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ABSTRACT

Microphone measurements in a closed test section wind tunnel are affected by turbulent boundary layer (TBL) pressure fluctuations. These
fluctuations are mitigated by placing the microphones at the bottom of cavities, usually covered with a thin, acoustically transparent material.
Prior experiments showed that the cavity geometry affects the propagation of TBL pressure fluctuations toward the bottom. However, the
relationship between the cavity geometry and the flowfield within the cavity is not well understood. Therefore, a very large-eddy simulation
was performed using the lattice Boltzmann method. A cylindrical, a countersunk and a conical cavity are simulated with and without a fine
wire-cloth cover, which is modeled as a porous medium governed by Darcy’s law. Adding a countersink to an uncovered cylindrical cavity is
found to mitigate the transport of turbulent structures across the bottom by shifting the recirculation pattern away from the cavity bottom.
Covering the cavities nearly eliminates this source of hydrodynamic pressure fluctuations. The eddies within the boundary layer, which con-
vect over the cover, generate a primarily acoustic pressure field inside the cavities and thus suggesting that the pressure fluctuations within
covered cavities can be modeled acoustically. As the cavity diameter increases compared to the eddies’ integral length scale, the amount of
energy in the cut-off modes increases with respect to the cut-on modes. Since cut-off modes decay as they propagate into the cavity, more
attenuation is seen. The results are in agreement with experimental evidence.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100001

I. INTRODUCTION

The signal-to-noise ratio (SNR) of flush mounted microphone
array measurements in closed test section wind tunnels is reduced by
the presence of a turbulent boundary layer (TBL) over the tunnel walls.
The amount of SNR reduction by the TBL pressure fluctuations can
be minimized, relative to a microphone mounted flush to the tunnel
wall, by placing microphones within cavities. Research on flow over
cavities has focused primarily on radiated noise from the interaction
of the shear layer over rectangular cavities. The research presented in
this article focuses on how the pressure fluctuations at the bottom of
axisymmetric cavities, resulting from turbulent flow, are affected by
cavity geometry.

Pressure fluctuations within cavities are produced by several mech-
anisms, which include the Rossiter feedback loop, turbulence within the
shear layer, and the transport and production of turbulence due to recir-
culation within the cavity. The Rossiter feedback loop1–3 is a self-
sustaining noise generation mechanism produced by Kelvin–Helmholtz

type vortices4 shed from the cavity upstream edge. When the vortices
impinge on the downstream wall, pressure waves are produced5,6 that
perturb the shear layer, which further produces vortex shedding. The
feedback loop is characteristic of cavities exposed to a boundary layer
with relatively large momentum thickness, with respect to the cavity
aperture.7 For rectangular cavities, these vortices extend along the span-
wise length of the cavity8 and their impingement produces tonal peaks
in the far-field noise spectra. Axisymmetric cavities exhibit similar
behavior;9 however, the vortices shed by cylindrical cavities are affected
by the curved cavity edge.10 Specifically, the vortex spanwise length is
smaller than the cavity diameter and they are shed from multiple span-
wise locations along the upstream edge.11 This results in a weaker and
broader spectral peak compared to rectangular cavities.2

In addition to the shed vortices, the shear layer contains ran-
domly fluctuating turbulence, which produces pressure fluctuations
that propagate into the cavity, referred to as turbulent rumble.12 The
strength of these fluctuations increases from the leading edge toward
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the downstream edge as shown by particle-image-velocimetry (PIV)
measurements.11 The shape of the upstream edge influences the stabil-
ity of the shear layer because non-sharp edges can cause the location
of the separation point to vary in time,13 which affects the amplitude
of the turbulent rumble.14

Recirculation of the fluid due to the flow entering the cavities
results in the presence of turbulent pressure fluctuations at the cavity
bottom.15 For deep cylindrical cavities, the recirculating flow is symmet-
ric with respect to the cavity centerline.16 The recirculation patterns
within these deep cavities are stable, in contrast to shallower cavities,
which feature unsteady and asymmetric recirculation patterns.17,18 The
recirculating flow causes strong wall shear, which generates fluctuations
as high as �35% of the local velocity.15 These velocity fluctuations are
highest between the downstream bottom corner and the cavity center,
along the cavity centerline.9,18 This region of increased turbulence cor-
responds to a region of higher static pressure.18

These phenomena can excite acoustic cavity modes that radiate
acoustic noise into the far-field. For example, the Rossiter mode pro-
duces strong acoustic tones if they are locked on with an acoustic cav-
ity mode.19–21 Acoustic depth modes are also excited by the turbulent
rumble as well as the acoustic energy produced by the shed vortices.5

For the deep cavities, defined as L=D � 1, acoustic depth modes are
the most significant.22,23

A previous study24 characterized how axisymmetric cavities with
different diameters, depths, countersink depths, coverings, and wall
angles affect the pressure fluctuations, produced by the TBL, at a
microphone placed at the bottom. Cavities with angled walls, e.g., cavi-
ties with a countersink, reduce the TBL noise more than cylindrical
cavities.24 Additionally, covering the cavity with Kevlar25 or finely
woven stainless-steel cloth24 reduces the amplitude of pressure fluctua-
tions at the microphone location by 10–20 dB.25 This reduction is
assumed to be caused by the cover preventing flow into the cavity,
reducing the hydrodynamic source of pressure fluctuations. Previous
experiments, conducted as part of this project,26,27 have measured the
effect that cylindrical cavities, with and without a countersink, and
conical cavities, as illustrated in Fig. 1, have on the attenuation of pres-
sure fluctuations due to the TBL. When these three cavities are uncov-
ered, the countersunk cavity attenuates the TBL pressure fluctuations
the most, followed by the cylindrical one. The conical cavity performs
the worst as the pressure spectra at the bottom are higher than the
spectra measured by a flush mounted microphone. Covering the cavi-
ties alters this trend: the conical cavity attenuates the pressure spectra
at the bottom more than the countersunk and cylindrical cavities.
However, better insight into the relationship between the mechanisms
that produce pressure fluctuations and cavity geometry is needed to

further optimize the geometry. Currently, there is a lack of literature
describing the physical mechanisms that affect the amplitude of pres-
sure fluctuations at the bottom of axisymmetric microphone cavities,
especially for covered cavities.

The objective of this work is to understand the effect of aperture
size, different countersink depth ratios, i.e., the ratio between the cavity
depth and the countersink depth, wall angles, and the presence of a cov-
ering have on the recirculation within the cavities, vortex shedding, and
turbulence generation, which contribute to the pressure fluctuations at
the cavity bottoms. Given the size and geometry of the cavities, non-
intrusive velocity-field measurements to identify and study the flow
phenomena within the cavity are challenging. Hence, a very-large eddy
simulation (VLES) was performed using a lattice Boltzmann method
(LBM) solver, SIMULIA PowerFLOW. This article is organized as
follows: Sec. II describes the cavity geometries and the PowerFLOW
simulation parameters, the validation measurements, and the post-
processing used in this analysis. Section III discusses the simulation veri-
fication and validation. Section IV analyses the flowfield and pressure
field in the time-averaged, instantaneous, and wavenumber domains.
Section V evaluates the porous covering’s effect on the flowfield in the
time-averaged, frequency, and wavenumber domains. Additionally, the
effect of geometry on the propagation of the pressure fluctuations is ana-
lyzed. Finally, Sec. VI summarizes the major findings of this article.

II. METHODOLOGY
A. Computational setup

1. Geometry

The following axisymmetric cavity geometries are studied: a
cylindrical cavity with and without a countersink, and a conical cavity.
These three cavities and their geometric parameters are shown in
Fig. 1. These cavity geometries were chosen because they are represen-
tative of the cavities commonly used in wind tunnel experiments.26,27

Each cavity is investigated with and without a stainless-steel cloth
cover. The following cavity geometric parameters are defined in
Table I: aperture size (L), depth (D), countersink depth ratio (dc=D),

FIG. 1. Simulated cavity geometries: (a) cylindrical, (b) countersunk, and (c) conical.

TABLE I. Cavity geometric parameters.

Cavity L, cm D, cm dc=D L=h w

Cylindrical 1.0 1.0 0.0 2.5 90�

Countersunk 1.6 1.0 0.3 4.1 45�

Conical 4.5 1.23 1.0 11.4 30�
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ratio of aperture size to BL momentum thickness (L=h), and wall angle
(w). For the cylindrical cavity, the aperture diameter is L ¼ 2:5h,
where h is the momentum thickness of the incoming boundary layer
(described in Sec. IIIB). The relatively small L=h is expected to avoid
the cavity wake mode described in Ref. 7. For an array of microphone
cavities, the cavity wake mode would likely cause the downstream cav-
ities to experience a highly turbulent incoming flow.

2. Solver setup

The simulations are performed with the commercial software
SIMULIA PowerFLOW 6-2019, which is based on the lattice
Boltzmann method, coupled with a VLES approach. The LBM is based
on kinetic models which take into account mesoscopic processes in
order to obtain reliable continuum flow quantities, in agreement with
the macroscopic dynamics of a fluid. PowerFLOW solves the LBM
equation on a lattice, i.e., a Cartesian grid. The lattice consists of cubic
cells, referred to as voxels, with 19 degrees of freedom. The
LBM–VLES solver considers a discrete form of the lattice Boltzmann
equation, which can be written as follows:28

Fi x þ ViDt; t þ Dtð Þ � Fiðx; tÞ ¼ Ciðx; tÞ; (1)

where x and t are the space and time coordinates. Fi is the particle dis-
tribution function along the ith lattice direction, and Vi is the discrete
particle velocity in the same direction. The collision operator, Ci, is
based on the Bhatnagar–Gross–Krook kinetic model,29 and is defined
as follows:

Ci ¼ �
Dt
s

Fiðx; tÞ � Feq
i ðx; tÞ

� �
; (2)

where Feq
i ðx; tÞ is the equilibrium distribution function, estimated

from statistical physics considerations.30 s is the viscosity-dependent,
collision relaxation time.30

In an LBM–VLES approach, the small scales of turbulence are
accounted for by correcting the relaxation time used in the calculation
of the collision term. Following the work of Ref. 31, a two-equation
k� e renormalization group is used to compute a turbulent relaxation
time that is added to the viscous relaxation time, such that the effective
relaxation time reads as follows:

seff ¼ sþ Cl
k2=e

ð1þ g2Þ0:5
; (3)

where k is the turbulent kinetic energy (TKE) and � is the rate of dissi-
pation of turbulent kinetic energy. Cl ¼ 0:09 and g are a combination
of the local strain, local vorticity, and local helicity. The term g miti-
gates the sub-grid scale viscosity in the presence of large resolved vorti-
cal structures. The solver can realistically represent boundary layer
profiles at large Reynolds numbers without resolving the flow in the
viscous sub-layer of the boundary layer by using a pressure gradient-
dependent wall model.30

3. Porous model

The covered cavities are covered with a finely woven stainless-
steel cloth, which has a wire diameter of 2:6� 10�3 mm and a density
of 200 wires per cm2. This cloth was used in prior cavity experiments27

and for this work is modeled as a porous medium, as proposed in

Ref. 32. This model uses the experimentally measured viscous and
inertial resistivities, Rv and Ri, of the cloth, as described in Sec. II B, to
impose Darcy’s law in the porous medium. Literature28 suggests this
simulation approach is capable of predicting the influence of a porous
region on a grazing turbulent boundary layer. This provides confi-
dence that the porous model can be used to simulate the current
unsteady problem. Darcy’s law relates the pressure drop across the
porous medium, Dp, to the Darcy’s velocity, vd, according to

28

Dp
t
¼ Rvvd þ qRiv

2
d; (4)

where t is the thickness of the porous medium and q is the density of
air. In order to have sufficient cells inside the porous region, so that
the solver can simulate the relationship between flow velocity and
pressure gradient, the thickness of the porous medium in the simula-
tion is approximately three times larger than the thickness of the phys-
ical stainless-steel cloth (exact dimensions in Table V in Appendix).
To account for this, the resistivity values Rv and Ri were multiplied by
the ratio between the thickness of the measured sample and the thick-
ness of the porous medium in the simulation. A permeability tube
simulation was performed (with the numerical setup described in Ref.
33) to confirm that the porous medium with increased thickness, and
corrected Rv and Ri, matches the experimental Dp=t.

4. Domain and operating conditions

The computational domain for the circular and countersunk cav-
ities is shown in Fig. 2. The bottom of the domain is a flat plate with a
no-slip condition at the wall. The cavity, which also contains no-slip
walls, is placed at the origin of the domain, i.e., at the center with
respect to the length of the streamwise and spanwise domain lengths.
This center is located 150 cm (150 LCylindrical) downstream of the inlet.
At the inlet, a turbulent boundary layer mean velocity profile, based
on experimental measurements from Ref. 27, is imposed
(d99 ¼ 1:4 cm at the inlet). A zigzag trip is placed downstream of the
inlet, introducing coherent vortices in the boundary layer. The (no-
slip) zigzag trip is 0.16 cm high and has 0.427 cm length, 0.427 cm
pitch and 90dB of top angle (dimensions as defined in Ref. 34). The
boundary layer downstream of the zigzag trip is turbulent. The free-
stream velocity, U1, is set at 32m s�1, which is within the U1 range
of interest for closed wind tunnel wind turbine airfoil aeroacoustic
testing.35 As shown in Fig. 2, the sides of the domain have a periodic
boundary condition (BC). The span of the domain was chosen to min-
imize the influence of the boundaries on the cavity flowfield. For the
cylindrical and countersunk cavities, a value of 3:2LCountersunk was
selected. The distance from the cavity to the boundaries is larger than
the spanwise coherence length of the pressure fluctuations in the
boundary layer, which is typically on the order of the boundary layer
displacement thickness.36 The span of the domain for the conical cav-
ity simulations is increased to 1:7LConical (covered configuration) and
2:6LConical (uncovered). The top of the domain is bounded by a free-
slip wall and is located 136 cm above the bottom wall (flatplate). The
outlet of the domain imposes an ambient static pressure (sea level
pressure). Figure 2 shows a representation of the variable resolution
(VR) regions in the computational domain. The VR regions specify
the amount of lattice refinement, where VR0 is the finest and VR5 the
coarsest, for the uncovered cavities. The VR regions are similar for the
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covered cavity simulations, which have an additional finer resolution
region around the location of the cloth cover, as shown in Fig. 3.
Appendix (Table V) contains additional details on the domain and VR
dimensions.

B. Experimental setup

1. Cavity pressure measurements

The experimental data used for validation were measured in the
TU Delft A-Tunnel using the same procedure as described in Ref. 27.
This tunnel is a vertical open jet wind tunnel located within an
anechoic chamber.37 The cavities in Fig. 1 were made of poly-
carbonate and mounted on a plate flush with the exit nozzle. The cavi-
ties were placed 76 cm downstream of the tunnel nozzle exit. Two
plates with dimensions of 110� 40 cm2 were used. One was uncovered
and the other was covered with a 200 threads per cm2 (#500) stainless-
steel cloth. A flush-mounted microphone was placed 3.2 cm down-
stream with a spanwise offset of 4.5 cm. The three cavities were tested
in each plate. The tunnel flow speed was 32m s�1 at the cavity’s
location.

Sonion 8010T omni-directional MEMS microphones were used
to measure the pressure fluctuations. This microphone has an outer
diameter of 2.5mm and a transducer diameter of 0.05mm. The micro-
phones were center mounted on a 7mm diameter holder in order to
fit securely within the cavities. All the microphones were calibrated
individually using a G.R.A.S. 42AG pistonphone following the guide-
lines of Mueller.38 The microphones have a flat frequency response
within 61 dB from 100Hz to 10 kHz. The data acquisition system
consists of a National Instruments (NIs) NI9215 analog input module
mounted in the NI cDAQ-9178 CompactDAQ with 16-bit resolution.
The sampling frequency of the measurements was 51.2 kHz, and the
data were recorded for 45 s.

2. Stainless-steel cloth permeability measurements

A 7:5� 10�3 cm-thick stainless-steel cloth sample was installed
in a permeability tube to determine the viscous and inertial resistance
of the cloth. The pressure drop, Dp, across the sample as well as the
volumetric flow, Q, through the sample were measured. The Darcy
velocity, vd, is calculated as follows: vd ¼ Q=A, where A is the cross-
sectional area of the tube. The measured Dp and vd are fit to the

FIG. 2. Representation of the computa-
tional domain.

FIG. 3. Grid topology at the cavities location: (a) uncovered cylindrical cavity and (b) covered conical cavity.
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Hazen–Dupuit–Darcy equation [Eq. (4)] using a least squares fit
method39,40 to determine the permeability, K ¼ l

Rv
, and the form drag

coefficient, C ¼ Ri, where l is the viscosity of air. Further details on
the permeability tube can be found in Refs. 39 and 40.

The cloth sample was mounted between two 9.0� 9.0 cm2 polycar-
bonate plates each with 5.1 cm diameter holes at the center. Epoxy was
applied to one polycarbonate plate and the cloth was then stretched
across the plate so that the material was tensioned across the opening.
Pressure taps within the tube are located 5 cm upstream and down-
stream of the sample.39 The static pressure was measured with a Mensor
2101 differential pressure sensor, which has a range of 1.2–15kPa and
an accuracy of 2Pa. The volumetric flow rate was controlled using an
Aventics pressure regulator and measured by a TSI4040 volumetric
flowmeter. The Darcy’s velocity flow range in the tube is between 0 and
2.5ms�1, and the permeability tube has a cross-sectional area of
2:04� 10�3 m2. The flowmeter has an accuracy of 2%.39,40 The pres-
sure drop was measured at 22 discrete velocities ranging from 0 to
2.2ms�1. The resulting permeabilityK, the form drag coefficient C, iner-
tial resistance, and viscous resistance are provided in Table II.

C. Post-processing methods

1. Spectral analysis

The power spectral density (PSD) of the pressure field at a given
point within the cavity, Pxx, was calculated using the Welch’s
method.38 A Hanning window was used with 50% overlap when com-
puting the spectra. For all cavities, with and without a covering, a win-
dow size of 512 samples was used. The PSD was converted to a decibel
scale with a reference pressure of 2� 10�5 Pa.

2. Wavenumber analysis

A wavenumber-frequency spectral analysis was performed to
decouple the acoustic and hydrodynamic contribution to pressure fluc-
tuations within the cavity. The acoustic region contains the pressure
fluctuations that propagate at the speed of sound. The acoustic wave-
numbers, k0, associated with this region are between � f

c and
f
c. The

hydrodynamic region is defined by wavenumbers outside of the acous-
tic region. However, at low frequencies, the hydrodynamic wavenum-
bers are difficult to decouple from the acoustic wavenumber. Therefore,
a limiting frequency is defined, below which the distinction between
acoustic and hydrodynamic spectra is uncertain. This frequency is
defined as41 f � U1Dk, where Dk is the wavenumber resolution.

The wavenumber spectra were calculated using a 2D Fourier
transform applied to the pressure fluctuations sampled along the cav-
ity centerline, as illustrated for the cylindrical cavity in Fig. 4. A
Hanning window with 50% overlap was applied in the time domain
using the approach described in Ref. 41. The data were sampled with a
spacing of Dx ¼ 1:5� 10�2 cm at the top and bottom of each cavity

in the streamwise direction. For the covered cavities, the pressure was
sampled just below the interface between the porous region and the
cavity volume. The sampling rates, number of time steps, Hanning
window size (Nfft), and sampling locations are defined in Table III.

3. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) was used to decom-
pose the pressure fluctuations into a linear combination of orthog-
onal modes to identify coherent structures.42,43 The tool
MODULO44 was used to perform this decomposition. The pres-
sure fluctuations were sampled from the PowerFLOW simulation
output with an equal spacing of Dx ¼ Dz ¼ 2:5� 10�2 cm.
MODULO requires a Cartesian grid of equally sampled points;
thus, a square grid was used. As the cavity cross-sections are circu-
lar, the data for the region outside of the cavities are padded with
zeros. The sample rate and sampling location with respect to cavity
depth (y) are the same as described in Table III. The resulting
modes are defined in terms of their spatial structures, /, and tem-
poral bases, w.43 The estimated energy, i.e., the amplitude, of each
mode, rr is weighted by

ffiffiffiffiffiffiffiffiffi
NsN
p

, where Ns are the number of sam-
pled spatial points and N are the number of time samples.43

III. GRID AND DATA VALIDATION
A. Grid resolution validation

The effect of grid resolution on the flat plate’s boundary layer
profile and the pressure spectrum inside the cylindrical cavity (covered
and uncovered) were evaluated using five grid refinement levels. For
the uncovered simulations, these levels are specified in Table IV. The
smallest voxels are located inside the uncovered cavities. The mini-
mum size of the voxels above the flat plate, upstream of the cavity, is
twice the minimum voxel size inside the cavity. Table IV lists as well
the non-dimensional wall distance, yþ, from the center of the smallest
voxels to the flat plate wall. The non-dimensional wall distance is
defined as follows:

yþ ¼ yus

�
; (5)

where y is the vertical coordinate, us is the friction velocity, and � is
the kinematic viscosity. The value of us is measured 3LCylindrical
upstream of the cavity center. Table IV shows the relative cell size
between grids, hi=h1, where h1 is the smallest voxel size of the finest
grid tested, and hi is the smallest voxel size of grid i. The time step in
the LBM simulation is set to maintain a Courant–Friedrichs–Lewy
number of 1, considering the sound speed, and is therefore dependent

TABLE II. Experimentally measured stainless-steel cloth permeability characteristics
with 95% confidence intervals.

K, m�2 C, m�1 Rv, s
�1

3:0� 10�11

61:0� 10�14
3:1� 104

61:6� 105
5:0� 105

61:7� 102

FIG. 4. Illustration of the sampling location of p0 along the centerlines at the top
and bottom of the cylindrical cavity, with a spacing of Dx.
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on voxel size. For the different grids, the time step at VR0 is shown in
Table IV.

The convergence of the boundary layer velocity profile, 3.0 cm
upstream of the cavities, is analyzed with respect to the displacement
thickness, d?, and the boundary layer momentum thickness, h. The
grid dependence of d? and h is shown in Fig. 5(a). Figure 5(b) shows

the convergence of the pressure fluctuations at the bottom center of
the cylindrical cavity (covered and uncovered), for the one-third-
octave band centered at 6.3 kHz since this band contains the acoustic
depth mode for the cylindrical cavity. Furthermore, this band is associ-
ated with smaller eddies (at higher frequencies), which are therefore
expected to be more sensitive to the cell size.

The fits shown in Fig. 5 are defined by

f ðhiÞ ¼ /0 þ ahci ; (6)

where a is a constant, c is the order of convergence, /i is the parameter
(e.g., d?) obtained from the simulation with grid i, and /0 is the esti-
mated exact solution, i.e., the solution for a grid with infinite resolu-
tion. The order of convergence is 3.28 /0 and a are calculated with the
least squares regression described in Ref. 45. Figure 5(a) indicates that
the grids with a medium, fine, and very fine resolution (see Table IV)
result in approximately equal values of d? and h. Figure 5(b) also
shows that the medium grid (hi=h1 ¼ 1:5) results in a Upp, at the bot-
tom of the cavity, close to the estimated exact solution, i.e., the value at
hi=h1 ¼ 0 for the 6.3 kHz one-third-octave band.

TABLE III. Wavenumber-frequency spectrum calculation parameters for each cavity, normalized by Lcyl ¼ 1:0 cm.

Uncovered Covered

Cylinder Countersunk Conical Cylinder Countersunk Conical

Sample rate, kHz 15.32 15.32 15.32 183.8 183.8 367.6
Number of time steps 4307 4307 10 052 7353 7353 14 705
Nfft 512 512 512 2048 2048 2048
Df , Hz 29.9 29.9 29.9 89.7 89.7 179.4
Dx, cm 1:5� 10�2 1:5� 10�2 1:5� 10�2 1:5� 10�2 1:5� 10�2 1:5� 10�2

Top sampling location, y/D 0.0 0.0 0.0 �1:5� 10�2 �1:5� 10�2 �2:4� 10�2

Top sample length, cm 1.0 1.6 4.5 1.0 1.6 4.5
Bot. sampling location, y/D �1.0 �1.0 �1.0 �1.0 _1.0 �1.0
Bot. sampling length, cm 1.0 1.0 0.7 1.0 1.0 0.7

TABLE IV. Grids used in the convergence study (uncovered cylindrical cavity).

Grid i

Min. voxel size,
m outside
the cavity

Min. yþ

outside
the cavity hi=h1

Min.
timestep, ls
at VR0

Very coarse 4:00� 10�4 15 3 0.34
Coarse 2:67� 10�4 10 2 0.23
Medium 2:00� 10�4 8 1.5 0.17
Fine 1:60� 10�4 6 1.2 0.14
Very fine 1:33� 10�4 5 1 0.11

FIG. 5. Grid convergence study comparing the following variables: (a) BL displacement and momentum thicknesses, d? and h, and (b) pressure fluctuations (in the 6.3 kHz
centered one-third-octave-band) at the bottom of the cylindrical cavity.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 105120 (2022); doi: 10.1063/5.0100001 34, 105120-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Based on the previous results, the fine resolution is chosen for the
cylindrical and countersunk cavities (covered and uncovered). The
conical cavity simulations use the medium grid resolution because it
has a larger outer diameter, which increases the computational costs,
particularly for the simulation with the cloth cover.

Figure 6 shows the PSD of the turbulent kinetic energy (TKE) of
the simulated boundary layer at four VR regions. The TKE was calcu-
lated from the sampled turbulence (u0; v0; w0) upstream of the conical
cavity for the medium grid (Table IV). The VR1, VR2, and VR3 data
were sampled at x ¼ �3.0 cm. This figure shows that the voxel sizes
for the VLES simulation are sufficiently small to simulate the turbulent
eddies for this work.

Figure 7 shows the spanwise correlation of turbulent pressure
fluctuations at x¼ 0 and y¼ 0, keeping as reference a point at the
spanwise location of the periodic boundary. The figure shows the cor-
relation coefficient, r, for the flatplate and uncovered cavities

simulation. The correlation between pressure fluctuations at the
boundary condition and at the spanwise location where each cavity
begins (cavity edge) is below r¼ 0.1, being close to the minimum cor-
relation calculated: rnoise � 0:05. The figure indicates that the spanwise
length of the domain is sufficient for a low influence of the boundary
condition in the cavity flowfield. In wall units, the distance between
the periodic boundary condition and the countersunk cavity edge is
zþ ¼ 1:4� 103. The spanwise distance is one order of magnitude
larger than the spanwise extent of the turbulent structures characteris-
tic of high-amplitude pressure peaks, as expected in a zero-pressure
gradient turbulent boundary layer, with a similar Reh.

46

B. Comparison with experiments

Figure 8 shows the experimental and simulated streamwise veloc-
ity, u, and turbulence intensity (TI) profiles of the boundary layer,
measured upstream of the cavity location. The profiles from the simu-
lation are measured 3 cm upstream of the cylindrical cavity center and
the profiles for the experimentally measured profiles were sampled
10 cm upstream of the cylindrical cavity. The turbulence intensity is
defined as follows:

TI ¼ u0=U1; (7)

where u0 is the root mean square (RMS) of the streamwise velocity
fluctuations in the boundary layer. The profiles are normalized with
the free-stream velocity, U1. Figure 8(a) indicates that the simulated
TBL has a slightly higher velocity deficit than the experimental TBL.
The boundary layer thickness is 3.3 cm in the simulation and 3.7 cm in
the experiment. This leads to a negligible difference in momentum
thickness between the experiment and the simulation (below 3%). The
ratio h=L has been identified as a dominant driving parameter for cav-
ity flow,7,48 and the simulation and experiment have equivalent ratios.
The momentum thickness-based Reynolds number is, therefore, also
identical in the experiment and the simulation: Reh ¼ 8:6� 103. The
shape factor of d�=h ¼ 1:3 is indicative of a fully developed simulated
turbulent boundary layer.49

Figure 8(b) shows that, for yþ > 100, the boundary layer TI lev-
els in the simulation are close to those from the experiment. yþ � 50
was the lowest wall distance at which experimental hot-wire measure-
ments were made, due to limitations of the hot-wire measurement sys-
tem. Marusic’s empirical model was used to estimate the boundary
layer TI profile close to the wall,47 using experimental data as input.
Marusic’s empirical model estimates a boundary layer TI profile from
the inputs: d99, U1, and us. The experimental us is obtained from Reh,
using the K�arm�an–Schoenherr (KS) formula.50 Figure 8(b) shows a
reasonable agreement between the simulated and empirical TI profiles,
with the model’s estimate of TI having a lower peak. This result indi-
cates that the highest TI levels in the simulation may be slightly higher
than in the experiment. The result is associated with the (approxi-
mately 10%) higher wall shear in the simulation, in comparison with
the experiment. The study focuses on the relative difference between
the turbulent fluctuations upstream of the cavities and at the cavity
bottoms. Therefore, small differences in turbulence levels over the flat
plate, between experiment and simulation, are assumed to have mini-
mal effect on the analysis.

Figure 9 compares the wall pressure spectra at the bottom of each
cavity from the experiment with those of the simulations. DSPL is

FIG. 6. PSD of the turbulent kinetic energy (TKE) at 3 VR regions over the flatplate,
from the uncovered conical cavity simulation.

FIG. 7. Spanwise variation of correlation coefficient for the flatplate and uncovered
cavities simulation. The points are sampled at the streamwise center of the domain,
and at the flatplate surface height, i.e., at x¼ 0 and y¼ 0. The reference point is
the spanwise location of the periodic boundary (positive z). The vertical dashed
lines are the spanwise location of the cavity edges.
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defined as the difference between the wall pressure spectrum at the
bottom of the cavity and the wall pressure spectrum upstream of the
cavity, i.e., the flush microphone measurement,

DSPL ¼ SPLcavity � SPLflush: (8)

Figure 9 shows a good agreement between the numerical and experi-
mental DSPL for each uncovered cavity. This indicates that the flow
features that lead to pressure fluctuations at the cavity bottoms are
realistically represented in the simulations. Only for frequencies above
4 kHz, do the simulations over-predict the pressure fluctuations at the
bottoms. Figure 9 shows that the simulations for the covered cavities
show a reduction of the TBL pressure spectra at the bottom of the cav-
ities with respect to the flush spectrum. These trends agree with the
experiment but under-predict the amount of attenuation. This result
suggests that the attenuation, caused by the stainless-steel cloth cover,
is higher in the experiment than in the simulation, especially toward
higher frequencies. The results suggest that, when eddy size becomes

small in comparison with the cavity aperture diameter (see discussion
of Fig. 10), the validity of the equivalent fluid approach for simulating
covered cavities is reduced. The discrepancy in the amount of attenua-
tion is independent of the cavity geometry and is therefore considered
to not affect the conclusions of this investigation.

Figure 10 shows the coherence length of the TBL pressure
fluctuations calculated from a flat plate simulation without a cavity
present. The sampling location of the data was centered at x¼ 0,
i.e., at the cavities’ streamwise location. Figure 10(a) shows that the
streamwise coherence length, which is indicative of eddy size, is
comparable to the cylindrical and countersunk cavity aperture
diameters at low frequencies (at 1000Hz). The spanwise coherence
length of the pressure fluctuations, is considerably smaller than the
cylindrical cavity’s diameter, for frequencies higher than 350Hz).
As seen in previous experimental studies, e.g., Refs. 51 and 52, the
coherence length agrees with Efimtsov empirical model (see
dashed line) at high frequencies.

FIG. 8. Simulated and experimental boundary layer profiles: (a) velocity profile and (b) turbulence intensity profile. Empirical turbulence intensity profiles were obtained with
Marusic’s model.47

FIG. 9. Simulated and experimental pressure spectra: difference between the spectra at the bottom of the cavities, and the spectra over the flat plate for both uncovered cavi-
ties and covered cavities.
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IV. UNCOVERED CAVITIES
A. Effect of cavity geometry on the time-averaged
flowfield

Figure 11 presents the average streamwise velocity, u, and static
pressure coefficient,

Cp ¼ ðps � p1Þ=q1; (9)

inside the uncovered cavities. ps is the static pressure, p1 is the free-
stream static pressure, and q1 is the free-stream dynamic pressure.
Figure 11 shows u=U1 and Cp in a plane aligned with the cavity
center-line, z¼ 0. The streamtraces in Fig. 11 are defined as lines
which follow the local in-plane velocity vector.

The comparison of Figs. 11(a) and 11(b) indicates that decreasing
the wall angle w from 90� to 45� and increasing dc=D to 3, for the case
of the countersunk cavity, shift the center of recirculation away from

FIG. 10. Coherence length of the pressure fluctuations at y¼ 0 for the flat plate simulation, in comparison with Efimtsov empirical models: (a) streamwise coherence length
and (b) spanwise coherence length. The cavity diameters are shown for reference as horizontal lines. Data extracted from a flat plate simulation (without cavity), at x¼ 0.

FIG. 11. Uncovered cavities average flowfield, located at the z¼ 0 plane (center of the cavities). Streamwise velocity contours and in-plane streamtraces: (a) cylindrical, (b)
countersunk, and (c) conical. Pressure coefficient contours: (d) cylindrical, (e) countersunk, and (f) conical.
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the bottom, resulting in a lower velocity along the bottom when com-
pared to the cylindrical cavity. Figure 11(c) indicates that further
increasing dc=D to 1.0 (see Fig. 1) and increasing the cavity aperture,
increases the recirculation velocities at the bottom, in contrast with the
countersunk cavity. Furthermore, the streamtraces in Fig. 11(c) indi-
cate that, due to the upstream wall angle, the stagnation point on the
downstream cavity wall moves toward the bottom, changing the recir-
culation pattern. Shifting the recirculation toward the bottom of the
cavity increases pressure fluctuations at the bottom, as it leads to the
convection of eddies from the boundary layer toward the bottom.
Additionally, higher velocities inside the cavity are associated with
higher shear forces, which generate turbulence. The wall friction due
to increasing cavity wetted area has a minimal effect on recirculation
because the reduction in velocity at the bottom does not increase sub-
stantially with the increasing wetted area.

A comparison of Figs. 11(d) and 11(e) shows that the down-
stream angled wall of the countersunk cavity leads to regions of higher
positive and negative Cp, with a corresponding larger pressure gradi-
ent. The downstream edge of the conical cavity also leads to a high Cp

region at the stagnation point inside the cavity [Figs. 11(c) and 11(f)].
Pressure gradients can accelerate or decelerate the flow inside the cav-
ity, further increasing the shear forces acting on the fluid.

Figure 12 shows average spanwise velocity, w, contours in the
x ¼ �0:25L plane. The angled walls of the countersink and conical
cavities increase the spanwise velocity at the top, compared to the cyl-
inder, as shown in Figs. 12(b) and 12(c). This result and the previous

one indicate that the upstream angled wall of the countersunk and
conical cavities cause stronger velocity fields within the cavities that
contribute toward increased pressure fluctuations, i.e., turbulence, at
the top of the cavity.

B. Influence of wall angle and countersink depth
on pressure fluctuations

Figure 13 shows the contours of the root mean square of the
pressure fluctuations, p0rms, for the uncovered cavities. This figure
shows that p0rms is higher in the shear layer at the top of the cavities
due to the local turbulence generation and vortex shedding. Beneath
the shear layer, the differences between the cavities are associated with
the cavities’ respective recirculation patterns, as discussed previously.
p0rms increases near the downstream walls and the bottoms of the cavi-
ties compared to the upstream wall where the local velocity is lower.
Decreasing the recirculation velocity at the bottom results in lower val-
ues of p0rms as seen when comparing the countersunk cavity in Fig.
13(b) to the cylindrical [Fig. 13(a)] and conical cavities [Fig. 13(c)].

Decreasing the downstream wall angle from 90� [Fig. 13(a)] to
45� [Fig. 13(b)] or from 45� to 30� [Fig. 13(c)] increases the levels of
p0rms in the vicinity of the stagnation point. This location is where vor-
tex impingement and subsequent deformation occurs, due to strong
pressure gradients in the region. However, the effect of decreasing
downstream wall angle on p0rms at the bottom is minimized when the
cavity has a countersink depth ratio of 0.3, as indicated by the

FIG. 12. Average spanwise velocity, w, contours and in-plane vectors (x ¼ �0:25L plane) for the following uncovered cavities: (a) cylindrical, (b) countersunk, and (c) conical.

FIG. 13. Contours of the root mean square of the pressure fluctuations, for the uncovered cavities: (a) cylindrical, (b) countersunk, and (c) conical.
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comparison between cylindrical and countersunk cavities [Figs. 13(a)
and 13(b)]. Decreasing the upstream wall angle from 90� to 30�

increases p0rms within the shear layer. This is in line with the inclined
angle backward facing step flow results presented in Ref. 14.

Figure 14 shows the pressure contours and the vortices present in
an instantaneous streamwise slice at z¼ 0. The k2 criterion is used to
identify vortices, where k2 < 0 indicates vortex structures.53 The
streamtraces show instantaneous convection paths for vortices within
the cavities.

The shedding location of the Kelvin–Helmholtz type vortices6 is
near the spanwise center (z¼ 0) of the upstream edge of the cylinder
in Fig. 14(a). For the cylindrical cavity, these vortices are of approxi-
mately constant size in the spanwise direction. The vortices are con-
vected within the shear layer until they impinge on the downstream
wall, emitting a pressure wave, or are convected toward the cavity bot-
tom. Decreasing the wall angle alters the convection path of the vorti-
ces and results in the vortex shedding behavior becoming increasingly
unsteady. This is shown in Figs. 14(b) and 14(c). When w decreases to
45�, for the countersunk cavity, the vortices exhibit similar shedding
behavior as the cylindrical cavity. However, the recirculation region at

the angled downstream wall entraps and distorts the shed vortices,
which partially explains the larger region of elevated turbulence
spread along the angled downstream wall shown in Fig. 13(b). This
is in contrast to the cylindrical cavity where the region of elevated
turbulence is concentrated in the shear layer. However, unlike the
cylindrical cavity with dc=D ¼ 0, the vortices for the dc=D ¼ 0:3
case tend to be transported away from the cavity bottom, reducing
p0rms at the cavity bottom. For the conical cavity, the large region of
pressure fluctuations shown in Fig. 13(c) is explained by the vorti-
ces not following a well-defined streamtrace and thus impinging at
random locations along the downstream wall as well as the flow-
field induced by the conical cavity’s upstream angled wall increas-
ing the deformation of the vortices.

The regions of negative Cp, shown in blue in Figs. 14(a) and
14(b) for the cylindrical and countersunk cavities, correspond to the
vortex cores,6 an example of which is indicated with an arrow in Fig.
14(a). When these vortices impinge on the downstream wall, a rarefac-
tion acoustic wave is produced and propagates from the impingement
location.6 The resulting negative pressure from this wave can be seen
within the cylindrical cavity in Fig. 14(a). Acoustic compression waves

FIG. 14. Instantaneous visualization of the pressure fluctuation contours, p0 , vortex shedding, and velocity streamtraces. Vortex cores are identified using the k2 criterion with
the isosurfaces defined by k2 < �2� 108 for the following cavities: (a) cylindrical, (b) countersunk, and (c) conical.
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are generated in between the impingement of these vortices, as
described by Ref. 5. Unlike the cylindrical and countersunk cavities,
the pressure fluctuations within the conical cavity are not substantially
influenced by vortex impingement.

1. Hydrodynamic and acoustic components
of the pressure spectra

The wavenumber-frequency spectra at the bottom of the uncov-
ered cavities are shown in Fig. 15. In this figure, the contributions to
the spectrum by both the hydrodynamic and acoustic phenomena are
seen. The spectra within the hydrodynamic regions are concentrated
near the wavenumbers, k ¼ f

Uc
, associated with the recirculation veloc-

ity, i.e., Uc along the bottom of the cavity. This velocity is �4.9, �3.0,
and �7.6m s�1 for the cylindrical, countersunk, and conical cavities.
The spectrum levels within the hydrodynamic region decrease with
decreasing recirculation velocity due to the reduced transport of turbu-
lence across the bottom. The spectra in and near the acoustic regions,

seen for the cylindrical and countersunk cavities, are due to the pres-
sure waves from the vortices impinging on the downstream wall.
Peaks at 6.0 and 6.3 kHz are the cylindrical and countersunk cavity
acoustic depth modes. However, the conical cavity does not have a
well-defined acoustic region. This suggests that the scattered energy
due to the vortex impingement seen in Fig. 14(c) does not result in
strong pressure waves from the downstream wall. At the top of all cav-
ities (not shown), the spectrum levels are highest near the TBL convec-
tive wavenumber, kc, which is defined as kc ¼ f

Uc
. The flow at the top

of the cavities has a convective velocity, Uc ¼ 18m s�1, which is 52%
of the free stream velocity, U1.

Figure 16 shows the pressure spectra for the acoustic and hydro-
dynamic components of the pressure field. The acoustic component is
calculated by integrating the spectrum within the acoustic wavenum-
ber domain, while the hydrodynamic component is represented by the
integrated spectrum outside this acoustic region. In these simulations,
the cavity diameters are smaller than the acoustic wavelength, i.e., for
frequencies below 34 kHz for the cylindrical cavity. Therefore, the

FIG. 15. Wavenumber-frequency spectra across the bottom of the uncovered cavities (dashed lines) lines represent the hydrodynamic peak due to recirculation, (dashed dot-
ted lines) represents the area between the acoustic region. pref ¼ 2:0� 10�5 Pa.

FIG. 16. Wavenumber spectra decomposed into acoustic and hydrodynamic components for all three uncovered cavities. Shaded area is the region of uncertainty, defined as
f � U1Dk.
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wavenumber resolution, Dkx , is larger than the acoustic wavenumber,
k0 ¼ f =c0, below this frequency. Dkx ¼ 1=L is 100m�1 for the cylin-
der and countersunk cavities, and is 142m�1 for the conical cavity. As
a result, the spectral energy of the acoustic region is concentrated in
the kx ¼ 0 region. The shaded area in the figures highlights the fre-
quency bands where differentiating between acoustic and hydrody-
namic is difficult.

The hydrodynamic components of the spectra in Fig. 16 are
dominant relative to the acoustic component for all three cavities. The
cylindrical cavity’s acoustic depth mode at 6.0 kHz is identifiable in the
spectrum of the acoustic component and has an amplification of
8.5 dB with respect to the broadband spectrum level. The frequency of
this depth mode agrees with predictions, using the expression

f ¼ ð2nþ1Þc04Dþd , where n is the mode number beginning at 0, c0 is the
speed of sound, and d is the correction term for the cavity diameter.54

The acoustic component is higher for the cylindrical cavity than those
of the other cavities due to the stronger pressure waves generated by
the impinging vortices. The countersunk cavity’s hydrodynamic com-
ponent is lower than that of the cylindrical cavity due to the lower
recirculation velocity. The countersunk cavity’s depth mode at 6.3 kHz
is also identifiable within the acoustic component of the spectrum.
The countersunk cavity’s acoustic mode is amplified by 7.5 dB, which
is less than the cylindrical case due to the higher countersunk ratio of
0.3 resulting in a shallower straight walled portion.54 The conical cav-
ity’s hydrodynamic component is higher than its acoustic component

because the vortex impingement produces lower amplitude pressure
waves compared to the other cavities. Additionally, the flow along the
downstream wall transports turbulence across the bottom resulting in
higher pressure fluctuations. This explains the higher hydrodynamic
spectral levels for the conical cavity compared to the other two cavities.
The depth mode for a conical cavity is estimated to be at f ¼ 5.0 kHz
using the method described in Scavone.55 This mode is not identifi-
able, presumably because conical cavities have much weaker depth
modes than straight walled cavities due to their lower quality factor.54

V. COVERED CAVITIES

In contrast to the uncovered cavities, the streamwise velocity
magnitudes of the covered cylindrical, countersunk, and conical cavi-
ties are below 0:002U1, as shown in Fig. 17. Therefore, the flow
beneath the cover is nearly stagnant. Covering the cavities eliminates
the dominant propagation mechanism of the pressure fluctuations. As
expected, eliminating recirculation partially explains why the covered
cavity spectra in Fig. 9 are lower than the uncovered cavities.

A. Pressure fluctuations due to TBL eddies over the
covering

Figure 18 shows the band-pass filtered pressure at the 1 kHz one-
third-octave band for each cavity. This frequency band was chosen
because the integral length scale of the eddies, as shown in Fig. 10(a),
is of the order of the diameter of the cylindrical cavity. The TBL eddies

FIG. 17. Average streamwise velocity field for the following covered cavities: (a) cylindrical, (b) countersunk, and (c) conical.

FIG. 18. Band-pass filtered pressure fluctuations at the 1.0 kHz one-third-octave frequency band. The streamwise slice is centered at z¼ 0.0 cm for the following covered cavi-
ties: (a) cylindrical, (b) countersunk, and (c) conical.
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convect across the top of the covering at the boundary layer convective
velocity, Uc.

56 Immediately above the covering, y¼ 0.0 cm, the pres-
sure fluctuations due to the eddies are visible. The distance between
these eddies is indicative of the TBL streamwise coherence length,
which approximates the size of the eddies. The eddies immediately
above the cover create a pressure field inside the cavity. This pres-
sure field decays as it expands within the cavity volume. This pres-
sure field is the dominant source of noise (p0) at the bottom of the
covered cavities and can be considered a near field acoustic
perturbation.

The cylindrical cavity band-passed pressure field is shown in Fig.
18(a). The pressure field within the cavity is almost spatially uniform
(coherent) due to the eddies at the top of the cavity being close in size
to the cavity aperture size. As a result, the pressure field within the cav-
ity is highly coherent with respect to the microphone location (center
of the cavity bottom). The countersunk cavity in Fig. 18(b) exhibits
similar behavior as the cylindrical cavity with the pressure field becom-
ing increasingly uniform toward the cavity bottom. At the top, the
eddies are smaller than the aperture size. This results in a more com-
plex pressure field at the top of the cavity, especially near the angled
walls. The pressure field within the conical cavity, shown in Fig. 18(c),
is much less uniform than the other cavities. This is due to the aperture
being approximately a factor of 4.5 larger than the eddies, as indicated
by Fig. 10(a). The resulting pressure field within the conical cavity is
the summation of the rarefactions and compressions at the top. The
eddies immediately above the conical cavity center contribute to p0 at
the microphone location. This is shown by Fig. 18(c).

1. Hydrodynamic and acoustic components of the
pressure fluctuations

The wavenumber-frequency spectra for the cylindrical cavity are
shown in Fig. 19. Figure 19(a) shows the spectrum just beneath the
covering, y ¼ �1:5� 10�3 cm. The covering reduces the amplitude
of the spectrum at the top of the cavities compared to the uncovered
case in Fig. 15 by approximately 20 dB. The spectral energy is more
concentrated near the convective wavenumber, kc, as shown by a simi-
lar wavenumber analysis in Ref. 57. This convective ridge is due to the

convecting eddies within the TBL being the primary source of pressure
fluctuations. At the bottom of the cylindrical cavity, shown in Fig.
19(b), the spectrum is highest at or near the acoustic wavenumber, k0,
i.e., at the bottom of the cavity the pressure fluctuations propagate pri-
marily at the speed of sound. The countersunk and conical cavities
exhibit similar wavenumber-frequency spectra.

Figure 20 compares the hydrodynamic and acoustic components
of the spectra at the bottom of all three covered cavities. The acoustic
component is dominant at the bottom of all covered cavities. For the
covered cylindrical cavity, the acoustic contribution is approximately
20 dB higher than the hydrodynamic contribution at the bottom. The
depth mode is visible near 6.0 kHz with a reduced amplitude com-
pared to the uncovered cavity in Fig. 16. The porous cover changes the
acoustic impedance at the top of the cavity and consequently reduces
the quality factor of the cavity.54 The countersunk cavity’s spectrum
levels are 5–10 dB lower than the cylindrical cavity. The depth mode is
also visible at 6.3 kHz. The covered conical cavity reduces the acoustic
spectrum by an additional 10 dB for frequencies greater than 4.0 kHz
compared to the countersunk cavity. A small peak near the conical
cavity’s predicted depth mode can be seen near 4.5 kHz. The acoustic
component of the TBL spectra levels at the bottom decrease with
increasing cavity aperture size.

2. Modal decomposition of p0

Proper orthogonal decomposition was performed on the pressure
fluctuations in the 2D plane at the top (under the covering) and bot-
tom of the covered cavities. Figure 21 shows the first three mode
shapes, /r , sorted by the energy content of each mode, rr, at the top of
a covered cylindrical cavity. The energy of each mode, as a percentage
of the sum of the energy of all the modes, is illustrated by the vertical
gray bar. The first mode contains about 61% of the total energy and
resembles an acoustic plane wave mode (m¼ 0, l¼ 1), wherem is the
azimuthal mode number, and l is the radial mode number.58 This
work uses the numbering convention where the radial mode number
index begins at 1, per the Refs. 59 and 58. This mode is dominant
because the cavity diameter is close to the eddy size for frequencies
below 2.0 kHz, shown in Fig. 10. Modes 2 and 3 have the same shape

FIG. 19. Wavenumber-frequency spectra across the covered cylindrical cavity (dashed lines) lines represent the hydrodynamic peak, (dashed dotted lines) represents the area
between the acoustic region. pref ¼ 2:0� 10�5 Pa. (a) Top of the cylindrical cavity; (b) bottom of the cylindrical cavity.
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as the acoustic modes in a circular duct.58 Specifically, they are the
m¼ 1, l ¼ 1 acoustic mode. Thus, Fig. 21 suggests that acoustic
modes are dominant when the eddy size is larger than the cavity
aperture.

The first three POD modes at the top of the covered conical cav-
ity are shown in Fig. 22. Unlike the cylindrical cavity, whose first
mode represents the majority of the energy in the pressure field, the
energy at the top of the conical cavity is spread out across more modes,
with the first mode having only 1.3% of the total energy. This is due to
the conical aperture diameter being larger than the TBL streamwise
coherence length, as shown in Fig. 10. The mode shapes do not corre-
spond to acoustic mode shapes as the pressure fluctuations are not
coherent with a single eddy due to the conical cavity diameter being a
factor of 4.5 larger than the cylindrical diameter.

At the bottom of the covered cavities, the mode shapes corre-
spond to the acoustic mode shapes of a circular duct. This is shown in
Fig. 23 for the conical cavity. POD mode 1 is similar to the acoustic
plane wave mode, (m¼ 0, l ¼ 1), mode 2 corresponds to the acoustic

mode (m¼ 1, l ¼ 1), mode 4 is similar to the acoustic mode (m¼ 2,
l ¼ 1), mode 6 matches the (m¼ 0, l ¼ 2) mode, mode 8 is the
(m¼ 3, l ¼ 1) acoustic mode, and mode 10 is the (m¼ 1, l ¼ 2)
mode. The first POD mode contains the largest percentage of the total
estimated energy, 83%. This is in contrast to the same mode at the top
in Fig. 22. The explanation is that the higher order modes are cut off
in the cavity and thus exponentially decay as they propagate toward
the bottom of the cavity.58,60 The first mode and its associated energy
propagate to the cavity bottom resulting in it containing the majority
of the energy at the cavity bottom. The cutoff condition is defined by
the following expression:

xa
c0
> aml; (10)

where a is the cavity aperture radius and aml is the radial wave num-
ber. The radial wavenumber is the Bessel (of the first kind) derivative
root.58 For example, for mode n¼ 2 in Fig. 23 (m ¼ 1;l ¼ 1) the
root of the Bessel function of the first kind derivative is a11 ¼ 1:8412.

FIG. 21. First three mode shapes, /, at the top of the covered cylindrical cavity, y ¼ �1:5� 10�2 cm. The modes are sorted by energy content, with the gray bars indicating
the percentage of total energy,

P
r, each mode contains.

FIG. 20. Decomposition of the wavenumber spectra into acoustic and hydrodynamic components for all three covered cavities. Shaded area is the region of uncertainty.
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Equation (10) states that for the cylindrical cavity with a diameter of
1.0 cm the first non-planar acoustic mode will propagate for frequen-
cies above 20.1 kHz. Therefore, only mode 1, the planar mode, is cut
on for the frequencies of interest and propagates without decaying.

The effect of cavity aperture size on the attenuation of the TBL
spectra is shown in Fig. 24. This figure shows the normalized energy
content of each mode, rr=jjrjj, where jjrjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1 þ r2

2 þ � � � þ r2
r

p
,

at the cavity top and bottom for all three covered cavities. At the top of
the cylindrical cavity, the normalized amplitude of the first mode is
18 dB higher than the next highest mode. As the cavity aperture diam-
eter increases for the countersunk and conical cavities, the difference
between the first two modes at the cavity tops decreases to 10 and
5dB. Thus, the energy of the TBL pressure field is increasingly spread
across the higher order POD modes for larger cavities. This is due to
the cavity aperture size increasing with respect to the coherence length
of the TBL and therefore the number of pressure rarefactions and
compressions present at the top of the larger cavities, due to the TBL

eddies, increases. In contrast, the pressure fluctuations at the top of the
smaller cavities can be represented primarily by the planar mode as it
contains significantly more energy because the TBL eddies convecting
over the cavity are larger than the cavity, as shown in Fig. 10(a).

At the bottom of all cavities, the first mode has a 30–40 dB higher
amplitude that the next highest mode. This is explained by this mode
being planar and thus cut on. The higher-order modes are cutoff, thus
their energy decays exponentially as they propagate from the top
to the cavity bottom. Furthermore, as the cavity aperture size increases,
the energy at the bottom of the cavity is increasingly concentrated in
the first mode, as shown by the conical cavity having a normalized
amplitude 6 dB higher than the cylindrical cavity. This is attributed to
the TBL energy being spread out over higher-order modes. Therefore,
larger diameter covered cavities will attenuate the TBL pressure fluctu-
ations more than smaller ones. This explains why the covered conical
cavity attenuates the TBL pressure fluctuations the most, as plotted in
Fig. 9.

FIG. 23. First six unique modes, /, at the
bottom of the covered conical cavity. The
gray bars indicate the percentage of total
energy,

P
r, each mode contains.

FIG. 22. First three mode shapes, /, at
the top of the covered conical cavity, y
¼ �1:5� 10�2 cm. The gray bars indi-
cate the percentage of total energy,

P
r,

each mode contains.
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An important result of the wavenumber and POD analyses is
that the pressure field beneath a covered cavity exhibits behavior
similar to an acoustic wave propagating in a duct. The wavenum-
ber analysis in Fig. 20 shows that at the bottom of the cavity the
pressure spectral energy is primarily contained within the acoustic
wavenumber domain. The POD analysis shows that the pressure
fluctuations at the bottom are decomposed into mode shapes that
correspond to acoustic circular duct modes. This suggests that
modeling the propagation of the TBL pressure field into a covered
cavity can be simplified with an acoustic model, thus decoupling
the acoustic from the hydrodynamic contributions to the pressure
spectra at the bottom of the cavities.

VI. CONCLUSIONS

The present study used the lattice Boltzmann-based commer-
cial software package PowerFLOW to simulate turbulent flow
with a freestream velocity of 32m s�1 over axisymmetric cavities
placed in a flat plate. The following geometries were simulated: a
cylindrical cavity, a countersunk cavity, and a conical cavity. In
addition to simulating these open cavities, the effect of a finely
woven stainless steel cloth covering is evaluated by using an equiv-
alent fluid approach, modeled by imposing Darcy’s law, at the top
of each cavity. The simulated pressure spectrum at the bottom of
the cavities is validated with experimental measurements. Both
show that the uncovered countersunk cavity has the lowest TBL
spectrum, followed by the uncovered cylindrical and uncovered
conical cavities. The simulated trend in covered cavity perfor-
mance is also in agreement with the measurements. The covered
conical cavity attenuates the pressure fluctuations at the micro-
phone location (cavity bottom) the most and therefore performs
the best. The covered countersunk cavity performs better than the
covered cylindrical cavity. The porous medium model is found to
be capable of modeling the effect of covering the cavities. This
analysis identifies the behavior of the hydrodynamic and acoustic
components of the pressure fluctuations within these axisymmet-
ric cavities.

Based on a wavenumber analysis, it is found that the pressure
fluctuations at the bottom of uncovered cavities are dominated by
hydrodynamic phenomena. These phenomena include recirculation

and turbulence generation inside the cavities. Adding a counter-
sink at the top of the cylindrical cavity is found to reduce recircula-
tion toward the cavity bottom by shifting the center of
recirculation away from the cavity bottom. However, extending
the countersink to the bottom (conical cavity) increases the recir-
culation velocity and turbulence generation at the bottom. It is rea-
soned that the upstream angled wall deflects the flow downward
and thus moves the downstream shear layer reattachment point
toward the bottom, increasing the recirculation velocity. This is
most noticeable in the conical cavity. Furthermore, the angled
downstream walls also cause strong pressure gradients inside the
cavities, which are associated with turbulence generation in the
region of vortex impingement. Based on these observations, an
optimal uncovered cavity should feature a perpendicular upstream
wall to reduce turbulence generation and inflow, an angled down-
stream wall to reduce the effect of vortex impingement, and a
countersink that does not extend to the bottom of the cavity to
reduce the recirculation at the bottom.

Covering the cavity opening with the cloth reduces the flow
across the covering, mitigating the entrance of turbulent structures
into the cavity. The flow is mostly stagnant inside the covered cavi-
ties, and turbulent structures are not produced inside. The pressure
field within the cavities is due to the pressure fluctuations gener-
ated by the eddies convecting across the top. The pressure field cre-
ated by the TBL eddies propagates toward the bottom of the
cavities at the speed of sound, as shown by the wavenumber analy-
sis. The pressure field within the cavities is dependent on the cavity
size relative to the eddy size. When the cavity diameter is nearly
the same size as the eddy, the pressure field within the cavity is
coherent with the pressure fluctuations corresponding to the con-
vecting eddy. When the cavity is larger than the eddies, the pres-
sure field from individual eddies is evanescent resulting in
attenuation of the pressure field at the cavity bottom.

The proper orthogonal decomposition (POD) analysis shows
that the energy distribution of the resulting orthogonal modes at the
top of each cavity is dependent on cavity aperture size. For smaller
apertures, the energy is concentrated in the first mode due to the cavity
size being close to that of the eddy size. For larger cavities, e.g., the con-
ical cavity, a larger ratio of the energy is decomposed into higher order

FIG. 24. Normalized energy per mode, rr=jjrjj, at the top and bottom of the cavities with a stainless-steel cloth covering.
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modes with less energy, relative to the smaller cavities, in the first
mode. The spectra at the bottom of the cavities is attributed to the first
POD mode as this mode is cut on. By shifting more energy into cutoff
modes, the larger cavities have lower spectra levels at the cavity bot-
tom. At the bottom of all cavities, the POD modes correspond to
acoustic duct mode shapes. This is an important finding as it suggests
that the propagation of TBL pressure fluctuations for covered cavities
can be accurately modeled with an acoustic approach. The acoustic
modeling could be performed using the same approach as Ref. 54.
With this approach, a pressure field representative of the TBL at the
top of the cavity could be simulated as propagating acoustically into
the cavity.

Covered cavities reduce the TBL spectral levels at the bottom of
the cavity more than uncovered cavities. Therefore, future optimiza-
tion of the cavity geometry should start with a covered cavity. The pre-
sent work suggests that the propagation of the pressure fluctuations
into a covered cavity can be simplified by solving only the wave equa-
tion. This may enable optimization of cavity shape and wall material,
with affordable computational costs. However, the very-large eddy
simulation using the lattice Boltzmann method is capable of simulat-
ing the propagation of the TBL pressure fluctuations into a cavity and
therefore is suitable for evaluating future cavity designs, to improve
the attenuation of the turbulent boundary layer pressure fluctuations.
The computational method used in this study may also apply to cavity
design studies at higher Mach numbers when compressible effects
become dominant, which would apply to improving the design of
microphone cavities for direct noise measurements on aircraft skins.
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APPENDIX: DOMAIN AND LATTICE VARIABLE
RESOLUTION REGIONS

We show in Table V the dimensions of the domain and of the
lattice VR regions.

TABLE V. Dimensions of the domain and of the lattice VR regions. Dimensions shown in cm (LCylindrical ¼ 1 cm).

Cylindrical Countersunk Conical

Test case Uncovered Covered Uncovered Covered Uncovered Covered

Domain height 136 136 136 136 136 136
Domain length 300 300 300 300 300 300
Domain width 5.12 5.12 5.12 5.12 11.52 7.68
VR5 height 12.08 12.08 12.08 12.08 21.68 21.72
VR4 height 5.68 5.68 5.68 5.68 15.28 15.32
VR3 height 2.48 2.48 2.48 2.48 2.48 2.52
VR2 height 0.88 0.88 0.88 0.88 0.88 0.92
VR1 height 0.08 0.08 0.08 0.08 0.08 0.12
VR1 length 200 200 200 200 200 200
VR0 height 0.08 0.08 0.08 0.08 0.08 0.08
VR0 diameter 1.16 1.16 1.76 1.76 4.66 4.66
VR0 cell size 0.008 0.008 0.008 0.008 0.01 0.01
Porous medium thickness � 0.015 � 0.015 � 0.03
VR (�1) thickness � 0.128 � 0.128 � 0.128
VR (�2) thickness � 0.032 � 0.032 � �
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57L. Larchevêque, P. Sagaut, T. H. Lê, and P. Comte, “Large-eddy simulation of a
compressible flow in a three-dimensional open cavity at high Reynolds
number,” J. Fluid Mech. 516, 265–301 (2004).

58S. W. Rienstra, Fundamentals of Duct Acoustics (Eindhoven University of
Technology, 2015), pp. 1–50.

59Handbook of Mathematical Functions, edited by M. Abramowitz and I. A.
Stegun (National Bureau of Standards, Washington, DC, 1964).

60C. P. VanDercreek, P. Sijtsma, M. Snellen, D. Ragni, F. Avallone, and
D. G. Simons, “Deterministic model of acoustic wave propagation in a
cavity,” in 25th AIAA/CEAS Aeroacoustics Conference, Aeroacoustics
Conferences (American Institute of Aeronautics and Astronautics,
2019).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 105120 (2022); doi: 10.1063/5.0100001 34, 105120-20

Published under an exclusive license by AIP Publishing

https://doi.org/10.1088/0169-5983/41/2/021406
https://doi.org/10.1007/s00348-020-2888-x
https://doi.org/10.1016/j.jsv.2015.02.018
https://doi.org/10.1017/S0022112095000462
https://doi.org/10.1121/10.0009274
https://doi.org/10.1017/S0022112004000709
https://scitation.org/journal/phf

	s1
	s2
	s2A
	s2A1
	f1
	t1
	s2A2
	d1
	d2
	d3
	s2A3
	d4
	s2A4
	s2B
	s2B5
	s2B6
	f3
	s2C
	s2C7
	s2C8
	s2C9
	s3
	s3A
	d5
	t2
	f4
	d6
	t3
	t4
	f5
	s3B
	d7
	f6
	f7
	d8
	f8
	f9
	s4
	s4A
	d9
	f10
	f11
	s4B
	f12
	f13
	f14
	s4B1
	f15
	f16
	s5
	s5A
	f17
	f18
	s5A1
	s5A2
	f19
	d10
	f21
	f20
	s6
	f24
	l
	app1
	t5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60

