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Abstract

Two models have been constructed and physically motivated based on the (system
of) Cahn-Hilliard equation(s) and Stefan problem in order to describe the behavior of
fluids in a hypothetical mixture. A finite element method is developed to solve the
Cahn-Hilliard equations based on a mixed formulation where reduction of the forth-
order spatial derivative is applied. The method is also extended to multiple species.
Furthermore, mass conservation and energy decrease for the (system of) Cahn-Hilliard
equation(s) as well as the Stefan problem are demonstrated mathematically. Then,
all proved mathematical subjects have been verified by the numerical aspects for the
purpose of approving the numerical results.
The Cahn-Hilliard equations with a diffuse interface has been compared to a Stefan
problem with a sharp interface and a reasonable agreement is obtained. To find out the
advantages and disadvantages, the results and assumptions are discussed at the end for
both models.

M.Sc. thesis M. Gholami Gharasoo



vi Abstract

M. Gholami Gharasoo M.Sc. thesis



Acknowledgments

I feel a deep sense of gratitude to all those who gave me the possibility to complete
this thesis. I am deeply grateful for my direct supervisor Dr. Fred Vermolen from
Mathematics Department of the TUDelft whose help, exhilarating suggestions and
encouragement helped me in all the time of research. Besides, I am profoundly indebted
to my other supervisors Dr. P. L. J. Zitha and Ir. Hein J. Castelijns from Applied
Earth Science Department of the TUDelft, who helped me over this job for all their
useful complimentary remarks and notifications. I also wish to express my great thanks
to my classmates and friends in TUDelft specially to Habib Valiollahi and Ir. F. C.
Schoemaker for their valuable comments.

Delft, University of Technology M. Gholami Gharasoo
July 27, 2005



viii Acknowledgments

M. Gholami Gharasoo M.Sc. thesis



Table of Contents

Abstract v

Acknowledgments vii

Introduction 1

1 Physical Models 5

1-1 Mixture Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-1-1 Definition of System . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-1-2 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1-1-3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1-2 Stefan Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1-3 Comparison between the Models . . . . . . . . . . . . . . . . . . . . . . . 12

1-3-1 Front Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1-3-2 Front Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Mathematical Properties 15

2-1 Properties of the CH system of equations . . . . . . . . . . . . . . . . . . 15

2-1-1 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-1-2 Energy Decrement . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2-1-3 Concept of Phase Separation . . . . . . . . . . . . . . . . . . . . 16

2-2 Extension to Multi-component CH . . . . . . . . . . . . . . . . . . . . . 17

2-2-1 Energy Decay for the Multi-component Case . . . . . . . . . . . . 18

2-3 Properties of the Stefan problem . . . . . . . . . . . . . . . . . . . . . . 19

2-3-1 Mass Conservation and Energy Decay . . . . . . . . . . . . . . . . 19

2-3-2 Free Energy Requirement . . . . . . . . . . . . . . . . . . . . . . 20

M.Sc. thesis M. Gholami Gharasoo



x Table of Contents

3 Numerical Methods 21
3-1 Numerical Solution Technique of the CH Equation . . . . . . . . . . . . . 21

3-1-1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-1-2 Numerical Solution Method . . . . . . . . . . . . . . . . . . . . . 22

3-2 Stefan Numerical Solution Technique . . . . . . . . . . . . . . . . . . . . 24

4 Results 27
4-1 The CH Binary Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4-2 Multi-component Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-3 Stefan Problem for the Binary Solution . . . . . . . . . . . . . . . . . . . 32

4-4 Comparison between a Stefan Problem and the CH Model . . . . . . . . . 34

5 Conclusions 37

Bibliography 39

M. Gholami Gharasoo M.Sc. thesis



List of Figures

1-1 Domain for a binary solution . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-2 Non-convex Free Energy Diagram . . . . . . . . . . . . . . . . . . . . . . 10

3-1 Galerkin linear test function, ψ vs. position x. . . . . . . . . . . . . . . . 23

4-1 Smoothing the initial condition . . . . . . . . . . . . . . . . . . . . . . . 28

4-2 Results of the CH equation for a binary solution . . . . . . . . . . . . . . 29

4-3 Numerical verification for the CH properties . . . . . . . . . . . . . . . . . 29

4-4 Interface motion in the CH equation . . . . . . . . . . . . . . . . . . . . 30

4-5 Comparison between the non-linear and the linear CH solutions . . . . . . 30

4-6 Eyre formula for a ternary mixture . . . . . . . . . . . . . . . . . . . . . . 31

4-7 Results of the Stefan problem for a binary solution . . . . . . . . . . . . . 33

4-8 Numerical verification for properties of the Stefan problem . . . . . . . . . 33

4-9 Comparison between the results of both models . . . . . . . . . . . . . . . 35

4-10 Comparison between the interface change in each model . . . . . . . . . . 36

M.Sc. thesis M. Gholami Gharasoo



xii List of Figures

M. Gholami Gharasoo M.Sc. thesis



Introduction

Once we go ahead to consider the fluids interaction inside a multi-portion environment,
we need to specify whether the components are miscible or immiscible. Here, The whole
frame is considered as a hypothetical case of immiscible fluids. The immiscible mixture
is separated into two phases by means of a sharp interface. The components of the
mixture are soluble only in one of the phases depending on whether they are organic or
inorganic. The immiscibility of fluids does not stop the diffusion through the interface
but reduce it to infinitesimal extents. The process is aimed here to be figured out as a
model by the help of the Cahn-Hilliard system of equations and a Stefan problem.
One of the structural problems in simulating the immiscible fluids behavior inside a
mixture is to specify the position of interface together with its motion. The sort of tran-
sition that takes place in the mixture through the interface is determined by movement
of the sharp interface. If the free energy of the homogeneous state is larger than the
free energy of separated state, then the created miscibility gap causes in imperceptible
changes of the composition of the mixture. As a result, the free energy of the mixture
is gradually reduced and phase separation happens.
The specified model contains a narrow transition layer as a sharp interface in which
the fluid may mix across it. The model describes the transport of the mixture compo-
nents through the interface in which only diffusion influences its structure . A set of
scalar fields are introduced as a identification for the mass concentration of the fluid
components. Here, in this study we disregard the effect of convection on our model.
But to have a complete model for every particular component, generally the change of
mass concentrations resulting from total dissipation in the mixture is combined to the
fluid motion equations to give a system of equations. The most well-known conjugated
systems are the Euler (or Navier-Stokes) and Cahn-Hilliard equations. Dispersion is
assumed to be a function of dimensional surface energy introduced as a non-locality
term. Localized dissipation caused by mixing, represents the loss of solutions balance
to the interface and provides the topological mechanism. Also the classical fluid equa-
tions can be applied on both sides of the interface and then jump conditions play a role
across the interface.
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2 Introduction

In general, there is two types of sharp interface modeling, front tracking or front cap-
turing. In this study, we use both methods to approach the problem. Finally, we do a
comparison between the accuracy and stability of both methods. Normally in the front
tracking method, the position of the interface is traced. Change of topology should be
considered in both sides of transition layer. In some cases in which we have movement
of the interface resulting in shrinkage or expansion of the geometrical form of domains.
Clearly it is needed to retain their identity after this certain transformation.
In the front capturing method, a supplemental forth order scalar field is added which
helps to trace the transition layer between two fluid components by suppressing the
effect of unstable region. In this method, topological changes of domains are free to be
considered and the position of the interface is determined by smoothing the flow dis-
continuities. The easiness of use, computational success and lots of numerical ways to
solve made it the favorable choice, notwithstanding all obstacles in solution dependen-
cies on the type of smoothing of the flow discontinuities as well as sort of singularities
which have to be taken.
The interface can be defined between two immiscible fluids as a very thin layer where
unstable mixtures become stable by energy gradient terms. This idea was proposed
first by Van der Waals [1894] and modified later by Cahn and Hilliard [1958] to be
used in complex diffusional problems. In the Cahn-Hilliard basic form (purely diffu-
sional), it is assumed that there is no coupling between fluid dynamics like diffusion
and convection. The model is reliable enough to describe fluids well, however the ef-
fect of coupling is rather considerable due to the energy dependence on concentrations
and related forces. The model proposed by Lowengrub and Truskinovsky [1998][15]
takes this coupling into account, introducing two additional parameters. One param-
eter brings the effect of surface tension into account. The other parameter provides
the mechanism for topological changes to handle the loss of regularity of the solutions.
Another solution proposed by Chakrabarti et al.[11][12] and Brown and Chakrabarti[2]
based on the Cahn-Hilliard-Cook model represents an extension of the Cahn-Hilliard
equation by an additional noise term.
When we come to solve the set of partial differential equations, we have to consider
how to deal with boundary conditions. Here, non-periodic conditions provide more
descriptive results in phase separation phenomena (Chan and Rey, 1995)[17]. The zero
mass flux on the border lines, considering no mass flow through them, creates suitable
boundary condition. Furthermore, we need another set of boundary conditions to be
able to solve the Cahn-Hilliard equation numerically. The natural boundary conditions
can be applied as a particular option resulting from a symmetry argument.
In order to simulate smooth changes of topology, some abstract models have been intro-
duced for diffusion equation. The most famous models are those of Ginzburg-Landau
and Flory-Huggins which describe the free energy of a solution as a function of concen-
tration gradients. Just the same, some other models have described energy dependency
on density gradients rather than concentration gradients. Chakrabarti[3] used a forth
order energy model which was proposed by Ginzburg-Landau, yet did not consider the
effect of geometry of the molecules. Brown and Chakrabarti[2] and Chakrabarti et
al.[11][12] used the Flory-Huggins energy model [10] and limited their study to equal
sizes of the molecules and the same degree of polymerization for each component. An
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Introduction 3

appropriate expression for the bulk free energy that can be used for polymers ade-
quately, is the one due to Flory-Huggins. Flory-Huggins equation describes thermody-
namics of the solutions which is based on the lattice theory. In this study we consider
a non-symmetric phase diagram based on the Flory-Huggins equation, whose the non-
symmetric shape arises from differences between molecular properties of the solution
components.
Eyre [7] formulated a mathematical model for the multi-component version of phase
transitions based on system of Cahn-Hilliard equations. The multiple phases may co-
exist or compete together.
In this thesis, we explore some mathematical properties and numerical solutions of the
Cahn-Hilliard equation. Further, we extend the mathematical properties and numerical
solutions to multi-component systems. Finally, the relation between the Cahn-Hilliard
equation and an appropriate Stefan problem is illustrated. This was done by use of a
perturbation expansion by Pego [16] and the numerical validation is investigated here.
The contents of this thesis are as follows. In Chapter 1, the governing equations are
illustrated. In Chapter 2, the mathematical properties are investigated. In Chapter
3, the discrete schemes and the applied numerical methods are drawn. In Chapter 4,
results are presented and compared. In Chapter 5, conclusions are drawn.
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Chapter 1

Physical Models

1-1 Mixture Properties

1-1-1 Definition of System

Consider an immiscible (partly miscible) mixture when fluid components are separated
by an interface in two phases. We need to define the domains of each phase as well
as the position of the interface which separates the fluids. When separeted state of
fluids in solution leads to the lower amount of enthalpy than the homogeneous state of
mixture, we have immiscible mixture at that certain temperature. Thus we consider a
very simplified model of compressible and homogeneous fluids at a constant temprature,
Figure 1-1. The motion of fluids can be modeled by use of either Euler or Navier-Stokes
equations.
Hereinafter, we consider a solution composed of N + 1 components. Heterogeneous
mixtures of several incompressible fluids can be pondered where the mass concentration
is defined as ci = Mi/M, i ∈ {1, . . . , N + 1}. Mi and Vi are masses and volumes of
the constituents of mixture whose volume is V . Obviously as long as M = M1 +M2 +
. . . +MN+1, c1 + c2 + . . . + cN+1 = 1. We assume vi as fluids velocity which could be
different and ρ̂i = Mi/V as apparent densities. The mass balance equation for every
component gives,

∂ρ̂i

∂t
+∇ · (ρ̂ivi) = 0 (1-1)

All actual densities ρi = Mi/Vi then can be obtained by ρi = V
Vi
ρ̂i. So generally we

consider an isothermal system of incompressible fluids which form an ideal mixture.
Therefore, no excess volume of mixing (i.e. for a binary solution V1 =

∫
V
H(x)dx

where H is Heaviside function) and density can be described as 1/ρ =
∑N+1

i=1 ci/ρi.

Mass-averaged velocity (or barycentric velocity) is introduced by ρv =
∑N+1

i=1 ρ̂ivi when
ρ = ρ̂1 + ρ̂2 + . . . + ρ̂N+1 = M/V is the entire density of mixture which changes if the
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6 Physical Models

Figure 1-1: Simplified model of binary immiscible solution whose components separated by
interface.

composition changes. As a consequence [15],

∂ρ

∂t
+∇ · (ρv) = 0 (1-2)

Now let us define a non-hydrostatic stress tensor Pnh which has an additional stress
term associated with the existence of concentration gradients (Cauchy stress), by

Pnh := (−ρ2∂f

∂ρ
)I− ρ∇c⊗ ∂f

∂∇c (1-3)

where f is Helmholtz free energy,

f(ρ, c,∇c) = f0(ρ, c) +
1

2

N∑
i=1

κii|∇ci|2

which is obtained as Eq. (1-12) in the next section. Generalized chemical potential µ
is defined by

µ =
∂f

∂c
− 1

ρ
∇ ·

(
ρ
∂f

∂∇c
)

(1-4)

where the parameters including the overline, correspond to the vector of that quantity
which consists of N elements. The linear conservation of momentum can be expressed
by

ρ
dvi

dt
= ∇ ·Pi

∀i ∈ {1, . . . , N + 1}
(1-5)

M. Gholami Gharasoo M.Sc. thesis



1-1 Mixture Properties 7

where P is total stress tensor including non-hydrostatic stress Pnh as well as viscous
stress tensor Pv, given by

Pv = η
(∇v + vT

)
(1-6)

Here η is shear viscosity. The notation d/dt = ∂/∂t + v · ∇ is used to denote the
convective time derivative. Direct use of Eq. (1-3) results in another set of equations
which describe the Pnh dependency on Gibbs free energy g(ρ, c,∇c) and concentration
gradients [15],

∇ ·Pnh = −ρ(∇g − µ∇c) (1-7a)

g(ρ, c,∇c) = f + ρ
∂f

∂ρ
(1-7b)

From Eq. (1-7a) and Eq. (1-5), the following equation is obtained for the acceleration,

dvi

dt
= −∇gi + µi∇ci +

1

ρ
∇ · (Pv)i

∀i ∈ {1, . . . , N + 1}
(1-8)

1-1-2 Free Energy

The Helmholtz free energy F of the mixture is the integral of the local free energy
density f over the body Ω. Here f is assumed to be a function of c and its gradient. A
taylor expansion up to the second order gives

f(ρ, c,∇c) = f0(ρ, c) + [L] · ∇c+ [K]|∇c|2 + . . . (1-9)

Where f0(ρ, c) is the free energy density of a homogeneous system at concentration c.
Due to the symmetry center, [L] will be zero, since otherwise the value of f would be
different for gradients in inverse direction. For isotropic system, the matrix [K] will be
diagonal with equal elements, which can be taken as κ/2. In this simplified system the
total free energy is

F(c) =

∫

Ω

f(ρ, c,∇c)dA =

∫

Ω

(
K|∇c|2 + f0(ρ, c)

)
dA (1-10)

Normally, the first term is referred to as the gradient penalty and the second one
as homogeneous term [14]. For an infinite system, or one with periodic or Dirichlet
conditions, we can obtain the potential µ from Eq. (1-4) for incompressible fluids as

µ =
δF
δc

=
df0

dc
− 2K∇2c (1-11)

which results into Eq. (1-19) when combined with the diffusion flux equation Eq. (1-17).
In case of immiscible fluids, high interaction parameters cause the free energy function
f(c) to be non-convex Figure 1-2. Therefore, in the concentration domain we have
an unstable region where diffusivity is negative (D(c) = νd2f/dc2 < 0) and this im-
plies spinodal decomposition to happen. Negative diffusion factors lead to problems

M.Sc. thesis M. Gholami Gharasoo



8 Physical Models

since they imply uphill diffusion. To tackle the problem, Cahn & Hilliard added the
forth order concentration gradient including κ to the free energy formulation as in Eq.
(1-11). The term sometimes is called weak non-locality as well. κ is a very small
positive number which can be obtained from measurement of the surface tension [5].
Some theories have been developed to predict κ as a function of concentration profile
and physical properties of the molecules, like de Gennes(1980)[4], McMaste(1975) and
Binder(1983)[1].
Practically, from Eq. (1-10) the local specific Helmholtz free energy for the mixture of
N + 1 components can be obtained by

f(ρ, c,∇c) = f0(ρ, c) +
1

2

N∑
i=1

κii|∇ci|2 (1-12)

where homogeneous contribution of free energy, f0 is defined by Flory-Huggins in terms
of volume fractions as [10]

f0(φ) = RT

(
N+1∑
i=1

φi lnφi

ri

+
N∑

i=1

N∑
j=i+1

χijφiφj

)
(1-13)

R is the gas constant and χij are physically dimensionless numbers which denote the
interaction parameters. The Eq. (1-13) already considered the difference between the
molecules of mixture components in term of their size by including term ri = V m

i /V m

(V m is the molar volume). To change from Flory-Huggins expression in terms of volume
fractions Eq. (1-13) to Eq. (1-14) in terms of mass concentrations, we use φi = ρci/ρi.
Hence,

f0(ρ, c) = RT

(
N+1∑
i=1

ci ln ci
Ni

+
N+1∑
i=1

N+1∑
j=i+1

χijcicj

)
(1-14)

where Ni = (V m
i /V m)(ρi/ρ) is a dimensionless value chosen to reflect the relative

molecular size and weight of component i. Regularly when the fluids are immiscible,
the intraction parameters χij are larger than the critical value χcr

ij , which is a function
of the relative size of molecules. For a binary solution χcr

ij is defined by [5]

χcr
ij =

Ni +Nj +
√

9N 2
i + 9N 2

j − 14NiNj

2NiNj

(1-15)

In multi-component solutions when one of the χij values becomes larger than χcr
ij ,

those ith and jth components act as immiscible fluids inside the mixture at that certain
condition. To know more about critical phase behavior of the mixtures particularly
binary solutions, see Gunton et al.[13].

1-1-3 Diffusion

The theory should include the possibility of mixing of the fluids, thus we need to
introduce concentration as a scalar field which depends on position and time. The

M. Gholami Gharasoo M.Sc. thesis



1-1 Mixture Properties 9

general idea is to couple a diffusion model to the fluid motion model in order to construct
fully physically motivative model of mixtures. Nevertheless to have a simplified model,
we assume no velocity is induced due to concentration changes, v = 0. Accordingly
we take whole system as a density-matched system and we assume there is no external
fluid field. All together we disregard the equation for the balance of momentum Eq.
(1-8) which is resulting in (d/dt) = (∂/∂t+ v · ∇) = (∂/∂t).
We need to make some assumption about the energy of mixing. A cardinal point about
the fluid mixtures is that a certain degree of miscibility exists between the immiscible
fluids even at low temperatures. A miscibility gap happens when the enthalpy of the
homogeneous situation of mixture is greater than the enthalpy of separated state of
phases in the mixture. If the temperature increases to critical temprature, the so-
called equilibrium concentrations approach each other and miscibility gap that occurs
at interface decreases. Above the critical temperature miscibility gas vanishes and
system acts like a continuous mixture whose fluids are fully miscible. The change in
topology is because of the system’s desire to go to lowest level of energy. So the mixing
models have been described by change of specific free energy which is presumed to be
convex if fluids are miscible and non-convex if fluid are immiscible (section 1-1-2). At
equilibrium, an immiscible mixture will separate into two phases having the binodal
compositions. The method of determining binodal concentrations is founded on the
common tangent construction of the Gibbs or Helmholtz free energy function, Eq.
(1-9),

df

dc

∣∣∣
cL

=
df

dc

∣∣∣
cR

(1-16)

For a binary solution the position of binodal points and spinodal points are shown
related to the energy digram in Figure 1-2. We need an additional equation of c(x, t)
for the purpose of describing the continuous change of concentration profiles in time.
The diffusion equations can describe the dissipation due to the movement of the fluids
and likewise fulfill the equilibrium conditions Eq. (1-16). Hence

ρ
∂c

∂t
= ∇ · (J), J = ν∇(µ) (1-17)

where ν > 0 is the mobility coefficient and J is the tensor of diffusional flux. Equilib-
rium is achieved when chemical potentials are equal everywhere. Accordingly, substi-
tution of Eq. (1-4) in balance equation Eq. (1-17), gives





ρ
∂ci
∂t

= ∇ ·
(
ν∇

(
∂f

∂ci
− 1

ρ
∇ ·

(
ρ
∂f

∂∇ci

)))

∂f

∂∇ci := 〈 ∂f

∂(∂ci

∂x
)
,
∂f

∂(∂ci

∂y
)
,
∂f

∂(∂ci

∂z
)
〉

∀i ∈ {1, . . . , N}

(1-18)

which is known as the Cahn-Hilliard equation. For making things easier, generally we
assume the compressibility of the fluids to be negligible. Then for the incompressible
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Figure 1-2: Binodal Points, cL = 0.2479 and cR = 0.8443 exist for critical binary solution when
χ = 2.3 > χcr, N1 = 0.8, N2 = 1.3. csp1 and csp2 are spinodal (inflection) points where f ′′ is
zero.

mixtures considering the free energy definition Eq. (1-11), Eq. (1-18) is rewritten as

ρ
∂ci
∂t

= ∇ ·
(
ν∇

(
∂f0

∂ci
−

N∑
j=1

κij∇2cj

))

∀i ∈ {1, . . . , N}
(1-19)

where f is the specific Helmholtz free energy Eq. (1-12) and the potential µ can be
considered as the driving force for local changes of consentrations. Considering some
assumptions, in the multi-component case, the model is proved numerically to be fully
compatible with equilibrium condition Eq. (1-16). The CH equation and other later
modified versions of that, are developed to describe the both non-critical and critical
behavior of mixtures which latter leads to phase separation and spinodal decomposition.

1-2 Stefan Problem

Mass conservation of the components of mixture in whole domain of Ω, can be expressed
as

d

dt

∫

Ω

c dV = 0 (1-20)

In case the fluids are immiscible, we assume a sharp interface between phases which
includes the unstable region. Therefore, concentration values at the sides of interface
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1-2 Stefan Problem 11

where dissipation occurs, can never be a value between binodal points. Now, we drive
the Stefan problem for a one-dimensional configuration. Derivation is similar for every
component in the mixture so we write it generally in term of c where c could be every
ci, ∀i ∈ {1, . . . , N + 1}. Consider a sharp interface S(t), over which the concentration
is discontinuous with binodal points of cL and cR such that limx→S−(t) c(x, t) = cL and
limx→S+(t) c(x, t) = cR. Keeping Eq. (1-20) in mind and splitting it up into two parts
x < S(t) and x > S(t), then it follows that

d

dt

∫ S(t)

Γ1

c dx+
d

dt

∫ Γ2

S(t)

c dx = 0 (1-21)

where Γ1 and Γ2 denote the left and right outwards boundaries of domain respectively.
At the boundaries x = Γ1 and x = Γ2, we assume due to symmetry arguments that
∂
∂x

= 0. Application of Leibnitz’ Rule gives

cLS
′(t) +

∫ S(t)

Γ1

∂c

∂t
dx+

∫ Γ2

S(t)

∂c

∂t
dx− cRS

′(t) = 0 (1-22)

Substitution of the Cahn-Hilliard equation into the integrals in the Eq. (1-22), yields

S ′(t)
(
cL − cR)

)
+

∫ S(t)

Γ1

1

ρ

∂

∂x

(
ν
∂

∂x

(
f ′0(c)− κ

∂2c

∂x2

))
dx

+

∫ Γ2

S(t)

1

ρ

∂

∂x

(
ν
∂

∂x

(
f ′0(c)− κ

∂2c

∂x2

))
dx = 0

(1-23)

Using the boundary conditions gives

S ′(t) =
ν

ρ

∂

∂x

(
f ′0(cR)− κ

∂2c

∂x2
(S+(t), t)

)
− ∂

∂x

(
f ′0(cL)− κ

∂2c

∂x2
(S−(t), t)

)

cL − cR
(1-24)

if cL 6= cR. In this step ν and ρ have been treated as constants. The above equation
can be re-arranged into

S ′(t) =
ν

ρ

f ′′0 (cR)
∂c

∂x
(S+(t), t)− f ′′0 (cL)

∂c

∂x
(S−(t), t)

cL − cR

+
ν

ρ
κ

∂3c

∂x3
(S−(t), t)− ∂3c

∂x3
(S+(t), t)

cL − cR

(1-25)

As κ → 0 and has a constant value, the definitions DR = νf ′′0 (cR) and DL = νf ′′0 (cL),
under the assumption that all spatial partial derivatives exist, lead to the following
relation

S ′(t) =
1

ρ

DR
∂c

∂x
(S+(t), t)−DL

∂c

∂x
(S−(t), t)

cL − cR
(1-26)
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12 Physical Models

which is known as the Stefan condition and it describes the rate of motion of the
interface. The interface can move only when the initial condition is not as same as
the binodal equilibrium and we have asymmetric shape of the free energy expression
or initial conditionis. The magnitude of cL − cR denotes the miscibility gap. Some
numerical methods for Stefan problems have been proposed and analyzed by, among
many others, F.J. Vermolen and C. Vuik [9][8].

1-3 Comparison between the Models

Accordingly, now we can summarize all the expressions together and write the closed
system of equations. In this paper, two different approaches were employed to be solved
numerically. One is based on the method of Cahn & Hilliard which is using an additional
scalar field to capture the interface position. Another method is using an additional
expression, the Stefan condition, to track the position of interface explicitly. Then, a
comparison between the numerical results of both methods reveals the advantages and
disadvantages of each.

1-3-1 Front Capturing

Collecting the mass balance equations and the CH diffusion equation together, gives a
system of equations for a quasi-incompressible, isothermal and nonuniform fluid mixture
as

∂ρ

∂t
= −ρ∇ · v (1-27a)

ρ
∂ci
∂t

= ∇ ·
(
ν∇

(
∂f0

∂ci
−

N∑
j=1

κij

ρ
∇ · (ρ∇cj)

))
(1-27b)

∀i ∈ {1, . . . , N}
where the mixture assumed to haveN+1 components. To solve this system numerically,
the symmetry boundary conditions are chosen as

[∇c] · n = 0 (1-28a)

[∇(∆c)] · n = 0 (1-28b)

which represents natural boundary conditions and zero mass flux boundary conditions.
n is the unit normal vector perpendicular to the boundaries.

1-3-2 Front Tracking

The diffusion equation Eq. (1-17) can be written as

ρ
∂c

∂t
=

∂

∂x

(
D(c)

∂c

∂x

)
(1-29)
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1-3 Comparison between the Models 13

whereD(c) = νd2f/dc2 is the diffusion coefficient. Since we consider the transition layer
apart from domains where diffusion occurs localy and the interface is tracked separately,
then the term for dispersion (weak non-locality κ) can be neglected. Therefore, the
diffusion coefficient can be ragarded as D(c) = νd2f0/dc

2.
This Stefan problem Eq. (1-26) describes the movement of front due to the asymmetry of
free energy diagram or initila condition when initial conditions essentially are different
from the values of binodal concentrations. Clearly, this leads to expansion or shrinkage
of the domains where regular dissipation occurs, and defines the position of nodes (or
ranges) where concentration profiles numerically figured out, to be function of time.
As a result, concentration profiles can be expressed as c = c(x(t), t). Therefore

dc

dt
=
∂c

∂t
+
∂c

∂x
xt(t) (1-30)

Having Eq. (1-30), then easily Eq. (1-29) takes the form

dc

dt
− ∂c

∂x
xt(t) =

1

ρ

∂

∂x

(
D(c)

∂c

∂x

)
(1-31)

The Stefan problem (Eq. (1-26)) determines the velocity profile xt(t) which has its
maximum at interface dS(t)/dt. Here xt(t) is defined as the velocity of the gridnodes.
This will be clarified in Chapter [3]. Velocity decreases as it goes to the boundaries
where there is no flux and natural boundary conditions are applied. We need another
set of boundary conditions at interface. To satisfy the equilibrium condition Eq. (1-16)
and to have positive values of diffusivity f ′′(c) > 0 , we take binodal concentrations

cR = c
∣∣∣
(x,y,z)→S+ (t)

, cL = c
∣∣∣
(x,y,z)→S− (t)

(1-32)

as the essential boundary condition for interface. Summarizing whole of model, we
have

dc

dt
=

∂c

∂x
xt(t) +

1

ρ

∂

∂x

(
D(c)

∂c

∂x

)
(1-33a)

dS(t)

dt
=

1

ρ

DR
∂c
∂n

(
S+(t), t

)−DL
∂c
∂n

(
S−(t), t

)

c(S−(t))− c(S+(t))
(1-33b)

where the following boundary conditions hold

∂c

∂x
= 0 , for x ∈ {Γ1,Γ2} (1-34a)

c
∣∣∣
S+ (t)

= cR (1-34b)

c
∣∣∣
S− (t)

= cL (1-34c)
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Chapter 2

Mathematical Properties

2-1 Properties of the CH system of equations

2-1-1 Mass Conservation

The total mass of mixture should be conserved. This is crucial when we deal with a
system of equations which describes the behavior of solutions. Here, theorically we
show that mass is conserved by the CH equation and later we see how numerically it
does as well. Since there is no flux over the boundaries and that there are no internal
sources, then we show that

d

dt

∫

Ω

c dA = 0 (2-1)

As we go along, we prove that the CH equation pursue this circumstance. Substitution
of Eq. (1-19) in Eq. (2-1) gives

∫

Ω

∂c

∂t
dA =

∫

Ω

∇ · (ν {f ′′0 (c)∇c− 2K∇(∆c)} )
dA (2-2)

where K is the non-locality tensor in the general form of free energy expression Eq.
(1-9). Implementation of the Divergence Theorem on Eq. (2-2) yields

∫

Ω

∂c

∂t
dA =

∫

∂Ω

ν

{
f ′′0 (c)

∂c

∂n
− 2K

∂(∆c)

∂n

}
dS (2-3)

The boundary conditions for CH equation Eq. (1-28a) & Eq. (1-28b) can be written in
the following form

∂c

∂n
= 0 (2-4a)

∂(∆c)

∂n
= 0 (2-4b)
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16 Mathematical Properties

Substitution of Eq. (2-4a) & Eq. (2-4b) into Eq. (2-3) reduces the CH equation to the
prescribed form of mass conservation Eq. (2-1). Hence, in principle mass is conserved
by the CH equation.

2-1-2 Energy Decrement

Fundamentally, to reach to the stable situation, the total energy of system should
decrease. Thermodynamically, The entropy production and energy decline is the basic
concept for every physical or chemical process to take place. Thus, it is imperative
for physical models to be elaborated with respect to energy decrement. Here in a
theoretical manner, we demonstrate energy reduction for the CH equation. Later on,
we will see that numerical results satisfy theoretical conceptions. To make a beginning,
the total energy is given by Eq. (1-10). Now we consider the decrease of total energy
in the course of time for a binary mixture

d

dt
F(c) =

∫

Ω

{f ′0(c)− 2K∆c}dc

dt
dA (2-5)

In the last step we used the Chain Rule for differentiation and we kept in mind that also
a differentiation with respect to ∇c has to be carried out. The Cahn-Hilliard equation
Eq. (1-19) can be represented by

∂c

∂t
= M∆ (f ′0(c)− 2K∆(c)) (2-6)

Considering v = 0 and dc/dt = ∂c/∂t, then substitution of Eq. (2-6) into Eq. (2-5)
yields

d

dt
F(c) = M

∫

Ω

(f ′(c)−2K∆c)∆(f ′(c)−2K∆c)dA = −
∫

Ω

||∇(f ′(c)−2K∆c)||2dA ≤ 0

(2-7)
The last step follows from integration by parts and use of the boundary conditions.
This implies that the total energy indeed decreases as time proceeds. This analysis is
similar to the one by deMello et all [6].

2-1-3 Concept of Phase Separation

The exact locations of the binodal and spinodal points (or lines in case of a multi-
component solution) in the free energy diagram can be derived from

∂2f0

∂c2

∣∣∣
SP

= 0 (2-8a)

∂f0

∂c

∣∣∣
BP1

=
∂f0

∂c

∣∣∣
BP2

(2-8b)

As we see also in Figure 1-2 spinodal points (lines) Eq. (2-8a) are inflection points
where the second derivative of free energy diagram is equal to zero. Binodal points are
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2-2 Extension to Multi-component CH 17

external to the spinodal points and located close to minimum points (in a symmetric
energy diagram they are exactly the minimum points). Eq. (2-8b) is similar to Eq.
(1-16) for determining equilibrium points (lines).
When the temperature of mixture is brought below the critical temperature, the con-
stituents are immiscible in the solution and phase separation possibly occurs. Two
main processes which play an important role in phase separation occurrence, are nucle-
ation & growth(NG) and spinodal decomposition (SD). In the metastable region which
is defined as the area between binodal points (lines) and spinodal points (lines), the
stability of solution is highly dependent on the amplitude and value of concentration
fluctuations. Thus in metastable region, phase separation occurs through NG. How-
ever, the behavior in unstable region, which is located between the spinodal points
is different. In this region, phase separation occurs through SD because contrary to
the metastable region, even small perturbations of concentration can reduce the the
total free energy of the system. Therefore, we deal with a partly stable solution in the
unstable region (see Gunton et al.)[13].

2-2 Extension to Multi-component CH

Extended CH equation for a multi-component solution which is presented here, mainly
is based on the formula proposed by Eyre [7]. For a mixture with N + 1 components
in a discretized domain of n parts, according to what we debate in Chapter (1) about
diffusion and free energy, the generalized form of CH equation can be expressed as

∂ci(x, t)

∂t
= ∆(∇ci(x,t)f0(c(x, t))− Γ∆c(x, t)) (2-9)

where

c ∈ RN , x ∈ Ω ⊂ R n, Γ ∈ RN×N , f0(c) : RN 7→ R (2-10)

The interaction matrix Γ is symmetric and holds the non-locality terms κ inside. Ac-
cording to Binder [1] the entries of matrix Γ generally depend on the mass concentra-
tions and other physical factors, however the effect is assumed to be negligible, so we
can treat them as constants. Natural boundary conditions and zero mass flux over the
boundaries are considered for this system Eq. (1-28a) and Eq. (1-28b). So similarly we
have

∂ci
∂n

= 0 (2-11a)

∂

∂n
(∆ci) = 0 (2-11b)

where i = {1, . . . , N}
In the Eq. (2-9), the mobility term ν/ρ is not involved or it is considered as a constant
unit tensor, I. Extension of Eq. (2-9) for N + 1 components yields

∂ci
∂t

= ∇ ·
{

N∑
j=1

(
∂2f0(c)

∂ci∂cj
∇cj −∇(Γij∆ci)

)}
(2-12)
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18 Mathematical Properties

for all components in the mixture, i ∈ {1, · · · , N}. Direct calculation of the Flory-
Huggins free energy formula Eq. (1-14) to get the diffusion factors, yields

∂2f0(c)

∂ci∂cj
=





1

NN

(
1−∑N

j=1 cj

) +
1

Nici
− 2χi,N , i = j

1

NN

(
1−∑N

j=1 cj

) + χi,j − χi,N − χN,j , i 6= j

(2-13)

The same numerical method (Galerkin FEM) is employed in numerical chapter for the
solution of multi-component case.

2-2-1 Energy Decay for the Multi-component Case

Now, we will show that the total energy decreases for the multi-component case as well.
Following Eyre[7], consider the total energy

F(c) =

∫

Ω

{f0(c) +
1

2
∇cTΓ∇c}dA =

∫

Ω

g(c,∇c)dA (2-14)

Then it can be shown that for each component we have

δg

δci
=
δf0

δci
−

N∑
j=1

Γij∆cj (2-15)

The Cahn-Hilliard equation can be written for each component by

δci
δt

= M∆
δg

δci
= M∆

[δf0

δci
−

N∑
j=1

Γij∆cj
]

∀i ∈ {1, . . . , N}
(2-16)

Now, we compute the change of F(c) with respect to time

d

dt
F(c) =

∫

Ω

N∑
i=1

{ δg
δci

∂ci
∂t
}dA (2-17)

using Eq. (2-16), we obtain

d

dt
F(c) = M

∫

Ω

N∑
i=1

{ δg
δci

∆
δg

δci
}dA = −M

∫

Ω

N∑
i=1

{||∇(
δg

δci
)||2}dA ≤ 0 (2-18)

The last steps follow from application of the Product Rule for differentiation and the
use of the boundary conditions. Herewith, it has been shown that the total energy
decreases as a function of time.
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2-3 Properties of the Stefan problem 19

2-3 Properties of the Stefan problem

2-3-1 Mass Conservation and Energy Decay

Mass is totally conserved in the Stefan problem because its proof is based on mass
conservation. Here and now, we formulate a criterion for the Stefan problem to have a
decrease of energy. Consider the Stefan problem where diffusion is described by

∂c

∂t
= M∆f ′(c) = M∇ · f ′′(c)∇c (2-19)

under assumption that κ→ 0. Then the total energy is given by

F(c) =

∫

Ω

f(c)dA (2-20)

for one-dimensional case the total change of energy has the form of

d

dt

∫ Γ2

Γ1

f(c)dx =
d

dt

∫ S(t)

Γ1

f(c)dx+
d

dt

∫ Γ2

S(t)

f(c)dx (2-21)

Using Leibnitz’ Rule for the differentiation with respect to time, one gets

d

dt
F(c) =

(
f(c(S−(t), t))− f(c(S+(t), t))

)
S ′(t) +

∫ Γ2

Γ1

f ′(c)
∂c

∂t
dx (2-22)

The last term is less or equal to zero as has been shown before. This implies that

(f(cL)− f(cR))S ′(t) ≤ 0, (2-23)

gives a sufficient condition that energy decreases. The sign of S ′(t) can be determined
from a global mass balance Eq. (2-1). We have that

c0L(S0 − Γ1) + c0R(Γ2 − S0) = cL(S∞ − Γ1) + cR(Γ2 − S∞) (2-24)

Assuming monotonic behavior of S(t), we see that the sign of S ′(t) equals the sign of
(S∞ − S0) where S0 and S∞ respectively denote the initial and final position of the
interface. Hence, condition Eq. (2-23) amounts to

(f(cL)− f(cR)) (S∞ − S0) ≤ 0 (2-25)

From Eq. (2-24) it follows

S∞ − S0 =
(Γ2 − S0)(c0R − cR) + (S0 − Γ1)(c

0
L − cL)

cL − cR
(2-26)

Herewith, Eq. (2-25) amounts to

(f(cL)− f(cR))
(Γ2 − S0)(c0R − cR) + (S0 − Γ1)(c

0
L − cL)

cL − cR
≤ 0 (2-27)

which poses a sufficient condition for the Stefan problem to yield a decreasing total
energy under assuming κ → 0. The consequences of binodal and spinodal points to
negative diffusivity are useless here, because the computational domains considered to
be located always in the stable region. Later we will discuss the numerical method to
get to the solution of the Stefan problem.
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20 Mathematical Properties

2-3-2 Free Energy Requirement

The diffusivity equation Eq. (1-17) is the basic equation for both CH Equation (Eq.
(1-27b)) as the Stefan problem (Eq. (1-33a)). Here we discuss the essential conditions
mainly for the free energy diagram to have a steady state solution for both miscible
and immiscible mixtures. Consider Eq. (1-17) in a one-dimensional domain limited
by boundaries Γ1 and Γ1. Also we take κ = 0 in this analysis. At the certain time
step t → ∞, we suppose that a steady state solution exists over the domain and the
boundaries have the concentration values c(Γ1, t) = cΓ1 and c(Γ2, t) = cΓ2 . We denote
the steady-state solution by c̆ i.e. limt→∞ c(x, t) = c̆, then the Eq. (1-17) takes the
following form

0 =
∂

∂x

(
f ′′0 (c̆)

∂c̆

∂x

)
(2-28)

Integration of Eq. (2-28) over position easily gives,

∫ c̆

cΓ1

f ′′0 (c)dc = A(x− Γ1) (2-29)

where A is a constant value. Substitution of the boundary values into Eq. (2-29) yields
two different equations

f ′0(c̆)− f ′0(cΓ1) = A(x− Γ1) (2-30a)

f ′0(cΓ2)− f ′0(cΓ1) = A(Γ2 − Γ1) (2-30b)

Combination of Eq. (2-30a) and Eq. (2-30b) gives the definition of the position as a
function of the concentration and the free energy

x− Γ1

Γ2 − Γ1

=
f ′0(c̆)− f ′0(cΓ1)

f ′0(cΓ2)− f ′0(cΓ1)
(2-31)

According to Eq. (2-31), c̆ is obtained by the inverse function of f ′0 and the following
principles are stated:

➣ f ′0(c̆) should be invertible on domain [Γ1,Γ2], otherwise there is no smooth solu-
tion.

➣ For the case there is a c̆∗ ∈ [cΓ1 , cΓ2 ] for which f ′′0 (c̆∗) = 0, then according to the
Implicit Function Theorem there is no smooth solution.

where the second one is the case happens for immiscible fluids markedly because of the
unstable zone presence, see Figure 1-2. This short mathematical note clearly proves
the importance of the forth order term with κ to suppress the unphysical effect of the
unstable region on the solution.
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Chapter 3

Numerical Methods

To solve the models numerically, the Galerkin’s finite element method is used. The
FEM has some advantages over finite difference method (FDM). First it is easier to
expand the solution for more dimensions, specially for odd geometries. Further, the
FEM allows us to deal with discontinuities of coefficients in a natural way. In this study
we used Galerkin’s FEM for both models.

3-1 Numerical Solution Technique of the CH Equation

3-1-1 Problem formulation

In this paper, we disregard the effect of acceleration terms on dissipation. So the
formulation is limited to the solution of CH equation considering proper initial and
boundary conditions. The solution is limited to the one-dimensional study, bounded to
a column with dimension of L. Furthermore, the mobility ν , interaction parameters
χij and the weak non-locality term κ are assumed to be constant. The size of molecules
for each fluid in the mixture is different resulting a non symmetric energy diagram.
The scalar fields ci(x, t) are dependent variables where i = 1, . . . , N for a mixture with
N+1 components. All quantities are related to the position x and the time t which are
the only independent variables. Natural boundary conditions Eq. (1-28a) and no mass
flux from boundaries Eq. (1-28b), in one-dimensional study take the following form

∂c

∂x
= 0 at t > 0, x = 0 and x = L (3-1a)

∂3c

∂x3
= 0 at t > 0, x = 0 and x = L (3-1b)

The initial condition used in our study is that we have a column that is filled by one fluid
in one half and by another fluid in the other half. Since the fluids are immiscible, we
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22 Numerical Methods

have an interface where fluids touch each other. In case only water and oil are present,
we have a binary immiscible solution where only one scalar field of concentration, let us
say water cw can be defined. Then, the concentration of the other phase (oil) is clearly
co = 1− cw. Hence, the initial condition pictures a sharp shock at interface where the
concentration is discontinuous. Whereas the initial condition could not be used in this
discontinuous form, we employ a hyperbolic form to smooth it;

cinit =
cMax + cMin

2
− cMax − cMin

2
tanh

(
C

(
x− L

2

))
(3-2)

where C has a constant value and signifies the degree of smoothness. cMax and cMin

are the highest and lowest concentration values respectively at the both sides of the
interface. In this study, the values for χij are taken such that to evince a conceivable
sharp interface between the immiscible fluids.

3-1-2 Numerical Solution Method

Many ideas for the numerical solution are taken from Chan & Rey (1995)[chan]. Al-
though Galerkin’s finite element is used in our study, nevertheless the method is slightly
different from Cahn & Rey procedure. First of all it should be mentioned here, this
numerical study is limited to binary solutions which we extend to multi-component
afterwards. In order to have an easier test function to apply for Galerkin’s method, we
split up the CH equation into a system of equations as means to reduce the forth order
term to the second order. Then CH equation is expressed as follows

ρ
∂c

∂t
= ν∇ ·

{
f ′′0 (c)∇c− κ∇w

}
(3-3a)

w = ∆c (3-3b)

After integration by part and implementation of the divergence theorem on Eq. (3-3a)
and Eq. (3-3b), the following weak form is obtained to find c(x, t), c(x, 0) = cinit(x)
and w, such that

ρ

∫

Ω

∂c

∂t
ϕdA = −ν

∫

Ω

{
f ′′0 (c)∇c− κ∇w

}
· ∇ϕdA (3-4a)

∫

Ω

wψdA = −
∫

Ω

∇c · ∇ψdA (3-4b)

for all test functions ϕ and ψ. The solution of the quantity is written as a linear
combination of all values that the quantity has in every step size, and the function
which corresponds to the position of that step size associated with its enclosing nodes.
Therefore, the solution is expressed with the help of basis functions as

c(x, t) =
n∑

i=1

ci(t)ϕi (3-5a)

w(x, t) =
n∑

i=1

wi(t)ψi (3-5b)
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3-1 Numerical Solution Technique of the CH Equation 23

where basis functions ϕ = ϕ(x, y, z) & ψ = ψ(x, y, z) depend on position and test
functions are equal to the basis functions. In our one-dimensional study test functions
only depend on one independent variable ϕ = ϕ(x) and ψ = ψ(x).Here, n is the number
of step sizes which are created in computational domain by discretization. Linear test
functions in the Galerkin’s method for second order one-dimensional partial differential
equations, are defined very easily on every node of computational domain, as indicated
in Figure 3-1.
Substitution of Eq. (3-5a) and Eq. (3-5b) into Eq. (3-4a) and Eq. (3-4b) respectively,

i−1 i i+1
0

1

2
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Ψ
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Figure 3-1: Galerkin linear test function, ψ vs. position x.

gives

ρ

n∑
i=1

c′i(t)
∫

Ω

ϕiϕjdA = − ν

n∑
i=1

ci(t)

∫

Ω

f ′′0 (ĉi)∇ϕi∇ϕjdA (3-6a)

+ νκ

n∑
i=1

wi(t)

∫

Ω

∇ϕi∇ϕjdA

n∑
i=1

ci(t)

∫

Ω

∇ψi∇ψjdA = −
n∑

i=1

wi(t)

∫

Ω

∇ψi∇ψjdA (3-6b)

for all j ∈ {1, ..., n}. ĉi is the concentration value at the specified step size which is
normally equal to average of concentration values at its enclosed nodes.
In the leading equation, the terms including

∫
Ω
ϕiϕjdA form the elements of Mass

matrix M. Similarly the Stiffness matrices S(c) and S are constructed by the terms∫
Ω
f ′′0 (ĉi)∇ϕi∇ϕjdA and

∫
Ω
∇ψi∇ψjdA, respectively. Corresponding to Figure 3-1, the

matrix elements will be zero if |i − j| ≥ 2. Hence, matrices M, S(c) and S are tri-
diagonal. Collecting all the equations together for the whole of domain, finally gives
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(
ρM + ∆t ν S(cm) −κ ν∆t S

S M

)(
cm+1

wm+1

)
=

(
ρMcm

0

)
(3-7)

where m is the time iterator that refers to the values at the present time. Note that
w and c are the concentration profiles for one component associated with the node
positions along the column. This differs from the c which is used in Chapter 1 to denote
the concentration vector of all components regardless of the computational domain.
When the mixture contains more than two components , the same set of equations
shall be written for the concentration profile of every constituent. More on this will be
presented in the next section.
The S(c) elements contrary to S and M, are dependent on the concentration profile
since the diffusivity factor f ′′0 (ĉ) is included. For the sake of simplicity and computation
time, we compute the diffusivity factors in previous time step to avoid a non-linear
problem. Later on, we discuss the advantages and disadvantages of the methods which
are used to solve the non-linear CH problem compared to linear solution (see section
4-1).

3-2 Stefan Numerical Solution Technique

The same noted Galerkin’s FEM is used here. Some minor changes are applied to
cover the boundary conditions Eq. (1-34a) in accordance with the explicit definition of
the interface position Eq. (1-34c) & Eq. (1-34c). Taking Figure 1-1 into consideration,
solution requires to be defined in both zones individually by means of Galerkin basic
functions,

c(x, t) =
n∑

i=1

ci(t)ϕi + cL ϕn+1(x) in Ω1 (3-8a)

c(x, t) = cR ϕ1(x) +
n+1∑
i=2

ci(t)ϕi in Ω2 (3-8b)

cL and cR are binodal points. When we have cL < cR, the situations c(x, t) ≤ cL in Ω1

and c(x, t) ≥ cR in Ω2 hold, which renders the loss of regularity at domains. We consider
each domain divided into n stepsizes, so we have n + 1 nodes. The weak form of Eq.
(1-33a) is obtained just like that obtained for the CH equation on account of natural
boundary condition Eq. (1-34a),

∫

Ωi

∂c

∂t
ϕ dx−

∫

Ωi

xt
∂c

∂x
ϕ dx = −

∫

Ωi

f ′′0 (c)
∂c

∂x

∂ϕ

∂x
dx (3-9)

where Ωi ∈ {Ω1,Ω2} and xt = ∂x/∂t = xt(x, t) is assumed to be a factor which
represents relative movement of the isomorphic points in time due to the interface
motion. Replacement of solutions Eq. (3-8a) and Eq. (3-8b) into weak form, gives the

M. Gholami Gharasoo M.Sc. thesis



3-2 Stefan Numerical Solution Technique 25

conclusive expression for the dissipation in each domain

n∑
i=1

c′i(t)
∫

Ω1

ϕiϕjdA−
n∑

i=1

ci(t)

∫

Ω1

xt∇ϕiϕjdA − cL

∫

Ω1

xt∇ϕn+1ϕjdA (3-10a)

= −
n∑

i=1

ci(t)

∫

Ω1

f ′′0 (ĉi)∇ϕi∇ϕjdA − cL

∫

Ω1

f ′′0 (ĉi)∇ϕi∇ϕjdA

n+1∑
i=2

c′i(t)
∫

Ω2

ϕiϕjdA−
n+1∑
i=2

ci(t)

∫

Ω2

xt∇ϕiϕjdA − cR

∫

Ω2

xt∇ϕn+1ϕjdA (3-10b)

= −
n+1∑
i=2

ci(t)

∫

Ω2

f ′′0 (ĉi)∇ϕi∇ϕjdA − cR

∫

Ω2

f ′′0 (ĉi)∇ϕi∇ϕjdA

∀j ∈ {1, . . . , n}
In case of immiscible fluids, the Eq. (3-10a) & Eq. (3-10b) fulfill the expectations of
sharp interface between two zones providing so-called miscibility gap, |cL − cR|.
The new place of interface can be traceable by use of Eq. (1-33b) as below

Sk+1(t) = Sk(t)−∆t
[[f ′′0 (c)

∂c

∂x
]]

[[c]]
(3-11)

where [[ ]] = ()Ω1 − ()Ω2 denotes the jump of values across the interface. The velocity
xt has its maximum value at interface dS/dt and minimum value of zero at the no
mass flux boundaries. In the numerical solution at initial step, the velocity term has
no value. So we solve set of equations without velocity term and after calculation of
the velocity profile, we repeat the whole process for initial step again.
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Chapter 4

Results

4-1 The CH Binary Mixture

As it was stated in chapter 2 we focus our study mainly on the binary solutions in a
one-dimensional domain. We consider two incompressible and immiscible fluids con-
tacting together in a closed system at isothermal conditions. In fact, immiscible fluids
diffuse into each other to a small extent. The effect of acceleration and conductivity
is rather neglected and we assume that diffusion is the only cause of dissipation. The
natural boundary conditions for each model are already discussed which are principally
induced by a zero mass flux at the boundaries. The numerical calculation of the model
is generalized for every immiscible system and the parameters are not chosen to rep-
resent some specific fluids. The initial condition describes two separated zones where
each is filled by one of the fluids completely.
The first step is to smooth the discontinuities of the initial condition using Eq. (3-2).
The type of smoothing could be applied by means of variety type of functions, like hy-
perbolic tangent, which is used in this study. Figure 4-1 displays the effect of different
values of C on the steepness.
As an example of the numerical method which is discussed in section(3-1) for CH equa-
tion, the results for a hypothetical immiscible binary system look like Figure 4-2. As we
see in results on Figure 4-2, the movement of the interface in early time steps is larger
than at later stages. The same happens for diffusion through interface which decreases
to a very insensible amount when the concentration gradients can not decay the total
free energy and the solution essentially is stabilized (see Figure 4-3(b)). Figure 4-2
shows that the displacement of interface in the starting 5% of the total time (t = 0.2)
is almost equal to half of the entire displacement (at t = 3.5).
In immiscible mixtures, the motion of interface could happen in case of non-symmetry.
In CH equation κ brings the effect of the surface tensions into account. As we see in
Figure 4-4 to have a continuous displacement of interface, the values of κ should not
be less than a specific range of values. However, this range of values of the κ has to be
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taken sufficiently small for the model to comprise an acceptable sharp interface.
The CH equation Eq. (1-27b) fully supports mass conservation and it is already proved
mathematically in section 2-1-1. To confirm it in our model numerically, the amount
of mass is plotted as a function of time ( see Figure 4-3(a)). Regardless of the small
changes in total mass due to local errors, we see mass remains comprehensively constant
in time which supports our theoretical considerations.
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Figure 4-1: Different values of C have a huge effect on the steepness. The higher the value of
C, the sharper is the interface. This study uses C = 100.

Due to the stabilization, the total free energy of the system should reduce in time.
The reduction is very fast at primary time steps, and rapidly starts to slow down at
subsequent steps (see Figure 4-3(b)). The diffusion through the interface also has a
same behavior of energy reduction. Energy decrease is proved theorically for the CH
equation in section 2-1-2 and confirmed here by the numerical results.
To avoid the non-linear system of equations resulting from S(c) in Eq. (3-7), S(c) is
computed explicitly. To be exactly true, the diffusion factors f ′′0 (ĉ) should be computed
implicitly which leads to a non-linear system of equations

(
ρM + ∆t ν S(cm+1) −κ ν∆t S

S M

)(
cm+1

C m+1

)
=

(
ρMcm

0

)
(4-1)

To solve the fully implicit version Eq. (4-1) we employed two different so-called
predictor-corrector methods, Newton-Raphson and Picard. The idea in these methods
is to first predict the answer explicitly and thereafter correct the answer to some extent
which the error is negligible. The Full implicit solution of CH equation Eq. (4-1) stays
stable in case the higher value of ∆t is applied. Figure 4-5 compares the outcomes for
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Figure 4-2: Numerical results of the CH equation at various times for two immiscible fluids with
particular properties N1 = 0.8, N2 = 1.3, χ = 2.3 > χcr

12, κ = 5× 10−6, ν = 1. To get a stable
numerical solution, computational domain (L = 1) is divided into 100 parts and ∆t = 0.01.
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(a) Mass is conserved in the numerical solution
of the model as it is proved theorically in section
(2-1-1).
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(b) Numerical demonstration of the free energy
decay in the model.

Figure 4-3: Numerical verification of energy decline and mass conservation for the CH equation.
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Figure 4-4: Interface movement results from CH equation with respect to different values of κ.
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Figure 4-5: Comparison between the result of the non-linear solution methods and the linear one
when ∆t = 0.03 is large.
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each method when ∆t is increased three times more ∆t = 0.03. The results show that
the two Newton-Raphson and Picard methods for the non-linear solution of Eq. (4-1)
give rather same answer but the solution by an explicit method of Eq. (3-7) gives an
unstable result. Our suggestion is to use an explicit solution with sufficiently small
∆t to prevent numerical instability, because the implicit non-linear methods are very
time-consuming and computationally expensive, specially for three spatial dimensions.
Anyhow, in case to use one of them we suggest to employ Newton-Raphson which is
slightly faster and has trustworthy results.

4-2 Multi-component Case
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Figure 4-6: Ternary mixture behavior based on Eyre expression Eq. (2-9) which is extension of
the Cahn-Hilliard formula for multi-component mixtures.

The numerical procedure to solve the system of equations for multi-component mixture
is approximately the same as that for the binary case, however it demands more com-
putation time. In our hypothetical case of a TMOS/oil/water system, mainly water
and oil constitute the phases and the third component, TMOS here as a organic chem-
ical, is only soluble in the oil. If the first term on the right-hand side of Eq. (3-7) is
considered as a [2n×2n] matrix for binary case, for the mixture with N+1 components
it is a [2N(n)× 2N(n)] matrix. The elements are defined from Eq. (2-12) by the help
of Eq. (2-13). Figure 4-6 demonstrates the solution of Eyre’s expression for a ternary
mixture where the third component (TMOS) is considered to be soluble only in oil.
So the interaction parameter of TMOS/oil is fairly small compared to water/oil and
TMOS/water (χTo = 0.8, χwo = 2.7, χTw = 2.5). The non-localities Γij are assumed
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casually as very small numbers between 10−4 and 5× 10−4 for the sake of keeping the
interface sharp. Also the size of the molecules of oil and TMOS are assumed to be
larger than water (No = 1.65, NT = 1.95, Nw = 1). Initially in the mixture, at one
side of the interface there is %20 of soluble TMOS in %80 oil without any water and
the other side contains only water.
We know organic chemical TMOS is soluble in oil and reacts after diffusion into water
to form methanol and silicic acid. So, for a complete model a reaction term requires
to be introduced into our system of equations to deplete the diffused TMOS inside
the water phase. This reaction term, which plays a role in the water-phase, is not
incorporated in the present study.

4-3 Stefan Problem for the Binary Solution

To avoid the negative values of the diffusion factors in unstable region and strange
behavior of phases in metastable region which are mainly located between binodal
points, we decide to look at the loss of regularity apart from unstable and metastable
zones. For this reason, we take these zones as parts of the interface itself. Therefore,
we neglect the weak non-locality term with κ because it only points to dispersion at
the interface in CH equation and has a minor effect on localized dissipation. According
to individual investigation of the behavior of the domains in this method, we need to
track the position of interface by use of combination of the values jump across it and
its velocity, Eq. (3-11). The application of Stefan problem on the same computational
domain which is used for CH equation with use of similar boundary and initial
conditions gives the results as it is shown in Figure 4-7. Same to the Figure 4-2 in the
starting 5% of the total time, the interface shifts as equal as it shifts in rest of the
total time. Mass conservation and energy decay of Stefan problem already discussed
theoretically in section 2-3-1. Herewith we verify them in our numerical model. As
Figure 4-8(a) shows the mass is conserved in Stefan model as accurately as it is in CH
equation Figure 4-3(a). We have two explicite terms in Stefan equations Eq. (3-10a)
& Eq. (3-10b), velocity xt and diffusivity factor f ′′0 (c) . To be more accurate we need
to solve these equations nonlinearly by means of Newton-Raphson or Picard methods
which is not done in this study.
Energy reduction which is shown here in Figure 4-8(b) for Stefan problem, indicates
that Eq. (2-25) is satisfied by our model. To investigate it for our case (Figure 4-7), we
substitute the values of binodal points, cL = 0.2479 and cR = 0.8443, into Eq. (2-25).
The interface moves to to the right, then the value of S∞−S0 is always positive. From
numerical solution S350 − S0 = 0.0921 and f(cL) − f(cR) = −0.0692 which implies a
sufficient condition Eq. (2-25) for the energy decrement.
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Figure 4-7: Numerical result of the Stefan problem for two immiscible fluids with particular
properties N1 = 0.8, N2 = 1.3, χ = 2.3 > χcr

12, κ = 0. Computational domain (L = 1) is
divided to 100 parts and ∆t = 0.01. The stability of numerical solution is not dependent to the
values of ∆t and ∆x.
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(a) Mass is conserved in numerical solution of the
Stefan problem.
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(b) Numerical demonstration of the free energy
decay in the Stefan model.

Figure 4-8: Numerical illustration of energy decline and mass conservation for a Stefan problem.
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4-4 Comparison between a Stefan Problem and the CH Model

As already mentioned, we used Galerkin’s FEM in this study for both models. For-
tunately the results from models are quite comparative. Nevertheless, depending on
the situation, limitations, priorities and posteriorities one of those models might be
preferred more. The remarks about CH model are as following:

➣ Choosing a proper test function for forth order CH equation and followed numeri-
cal procedure takes more effort than for second order Stefan problem, nevertheless
when it is done we do not need to track the interface and rearrange all the grids
in computational domain in every time cycle. So CH model is easier to be figured
out numerically.

➣ Comparison between Figure 4-3(a) and Figure 4-8(a) shows that both CH model
and Stefan problem are very accurate in order to consider mass conservation. In
the CH model, local errors slightly change the total mass in a increasing order
but in the Stefan problem, the total mass is decreased by the errors for a little.

➣ Considering Eq. (3-6a) & Eq. (3-6b) for the CH model and Eq. (3-10a), Eq. (3-10a)
& Eq. (3-11) for the Stefan problem, the numerical procedure seems much simpler
for CH model than Stefan problem. For this reason, it is easier to solve nonlinear
CH equation than Stefan problem. However the computation times are almost
equal for our similar hypothetical case.

➣ The stability of the numerical solution is extremely sensitive to the values of ∆t
in relation to ∆x. As it was mentioned we can choose higher values for this
parameters but we need to solve the non-linear equation which is relatively time
and computationally expensive.

➣ We need to compromise on the value of weak non-locality κ for our case. The
value first is suggested to neutralize the effect of concavity in free energy diagram.
Later on the value of κ considered to be relative to surface tension at the interface
[1],[4]. But for our hypothetical case, we need to find the value of κ in order to
preserve the sharp interface between immiscible fluids.

➣ The CH model requirs the discontinuities of the initial condition to be smoothed
which is a intuitive way to have a reasonable results. The smoothing process
prevents from a sharp interface to be considered initially.

The points about Stefan problem which is resulting from numerical process and formu-
lation are as follows:

➣ We do not need to compromise on the value of weak non-locality κ. As κ → 0
and the behavior of domains are investigated separately from unstable region, its
value is considered to be zero.

➣ The stability of solution is independent to the values of ∆t and ∆x.
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➣ Contrary to CH model in which the position is captured automatically, the fol-
lowed numerical procedure to investigate the behavior of the deformed domains
resulting from the interface shift is quit challengeable.

➣ The essential boundary conditions which implies the fixed values of concentration
(binodal values) across the interface during the simulation time, prevents from
a smooth dissipation around the interface compared to other points of domain.
Thus, the consequences of having essential boundary conditions at the sides of
the interface in order to have the loss of regularity in the domains, are not very
conventional.

➣ The very sharp interface which is manually treated and which separates compu-
tational domains, prevents the concentration profile to have the range of values
which are inside the metastable or unstable regions. In another words, the re-
gion between binodal points is completely skipped by assuming it as a part of the
interface.

The results of both models are compared in Figure 4-9 and we see that both methods
yield approximately same results. So the use of each method is totally depends on the
priorities.
Figure 4-10 shows that the movement of interface in both methods is quite similar.
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Figure 4-9: Numerical results of the Stefan problem and the CH equation for two immiscible
fluids after a certain time (t = 1) with particular properties N1 = 0.8, N2 = 1.3, χ = 2.3 > χcr

12.
Computational domain (L = 1) is divided to 100 parts and ∆t = 0.01. κ = 5×10−6 is considered
for CH equation.

Comparison between the results of two models, illustrates that both methods could be
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used in order to simulate the behavior of immiscible fluids in the mixture. Still many
improvements can be applied in the numerical solution of both models to reach to a
closer match.

0 0.5 1 1.5 2 2.5
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

Total time

P
os

iti
on

 o
f I

nt
er

fa
ce

Stefan problem

CH model

Figure 4-10: Displacement of the interface as a result of applying the Stefan problem and the
CH equation on two immiscible fluids after a certain time (t = 1) with particular properties
N1 = 0.8, N2 = 1.3, χ = 2.3 > χcr

12. Computational domain (L = 1) is divided to 100 parts
and ∆t = 0.01. κ = 5× 10−6 is considered for CH equation.
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Chapter 5

Conclusions

The used Finite Element method for the Cahn-Hilliard equation produces reliable re-
sults and provides the capabilities of expansion as means to develop for higher dimen-
sions. The extension to multi-component Cahn-Hilliard equations is straightforward.
By a rigorous mathematical analysis, it has been shown that the solutions to the Cahn-
Hilliard equations are mass-conserving and satisfy the requirement of energy decrease.
This has been done for the case of natural boundary conditions.
Furthermore, the solutions of the Cahn-Hilliard equation are demonstrated to coincide
well with the solutions of a Stefan problem, for which we also prove mass conservation
and energy decrease.
Each model has its own cons and pros. The Cahn-Hilliard model is simpler to be ex-
panded into the higher dimensions, gives smoother solution and tracks automatically
the interface position. But in another hand, it is conditionally stable and the values
of uncomprehended parameters like κ play an important role in which to achieve a
reasonable results. The Stefan problem does not have the stability issues as well as
compromising problems on the values of some parameters. However, the description
of the essential conditions on the interface is rather unconventional and dealing with
the continuous deformation of the computational domain due to the displacement of
the interface is very challengeable in programming point of view. Since both models
approximately lead to the same results, it is needed to consider the priorities, the limita-
tions and the requirements for each case study in order to choose the more appropriate
model.
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