resolution compound skills are created that
might not offer much flexibility for continuous motion tasks. In [51] it was found that h-DDPG was not able
to discover new skills during the joint learning of the hierarchical modules. In addition, the h-DDPG method
can have frequent switching of basic skills that can reduce the consistency, smoothness, and might harm the
performance.

The concept of the Meta-Critic in Hierarchical Reinforcement Learning presented here; is taken a step
further by [74] to end-to-end knowledge transfer, where the proposed Hierarchical Meta-Critic Networks
(HMCN) is able to utilize the basic Critic and Meta-Critic networks with a task specified network to distill
meta-knowledge from distribution of related tasks. The meta-knowledge can then be utilized to supervise a
sect of actors that can solve any set of specified tasks.

4.4.2. Hierarchical Intermittent motor control with Deep Deterministic Policy Gradient
A method that is related to the h-DDPG (see section 4.4.1), in regard to the components and motivation, is the
Hierarchical Intermittent motor control with Deep Deterministic Policy Gradient (HI-DDPG) [51] method.
HI-DDPG aims to solve identified challenges in [76] and in the field of reusing learned sub-policies. Where
the compounding of basic skills could result in powerful compound skills but was not able to let the meta
critic set subgoals for the multiple actors that were learning basic skills. As a result, the programmer was
tasked to set these subgoals. The HI-DDPG alleviates the programmer from the task of setting these subgoals
by automatically generating the subgoals by employing two DDPG methods stacked on top of each other.
Where the top-level DDPG sets a sequence of goals for the DDPG method on the lower level, thus these goals
then become the subgoals in regard to the whole architecture. This architecture allows HI-DDPG to mod-
ulate the basic skills using a top-down approach, whereas the h-DDPG had a bottom-up approach as the
compound skills were defined by the basic skills. The similarities can be drawn between Feudal Reinforce-
ment Learning [13] where a high-level manager sets subgoals for the mid-level manager below him. Though
HI-DDPG achieves temporal abstraction as the state space remains equal for each level, whereas Feudal Re-
inforcement Learning achieves state-space abstraction as each level of the manager decreases it operates in
a more granular state-space.

Figure 4.3: A Hierarchical Design with Deep Deterministic Policy Gradient and Intermittent control with a model-based gradient as an
extension, adapted from [51]. Note that there is only one low-level Actor, whereas h-DDPG [76] had multiple low-level Actors.

50 4. Literature study part II: State of the Art

The temporal abstraction capability of HI-DDPG is enabled through its low-level and high-level Actor that
is operating at different time scales. In addition, the high-level Actor operates in the continuous domain (as
opposed to h-DDPG), where it provides continuous-valued goals and duration. These two outputs are then
provided to the low-level DDPG. The low-level Actor then adjusts its basic skills according to the provided
goals within the time horizon. As a result, the HI-DDPG is able to jointly learn control policies on two levels
that are capable of completing composite tasks. An overview of the architecture is provided in fig. 4.3.

Experiments performed on the Puckworld environment showed better exploration behavior of HI-DDPG
than for h-DDPG and its non-hierarchical counterpart. The exploration behavior of HI-DDPG suggests that
it has the capability to find a global optimum [51] and thus was able to achieve the highest reward in this
experiment. In addition, HI-DDPG was found to be computationally efficient, though the agent needed over
2500 episodes to perform better than the flat DDPG and needed 5000 episodes to perform better than h-
DDPG. The HI-DDPG without model-based gradient performed even worse, though this indicates that their
model-based gradient is able to accelerate convergence and learning of the HI-DDPG method.

4.4.3. Option-Critic Architecture
The Option-Critic architecture [4] automatically decomposes its problem domain into a set of temporally
extended actions, which are called Options [59]. A way of viewing these Options is to see them as a set of sub-
policies with each having its own variable time scale in which the Option operates depending on its initiation
state and termination condition. For the Options in [59] the initiation state and termination condition needs
to be set by the programmer, whereas with the Option-Critic, the initiation set is omitted, and the termina-
tion condition is learned. The aforementioned sub-policies are also known as intra-option policies πω and
the variable time scales are now set by their respective termination function βω. The Options are selected
and structured by the main policy called the policy over options πΩ. The Option-Critic architecture learns
these Options in an end-to-end fashion by applying the policy gradient theorem to the intra-option policies,
termination functions, and policy over options, in order to optimize a task that is encoded in a reward func-
tion. The name Option-Critic stems from its similarities with the Actor-Critic Design, where the intra-option
policies with its termination function act as multiple Actor networks that gets selected by a higher level Actor
network (policy over options). The intra-option policy, termination function, and policy over options gets
feedback and update information from their Critic networks that estimate the state-action value function QU

of the options and the advantage function of the policy over options AΩ, as depicted in section 4.4.3.
The advantage of the Option-Critic architecture, according to the experiments performed by [4] with the

four-room environment, is the ability to learn Options from scratch without slowdown of learning when com-
pared to non-hierarchical methods. The method is versatile, as it allows to be combined with other non-
hierarchical reinforcement learning methods and results in comparable to improved learning speed while
learning multiple sub-policies. The sub-policies and termination functions that are part of the learned Op-
tions, when visualized, allow for better interpretability of learned control law. In addition, the Option-Critic
can act as a baseline for transfer learning as these learned options can be reused for other similar domains.
Behavior that shows that it can act as a baseline for transfer learning is the proven ability to recover from
sudden changes made in the environment. Also, the Option-Critic can fit in learning with different base deep
reinforcement learning algorithms. This shows that Option-Critic is a general framework and also is able to
generalize for changes made to the environment.

As opposed to h-DDPG [76] and other HRL methods, the Option-Critic only requires the programmer to
specify the number of desired options. The Option-Critic framework automatically generates subgoals for
the low-level policies and allows for more control of specialization of low-level policies by setting pseudo-
reward functions. In addition to action space decomposition, the state space can also be decomposed by
setting initiation states for each low-level policy. Next to the fact that Option-Critic does not require sub-
goals. It also does not require additional rewards, demonstrations, multiple problems, or any other special
accommodations.

Though the Option-Critic still has open-ended problems, one of them being that all Options are converg-
ing to the same intra-option policy behavior if learning is set to a continual learning setting. This problem
can be derived from the goal of the Option-Critic method, which is to learn Options that maximize the ex-
pected return in the current task, but as a consequence of optimizing for the return, the termination gradient
tends to shrink Options over time. This is expected since in theory, primitive actions should be sufficient
for solving any MDP. This problem seems to be common in the field of HRL, as it was also identified by [19]
with their Stochastic Neural Networks for Hierarchical Reinforcement Learning (SNN-HRL). They aimed to
learn useful skills during the pre-training environment and then leverage the acquired skills for faster learn-

4.4. Hierarchical Design in (Deep) Reinforcement Learning 51

ing during operation and interpretability. A similar idea is behind the Option-Critic framework, and just like
the Option-Critic framework, the SNN-HRL also encountered the same problem as the acquired skills could
eventually converge to the same policy behavior the authors of [19] aimed to solve this phenomenon with an
information-theoretic regularizer, specifically they used a mutual information (MI) bonus, using an entropy
function, that was added to the reward function. The use of the MI bonus proved successful for diverse skill
learning, but does not always boost performance. So most likely, a tradeoff should be made here.

Figure 4.4: An overview of the Option-Critic architecture, image was adapted from [4]

adInfoHRL [42] also aims at retaining Options for an extended period and by keeping the specializa-
tion through mutual information (MI) maximization, where this method adds an extra component called
the advantage-weighted importance. The advantage-weighted importance makes use of the multiple modes
present in the advantage functions, which allows adInfoHRL to divide the state-action space instead of only
the state space as for [32]. Though its proven success is built on the dependence of advantage functions with
multiple modes and a deterministic policy gradient method to learn the Options. The adInfoHRL should be
applicable to stochastic gradient policies, but the author admits that this still requires further investigation
[42].

Another way of solving the problem of intra-option policy behavior convergence, is by fixing the intra-
option policy and as an added benefit have a much higher sample efficiency. A method to do this is a hybrid
form of end-to-end learned Options called the Option-Interruption architecture [32], where the Interruption
mechanism is mainly based on learning a termination function as is the case for the Option-Critic archi-
tecture. The large difference being that the Option-Interruption method allows for hand-crafted intra-option
policies to be included, enabling established control laws to be incorporated. As a consequence, the method’s
search space is considerably reduced and allows for a higher sample efficiency when learning these intra-
option policies. Though in some circumstances, such as in flight recovery, incorporating human knowledge
is complicated and might not be sufficient, thus the author [32] suggests combining learned Options with
human-suggested Options.

The results presented in [4] were from environments that did not have a continuous state space but a
discrete action space. Research in the strength of the Option-Critic for continuous state and action space
was conducted [29] using the PPO method with a deliberation cost [22] that should prevent Options from
switching too much. The results indicate that adding deliberation cost results in faster learning and that the
Option-Critic with PPO has proven successful for continuous action space, though more research is needed
for setting a good deliberation cost. This implementation of the Option-Critic showed significantly better
performance for environments with clear compositionality. In flight control, this compositionality might be
apparent in the distinction between faster and slower dynamics present in aircraft.

The Option-Critic is used in an active research field and has many directions such as end-to-end Option

52 4. Literature study part II: State of the Art

learning, transfer learning, meta-learning, and multi-task learning. The Option-Critic can be extended to
multi-level hierarchies [47], or stacked on top of each other to create a Double Actor-Critic architecture [77]
to learn options that also forms a general framework for policy optimization algorithms such as PPO.

4.5. Conclusion
The goal of this chapter is to provide an answer to the second research question: What are the current state-
of-the-art reinforcement learning methods that are suitable for flight control? This question is answered
by answering its sub-questions that are restated here:

a) What is the most suitable state-of-the-art policy gradient reinforcement learning technique?

A distinction of the reviewed policy gradient reinforcement learning (PGRL) methods are made on the
basis of their focus of solving stable learning for high-dimensional state spaces. Deep Reinforcement Learn-
ing in section 4.1 focusses on computational efficiency, sample efficiency, and high-dimensional continuous
problems, whereas in Approximate Dynamic Programming in section 4.2 focusses on designing online learn-
ing methods for uncertain dynamic systems. Both fields face challenges with good exploration and at the
same time having fast convergence through high sample efficiency. The policy optimization methods in sec-
tion 4.3 intently focus only on the challenge of stable learning for large continuous domains while having
good exploration and high sample efficiency. From all non-hierarchical PGRL frameworks, the Policy Prox-
imal Policy (PPO) method implemented with an Actor-Critic design and Generalized Advantage Estimation
(GAE) function is found to be the most suitable to achieve stable and sample efficient learning for control in
a high-dimensional, continuous and stochastic domain. The aforementioned has been proven for MuJoCo
physics environments but has not been investigated for flight control of passenger carrying aircraft. Thus an
initial investigation in the properties of the PPO method with GAE and Actor-Critic Design is conducted in
this research.

The PPO method allows for stochastic policies to be sample efficient and retain their on-policy learn-
ing capability, whereas Deep Deterministic Policy Gradient (DDPG) exchanges the stochastic policy for more
sample efficiency. The drawback is that the DDPG method is an off-policy method. As a consequence, the
method is not adaptable in an online setting. The lessons learned from the DHP and IDHP method can be
applied to the final control design. One of the learned lessons is that both methods estimate the gradient
of the value function directly. Additionally, IDHP utilizes an online incremental model estimator to enable
online-only learning. Though the DHP and IDHP methods are learning a deterministic policy and no exist-
ing implementation and analysis were performed on PPO combined with IDHP methods. In addition, the
mathematical compatibility of these methods is not yet proven. As a consequence, it is preferred to keep the
gained insights of the DHP and IDHP as a possible add-on for final control design.

A benefit of IADP methods is that they can be applied as online-only training methods that provide a
proven solution for flight control. The online-only training capability in IDHP is proven to work for small
state spaces where it can provide for control of states with a short time separation. As a result, IDHP was able
to perform full-body rate control by using two IDHP agents. One agent one for longitudinal and the other for
lateral control. Though, IDHP for full altitude control with an extended state space showed slower learning.
In this regard, offline training methods used in Deep Reinforcement Learning such as Proximal Policy Opti-
mization, are able to find more complex control behavior, and when combined with Hierarchical Design, can
have faster learning. The aforementioned characteristics are mainly based on achieved successes in complex
motion control such as locomotion and manipulation tasks. These demonstrations show more promising
performance in terms of adaptivity, generalizability, and possibly sample efficiency than online-only training
methods such as IDHP.

b) What is the most suitable state-of-the-art hierarchical policy gradient reinforcement learning tech-
nique?

Hierarchical Design in Deep Reinforcement Learning in section 4.4 decomposes a complex problem into
multiple activities connected by a hierarchical structure. The idea behind Hierarchical Design is to abstract
a complex problem, and as a consequence, learn faster than methods without Hierarchical Design. The re-
viewed methods are selected on either of two aspects: Hierarchical Design frameworks that have proven

4.5. Conclusion 53

implementations with policy gradient reinforcement learning. Secondly, the possibility to have an end-to-
end learning algorithm that requires minimal prior knowledge. The Option-Critic architecture is found to be
the most suitable as the temporal abstraction capability provides an opportunity to link this to the time scale
separation present in flight control. The method’s ability to recover from sudden changes made in the envi-
ronment is beneficial for stochastic phenomena such as turbulence during flight or sudden actuator failure.
An added benefit is that this method fits with any base policy gradient reinforcement learning method i.e.,
Proximal Policy Optimization. The versatility of the Option-Critic allows for applying domain knowledge by
setting pseudo-rewards or initiation states. Though, demonstrations have shown that this is not required to
have good performance. In addition, Option-Critic architecture is scalable to large domains as it interfaces
with existing deep reinforcement learning algorithms and has higher sample efficiency for environments with
high compositionality that will be of great benefit for a flight controller during online operation.

The Hierarchical- and Intermittent Deep Deterministic Policy Gradient (h-DDP and HI-DDPG) have shown
that hierarchical policy gradient reinforcement learning methods are capable of learning advanced complex
control behavior by learning and reusing basic skills. The deterministic setting allowed for a replay buffer to
be used, but at the same time, required these methods to learn in an off-policy setting. h-DDPG, HI-DDPG,
and Option-Critic have the ability to generalize well to changes made in an environment, but h-DDPG and
HI-DDPG are not general frameworks that can interface with both off-policy and on-policy methods. The
Option-Critic architectecture is a general framework for Hierarchical Design and allows for straightforward
application for flight control in an on-policy fashion.

In conclusion, the use of Option-Critic architecture in conjunction with the Proximal Policy Optimization
algorithm should provide a state-of-the-art hierarchical policy gradient reinforcement learning technique
that achieves sample efficient, adaptive, and continuous control for high-dimensionality and stochasticity
present in aircraft dynamics.

5
Preliminary Analysis

From the literature study a most promising hierarchical policy gradient technique, the Option-Critic archi-
tecture, was selected that will be tested in this chapter for its beneficial properties which are adaptivity and
sample efficiency for large state spaces. The testing will be done by comparing a hierarchical policy gradient
reinforcement learning technique to its non-hierarchical variant in a set of experiments.

The aim of this preliminary analysis is to verify and possibly find additional benefits of hierarchical meth-
ods, to be precise this analysis should provide an answer to research question three, as formulated in sec-
tion 2.2 and restated here:

3. What are the benefits of the proposed hierarchical policy gradient technique over the proposed non-
hierarchical policy gradient technique on a mass-spring-damper system when exposed to unex-
pected changes?

(a) What is the performance regarding adaptivity?

(b) What is the performance regarding sample efficiency?

(c) What is the performance regarding reference tracking?

In answering the research question, a more in-depth look will be taken into the algorithms of the pro-
posed hierarchical and non-hierarchical agent in section 5.1. Secondly, the problem setup for the agents in
section 5.2. Thirdly, the experiment setup of the environment of the agents in section 5.2. Fourthly, the re-
sults regarding adaptivity, sample efficiency, and reference tracking in section 5.3. Lastly, the conclusion in
section 5.4.

5.1. Agents
In answering sub-research question three in chapter 6, it was found that the Proximal Policy Optimization
method implemented with an Actor-Critic Design and GAE (see section 4.1.2 and section 4.3.2) is the most
suitable non-hierarchical method. The resulting agent will be known as PPO agent and its algorithm is pre-
sented in algorithm 1. Consecutively, in answering sub-research question four in chapter 6, it was found that
the Option-Critic architecture is the most suitable hierarchical policy gradient method and will be imple-
mented on top of the PPO agent implementation. The resulting agent will be known as the Proximal Policy
Option-Critic (PPOC) agent and its algorithm is shown in algorithm 2. Lastly, the hyperparameter optimiza-
tion method used for both agents will be elaborated in section 5.1.1.

55

56 5. Preliminary Analysis

Algorithm 1 Actor-Critic with Proximal Policy Optimization

Require:
agent hyperparameters αθ, αϑ, γ, λ, ε, T
differentiable stochastic policy parameterization π̂(a|s,θ)
differentiable state-value function parameterization V̂ (s,ϑ)

1: s ← s0

2: while s′ 6= terminal do
3: a ← π̂(a | s,θ)
4: for iteration = 1,2, . . . do
5: procedure RUN POLICY π̂θol d

IN ENVIRONMENT FOR T TIME STEPS

6: take action a while in s and observe s′,r
7: end procedure
8: procedure COMPUTE ADVANTAGE ESTIMATES Â1, . . . , ÂT

9: δt ← Rt+1 +γV̂ (St+1,ϑ)− V̂ (St ,ϑ)
10: Â ← δt +γλÂ
11: end procedure
12: end for
13: procedure OPTIMIZE SURROGATE PERFORMANCE FUNCTION W.R.T. θ
14: for K optimizer epochs with minibatches M do

15: θπ← θπ+αθπ ∂J (θ)PPO

∂θπ

16: ϑv ←ϑv −αϑv
∂δt
∂ϑv

17: end for
18: end procedure
19: s ← s′
20: end while

5.1.1. Hyperparameter Optimization
In general, reinforcement learning agents are sensitive to hyperparameters. The PPO and PPOC agents have
the same hyperparameters, except that PPOC has an additional hyperparameter which is the number of op-
tions n. In order to get the best performance and to make the agents comparable, the same hyperparameter
optimization (HPO) method is used for all agents. In order to study the behavior the Option-Critic, the num-
ber of options is not treated as a hyperparameter. Instead three settings are chosen for n, namely n=2, n=4,
n=8. As a result of the settings of n, three different Option-Critic agents are created: PPOC-2, PPOC-4 and
PPOC-8. The set of hyperparameters that need to be tuned are in table 5.1. So in total there are four agents
with the same hyperparameters and hyperparameter optimization method. As a result this makes the tuning
as fair and comparable as possible for the scope of this research.

Table 5.1: Hyperparameter value range for hyperparameter optimization using the TPE sampler. The values indicated without brackets
are categorical values for a discrete distribution to select one of the values that is provided. The values with a bracket indicate the lower
and upper value, in this range a uniform logarithmic and continuous distribution is employed to select a value. The hyperparameter
values are taken from [23], [50], [9] and [26].

Hyperparameter Value

Actor batch T 128, 256, 512, 1024, 2048, 4096
Clipping ratio ε 0.1, 0.2, 0.3, 0.4
Optimization epochs K 1, 5, 10, 20
Optimization batch size M 16, 32, 64, 128, 256
Learning schedule l r linear, constant
Optimization step size αθ [1e-6, 5e-3]
Entropy coefficient S [1e-8, 1e-4]

Optuna [2] is used as HPO method, because for its ease of use and optimization performance. Optuna
is an API that uses the define-by-run principle, which allows the user to dynamically construct its hyper-
parameter space. After construction of its hyperparameter space, Optuna formulates the hyperparameter
optimization by minimizing an objective function that takes a set of hyperparameters – from its hyperparam-
eter space – as an input and returns its evaluation score. The objective function gets gradually built through

5.1. Agents 57

Algorithm 2 PPOC: Proximal Policy optimization with Option-Critic

Require:
agent hyperparameters αθπ , αθΩ , αϑβ , αϑϑ , γ, λ, ε, T , n
differentiable stochastic intra-option policy parameterization πω(a|s,θπ)
differentiable termination function parameterization βω(s,ϑβ)
differentiable stochastic policy over options parameterization πΩ(ω|s,θΩ)
differentiable option-value function parameterization VΩ(s,ω,ϑϑ)

1: s ← s0

2: ω←πΩ(ω | s,ϑϑ) with softmax policy
3: while episode 6= terminal do
4: for iteration = 1,2, . . . do
5: procedure RUN POLICY πol d

ω IN ENVIRONMENT FOR T TIME STEPS

6: at ←πω(at | st ,θπ)
7: take action at while in st and observe st+1,rt

8: if βω terminates in st+1 then
9: choose new ωt+1 according to softmax πΩ(ωt+1 | st+1,ϑϑ)

10: end if
11: end procedure
12: procedure OPTIONS EVALUATION: COMPUTE ADVANTAGE ESTIMATES FOR T TIME STEPS

13: δt ← rt+1 +γVΩ(st+1,ωt ,ϑϑ)−VΩ(st ,ωt ,ϑϑ)
14: ÂG AE

Ω (st ,ωt) ← δt +γλÂG AE
Ω (st ,ωt)

15: Âβ

Ω
(st ,ωt) ←∑k

ω=0πΩ(ωt | st ,ϑϑ)VΩ(st ,ωt ,ϑϑ)−Vω(st ,ϑϑ)
16: end procedure
17: procedure OPTIONS IMPROVEMENT

18: for ω=ω0,ω1, ...,ωk do
19: θol d

π ← θπ
20: for K optimizer epochs with minibatches M do

21: θπ← θπ+αθπ ∂ Ĵ PPO(θπ)
∂θπ

22: ϑβ←ϑβ−αϑβ
∂βω

(
st+1,ϑβ

)
∂ϑβ

Âβ

Ω
(st ,ωt)

23: θΩ← θΩ+αθΩ ∂ logπΩ(ωt |st ,ϑϑ)
∂θΩ

ÂG AE
Ω (st ,ωt)

24: ϑϑ←ϑϑ−αϑϑ
∂(G−VΩ(st ,ωt ,ϑϑ))2

∂ϑϑ
25: end for
26: end for
27: end procedure
28: end for
29: end while

58 5. Preliminary Analysis

its interactions with the agent and its hyperparameter space. A set of hyperparameters is statistically sampled
based on the history of previously evaluated hyperparameters.

This sampling process in Optuna is done by a sampler. Optuna allows for a variety of samplers and
pruners to be employed for its optimization process. The employed environment model is not compatible
with the pruners that are provided by Optuna, thus the pruner capabilities are not used. The Tree-Structured
Parzen Estimator (TPE) sampler method is employed for the hyperparameter optimization. TPE is a sequen-
tial model-based optimization (SMBO) method. These methods approximate the performance of hyperpa-
rameter by sequentially constructing models based on historical measurements [6]. From these models, it
subsequently choose new hyperparameters to test. TPE distinct itself by its ability to sample for categorical
variables and its runtime of each iteration during the optimization process. TPE’s iteration runtime scales
linearly in historical measurements and linearly in the number of hyperparameters that are part of the op-
timization. As opposed to using a Gaussian Process Approach which scales cubically in the number of hy-
perparameters. Thus TPE was chosen as a suitable method for a large hyperparameter space and for scarce
computational resources [7] as is the case for this research.

5.2. Experiment setup
The experiments are conducted on a mass-spring-damper system as elaborated in section 5.2.1. The reward
function that is used to learn the agent the desired behavior is found in section 5.2.2. The training setup can
be found in section 5.2.3. The setup for testing adaptivity can be found in section 5.2.4. The evaluation of
sample efficiency can be found in section 5.2.5.

5.2.1. Environment setup
In order to find differences between these agents, different control tasks in different environments were setup
using an extendable mass-spring-damper-N system (MSD-N). The letter N is replaced by an integer defining
the number of serially coupled MSD systems, fig. 5.1 provides an example of a MSD-3 system.

Figure 5.1: MSD-3, a mass-spring-damper system with three masses. The image is from [10].

The need for testing on multiple environments stems from that algorithm performance can vary across
environments and the best performing algorithm across all environments is not always clear. A way to do
this is to have an environment that can be increased in complexity. So an extendable MSD system was used
for the experiments of this research. In addition, the extendable MSD system has similar dynamics and pro-
vides for testing in different settings that can approximate similar control complexity that is found for flight
control. Working directly with the aircraft model would have resulted in less insight into the agent. Since
aircraft dynamics are more complex and less intuitive thus aircraft model complexity would have increased
the complexity of analyzing the results that provide understanding of agent behavior.

The approach for testing agent behavior for simplified flight control conditions is given in table 5.2. The
experiments are numbered and these numbers will be used throughout the results. Each experiment is de-
fined by its environment, number of tasks, number of actions and equivalence to flight control. The envi-
ronment varies with the number of masses in the mass-spring-damper system. The number of tasks refers to
how many states are being tracked. The task that must be performed by the agent is a reference tracking task
for a specific state. In the case that only one task is set for the experiment then this will be a reference tracking
task of either the velocity or position state of the first mass m1 as depicted by fig. 5.1. The reference signal
is a sinus. If the experiment has two tasks, then an reference tracking task will be added to the system. This
second task has a zero reference signal and it will either track a velocity or position state of mass two m2. The
number of actions refers to how many input variables are accessible for the agents. The equivalence refers to

5.2. Experiment setup 59

how the results from the experiment might give insight to either longitudinal or lateral control. In total there
were 18 experiment combinations, only four have been selected that were judged as the most relevant for the
preliminary analysis.

Table 5.2: Overview of experiment setups that is used to compare the agents.

Experiment Environment Number of tasks Number of actions Equivalence

1 MSD-1 1 1 Longitudinal control
2 MSD-2 2 2 Lateral control
3 MSD-3 1 1 Longitudinal control
4 MSD-3 2 2 Lateral control

Experiment 1 and 2 emulate the minimum amount of state and action space for its equivalence. Experi-
ment 3 and 4 emulate a higher dimensional state space for flight control. In general lateral control is a more
complex form of control than longitudinal control. In the case of these MSD systems this has been emu-
lated by providing lateral control to have two tracking tasks, making the control task more complex for the
agent. The setup of experiment 1 to 4 should provide results that give insight into the benefits of hierarchical
reinforcement learning.

When setting up the tasks, the QR lon
and QR lat

matrices in eq. (5.3) (to be presented in section 5.2.2) remain
the same for all longitudinal and lateral tasks. An example of a P matrix for a MSD-3 system is provided in
eq. (5.1) and eq. (5.2). Where the pi j and vi j values can be set to either 0 or 1. When choosing for a position
tracking task then the pi j have to be set to 1 and the vi j set to 0, vice versa for velocity tracking.

P MSD-3 = [
p11 0 0 v11 0 0

]
QR lon = [

1
]

(5.1)

P MSD-3 =
[

p11 0 0 v11 0 0
0 p22 0 0 v22 0

]
QR lat =

[
1 0
0 100

]
(5.2)

The value in eq. (5.1) was found by an trial-and-error process and proved to provide the best tracking
performance and learning for the given experiment setups. The found value was re-used for eq. (5.2) and then
accordingly tuned for the second tracking task which is 100 times larger than the value for the first tracking
task.

5.2.2. Reward function
For continuous optimal tracking control a quadratic cost-to-go function implementation is taken from [25]
and adapted for extra control on the magnitude of actions as can be seen in eq. (5.3). [25] based the imple-
mentation on the implementation of [80], where it has been adapted to a incremental variant of a Approxi-
mate Dynamic Programming (iADP) method where no time-scale separation is assumed and defines an one-
step cost function, which is also expressed in eq. (5.3). This reward function will enable H∞ control which is
required as this flight controller is designed to be adaptive throughout its complete lifetime. In addition this
reward function provides the ability to track continuous MIMO systems.

rt+1 = r
(
sR

t , st+1
)=−[

P st+1 − sR
t

]T
Q

[
P st+1 − sR

t

]
(5.3)

Where P is the state selector which defines which states are selected for tracking, st being the state vector
at time t , sR

t being the reference signals, Q being the weighting matrix where the magnitude of each entry
determines the priority of tracking with respect to each entry.

sMSD-2 = [
x1 x2 ẋ1 ẋ2

]T
sRMSD−2 = [

ẋR
1 ẋR

2

]T
aMSD-2 = [

F1 F2
]T

(5.4)

Where sMSD-2 is an example of a state vector for a mass-spring-damper system with two masses, where x1 and

ẋ1 are the position and velocity of mass 1, respectively. Reference state vector sRMSD−2
contains the reference

signals for each velocity of a mass and aMSD-2 contains the control input of each mass, in this case it is a force
input.

P MSD-2 =
[

0 0 1 0
0 0 0 1

]
QRMSD-2 =

[
q11 0
0 q22

]
(5.5)

60 5. Preliminary Analysis

P MSD-3 =
[

p11 0 0 v11 0 0
0 p22 0 0 v22 0

]
QRMSD-3 =

[
q11 0
0 q22

]
(5.6)

Equation (5.5) provides the matrices where the settings of the reward function can be set. In this case the
P matrix is set for velocity tracking control. During this research the values in QR will be tuned for tracking
performance.

5.2.3. Reward shaping and termination of training
The shape of the reward function is set by the values in the Q matrix as given in eq. (5.5) for a MSD-2 environ-
ment. First the agents will perform a velocity reference tracking task followed by a position reference tracking
task on the same environment. From the first task, lessons are learned on how to shape the reward for the
position tracking task. If the velocity tracking task was performing well, then the Q matrix for the velocity
tracking will be re-used for the position tracking task. This process will start with the simplest environment
which is a mass-spring-damper system with one mass referred as MSD-1 in table 5.2. This process repeats it-
self for increasing mass element for the MSD system. In principle each environment and task requires its own
reward settings. For the purpose of this preliminary research the reward settings are kept as simple as possible
by re-using the previous setting, if possible. Since the focus of this research is to compare a non-hierarchical
agent with an hierarchical agent as to prove the value of a hierarchical architecture over a non-hierarchical
one.

5.2.4. Adaptivity to changing environment dynamics
Adaptivity is tested by changing the internal dynamics of a mass-spring-damper system. The change in dy-
namics is done by changing the sign of either the spring or damping constant this depends on the tracking
task. The change of sign will be from positive to negative this should make the system unstable and provide
insight into how well the agents can adapt. The constant that is expected to be the most critical constant for
the reference tracking task are the constants for the first mass m1. So the spring and damping constant of m1

will be changed during the adaptivity test.
There are two kind of tests, one where the spring constant is changed from k1 = 4 to k ′

1 =−1, this will be
called the k-test. The second test where the damping constant is changed from c1 = 3 to c ′1 = −1, this will
be called the c-test. To have an overview where these coefficient are in the complete system, see fig. 5.1. In
the case of MSD-3, the second test did not result in an unstable system so a third test was designed for MSD-
3, where c1 = 3 was changed to c ′1 = −1.5 this will be called the c−1.5-test. An overview of the eigenvalues of
MSD-1, MSD-2 and MSD-3 are provided in table 5.3, table 5.4 and table 5.5, respectively. In the tables it can be
seen that the introduced change to the constants result in unstable systems, as there are positive eigenvalues
present. In the case of MSD-3 the new eigenvalues introduce large oscillatory behavior.

Table 5.3: Overview of eigenvalues for MSD-1 with the eigenvalues during nominal condition and the eigenvalues after their respective
adaptivity test. The tests don’t accumulate on top of each other. The eigenvalues of the tests are the result of executing only one test.

phase λ1 λ2

nominal -1.734 -5.766
k-test +0.320 -7.820
c-test +1.250+2.905j +1.250-2.905j

Table 5.4: Overview of eigenvalues for MSD-2 with the eigenvalues during nominal condition and the eigenvalues after their respective
adaptivity test. The tests don’t accumulate on top of each other. The eigenvalues of the tests are the result of executing only one test.

phase λ1 λ2 λ3 λ4

nominal -19.716 -0.962+1.134j -0.962-1.134j -0.860
k-test -20.256 +0.298 -1.019 -1.523
c-test -12.032 +0.212+1.857j +0.212-1.857j -0.892

5.2.5. Sample efficiency
Initial sample efficiency runs were performed for a few experiment setups. In these runs the adaptivity test
was not activated, thus the agent was learning for 240k time steps. A problem with this learning setup for the

5.3. Results and discussion 61

Table 5.5: Overview of eigenvalues for MSD-3 with the eigenvalues during nominal condition and the eigenvalues after their respective
adaptivity test. The tests don’t accumulate on top of each other. The eigenvalues of the tests are the result of executing only one test.

phase λ1 λ2 λ3 λ4 λ5 λ6

nominal -27.687 -7.878 -2.218 -0.399+1.174j -0.399-1.174j -0.168
k-test -27.688 -9.571 -0.807+1.324j -0.807-1.324j +0.292 -0.168
c-test -27.673 -0.416+3.979j -0.416-3.979j -0.038+1.295j -0.038-1.295j -0.168
c−1.5-test -27.672 +0.165+3.838j +0.165-3.838j +0.005+1.349j +0.005-1.349j -0.168

agent is that an agent might require more time steps to reach a higher reward or less time steps to converge
to a reward level. Thus an agent might require having a varying amount of time steps to learn compared to
other agents. A solution to provide the agent with varying time steps to learn is to provide it with an automatic
termination rule. The purpose of this rule is to terminate the whole learning process when a specific reward
level or error has been reached. An advantage of this automated method of terminating learning is that it
makes the runs easy to compare to each other by just looking at how many time steps an agent needs to learn
for a specific reward level. A few drawbacks of using this termination rule, a priori knowledge is required to
set the reward error or level in the case of this experiment setup it might require too much tuning. Specifically
it would require tuning for both velocity and position tracking for each experiment. Another drawback is that
the results cannot be easily compiled into one graph using confidence intervals or interquartile range.

So the total time steps was affixed for the sake of simplicity when compiling numerous runs into one
graph and sample efficiency is evaluated by using the learning curves coming from the adaptivity tests for
each experiment see fig. 5.14, fig. 5.15, fig. 5.16 and fig. 5.17. Though fixing the total time steps when looking
at sample efficiency of agents comes with their own disadvantages. One of them is that a limited view of the
agent’s performance is portrayed by the graphs, as the learning of the agent is arbitrarily cut off. As a possible
result the agent will not have converged to its reward level.

Luckily this does not have to a problem in answering the sub-research question. The focus here will be on
minimizing the amount of samples required to reach a satisfactory tracking performance. The agent having
the least amount of samples required while reaching the same level of tracking performance will be the most
sample efficient agent. Thus the focus will be on the samples required in a fixed time period and not the
potential performance over an unlimited time period.

5.3. Results and discussion
A selection of four experiment setups were used to obtain these results, these experiment setups are a subset
of 18 possible configurations with this mass-spring-damper system. The amount of masses, actions and tasks
make up the set of configuration variables. After selecting these configuration variables, the experiment setup
could use one of two adaptivity tests and one of the two tracking modes. The selection criteria for the variables
of the experiment setup was focused around testing and proving the advantages of hierarchical reinforcement
learning agents over non-hierarchical agents by expanding the state space while still resembling flight control.

The results from these experiments are summarized in table 5.6, table 5.7, table 5.8 and table 5.9 from
section 5.3.2. These results center around two key aspects, tracking performance consistency and recovery
consistency that show a perspective of how sample efficient and adaptive the agents are. From these ta-
bles, the most promising controller setups for the continuation of this research were selected for analysis of
tracking and recovery performance though their time traces, the results can be found in fig. 5.10, fig. 5.11,
fig. 5.12 and fig. 5.13 from section 5.3.6. to have a complete picture and grasp of the data presented in the
table, a selection of the learning curves are presented here, additional learning curves and times traces are
provided in appendix C. The learning curves give a better understanding about the adaptivity and sample
efficiency of these agents but omit an understanding of tracking performance, thus the results presented in
these three sections section 5.3.3, section 5.3.4 and section 5.3.6 should provide a more holistic view of track-
ing performance, adaptivity and sample efficiency. For these three aspects the results of each agent in the
aforementioned sections, will be compared along three axes: experiment setup, adaptivity tests and tracking
mode.

5.3.1. Hyperparameter Optimization
After an thorough initial analysis the following additional observations were made. The PPOC agents were not
able to be more sample efficient than PPO using the TPE hyperparameter search and this experiment setup.

62 5. Preliminary Analysis

Control mode A
EXP X and EXP Y

Velocity
tracking

k-test

table entry
EXP X and EXP Y

c-test

Table entry
EXP Y

Time trace
EXP Y

c-test

Table entry
EXP X and EXP Y

Position
tracking

k-test

Learning curve
EXP X

Learning curve
EXP Y

Table entry
EXP X and EXP Y

Table entry
EXP Y

Table entry
EXP X

Table entry
EXP X

Learning curve
EXP X

Learning curve
EXP Y

Figure 5.2: Built-up of results and comparisons

In fig. 5.3, the PPO agent used the optimal hyperparameters of PPOC-2 for an experiment using MSD-2. From
this figure, it can be seen that the PPO agent is still more sample efficient than the most sample efficient PPOC
agent while using hyperparameters that were not optimized for PPO. Though PPO is not stable throughout the
whole run. A more fundamental explanation about PPOC being less sample efficient can be read in chapter 6.

The effects of hyperparameter tuning on the Option-Critic architecture can have considerable effects on
learning performance. The same set of hyperparameters will result in similar adaptivity behavior over the
different experiments, though the same hyperparameters cannot provide the same sample efficiency perfor-
mance for different experiments before the activation of the adaptivity test for the PPOC agents, see fig. 5.4
and fig. 5.5. Where the agents are displaying consistent and distinctive indication of their sample efficiency.
From these figures it can be concluded that hyperparameter tuning provides better agent behavior in terms
of sample efficiency and adaptivity. But tuning for hyperparameters will not give more insight into how the
agent will perform better than its non-hierarchical counterpart.

In order to enable higher sample efficiency for all PPOC agents, the TPE optimization should be repeated
for all agents for all experiment setups. Given the fact that hyperparameter tuning is time-consuming and re-
quires considerable computational resources to find optimal hyperparameters that are general enough while
still retaining high sample efficiency and adaptivity to various circumstances. In the case of this research the
various circumstances are the different experiment setups, tracking and control modes. And taking into ac-
count these factors and the information from the initial plots in fig. 5.4 and fig. 5.5. Then the effort required
to perform hyperparameter tuning for each of these cases, should be taken into good consideration if it is
worth the time and resources.

In addition the focus of this research is on analyzing specific properties of the hierarchical component of
the Option-Critic architecture compared to its counterpart that is not using this component. So this means
the benefits of using options should be analyzed. The amount of options is also a hyperparameter and to
analyze the effect of this specific hyperparameter and property, the other hyperparameters should remain
constant for a fair comparison between these different agents. Thus hyperparameter tuning for all hyperpa-
rameters does not provide extra relevant information in terms of answering the sub research question that
started this preliminary analysis. Therefore for the continuation of the presentation of the results, the agents
will all have non-optimal hyperparameters implemented unless when explicitly is stated that optimal hyper-
parameters were used.

5.3. Results and discussion 63

Figure 5.3: Hyperparameter Analysis for a MSD-2 with two tasks. Each line represents the interquartile range taken over 20 independent
runs with different seeds.

Figure 5.4: Results of velocity tracking in experiment 3 with the spring constant adaptivity test. The PPOC agents had their hyperparam-
eters tuned with TPE optimization process. The hyperparameters of PPO were taken from the implementation of stable baselines [26]
and was tuned for general optimal behavior.

64 5. Preliminary Analysis

Figure 5.5: Results of velocity tracking in experiment 3 with the spring constant adaptivity test. The PPOC agents were not tuned. The
same parameters as in fig. 5.4 were taken for PPO.

5.3.2. Overview of all experiments
An overview of all the runs are presented in this section, the analysis of these results are presented in sec-
tion 5.3.3 and section 5.3.4. In those sections the agents are compared amongst experiment setup, adaptivity
test and tracking mode. Note that the entries for the nominal case in each table are not matching exactly for
the tables of velocity and position tracking. This discrepancy is inherent to the stochasticity of these agents.
For velocity tracking a total of 800 runs were performed. These runs were split up in runs with c-test and
k-test in table 5.6 and table 5.7, respectively. For position tracking a total of 800 runs were performed. These
runs were split up in runs with c-test and k-test in table 5.8 and table 5.9, respectively.

Table 5.6: An overview of the consistency tracking rates for the damping constant adaptivity test while doing velocity tracking.

EXP PPO PPOC-2 PPOC-4 PPOC-8
nominal recovery nominal recovery nominal recovery nominal recovery

1 12/18 00/18 19/20 13/20 20/20 20/20 19/20 17/20
2 14/18 00/18 20/20 02/20 15/19 04/19 16/20 02/20
3 11/20 00/20 20/20 04/20 20/20 19/20 17/20 18/20
4 12/20 09/20 16/20 08/20 15/20 06/20 13/20 07/20

5.3. Results and discussion 65

Table 5.7: An overview of the consistency rates for the spring constant adaptivity test while doing velocity tracking.

EXP PPO PPOC-2 PPOC-4 PPOC-8
nominal recovery nominal recovery nominal recovery nominal recovery

1 15/19 00/19 19/20 00/20 20/20 00/20 18/19 00/19
2 07/07 00/07 16/16 00/16 08/08 00/08 14/14 00/14
3 11/20 00/20 20/20 03/20 20/20 00/20 17/20 01/20
4 11/17 00/17 16/20 01/20 14/19 00/19 13/20 00/20

Table 5.8: An overview of the consistency tracking rates for the damping constant adaptivity test while doing position tracking.

EXP PPO PPOC-2 PPOC-4 PPOC-8
nominal recovery nominal recovery nominal recovery nominal recovery

1 20/20 20/20 18/19 04/19 16/20 00/20 19/20 01/20
2 00/20 01/20 04/20 02/20 04/20 00/20 01/20 00/20
3 12/20 14/20 16/20 19/20 17/20 18/20 13/20 18/20
4 01/20 00/20 00/20 00/20 00/20 00/20 00/20 00/20

Table 5.9: An overview of the consistency tracking rates for the spring constant adaptivity test while doing position tracking.

EXP PPO PPOC-2 PPOC-4 PPOC-8
nominal recovery nominal recovery nominal recovery nominal recovery

1 16/17 17/17 18/19 19/19 15/18 18/18 19/20 20/20
2 07/20 08/20 04/20 06/20 04/20 07/20 01/20 03/20
3 13/17 17/17 16/20 19/20 17/20 17/20 13/20 17/20
4 01/20 01/20 00/20 00/20 00/20 01/20 00/20 00/20

5.3.3. Longitudinal control: EXP1 and EXP3
Here the longitudinal control equivalence will be analyzed for a simple system (EXP1) and a more complex
system (EXP3). For these systems an analysis on adaptivity and sample efficiency is given. For the adaptivity
characteristics the velocity and position tracking will be analyzed separately using the c-test and k-test.

Adaptive velocity tracking
Starting with the c-test in table 5.6, for EXP1 it can be seen that PPOC-4 and PPOC-8 have much better recov-
ery performance than for PPO. The options show their value in this case, where a non-hierarchical methods
is not able to recover after the test. For EXP3 in the same table, a similar observation can be made. For these
two rows from table 5.6 a trend can be identified. The learned options provide an advantage for tracking one
velocity state in an unstable system. For both EXP1 and EXP3, PPOC-4 was performing the best, suggesting
that the number of options should equal to 4 in order to have the best adaptive tracking performance for
longitudinal control. This also means that 2 options were too few and 8 options were too much. The same
observation can be made from the learning curves for EXP1 and EXP3 in fig. 5.14 and fig. 5.16, respectively.
From these an initial option setting is determined, and for better performance a control designer can apply
an hyperparameter optimization process to tailor for a specific application.

Continuing to the k-test in table 5.7 for EXP1 and EXP3 it can be observed that the agents all fail to recover.
This observation suggests that adaptive velocity tracking is not possible for unstable spring constants. This
can be explained by the fact that the spring constant is coupled to position states, thus when not controlling
for position states the agent can only control indirectly for the position state. The results that are summarized
in table 5.7 suggest that the agents have a hard time to learn this indirect control behavior of the dynamic
system with instabilities introduced by the spring constant. The learning curves in fig. C.7 confirms this. The
underlying phenomenon behind this indirect control behavior keeps recurring throughout the experiments
and is explained in section 5.3.5.

Adaptive position tracking
Again starting with the c-test, generally seen the PPOC agents do not recover for EXP1 in table 5.8, while
for PPO all runs recover from the damping constant instabilities. Interestingly this is exactly the opposite of

66 5. Preliminary Analysis

table 5.6 on how PPO and PPOC react to the same adaptivity test but with a different tracking mode for EXP1.
The only explanation for this behavior is that a property of the Option-Critic architecture creates a consistent
behavior that is the opposite of PPO in EXP1. This property being the switching between – and learning –
multiple option policies versus learning a single policy with no switching required. The positive eigenvalue
for the c-test for MSD-1 is quite large, see table 5.3, and this might result that the PPOC agents have a harder
time to learn to control this large instability as it is switching between option policies, while PPO is learning a
single policy.

For EXP3 in table 5.8 the PPOC and PPO agent’s tracking performance rate are even increasing after the
adaptivity test, indicating that the agents need more samples to learn position tracking. In this setup the
PPOC agents are performing significantly better than PPO both before and after the test. Again the only
difference being the options from the Option-Critic architecture. The observations made for EXP1 and EXP3
in table 5.8 suggests that the Option-Critic performs better in higher-dimensional state spaces. When taking
into account the observations that were made in table 5.6 and table 5.7 for EXP3, then it can be confirmed that
the Option-Critic architecture provides a RL agent with the capabilities to learn adaptive control for higher
dimensional state spaces. An explanation for this might be that for higher dimensional state spaces, the
same instability results in a lower positive eigenvalue (see table 5.5)than the eigenvalues for EXP1 in table 5.3.
The lower positive eigenvalue and the fact that EXP3 only has one task, makes the setup of EXP3 the easiest
experiment setup to learn for an Option-Critic. An additional factor that may contribute to the explanation
of this finding is that the order of the c-test is lower than the order of the tracking state. The latter might
allow for an easier transition in learning as the controlled state has a higher order than the instability that is
introduced.

Continuing to the k-test for EXP1 and EXP3 in table 5.9 there is no significant difference between EXP1
and EXP3. Similar behavior for second order dynamics are observed for EXP1 and EXP3 where all agents
needs more samples to learn position tracking. No differences are observed for EXP3 for the c-test and k-test,
though for EXP1 there are differences to be observed with PPOC, where PPOC is not able to do recover in
table 5.8 as was explained earlier.

Sample efficiency
An agent’s in this research setup has two sample efficiencies that can be obtained from one learning curve.
The first sample efficiency is derived from the nominal learning conditions which are the first 38 episodes.
The sample efficiency is equal to the slope of the agent’s learning curve, this is determined qualitatively. The
steeper the learning curve, the more sample efficient the agent is. After the first 38 episodes, an adaptivity
test is activated. The second sample efficiency is determined from the point that the agent stars learning a
new behavior. Also in this case the agent’s sample efficiency is determined by the slope of its learning curve.
For the sample efficiency analysis, the position tracking with c-test and velocity tracking with k-test were
excluded, as the recovery rates are low in table 5.7 and table 5.8

Starting with velocity tracking with the c-test in fig. 5.6, the PPO agent is clearly the most sample efficient
before the adaptivity tests for both experiments. After the adaptivity test, PPOC becomes the most sample
efficient for both experiments. Interesting to see is that the sample efficiency of all agents in the nominal
phase are not affected by the larger state space, as the agents learning curve in the nominal phase for EXP1
and EXP3 are similar for each agent. The effect of the larger state space is noticeable during the recovery
phase, both agents have a larger drop for EXP3. The effect is mainly attributed to the larger state space and
not to the introduced instability, as the positive eigenvalues for EXP1 are larger than EXP3 as can be seen in
table 5.3 and table 5.5, respectively.

An interesting observation, PPO recovers better for EXP3 than for EXP1, but both are not able to learn an
good policy after the adaptivity test as was indicated in table 5.6. This effect after the drop can be attributed
to the difference in magnitude of the positive eigenvalues, where EXP3 has the smallest magnitude resulting
in policies that can obtain a higher reward than for EXP1.

Continuing with position tracking with the k-test in fig. 5.7, the PPO agent is most sample efficient for
EXP1, but it becomes less evident for EXP3. For EXP3, the sample efficiency between PPO and PPOC become
comparable. The learning response of both agents are fundamentally different from the velocity tracking
setup. All agent’s nominal behavior becomes less consistent, when going from EXP1 to EXP3. The inconsis-
tency between runs make the slope of these learning curves less identifiable and thus no intelligible findings
about sample efficiency can be made. The drop that was seen in fig. 5.6 is not as distinct here. The only drop
that can be observed is for PPOC in EXP3. An explanation for this is that the agents are learning to control a
state with slower dynamics – position tracking – thus might result in a larger ’learning inertia’. This learning

5.3. Results and discussion 67

response is seen in all position tracking learning curves for agents that are able to learn a good policy. These
learning curves can be seen in fig. C.13, fig. C.14, fig. C.15 and fig. C.16. Also a factor that might contribute
to the similar learning behavior after the nominal phase, is the magnitude of the positive eigenvalues. In ta-
ble 5.3 and table 5.5 it can be observed that the values are in the same order of magnitude. More research
is needed to find the root cause of this learning response. If it is explained by the tracking mode, then this
provides opportunities to design a more robust flight controller.

The learning curve fig. 5.16 shows that initially the agents are sample efficient when the number of options
decrease. After the c-test, the agents sample efficiency behavior is the inverse of the initial observation. The
observed behavior can be attributed to two possible explanations. The first being that this behavior is typical
for Option-Critics. The second being that this behavior is the consequence of policies that have converged
more than other policies might result in less flexible policies. Taking PPOC-8 as an example, then it can be
seen that this agent has not reached its converged reward value as it is still learning, as a result it is more
flexible and able to learn a new policy with fewer samples.

Figure 5.6: EXP1 and EXP3, velocity tracking with c-test.

Synopsis for longitudinal control

Summarizing the noteworthy results for the set of longitudinal controllers, PPO was outperforming PPOC
in EXP1 with the c-test and position tracking. The PPOC agents provide for adaptive velocity control for
higher-dimensional state space with damping constant instability, whereas the PPO agent under performs
in this regard. Thus the focus should be on longitudinal body rate flight control when using PPOC and the
advantages of HRL. In addition, the PPOC agents provide for better longitudinal position control than PPO
for the c-test, though this might require many samples to learn this control behavior.

For complex longitudinal control all agents display good recovery behavior for both adaptivity tests during
position tracking, see EXP3 in table 5.9 and table 5.8. Where it is interesting to see that the agents have a higher
recovery rate than performance rate. This observation might indicate that the agents are less affected by the
adaptivity tests during longitudinal position control, but need more samples than for longitudinal velocity
control to learn a good policy. When looking at the learning curves fig. C.15 and fig. C.11 this is confirmed.

68 5. Preliminary Analysis

Figure 5.7: EXP1 and EXP3, position tracking with k-test.

5.3.4. Lateral control: EXP2 and EXP4
Here the lateral control equivalence will be analyzed for a simple system (EXP2) and a more complex sys-
tem (EXP4). For these systems an analysis on adaptivity and sample efficiency is given. For the adaptivity
characteristics the velocity and position tracking will be analyzed separately using the c-test and k-test.

Adaptive velocity tracking
Starting with the c-test and observing the differences between agent behavior for EXP2 and EXP4 in table 5.6,
it can be seen that for EXP4 there is better recovery behavior for all agents. This shows that all agents have
better adaptive behavior for more complex environments with lateral control. The same observation was
made for adaptive behavior complex longitudinal control and explained in section 5.3.3. When comparing
amongst agents for EXP2 and EXP4 in table 5.6 then it can be seen that PPOC-2 is the most distinctive and best
performing agent regarding tracking and recovery. The options might provide an extra advantage over PPO,
but from this table that is not completely evident. A closer inspection is needed to observe the advantages
of options. Luckily the learning curves in fig. 5.15 and fig. 5.17 provide a more evident distinction, there all
PPOC agents are more – or as – consistent and attain a higher reward than PPO for both learning curves.

Continuing to the k-test and looking at EXP2 and EXP4 in table 5.7, then no additional insights are gained
regarding the benefits of using options. The only observation that is notable is that generally seen all agents
were not able to recover from both experiments. In fig. C.8 it can seen be that PPOC is more consistent
and provide a slightly higher reward than PPO, the reason for the agent not being able to learn for these
experiment is explained in section 5.3.5.

Adaptive position tracking
For the c-test for EXP2 and EXP4 in table 5.8 the agents were generally not able to execute position tracking
and also not able to recover from instabilities. Indicating that multitasks for second order dynamics are hard
to learn for both hierarchical and non-hierarchical agents. When comparing the experiment sets EXP1 with
EXP2 and EXP3 with EXP4 in table 5.6, table 5.7, table 5.8, and table 5.9 it can be seen that in all cases that the
lateral control experiments EXP2 and EXP3 are having lower performance tracking rates and recovery rates
when compare to the longitudinal control experiments EXP1 and EXP3.

5.3. Results and discussion 69

For the k-test for EXP2 and EXP4 in table 5.9, all the agents are able to learn a good policy for EXP2 but not
for EXP4. On closer inspection of the learning curves of EXP4 in fig. C.16, it can be seen that all agents obtain
very low rewards when looking at the scale of the y-axis. Though a clear distinction can be made between
the the learning behavior of PPOC and PPO, where PPOC is showing significant better learning behavior with
increasing options.

Sample efficiency
Starting with velocity tracking with the c-test in fig. 5.9, the PPO agent is clearly the most sample efficient
before the adaptivity tests for both experiments. After the adaptivity test, PPOC becomes the most sample
efficient for both experiments. For longitudinal control it was seen that sample efficiency of all agents in the
nominal phase are not affected by the larger state space, though here the sample efficiency is lower for the
larger state space.

The effect of the larger state space is the opposite for longitudinal control during the recovery phase, both
agents have a smaller drop for EXP4 than for EXP2. The effect might be attributed to the larger state space and
the introduced instability that result in a lower eigenvalue for EXP4 or the multi-task setup. More research is
needed to find the root cause of this learning response.

An interesting observation, PPO and PPOC are not able to learn an good policy after the adaptivity test
as was indicated in table 5.6. This effect can be attributed to the difference in magnitude of the positive
eigenvalues, where EXP4 has the smallest magnitude resulting in policies that can obtain a higher reward
than for EXP2.

Continuing with position tracking with the k-test in fig. 5.7, the PPO agent is most sample efficient for
EXP2. The same analysis from longitudinal control can be applied here. Only there the agents have a harder
time to learn a good policy as the position tracking is a second order dynamic as explained in section 5.3.5.
Given that position tracking is a second order dynamic, EXP4 has a larger state space and two tasks, then that
might explain the learning behavior of PPO and PPOC observed for EXP4 in fig. 5.9. Evidence that position
tracking for two tracking tasks is harder to learn, can be observed by the larger y-axis scale for fig. 5.9 than for
fig. 5.7.

Figure 5.8: EXP2 and EXP4, velocity tracking with c-test.

Note that also the adaptive sample efficiency behavior that was observed in fig. 5.16 can also be observed
in fig. 5.17, where the order of the most sample efficient agents before the test is reversed after the test. These

70 5. Preliminary Analysis

Figure 5.9: EXP2 and EXP4, position tracking with k-test.

observations support the hypothesis that the sample efficiency after the test is mainly influenced by the level
of convergence. In order to have better evidence a test with PPO should be performed that focus on activating
an adaptivity test before PPO has reached a certain level of convergence.

So an interesting application of this information is to train agents not to its fullest performance but let
them remain sub-optimal to have the best adaptivity behavior aka exploration and exploitation vs explo-
ration. In the continuation of this research extra tests and analysis should be conducted to asses if this be-
havior stems from level of convergence or from the Option-Critic.

Synopsis lateral control
The Option-Critic agents provide a higher consistency and higher reward than for PPO. When comparing the
lateral control results with the longitudinal control results, then it can be concluded that providing agents
with multiple tasks make learning a good adaptive policy a harder exercise for all agents. But the Option-
Critic provides a framework that performs considerably better than an agent without this framework and is
able to perform adaptive lateral control for unstable damping while tracking velocity states.

It should be noted that also in the lateral experiments the same observations can be made about that the
tracking control mode should equal its instability mode in order to learn a good tracking policy.

For both PPO and PPOC, it was not possible to learn an adaptive lateral controller for a large state space
while tracking position states. This setup was proven to be the most difficult. This indicates that even though
hierarchical methods are known to be more sample efficient for high-dimensional and complex environ-
ments. They are still not able to learn for the most difficult continuous control tasks in this setup.

5.3.5. n-order dynamics and n-order instability
From section 5.3.3 and section 5.3.4 a recurring phenomenon was observed, the agent’s learning has a strong
correlation between the adaptivity test and the tracking mode. The focus of this section will be on this phe-
nomenon taking the longitudinal control experiments as case study. The findings of this case study applies
also for the lateral control experiments.

In table 5.9 and table 5.8, the runs are generally seen not recovering from the adaptivity test. A general
pattern was identified that the experiments with an adaptivity test that had an instability constant that was

5.3. Results and discussion 71

not directly linked with the state that was being tracked, resulted in almost no to no recovery. The only ex-
ception being EXP3 in table 5.8, an explanation was found in section 5.3.3. When continuing on this general
pattern, then this general pattern can be explained more in-depth by the physics of the environment model.

For example when taking the position control with the k-test, then the negative spring constant and the
instability resulting from that, can be directly counteracted by position control, as the spring force is the
spring constant multiplied by distance. Where the distance is the state that is being tracked. In the case of
velocity tracking with the k-test, then a negative spring constant is introduced after the nominal phase, while
the agent is tasked to control the velocity. The only way for the agent to interact with the environment and
thus controlling this state is by exerting force. The agent somehow must develop a policy that exerts a force
on a mass that that counteracts the spring force and tracks the velocity with the desired reference signal. So
the agent must somehow counteract this instability while following a reference signal. This setup for an agent
requires a more specific force input signal to be given to the environment than when the force component for
tracking is the same the force component that counteracts the instability. This form of control will be called
indirect control. The resultant unstable force that interacts with the rest of the system will be called unstable
indirect dynamics.

The understanding gained from the physics of the model gave more insight into how the agent’s task can
be more difficult through unstable indirect dynamics and result in learning bad policies. So for the agents to
learn good policies considerate trade-offs concerning indirect dynamics should be made to assure a higher
probability of learning a good policy. An insight can be developed by the general pattern observed for bad
policies and the experiment setup. The agents will learn a good policies when there are no unstable indirect
dynamics. For this to happen the introduced dynamics by unstable constants need to align with the dynamics
of the tracking mode. For example: an experiment setup with velocity tracking and a c-test will result in agents
that is able to learn a good policy, see table 5.6 .

The output of an agent is a force on a mass. The temporal relation between force and velocity is in the
equations of motion. There the force is equal to mass times acceleration. From basic physics, the temporal
relation between acceleration and velocity is a single integration and between acceleration and position is a
double integration. So given this fact, a few extra terms are introduced when building on the existing idea of
indirect dynamics. A change in the damping constant in a MSD system will have direct effect on the damping
force. The state related to the damping force is velocity. As seen from the agent’s perspective the force it
exerts on the system is one integration away to get to velocity. The dynamics that the agent needs to learn to
control with velocity tracking will be called first order dynamics and the introduced damping instability will
be called first order instability. In the same train of thought, the agent needs to learn second order dynamics
when learning for position control and the introduced spring constant instability with the k-test will be called
second-order instability.

So for an agent to have a higher probability to learn a good control policy the n-order dynamics should
match the n-order instability introduced by the adaptivity test. In the design of a flight controller this should
be taking into account. This means that it is not possible to train one agent to be a controller that is encom-
passing both spring and damping instabilities for this specific application of the algorithms.

5.3.6. Velocity tracking time traces for EXP3 and EXP4 with c-test
In this section only the time traces of velocity tracking for EXP3 and EXP4 with the c-test for one PPO and
one PPOC agent are presented. These time traces were selected based on the highest tracking performance
rate and highest recovery rate for EXP4, these rates can be found in table 5.6. The tracking performance
rate is determined by the amount of runs that were able to have a mean reward over the last five episodes
to be to equal -50 or higher. The recovery rate is the same as the tracking performance rate with only one
difference, the tracking performance rate is calculated with data before an adaptivity test and the recovery
rate is calculated with the data after the test. A complete overview of these rates for all runs are provided in
table 5.6, table 5.7, table 5.8 and table 5.9. The reference tracking plots fig. 5.10, fig. 5.11, fig. 5.12 and fig. 5.13
are time traces were the IQR is taken over 20 runs. These time traces correspond to learning curves given in
fig. 5.16 and fig. 5.17. For the reference tracking plots for EXP1 and EXP2 the reader is referred to appendix C.

In fig. 5.10 and fig. 5.11 the time traces of PPO and PPOC-4 are given, respectively. When looking at the left
columns the agents learn both a good policy for velocity tracking and while having a large state space with
one task. For the first three seconds, the PPO is less consistent than the PPOC-4 agent this level of consistency
can also be observed in table 5.6. When looking at the right column of these plots, then the PPOC-4 agent is
displaying similar and consistent tracking performance with slight oscillatory tracking that is observed in the
error signal. In the case of PPO the tracking performance is not consistent and is overshooting in most runs.

72 5. Preliminary Analysis

For velocity tracking for EXP3 with the c-test, the PPOC-4 outperforms PPO, thus indicating that the Option-
Critic agents are better suited for adaptive control in large state spaces than for agents without an Option-
Critic framework. This observation is seen in fig. 5.16 where the number of options shows a linear trend in
sample efficient adaptive behavior. The more options, the more sample efficient the adaptive behavior will
be.

In fig. 5.12 and fig. 5.13 the time traces of PPO and PPOC-2 are given, respectively. Two tracking tasks
are seen with their respective error signals. The agents are quite comparable in consistency and tracking
performance, though it was expected that the consistency would be higher for PPOC-2 before the test when
looking at the rates 12/20 and 16/20 for PPO and PPOC-2 in EXP4 from table 5.6, respectively. PPOC-2 might
still be more consistent than PPO, but this might be masked by the noisy tracking behavior of PPOC-2. When
looking at the learning curves in fig. 5.17, then all agents converge to a point where reasonable policies were
learned but did not satisfy the recovery rate requirement (reward should be -50 or higher), this might explain
the discrepancy in expectation from table 5.6 and results from the time traces between PPO in fig. 5.12 and
PPOC-2 in fig. 5.13. In addition, in both the left and right column in fig. 5.13 the PPOC agent shows noisy
tracking behavior that is visible as the dark red line is thicker than the same colored line for PPO. This behavior
is seen for all velocity tracking runs for PPOC, it can be explained by the high frequency control behavior
required for velocity tracking that leads to high frequency option switching.

5.3. Results and discussion 73

Figure 5.10: Results of velocity tracking in experiment 3 with the damping constant adaptivity test for PPO. In the left and right columns
are the time traces before the test and after the test, respectively. See fig. 5.16 for the corresponding learning curves.

Figure 5.11: Results of velocity tracking in experiment 3 with the damping constant adaptivity test for PPOC-4. In the left and right
columns are the time traces before the test and after the test, respectively. See fig. 5.16 for the corresponding learning curves.

74 5. Preliminary Analysis

Figure 5.12: Results of velocity tracking in experiment 4 with the damping constant adaptivity test for PPO. In the left and right columns
are the time traces before the test and after the test, respectively. See fig. 5.17 for the corresponding learning curves.

Figure 5.13: Results of velocity tracking in experiment 4 with the damping constant adaptivity test for PPOC-2. In the left and right
columns are the time traces before the test and after the test, respectively. See fig. 5.17 for the corresponding learning curves.

5.3. Results and discussion 75

Figure 5.14: EXP1, velocity tracking with c-test.

Figure 5.15: EXP2, velocity tracking with c-test.

76 5. Preliminary Analysis

Figure 5.16: EXP3, velocity tracking with c-test.

Figure 5.17: EXP4, velocity tracking with c-test.

5.4. Conclusion 77

5.4. Conclusion
The goal of this chapter is to provide an answer to the third research question: What are the benefits of the
proposed hierarchical policy gradient technique over the proposed non-hierarchical policy gradient tech-
nique on a mass-spring-damper system when exposed to unexpected changes? This question is answered
by answering its sub-questions that are restated here:

The Option-Critic has one hyperparameter that needs to be set, which is the number of Options n. In
order to compare the benefits of Hierarchical Design and, in this case, in the form of Options, three Option-
Critic settings – n = 2, n = 4, and n = 8 – have been tested against PPO without Option-Critic architecture.
From initial tuning efforts, it is found that hyperparameter tuning for PPO and PPOC did not result in fair
and interpretable comparison between non-hierarchical and hierarchical methods as it might obscure the
fundamental differences. Hyperparameter tuning is useful for a more detailed design phase as it can en-
hance sample efficiency and/or adaptivity. The methods are tested on a mass-spring-damper system that
can extend its state and action space. The mass-spring-damper system allows for easy analysis of the agent’s
behavior and allows for versatility of experiment setup, which are desirable traits in the agent’s algorithm
development. The benefits in question are mainly focused on three aspects that are found to be the most
interesting and relevant for flight control: adaptivity, sample efficiency and tracking performance.

a) What is the performance regarding adaptivity?

The Option-Critic is superior here. Overall, the PPOC methods show a higher recovery consistency rate
than for PPO. Thus PPOC is better concerning adapting to unexpected changes. An explanation is that the
adaptive behavior of PPOC agents has a lower final reward during the nominal phase, whereas PPO has a
higher final reward. As a result, the PPOC are less overfitted. As a consequence, the PPOC are more adaptive.
The higher adaptivity results in the higher sample efficiency during the recovery phase with PPOC. The PPOC
method with the most Options – PPOC-8 – is often the most sample efficient and having the highest final re-
ward during the recovery phase. On the contrary, in the nominal phase, the PPOC-8 agent is the least sample
efficient and has the lowest final reward. From this observation, a clear trend is identified that when more
options are available that the PPOC agents are more adaptive and more sample efficient during the recovery
phase than during the nominal training phase.

b) What is the performance regarding sample efficiency?

In general, it is found that PPOC-2 was more sample efficient during recovery for lateral velocity control and
PPOC-4 for longitudinal velocity control. The number of Options has different effects for longitudinal control
than for lateral control. For longitudinal control, the sample efficiency in the nominal phase is with increasing
Options, less sample efficient. On the other hand for lateral control, the number of Options has almost no
effect on the nominal phase. In addition, it is observed that the PPOC agents always perform better in the
recovery phase in terms of sample efficiency, but that the PPO agent is always the most sample efficient
during the nominal training phase.

c) What is the performance regarding reference tracking?

The tracking performance is shown for longitudinal and lateral velocity control with the c-test with large
state space. From the results, it is found that PPO is more smooth for lateral control and underperforming
for longitudinal control during the recovery phase. The tracking performance of PPOC is overall the best for
both nominal and recovery phases and for both control modes. In general, PPOC has a smaller error signal
for both control modes, but lateral control is less smooth and noisier due to the high frequency switching
between options. As a result, it has a more aggressive form of control during velocity tracking.

III
Wrap up

79

6
Conclusions

Advancements made in reinforcement learning provides opportunities to the development of autonomous
and intelligent flight control system for novel and conventional aircraft configurations. Control systems that
utilize reinforcement learning can enable the ability to learn from scratch without detailed model informa-
tion, contribute to low workload for pilots and ensure safe flight operation during unexpected changes to the
environment. The need for a model-independent and adaptive flight controller is identified, where this need
can already be satisfied with existing methods. The existing methods found in Approximate Dynamic Pro-
gramming and Incremental Approximate Dynamic Programming are mainly applicable to small state spaces,
whereas Actor-Critic Design methods found in Deep Reinforcement Learning provide opportunities to ex-
tend Actor-Critic Design methods for model-independent and adaptive control to large state spaces. Though
problems with large state spaces often lead to low sample efficiency. A reinforcement learning method ex-
tended with Hierarchical Design can result in faster learning for high-dimensional state spaces by creating
low-dimensional abstractions of the complete problem domain. The advantages of Actor-Critic Design and
Hierarchical Design are combined and lead to the following research objective:

Contribute to the development of a novel model-independent and adaptive controller for a continuous,
high-dimensional, partially observable, and stochastic problem domain by investigating a hierarchical policy
gradient reinforcement learning flight controller for a fixed-wing aircraft that enables sample efficient flight
recovery from unexpected changes to aircraft dynamics.

From the research objective, four research questions were formulated (in section 2.2) to answer the main
research question and ultimately fulfill the research objective. The first three research questions will be re-
stated here and answered on a high level. If desired to have a more extensive answer to the research questions
that includes the sub-questions, then the reader is referred to section 3.4, section 4.5 and section 5.4. The first
three research questions were answered in the preliminary analysis and are part of a preliminary report. The
fourth research question is answered using the research and analysis given in part I.

1. What are the requirements for a fixed-wing aircraft flight controller?

An all-encompassing flight controller should require six-degree-of-freedom control and involves a high-
dimensional state space with coupled dynamics. Designing a controller for such complexity from scratch is
arduous. A step-by-step approach is needed to simplify and gain understanding when designing the con-
troller. The complete six-degree-of-freedom model is decoupled into symmetric and asymmetric motion,
for which it respectively needs a longitudinal and lateral controller. A reinforcement learning controller for
model-independent and adaptive flight control should learn from scratch, a probabilistic mapping of states
to control actions. This is followed by re-adjustments in the probabilistic mapping while doing this in a sam-
ple efficient and online fashion. In addition, when such a controller accounts for variation in time scale and
magnitude of aircraft states, it might speed up learning.

81

82 6. Conclusions

2. What are the current state-of-the-art reinforcement learning methods that are suitable for flight
control?

From the literature review in chapter 4, it is found that an Actor-Critic Design with Proximal Policy Opti-
mization is able to provide for prediction and control for high-dimensional state space in an on-policy fash-
ion. The method alternates between optimizing the Actor-network and sampling from the environment. The
authors of the method have shown that when combined with a Generalized Advantage Estimation function
that utilizes state value estimates from the Critic network, then this function will greatly increase sample
efficiency by reducing variance in its value estimates at the cost of some bias.

A Hierarchical Design method most suitable for flight control that can extend non-hierarchical policy
gradient methods with Actor-Critic Design is the Option-Critic architecture. The Option-Critic architecture
has the ability to recover from sudden changes made in the environment and is able to create end-to-end
temporal abstractions by learning intra-option policies and termination functions. The two main advantages
provide an opportunity to cope with in-flight failures and can have the ability to distinct timescales of aircraft
states, respectively.

The Actor-Critic Design with Proximal Policy Optimization extends with the Option-Critic architecture.
The resulting method is called Proximal Policy Option-Critic (PPOC) and has a successful implementation for
continuous action spaces in environments created with the MujoCo physics engine. The Actor-Critic design
with Proximal Policy Optimization and Generalized Advantage Estimation function is the non-hierarchical
policy gradient baseline. The extension of the non-hierarchical method with the Option-Critic architecture
is the hierarchical policy gradient method. These methods are used for comparison in order to identify and
verify the benefits of Hierarchical Design.

3. What are the benefits of the proposed hierarchical policy gradient technique over the proposed non-
hierarchical policy gradient technique on a mass-spring-damper system when exposed to unex-
pected changes?

One of the two main benefits of the Option-Critic architecture that is identified in the literature review
is confirmed. The Option-Critic adapts to unexpected changes to the environment, where increasing the
Options results in a higher sample efficiency during the recovery phase. The method is not more sample
efficient than its non-hierarchical counterpart during the nominal learning phase. A possible explanation is
that the Option-Critic needs to learn multiple intra-option policies and termination functions. These policies
are each equal to a policy that is learned by a Proximal Policy Optimization method. As a result, the Option-
Critic architecture has fewer samples for each intra-option policy, making the algorithm less sample efficient.

Finally, the tracking performance of the Option-Critic is found to be generally better than its non-hierarchical
counterpart as the error signal is smaller, but it is noisier in cases when the error signals of both methods were
at comparable magnitude.

The differences between the Option-Critic and its non-hierarchical counterpart alludes to holding Op-
tions for a longer time period might improve tracking performance and sample efficiency during the nominal
phase as the Option-Critic with only one Option should exhibit the same performance as its non-hierarchical
counterpart.

4. How should the proposed hierarchical policy gradient method be implemented for flight control of
a fixed-wing aircraft?

a) What is the performance regarding adaptivity, sample efficiency, and reference tracking when exposed
to unexpected changes?

Surprisingly the anticipated sample efficiency gain through hierarchical reinforcement learning is not real-
ized for the offline training for both the mass-spring-damper system and aircraft model. PPOC using a single
Option and PPO – a single policy method – are the most sample efficient, and the sample efficiency of learned
Options decreases with increasing Options. This is explained by the fact that each additional learned Option
requires more parameters to be learned. An additional explanation might be in the fundamental difference
in the classical application of Options, where hand-crafted intra-option policies have prior knowledge em-
bedded in them. Embedding prior knowledge, in general, allows reinforcement learning methods to be more
sample efficient.

83

Summarizing the results with regards to adaptivity, PPOC with multiple learned Options give higher suc-
cess rates than PPO for offline adaptivity. In addition, PPOC with multiple learned Options leads to higher
success rates than PPOC-1 during tracking of a height profile while having a structural failure of the horizon-
tal tailplane, sign change of pitch damping, and generalizes to a different aircraft. PPOC is able to extend its
learning to a different aircraft without requiring extra offline training. This shows that having more learned
Options result in the ability to generalize over different aircraft. In addition, it allows for a stabilizing effect
during online learning and adaptivity. Thus multiple learned Options allow for more complex control behav-
ior and be adaptive in a reliable manner.

In regards to reference tracking, the PPOC agent is able to follow the reference signals for both MSD and
aircraft systems in the offline and online setting. Though, PPOC is not displaying the desired actuation be-
havior even after applying the strategy for integrating the actions. Two sources that contribute to the noisy
output of the PPOC agent are identified. The first source is the interaction between the termination function
and policy over options causes high frequency switching between Options. As a consequence, PPOC learns
a high-frequency control policy. The second source is the underlying stochastic policy method. This is seen
for the PPOC-1 agent, where the high-frequency output is the result of the Gaussian distribution used for
sampling the actions.

b) How can sample efficiency be improved?

From the time traces of the Actor and Critic MLP weights, the changes made during online learning for
both networks are similar. This indicates that the networks are responding similarly to small changes in the
environment. When allowing the Actor and Critic networks to have a shared layer, then this reduces the
amount of sample needed to adapt to a different environment and thus improving the sample efficiency. The
implementation of this sharing is left for further research.

c) How can reference tracking be improved?

PPOC is able to track a height reference with high accuracy, though the high-frequent output of the agent
is undesirable for flight control signal as it shortens the durability of the actuator and introduces unwanted
vibrations. The hierarchical method’s high-frequency control is attributed to switching between intra-option
policies. This behavior is apparent in the action signal during reference tracking. The high frequency and
high gain control initially observed for the mass-spring-damper system were reduced by handling the agent’s
output as a differential and by limiting the increment per time step. As a result, the reference tracking per-
formance is improved, the high gain control has disappeared, and the high-frequency control is reduced.
Though, the high-frequency control remains and additional techniques are needed to reduce the high-frequency
control even further.

The observed high-frequency output can be reduced with the following three approaches. The first is
a simple solution where the high-frequency output can be reduced by passing it through a low pass filter,
though this will introduce lag and less control by the agent. Another more fundamental approach is to have
more control over the stochasticity of the stochastic policies by making the entropy variable with a temper-
ature variable. The last proposed approach is in the direction of having more control over the switching
induced by the termination function. For the latter, there is an existing method that adds a deliberation cost
[22] to the termination gradient. The deliberation cost lets the agent switch less frequently by incurring a cost
for switching.

All in all, in answering the research objective. PPOC is capable of learning how to control an aircraft’s in-
ner loop dynamics, though it requires offline training before it can be applied in an online setting. Still, the
method does not require any model information and solely uses samples resulting from interactions with
the model. Multiple on-policy learned Options can enable a deep reinforcement learning method to have
height reference tracking and online adaptivity in the cases of structural failure of the horizontal tailplane
and sign change of pitch damping. In addition, PPOC is able to generalize to a different aircraft by means of
transfer learning. Although, the method does not provide sample efficiency benefits over its non-hierarchical
counterpart. Unfortunately, PPOC is not suitable for flight control due to its high-frequency control input to
the actuators as it leads to reduced durability of the actuators and unwanted vibrations. More research into
controlling stochasticity of the stochastic policies and learning of the termination function can lead to more
control over the agent’s output. Consequently, it should then render the PPOC method suitable for adaptive
flight control of novel and traditional aircraft configurations, where ultimately further research is required
that includes the effects of actuator dynamics, non-linear aircraft dynamics, and flight tests.

7
Recommendations

The following improvements or directions of further research are recommended.

• The conventional formulation of the Gaussian distribution does not allow for scaling of the variance
as it will change the probability distribution. This is troublesome as real-life control applications have
physical limits. If the agent can be constrained to these limits from the start, then the agent might learn
faster and have a physically correct behavior. A method that can aid the agent’s action selection, in this
regard, is the Beta distribution [11]. Research into this method might provide for a more capable PPO
or PPOC method for flight control.

• Entropy contributes to the stochastic behavior of the agent but also contributes to more optimal poli-
cies as it keeps exploring the state space. Though in practice, the entropy bonus is turned off for online
applications as it can cause sudden drops in performance. Adaptively varying the entropy can improve
adaptivity while retaining online performance, as it controls the level of stochasticity of a stochastic
policy. A learned entropy parameter already has proven its success. The Soft Actor-Critic (SAC) [21] is
an example of such a method. Although SAC is an off-policy method, it has already proven its suc-
cess as a control method that can work robustly in an online setting [12]. Research into applying
a learned entropy parameter to PPOC can reduce high-frequency control output, improve reference
tracking through having more control on the agent’s output.

• Sample efficiency can be improved by letting the MLP of the value and policy function share parame-
ters. This allows for sharing a baseline knowledge of the environment. The MLP ends with two heads,
one for the value function and the other for the policy function. This should greatly improve sample
efficiency but can introduce bias. This method was proven for various non-hierarchical reinforcement
learning methods in [26] but has not been applied to an Option-Critic architecture.

• A method that might improve and, at the same, provide for a smoother reference tracking is the use of
an initiation set. The Option-Critic method only learns the termination function, intra-option policy,
and policy over options and does not use the initiation set by assuming that all Options are available for
all states. As a consequence and also observed during the preliminary analysis, the Options will switch
quite frequently, which leads to high-frequency control and spiky reference tracking. If the Options
could be prolonged, this might reduce the spiky reference tracking as their behavior starts to resemble
that of PPO, which proved to have smoother reference tracking.

• Another method that can result in more control over the switching induced by the termination function
is the Option-Critic with a deliberation cost [22]. The deliberation cost is added to the termination
gradient, where it lets the agent switch less frequently by incurring a cost for switching.

• In this research, the offline training only used a sine signal, a more elaborate training scheme can con-
tribute to a more complex and capable controller. The PPOC agent can be encouraged to display more
complex behavior by exposing it to different initial conditions, adaptivity tests, and curriculum learning
strategies during offline training.

85

86 7. Recommendations

• For flight control, it is desired to have a method that is able to continually adapt to changing internal
or external circumstances, a field that seeks a solution for that is continual learning. A way to create
continual learning aspects with the Option-Critic would be to log the tracking error for an extended
period of time and track its standard deviation. If the standard deviation goes over a specified limit,
then the Option-Critic should activate its full learning potential. If not, it should be dormant. There are
many ways to activate the learning potential. One way would be to design a learning rate scheme that
is coupled to the standard deviation, or another way would be to fixate one Option when the agent is
dormant and enable all Options when the agent needs full learning capability or needs recovery capa-
bilities. This allows the PPOC agent to harness the sample efficiency of a single policy and benefit from
the adaptivity in situations when it is needed.

• PPOC shows promise that it can learn similar or better online learning behavior as IDHP. PPOC does
not require an incremental model estimation, whereas IDHP does. Though turning PPOC into an in-
cremental model-dependent method will most likely improve the performance with a great factor, as a
general rule, methods that use model information during the learning process are often outperforming
model-independent methods.

• The use of direct value gradient estimation as opposed to indirectly estimating the value gradient by
first estimating the value function and then differentiating it should also greatly improve learning. A
method using direct value gradient estimation might require fewer samples as it has more information.
This intuition for faster learning and better learning was proven in [45] by identifying the aforemen-
tioned intuition as the main difference between HDP and DHP methods. In addition, the IDHP method
benefitted from using reward gradients directly as opposed to PPOC, where it mainly received a scalar
reward computed from the non-differentiated reward function. Passing the scalar value of the reward
gradient to the agent might have provided the agent with some foresight on future value. The use of
reward gradient and estimating value gradients goes hand-in-hand.

IV
Appendices

87

A
Mass-spring-damper model

The mass-spring-damper (MSD) model is taken from [10]. The equations of motion for MSD model with
three masses is given in eq. (A.1). The coefficients that are used for this research are provided in table A.1.

 ẍ1

ẍ2

x3

=


−(k1+k2)

m1

k2
m1

0 −(c1+c2)
m1

c2
m1

0
k2
m2

−(k2+k3)
m2

k3
m2

c2
m2

−(c2+c3)
m2

c3
m2

0 k3
m3

−k3
m3

0 c3
m3

−c3
m3

 ·



x1

x2

x3

ẋ1

ẋ2

ẋ3


+


1

m1
0 0

0 1
m2

0

0 0 1
m3

 ·
 Fu1

Fu2

Fu3


(A.1)

Table A.1: The coefficients that are used for the complete mass-spring-damper system.

Mass m[kg] k[N/m] c
[
N/

(
ms−1

)]
1 0.4 4 3
2 0.8 3 1
3 0.3 1 6

89

B
Flight model

The flight models used for the scientific article in part I are presented here. The equations of motion in
eq. (B.1) appendix B and stability & control derivatives in appendix B appendix B are taken from [39].

˙̂u
α̇

θ̇
q̇ c̃
V

=


xu xα xθ 0
zu zα zθ Zq

0 0 0 V
c

mu mα mθ mq




û
α

θ
qc̄
V

+


xδe xδt

zδe zδt

0 0
mδe mδt

[
δe

δt

]
(B.1)

91

92 B. Flight model

Table B.1: Linearized equations of motions for symmetric flight

Table B.2: Symmetric stability and control derivatives for a jet aircraft during cruise

V = 125.675 m/sec m = - kg c̄ = 2.057 m
S = m2 lh = - m µc = 89.7

K 2
Y = 1.4996 xcg = - c̄

CX0 = 0 CZ0 = -0.2292
CXu = -0.0032 CZu = -0.4592 Cmu = 0.0236
CXα = 0.1692 CZα = -5.7874 Cmα = -0.7486
CXα̇ = 0 CZα̇ = -4.2255 Cmα̇ = -1.650
CXq = -0.0450 CZq = -4.5499 Cmq = -7.4647
CXδe

= 0 CZδe
= -0.5798 Cmδe

= -1.4440

Table B.3: Symmetric stability and control derivatives for a jet aircraft during approach

V = 67.36 m/sec m = 255830 kg c̄ = 8.321 m
S = 510.97 m2 lh = 31.09 m µc = 49.12

K 2
Y = 2.3345 xcg = 0.25 c̄

CX0 = 0 CZ0 = -1.760
CXu = 0 CZu = -3.3 Cmu = 0.071
CXα = 0.630 CZα = -5.933 Cmα = -1.450
CXα̇ = 0 CZα̇ = -3.350 Cmα̇ = -1.650
CXq = 0 CZq = -2.825 Cmq = -10.70
CXδe

= 0 CZδe
= -0.360 Cmδe

= -1.400

C
Additional figures

93

94 C. Additional figures

Figure C.1: Results of velocity tracking in experiment 1 with the damping constant adaptivity test for PPO. In the left and right column
are the time traces before the test and after the test, respectively. See fig. 5.14 for the corresponding learning curves.

Figure C.2: Results of velocity tracking in experiment 1 with the damping constant adaptivity test for PPOC-4. In the left and right column
are the time traces before the test and after the test, respectively. See fig. 5.14 for the corresponding learning curves.

95

Figure C.3: Results of velocity tracking in experiment 2 with the damping constant adaptivity test for PPO. In the left and right column
are the time traces before the test and after the test, respectively. See fig. 5.15 for the corresponding learning curves.

Figure C.4: Results of velocity tracking in experiment 2 with the damping constant adaptivity test for PPOC-2. In the left and right column
are the time traces before the test and after the test, respectively. See fig. 5.15 for the corresponding learning curves.

96 C. Additional figures

Figure C.5: EXP1, velocity tracking with k-test.

Figure C.6: EXP2, velocity tracking with k-test.

97

Figure C.7: EXP3, velocity tracking with k-test.

Figure C.8: EXP4, velocity tracking with k-test.

98 C. Additional figures

Figure C.9: EXP1, position tracking with c-test.

Figure C.10: EXP2, position tracking with c-test.

99

Figure C.11: EXP3, position tracking with c-test.

Figure C.12: EXP4, position tracking with c-test.

100 C. Additional figures

Figure C.13: EXP1, position tracking with k-test.

Figure C.14: EXP2, position tracking with k-test.

101

Figure C.15: EXP3, position tracking with k-test.

Figure C.16: EXP4, position tracking with k-test.

Bibliography

[1] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the im-
pact of entropy on policy optimization. 36th International Conference on Machine Learning, ICML 2019,
2019-June:215–239, 2019.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD ’19, page 2623–2631, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330701. URL
https://doi.org/10.1145/3292500.3330701.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 5055–5065,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31, 2017.

[5] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(1–2):41–77, January 2003. ISSN 0924-6703. doi: 10.1023/A:
1022140919877. URL https://doi.org/10.1023/A:1022140919877.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of ma-
chine learning research, 13(2), 2012.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter opti-
mization. In Proceedings of the 24th International Conference on Neural Information Processing Systems,
NIPS’11, page 2546–2554, Red Hook, NY, USA, 2011. Curran Associates Inc. ISBN 9781618395993.

[8] Clark Borst. AE4316 Aerospace Human-Machine Systems. Technical report, Delft University of Technol-
ogy, 2018.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv: 1606.01540, pages 1–4, 2016. URL http:

//arxiv.org/abs/1606.01540.

[10] De Buysscher. Safe curriculum learning for linear systems with unknown dynamics in primary flight
control. Technical report, Delft University of Technology, 2021.

[11] Po Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic policy gradients in continu-
ous control with deep reinforcement learning using the beta distribution. 34th International Conference
on Machine Learning, ICML 2017, 2:1386–1396, 2017.

[12] Killian Dally. Deep Reinforcement Flight Control Learning for Flight Control. Technical report, Delft
University of Technology, 2021.

[13] Peter Dayan and Geoffrey Hinton. Feudal Reinforcement Learning. Advances in neural information
processing systems, pages 271–278, 1993. ISSN 1049-5258. URL http://www.cs.utoronto.ca/$\

sim$hinton/absps/dh93.pdf.

[14] Thomas Degris, Patrick M. Pilarski, and Richard S. Sutton. Model-Free reinforcement learning with
continuous action in practice. Proceedings of the American Control Conference, pages 2177–2182, 2012.
ISSN 07431619. doi: 10.1109/acc.2012.6315022.

103

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1023/A:1022140919877
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://www.cs.utoronto.ca/$\sim $hinton/absps/dh93.pdf
http://www.cs.utoronto.ca/$\sim $hinton/absps/dh93.pdf

104 Bibliography

[15] Pedro Miguel Dias, Ye Zhou, and Erik Jan van Kampen. Intelligent nonlinear adaptive flight control
using incremental approximate dynamic programming. In AIAA Scitech 2019 Forum, Reston, Virginia,
jan 2019. American Institute of Aeronautics and Astronautics. ISBN 9781624105784. doi: 10.2514/6.
2019-2339. URL https://arc.aiaa.org/doi/10.2514/6.2019-2339.

[16] Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function Decompo-
sition. Journal of Artificial Intelligence Research, 2000. ISSN 10769757. doi: 10.1613/jair.639.

[17] Thomas G Dietterich. An overview of MAXQ hierarchical reinforcement learning. In Lecture Notes in
Artificial Intelligence (Subseries of Lecture Notes in Computer Science), volume 1864, pages 26–44, 2000.
ISBN 3540678395. doi: 10.1007/3-540-44914-0_2.

[18] R. Enns and Jennie Si. Helicopter trimming and tracking control using direct neural dynamic program-
ming. IEEE Transactions on Neural Networks, 14(4):929–939, 2003. doi: 10.1109/TNN.2003.813839.

[19] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforcement
learning, 2017. ISSN 23318422.

[20] Mohammad Ghavamzadeh and Sridhar Mahadevan. Hierarchical Policy Gradient Algorithms. Proceed-
ings, Twentieth International Conference on Machine Learning, 1:226–233, 2003.

[21] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. 35th International Conference on Machine
Learning, ICML 2018, 5:2976–2989, 2018.

[22] Jean Harb, Pierre Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option: Learn-
ing options with a deliberation cost. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages
3165–3172, 2018.

[23] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages
3207–3214, 2018.

[24] S. Heyer. Reinforcement learning for flight control. Technical report, Delft University of Technology,
2019. URL http://resolver.tudelft.nl/uuid:dc63cae7-4289-47c7-889e-253f7abd7c72.

[25] S. Heyer, D. Kroezen, and E. van Kampen. Online adaptive incremental reinforcement learn-
ing flight control for a cs-25 class aircraft. In AIAA Scitech 2020 Forum, volume AIAA
2020-1844, Reston, Virginia, jan 2020. American Institute of Aeronautics and Astronautics.
ISBN 9781624105951. doi: 10.2514/6.2020-1844. URL http://resolver.tudelft.nl/uuid:

38547b1d-0535-4b30-a348-67ac40c7ddcchttps://arc.aiaa.org/doi/10.2514/6.2020-1844.

[26] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines,
2018.

[27] Sham Kakade. A natural policy gradient. Advances in Neural Information Processing Systems, 2002. ISSN
10495258.

[28] Bahare Kiumarsi, Kyriakos G. Vamvoudakis, Hamidreza Modares, and Frank L. Lewis. Optimal and Au-
tonomous Control Using Reinforcement Learning: A Survey. IEEE Transactions on Neural Networks and
Learning Systems, 29(6):2042–2062, 2018. ISSN 21622388. doi: 10.1109/TNNLS.2017.2773458.

[29] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for
continuous action tasks. arXiv preprint arXiv: 1712.00004, 2017. URL http://arxiv.org/abs/1712.

00004.

[30] Jun Hyeon Lee. Online reinforcement learning for fixed-wing aircraft longitudinal control. Techni-
cal report, Delft University of Technology, Delft, 2019. URL http://resolver.tudelft.nl/uuid:

c1201f27-964c-4257-ad65-89224bef94a1.

https://arc.aiaa.org/doi/10.2514/6.2019-2339
http://resolver.tudelft.nl/uuid:dc63cae7-4289-47c7-889e-253f7abd7c72
http://resolver.tudelft.nl/uuid:38547b1d-0535-4b30-a348-67ac40c7ddcc https://arc.aiaa.org/doi/10.2514/6.2020-1844
http://resolver.tudelft.nl/uuid:38547b1d-0535-4b30-a348-67ac40c7ddcc https://arc.aiaa.org/doi/10.2514/6.2020-1844
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1712.00004
http://arxiv.org/abs/1712.00004
http://resolver.tudelft.nl/uuid:c1201f27-964c-4257-ad65-89224bef94a1
http://resolver.tudelft.nl/uuid:c1201f27-964c-4257-ad65-89224bef94a1

Bibliography 105

[31] Doug J. Leith and W. E. Leithead. Survey of gain-scheduling analysis and design. International Journal
of Control, 73(11):1001–1025, 2000. ISSN 00207179. doi: 10.1080/002071700411304.

[32] Tingguang Li, Jin Pan, Delong Zhu, and Max Q.H. Meng. Learning to Interrupt: A Hierarchical Deep
Reinforcement Learning Framework for Efficient Exploration. 2018 IEEE International Conference on
Robotics and Biomimetics, ROBIO 2018, pages 648–653, 2018. doi: 10.1109/ROBIO.2018.8665177.

[33] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 2016.

[34] Thomas Lombaerts, John Kaneshige, Stefan Schuet, Gordon Hardy, Bimal Aponso, and Kimberlee Shish.
Dynamic inversion based full envelope flight control for an eVTOL vehicle using a unified framework.
AIAA Scitech 2020 Forum, 1 PartF(January):1–30, 2020. doi: 10.2514/6.2020-1619.

[35] Peng Lu, Erik Jan van Kampen, Cornelis de Visser, and Qiping Chu. Aircraft fault-tolerant trajectory
control using Incremental Nonlinear Dynamic Inversion. Control Engineering Practice, 57:126–141,
2016. ISSN 09670661. doi: 10.1016/j.conengprac.2016.09.010. URL http://dx.doi.org/10.1016/

j.conengprac.2016.09.010.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv: 1312.5602,
dec 2013. URL http://arxiv.org/abs/1312.5602.

[37] Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim Harley, Timothy P. Lillicrap,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. 33rd
International Conference on Machine Learning, ICML 2016, 4:2850–2869, 2016.

[38] Gabriel Moser. In Memoriam, Arthur Samuel: Pioneer in Machine Learning. AI Magazine (AAAI), 11(3):
10–11, 1990. ISSN 0018-8646.

[39] J. A. Mulder, W. H. J. J. Van Staveren, J. C. Van Der Vaart, E. De Weerdt, C. C. De Visser, A. C. In ’t Veld, and
E. Mooij. Lecture notes ae3202 flight dynamics. Technical report, Delft University of Technology, 2013.

[40] Ofir Nachum, Honglak Lee, Shixiang Gu, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. Advances in Neural Information Processing Systems, 2018-Decem(Nips):3303–3313, 2018. ISSN
10495258.

[41] Zhen Ni, Haibo He, Xiangnan Zhong, and Danil V. Prokhorov. Model-Free Dual Heuristic Dynamic Pro-
gramming. IEEE Transactions on Neural Networks and Learning Systems, 26(8):1834–1839, 2015. ISSN
21622388. doi: 10.1109/TNNLS.2015.2424971.

[42] Takayuki Osa, Voot Tangkaratt, and Masashi Sugiyama. Hierarchical reinforcement learning via
advantage-weighted information maximization. In International Conference on Learning Representa-
tions, 2018.

[43] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In Advances in
Neural Information Processing Systems, pages 1043–1049, 1998. ISBN 0262100762.

[44] Warren B Powell. Approximate Dynamic Programming. Wiley Series in Probability and Statistics. John
Wiley & Sons, Inc., Hoboken, NJ, USA, aug 2011. ISBN 9781118029176. doi: 10.1002/9781118029176.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949764394&doi=10.

1002%2F9781118029176&partnerID=40&md5=980a63d0f8affd8ab88a62de9fcce024http:

//doi.wiley.com/10.1002/9781118029176.

[45] D.V. Prokhorov and D.C. Wunsch. Adaptive critic designs. IEEE Transactions on Neural Networks, 8(5):
997–1007, sep 1997. ISSN 1045-9227. doi: 10.1109/72.623201. URL https://ieeexplore.ieee.org/

document/623201/.

[46] Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards Generalization and
Simplicity in Continuous Control. In 31st Conference on Neural Information Processing Systems, 2017.

http://dx.doi.org/10.1016/j.conengprac.2016.09.010
http://dx.doi.org/10.1016/j.conengprac.2016.09.010
http://arxiv.org/abs/1312.5602
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949764394&doi=10.1002%2F9781118029176&partnerID=40&md5=980a63d0f8affd8ab88a62de9fcce024 http://doi.wiley.com/10.1002/9781118029176
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949764394&doi=10.1002%2F9781118029176&partnerID=40&md5=980a63d0f8affd8ab88a62de9fcce024 http://doi.wiley.com/10.1002/9781118029176
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949764394&doi=10.1002%2F9781118029176&partnerID=40&md5=980a63d0f8affd8ab88a62de9fcce024 http://doi.wiley.com/10.1002/9781118029176
https://ieeexplore.ieee.org/document/623201/
https://ieeexplore.ieee.org/document/623201/

106 Bibliography

[47] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, page 10445–10455, Red
Hook, NY, USA, 2018. Curran Associates Inc.

[48] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region policy
optimization. 32nd International Conference on Machine Learning, ICML 2015, 3:1889–1897, 2015.

[49] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, pages 1–14, 2016.

[50] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Opti-
mization Algorithms. arXiv preprint arXiv: 1707.06347, pages 1–12, 2017. URL http://arxiv.org/

abs/1707.06347.

[51] Haibo Shi, Yaoru Sun, Guangyuan Li, Fang Wang, Daming Wang, and Jie Li. Hierarchical intermittent
motor control with deterministic policy gradient. IEEE Access, 7:41799–41810, 2019. ISSN 21693536. doi:
10.1109/ACCESS.2019.2904910.

[52] S. Sieberling, Q. P. Chu, and J. A. Mulder. Robust flight control using incremental nonlinear dynamic
inversion and angular acceleration prediction. Journal of Guidance, Control, and Dynamics, 33(6):1732–
1742, 2010. ISSN 15333884. doi: 10.2514/1.49978.

[53] Christopher Silva, Wayne Johnson, Kevin R. Antcliff, and Michael D. Patterson. VTOL urban air mobility
concept vehicles for technology development. 2018 Aviation Technology, Integration, and Operations
Conference, pages 1–16, 2018. doi: 10.2514/6.2018-3847.

[54] David Silver. Lecture 1 : Introduction to Reinforcement Learning Outline. Technical report, University
College London, 2015.

[55] David Silver. Lecture 7 : Policy gradient. Technical report, University College London, 2015.

[56] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. 31st International Conference on Machine Learning, ICML 2014, 1:
605–619, 2014.

[57] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of
Go without human knowledge. Nature, 2017. ISSN 14764687. doi: 10.1038/nature24270.

[58] P. Simplício, M. D. Pavel, E. van Kampen, and Q. P. Chu. An acceleration measurements-based approach
for helicopter nonlinear flight control using incremental nonlinear dynamic inversion. Control Engi-
neering Practice, 21(8):1065–1077, 2013. ISSN 09670661. doi: 10.1016/j.conengprac.2013.03.009. URL
http://dx.doi.org/10.1016/j.conengprac.2013.03.009.

[59] R S Sutton, D Precup, and S Singh. Between MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. ARTIFICIAL INTELLIGENCE, 112(1-2):181–211, aug 1999. ISSN 0004-
3702. doi: 10.1016/S0004-3702(99)00052-1.

[60] Richard S. Sutton. Introduction: The challenge of reinforcement learning. Machine Learning, 8(3-4):
225–227, 1992. ISSN 08856125. doi: 10.1007/BF00992695.

[61] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[62] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods
for Reinforcement Learning with Funciton Approximation. Advances in Neural Information Processing
Systems, 70(9), 2000. ISSN 00334081.

[63] Sana Syed, Z. H. Khan, M. Salman, Usman Ali, and Arsalan Aziz. Adaptive flight control of an aircraft
with actuator faults. 2014 International Conference on Robotics and Emerging Allied Technologies in
Engineering, iCREATE 2014 - Proceedings, pages 249–254, 2014. doi: 10.1109/iCREATE.2014.6828374.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1016/j.conengprac.2013.03.009

Bibliography 107

[64] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. IEEE
International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012. ISSN 21530858. doi:
10.1109/IROS.2012.6386109.

[65] E. Van Kampen, Q. P. Chu, and J. A. Mulder. Continuous adaptive critic flight control aided with ap-
proximated plant dynamics. Collection of Technical Papers - AIAA Guidance, Navigation, and Control
Conference 2006, 5(August):2989–3016, 2006. doi: 10.2514/6.2006-6429.

[66] Erik-Jan Van Kampen. AE4301 Automatic Flight Control System Design. Technical report, Delft Univer-
sity of Technology, 2018.

[67] Erik-Jan Van Kampen. AE4350 Bio-inspired Intelligence and Learning. Technical report, Delft University
of Technology, Delft, 2019.

[68] Ganesh K. Venayagamoorthy, Ronald G. Harley, and Donald C. Wunsch. Comparison of heuristic dy-
namic programming and dual heuristic programming adaptive critics for neurocontrol of a turbogen-
erator. IEEE Transactions on Neural Networks, 13(3):764–773, 2002. ISSN 10459227. doi: 10.1109/TNN.
2002.1000146.

[69] WallPaperAccess. Paper plane wallpapers, 2021. URL wallpaperaccess.com/paper-plane#1981484.

[70] Christopher J C H Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge United
Kingdom, 1989.

[71] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–292, may 1992.
ISSN 0885-6125. doi: 10.1007/BF00992698. URL http://link.springer.com/10.1007/BF00992698.

[72] R. J. Williams. Simple Stiatistical Gradient-Following Algorithms For Connectionist Reinforcement
Learning. Machine Learning, 8(3-4):229–256, 1992. ISSN 0885-6125. doi: 10.1007/BF00992696.

[73] Yuhuai Wu, Elman Mansimo, Shun Liao, Alec Radford, and John Schulman. OpenAI Baselines: ACKTR
& A2C, 2017. URL https://openai.com/blog/baselines-acktr-a2c/.

[74] Zhixiong Xu, Lei Cao, and Xiliang Chen. Learning to Learn: Hierarchical Meta-Critic Networks. IEEE
Access, 7:57069–57077, 2019. ISSN 21693536. doi: 10.1109/ACCESS.2019.2914469.

[75] Zhaoyang Yang, Kathryn Merrick, Hussein Abbass, and Lianwen Jin. Multi-task deep reinforcement
learning for continuous action control. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 3301–3307, 2017. doi: 10.24963/ijcai.2017/461. URL https:

//doi.org/10.24963/ijcai.2017/461.

[76] Zhaoyang Yang, Kathryn Merrick, Senior Member, Lianwen Jin, Hussein A Abbass, and Senior Member.
Hierarchical Deep Reinforcement Learning for Continuous Action Control. IEEE Transactions on Neural
Networks and Learning Systems, 29(11):5174–5184, 2018.

[77] Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning options.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https:

//proceedings.neurips.cc/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.

pdf.

[78] Ye Zhou, Erik-Jan Van Kampen, and Q Chu. Incremental Model Based Heuristic Dynamic Programming
for Nonlinear Adaptive Flight Control. Proceedings of the international micro air vehicles conference and
competition (IMAV) 2016, 2016.

[79] Ye Zhou, Erik-Jan Van Kampen, and Q Ping Chu. An Incremental Approximate Dynamic Programming
Flight Controller Based on Output Feedback. In AIAA Guidance, Navigation, and Control Conference,
2016. ISBN 9781624103896. doi: 10.2514/6.2016-0360.

[80] Ye Zhou, Erik Jan Van Kampen, and Qi Ping Chu. Incremental approximate dynamic programming for
nonlinear adaptive tracking control with partial observability. Journal of Guidance, Control, and Dy-
namics, 41(12):2554–2567, 2018. ISSN 15333884. doi: 10.2514/1.G003472.

wallpaperaccess.com/paper-plane#1981484
http://link.springer.com/10.1007/BF00992698
https://openai.com/blog/baselines-acktr-a2c/
https://doi.org/10.24963/ijcai.2017/461
https://doi.org/10.24963/ijcai.2017/461
https://proceedings.neurips.cc/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf

	Preface
	I Scientific Article
	II Preliminary Report (Previously graded under AE4020)
	Introduction
	Research proposal
	Field of Research
	Research objective and questions

	Literature study part I: Fundamentals
	Problem analysis of flight control for CS-25 aircraft
	Fundamentals of reinforcement learning
	Policy gradient reinforcement learning
	REINFORCE
	Actor-Critic Design

	Conclusion

	Literature study part II: State of the Art
	Actor-Critic Design in Deep Reinforcement Learning
	Deep Deterministic Policy Gradient
	Synchronous and Asynchronous Advantage Actor-Critic

	Actor-Critic in Approximate Dynamic Programming
	Adaptive-Critic Design
	Incremental Approximate Dynamic Programming

	Policy Optimization algorithms
	Trust Region Policy Optimization
	Proximal Policy Optimization

	Hierarchical Design in (Deep) Reinforcement Learning
	Hierarchical Deep Deterministic Policy Gradient
	Hierarchical Intermittent motor control with Deep Deterministic Policy Gradient
	Option-Critic Architecture

	Conclusion

	Preliminary Analysis
	Agents
	Hyperparameter Optimization

	Experiment setup
	Environment setup
	Reward function
	Reward shaping and termination of training
	Adaptivity to changing environment dynamics
	Sample efficiency

	Results and discussion
	Hyperparameter Optimization
	Overview of all experiments
	Longitudinal control: EXP1 and EXP3
	Lateral control: EXP2 and EXP4
	n-order dynamics and n-order instability
	Velocity tracking time traces for EXP3 and EXP4 with c-test

	Conclusion

	III Wrap up
	Conclusions
	Recommendations

	IV Appendices
	Mass-spring-damper model
	Flight model
	Additional figures
	Bibliography

