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Abstract

In this report we present a model to simulate the performance and robustness of the Charge-
Resonance Check (CR-Check) in the Nitrogen-Vacancy (NV) center. The CR-Check is a routine
which verifies that the charge state of the NV center is NV~ and that the lasers, addressing the NV
center, are on resonance with the optical lines. This is done by shining a red (A = 637 nm) laser on
the NV center and measuring the amount of fluorescence photons, since they are dependent on the
resonance frequency being near the frequency of the laser. If these counts do not pass the threshold
for success, then either a new measurement of the photons is done or the system is repumped with
a green (A = 532 nm) high intensity laser if they are below the repump threshold. In the last
situation the charge environment is reset and thus a new resonance frequency is obtained. First
a model was built up for the CR-Check, containing all the important physical parameters. The
most important parameters are the duration of the red laser (dt) and the spectral diffusion of the
NV center (sigma), which is an intrinsic property of the NV center.

The model was implemented in Python, where also Numba, a high-performance Python com-
piler was used. An algorithm for finding the optimal values is included, so that different imple-
mentations can be compared. Then parameter sweeps were performed to get insight on the effects
of the parameters.

The values of the memory parameter and of the threshold for the maximal amount of photon
measurements before doing a repump were determined experimentally.

The distribution of frequency spectrum was investigated, it follows the shape of the Generalized
Normal distribution with a disturbance due to the memory parameter.

We observed that the mean time till success goes up linearly with the sigma after it is higher
than 80 MHz for dt. This effect can be explained by taking into account the Normal distribution
which was used to determine the resonance frequency.

It became clear that the N_thr_repump and N_thr_success often come as pairs, which have been
shown to be linearly dependent on the rate. Also it has been observed that after a certain sigma
amount the N_thr_repump and N_thr_success do not change anymore.

We noticed that for fixed sigma there is a optimal value of dt. This optimal value of dt is
dependent on sigma.

Average number of photon counts was nearly independent of sigma and only linearly dependent
on dt. This is a sign that the CR-Check can always bring the NV center sufficiently on resonance.

It has been observed that when the NV center’s spectral diffusion is below 40 MHz, it is
significantly faster to use the CR-strategy with dt = 25 ps compared to the standard dt of 50 ps.

Lastly new implementations, where p-values are used rather than the measured counts, were
shown to be capable of performing a CR-Check procedure. These implementations have used either
the cumulative density function (cdf) of the Poisson distribution or the t-test or the Wilcoxon
signed-rank test. The test using the cdf performed very similar to the current implementation.
The other two test were slower with regards to the mean time till success, as they seem to require
a lower spectral diffusion than was mandated.
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1 Introduction

In the future Quantum Networks could provide a fundamentally secure form of communication,
In addition to this they could also link up different quantum computers. The Nitrogen-Vacancy
(NV) center is a defect in the crystal lattice in a diamond, where two adjacent carbon atoms are
replaced by a nitrogen atom and an empty lattice site. These NV centers can be employed as a
solid-state spin-qubits and as such they can be the nodes of a Quantum Network. The NV centers
have great potential to be used for quantum technologies due to their optical interface, an easily
addressable ground-state spin that is paired with long coherence times and in particular the ability
to address individual nuclear spins in the vicinity as a quantum resource [1].

Before any entanglement process can be started the Charge-Resonance Check (CR-Check) must
be passed. The CR-Check is a routine which verifies that the charge state of the NV center is NV~
and that the lasers, addressing the NV center, are on resonance with the optical lines. However
optimizing this procedure is complex and experimentally not fully understood, whilst the time
spent on it is comparable to the time spent to make entanglement. Therefore it would be useful if
this process could be accelerated.

The aim of this project is to make a model to simulate the performance and robustness of the
CR-Check. Furthermore improvements to the current implementation and alternative protocols
will be investigated.

A model has to be built up for the CR-Check, containing all the important physical parameters.
First the building blocks in each iteration of the CR-Check are defined. Next the CR-Check routine
is defined in a simplified form, which is easier to understand and can serve as a sanity check for the
extended version. Thereafter an implementation of the current protocol, which is currently in use
in the laboratory, will be made. Also an algorithm for finding the optimal values of the threshold
parameters in the CR-Check will be made.

To be able to conclude anything from the observed data many iterations have to be done, such
that one might expect that the Law of Large Numbers starts to apply. This requires that the code
is as efficient as possible with regards to the computation time. It will be implemented in Python
in combination with Numba, a high-performance Python compiler.

This fast code permits sweeps over the parameters space to retrieve some insight of the effects
of the parameters. With this knowledge a proposal for amendments of the current procedure will
be made. Moreover the alternative protocols will also be tested.

To start, the theoretical background of the mathematics involved in the simulation and the
physics of the NV center will be discussed in chapter 2. The algorithm is discussed in chapter
3, as well as the validity of the model. In chapter 4 the results of the simulations CR-Check are
presented. Finally the conclusions are presented in chapter 5.

This research is a part of the Bachelor’s Thesis for the Double Degree Bachelor’s programme
Applied Mathematics and Applied Physics at Delft University of Technology.



2 Theory

In the first part of this chapter we will discuss the mathematics involved in the modelling.
The Poisson distribution is treated extensively, since it is very important in the model. Also
the generalized normal will be briefly discussed. The second part of this chapter treats the most
important properties of the NV center, which will be of use to develop the simulation of the
Charge-Resonance Check.

For the interested reader both the Weak Law of Large Numbers and the Strong Law of Large
Numbers are proven in Appendix A. These are shown to formally prove that the averaging over
many iterations in a simulation will give sensible information about the stochastic process, that
we are observing.

2.1 Poisson distribution

The Poisson distribution is a discrete probability distribution. It is often used to express the
probability that a given amount of events happen in fixed amount of time, when they occur with
a constant mean rate and the next measurement is independent of the previous instance. For
example radioactive decay is modelled using the Poisson distribution.

The probability mass function (pmf) for the Poisson distribution is given by [3]:

k
P(X =k) = %e—A

We can check that this is a good definition of a pmf, since:
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where we have used the definition of the exponent. Now we can use this result to calculate higher
order moments of the Poisson distribution.
The expectation of the first moment, the mean, is given by:
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For the calculation of the variance we will use a smart trick, similarly as for the first moment:
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So now we easily compute the variance and thus we get:
Var(X) =E(X?) — (E(X))? = E(X(X —1)) + E(X) — (E(X))> = X2+ A=\ =\,

So we have computed that both the mean and the variance are both A for the Poisson distri-
bution.

In the simulations it will be of importance to estimate A the best we can given a number of
observations. For this purpose we shall find the Method of Moments Estimator (MME) and the
Maximum Likelihood Estimator (MLE) and of use. The Method of Moments Estimator is easily
calculated:
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The Maximum Likelihood Estimator maximizes the likelihood function, which in our case
assigns the probability to the observed values as a function of the parameter A. This is then
optimized for the parameter A. For the Poisson distribution it is computed by [5]:

L(X\x1,...,2, Hexp —)\m7

By taking the natural logarithm we obtain for the log-likelihood:
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Now we want to find the maximum of the log-likelihood for A, thus we take the first derivative
with respect to A [2]:
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So equating this expression to 0 and rewriting it gives:

n
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So both MME and MLE for A are the average of the observations.
And we have d,\2l(/\ TlyeeoyXy) = —% Z?Zl x; < 0, since z; > 0. Thus it is indeed a
maximum.

Another property of the Poisson distribution is that for large values of A, it may be approximated
by the Normal distribution with mean A and variance A. A proof of this statement can be found
in Appendix B. In practice the approximation is already acceptable for A = 20.

Independent Poisson distribution

Since we will mostly deal with the Poisson distribution, it is important to remember that if we add
two independent random variables, which are Poisson distributed, we get that their sum is Poisson
distributed with the parameter A equal sum of the individual parameters.

Theorem 2.1.1. Let X ~ Po(A\1) and Y ~ Po(\3) and define Z = X +Y, then Z ~ Po(X\) with
A=A+ A

Proof. Let X ~ Po(A1) and Y ~ Po()\z) and define Z = X +Y and A = Ay + Ag, then let m € N
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This is the probability of a Poisson distribution with parameter A = A\ + A\2. So Z ~ Po(\) with
A=A+ Ao, O



This is proof for adding two Poisson distributions, we may conclude from the above that it
holds in general for n € N since we can keep on adding additional Poisson random variables and
applying the above theorem each time on a Poisson random variable and the sum of Poisson random
variables.

2.2 Generalized Normal distribution

The Generalized Normal distribution (or Generalized Gaussian distribution) is obtained naturally
by replacing the second power in the probability density function of a Normal distribution for a
parameter 5 > 0, which can have any order [4]. Of course the normalization factor needs to be
modified as well. This gives for the probability density function [4]:

b (=)’

f(x):me )

where T'(t) = fooo e~ “u!~1du is the well-known Gamma function, p € R is the location of the
mean, « > 0 is the scale parameter and § > 0 the shape parameter. It can be easily seen that
for § = 2 the Normal distribution is again obtained. The scale parameter has the similar effects
as the standard deviation in the Normal distribution. The shape parameter flattens the top and
makes the distribution sharper, this is illustrated in the following figure.

Effect of shape parameter, mu=0 and alpha =1
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Figure 1: Shows the effect of the shape parameter on the distribution for 4 =0 and a = 1.

From Fig.1 can be seen that for equal values of «, different kinds of spread exist. Therefore just
« is not a good measure of spread. The first two moments of the Generalized Normal distribution
are [4]:
E(X) =pn
o*T'(3/8)

Var(X):W.



Therefore the variance seems to be a reasonable measure of the spread of the distribution, as
it takes both the o and 8 parameter into account.

2.3 Statistical test

The p-value is used to quantify mathematically how likely a value is to occur under a null hypoth-
esis, so for low values p the null hypothesis is rejected for the alternative hypothesis. To get this
p-value, first a statistical test has to be defined. Multiple statistical tests will be defined in the
following section.

Direct test

Let the random variable X be Poisson distributed, where parameters A is unknown. We want to
test the null hypothesis Hy : A < A\g against Hy : A > Xy , where \q is a fixed. We take X as the
test statistic and t the observation, then we have for the p-value:

= —1\k
sup Py(X > t) 0720 =1 206~
>\<£)0 )\ kzk Zk

t-Test

This test is used to check whether the mean from a sample differs from a given value. It is based
on the Student’s t-distribution and from there the name of the test originates. Let Xy,..., X, be
a sample from a Normal distribution, where parameters p and ¢ are unknown. We want to test
the null hypothesis Hy : p < po against Hy : p > po , where pp is a fixed. Then we can define as
test statistic [5]:

where X denotes the mean of X and Sy denotes the standard deviation of the sample. We will
reject the null hypothesis for large values of T. This statistic T has a Student’s t-distribution with
n-1 degrees of freedom. For the interested reader, a proof of T' ~ t,,_1 can be found in [5] under
theorem 4.29. Thus cumulative density function (cdf) can be used to determine the p-value. It
can be shown that the t-test is uniformly the most powerful within the class of all unbiased tests

[5]-

Wilcoxon signed-rank test

The Wilcoxon signed is a distribution-free test, which means hardly any assumptions are made on
the distribution [5]. Thus it works for a wide variety of distributions, but at the expense of the
power function of the test. It was first introduced by F. Wilcoxon in 1945 [6].The test is defined
for the following situation:

Given the samples X1,..., X, and Y7,...,Y, of equal size, where X; and Y; for i € {1,...,n}
are paired. We want to test the null hypothesis Hy : The two samples come from the same
distribution against Hy : The first sample comes from a stochastically larger distribution than the
second [5].

IfY; for i € {1,...,n} is chosen to be a constant say k, we could consider that this gives an
indication whether the sample of X; for ¢ € {1,...,n} is usually larger than k.

Before the test statistic W can be computed, the following steps are performed.

First the |X; — Y;| and sign(X; —Y;) for ¢ € {1,...,n} is calculated, where we the sign(x)=0 if
x < 0 and sign(z)=1 otherwise. In this implementation zero-differences will be excluded from the
test, thus assume that we have m non-zero difference pairs left. As it will be used in the modelling
to compare a real-valued number with some decimals with an integer value, this difference will
never be zero. Next the pairs |X; — Y;| for ¢ € {1,...,m} are ordered from smallest to largest
value.



These values are then ranked where the smallest value receives 1 and the largest m, the ranking
starts with the smallest value. However it might happen that r pairs have the same absolute
difference, in this case the ranks of the next r positions are averaged and each pair gets this
average value assigned. Thus it could occur that first smallest value in the rank list is actually
ranked higher than 1, whilst the largest value is ranked is less than n. The rank of a pair | X; — Y;|
will be denoted by R;.

The test statistic W is then defined as:

W =>"R;-sign(X; - Y;).

i=1

So we would expect W = 0 under the null hypothesis, while high values of W would favour
the alternative hypothesis. The critical values of W have been tabulated for different levels of
significance [5]. The same holds for the exact p-values. For large sample sizes (from around
n ~ 20) these values can also be approximated with the Normal distribution.

Note that there exist a couple of implementations of the Wilcoxon test. In this report we will
however only use the one discussed in the previous part, which is already implemented in the SciPy
package in Python.

Example, We will apply the Wilcoxon signed rank test to (X1; Xo; X3; X4)=(6; 7; 8; 7) and
(Y1; Ya; Ys; Yy)=(6; 8; 6; 6). Here we use vector notation just for the sake of brevity.

Let )_(':(Xl; Xo; X3; X4) be (6; 7; 8; 7) and let 172(3/1; Ya; Y3; Yy) be (6; 8; 6; 6). Then the
absolute differences are | X — Y |:=(|X; — Yi|; |Xo — Ya|; | X5 — Y35 | X4 — Y4[)=(0; 1; 2; 1) and the
signs are sign(X — Y):=(sign(X; — Y1); sign(Xa — Y2); sign(Xs — Y3); sign(Xy — ¥3))=(0; 0; 1; 1).

Next the zero difference is deleted, so we are left with|Y — X|=(1; 2; 1) for the absolute
differences and sign(X — Y)=(0,1,1) for the signs.

We need to distribute the ranks 1 to 3. Since the there are two differences values with 1, both
get rank (1+2)/2 = 1.5 and the value gets assigned rank 3. So the ranks are B=(Ry; Ra; Rs)=(1.5;
3; 1.5).

leus the test statistic W = (1.5-0) 4+ (3-1) 4+ (1.5 - 1) = 4.5, this gives a p-value p = 0,2. So
if the level of significance is lower than this p-value, than the null hypothesis is rejected for the
alternative.

2.4 NV center

Before discussing the material, I want to stress that the following section was heavily influenced
by Norbert Kalb’s "Diamond-Based Quantum Networks with Multi-Qubit Nodes” [1].

There is a wide variety of optically active defects present in diamond crystal lattice, more than
100 colour centers have been observed and a significant portion has been investigated [7]. In this
project only the Nitrogen Vacancy (NV) center will be considered. This defect occurs when in
the lattice two neighbouring carbon atoms are replaced by a nitrogen atom and a vacant lattice
site, this can be seen in Fig.2. The NV center exists in two charge states namely NV? and NV~.
The electronic wave function of the neutral NV? state is comprised of five electrons, two from the
nitrogen atom and three from the carbon atoms adjacent to the vacancy. We will mainly consider
NV~ where an additional electron from the environment is captured, for example by some nearby
charge traps [1].
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Figure 2: (a) The NV center is shown in the crystal lattice of diamond. The defect is formed by a substituting
a nitrogen atom (N) and a vacant (V) lattice site adjacent to nitrogen for usual carbon atoms. (b) The molecular
orbitals for the NV center are shown. The figure is taken from: [18].

The molecular orbitals can be used described to the level structure of NV~ and NV? as in Fig.2
[1]. These orbitals are in turn constructed by linear combinations of the dangling sp® orbitals,
which are associated the unsatisfied bonds of the atoms neighbouring to the vacancy by considering
the Cs, symmetry of the NV center [8]. It turns out that the ground state and the first optically
excited state both only have unoccupied energy levels, which lie within the band gap of diamond [1].
Such a configuration impedes electron being lost to the conduction band as well as electron being
accumulated from the valence band. Therefore NV~ has optical properties that are comparable to
the properties of an individual trapped ion [10].

The ground state of NVY has an electron spin angular momentum S = 1/2, which is a singlet. On
the other hand it has been shown that the negatively charged NV~ has a ground state with electron
spin angular momentum S = 1, which is a triplet. This is consistent with having respectively an
uneven and an even number of electrons surrounding the vacancy for the NV and NV~ respectively
[15].

When a combination of spin-spin interaction, spin-orbit interaction and Coulomb repulsion
between the six electrons within the NV~ defect is regarded, it gives that the ground state is in an
orbital-singlet and a spin-triplet [11]. This ground state is optically coupled to the excited state,
which a orbital-doublet spin-triplet state [1], see Fig.3. From the excited state decay occurs to an
intermediate spin-singlet states, from which it can decay further to the ground-state triplet that is
most favourable for the state with ms = 0 spin projection [1].
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Figure 3: The electronic level structure of NV~ is shown. (A): If the excitation and emission within the spin-
triplet state 3Ag < 3E occurs resonantly, no additional phonons are need [1]. This gives the zero-phonon line (ZPL).
The excitation and emission can also occur off-resonantly via the phonon sideband (PSB), which is depicted by the
dashed arrows. The durations of the decay times have been specified for the low-temperature-low-strain regime
(T =4 K and E; <3 GHz) [1]. The fact that there are state-dependent decays of 3E to the spin-singlet level *A;
are present, results in varying decay rates [1]. (B) The spin states of the ground state of 3Ay are split into two
levels, where the ms = £1 has double degeneracy [18]. The excited state 3E is divided by spin-spin and spin-orbit
interactions into four energy levels, of which E; 2 and Ey,y are doubly degenerate [20]. The transitions from the
ground to the excited states are spin selective[l]. (C) The effect of applied lateral strain and electric field on the
energy of 3E is very comparable up to first order [14]. The ground state experiences these shifts with strain and
electric field very weakly [9]. (D) By applying a magnetic field along the axis of the NV defect the degeneracy of
ms = +1 and ms = 1 can be lifted using the Zeeman effect. With this the states become individual addressable
and this permits the definition of a qubit within the ground state triplet A2 [1]. The figure is taken from: [1].

The zero-phonon line (ZPL) has the shape of an Lorentzian distribution (also called the Cauchy
distribution) with the Half-Width Half-Maximum (HWHM) at 13 MHz for very low temperatures
(~ 10 K) [12],[13]. This linewidth is fundamentally limited by the spontaneous emission lifetime
of the excited states of 11.5 ns [14]. The emission spectrum of the NV center can be found in
Appendix C.

Transition between charge states

The charge state NV~ is sometimes converted NV° [17]. This happens due to two-photon absorp-
tion. The first photon excites the electron of an NV~ to the excited state, where a second photon
ionizes the electron to the conduction band. The NV center will become NV either directly or
through the excited state and the following fast decay. There is a similar recombination process,
which turns NV into NV~. First the electron in the ground state of NV?. Next an electron from
the valence band is captured, which could have been ionized using a photon.
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Figure 4: The mechanism of conversion of the the charge state is presented. Ionisation process: (1) A photon
is excited an electron from the ground state of the NV~ to the by one photon. (2) A second photon excites the
electron from the excited state of NV~ into the conduction band. Thereby the defect becomes NV in the ground
state, either directly after the ionization or possibly via the excited state and subsequent fast decay. Recombination
process: (3) An electron of the ground state of NVO is excited. (4) An electron is captured from the valence band,
forming NV~ in the ground state. The figure is taken from: [17].

Charge and Resonance Check

In experiments individual NV centers have to be addressed reliably and repeatedly with lasers;
but to do this effectively there are two obstacles that must be overcome [1]. First it needs to
be verified that the NV center is the NV charge state, since NV is occasionally transformed into
NV? during experiments by the two-photon absorption process [17]. Second the optical transition
frequencies are modified by fluctuations in the local charge environment. This leads to varying
resonance conditions that are of hindrance for the generation of remote NV-NV entanglement,
since indistinguishable emission from both emitters is needed [19].

A routine that checks both requirements has been implemented, it is called the Charge Reso-
nance Check (CR-Check). It excites the NV with a laser set to the expected resonance frequency
and counts the amount of detected fluorescence photons. If the charge state is NV° rather than
NV~ then the lasers are so far of resonance as the ZPL that no photons are detected at all, as the
ZPL of NV~ significantly differs from the ZPL of NVY. Otherwise a reasonable amount (around
30) photons are detected.

The linewidths of the laser that are far below the lifetime-limited linewidth of the NV center and
intensities of the laser that are far below the saturation power have to be used, as this provides the
maximum sensitivity with regards to the spectral diffusion [1]. The time spent in the CR~-Checking
process on collecting a sufficient amount of photons for verification ( 50 ps) is short in comparison
to typical timescales for not well addressed samples (minutes or larger) [1]. The laser frequencies
are chosen such that no dark state occurs, this gives a high fluorescence signal. The lack of a dark
state means that each state of the ground state triplet is independently coupled to an optically
excited state[1].

The experiment is started after a predefined threshold has been transcended, which is chosen
such that lasers are sufficiently on resonance.

Important parameters in this CR-Check are the spectral diffusion of the NV-center and the
length of the measurement time. Moreover the performance of an experiment after the passing of
the CR-Check has a an effect, as it can disturb the local charge environment.



10

< <
v | |
Green/ Verify || Repump
Yellow

Red (RO)| J | Experiment
Red (SP)| J v
APD J L

<th% >thr1A

AV V4

Figure 5: Graphical representation of the routine in combination with an experiment. The number of photons
is counted while the NV center is excited by the Read Out (RO) and Spin Pump (SP) lasers. This is called the
verification step. If the counts (cnts) exceeded the threshold for success (thry), then the experiment is started and
the loop returns to the verification step. If the counts are below the threshold for repump (thrz), then the repump
procedure is applied and the loop goes back to the verification step. Otherwise if the counts are neither higher
than thr; and neither lower than thra, then the loop immediately goes back to the verification step. The figure is
adapted from: [1].

cnts

There are two methods which can be applied to return the defect into the NV~ charge state.

The most common method is to use intense (tens of pW) green laser pulses (A = 532nm)
[1]. The probability of finding the NV center in NV~ afterwards, is about 75% [17]. Moreover
this intense green illumination rearranges the charge environment [1]. This can be viewed as the
local charge environment being shaken up by the laser and reordered in another fashion, thus
gaining a new resonance frequency. However this process also broadens the optical transitions
inhomogeneously [16]. Next a verification procedure is applied to select the optical configurations
that are sufficiently close to optimal. This implementation is convenient, since no feedback on the
emission frequency is necessary [1].

There are some drawbacks to this method. The excessive use of these short green laser pulses
can induce some slowly-decaying dynamics in the charge environment. These in turn widen the
spectral emission of the NV center and such widening is detrimental as it is a hindrance to the
fidelity of remote entangled states [18]. Moreover the optical transmission frequencies are less
effectively tuned by the DC Stark effect in this arrangement due to screening effects, which in turn
require fast switching of the applied DC voltages [22].

The alternative method is to use weak (tens of nW) and long (300 ps) yellow (A = 575nm)
laser pulses to reinitialize the charge state by resonantly exciting NV? [1]. This technique provides
deterministic charge state initialization and improved spectral properties of the emission [21].
Although this procedure is in a large part free from inhomogeneous broadening of the NV emission,
it requires a more sophisticated experimental control to keep the system on resonance [1]. The
control loop uses a PID (proportional-integral-derivative) feedback to tune the frequencies of
the applies lasers as well as the applied DC Stark-shifting which can be used to moderate small
amplitude spectral diffusion [22]. This method however, will not be used in our simulation.

Due to a rapid changes in optical transitions it happens that all resonant signal is lost from
the NV center [1]. Then a wide-frequency-range (about 200 MHz) automated search algorithm
is applied to bring the system back on resonance [23]. The frequency and magnitude of these
disruptions appear to vary for each NV center. It is hypothesized that these jumps in frequency
originate from the discrete population dynamics of nearby charge traps that alter the electric field
at the position of the NV dramatically due to their vicinity [1].

In our model we will only use the green laser to repump. This means that if all resonant signal
is lost, green laser pulses will be applied to the NV center until it recovers resonance.
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3 Algorithm

In this chapter it is discussed how the model is built up. First the most fundamental building
blocks of the CR-Check will be presented and their physical meaning will be discussed. Thereafter
we consider a rudimentary version of the CR-Check, which will be used to show the plausibility of
the simulation. Next we elaborate on the extended routine, which is currently used in the labo-
ratory. Following this, is a demonstration of how we obtain the optimal values for the thresholds.
Thereafter the values of the variables, which will be used in the simulations, are provided.

A discussion on how the code is streamlined with regards to running time is given in Appendix
D.

3.1 Fundamental functions
In this section, functions that have been specifically defined for the simulation will be discussed.

First graphical representation of the standard procedure is shown where exactly these functions
are applied in the procedure.

CR-Check procedure

if N < N_thr repumpor N_red is divisible by N_thr red:

Output:
f_res, N_green,
N red, N

Input: sigma Input: f_res, dt Input: If

if N > N_thr_success:

get_counts measure_counts

Output: N
Add1to N red

Input: Output: f_res
f_res, sigma, dt, Add 1to N_green
N_thr_success,
N_thr_repump,
N_thr red

Output: If

Set N _red=0,
N_green=0

otherwise:

Figure 6: Visualisation of the standard procedure for the CR-Check. In the figure f_res is the resonance frequency
of that particular NV center, sigma is the spectral diffusion of the NV center and dt denotes the duration of the
read-out (red) laser. N._red and N_green are respectively the amount of times the functions measure_counts and
get_f_res are applied. N_thr_success, N_thr_repump and N_thr_red are the thresholds for passing the test, starting
the repump procedure and the maximal amount of successive read-out respectively. The average number of counts
for a certain duration of the read-out is denoted by If, while N denotes the actual measured counts.

get_f res

This function is used to determine a (new) resonance frequency for the NV center. This frequency
is generated randomly from Normal distribution with mean f_red and sigma as standard deviation.
The fred is the mean of frequency of the red (read-out) laser, while sigma represents spectral
diffusion of that particular NV center. This spectral diffusion stems from the distribution of the
charge in the environment. In this manner the distribution of resonance frequency is symmetrical
around the mean value, which we would expect for randomly chosen charge environments. This is
how it is implemented:

def get f res(sigma=sigma,f red=f red):
return np.random.normal(f red,sigma)

Figure 7: Implementation of get_f_res.
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We can regard that this function simulates when the NV center is bombarded with intense
and short green laser pulses, which shake up the whole charge environment. The new charge
distribution results in a new resonance frequency. As mentioned before, the excessive use of these
short green laser pulses can induce some slowly-decaying dynamics in the charge environment [18].
These broaden the spectral emission of the NV center and thus perturb the fidelity of the entangled
states. These effects will be simulated to some degree with the use of the memory effect.

Memory effect

We would expect there to be some memory in the system. Namely, after the NV center has
passed the CR-~Check routine, it should immediately afterwards pass a new CR-Check again with
a high probability. The get_f res function will also be used to model this influence of performing
an experiment after successfully passing the CR-Check. However to be absolutely clear it is just
used as a Normal distribution, it does not represent anymore shaking up charge environment by
the green laser. Now it represents slow drifts that are modelled as steps from the current resonance
frequency of the NV center. The resonance frequency f_res for the next iteration is be obtained by
applying the function get_f_res to the resonance frequency of the previous iteration. The parameters
given to the get_f res function are the previous resonance frequency as fred and the psixsigma
as the sigma. Thus we model the influence of doing an experiment as a shift from the previous
resonance frequency on success.

We can immediately see that psi is somewhere in the range of 0 and 1. If psi were to be 0, then
after the first time of passing, you would be immensely likely to pass all the iterations afterwards
as nothing changes to the resonance frequency after an iteration. On the other hand if psi were to
be 1, then we would get even more off-resonant values than with the usual f red as mean.

As the real value of psi is unknown, we will have to determine a reasonable value experimentally.
This will be done using a 2D parameter sweep of psi and sigma, where we can see the behavior of
the of these parameters as this is in the end one of the main results of this work.

get_counts

Once the resonance frequency of a NV center is knows, it is used to determine the average intensity
of photons coming from the ZPL. The ZPL has a Lorentzian shape [14] around median f_resonance,
which is the resonance frequency of the NV center, and the scale parameter is the Half-Width Half-
Maximum (HWHM). The probability density function (pdf) of the Lorentzian is translated and
scaled accordingly, such that it can be used to determine the average intensity of photons. To get
the average number of photons the value of pdf at the resonance frequency of the NV center is
multiplied by the length of the red laser dt and a factor N_tot. We have imposed that thus the
average number of photons scales linearly with dt, which is very reasonable according to what has
been observed in the laboratory. The multiplication with the N_tot is used to scale intensity to the
right order of magnitude, which is around 30. One could imagine that this N_tot would depend on
the power of the laser, however in our model’s we will not take this into account. It’s sole purpose
will be the order of magnitude. The implementation is as following:

def get counts(f_resonance,dt=dt):
return dt*N_tot*lorentzian(f_red,f_resonance,LL_linewidth)

Figure 8: Implementation of get_counts.

measure_counts

The Poisson distribution can be used to can be used to simulate a measurement of the number of
photons due to the read out laser. The mean rate is obtained with the get_counts function. Now
the Poisson distribution is particularly applicable here since, there is a constant mean rate and the
next measurement is independent of the previous instance. Here is how it is implemented:

def measure_counts(N_fotons):
return np.random.poisson(N_fotons)

Figure 9: Implementation of measure_counts.
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3.2 Rudimentary implementation

To make the standard model credible, we started with a simplified version of the CR-Check. The
code is shown below;

def CRcheck prim(N thr success=N thr success,N thr repump=N_thr repump,sigma=sigma,dt=dt,f res=get f res()):
N_green=06
N_red=0
If=get counts(f res,dt)
N=measure_counts(If)
N_red+=1
while not N>N _thr success:
f_res=get_f res(sigma)
If=get_counts(f_res,dt)
N_green+=1
N=measure counts(If)
N_red+=1
Delta=t res-f red
return Delta, N_green, N_red, N, f_res

Figure 10: Implementation of the rudimentary version of the CR-Check.

First we have a NV center for which we do not have any information. The NV center has a
certain resonance frequency, which we have called f_res. Next this f res is used to determine the
average number of photons using the get_counts function, which we call If. This If is then utilized
in measure_count to obtain a certain number of counts and we define this to be N.

Now if the N_thr_success is surpassed, the current state is considered to have passed the check.
However if N_thr_success is not exceeded by N, then we enter a loop until it does. In the loop we
obtain a new f_res from get_f_res, this process is called "repump”. Then again we apply again the
get_counts function for If, which we use to get a new N from the measure_counts function. We
repeat this process until N_thr_success is exceeded.

During the process N_green keeps track of how many times we repump, whilst N_red keeps
track of how many times we measure the counts. It can be easily seen that these two are related
by N_green=N_red-1 . Also upon passing the test the frequency of the red laser is calculated.

3.3 Standard implementation

The standard implementation is a generalization of the rudimentary implementation. A threshold
for repump has been added. This means the repump does not occur always if the measured counts
are below the threshold for success, rather it happens only when the measured counts are below
the repump threshold. In addition a threshold to limit the amount of times that the function
measure_counts can be applied consecutively without any repump. The code is shown below;

def CRcheck(N_thr_success=N_thr_success,N_thr_repump=N_thr_repump,sigma=sigma,dt=dt,f_res=get_f res(),N_thr_red=20):
N_green=0
N_red=e
If=get_counts(f_res,dt)
N=measure_counts(If)
N_red+=1
while not N>N_thr_success:
if N<N_thr repump or N_red%N thr red==o:
f_res=get_f _res(sigma)
If=get_counts(f_res,dt)
N_green+=1
N=measure_counts (If)
N_red+=1
Delta=f res-f red
return Delta, N _green, N red, N, f res

Figure 11: Implementation of the standard version of the CR-Check.

Again the resonance frequency, which we have called f_res, is used to determine the average
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number of photons using the get_counts function, which we call If. This If is then utilized in
measure_count to obtain a certain number of counts. Next the number of counts, which we defined
by N, is determined by measure_counts using If.

Now if the N_thr_success is surpassed, the current state is deemed to have passed the check.
However if N_thr_success is not exceeded by N, then we enter a loop until it does. In the loop N is
compared to N_thr_repump. If it is lower than this threshold the repump procedure is started. A
new f_res is obtained from get_f res and subsequently a new If from the get_counts function. Next
a new N from the measure_counts with the new If.

If the repump procedure is not started, then the N is measured again using measure_counts
with the current If. This successive repetition of this process is restricted by N_thr_red.

This process is repeated until N_thr_success is exceeded.

During the process N_green keeps track of how many times we repump, whilst N_red keeps
track of how many times we measure the counts for which respectively the green and red lasers are
used. Upon passing the test the frequency of the red laser is calculated.

3.4 Finding optimal thresholds

We have implemented a 2D sweep over the thresholds for success and repump to find their optimal
values. First the range over which the function searches for optimal thresholds is selected. Then
the functions makes a grid of size range of N_thr_red times the range of N_thr_success. Grid points
at which N_thr_red is larger than or equal to N_thr_success need no further calculation, as they are
just nonsense. For the other grid points we will do a large number of iterations for which we can
average the results such that we can compare them with other grid points.

Spectral diffusion on success Mean time till succes, optimum at N_thr_success = 12 and N_thr_repump = 9
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Figure 12: A visualisation of the surfaces that are calculated spectral diffusion and the mean time till success.
From this the optimal values are determined. The optimal value under the given conditions is shown using the red
dot.

Next the optimal values are selected in the following way. We require that the spectral diffusion
is less than 11 MHZ, as we calculated the spectral diffusion as the standard deviation of the
frequencies when the CR-Check was passed. This value is linked to the HWHM, but is scaled
by 1/4/21n(2) for the shape of the Normal distribution to have a more similar measure for the
spectral diffusion. Subsequently from the set of grid points with spectral diffusion under 11 MHz,
the grid point with the lowest mean of time till success is selected as the optimal grid point. The
N_thr_red and N_thr_success for this grid point are regarded as optimal for this particular instance
of the input parameters. In addition to N_thr_red and N_thr_success, the average time till success,
the spectral diffusion and the value of N for which the CR-Check was passed are returned for the
larger simulation.

This procedure will always be applied unless explicitly stated otherwise. From the obtained
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optimal values for multiple instances, the analysis of the effects of particular parameters can be
performed.

3.5 New implementations

The instances of the measured counts can also be assigned a p-value. The range thresholds for
repump and success is now limited to the interval (0,1]. Moreover their definition changes, the
CR-Check is passed if the p-value is less than N_thr_success, while the repump process is initiated
if the p-value is higher than N_thr_red.

The code is for all these implementations with the p-value is very similar. It is basically the
standard implementation of the CR-Check which is modified to handle p-values and to save the
measured counts for the same resonance frequency in arrays, until the repump procedure is started.
For the sake of brevity the complete code will not be presented here in full-detail, the interested
reader can find a link to the code in the appendix. In the next part we will highlight the most
important lines of these particular implementations, which contain how the p-value is determined
for these three different statistical tests.

Using direct test

The cumulative density function of the Poisson distribution can be used to determine a set of
p-values under the null hypothesis. These values can be saved in an array to be used to compare
with the observation, this is much quicker than recomputing the p-value the whole time. The
implementation is shown in the figure below.

p=Range[N]

Figure 13: Shows the assigning of the p-value for the direct test. The value is obtained from the Range array
containing the p-values, for which the value is read out at N, the measured counts.

Using t-test

Another method is to use Student’s t-test, in which the samples are Normally distributed. However
we have also shown that the Poisson distribution with parameter A goes to a N (A, A) in distribution,
as A — 00, see Theorem.5. This normal approximation is already sufficient good around A =~ 20.
On the HWHM there are 18.36 counts on average, thus we can assume that the normality is
adequate. We will use the standard SciPy implementation of the t-test.

stat,p=sp.ttest 1samp(N_arr[:i],minval)
p=p/2

Figure 14: Presents the calculation of the p-value for the t-test. The array containing the measured counts is
denoted by N_arr. The position to which the array containing the measured counts is filled, is denoted by i. The
average of the counts on the HWHM is denoted by minval. The p-value given by the SciPy function is a two sided
p-value, thus it is halved.

The second line is used to make the p-value one-sided again. To be sure that the test is applied
one-sided, an extra constraint has been added for the threshold for success. It requires that the
mean of the first i elements of N_arr are larger than minval.

For more information on the ttest_lsamp function, we refer the interested reader to the SciPy
source code.

Using Wilcoxon signed-rank test

Alternatively, the Wilcoxon signed-rank test can also be used. The major advantage is that this
is a distribution free test, thus no assumptions are made on the distribution of the samples. The
comparison will be made between the array containing the measured counts and an array of equal
size solely containing the average of the counts at the HWHM. We will use the standard SciPy
implementation of the Wilcoxon. signed rank test.
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stat,p=sp.wilcoxon(N_arr[:1i],y[:1],zero_method="wilcox', alternative="greater")

Figure 15: Shows the calculation of the p-value for the Wilcoxon signed-rank test. The array containing the
measured counts is denoted by N_arr. The position to which the array containing the measured counts is filled, is
denoted by i. The other array, y, contains only the value of the counts on the HWHM. The p-value given by the
SciPy function is one-sided due to the alternative="greater”. The function automatically chooses whether is should
use the exact form or a normal approximation.

For precise information of the wilcoxon function, we refer the intersted reader to the SciPy
source code.

3.6 Variables

Now that we have established that our model works reasonably and gives a somewhat realistic
simulation, we can start to scan the parameter space to understand what the effects are of different
variables in the CR-Check. However there are multiple variables used in the model. The table
below provides the numerical value of these variables that are used during the simulation. These
values are used unless specifically stated otherwise:

Table 1: Definition, explanation and numerical value of all the variables that are used in our model.

Variable Definition Value

dt gauss Duration of the repump proces (green laser) 400 ps

dt Duration of the measurement of the count (red laser) 50 ps

sigma Standard deviation from the average resonance frequency | 50 MHz
lambda_red Average resonance wavelength (in vacuum) 637 nm

c Speed of light (in vacuum) 299792458 m/s
LL linewidth | Lifetime Limited Linewidth 13 MHZ

N_tot Multiplication factor for the Lorentzian 0.3-10*

psi Memory parameter 0.2

N_thr_red Maximal times read-out consecutively 20

It is important to mention that with these standard values, we get an average of 36.728 counts
when perfectly on resonance.

The number of iterations over which we average was chosen such that the simulation speed was
acceptable. The reality of the model was not generally hampered by the number of iterations as
we took over 150.000 iterations per particular set of parameters. For the 1D variations we even
did over 1.500.000 iterations per particular set of parameters. Thus this suggests that the Law of
Large Numbers (3) and (4) will apply to this situation.
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4 Results

First the results for the parameters, which will be experimentally assigned a value, are presented,
as they influence all other results. Next 1D sweeps of spectral diffusion and the dt are shown. For
completion the 2D has been added in Appendix, since the observations in the 1D sweeps. This is
followed by the results of the other protocols.

4.1 Memory parameter

As mentioned in the section about the get_f_res function, there is a strong idea that there should
be some kind of memory in the system. The implementation was also discussed there. Thus it
should be more likely to pass a CR-Check again once it passed the first time. To get a good insight
of what the parameter does, a 2D sweep of the memory parameter and the spectral diffusion on
the standard CR_Check function for the mean time till success. Also as mentioned before, the psi

parameter will be in the domain of 0 to 1, thus we will only search this part of the parameter
space.

Optimal values of mean time till succes with varying sigma and psi
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Figure 16: A visualisation of the optimal values of mean time till success for varying spectral diffusion and psi

As can be seen in figure 16, values for psi of higher than 0.5 have little influence on the mean
time till success. This can be seen in particular for low values of the spectral diffusion, where we
would expect a stronger effect. On the other hand if psi is 0 the memory effect is too strong and
all the information is lost in the figure, as after the first instance success almost solely successes

occur. But to encapsulate some memory effect in our model, the value 0.2 is chosen as a reasonable
value for psi.

This psi parameter relates the spectral diffusion of the defect and the shift in resonance fre-
quency due to an experiment. The spectral diffusion is governed by the effect of the local charge
environment [15] and we believe that the psi also depends on the local charge environment. So
the psi parameter depends heavily on the what occurs in NV center in between CR-Checks. On
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longer timescales, this drifts dependence on other parameters might start dominating the drift, as
these parameters also drift themselves. We hypothesize that such parameters are the NV center’s
temperature (if it is not cooled continuously) and the electromagnetic fields of the lasers. The
shielding effect might have an influence as well, it can be induced by a large amount of repumps.

If nothing would permute the local charge environment, then a perfect memory could be ex-
pected. This is for example the case if a CR-Check is started immediately after the previous has
been passed. On the other hand if the local charge environment changes due to a measurement,
the psi parameter would be measurement specific. This is all because the fluctuations in the local
charge environment are contingent on the measuring procedure. Therefore it is hard to assign a
proper value to the psi parameter.

4.2 N_thr_red parameter

This N_thr_red was first introduced to prevent an infinite loop if the thresholds for success and
repump are far apart and it was therefore set to 100. It limits the amount of times that the read
out laser can be used consecutively, without repumping. However it can also be employed as a
parameter, as it could be faster to require a repump after a certain amount of read-outs. This
parameter might be dependent on the spectral diffusion, and that is why a 2D sweep over sigma
and N_thr_red is used. We obtained the following results.

Optimal values of time till success Optimal values of time till success

Time (ms)

(a) Plot of the the mean time till success over varying sigma (b) Plot of the the mean time till success over varying sigma
and N_thr_red, where we always take the optimal value for and N_thr_red, with fixed thresholds at N_thr_success = 30
N_thr_success and N_thr_repump. and N_thr_repump = 3.

Figure 17: The results of the variation of N_thr_red and sigma.

As we see in Fig.17a N_thr_red does not have a significant influence, if it is chosen to be
sufficiently large (i.e. larger than 10). When we fix the thresholds of success and repump at a far
apart from each other, we get Fig.17b. Here an optimum is present and it seems that the optimum
is dependent on sigma.

The value of N_thr_red will be set to 20 for the other variations.

4.3 Distribution of frequencies

It is very illustrative to see what kind of distribution is obtained for the distance between the
frequency of the red laser (A = 637 nm) and the resonance frequency of the NV center upon
passing the CR-Check.
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Distance on success N_thr_success= 40 and N_thr_repump= 20 Distance on success N_thr_success= 20 and N_thr_repump= 10
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(a) Histogram of the distance in frequency upon pass- (b) Histogram of the distance in frequency upon pass-
ing the CR-Check for values N_thr_success = 40 and ing the CR-Check for values N_thr_success = 20 and
N_thr_repump = 20. The Generalized Normal is fitted, N_thr_.repump = 15. The Generalized Normal distribu-
the fitted parameters are p = —0.00563 MHz, 8 = 3.90 tion is fitted, the fitted parameters are p = 0.00161 MHz,
and o = 6.01 MHz. B =5.79 and o = 15.3 MHz.

Figure 18: The distributions of the distance in frequency upon passing the CR-Check, with the standard values of
dt = 50 ps and sigma = 50 MHz. Note that these are generated for fixed values of N_thr_success and N_thr_repump,
so the standard optimization for the thresholds has not been applied.

As can be seen in Fig.18a, the generalized normal seems to be the distribution of the frequency
after passing the test. However due to the memory parameter, this distribution is altered in
particular when N_thr_success is not high (above 30) as in Fig.18b. The generalized normal is
still a reasonable approximation of the distribution in this individual case, however this varies and
given a value for psi it is most strongly contingent on N_thr_success and N_thr_repump.

As mentioned before, it is very important to keep the spectral diffusion below the lifetime
limited linewidth to be able to generate entanglement successfully, since indistinguishable photons
are needed for entanglement.

4.4 Variation of sigma

Now that the N_thr_red and psi parameters have a value assigned to them, the 1D sweeps over the
spectral diffusion can be done. This is done first for a range of sigma of 0 to 200 MHz.
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Optimal N_thresholds for varying sigma, dt = 0.05ms
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying sigma.
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(b) Plot of the average resonance frequency on success and the mean time till success with varying spectral diffusion.

Figure 19: The results of a sigma variation from 0 to 200 MHz with dt = 50 ps.

Interesting to note is the from the figure is the dependence of the mean time till success on the
spectral diffusion. First it seems that the mean time till success scales with a power of sigma, but
from around 80 MHz it starts scaling linearly. This becomes particularly evident when we take a
greater range of sigma from 0 to 500 MHz, this result is shown in Appendix E.

It can be observed that the thresholds for success and repump become constant after a spectral
diffusion of about 200 MHz. We could see this as the worst case scenario, in which the CR-Check
routine has to have the highest standards to still be sufficiently effective. The spectral diffusion
does not fluctuate much after 100 MHz under the optimal values for the requirement that it is
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under 11 MHz , only the mean time till success starts increasing linearly.

We can explain this scaling with sigma in the following manner. At a certain point the Normal
distribution with mean f red and variance sigma, becomes wider sigma increases. This has two
consequences in a limited range around the resonance frequency, where the CR-Check comes due
to the constraint on the maximal spectral diffusion. Namely it widens the top of the pdf of the
distribution and it lowers the pdf. After 80 MHz, this top has become sufficiently flat such that
the only effect which is noticeable becomes the lowering of the pdf. This lowering can be observed
as the linear increasing mean time till success. The behavior of the scaling for the low spectral
diffusion (under 50 MHz) can be attributed to the memory parameter. As it affects the mean time
till success a lot, which we already observed.

The value of the laser duration can also be set to another value, to see if some differences would
occur. For the next results dt was changed to 25 ps.
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Optimal N_thresholds for varying sigma, dt = 0.025ms
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying sigma for dt = 25 ps.
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(b) Plot of the average resonance frequency on success and the mean time till success over sigma for dt = 25 ps .

Figure 20: The results of a sigma variation from 0 to 500 MHz with dt = 25 ps.

From both Fig.19a and Fig.31a, it can also be remarked that the thresholds seem to come in
pairs. The changes in thresholds occur almost always simultaneously for both N_thr_success and
N_thr_repump. This can be attributed to the general effects of the N_thr_success and N_thr_repump
on the spectral diffusion after the CR-Check. Making N_thr_success requires thus more photon
counts to be measured , this lowers the spectral diffusion after the check. On the other hand
lowering N_thr_repump from the value of N_thr_success increases the spectral diffusion. From the
right balance between the values of these two parameters, the optimal value for mean time till
success arises. Since some combinations always result in a too high spectral diffusion, whilst other
take too long. This could be the reason that these well-fitting pairs for values N_thr_success and
N_thr_repump arise.

As another quality check of the routine, the average photon counts on success are presented
over varying sigma.
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Optimal Photon counts with varying sigma, dt = 0.05ms
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Figure 21: Plot of the average photon counts on success for the optimal values with varying spectral diffusion.

Indeed at 0 spectral diffusion we will get the highest average photon counts, since we are on
resonance. But this average goes down quickly as the spectral diffusion increases. From 100 MHz
of spectral diffusion and onwards, nearly the same average photon counts is present. This is a sign
that the NV center is always brought sufficiently on resonance by the CR-Check routine.

Another comparison can be made with the simplified implementation of the CR-Check, with-
out the repump threshold or one could regard that this is the case where the N_thr_success and
N_thr_repump are equal to each other.
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Optimal N_threshold succes for varying sigma, dt = 0.05ms
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying sigma.
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(b) Plot of the average resonance frequency on success and the mean time till success for varying spectral diffusion.

Figure 22: The results of a sigma variation from 0 to 200 MHz of CR-Check_prim algorithm with dt = 50 ps.

In Fig.22a the optimal threshold for the high values of the spectral diffusion is now 13, rather
than 15 which we observed in Fig.31a. This is consistent with ideas discussed in the remarks about
the pairs of thresholds. As this can be viewed as N_thr_repump being maximal, the N_thr_success
can be lowered to optimize for the mean time till success on the condition that it keeps the spectral
diffusion under the required maximum.

Comparing Fig.22b to Fig.19b, gives that the standard routine is already about 10% faster
than the simplified version. It is not surprising that the simplified implementation is slower than
the standard implementation, as it is contained in the standard implementation so it can never be
faster.
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4.5 Variation of dt

The natural follow up of sigma variation is to now apply 1D sweeps over the laser duration. This
sweep is performed in the range of 5 to 105 ps, unless explicitly stated otherwise.

Optimal N_thresholds and Photon counts for varying dt, sigma = 50.0MHz
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying dt. In addition to this,
the average number of counts on success is shown.
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(b) Plot of the average resonance frequency on success and the mean time till success over varying dt.

Figure 23: The results of a dt variation for and sigma = 50 MHz.

It is very interesting to see that there is a clear minimum for dt=25-30 ms in Fig.23b, this
suggest that there could exists a time for which the laser duration provides the highest efficiency
with regards to the mean time till success for this sigma. For too low values of dt, the maximum of
the average number counts on resonance is low. As a consequence, slightly off-resonant resonance
frequencies, which are sufficiently good, will already have great troubles even showing any fluo-
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rescence. It also becomes harder to distinguish between resonance frequencies that are sufficiently
good and that are too much off-resonance, since the differences have become smaller.

In Fig.23a, it can be seen how the thresholds go up with the same linear rate, while the average
number of photon counts on success increases with a faster linear rate. The rate of the thresholds
has been estimated at 0.2 per ps.

Again, the existence of the pairs of the thresholds is observed. Moreover from 0.065 ms onward
the thresholds are equal, this means that there is no special threshold needed for the repump
procedure. This can be considered as that the difference between sufficiently and insufficiently
resonant frequencies becomes large enough to differentiate between them in one measurement.

Now the spectral diffusion is set to 100 MHz rather than the usual 50 MHz. This gives the
following results.

Optimal N_thresholds and Photon counts for varying dt, sigma = 100.0MHz
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying dt and sigma = 100
MHz. In addition to this, the average number of counts on success is shown.

Optimal time till success and fequency with varying dt, sigma = 100.0MHz
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Figure 24: The results of a dt variation for and sigma = 100 MHz, which is twice the standard value.

Again a minimum is observed, however the shape of the mean time till success differs sig-
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nificantly. We also remark that dt for the minimal time till success might be dependent on the
spectral diffusion, this can be investigated further with the 2D Variation of sigma and dt. Now
the thresholds do not become equal at any moment, as can be seen in Fig.24b. The rate by which
they go up seems to be really similar to the one at the lower spectral diffusion. The concept that
there are favourable pairs still seems to be reasonable.

Now we can again compare it with the simpler version of the CR-Check, which does not have

a repump threshold. This is done in a range of 0.5-2.5 times the standard value, so from 25 to 130
Bs.

Optimal N_threshold and Photon counts for varying dt, sigma = 50.0MHz
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying dt. Moreover the
average number of counts on success is shown.
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(b) Plot of the average resonance frequency on success and the mean time till success over varying dt.

Figure 25: The results of a dt variation for and sigma = 50 MHz for the CR-Check_prim implementation. The
range for the dt variation is from 25 to 130 ps.

The curve in Fig.25b appears to be fairly similar to the one in Fig.23b, however it is shifted.
The minimum is now around 55 ps, where it was around 25 ps in Fig.23b. So this shift might be
majorly caused by the addition of the repump threshold, as that is the largest difference between
the two implementations.
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4.6 Comparing strategies

As we have observed in Fig. and23b in Fig.24b there seems to be an optimum around dt = 25 ps,
which is half of the usual laser duration. Further investigation is performed to determine whether
the standard routine with dt = 25 ps would be a quicker routine. Therefore the standard routine
with dt = 50 ps is compared to the standard routine with dt = 25 ps over varying sigma. This
gives the following results.

Optimal time till success and fequency with varying sigma
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Figure 26: Plot of the average resonance frequency on success and the mean time till success with varying spectral
diffusion. The full lines belong to the CR-Check with dt = 50 ps, whilst the dashes lines belong to the CR-Check
with dt = 25 ps. Moreover the term func2 is used to stress that a second implementation is used.

From Fig.26, we see that for low spectral diffusion (sigma smaller than 40 MHz) the CR-Check
with half dt is significantly more favourable (in relative terms) with regards to the meantime till
success. Because in these iterations it seems that in the first (or first few) tries the CR-Check is
already passed. This effect might also be attributed to the memory parameter, which allows for
such quick passing of the CR-Check.

But in general there is very little difference between the strategies. This might the consequence
of the fact that the difference between sufficiently and insufficiently resonant frequencies becomes
too small to efficiently distinguish for low dt and simultaneously keep the spectral diffusion under
the required 11 MHz.

4.7 New strategies

In this section the results will be given of the new implementations with the bounds on the
p-value serving as the N_thr_success and N_thr_repump. First the results of the routine using
calculation of the p-value with the Poisson distribution is shown. Following this are the results
of the implementation with the t-test and then finally the results of the implementation with the
Wilcoxon signed-rank test is presented.

Using direct test

The results of a sigma variation are shown for the direct test. In this implementation previous
p-values are discarded, however in future research it might be considered to combine the p-values
with the appropriate methods [25].
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Optimal time till succes and fequency with varying sigma, dt = 0.05ms
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Figure 27: Plot of the average resonance frequency on success and the mean time till success over varying spectral
diffusion for the direct test implementation with dt = 50 ps.

These results are very much like the usual implementation, where the amount of measured
counts is directly compared with the thresholds, see Fig.19b. However in Fig.27 the of the spec-
tral diffusion after the test increases smoother compared to Fig.19b. Considering the list for the
p-values of different amounts of measured counts, we can relate the optimal bounds on p-values of
N_thr_success and N_thr_repump to an amount of counts. Unlike the thresholds for direct compar-
ison, p-values belonging to two neighbouring thresholds are not equally equidistantly separated.
This explains the small difference between this implementation and the standard implementation,
this difference is disadvantageous for this implementation.

Using t-test

The results of a sigma variation are presented for Student’s t-test.
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Figure 28: Plot of the average resonance frequency on success and the mean time till success over varying spectral
diffusion for the t-test implementation with dt = 50 ps. Note that these values are from just 1000 iterations per
instance an that N_thr_red was set to 10.

The computation time per CR-Check with this implementation is very high and therefore the
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amount of iterations is significantly limited, only 1000 iterations have been performed. These
results should be regarded as a proof of concept that the t-test implementation can work as a
CR-Check. Moreover large trends can still be considered.

It can be observed from Fig.28 that the maximal spectral diffusion is significantly below the
the 11 MHz bound. This in part with the fact that the Poisson distribution is still only rough
approximated by the Normal distribution, results in significantly higher mean time till success.
This suggest that either the maximally allowed average spectral diffusion should be lower or that
comparing the value with the one at the HWHM with the standard implementation, is not a fair
comparison to make.

We would expect this method to become better if the average amount of photon counts is
increased, as then the Normality assumptions becomes more reasonable. This can be achieved by
increasing dt or N_tot. N_tot can for example be increased by increasing the intensity of the red
laser.

Using the Wilcoxon signed-rank test

The results of a sigma variation are presented for Wilcoxon signed-rank test.
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Figure 29: Plot of the average resonance frequency on success and the mean time till success over varying spectral
diffusion for the Wilcoxon signed-rank test implementation with dt = 50 ps. Note that these values are from just
1000 iterations per instance an that N_thr_red was set to 10.

The computation time per CR-Check with the Wilcoxon rank test is very high and therefore
again the amount of iterations done is limited considerably, only 1000 iterations have been per-
formed. Again these results ought to be regarded as a proof of concept that the Wilcoxon sign
rank test can be implemented as a CR-Check. Again the large trends can still be considered.

From Fig.29 is can be seen that the maximal spectral diffusion is significantly below the the
11 MHz bound. This results in a higher mean time till success, but not as significant as in Fig.28.
However there the maximal spectral diffusion was even lower. Again the suggestion is given that
either the maximally allowed average spectral diffusion should be lower or that comparing sample
with the value at the HWHM with the standard implementation is not a proper comparison.

To apply this test in an experimental setup would require additional computation time com-
pared to the standard implementation. It is fairly easy to compare two numbers with the micro-
controllers, however calculating the test statistic requires more computation power. This calcula-
tion requires sorting through measured data and this is expensive with regards to the computation
time. It needs to be performed before every measuremt which is in the time scale of (~ 50 ps).
However the maximal amount of values to be sorted through is limited by the N_thr_red. Thus,
good equipment and a quick protocol could probably suffice.
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5 Conclusions

In this report a model for simulating the charge resonance Check in the NV center was created.
It was used to do parameter sweeps. First the value of the memory parameter was determined
experimentally with a 2D sweep of psi and sigma. It was set at 0.2 such that there is some effect
noticeable. Next a 2D sweep was performed over N_thr_red and sigma. Therefrom it was concluded
that for not to significantly different N_thr_repump and N_thr_success that N_thr_red just has to
be chosen large enough because there was no clear minimum. N_thr_red was placed at 20.

With these values set the distribution of frequency spectrum was investigated. Without the
memory parameter it follows the Generalized Normal distribution. However due to the memory
parameter this Generalized Normal distribution is perturbed.

From the 1D variation of sigma, we observed that the mean time till success goes up linearly
sigma after 80 MHz. This effect is attributed to looking at the Normal distribution on a finite
domain for a increasing value of the variance. First the top of the pdf widens, while the whole pdf
is the lowered. But after a sufficiently high variance only the lowering of the pdf is noticeable on
finite domain.

For sigma higher than 180 MHz the same N_thr_repump and N_thr_success are used. This can
be seen as the thresholds having the values of the worst case scenario.

Together with the 1D variation of dt it became clear that the N_thr_repump and N_thr_success
often come as pairs, as they almost always change their values simultaneously. This was particularly
detectable in the dt variation, where these thresholds go up at the same rate.

In the 1D variation of dt, we noticed that for fixed sigma there is a optimal value of dt. It was
hypothesized that this optimal value of dt depends on sigma. A bit of this effect could be observed
in the 2D variation of sigma and dt.

Particularly the plot of the optimal photon counts, i.e. the average number of photon counts
upon passing the CR-Check, showed the robustness of the CR-Check. Average number of photon
counts was nearly independent of sigma (if we leave out the extremely low spectral diffusion) and
only linearly dependent on dt. This is a sign that the CR-Check can always bring the NV center
sufficiently on resonance, The was also the 2D variation of sigma and dt.

It was shown that for sigma below 40 MHz, it is significantly faster to use the CR-strategy with
dt = 25 ps compared to the standard dt of 50 ps.

In the report we used the standard deviation to quantify the spectral diffusion of the defects
that passed the CR-Check. The maximal value of the average spectral diffusion was set at 11 MHz.
This is the 13 MHz of the lifetime limited linewidth of the zero-phonon line, but only scaled to
the HWHM of a normal distribution (which is an approximation). The suggestion arose that this
value of 11 MHz is not restrictive enough.

In future research it might be interesting to do a more extensive enquiry into the best possible
measure for the spectral diffusion after the passing of the CR-Check. This research will have to take
the dependence of the frequency spectrum distribution on the memory parameter into account.

All the implementations with the p-values were shown to be a liable candidates to be incorpo-
rated in the procedure of a CR-Check.

The direct test functions nearly as good as the standard implementation with regards to the
mean time till success, as they are very closely linked. Further investigation for direct test could
be done on enhancement by combining the p-values in a fitting manner.
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The implementation with Student’s t-test has shown to restrict the spectral diffusion more than
required, this results in a much higher mean time till success. However it also has a lot of potential
for further inquiries. Firstly it is uniformly the most powerful test in the class of unbiased test.
Secondly the hurdle of many additional computations to obtain the p-value can be counteracted
with smart implementation. A library could be prepared of p-values for the particular values of the
statistic. Let k be an integer of the highest value that will be obtained by a finite sample Poisson
distribution, which is of course dependent on dt. Now the fact that the Poisson distribution gives
integer values can be exploited. Namely after the first measurement of the counts X can only
take integer values, after the second measurement of the counts (without doing a repump) X is
multiple of 1/2 and so on. The maximum amount of measurements without a repump is capped
by the N_thr_red, which has value I. So [ amount of libraries can be made (for each length of X),
where the [ libraries have (k + 1) - I. Thirdly X is the Maximum Likelihood Estimator for the
Poisson distribution, thus more observations should give a better estimation of the parameter A.
Discarding previous observations almost seems ignorant in a certain sense.

However there are some limitations to this implementation. For example the dt cannot be
lowered from the value of 50 ps if no other measures are taken to increase N_tot, as then the
normal approximation of the Poisson does not hold anymore. Such a measure could be to increase
the intensity of the laser. Speeding up the simulation time to do more iterations would be a major
objective for this implementation, to enable reliable conclusions trends from the data.

The Wilcoxon signed-rank test implementation appears to be a bit slower than the standard
implementation wit regard to mean time till success. However it has also significantly lower spec-
tral diffusion after passing the test, compared to the standard implementation. Although it has
some practical drawbacks, namely it requires fast calculation of a computationally expensive test
statistic, with good computing power this should not be a problem. More extensive research on this
implementation could be done. Then the speeding up the simulation time to do more iterations
would be a major objective for this implementation, to enable reliable conclusions trends from the
data.
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Appendices

Appendix A: Law of Large Numbers

Since we are dealing with stochastic processes, we need to have some certainty that the values we
will obtain by averaging over a large amount of iterations really represent the needed parameters.
This can be shown by the Law of Large Numbers (LLN), which exists in two forms the strong law
and the weak law. This strong and weak refers to the type of convergence.

In this section first Markov’s and Chebyshev’s inequalities will be proven. Thereafter the Weak
Law of Large Numbers is proven under the condition that the variance is finite. Next the Borel-
Cantelli lemma is proven, followed by a lemma that is also used for the proof of the Strong Law
of Large Numbers. Then the proof of the Strong Law of Large Numbers of large numbers is given
under the condition that the fourth moment is finite.

These theorems will not be used directly in this report, but they are the reason why these
simulations are meaningful.

Markov’s and Chebyshev’s inequalities

First Markov’s and Chebyshev’s inequalities are proves to provide a bound on the probability. This
is then used in teh proofs of the Law of Large Numbers.

Theorem 1. (Markov’s inequality) Let X be any non-negative random variable, then fort > 0:

P(th)sg

Proof. We will prove it for the case that X has a continuous probability density function fx (z). In
case the probabilities are discrete, it can be proved analogously or one could consider to transformed
the discrete pmf into a continuous pdf using delta peaks.

Let t > 0 be given and X be a non-negative random variable, then:

o [} t o

BX) = [ afx@)is = [afx@de= [ofs@ys+ [afs(@p <
—00 0 0 t

[atst@is < [trctaide=t [ fx() = trx 20,

where we use the fact that X is non-negative and that thus the expectation operator is monoton-
ically increasing function. Thus we obtain E(X) > tP(X > t), rewriting this gives:

P(th)g@.
O

Theorem 2. (Chebyshev’s inequality) If X is a random wvariable with finite variance, then

vt > 0:
Var(X)

P(X ~E(X)| 2 1) <~

Proof. Define Y = (X —E(X))2. Then we can use Markov’s inequality (1), this gives:

E(Y) Var(X)
2 2

B(IX — E(X)| > ) = B((X ~E(X))? > &) = B(Y > ¢?) <

where we have used the definition of the variance. O
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Weak Law of Large Numbers
The idea for this proof stems from [3].

Theorem 3. (Weak Law of Large Numbers (WLLN)) Let (X,,), with n € N be a sequence
of random variables such that:

1. X,, are mutually independent

2. Vn, E(X,,) =p

3. Vn, Var(X,) = o?

Then

N

1

~ ZXi — p in probability as N — oo.
i=1

N
Proof. To prove: Ve > 0, we have P(|% > (X; — p)| > €) = 0 as N — co. Take € > 0 arbitrary.

i=1
Then:
al al 1 1 ., o

N
11
;(Xi SEDE e—zvar(ﬁi;xi) = o ;Var(Xi) = aalNe’ = 10,

P(]

=2~

where we used Chebyshev’s inequality (2) and the properties of the variance operator for indepen-
dent variables. So now we take the limit:

N
1
0< lim P(l Y (Xi—p)] > < lim =0

N—o0 .
=1

So we obtain:
1

=|

N
Z(Xi — ) — 0 in probability as N — oo.
i=1

Strong Law of Large Numbers
Ideas for the proof of the Borel-Cantelli lemma stem from [26] and [27].

Lemma 1. (Borel-Cantelli Lemma) Let A=(),~, U
of the events A, occur. Then: B

A, be the event that infinitely many

m>n

Y P(A) <o = PA)=0

n>1

Proof. Note that ¥n > 1 we have that A C | A,,,. Thus:

0<PA) <P(|J An) < Y P(An) >0

m>n m>n

for n — oo, as we have that > ., P(A,) < oo and this means that P (A,) — 0 sufficiently fast as
n — oo. - O

The proof of the following lemma and the Strong Law of Large Numbers was heavily inspired
by [27] and [28].

Lemma 2. Let (X,,), with n € N be a sequence of independent and identically distributed (i.i.d)
random variables with E(X{) = R < oo and E(X1) = p. If we define S, := Y., X;, then there
exists a constant K < oo such that Vn > 1:

E ((Sn - n,u)4) < Kn?.
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Proof. Note that 0 < Var(X?) = E(X{)—(E(X?))?, thus that (E(X?))? < R. Define Y}, := X —u,
then we have Z,, := > Y; =5, — nu. Thus:
i=1

2

E (T:) =E (i }/;4> = nE(Y14)+< ;1 > < ; )E(YEY;) _ nE(Y14)+3n(n—1) (E(Y12Y22))) < Kn?,

where we have chosen K = 4max (E(Y}*),E(Y?Y#)) which is a finite number by the fact that

4
E(X{) = R < co. Both ( 9 Z and n = 711 come from the amount of combinations

in which we can make these terms. In this calculation we have used the fact that the Y; are
independent, thus Vi,j, k,l with i # j # k # | we have E(Y’Y;) = 0, E(Y?Y;Y;) = 0 and
E(Y;Y;Y;,Y}) = 0.

O

Theorem 4. (Strong Law of Large numbers (SLLN)) Let (X,,), with n € N be a sequence
of independent and identically distributed (i.i.d) random variables with E(X{) = R < oo and
E(X1) = p. Then:

Sn 1y
— == ZXi — o almost surely.
n n =

Proof. First note that E ((% —,u)4) =E ((%(Sn —n,u))4) = LE ((Sn —n,u)4> = Kn~? by
lemma (2) and the linearity of the expectation operator. Now we can apply Markov’s inequality
(1) to the following:

4 E (Sn/n - ,u)4
) er () o) EE)
n n

n—4

Now we define for v € (0, 1) the following: A, = {1 ]S, —nu| >n"7}
o0

Note that we have Y. P (A,) is finite, since for v € (0, 1) we have Y Kn~2% is a convergent
n>1 n=1
series (it is a p-series multiplied by a constant). Thus we may use the Borel-Cantelli lemma (1).
So we conclude P(A) = 0, where A = (1,,~; U,,,>,, An. Thus we have that P(A°) = 1 and the event
A¢ occurs if and only if 3N such that Vn > N we have that | % — u’ < n~7. So there exist only
finitely many instances (namely n < N) where | ST” — ,u| > n~7. By definition this means:

S

= — p almost surely.
n
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Appendix B: Normal approximation

For large values of A, the Poisson distribution may be approximated by the Normal distribution
with mean A and variance A. It will be proven using the fact that convergence of moment generating
function (mgf) implies convergence in distribution. We will however not elaborate on this last fact,
it can be found in [3] under Theorem 8.27 (Continuity theorem). But first we will prove the
following lemma.

Lemma 3. Let X have moment generating function Mx(t) and Va,b € R we defineY = aX + b,
then we have that My (t) = e®* Mx (at)

Proof. By using the definition of the mgf and linearity of the expectation operator we obtain:
My(t) — MaX+b(t) _ ]E[e(aX+b)t] — E[eatX+bt] _ E[eatXebt} _ eth[e(at)X} _ ethX (at).
Thereby proving the result. O

Now that we can use the lemma, we will prove the Normal approximation to the Poisson
distribution.

Theorem 5. Let X be Poisson distm’buted with parameter \. Let A — oo, then X — N(\ ). In
other words if we define Y = \F which is the standardized form, then Y — N (0, 1) in distribution.

Proof. Remark that two notations will be used for the exponential function, namely exp(z) and
e*. We will show that the moment generating function for Y tends to the moment generating
function of a Normal distribution. Recall that the MGF of a standard Normal distribution is
My (t) = exp(3t?) and that the MGF of a Poisson distribution with parameter A (in our case X)

is Mx(t) = exp(A(e* —1)). So to show: My (t) — My(t) as A — oco. Note that Y = \%/\X — VA,
so we may apply the lemma. My (t) = E[e¥!] =e ftMX(f) Thus:

MX(%):exp()\(eﬁ —1)) = exp (A(l—k\tf/\—l—;i—kgig—k“'—l)) =

exp (tf+ e + 3&; )

where we have used the definition of the exponent. So then we get that:

My (t) = e~V exp<tf+ i 3&; > exp<t2 S'tjf )

So as A — oo,

My (£) = exp (;ﬁ) — Mn(t)

In practice the approximation is already acceptable for A = 20.
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Appendix C: Emission spectrum

The emission spectrum of the NV center for both charge states is shown.

NV photoluminscence spectrum
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Figure 30: The figure shows the emission spectra of both NV~ and NV°. Immediately the difference in wavelength
of the respective zero-phonon lines can be seen. The figure is taken from: [17].
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Appendix D: Code optimization

For further optimization of the code the Python library Numba [24] is used. Numba provides
several methods to optimize code, allowing for a faster running time.

JIT Compilation to C

One of the main problems with simulating in Python is that it runs very slowly compared to other
programming languages. To circumvent this we utilize Numba’s JIT compilation in nopython
mode [24]. This means our code is no longer run in the Python kernel, but is rather compiled to
C bytecode. JIT, short for just-in-time compilation, is a method of execution where compilation
occurs at run time as opposed to a priori. It furthermore allows for easier parallelization of the
code, which will be discussed later. The downside is that only a limited number of functions are
available.

By properly compiling the python code using Numba’s JIT in nopython mode, we can ensure
that the code runs close to optimally whilst still benefiting from the accessibility of Python.

Parallelization

Since we run the same procedure on each iteration, parallelization could pose a significant advantage
to our running time. We can avoid that the cores need information from the previous iteration,
which is running on another core, by looping over the whole process. Thus each core will pass this
information on to itself. For example the resonance frequency after passing a CR-Check and being
modified by a measurement is passed on this way.

In the case of our simulation the code is run on the CPU. The simulation is run on a Intel Core
i7-7700HQ Processor with 8 logical cores, allowing us to run through the simulation with 8 NV
centers, with the same input parameters with exception to the resonance frequency, simultaneously.
It can even be regarded as one NV center as the effect of the 8 runs is averaged out over many
iterations.

The benefit of parallelizing the code is almost an 8x increase of speed. On GPU computation
platforms like CUDA, the effect of parallelization is way more significant, since this architecture is
designed to perform calculations in parallel. This can be investigated in further research.
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Appendix E: Results

Some figures belonging to the chapter of the results are shown here, to keep the chapter to a
reasonable size.

Sigma variation 0-500 MHz

Optimal N_thresholds for varying sigma, dt = 0.05ms
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(a) Plot of the optimal values for threshold for success and the thresholds for repump over varying spectral diffusion.

Optimal time till success and fequency with varying sigma, dt = 0.05ms
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(b) Graph of the average resonance frequency on success and the mean time till success with varying sigma.

Figure 31: The results of a sigma variation from 0 to 500 MHz with dt = 50 ps.
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2D Variation of sigma and dt

We can consider the 1D sweep of sigma and 1D sweep of dt just as strips of a larger picture. Thus
we will perform a 2D variation of both sigma and dt at the same time. In this manner we hope to
to uncover trends which are dependent on both parameters. The 2D sweeps show the computation
power of our implementation. First we will take a look at the thresholds:

Optimal N_threshold_success for varying sigma and dt Optimal N_threshold_repump for varying sigma and dt

) m
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=]
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(mg)” " 0.02 000 O g™

Figure 32: Plots of the optimal values of N_thr_success and N_thr_repump with varying spectral diffusion and laser
duration.

Roughly the same pattern for both N_thr_success and N_thr_repump can be observed in Fig.32,
only the repump threshold is a bit lower than the threshold for success. This seems also to be in
accordance with the idea of threshold pairs.

Next we will look at the the mean time till success.

Optimal values of time till success
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Figure 33: Plot of the average the mean time till success for the optimal values with varying spectral diffusion.
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Again a minimum for sigma = 100 MHz is observed at 0.025 ms, which was previously also

obtained in Fig.24b. Additionally it can be seen in Fig33 that for sigma = 0 MHz, dt = 0.005
ms is the optimal value. This gives an indication that this minimum moves along the dt axes,
depending on the spectral diffusion of the defect. This effect can even to some degree be observed

in the figure.
Now we will also look at the detected photon counts on success.

Optimal photon counts
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Figure 34: Plot of the average photon counts on success for the optimal values with varying spectral diffusion and
laser length.

For 0 spectral diffusion the highest average photon counts, as then NV center is on resonance.
From Fig.34 we can indeed see that the average photon counts after passing a CR-Check only

depends on the length of the laser duration and not on the spectral diffusion of the defect. This
is an indication that the NV center is always brought sufficiently on resonance by the CR-Check

routine.
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Appendix F: The code

All the code that was used in this project to run the simulations, acquire and process the data is
available online via the following URL: https://gitlab.com/uognjanovic/bep.


https://gitlab.com/uognjanovic/bep
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