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Abstract
It was first shown by D. Potapov and F. Sukochev in 2009 that Lipschitz functions are also operator-
Lipschitz on Schatten class operators Sp, 1 < p <∞, which is related to a conjecture by M. Krein. Their
proof combined Schur multiplication, a generalisation of component-wise matrix multiplication, with
the so-called first order divided difference of a function, an approximation of its derivative. Showing
that the Schur multipier associated with a divided difference function is bounded relies on a so-called
transference technique, the boundedness of certain Schur multipliers can be inferred from the bounded-
ness of associated Fourier multipliers. Soon after, this boundedness result was extended by D. Potapov,
A. Skripka, and F. Sukochev to multilinear Schur multipliers of divided differences of arbitrary order,
i.e. approximations of higher derivatives.

In this thesis, we offer an alternative boundedness proof for bilinear Schur multipliers of second
order divided differences, in which we use recent results of multilinear harmonic analysis towards a
multilinear transference proof, as well as recently found sufficient conditions for the boundedness of
linear Schur multipliers which cannot be studied by transference. These methods were not known at
the time Potapov, Skripka, and Sukochev proved their result.

Moreover, we show that this new proof improves the growth of the bound on the norm of the
considered Schur multiplier for p → ∞ significantly. Finally, we give an outlook on further steps
towards an alternative boundedness proof of multilinear Schur multipliers of divided differences of
arbitrary order.
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1
Introduction

This thesis is heavily based on the work of D. Potapov and F. Sukochev in [36], as well as the subsequent
work of D. Potapov, A. Skripka, and F. Sukochev in [35]. Both papers solved conjectures related to the
functional calculus, which we will briefly introduce here.

In [36], the following conjecture by M. Krein (see [25, fourth lecture]) is addressed.

Conjecture 1.1. Let Fp denote the class of functions f : R → C such that f(a) − f(b) ∈ Sp for any
self-adjoint a and b with a− b ∈ Sp, and such that

‖f‖Fp := sup
a,b

‖f(a)− f(b)‖Sp
‖a− b‖Sp

<∞.

Then f ′ ∈ L∞(R) is sufficient for f ∈ F1.

This conjecture was shown to be false by Yu. Farforovskaya in [13]; however, the study of the classes
Fp, p ∈ [1,∞] continued, see e.g. [8, 9, 29]. In [36], the authors show that in fact for p ∈ (1,∞), Fp
is given by the Lipschitz continuous functions on R. In particular, this implies that Conjecture 1.1
does indeed hold for p ∈ (1,∞). Their proof, of which we will give a sketch in Section 1.3, relies on a
so-called Schur multiplier of divided differences, which we will introduce shortly.

In [35], an open conjecture related to perturbation theory and noncommutative geometry was solved,
namely the existence of so-called spectral shift functions ηn, for which the expression

τ

(
f(H + V )−

n−1∑
k=0

1

k!

dk

dtk
f(H + tV )

∣∣∣
t=0

)
=

∫
R
f (n)(t)ηn(t)dt (1.1)

is well-defined for a trace τ , a self-adjoint operator H, and for V a suitable compact perturbation of H.
Here again, the boundedness of Schur multipliers of divided differences was key.

Since this boundedness result was proven over a decade ago, significant advances have been made
in the theory of Schur multipliers. This motivates our re-examination of the boundedness of Schur
multipliers of divided differences, as we investigate whether modern proof methods offer new insights
into these objects.

The aim of this section is to give a high-level overview over the central topics in this thesis; rigorous
definitions will be deferred to Section 2. Here, we merely assume the reader has knowledge equivalent to
a first course in functional analysis. We will first separately introduce Schur multipliers in Section 1.1
and divided differences in Section 1.2, before discussing the role Schur multipliers of divided differences
play in the results in [36] and [35] in Section 1.3. In Section 1.4, we introduce some recent proof methods
that we will use towards showing the boundedness of such Schur multipliers. In particular, this section
introduces the link between Schur multipliers and harmonic analysis. In Section 1.5, we give an overview
over the boundedness proof we offer for bilinear Schur multipliers of divided differences, and compare it
to the original proof in [35]. Finally, we give an overview over the structure of the thesis in Section 1.6.
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1.1. Schur multipliers on Schatten spaces 2

1.1. Schur multipliers on Schatten spaces
Schur multipliers are the central objects studied in this thesis. We shall first introduce them for finite-
dimensional matrices, before introducing the idea behind their generalisation to compact operators, the
context in which this thesis is written.

Consider two matrices A = (aij)ij , B = (bij)ij ∈ Cn×n, n ∈ N. As opposed to regular matrix
multiplication, we consider a more “naive” product, defined by element-wise multiplication as

A ·S B := (aijbij)ij ∈ Cn×n.

This product is known as the Schur product of two matrices. By fixing one of the matrices, we can
define a linear operator

MA : Cn×n → Cn×n, MA(B) := A ·S B. (1.2)

Such an operator is called a Schur multiplier1. As for many concepts from linear algebra, there exists
an infinite-dimensional generalisation. The following exposition is adapted from [20, Chapter 5.4b], see
also Sections 2.3–2.4 of this thesis for rigorous definitions.

Let H be a separable Hilbert space and let (pλ)λ∈Λ be a countable family of orthogonal projections
on H such that

∑
λ∈Λ pλx = x for all x ∈ B(H), where B(H) denotes the bounded linear operators on H.

Such a family can be constructed from an orthonormal basis (hλ)λ∈Λ of H by setting pλ := (·, hλ)hλ,
where (·, ·) denotes the inner product of H. For a function m : Λ2 → C, we may now formally define
the Schur multiplier Mm on B(H) as

Mmx :=
∑
λ,µ∈Λ

m(λ, µ)pλxpµ. (1.3)

The function m is often referred to as the symbol of Mm. For H = Cn and Λ = {1, . . . , n}, this definition
indeed coincides with (1.2), using as projections the diagonal matrices pλ = (δλ,µδλ,ν)µν and letting
m(λ, µ) = aλ,µ. For infinite-dimensional Hilbert spaces, more care is needed to ensure that the sum in
(1.3) converges.

A suitable choice for the domains of Schur multipliers are the so-called Schatten spaces Sp, defined
as the compact operators on a (separable) Hilbert space H such that their singular value sequences form
an ℓp-sequence. This property of the singular values gives rise to a norm, under which Sp-spaces are in
fact Banach spaces. In particular, the Schatten class S1 coincides with the trace class operators, and
S2 with the Hilbert-Schmidt operators. In fact, in analogy with the tracial definition of these spaces
we have

‖x‖pSp = τ(|x|p),

where τ denotes the trace and the modulus of x is defined via functional calculus. Note that the
definition of Sp is reminiscent of the definition of the Lp-norm of measurable functions. Indeed, this
construction is a special case of the construction of so-called noncommutative Lp-spaces associated with
semifinite von Neumann algebras. See [33] for an introduction to this topic.

A well-understood class of Schur multipliers are the so-called Toeplitz form Schur multipliers, asso-
ciated with a symbol of the form (λ, µ) 7→ m(λ− µ). They are closely related to the associated Fourier
multipliers

T̂mf := mf̂,

and in fact it is known [31] that

‖M(λ,µ) 7→m(λ−µ) : Sp → Sp‖ ≤ ‖Tm : Lp(T, Sp) → Lp(T, Sp)‖, p ∈ (1,∞).

This method of studying Schur multipliers is known as transference, and we will introduce it further in
Section 1.4. For Schur multipliers that are not of Toeplitz form, the literature was much more limited
until recently; we will also return to this point in Section 1.4. In the following sections, we will restrict
ourselves to considering p ∈ (1,∞); see [26, Theorem 1.7] for a characterisation of Schur multipliers for
p = 1, and [1] for some results for p ∈ (0, 1).

1Not to be confused with the Schur multiplier of a group in homological algebra [40].



1.2. Divided differences 3

λ0 f(λ0) = f [0](λ0)
f [1](λ0, λ1)

λ1 f(λ1) = f [0](λ1) f [2](λ0, λ1, λ2)
f [1](λ1, λ2) f [3](λ0, λ1, λ2, λ3)

λ2 f(λ2) = f [0](λ2) f [2](λ1, λ2, λ3)
f [1](λ2, λ3)

λ3 f(λ3) = f [0](λ3)

Figure 1.1: Schematic representation of the inductive calculation method for divided differences (see Definition 2.1).
Higher order divided differences can be calculated from the difference of two lower order divided differences immediately

to its left in the schematic, divided by the difference of the corresponding inputs.

In this thesis, we are particularly interested in multilinear Schur multipliers on Schatten spaces. As
in commutative Lp-spaces, a Hölder-type inequality holds for Schatten spaces, i.e. for p1, p2, p ∈ [1,∞)
such that 1/p1 + 1/p2 = 1/p we have

‖xy‖Sp ≤ ‖x‖Sp1 ‖y‖Sp2 .

This allows us to make sense of multilinear Schur multipliers as maps Sp1 × · · · × Spn → Sp for
p1, . . . , pn, p ∈ (1,∞) such that 1/p1 + . . .+ 1/pn = 1/p, given by

Mm(x1, . . . , xn) :=
∑

λ0,...,λn

m(λ0, . . . , λn)pλ0x1pλ1x2 . . . pλn−1xnpλn .

Note that there are further generalisations of Schur multipliers that are not considered in this thesis. For
instance, one may consider a σ-finite measure space (Ω, µ) giving rise to the Hilbert space L2(Ω, µ), which
is not necessarily separable. One can then define Schur multipliers with symbol m : Ω× Ω → C acting
on a suitable subspace of B(L2(Ω, µ)), such as operators that can be represented by an integral kernel or
approximated by such. See e.g. [26] for further reading. Furthermore, multilinear Schur multipliers can
be seen as a special case of so-called multiple operator integrals, which appear in perturbation theory
and noncommutative geometry. See [39] for an introduction.

1.2. Divided differences
Divided differences were introduced in Isaac Newton’s Principia Mathematica “to find a curve line of
the parabolic kind which shall pass through any given number of points” [32, Book III, Lemma V,
Case ii], or in other words, to solve an interpolation problem with given data, assumed to be of the
form f(λ0), . . . , f(λn) for some continuous function f and points λ0, . . . , λn. Divided differences are
constructed inductively; this process is frequently visualised as in Figure 1.1. For example, for given
pairwise distinct points λ0, λ1, λ2 ∈ R, the second order divided difference of a function f is given by

f [2](λ0, λ1, λ2) =
f [1](λ0, λ1)− f [1](λ1, λ2)

λ0 − λ2
=

f(λ0)−f(λ1)
λ0−λ1

− f(λ1)−f(λ2)
λ1−λ2

λ0 − λ2
.

In cases where several points coincide, i.e. λk = · · · = λk+r for some k, r ∈ N, a divided difference
may still be defined for a sufficiently smooth function f by setting

f [r](λk, . . . , λk+r) :=
f (r)(λk)

r!
.

We will see in Section 2.2 that this choice is justified.
Notably, divided differences provide a method of constructing the (unique) solution to the Hermite

interpolation problem: Given a function f ∈ Cn([a, b]) and points Λ = {λ0, . . . , λn} ⊂ [a, b], such that r
of those points coincide in a point ζ, then the unique polynomial pf,X of degree ≤ n that interpolates f
in ζ up to the (r − 1)-th derivative is given by

pf,X(λ) = f(λ0) + (λ− λ0)(f
[1](λ0, λ1)

+ (λ− λ1)(f
[2](λ0, λ1, λ2) + . . .+ (λ− λn−1)f

[n](λ0, . . . , λn)) . . . )).

See e.g. [38, Chapter 8.6] for details. In this thesis we will however consider divided differences outside
the context of numerical analysis, as will be explained in the next section.
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1.3. Schur multipliers of divided differences
In this section, we give an brief overview over the use of Schur multipliers (and multiple operator
integrals) of divided differences in the work of D. Potapov and F. Sukochev in [36], and of D. Potapov,
A. Skripka, and F. Sukochev in [35].

In [36], the following statement was shown.

Theorem 1.2. Let f be a Lipschitz function, and let p ∈ (1,∞). Then

‖f‖Fp := sup
a,b

‖f(a)− f(b)‖Sp
‖a− b‖Sp

<∞,

where the supremum is over self-adoint a and b such that a− b ∈ Sp.

We will sketch the role of Schur multipliers and divided differences in the proof here, in the special
case where a, b ∈ Sp.

Let [·, ·] denote the commutator [a, b] := ab − ba of two operators, then by using the definition of
the Sp-norm, one can show that

21/p‖f(a)− f(b)‖Sp = ‖[f(u), v]‖Sp for u :=

(
a 0
0 b

)
, v :=

(
0 1
1 0

)
.

Furthermore, for u compact and self-adjoint one can show

[f(u), v] =Mf [1] [u, v]. (1.4)

It remains to show that the linear Schur multiplier Mf [1] is bounded by a constant Cf,p ≤ Cp‖f‖Lip,
which then implies

‖f(a)− f(b)‖Sp = 2−1/p‖Mf [1] [u, v]‖Sp ≲p ‖Mf [1]‖Sp→Sp‖[u, v]‖Sp ≲p ‖f‖Lip‖a− b‖Sp .

If one removes the restriction a, b ∈ Sp, the Schur multiplier in (1.4) is replaced by a multiple operator in-
tegral. Its boundedness follows from the boundedness of the Schur multiplier Mf [1] by an approximation
argument.

In a subsequent paper, the result of [36] on the boundedness of Mf [1] was extended to show that
multilinear Schur multipliers of higher order divided differences are bounded. This was in fact achieved
by proving boundedness of a more general class of Schur multipliers; we give the result specialised to
divided differences here.

Theorem 1.3 ([35, Theorem 5.3 for divided differences]). Let p1, . . . , pn, p ∈ (1,∞) be such that
1/p1 + . . .+ 1/pn = 1/p, and let f ∈ Cn(R). Then the Schur multiplier

Mf [n] : Sp1 × . . .× Spn → Sp

is bounded with
‖Mf [n]‖ ≤ Cp1,··· ,pn‖f (n)‖∞.

As previously mentioned, the motivation for this extension was to show the existence of so-called
higher order spectral shift functions, i.e. a function ηn = ηn,V,H such that (1.1) holds. Here, n-linear
Schur multipliers appear by the key relation

dn

dtn
f(H + tV ) = n!Tt,f [n](V, . . . , V ), (1.5)

where Tt,f [n] denotes a multiple operator integral, which coincides with an n-linear Schur multiplier
if H + tV has discrete spectrum. Again, the boundedness of the multiple operator integral follows
by approximation from the corresponding bound on the Schur multiplier in Theorem 1.3. Once the
boundedness of the multiple operator integral has been established, this relationship shows that the left
hand side of (1.1) a well-defined bounded linear functional on the continuous functions with compact
support. The existence of ηn then follows by approximation and the Riesz representation theorem.



1.4. Recent proof methods for boundedness of Schur multipliers 5

Let us give an example to show how (1.5) holds with a Schur multiplier on the right hand side in
the finite dimensional case. Let f(z) =

∑N
k=0 ckz

k be a polynomial, let λ1 6= λ2, and let

H =

(
λ1 0
0 λ2

)
, V =

(
0 1
1 0

)
.

We can calculate the first derivative of f(H + tV ) in t = 0 as

d

dt

∣∣∣
t=0

f(H + tV ) =
d

dt

∣∣∣
t=0

N∑
k=0

ck

(
λ1 t
t λ2

)k

=

N∑
k=0

ck

k−1∑
j=0

(
λ1 t
t λ2

)j (
0 1
1 0

)(
λ1 t
t λ2

)k−1−j ∣∣∣
t=0

=

N∑
k=0

ck

k−1∑
j=0

(
λj1 0

0 λj2

)(
0 1
1 0

)(
λk−1−j
1 0

0 λk−1−j
2

)

=

N∑
k=0

ck

k−1∑
j=0

(
0 λj1
λj2 0

)(
λk−1−j
1 0

0 λk−1−j
2

)

=

N∑
k=0

ck

k−1∑
j=0

(
0 λj1λ

k−1−j
2

λj2λ
k−1−j
1 0

)
.

Using

λk1 − λk2 = (λ1 − λ2)(

k−1∑
j=0

λj1λ
k−1−j
2 ),

we conclude

d

dt

∣∣∣
t=0

f(H + tV ) =

N∑
k=0

ck

(
0

λk1−λ
k
2

λ1−λ2

λk2−λ
k
1

λ2−λ1
0

)
=

(
0 f [1](λ1, λ2)

f [1](λ2, λ1) 0

)
=

(
f [1](λ1, λ1) · 0 f [1](λ1, λ2) · 1
f [1](λ2, λ1) · 1 f [1](λ2, λ2) · 0

)
=Mf [1]V,

which coincides with (1.5). Here, the Schur multiplier has index set Λ = {λ1, λ2} and projections
pλj = (δjµδjν)µ,ν ∈ C2×2.

1.4. Recent proof methods for boundedness of Schur multipliers
The goal of this thesis is to investigate whether Theorem 1.3 can be proven using recent methods that
were not yet known at the time the original proof in [35] was discovered. In this section, we will give
an overview over the methods we will use for this purpose, the majority of which has been developed
after the publication of [35, 36].

Multilinear Transference Transference between linear Schur multipliers and Fourier multipliers, as
already mentioned in Section 1.1, is the main ingredient of the boundedness proofs in [35, 36]. We will
give an informal introduction to the transference method in the linear case, before discussing its recent
extension to multilinear multipliers.

Consider a Schur multiplier Mm acting on Sp, p ∈ (1,∞). Key to this method is finding a suitable
embedding ι of the Schatten space into an Lp-space of functions with values in Sp. Ideally, this embed-
ding is in fact an isometry such that ι ◦ Tm̃ =Mm ◦ ι, where Tm̃ is a suitable Fourier multiplier. If Mm

is of Toeplitz form, then usually m̃ is such that m(λ, µ) = m̃(λ − µ). We give the linear transference
proof used in [35, 36] for the symbol m(λ, µ) = (λ− µ)is, s ∈ R in detail in the proof of Theorem 6.3.

More recently, transference between Schur multipliers and Fourier multipliers has been extended to
multilinear multipliers [4, 5]. Rather than embedding Sp1 × . . . × Spn into an Lp-space directly, each
Schatten space Spk is separately embedded into an Lpk -space, and a multilinear Fourier multiplier on
the product of those new Lp-spaces is considered. This allows us to treat multilinear Schur multipliers
of Toeplitz form in a significantly more efficient manner, as we will demonstrate in Section 5.
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Lp-extension of multilinear Calderón-Zygmund operators The transference method for study-
ing Schur multipliers hinges on the idea that the boundedness of a Fourier multiplier may be easier to
show than the boundedness of a Schur multiplier. Indeed, while Fourier multipliers on scalar-valued
Lp-spaces have not been fully classified for p ∈ (1,∞) \ {2}, several sufficient conditions for their
boundedness are known, see e.g. [15, 20].

However, these results do not automatically apply in the vector-valued case. This is the so-called
Lp-extension problem: If (Ω, µ) is a measure space, T is a bounded operator on Lp(Ω,C) and X is a
Banach space, when is

T ⊗ IX : f ⊗ x 7→ Tf ⊗ x

a bounded operator on Lp(Ω, X)? Examples of operators for which there exist choices of p and X such
that their extension onto Lp(Ω, X) is not bounded are the Fourier transform or the Hilbert transform,
see [20, Chapter 2.1.3] for details.

It has become evident that for the extension of harmonic analysis to the vector-valued setting, so-
called UMD spaces are the correct class of Banach spaces to consider. While their definition stems
from martingale theory, X being a UMD space is in fact equivalent to the boundedness of the Hilbert
transform on Lp(R, X) for p ∈ (1,∞), which in turn provides tools from classical harmonic analysis
such as the Mihlin multiplier theorem or the Littlewood-Paley decomposition on Lp(R, X). See [20,
Chapters 4–5] for a detailed introduction.

One class of operators that appears to be rather well-behaved under extension to UMD space-
valued Lp-spaces are the so-called Calderón-Zygmund operators (see e.g. [22, Chapters 11–12]), which
are integral operators with a sufficiently well-behaved singular kernel. In particular, Calderón-Zygmund
operators can be represented as a sum of two particular types of operators, dyadic shifts and paraproducts,
simplifying boundedness and extension arguments [19].

For linear Calderón-Zygmund operators bounded on Lp(R,C), it is known that they can be extended
to Lp(R, X) for any UMD space X, see [22, Theorem 12.3.1]. For the extension of bounded multilinear
Calderón-Zygmund operators, more care is needed to ensure compatibility of the target UMD spaces.
The Schatten spaces we consider are in fact UMD spaces for p > 1, and in [12], it was shown that
Schatten spaces (and more generally, noncommutative Lp-spaces) are such compatible UMD spaces if
their exponents are in Hölder combination, i.e. 1/p1 + . . .+ 1/pn = 1/p with p1, . . . , pn, p ∈ (1,∞). In
Section 5, We will use the following bilinear theorem from [12], specialised to Schatten spaces.
Theorem 1.4 (Special case of [12, Theorem 1.1]). Let T be a bilinear Calderón-Zygmund operator
on R. Then the bilinear operator

Text(

J∑
j=1

fj ⊗ yj ,

K∑
k=1

gk ⊗ zk) :=
∑
j,k

T (fj , gk)⊗ yjzk

with fj , gk ∈ L∞
c (R), yj ∈ Sp1 , zk ∈ Sp2 , extends to a bounded operator

Text : L
p1(R, Sp1)× Lp2(R, Sp2) → Lp(R, Sp) (1.6)

for p1, p2, p ∈ (1,∞) such that 1/p1 + 1/p2 = 1/p.

Hörmander-Mihlin condition for linear Schur multipliers For non-Toeplitz form Schur multi-
pliers, the transference method is generally difficult to apply, if at all possible. However, a recent result
on the boundedness of linear Schur multipliers, including those of non-Toeplitz form, gives a rather
simple sufficient condition for their boundedness.

For Fourier multipliers, the Hörmander-Mihlin theorem [15, Theorem 6.2.7] states that a Fourier
multiplier Tm with a bounded and sufficiently smooth symbol m is bounded on Lp(Rd,C) if∑

|γ|≤bd2 c+1

‖ξ 7→ |ξ||γ||∂γm(ξ)|‖∞ <∞, (1.7)

where γ ∈ Nd0 is a multi-index. By linear transference, condition (1.7) was already known to be sufficient
for the boundedness of the associated Toeplitz form Schur multiplier on Sp for p ∈ (1,∞). In [7], it was
shown that condition (1.7) is indeed also sufficient for boundedness of the Schur multipliers Mm if the
symbol m is not of Toeplitz form. In fact, a weaker version of (1.7) is sufficient, as mixed derivatives
need not be considered.
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Theorem 1.5 ([7, Theorem A]). Let m ∈ Cbd2 c+1(R2d \{λ = µ}), p ∈ (1,∞), and let Mm be the Schur
multiplier associated with m. Then

‖Mm‖Sp→Sp ≲ p2

p− 1
‖|m‖|HMS

with ‖|m‖|HMS :=
∑

|γ|≤bd2 c+1
‖(λ, µ) 7→ |λ− µ||γ|(|∂γλm(λ, µ)|+ |∂γµm(λ, µ)|)‖∞.

As will be shown in Section 4, boundedness of the Schur multiplier Mf [1] follows as a corollary from
Theorem 1.5.

1.5. Comparison of boundedness proofs in the bilinear case
The main result of this thesis is that it is indeed possible to prove the bilinear case of Theorem 1.3
using the methods introduced in the previous section. Here we will give a high-level overview over the
differences between the proof of [35] and our proof developed in Sections 3–5.

Both proofs are based on a similar observation – it is possible to decompose a second order divided
difference into Toeplitz form symbols and divided differences of the form (λ, µ) 7→ f [2](λ, λ, µ). It is
possible to do this in such a manner that the bilinear Schur multiplier Mf [2] can then also be decom-
posed into bilinear Toeplitz form Schur multipliers and linear Schur multipliers of divided differences.
Theorem 1.5 allows us to show the boundedness of the linear Schur multiplier in an efficient manner,
whereas in [35], its boundedness was shown by an induction argument based on linear transference.

The bilinear Toeplitz form Schur multipliers in both proofs are of the form (λ0, λ1, λ2) 7→ λ0−λ1

λ0−λ2
.

Note however that these symbols are not bounded and hence not suitable for transference to Fourier
multipliers – as we will see in Section 5.1, the transference procedure would yield a Fourier multiplier
with an unbounded symbol, whereas m ∈ L∞ is a necessary condition for the Lp-boundedness of the
Fourier multiplier Tm. In both [35] and this thesis, this problem is addressed by strategically restricting
the Schatten spaces to either upper or lower triangular operators. For the symbol (λ0, λ1, λ2) 7→ λ0−λ1

λ0−λ2
,

this corresponds to restricting its domain such that |λ0 − λ1| ≤ |λ0 − λ2| for all considered (λ0, λ1, λ2).
In [35], boundedness of the resulting Schur multiplier is then shown by using linear transference sepa-
rately on the numerator and denominator. In this thesis, we show that bilinear transference yields a
Fourier multiplier that is also a Calderón-Zygmund operator, allowing us to apply Theorem 1.4.

We further compare the two proof methods by comparing the growth rate in p of the resulting
upper bound on the norm of ‖Mf [2] : Sp × Sp → Sp/2‖ for p → ∞. This bound was not explicitly
stated in [35], hence we infer it from the proof of Theorem 1.3 in Section 6.1. This in particular
allows us to compare the growth rate of the boundedness constant of the bilinear Toeplitz form Schur
multipliers and the linear Schur multipliers separately. We find that due to the absence of paraproducts
in the decomposition of the Calderón-Zygmund operator, the bilinear transference method improves the
boundedness constant of the bilinear Toeplitz form Schur multiplier in p by three orders of magnitude.
Furthermore, the use of Theorem 1.5 improves the bound on the linear Schur multiplier to linear growth
in p, whereas the the bound achieved in [35] by linear transference has cubical growth in p.

1.6. Outline of the thesis
In Section 2, we give the necessary preliminaries that will be used in the following sections. Besides
properties of Schur multipliers and divided differences, dyadic constructions from harmonic analysis will
be also introduced, as this will be necessary for the discussion of Calderón-Zygmund operators.

We present our proof of the bilinear version of Theorem 1.3 in three steps. In Section 3, we introduce
the decomposition of the bilinear Schur multiplier Mf [2] into a composition of bilinear Toeplitz form
Schur multipliers and linear Schur multipliers. In Section 4, the boundedness of the resulting linear
Schur multiplier is shown using Theorem 1.5. In Section 5, we use bilinear transference to prove the
boundedness of the bilinear Toeplitz form Schur multiplier using Theorem 1.4.

We investigate the growth rate of the boundedness constant in p in the bilinear case in Section 6,
where we give an explicit upper bound on the constants in Theorem 1.3 and Theorem 1.4. Finally, we
give an outlook on the remaining steps towards proving the full version of Theorem 1.3 using multilinear
transference in Section 7.



2
Preliminaries

In this section, we introduce some definitions and related results that we will use throughout this thesis.
We assume that the reader has knowledge equivalent to a first course on functional analysis (see e.g.
[30]) and is familiar with basic notions of measure theoretic probability theory.

2.1. Notations and assumptions
In this section, we fix some general notation for the remainder of this thesis.

• We use N to refer to the set of positive integers, the set of non-negative integers is denoted by N0.
• By Td, we refer to the d-dimensional torus Td = [0, 2π]d.
• For two functions f, g : Rd → C, d ∈ N, we define 〈f, g〉 :=

∫
Rd fgdx.

• For f : Rd → C and Q ⊂ Rd bounded, we define 〈f〉Q := |Q|−1
∫
Q
fdx.

• We denote the expectation, i.e. the integral over a probability space, by E, usually without refer-
ence to the underlying probability space.

• The Fourier transform of a distribution f is denoted by f̂ . For Schwartz functions, we use the
convention

f̂(ξ) :=
1√
2π

∫
Rd
f(x)e−ix·ξdx

to normalise the Fourier transform. The inverse Fourier transform of f is denoted by f̌ .
• The n-th derivative of a function f may be denoted by f (n).
• We write A ≲ B when there exists a constant C > 0 such that A ≤ CB. If C depends on a

parameter p relevant to the discussion, we write A ≲p B.
• To describe the growth rate of a constant cp in its parameter p, we write cp = O(pk), k ∈ N, if

there exists a constant C independent of p and some p0 such that cp ≤ Cp3 for all p ≥ p0.
• For p ∈ (1,∞), p′ is defined by the relation 1/p+ 1/p′ = 1.
• For a set S, the indicator function of that set is denoted by 1S .
• Unless stated otherwise, all Hilbert spaces H are assumed to be separable. The inner product on
H, denoted by (·, ·), is linear in the first argument.

• Throughout this thesis, (pλ)λ refers to a countable orthonormal set of projections with
∑
λ pλ = 1.

2.2. Divided differences
After introducing divided differences in Section 1.2, we will now give the full definition of divided
differences and introduce some of their basic properties.

8
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Definition 2.1 (Divided differences, [38, Section 8.6]). Let f ∈ Cn(R), n ∈ N0. We define the n-th
order divided difference f [n] of f inductively as follows. The first order divided difference is constructed
as

f [0](λ0) := f(λ0), (2.1)

f [1](λ0, λ1) :=

{
f [0](λ0)−f [0](λ1)

λ0−λ1
, λ0 6= λ1,

f ′(λ0), λ0 = λ1.
(2.2)

f [n](λ0, ..., λn) :=

{
f [n−1](λ0,...,λj−1,λj+1,...,λn)−f [n−1](λ0,...,λi−1,λi+1,...,λn)

λi−λj , if λi 6= λj for some i 6= j,
f(n)(λ0)

n! , λ0 = . . . = λn,

(2.3)

where λ0, . . . , λn ∈ R and λ0 6= λn.

We will see in Lemma 2.3 that the divided differences are invariant under permutation of their
variables, hence the n-th order divided difference f [n] is well-defined on Rn+1 for f ∈ Cn(R), even if
there are multiple possible choices for i, j in (2.3). We will often deal with divided differences with
many coinciding arguments, therefore we introduce the following notation for convenience.

Notation 2.2. For λ, µ ∈ R, we set

f [n](λ(k), µ(n+1−k)) := f [n](λ, . . . , λ︸ ︷︷ ︸
k times

, µ, . . . , µ︸ ︷︷ ︸
n+1−k
times

).

In the following lemma, we collect some straightforward consequences of Definition 2.1.

Lemma 2.3 (Properties of divided differences). Let f : R → R and let n ∈ N.

1. f [n] is invariant under permutation of its variables.
2. For f ∈ Cn(R), we have the estimate

‖f [n]‖∞ ≤ ‖f(n)‖∞
n! .

Proof.

1. We prove this by induction. For n = 0 this is trivially fulfilled, for n = 1 it holds by symmetry of
(2.2). Now let n > 1; we prove the statement in three steps, where we define f [n](λ0, . . . , λn) as in
(2.3) for λ0 6= λn. We shall always assume that the permuted variables λi and λj are not equal.

• Permutation of λ0 and λn: We use induction for the second equality to see

f [n](λn, λ1, . . . , λn−1, λ0) =
f [n−1](λn, λ1, . . . , λn−1)− f [n−1](λ1, . . . , λn−1, λ0)

λn − λ0

=
f [n−1](λ1, . . . , λn−1, λn)− f [n−1](λ0, λ1, . . . , λn−1)

λn − λ0

= f [n](λ0, . . . , λn).

• For permutation of λi, λj , i < j and i, j /∈ {0, n}, we see by induction that

f [n](λ0, . . . , λj , . . . , λi, . . . , λn)

=
f [n−1](λ0, . . . , λj , . . . , λi, . . . , λn−1)− f [n−1](λ1, . . . , λj , . . . , λi, . . . , λn)

λ0 − λn

=
f [n−1](λ0, . . . , λi, . . . , λj , . . . , λn−1)− f [n−1](λ1, . . . , λi, . . . , λj , . . . , λn)

λ0 − λn

=f [n](λ0, . . . , λn).
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• For permutations of λi, λj with i ∈ {0, n} and j /∈ {0, n}, we will without loss of generality
assume i = 0, j = 1. We obtain by induction

f [n](λ1, λ0, λ2, . . . , λn)− f [n](λ0, λ1, λ2, . . . , λn)

=
f [n−1](λ1, λ0, λ2, . . . , λn−1)− f [n−1](λ0, λ2, . . . , λn)

λ1 − λn

− f [n−1](λ0, λ1, λ2, . . . , λn−1)− f [n−1](λ1, λ2, . . . , λn)

λ0 − λn

=

(
1

λ1 − λn
− 1

λ0 − λn

)
f [n−1](λ0, λ1, λ2, . . . , λn−1)

− f [n−1](λ0, λ2, . . . , λn)

λ1 − λn
+
f [n−1](λ1, λ2, . . . , λn)

λ0 − λn
.

By further decomposing the second and third divided difference, we have

1

(λ0 − λn)(λ1 − λn)

(
(λ0 − λ1)f

[n−1](λ0, . . . , λn−1, λ1)

− (f [n−2](λ0, λ2, . . . , λn−1)− f [n−2](λ2, . . . , λn))

+ (f [n−2](λ1, λ2, . . . , λn−1)− f [n−2](λ2, . . . , λn))
)

=
1

(λ0 − λn)(λ1 − λn)

(
(λ0 − λ1)f

[n−1](λ0, . . . , λn−1, λ1)

− (f [n−2](λ0, λ2, . . . , λn−1)− f [n−2](λ1, λ2, . . . , λn−1)
)
.

The second two divided differences can be combined as

f [n−2](λ1, λ2, . . . , λn−1)− f [n−2](λ0, λ2, . . . , λn−1) = (λ0 − λ1)f
[n−1](λ0, λ1, . . . , λn−1)

by induction, from which we conclude

f [n](λ1, λ0, λ2, . . . , λn)− f [n](λ0, λ1, λ2, . . . , λn) = 0.

2. Following [35], we can express f [n] in integral form as follows. Define

Sn := {(s0, . . . , sn) ∈ Rn+1 |
n∑
j=0

sj = 1, sj ≥ 0, 0 ≤ j ≤ n},

Rn := {(s0, . . . , sn−1) ∈ Rn |
n−1∑
j=0

sj ≤ 1, sj ≥ 0, 0 ≤ j ≤ n− 1},

∫
Sn
ϕ(s0, . . . , sn)dσn :=

∫
Rn

ϕ(s0, . . . , sn−1, 1−
n−1∑
j=0

sj)ds,

where ds denotes the Lebesgue measure on Rn. With these definitions, we can now express f [n]
as

f [n](λ0, . . . , λn) =

∫
Sn
f (n)

 n∑
j=0

sjλj

 dσn.

For a proof see [35, Lemma 5.1]. Hence we conclude

‖f [n]‖∞ ≤ ‖f (n)‖∞
∫
Sn
dσn =

‖f (n)‖∞
n!

.
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Finally, we state another useful representation of the divided differences; for a proof see [10, Chapter
4, (7.12)].

Lemma 2.4. If f ∈ Cn(R) and λ0, . . . , λn ∈ R such that not all of them coincide, then

f [n](λ0, . . . , λn) =

∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

f (n)(λn + (λn−1 − λn)t1 + . . .+ (λ0 − λ1)tn)dtn.

2.3. Schatten spaces
We have formally introduced Schatten spaces in Section 1.1. We will now define them properly, starting
with the definition of the singular value decomposition.

Definition 2.5 (Singular value decomposition [30, Definition 14.14]). Let x be a compact operator on
a Hilbert space.

• The singular values of x are the nonzero eigenvalues of its modulus |x| :=
√
x∗x. Since |x| is a

positive operator, the singular values are positive real numbers.
• The singular value sequence (µn(x))n of x is defined as the non-increasing sequence of singular

values of x, repeated according to their multiplicity.
• The singular value decomposition consists of two orthonormal families (fn)n and (gn)n such that

x =
∑
n

µn(x)(·, fn)gn.

Every compact operator admits a (not necessarily unique) singular value decomposition, see [30,
Theorem 9.2]. We can now define Schatten spaces as follows.

Definition 2.6 (Schatten space, [20, Definition D.1.5]). Let H be a separable Hilbert space, and let
p ∈ [1,∞). Then the Schatten space Sp := Sp(H) is defined as

Sp := {x ∈ B(H) | x compact, ‖(µn(x))n‖ℓp <∞},

where B(H) denotes the bounded linear operators on H. These spaces are Banach spaces with the
norm

‖x‖Sp := ‖(µn(x))n‖ℓp .

In this thesis, the underlying Hilbert space H is not relevant (apart from its separability), hence we
suppress H from the notation. From now on, by saying that x is a Schatten space element, we will refer
to x ∈ Sp for some p ∈ [1,∞).

Let us now give some elementary properties of the Schatten spaces.

Lemma 2.7 (Schatten space properties).

1. (Hölder inequality, [20, Corollary D.2.4]) Let (p1, p2, p) ∈ [1,∞] be such that 1/p1 + 1/p2 = 1/p.
Let x ∈ Sp1 and y ∈ Sp2 , where we set S∞ to be the space of compact operators with the operator
norm. Then xy ∈ Sp with ‖xy‖Sp ≤ ‖x‖Sp1 ‖y‖Sp2 .

2. (Complex interpolation, [20, Proposition D.3.1]) Let (p1, p2, p) ∈ [1,∞) and θ ∈ (0, 1) be such
that θ/p1 + (1 − θ)/p2 = 1/p. Then for all linear operators T that are bounded on Sp1 and Sp2 ,
we have

‖T‖Sp→Sp ≤ ‖T‖θSp1→Sp1
‖T‖1−θSp2→Sp2

.

3. Let u ∈ B(H) unitary, x ∈ Sp for p ∈ [1,∞), then ‖u∗xu‖Sp = ‖x‖Sp .
4. For x ∈ Sp, we have ‖x‖Sp = ‖x∗‖Sp .

Proof. For the proofs of 1. and 2., see the references provided. We shall prove 3. and 4.
Let the singular value decomposition of x be given by (fn)n and (gn)n. Then for h ∈ H,

(u∗xu)(h) = u∗
∑
n

µn(x)(uh, fn)gn =
∑
n

µn(x)(h, u
∗fn)u

∗gn.
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Since u∗ is unitary, the families (u∗fn)n and (u∗gn)n are again orthonormal, hence the formula above
is a singular value decomposition of u∗xu. This implies that u∗xu and x have the same singular value
sequence, which in turn implies that their Schatten space norms are equal for all p ∈ [1,∞).

The fourth statement follows from the fact that x and x∗ have the same singular value sequence.
Indeed, for x as above and arbitrary h1, h2 ∈ H we have

(x∗v, w) = (v, xw) =
∑
n

µn(x)(fn, w)(v, gn) =

(∑
n

µn(x)(v, gn)fn, w

)
,

hence x∗ =
∑
n µn(x)(·, gn)fn. This is a singular value representation, from which the norm equality

follows as in the previous proof.

As discussed in Section 1.1, one can characterise Schatten spaces via the trace on B(H), which we
now introduce.
Definition 2.8 (Operator trace, [30, Definition 14.17]). Let x be a compact operator on a Hilbert
space H, and let (hn)n be an orthonormal basis of H. The trace of x is defined as

τ(x) :=
∑
n

(Thn, hn).

This definition is independent of the chosen orthonormal basis.
Before giving the tracial form of the Schatten space norms, let us give some useful properties of the

trace. For proofs, see the provided references.
Lemma 2.9 (Properties of the trace).

1. (Singular value form, [30, Theorem 14.15(1)]) Let x ∈ B(H) be compact with singular value
sequence (µn(x))n. Then τ(|x|) =

∑
n µn(x).

2. (Permutation property, [30, Proposition 14.27]) For x1, . . . , xn Schatten space elements, τ(x1 . . . xn) =
τ(xnx1 . . . xn−1) = τ(x2 . . . xnx1).

Lemma 2.10. Let x ∈ Sp, p ∈ (1,∞). Then

‖x‖pSp = τ(|x|p) =

(
sup

‖y‖Sq=1

τ(xy)

)p
.

Proof. Since the singular values are eigenvalues of |x|, its singular value decomposition can be expressed
as |x| =

∑
n µn(x)(·, hn)hn for some orthonormal family (hn)n. This in particular implies

|x|p =
∑
n

µn(x)
p(·, hn)hn,

hence by Definition 2.8,

τ(|x|p) =
∑
n

(|x|phn, hn) =
∑
n

µn(x)
p = ‖x‖pSp .

For the second equality, see the proof of [20, Theorem D.2.6].

Let us now introduce the so-called triangular truncations. Acting on finite-dimensional matrices,
these operators map a matrix to its upper- or lower diagonal part. In Section 3, we will apply them
strategically in order to decompose Schur multipliers of divided differences in a manner suitable for our
proof strategy.
Definition 2.11 (Triangular truncations [3]). Let p ∈ (1,∞) and let (pλ)λ be a countable family of
orthogonal projections such that

∑
λ pλ = 1. We define the following triangular truncation operators

on Sp.

T4upper : x 7→
∑
λ≥µ

pλxpµ, T4off
upper

: x 7→
∑
λ>µ

pλxpµ,

T4lower : x 7→
∑
λ≤µ

pλxpµ, T4off
lower

: x 7→
∑
λ<µ

pλxpµ.
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The operator T4upper (resp. T4lower) is called upper (resp. lower) triangular truncation. The operators
T4off

upper
and T4off

lower
denote off-diagonal triangular truncations.

To denote the restriction of an operator to its diagonal, we further define

Tdiag := T4upper − T4off
upper

= T4lower − T4off
lower

.

These operators are in fact bounded operators, for a proof see the provided reference.

Theorem 2.12 (Boundedness of triangular truncations, [3, Corollary 19]). All triangular truncation
operators T4 ∈ {T4upper , T4lower , T4off

upper
, T4off

lower
} are bounded operators on Sp for p ∈ (1,∞), with the

common bound
‖T4‖Sp→Sp ≤ C4,p = C

p2

p− 1
.

Within a trace, these operators can be transformed into one another as follows.

Lemma 2.13 (Trace of product of triangular truncations). Let p ∈ (1,∞) and let x ∈ Sp, y ∈ Sp′ .
Then

τ((T4upperx)y) = τ((T4upperx)(T4lowery)) = τ(x(T4lowery)),

τ((T4off
upper

x)y) = τ((T4off
upper

x)(T4off
lower

y)) = τ(x(T4off
lower

y)).

Proof. By writing out the triangular truncations, we have

τ((T4upperx)y) =
∑
λ≥µ

τ(pλxpµy), .

Using p2λ = pλ and the permutation property of the trace yields∑
λ≥µ

τ(pλxpµy) =
∑
λ≥µ

τ(pλxpµypλ).

By orthogonality of the projections,

∑
λ≥µ

τ(pλxpµypλ) = τ

 ∑
λ1≥µ1

pλ1
xpµ1

 ∑
λ2≥µ2

pµ2
ypλ2

)

 = τ((T4upperx)(T4lowery))

and furthermore, ∑
λ≥µ

τ(pλxpµy) =
∑
λ≥µ

τ(xpµypλ) = τ(x(T4lowery)).

The statement for T4off
upper

and T4off
lower

follows in the same manner.

2.4. Schur multipliers
After formally introducing Schur multipliers in Section 1.1, we now give their definition. We first define
them on finite-rank operators, which ensures that all sums are finite.

Definition 2.14. Let m : Rn+1 → C. The associated Schur multiplier Mm is defined as the n-linear
operator acting on finite-rank operators x1, . . . , xn as

Mm(x1, . . . , xn) :=
∑

λ0,...,λn

m(λ0, . . . , λn)pλ0
x1pλ1

. . . pλn−1
xnpλn ,

where (pλn)n is a countable family of orthogonal projections such that
∑
λ pλ = 1. The function m is

called symbol of the Schur multiplier Mm.
We call Mm a Toeplitz form Schur multiplier if m is of the form

m(λ0, . . . , λn) = m̃(λ0 − λ1, λ1 − λ2, . . . , λn−1 − λn)

for some m̃ : Rn → C.
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Since finite-rank operators are dense in the Schatten spaces, we immediately have that if

‖Mm(x1, . . . , xn)‖Sp ≲ ‖x1‖Sp1 . . . ‖xn‖Spn ,

the Schur multiplier extends to a bounded operator Mm : Sp1 × . . .× Spn → Sp.
In the following lemma we collect some properties of Schur multipliers.

Lemma 2.15 (Properties of Schur multipliers, [35, Lemma 3.2]). Letm : Rn+1 → C and let p1, . . . , pn, p ∈
(1,∞) be such that 1/p1 + . . .+ 1/pn = 1/p. Let xj ∈ Spj , j = 1, . . . , n.

1. If there exist m1,m2 : Rn+1 → C such that m = m1 +m2, then the associated Schur multiplier
Mm can be decomposed as Mm =Mm1

+Mm2
.

2. If there exist m1 : R(n+1)−(k−1) → C and m2 : Rk+1 → C such that

m(λ0, . . . , λn) = m1(λ0, . . . , λj , λj+k, . . . , λn)m2(λj , . . . , λj+k)

for some j ∈ {0, . . . , n− 1}, k ∈ {1, . . . , n− j}, then

Mm(x1, . . . , xn) =Mm1(x1, . . . , xj ,Mm2(xj+1, . . . , xj+k), xj+k+1, . . . , xn).

3. Let m̃(λ0, . . . , λn) := m(λn, . . . , λ0). Then

‖Mm̃ : Sp1 × . . .× Spn → Sp‖ = ‖Mm : Spn × . . .× Sp1 → Sp‖.

4. Let y ∈ Sp′ and let m∗(λ0, . . . , λn) := m(λn, λ0, . . . , λn−1). Then

τ(Mm(x1, . . . , xn)y) = τ(x1Mm∗(x2, . . . , xn, y)),

and hence ‖Mm : Sp1 × . . .× Spn → Sp‖ = ‖Mm∗ : Sp2 × . . .× Spn × Sp′ → Sp′1‖.

Proof.

1. This follows directly from Definition 2.14.
2. By writing out the definition of the Schur multiplier and using the orthogonality of the projections,

we have

Mm(x1, . . . , xn)

=
∑

λ0,...,λn

m1(λ0, . . . , λj , λj+k, . . . , λn)m2(λj , . . . , λj+k)pλ0
x1pλ1

· · · pλn−1
xnpλn

=
∑

λ0,...,λj ,
λj+k,...,λn

m1(λ0, . . . , λj , λj+k, . . . , λn)pλ0
x1pλ1

· · · pλj−1
xjpλj

×

∑
µ1,µ2

∑
λj+1,...,λj+k−1

m2(µ1, λj+1 . . . , λj+k−1, µ2)pµ1xj+1pλj+1 · · · pλj+k−1
xj+kpµ2


× pλj+kxj+k+1pλj+k+1

· · · pλn−1xnpλn .

The expression in brackets is again a Schur multiplier, hence we have

Mm(x1, . . . , xn)

=
∑

λ0,...,λj ,
λj+k,...,λn

m1(λ0, . . . , λj , λj+k, . . . , λn)pλ0x1pλ1 · · ·

× pλj−1
xjpλjMm2

(xj+1, . . . , xj+k)pλj+kxj+k+1pλj+k+1
· · · pλn−1

xnpλn

=Mm1
(x1, . . . , xj ,Mm2

(xj+1, . . . , xj+k), xj+k+1, . . . , xn).
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3. We have Mm̃(x1, . . . , xn) =Mm(x∗n, . . . , x
∗
1)

∗. Indeed,

Mm̃(x1, . . . , xn) =
∑

λ0,...,λn

m̃(λ0, . . . , λn)pλ0
x1pλ1

. . . pλn−1
xnpλn

=
∑

λ0,...,λn

m(λn, . . . , λ0)(pλnx
∗
npλn−1

. . . pλ1
x∗1pλ0

)∗

= (
∑

λn,...,λ0

m(λn, . . . , λ0)pλnx
∗
npλn−1

. . . pλ1
x∗1pλ0

)∗

=Mm(x∗n, . . . , x
∗
1)

∗.

Since the Sp-norms are invariant under adjoints, we have

‖Mm̃‖ = sup
‖x1‖Sp1 =1

. . . sup
‖xn‖Spn=1

‖Mm̃(x1, . . . , xn)‖Sp

= sup
‖x1‖Sp1 =1

. . . sup
‖xn‖Spn=1

‖Mm(x∗n, . . . , x
∗
1)

∗‖Sp

= sup
‖x∗

1‖Sp1 =1

. . . sup
‖x∗
n‖Spn=1

‖Mm(x∗n, . . . , x
∗
1)‖Sp

= ‖Mm‖.

4. By writing out the operator and using the permutation property of the trace, we see that

τ(Mm(x1, . . . , xn)y) = τ

 ∑
λ0,...,λn

m(λ0, . . . , λn)pλ0x1pλ1 . . . pλn−1xnpλny


=

∑
λ0,...,λn

m(λ0, . . . , λn)τ(x1pλ1x2 . . . pλn−1xnpλnypλ0)

= τ

x1 ∑
λ0,...,λn

m(λ0, . . . , λn)pλ1x2 . . . pλn−1xnpλnypλ0

 .

By renumbering the indices we have

τ(x1
∑

λ0,...,λn

m(λ0, . . . , λn)pλ1
x2 . . . pλn−1

xnpλnypλ0
)

= τ(x1
∑

λ0,...,λn

m(λn, λ0, . . . , λn−1)pλ0
x2 . . . pλn−2

xnpλn−1
ypλn)

and hence

τ(Mm(x1, . . . , xn)y) = τ(x1Mm∗(x2, . . . , xn, y)).

By the tracial definition of the Sp-norms, we now have

‖Mm : Sp1 × . . .× Spn → Sp‖ = sup
‖x1‖Sp1 =1

. . . sup
‖xn‖Spn=1

‖Mm(x1, . . . , xn)‖Sp

= sup
‖x1‖Sp1 =1

. . . sup
‖xn‖Spn=1

sup
‖y‖S

p′
=1

τ(Mm(x1, . . . , xn)y)

= sup
‖x1‖Sp1 =1

. . . sup
‖xn‖Spn=1

sup
‖y‖S

p′
=1

τ(x1Mm∗(x2, . . . , xn, y))

= sup
‖x2‖Sp2 =1

. . . sup
‖xn‖Spn=1

sup
‖y‖S

p′
=1

‖Mm∗(x2, . . . , xn, y)‖Sp′1

= ‖Mm∗ : Sp2 × . . .× Spn × Sp′ → Sp′1‖.
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Next, we introduce some special settings in which the norm of a linear Schur multiplier is easily
estimated.

Lemma 2.16 (Boundedness on S2). Let m : R2 → C, and let Mm be the associated Schur multiplier.
Then

‖Mm : S2 → S2‖ ≤ ‖m‖∞.

Proof. Let x ∈ S2. Using the tracial form of the S2-norm and |x|2 = x∗x, we have

‖Mmx‖2S2
= τ(|Mmx|2)
= τ ((Mmx)

∗Mmx)

=
∑
j,k,l,m

τ ((m(j, k)pjxpk)
∗m(l,m)plxpm)

=
∑
j,k,l,m

m(j, k)m(l,m)τ (pkx
∗pjplxpm) .

By the orthogonality of the projections (pj)j and the permutation property of the trace, we have∑
j,k,l,m

m(j, k)m(l,m)τ (pkx
∗pjplxpm) =

∑
j,k,m

m(j, k)m(j,m)τ (pkx
∗pjpjxpm)

=
∑
j,k

m(j, k)m(j, k)τ (pkx
∗pjpjxpk)

=
∑
j,k

|m(j, k)|2τ ((pjxpk)∗pjxpk) .

Since τ ((pjxpk)∗pjxpk) = τ(|pjxpk|2) = ‖pjxpk‖2S2
≥ 0, we can estimate each |m(j, k)| by the supre-

mum of m and obtain∑
j,k

|m(j, k)|2τ ((pjxpk)∗pjxpk) ≤ ‖m‖∞
∑
j,k

τ ((pjxpk)
∗pjxpk) .

By reverting our calculations from before, we can rewrite the remaining sum as

∑
j,k

τ ((pjxpk)
∗pjxpk) = τ

(
∑
j,k

pjxpk)
∗(
∑
l,m

plxpm)

 = τ(x∗x) = τ(|x|2) = ‖x‖2S2
,

which concludes the proof.

Lemma 2.17 (Boundedness by duality). Let Mm : Sp → Sp be a bounded Schur multiplier p ∈ (1,∞).
Then Mm is a bounded Schur multiplier on S′

p and

‖Mm : Sp′ → Sp′‖ = ‖Mm : Sp → Sp‖.

Proof. By Lemma 2.15(4) for n = 1, we have

‖Mm : Sp → Sp‖ = ‖Mm∗ : S′
p → S′

p‖,

where m∗(λ, µ) := m(µ, λ). Furthermore, by Lemma 2.15(3),

‖Mm∗ : S′
p → S′

p‖ = ‖Mm : S′
p → S′

p‖.

Finally, note that Schur multipliers are trivially bounded on diagonal Schatten space elements.
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Lemma 2.18 (Boundedness on the diagonal). Let m : Rn+1 → C and let p1, . . . , pn, p ∈ (1,∞) be such
that 1/p1+ . . .+1/pn = 1/p. For j = 1, . . . , n, let xj be a diagonal element of Spj , i.e. xj =

∑
λ pλxjpλ.

Then
‖Mm(x1, . . . , xn)‖Sp ≤ ‖m‖∞‖x1‖Sp1 . . . ‖xn‖Spn .

Proof. By applying the Hölder-inequality repeatedly, we have

‖Mm(x1, . . . , xn)‖Sp =

∥∥∥∥∥∑
λ

m(λ, . . . , λ)pλx1pλ . . . pλxnpλ

∥∥∥∥∥
Sp

≤

∥∥∥∥∥∑
λ

m(λ, . . . , λ)pλ

∥∥∥∥∥
S∞

∥∥∥∥∥∑
λ

pλx1pλ . . . pλxnpλ

∥∥∥∥∥
Sp

≤ . . .

≤

∥∥∥∥∥∑
λ

m(λ, . . . , λ)pλ

∥∥∥∥∥
S∞

‖x1‖Sp1 . . . ‖xn‖Spn .

Since the projections pλ are positive operators, we have∑
λ

m(λ, . . . , λ)pλ ≤ ‖m‖∞
∑
λ

pλ = ‖m‖∞idH ,

and hence ∥∥∥∥∥∑
λ

m(λ, . . . , λ)pλ

∥∥∥∥∥
S∞

≤ ‖m‖∞,

which concludes the proof.

2.5. Dyadic constructions
Here, we introduce some constructions from harmonic analysis, on which we will build in subsequent
sections. While all concepts in this section are well-defined on Rd, only d = 1 will be relevant in this
thesis, hence we only give the definitions in this special case to simplify notation. We will refer to the
elements of the dyadic grid defined below as cubes as is standard in the literature. Note however that
one-dimensional cubes are line segments, hence concepts such as volume or side length coincide. Unless
noted otherwise, all definitions are from [12, Section 2.2].

Definition 2.19 (Dyadic grid).

1. The standard dyadic grid on R is defined as

D0 := {2−k([0, 1) +m) | k,m ∈ Z}.

2. Let Ω = {0, 1}Z, and equip Ω with a probability measure such that its coordinates are independent
and uniformly distributed on {0, 1}. Let ω = (ωk)k∈Z ∈ Ω. The random dyadic grid on R
associated with ω is defined by

Dω := {Q+ ω | Q ∈ D0},

Q+ ω := Q+
∑
k∈Z

2−k<|Q|

2−kωk,

where |Q| denotes the length of the cube Q.
3. By a dyadic grid D we refer to D = Dω for some ω ∈ Ω.
4. For Q ∈ D, D dyadic grid, define Q(k) as the cube R ∈ D such that Q ⊂ R and 2k|Q| = |R|.
5. For Q ∈ D, D dyadic grid, define

chD(Q) := {Q′ ∈ D | Q′ ( Q and there exists no Q′′ ∈ D such that Q′ ( Q′′ ( Q}.

This set is called the set of children of Q in D. The index denoting the dyadic grid may be omitted.
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Next, we introduce the so-called Haar functions. This family of functions is particularly well-behaved
on UMD spaces, as we will see in the next section, and plays a key role in the representation theory of
Calderón-Zygmund operators (see Section 2.8).

Definition 2.20 (Haar functions on R). Let D be a dyadic grid on R and let Q ∈ D. Let Qleft (resp.
Qright) denote the left (resp. right) half of Q. For η ∈ {0, 1}, we define the Haar function

hηQ :=

{
|Q|−1/21Q, η = 0,

|Q|−1/2(1Qleft − 1Qright), η = 1.

To simplify the notation, we set hQ := h1Q. Note that for η = 1, it holds that
∫
R hQ(x)dx = 0, hence

we refer to hQ as a cancellative Haar function.

A construction using Haar functions that will be used multiple times in Section 6.2 is the following.

Lemma 2.21. Let D be a dyadic grid, let Q ∈ D, and let b be a locally integrable function on R.
Define

DQb := 〈b〉Qleft1Qleft + 〈b〉Qright1Qright − 〈b〉Q1Q.

Then
DQb = 〈b, hQ〉hQ.

Proof. Using |Qleft| = |Qright| = |Q|/2 we have

DQ(b) =
1

|Q|
(2〈b, 1Qleft〉1Qleft + 2〈b, 1Qright〉1Qright − 〈b, 1Q〉1Q)

Note that 1Qleft =
1
2 |Q|1/2(h0Q + hQ) and 1Qright =

1
2 |Q|1/2(h0Q − hQ). Hence,

DQ(b) =
1

|Q|1/2
(〈b, h0Q + hQ〉1Qleft + 〈b, h0Q − hQ〉1Qright − 〈b, h0Q〉1Q)

=
1

|Q|1/2
(〈b, hQ〉1Qleft − 〈b, hQ〉1Qright)

= 〈b, hQ〉hQ.

2.6. UMD spaces
Section 6.2 heavily relies on the theory of UMD spaces. We shall merely give a brief overview over
the properties of UMD spaces used here, for an extensive introduction to martingales and UMD spaces
see [20]. In particular, despite martingales being at the heart of UMD space theory, giving a proper
definition of martingales is beyond the scope of this thesis. This is not a limitation however, since we
will only apply the statements in this section to one particular type of martingale difference.

Example 2.22 (Dyadic martingale difference [20, Proof of Theorem 4.2.13]). For a locally integrable
function b on R and a dyadic grid D on R, the sequence (DQ)Q, defined in Lemma 2.21 by

DQb = 〈b〉Qleft1Qleft + 〈b〉Qright1Qright − 〈b〉Q1Q = 〈b, hQ〉hQ,

is a martingale difference with respect to a σ-finite filtration generated by D.

Definition 2.23 (UMD Space, [20, Definition 4.2.1]). A Banach space X is called a UMD space if for
all p ∈ (1,∞) there exists a constant βp,X ≥ 0 such that for all X-valued Lp-martingale differences
(dfn)

N
n=0 with respect to a σ-finite filtration (Fn)Nn=0 on a σ-finite measure space (Ω, µ), and for all

scalars (εn)
N
n=0 with |εn| = 1, 0 ≤ n ≤ N , we have

‖
N∑
n=1

εndfn‖Lp(Ω,X) ≤ βp,X‖
N∑
n=1

dfn‖Lp(Ω,X).

The constant βp,X is called the UMD constant of X.
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Next, we introduce a special type of random variable that will play a role in characterising UMD
spaces.

Definition 2.24 (Rademacher variable [20, Definition 3.2.9]). A Rademacher variable is a random
variable ε : Ω → K on some probability space Ω that is uniformly distributed over {z ∈ K | |z| = 1}.
Here, K ∈ {R,C}. A Rademacher sequence is a sequence (εi)i∈I of independent Rademacher variables.

The following lemma collects properties of Banach spaces that are equivalent to the UMD property.

Lemma 2.25 (Equivalent properties of UMD spaces). Let X be a Banach space and p ∈ (1,∞). Then
the following are equivalent:

• X is a UMD space.
• (Randomised UMD property, [20, Proposition 4.2.3]) There exist constants β±

p,X ∈ (0,∞) such that
for all Lp-martingale differences (dfn)

N
n=0 on a σ-finite measure space (Ω, µ) and all Rademacher

sequences (εn)
N
n=0 we have

1

β−
p,X

‖
N∑
n=1

dfn‖Lp(Ω,X) ≤ (E‖
N∑
n=1

εndfn‖pLp(Ω,X))
1/p ≤ β+

p,X‖
N∑
n=1

dfn‖Lp(Ω,X).

It holds that max(β−
p,X , β

+
p,X) ≤ βp,X ≤ β−

p,Xβ
+
p,X .

• (Hilbert transform, [20, Corollary 5.7.7]) The Hilbert transform, given by the Fourier multiplier
H := Tm with symbol m(ξ) = −isgn(ξ), is a bounded linear operator on either Lp(T, X) or
Lp(R, X). In this case, the norms satisfy ‖H‖Lp(T,X) = ‖H‖Lp(R,X), hence boundedness of the
Hilbert transform on one of these spaces is equivalent to boundedness on the other. This norm is
denoted by h̄p,X .

• (Haar decomposition, [20, Theorem 4.2.13]) Let D be a dyadic grid and let (εQ)Q∈D be a Rademacher
sequence. Then

1

β−
p,X

‖f‖Lp(R,X) ≤ (E‖
∑
Q∈D

εQ〈f, hQ〉hQ‖pLp(R,X))
1/p ≤ β+

p,X‖f‖Lp(R,X).

The only UMD spaces relevant in this thesis are the Schatten spaces. The following estimates for
the constants introduced in Lemma 2.25 are known.

Lemma 2.26. The Schatten space Sp is a UMD space for p ∈ (1,∞). Its constants can be estimated
as follows:

• ([3, Corollary 17]) h̄p,Sp ≲ p2

p−1 ,

• ([37, Theorem 4.3]) βp,Sp ≲ p2

p−1 . By the inequalities in Lemma 2.25, this implies β±
p,Sp

≲ p2

p−1 .

2.7. Fourier multipliers
Having defined UMD spaces, we can now give a brief introduction to Fourier multipliers on vector-valued
Lp-spaces. We will restrict ourselves to scalar-valued symbols; for further reading, see e.g. [15, 20].

For a Banach space X, define

Ľ1(Rd, X) := {g ∈ L∞(Rd, X) | g = f̌ for some f ∈ L1(Rd, X)}.

Following [20, Lemma 2.4.7], Lp(Rd, X) ∩ Ľ1(Rd, X) is a dense subspace of Lp(Rd, X), which will be
used in the following definition.

Definition 2.27 (Fourier multiplier on Rd, [20, Definition 5.3.3]). Let X be a Banach space and let
m ∈ L∞(Rd,C). If the associated operator Tm, defined on Lp(Rd, X) ∩ Ľ1(Rd, X) for p ∈ [1,∞) as

Tmf(x) :=
1

√
2π

d

∫
Rd
m(ξ)f̂(ξ)eiξ·xdξ,

extends to a bounded operator Tm : Lp(Rd, X) → Lp(Rd, X), we call Tm an Lp-Fourier multiplier with
symbol m.
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Note our terminology is somewhat non-standard in order to match the terminology of Schur mul-
tipliers – in the literature, one often refers to m as the Fourier multiplier and to Tm as the Fourier
multiplier operator.

We will also consider Fourier multipliers on the torus, for which the definition of the multiplier
simplifies as follows.

Definition 2.28 (Fourier multiplier on Td, [20, Section 5.7]). Let X be a Banach space and let
(mk)k∈Zd ∈ ℓ∞(Zd,C). If the associated operator, defined on trigonometric polynomials

f : Zd → X, f(µ) =
1

√
2π

d

∑
λ∈Zd

f̂(λ)eiλ·µ

as
T(mk)kf(µ) :=

1
√
2π

d

∑
λ∈Zd

m(λ)f̂(λ)eiλ·µ

extends to a bounded operator T(mk)k : Lp(Td, X) → Lp(Td, X) for p ∈ [1,∞), we call T(mk)k an
Lp-Fourier multiplier with symbol (mk)k.

Next, we give two sufficient conditions for the boundedness of such Fourier multipliers on UMD-
valued spaces, which will be used in Section 6.1.

Theorem 2.29 (Marcinkiewicz multiplier theorem, [3, Theorem 4]). Let X be a complex Banach space
and let m ∈ L∞(T,C) be such that

sup
k∈Z

∑
2k−2≤j≤2k−1

|m(j + 1)−m(j)|

In this case,

‖Tm : Lp(T, X) → Lp(T, X)‖ ≲ h̄p,X(βp,X)2

 2k+1∑
|n|=2k

|m(n+ 1)−m(n)|

 ,

where h̄p,X and βp,X are from Lemma 2.25.

Theorem 2.30 (Mihlin multiplier theorem on R, [20, Theorem 5.3.18]). Let X be a complex UMD
spaces and let p ∈ (1,∞). Let m ∈ L∞(R,C). Then Tm is an Lp-Fourier multiplier if

‖m‖M := sup
ξ∈R\{0,±2k}k∈Z

|m(ξ)|+ sup
ξ∈R\{0,±2k}k∈Z

|ξm′(ξ)| <∞.

In this case,
‖Tm : Lp(R, X) → Lp(R, X)‖ ≲ h̄p,X(βp,X)2‖m‖M,

where h̄p,X and βp,X are from Lemma 2.25.

It is possible to show that the boundedness of a Fourier multiplier m on Rd implies that its restriction
to (m(k))k∈Zd is a bounded Fourier multiplier on Td. Such theorems are known as transference or de
Leeuw restriction theorems, and we present a linear theorem here.

Theorem 2.31 (Analysis in Banach spaces I, Prop 5.7.1). Let X be a Banach space, let m ∈ L∞(Rd,C)
be the symbol of a Fourier multiplier on Lp(Rd, X), p ∈ (1,∞). Suppose that all k ∈ Zd are Lebesgue
points of m. Then T(m(k))

k∈Zd
is a Fourier multiplier on Lp(Td, X) with ‖T(m(k))k‖ ≤ ‖Tm‖.

In Section 5.1, we will return to the bilinear case of this theorem. For this purpose, let us briefly
define multilinear Fourier multipliers. In order to avoid considerations about vector space compatibility,
we give the definitions immediately on Lp-spaces with values in Schatten spaces.
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Definition 2.32 (Multilinear Fourier multipliers, [16, Section 5]).
1. Let m ∈ L∞((Rd)n,C) and let p1, . . . , pn, p ∈ (1,∞) such that 1/p1 + . . . + 1/pn = 1/p. The

Fourier multiplier Tm : Lp1(Rd, Sp1)× . . .× Lpn(Rd, Spn) → Lp(Rd, Sp) is defined as

Tm(f1, . . . , fn)(x) :=
1

√
2π

dn

∫
Rdn

m(ξ1, . . . , ξn)f̂1(ξ1) . . . f̂n(ξn)e
i(ξ1+...+ξn)·xdξ.

2. Let (mk)k ∈ ℓ∞((Zd)n,C) and let p1, . . . , pn, p ∈ (1,∞) such that 1/p1 + . . . + 1/pn = 1/p. The
Fourier multiplier Tm : Lp1(Td, Sp1) × . . . × Lpn(Td, Spn) → Lp(Td, Sp) is defined on trigonomic
polynomials f1, . . . , fn as

T(mk)k(f1, . . . , fn)(µ) :=
1

√
2π

dn

∑
(λ1,...,λn)∈(Zd)n

m(λ1, . . . , λn)f̂1(λ1) . . . f̂n(λn)e
i(λ1+...+λn)·µ.

2.8. Calderón-Zygmund operators and dyadic model operators
In this section, we introduce Calderón-Zygmund operators and their decomposition into so-called dyadic
model operators, namely dyadic shifts and paraproducts. All definitions are taken from [12, Section 2.4].
Definition 2.33 (Calderón-Zygmund operator). Let T be an n-linear operator defined by an integral
kernel on a suitable function space, i.e. for ∆ := {x ∈ Rn+1 | x1 = . . . = xn+1} there exists a function
K : Rn+1 \∆ → C such that

〈T (f1, . . . , fn), fn+1〉 =
∫
Rn+1

K(xn+1, x1, . . . , xn)

n+1∏
j=1

fj(xj)dx

whenever suppfi ∩ suppfj = ∅ for some i 6= j. Such an operator T is called a Calderón-Zygmund
operator if there exists some α ∈ (0, 1] and CK > 0 such that the following conditions hold:

• (Size condition) for all x ∈ Rn+1 \∆,

|K(x)| ≤ CK

(
∑n+1
m=2 |x1 − xm|)n

,

• (Smoothness condition) for all 1 ≤ j ≤ n+ 1,

|K(x)−K(x′)| ≤
CK |xj − x′j |α

(
∑n+1
m=2 |x1 − xm|)n+α

holds whenever x ∈ Rn+1 \ ∆ and x′ = (x1, . . . , xj−1, x
′
j , xj+1, . . . , xn+1) ∈ Rn+1 are such that

2|xj − x′j | ≤ max2≤m≤n+1 |x1 − xm|,
• (Boundedness) for some (equivalently, for all) exponents p1, . . . , pn ∈ (1,∞) and qn+1 ∈ (1/n,∞)

such that 1/p1 + . . .+ 1/pn = 1/qn+1,

‖T (f1, . . . , fn)‖Lqn+1 (R) ≲
n∏

m=1

‖fm‖Lpm (R).

The definitions of dyadic shifts and paraproducts rely on the dyadic constructions from Section 2.5.
We will again give the definitions only for d = 1, however note that these notions are well-defined on Rd
for d ∈ N.
Definition 2.34 (n-linear dyadic shift). Let X be a Banach space, let k = (k1, . . . , kn+1) ∈ Nn+1

0 , and
let D be a dyadic grid on R. The n-linear dyadic shift Sk of complexity k is defined for f1, . . . , fn ∈ L∞

c (R, X)
as

Sk(f1, . . . , fn) :=
∑
Q∈D

AkQ(f1, . . . , fn),

AkQ(f1, . . . , fn) :=
∑

I1,...,In+1⊆Q
|Ij |=2−kj |Q|

αI1,...,In+1,Q

n∏
j=1

〈fj , h̃Ij 〉h̃In+1 ,
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where there exist two indices j0, j1 ∈ {1, . . . , n + 1} such that h̃Ij1 = hIj1 , h̃Ij2 = hIj2 , and h̃Ij = h0Ij
for all j 6= j1, j2. Furthermore,

|αI1,...,In+1,Q| ≤
1

|Q|2
n+1∏
j=1

|Ij |1/2.

Definition 2.35 (n-linear paraproduct). Let D be a dyadic grid and let (aQ)Q∈D be scalars such that

sup
Q0∈D

 1

|Q0|
∑
Q∈D
Q⊂Q0

|aQ|2


1/2

≤ 1.

The n-linear paraproduct is given by

π(f1, . . . , fn) :=
∑
Q∈D

aQ

n∏
j=1

〈fj , h̃j,Q〉h̃n+1,Q,

where (h̃1,Q, . . . , h̃n+1,Q) are such that there is one j0 ∈ {1, . . . , n+1} such that for all Q ∈ D, h̃j0,Q = hQ
and h̃j,Q = 1Q/|Q| for all j 6= j0. In particular, 〈fj , h̃j,Q〉 = 〈fj〉Q for j 6= j0.

We now present the representation theorem for Calderón-Zygmund operators as stated in [12].

Theorem 2.36 (Representation theorem). Let T be an n-linear Calderón-Zygmund operator. Then T
can be decomposed as

〈T (f1, . . . , fn), fn+1〉 = CTEω
∑

k∈Nn+1
0

∑
u

2− maxi kiα/2〈UkDω,u(f1, . . . , fn), fn+1〉, (2.4)

where CT is a constant depending only on T , the sum over u is finite, α is the Hölder-continuity
parameter from Definition 2.33, and Dω is a random dyadic grid (see Definition 2.19). Furthermore,
for maxj kj > 0, UkDω,u denotes an n-linear dyadic shift of complexity k, whereas for maxj kj = 0, UkDω,u
denotes either an n-linear dyadic shift of complexity 0 or an n-linear paraproduct.

Remark 2.37. While we do not want to give the full construction of the representation theorem here,
it is important to note that the paraproducts are constructed such that their scalar sequence (aQ)Q is
(up to considering partial adjoints of T ) of the form

aQ = 〈T (1, . . . , 1), hQ〉ãQ,

where ãQ again denotes a scalar sequence, and T (1, . . . , 1) is to be understood as a suitable approxima-
tion of the application of T to functions with constant value 1, see [11, Section 6.4] or [27, Section 4.2].
This in particular implies that the paraproducts in Theorem 2.36 vanish if 〈T (1, . . . , 1), hQ〉 = 0 for all
considered dyadic cubes Q, see e.g. [22, Corollary 12.4.13] for a proof in the linear case. We will return
to this point in Section 6.2.

2.9. BMO functions and the John-Nirenberg inequality
In Section 6.2, an alternative definition of linear paraproducts will be introduced. For this purpose, we
briefly introduce BMO-spaces; see e.g. [14] for a more in-depth introduction.

Definition 2.38 (BMO-space [14, Definition 7.1.1]). Let f ∈ L1
loc(Rd). Define

‖f‖BMO := sup
Q⊂Rd
Q cube

1

|Q|

∫
Q

|f(x)− 〈f〉Q|dx.

This defines a seminorm, and we define the BMO-space as

BMO(Rd) := {f ∈ L1
loc(Rd) | ‖f‖BMO <∞}.
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The John-Nirenberg inequality provides an Lp-characterisation of the BMO-space.

Theorem 2.39 (John-Nirenberg inequality [14, Corollary 7.1.8–7.1.9]). Let p ∈ (0,∞). Define

‖f‖BMOp := sup
Q⊂Rd
Q cube

(
1

|Q|

∫
Q

|f(x)− 〈f〉Q|pdx
)1/p

.

Then
‖f‖BMOp ≤ CBMOp,d‖f‖BMO,

where CBMOp,d := 2de(epΓ(p))1/p and Γ denotes the Gamma function. Furthermore, for p ∈ (1,∞) we
have

‖f‖BMO ≤ ‖f‖BMOp .



3
Decomposition of M

f [2]

As discussed in Section 1, multilinear non-Toeplitz form Schur multipliers are generally not well un-
derstood. It is therefore necessary to decompose a general multilinear Schur multiplier into better
understood multipliers, in particular linear Schur multipliers and Toeplitz form Schur multipliers. In
this section, we demonstrate such a decomposition for the bilinear Schur multipliers Mf [2] . Throughout
this section, we will assume that f ∈ C2(R) with ‖f ′′‖∞ <∞ unless stated otherwise.

In Section 3.1, we present a key lemma for decomposing divided differences of any order in a
suitable manner. Using this lemma, we can already achieve our desired decomposition for Mf [2] on a
particular domain, namely on lower triagonal operators. In order to find a suitable decomposition on
the full domain, we express the triangular truncations introduced in Section 2.3 as Schur multipliers,
which is discussed in Section 3.2. Finally, we strategically apply triangular truncations and present our
decomposition of Mf [2] on the full domain in Section ??.

3.1. Decomposition on lower triangular operators
In the following lemma, we demonstrate a method for decomposing a divided difference into a sum of
two terms. Both terms of this sum are of the same form, namely they are products of a fraction in
Toeplitz form and a divided difference of the same order as the original one.

Lemma 3.1. Let f ∈ Cn(R), n ≥ 1, and let λ0, . . . , λn ∈ R. Let i, j ∈ {0, . . . , n} be such that λi 6= λj .
Let µ ∈ R. Then

f [n](λ0, . . . , λn) =
λi − µ

λi − λj
f [n](λ0, . . . , λj−1, µ, λj+1, . . . , λn)

+
µ− λj
λi − λj

f [n](λ0, . . . , λi−1, µ, λi+1, . . . , λn).

Proof. Since f [n] is invariant under permutation of its variables (see Lemma 2.3), we assume without
loss of generality (i, j) = (0, 1). It follows for µ 6= λi, i = 0, 1, that

f [n](λ0, λ1, λ2, . . . , λn) =
1

λ0 − λ1

(
f [n−1](λ0, λ2, λ3, . . . , λn)− f [n−1](λ1, λ2, . . . , λn)

)
=

1

λ0 − λ1

(
f [n−1](λ0, λ2, λ3, . . . , λn)− f [n−1](µ, λ2, λ3, . . . , λn)

)
+

1

λ0 − λ1

(
f [n−1](µ, λ2, λ3, . . . , λn)− f [n−1](λ1, λ2, . . . , λn)

)
=

λ0 − µ

λ0 − λ1
f [n](λ0, µ, λ2, λ3, . . . , λn) +

µ− λ1
λ0 − λ1

f [n](µ, λ1, λ2, . . . , λn).

Note the same formula holds for λ0 = µ or λ1 = µ as long as λ0 6= λ1: Assume (without loss of

24
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generality) λ0 = µ 6= λ1, then
λ0 − µ

λ0 − λ1︸ ︷︷ ︸
=0

f [n](λ0, µ, λ2, λ3, . . . , λn) +
µ− λ1
λ0 − λ1︸ ︷︷ ︸

=1

f [n](µ, λ1, λ2, . . . , λn) = f [n](λ0, λ1, λ2, . . . , λn).

Using this lemma, we can already achieve our desired decomposition of Mf [2] into Toeplitz form
Schur multipliers and linear Schur multipliers when the domain of Mf [2] is restricted to lower triangular
operators.
Example 3.2. Let x, y be lower triangular Schatten space elements, i.e. we have x =

∑
i≥j pixpj and

y =
∑
i≥j piypj . Our Schur multiplier Mf [2] reduces to

Mf [2](x, y) =
∑

λ0≥λ1≥λ2

f [2](λ0, λ1, λ2)pλ0xpλ1ypλ2 .

On the diagonal, i.e. for λ0 = λ1 = λ2, the Schur multiplier is bounded by Lemma 2.18. We discuss the
off-diagonal part separately by setting

Mf [2](x, y) =Mf [2],diag(x, y) +
∑

λ0≥λ1≥λ2
λ0>λ2

f [2](λ0, λ1, λ2)pλ0
xpλ1

ypλ2
.

For λ0 6= λ2, we can then use Lemma 3.1 to obtain

f [2](λ0, λ1, λ2) =
λ0 − λ1
λ0 − λ2

f [2](λ0, λ1, λ1) +
λ1 − λ2
λ0 − λ2

f [2](λ1, λ1, λ2), (3.1)

where the fractions are bounded due to the restriction λ0 ≥ λ1 ≥ λ2, λ0 6= λ2. Define the following
functions.

ψ : {(λ0, λ1, λ2) ∈ R3 | λ0 ≥ λ1 ≥ λ2} → C, ψ(λ0, λ1, λ2) :=

{
λ0−λ1

λ0−λ2
, λ0 6= λ2

1, λ0 = λ1 = λ2.

ϕ : R2 → C, ϕ(λ, µ) := f [2](λ, µ, µ),

ϕ̃ : R2 → C, ϕ̃(λ, µ) := ϕ(µ, λ) = f [2](λ, λ, µ).

We use this and Lemma 2.15 to decompose Mf [2] into

Mf [2](x, y)

=Mf [2],diag(x, y) +
∑

λ0≥λ1≥λ2
λ0>λ2

λ0 − λ1
λ0 − λ2

f [2](λ0, λ1, λ1)pλ0
xpλ1

ypλ2

+
∑

λ0≥λ1≥λ2
λ0>λ2

λ1 − λ2
λ0 − λ2

f [2](λ1, λ1, λ2)pλ0
xpλ1

ypλ2

=Mf [2],diag(x, y) +
∑

λ0≥λ1≥λ2
λ0>λ2

λ0 − λ1
λ0 − λ2

pλ0(Mϕx)pλ1ypλ2 +
∑

λ0≥λ1≥λ2
λ0>λ2

λ1 − λ2
λ0 − λ2

pλ0xpλ1(Mϕ̃y)pλ2

=Mf [2],diag(x, y) +Mψ(Mϕx, y) +M1−ψ(x,Mϕ̃y).

3.2. Triangular truncations as Schur multipliers
Define the sets U := {(λ1, λ2) ∈ R2 | λ1 ≥ λ2}, L := {(λ1, λ2) ∈ R2 | λ1 < λ2}. The triangular
truncations T4off

upper
, T4lower are then precisely the Schur multipliers associated with the indicator func-

tions M1U , M1L , hence in particular M1U +M1L is the identity on Sp, 1 < p < ∞. This allows us to
decompose a bilinear Schur multiplier Mm as

Mm(x, y) =
∑

j=1,2,3

∑
Dj=U,L

M1D1
(Mm(M1D2

x,M1D3
y)). (3.2)
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D1 = L D1 = U
D2 = L D2 = U D2 = L D2 = U

D3 = L {λ0 ≥ λ1 ≥ λ2} {λ1 > λ0 ≥ λ2} D3 = L ∅ {λ1 ≥ λ2 > λ0}
D3 = U {λ0 ≥ λ2 > λ1} ∅ D3 = U {λ2 > λ0 ≥ λ1} {λ2 > λ1 > λ0}

Table 3.1: All domains D := DD1D2D3
defined in (3.3), arising from the application of triangular truncations as in

(3.2).

By Lemma 2.15, composing Mm with triangular truncations in this manner corresponds to con-
structing the bilinear Schur multiplier with symbol 1Dm, where

D := DD1D2D3
:= {(λ0, λ1, λ2) ∈ R3 | (λ0, λ2) ∈ D1, (λ0, λ1) ∈ D2, (λ1, λ2) ∈ D3} (3.3)

with Dj ∈ {U,L}, j = 1, 2, 3, i.e. to setting m = 0 outside of the specified domain D. These domains
correspond to fixing the order of the values of λj , j = 0, 1, 2, as summarised in Table 3.1. The cases
(D1, D2, D3) ∈ {(L,U,U), (U,L, L)} correspond to incompatible conditions on the order of the λi, thus
the associated Schur multiplier sends all matrix elements to zero. For all other cases, we can find a
permutation ρD : {0, 1, 2} → {0, 1, 2} such that for (λ0, λ1, λ2) ∈ D we have λρD(0) ≥ λρD(1) ≥ λρD(2).



4
Boundedness of linear Schur

multipliers Mϕ

In this section, we show the boundedness of the linear Schur multipliers Mϕ defined in Section 3. Note
that while the majority of this thesis is concerned with second order divided differences, we will prove
the results in this section for general n-th order divided differences; we return to this point in Section 7.

We want to apply Theorem 1.5 to multipliers with symbol ϕ(λ, µ) = f [n](λ(k), µ(n+1−k)) for some
1 ≤ k ≤ n. Here, we use the notation introduced in Section 2.2. We need the following two lemmas.

Lemma 4.1. Let n ≥ 1, 0 ≤ k ≤ n + 1, and let f ∈ Cn+1(R). Then the partial derivatives of
(λ, µ) 7→ f [n](λ(k), µ(n+1−k)) are given by

∂λf
[n](λ(k), µ(n+1−k)) = kf [n+1](λ(k+1), µ(n+1−k)),

∂µf
[n](λ(k), µ(n+1−k)) = (n+ 1− k)f [n+1](λ(k), µ(n+2−k)).

Furthermore,
(
(λ, µ) 7→ f [n](λ(k), µ(n+1−k))

)
∈ C1(R2 \ {λ = µ}).

Proof. Since f [n] is invariant under permutation of its variables (see Lemma 2.3), it is sufficient to
calculate the partial derivatives in λ. For n = 1, there are three cases to consider:

• k = 0: ∂λf [1](µ, µ) = 0.
• k = 2: ∂λf [1](λ, λ) = ∂λf

′(λ) = f ′′(λ) = 2f [2](λ, λ, λ), where we used (2.3).
• k = 1: We use the product rule to show

∂λf
[1](λ, µ) = ∂λ

f(λ)− f(µ)

λ− µ
=
f ′(λ)

λ− µ
− f(λ)− f(µ)

(λ− µ)2
=
f [1](λ, λ)− f [1](λ, µ)

λ− µ
= f [2](λ, λ, µ).

By definition, continuity of f [1] follows from continuity of f . Furthermore, its derivatives are continuous
in λ 6= µ by continuity of f ′′ and f [1].

Now let n ∈ N. For k = 0, the statement is immediate. For 0 < k ≤ n+ 1, we use the product rule
and induction to show

∂λf
[n](λ(k), µ(n+1−k))

=
∂λ(f

[n−1](λ(k), µ(n−k))− f [n−1](λ(k−1), µ(n+1−k)))

λ− µ
− f [n−1](λ(k), µ(n−k))− f [n−1](λ(k−1), µ(n+1−k))

(λ− µ)2

=
kf [n](λ(k+1), µ(n−k))− (k − 1)f [n](λ(k), µ(n+1−k))− f [n](λ(k), µ(n+1−k))

λ− µ

=kf [n+1](λ(k+1), µ(n+1−k)).

Continuity of (λ, µ) 7→ f [n](λ(k), µ(n+1−k)) in λ 6= µ follows by induction from continuity of the cor-
responding f [n−1]-terms. As in the base case, continuity of its first derivatives in λ 6= µ follows from
continuity of f (n+1) and f [n].
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Lemma 4.2. For n ∈ N, 0 ≤ k ≤ n+ 1, 0 ≤ γ ≤ min{k, n+ 1− k}, and (λ, µ) ∈ R2 \ {λ = µ},

|λ− µ|γ |∂γλf
[n](λ(k), µ(n+1−k))| ≤ 2γ

(k + γ − 1)!

(k − 1)!

‖f (n)‖∞
n!

.

Proof. For γ = 0, this statement is immediate from Lemma 2.3. Let now 0 < γ ≤ min{k, n + 1 − k}.
By repeatedly applying Lemma 4.1, we obtain

∂γλf
[n](λ(k), µ(n+1−k)) =

(k + γ − 1)!

(k − 1)!
f [n+γ](λ(k+γ), µ(n+1−k)).

We now decompose f [n+γ] by applying the definition of divided differences multiple times and have

f [n+γ](λ(k+γ), µ(n+1−k)) =
1

λ− µ

(
f [n+γ−1](λ(k+γ), µ(n−k))− f [n+γ−1](λ(k+γ−1), µ(n+1−k))

)
= . . .

=
1

(λ− µ)γ

γ∑
j=0

(−1)j
(
γ

j

)
f [n](λ(k+γ−j), µ(n+1−k−(γ−j))).

Using the estimate ‖f [n]‖∞ ≤ ‖f(n)‖∞
n! from Lemma 2.3, we conclude

|λ− µ|γ |∂γλf
[n](λ(k), µ(n+1−k))| ≤

γ∑
j=0

(
γ

j

)
|f [n](λ(k+γ−j), µ(n+1−k−(γ−j)))|

≤
γ∑
j=0

(
γ

j

)
‖f (n)‖∞

n!
= 2γ

‖f (n)‖∞
n!

.

Altogether we can now show

Theorem 4.3. Let n ∈ N, f ∈ Cn(R), 1 ≤ k ≤ n, and p ∈ (1,∞). Set ϕ(λ, µ) := f [n](λ(k), µ(n+1−k)).
Then

‖Mϕ‖Sp→Sp ≲ 2n+ 3

n!

p2

p− 1
‖f (n)‖∞.

Proof. We can apply Theorem 1.5, since ϕ ∈ C1(R2 \ {λ = µ}) by Lemma 4.1. From Lemma 4.2, we
conclude

‖|ϕ|‖HMS ≤ ‖ϕ‖∞ + ‖(λ, µ) 7→ |λ− µ|∂λϕ(λ, µ)‖∞ + ‖(λ, µ) 7→ |λ− µ|∂µϕ(λ, µ)‖∞

≤ (1 + 2k + 2(n+ 1− k))
‖f (n)‖∞

n!
=

2n+ 3

n!
‖f (n)‖∞.



5
Boundedness of multilinear Schur

multipliers Mψj

In this section, we demonstrate the bilinear transference approach towards the boundedness of Tψj ,
j = 0, 1, 2, as defined in Section ??. In Section 5.1, we set up the bilinear transference proof. The
Fourier multiplier that is key to the transference approach is then constructed in Section 5.2, and the
proof is concluded by showing the boundedness of the Fourier multiplier in Section 5.3.

5.1. Bilinear transference
The bilinear transference proof is illustrated in Figure 5.1. In this section, we discuss the relevant
constructions.

The key idea behind transference is to find an isometry ι and a Fourier multiplier Tm, such that for
a given Schur multiplier Mm̃ we have ι ◦Mm̃ = Tm ◦ ι. This implies ‖Mm̃‖ = ‖Tm‖ for suitably chosen
norms. In the following lemma, we construct such an isometry.

Lemma 5.1. Let eλ(t) := e−iλt. Define u ∈ Lp(T)⊗ Sp,

u(t) :=
∑
λ∈Z

eλ ⊗ pλ,

where (pλ)λ is a family of orthogonal projections such that
∑
λ pλ = 1. Then

ιp : Sp → Lp(T)⊗ Sp ' Lp(T, Sp),

ιp(x) := u(1⊗ x)u∗ =
∑
λ,µ∈Z

ei(λ−µ)· ⊗ pλxpµ

is an isometry for p ∈ (1,∞).

Proof. Let x ∈ Sp, then

‖u(1⊗ x)u∗‖pLp(T,Sp) =
∫
T
‖u(t)xu∗(t)‖pSpdt.

For each t ∈ T, u(t) is unitary, since

u∗u(t) =
∑
λ,µ

ei(λ−µ)t ⊗ pλpµ =
∑
λ

1⊗ pλ = idLp(T) ⊗ idSp ,

and uu∗ = idLp(T) ⊗ idSp follows by the same calculation. Hence by Lemma 2.7,∫
T
‖u(t)xu∗(t)‖pSpdt =

∫
T
‖x‖pSpdt = ‖x‖pSp .

29
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In the next lemma, we investigate how a Fourier multiplier Tm acts on a function with values in
ιp(Sp).
Lemma 5.2. Let x ∈ Sp and let Tm be a bounded Fourier multiplier on Lp(T, Sp). Let u be as in
Lemma 5.1. Then

Tm(u∗xu) =
∑
λ,µ

m(λ− µ)ei(λ−µ)· ⊗ pλxpµ.

Proof. Define eλ,µ : T → C, t 7→ ei(λ−µ)t. We can express eλ,µ as a Fourier series

eλ,µ =
1√
2π

∑
ν∈Z

êλ,µ(ν)e
iν·,

where its Fourier coefficients are given by êλ,µ(ν) =
√
2πδλ−µ(ν). Hence by Definition 2.28,

Tmeλ,µ =
1√
2π

∑
ν∈Z

m(ν)êλ,µ(ν)e
iν· = m(λ− µ)ei(λ−µ)· = m(λ− µ)eλ,µ.

We may now first assume that u∗xu is given by a finite sum. Then by linearity,

Tm(u∗xu) =
∑
λ,µ

Tm(ei(λ−µ)·)⊗ pλxpµ =
∑
λ,µ

m(λ− µ)ei(λ−µ)· ⊗ pλxpµ.

Since Tm is bounded by assumption, the statement follows for infinite sums by continuity.

Finally, we need a bilinear version of Theorem 2.31, which can be found in [2, Theorem 2.4]. Here
we give the proof explicitly for d = 1, as the constant in this statement will be relevant in Section 6.
Lemma 5.3. Let (p1, p2, p) ∈ (1,∞) be such that 1/p1 +1/p2 = 1/p, and let m ∈ L∞(Rd×Rd) be the
symbol of a Fourier multiplier

Tm : Lp1(Rd, Sp1)× Lp2(Rd, Sp2) → Lp(Rd, Sp).

Suppose that all (j, k) ∈ Zd×Zd are Lebesgue points of m. Then (m(j, k))j,k∈Zd gives rise to a bounded
Fourier multiplier

T(m(j,k))j,k : Lp1(Td, Sp1)× Lp2(Td, Sp2) → Lp(Td, Sp)

with ‖T(m(j,k))j,k‖ ≤ 1√
2π

‖Tm‖.

Proof (d = 1). We first show that for ϕp(x) := exp(−πx2

p ), we have

lim
ε→0

1

ε2

∫
R2

m(ξ1, ξ2)ϕ̂p1

(
ξ1 − j

ε

)
ϕ̂p2

(
ξ2 − k

ε

)
qϕq

(
ξ1 + ξ2 − l

ε

)
dξ =

√
2πm(j, k)δj+k(l),

where q is such that 1/p+ 1/q = 1. Indeed, we have

lim
ε→0

1

ε2

∫
R2

m(ξ1, ξ2)ϕ̂p1

(
ξ1 − j

ε

)
ϕ̂p2

(
ξ2 − k

ε

)
qϕq

(
ξ1 + ξ2 − l

ε

)
dξ

= lim
ε→0

∫
R2

m(j + εη1, k + εη2)ϕ̂p1 (η1) ϕ̂p2 (η2)
qϕq

(
η1 + η2 +

j + k − l

ε

)
dη.

Since all integer points are Lebesgue points of m, we have

lim
ε→0

m(j + εη1, k + εη2)qϕq

(
η1 + η2 +

j + k − l

ε

)
= m(j, k)δj+k(l)qϕq (η1 + η2) ,

and hence by dominated convergence

lim
ε→0

1

ε2

∫
R2

m(ξ1, ξ2)ϕ̂p1

(
ξ1 − j

ε

)
ϕ̂p2

(
ξ2 − k

ε

)
qϕq

(
ξ1 + ξ2 − l

ε

)
dξ

=m(j, k)δj+k(l)

∫
R2

ϕ̂p1 (η1) ϕ̂p2 (η2)
qϕq (η1 + η2) dη

=m(j, k)δj+k(l)

√
p1
2π

√
p2
2π

√
q

2π

∫
R2

exp
(
−p1

η21
4π

)
exp

(
−p2

η22
4π

)
exp

(
−q (η1 + η2)

2

4π

)
dη.
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We can calculate the integral as√
p1p2q

(2π)3

∫
R2

exp
(
−p1

η21
4π

)
exp

(
−p2

η22
4π

)
exp

(
−q (η1 + η2)

2

4π

)
dη

=

√
p1p2q

(2π)3

∫
R2

exp
(
−p1 + q

4π
η21

)
exp

(
−p2 + q

4π
η22

)
exp

(
−2qη1η2

4π

)
dη

=

√
p1p2q

(2π)3

∫
R2

exp
(
−p1 + q

4π
(η21 + 2 qη2

p1+q
η1)

)
exp

(
−p2 + q

4π
η22

)
dη

=

√
p1p2q

(2π)3

∫
R2

exp
(
−p1 + q

4π
(η1 +

qη2
p1+q

)2
)

exp
(
p1 + q

4π

q2

(p1 + q)2
η22

)
exp

(
−p2 + q

4π
η22

)
dη

=

√
p1p2q

(2π)3

√
4π2

p1 + q

∫
R

exp
(
− 1

4π
(p2 + q − q2

p1 + q
)η22

)
dη2

=

√
p1p2q

(2π)3

√
4π2

p1 + q

√√√√ 4π2

p2 + q − q2

p1+q

=
√
2πp1p2q

√
1

(p1 + q)(p2 + q)− q2

=
√
2π

√
p1p2q

p1p2 + (p1 + p2)q

=
√
2π

√
q

1 + p1+p2
p1p2

q
.

Note that
p1 + p2
p1p2

=
1

p1
+

1

p2
=

1

p
,

hence
q

1 + p1+p2
p1p2

q
=

q

1 + q
p

=
1

1
q +

1
p

= 1.

Thus altogether,

lim
ε→0

1

ε2

∫
R2

ϕ̂p1

(
ξ1 − j

ε

)
ϕ̂p2

(
ξ2 − k

ε

)
qϕq

(
ξ1 + ξ2 − l

ε

)
m(ξ1, ξ2)dξ =

√
2πm(j, k)δj+k(l).

We can use this to show for trigonomic polynomials f ∈ Lp1(T, Sp1), g ∈ Lp2(T, Sp2), h ∈ Lq(T, Sq),
with ek :=

√
2π

−1
eik· that

〈T(m(j,k))j,k(f, g), h〉

=
∑
j,k,l

m(j, k)f̂(j)ĝ(k)ĥ(l)〈ejek, el〉

=
1√
2π

∑
j,k

m(j, k)f̂(j)ĝ(k)ĥ(−j − k)

=
1

2π

∑
j,k,l

lim
ε→0

1

ε2

∫
R2

ϕ̂p1

(
ξ1 − j

ε

)
ϕ̂p2

(
ξ2 − k

ε

)
qϕq

(
ξ1 + ξ2 − l

ε

)
m(ξ1, ξ2)dξf̂(j)ĝ(k)ĥ(−l).

Note that by substituting y = εx, we have

̂ϕp(ε·)ek(ξ) =
1

2π

∫
R

exp(−π
p (εx)

2) exp(−i(ξ − k)x)dx =
1

2πε

∫
R

exp(−π
p y

2) exp(−i ξ−kε y)dy

=
1√
2πε

ϕ̂p

(
ξ − k

ε

)
,
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Sp1 × Sp2 Sp

Lp1(T, Sp1)× Lp2(T, Sp2) Lp(T, Sp)

T△1,j
◦Mψj

◦(T△2,j
×T△3,j

)

ιp1×ιp2 ιp

T△1,j
◦Tmj ◦(T△2,j

×T△3,j
)

Figure 5.1: Bilinear transference as discussed in Section 5. See Lemma 5.1 for the definition of ιp, Section 3 for the
construction of Mψj and the associated triangular truncations, and Section 5.2 for the definition of Tmj . To simplify the

notation, we identify operators T on Sp and (1⊗ T ) on Lp(T, Sp).

and by the same calculation

ϕp(ε·)e−l(ξ1 + ξ2) =
1√
2πε

|ϕp

(
ξ1 + ξ2 − l

ε

)
,

hence

1

2π

∑
j,k,l

lim
ε→0

1

ε2

∫
R2

ϕ̂p1

(
ξ1 − j

ε

)
ϕ̂p2

(
ξ2 − k

ε

)
qϕq

(
ξ1 + ξ2 − l

ε

)
m(ξ1, ξ2)dξf̂(j)ĝ(k)ĥ(−l)

=
√
2π lim

ε→0
ε

〈
mF

ϕp1(ε·)∑
j

f̂(j)ej

F

(
ϕp2

∑
k

ĝ(k)ek

)
,F−1

(
ϕq
∑
l

ĥ(l)el

)〉
=
√
2π lim

ε→0
ε〈Tm(ϕp1(ε·)f, ϕp2(ε·)g), ϕq(ε·)h〉,

where F denotes the Fourier transform. Following [20, Lemma 5.7.3], we have

lim
ε→0

ε1/p‖ϕp(ε·)f‖Lp(R,Sp) =
1

(2π)1/p
‖ϕp‖Lp(R,C)‖f‖Lp(T,Sp),

thus altogether

|〈T(m(j,k))j,k(f, g), h〉|

=
√
2π lim

ε→0
ε|〈Tm(ϕp1(ε·)f, ϕp2(ε·)g), ϕq(ε·)h〉|

≤ 1√
2π

lim
ε→0

‖Tm‖(2πε)1/p1‖ϕp1(ε·)f‖Lp1 (R,Sp1 )(2πε)
1/p2‖ϕp2(ε·)g‖Lp2 (R,Sp2 )(2πε)

1/q‖ϕq(ε·)h‖Lq(R,Sq)

=
1√
2π

‖Tm‖‖ϕp1‖Lp1 (R,C)‖f‖Lp1 (T,Sp1 )‖ϕp2‖Lp2 (R,C)‖g‖Lp2 (T,Sp2 )‖ϕq‖Lq(R,C)‖h‖Lq(T,Sq)

=
1√
2π

‖Tm‖‖f‖Lp1 (T,Sp1 )‖g‖Lp2 (T,Sp2 )‖h‖Lq(T,Sq).

5.2. Construction of Fourier multipliers Tmj

We now construct candidates for the symbols of the Fourier multipliers Tmj in Figure 5.1, j = 0, 1, 2.
For this, we will make the triangular truncations that are part of the definition of ψj explicit as in (??).
The key property we are looking to achieve is the commutativity of the diagram in Figure 5.1, i.e. we
are looking for mj such that

ιp ◦Mψj = T41,j
◦ Tmj ◦ (T42,j

× T43,j
) ◦ (ιp1 × ιp2),

where (T41,j
, T42,j

, T43,j
) denotes one of the two triples of triangular truncations associated with ψj ,

see Section ??. We will give the argument in full detail for j = 1, i.e. the case where the associated
permutation ρ1 is trivial (see (??)); for j = 0, 2 the symbol mj can be derived in the same manner.
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For j = 1, we are considering the triples of triangular truncations

(T41,1
, T42,1

, T43,1
) ∈ {(T4off

upper
, T4off

upper
, T4off

upper
), (T4lower , T4lower , T4lower)},

see (??). We will demonstrate the calculation for the second triple.
Let x ∈ Sp1 and y ∈ Sp2 be lower triangular. By Lemma 2.18, we may choose them such that xy is

off-diagonal lower triangular. We calculate

ιp(Mψ1
(x, y)) =

∑
µ0≥µ3

ei(µ0−µ3)· ⊗ pµ0

 ∑
λ0≥λ1≥λ2
λ0>λ2

λ0 − λ1
λ0 − λ2

pλ0
xpλ1

ypλ2

 pµ3

=
∑

λ0≥λ1≥λ2
λ0>λ2

ei(λ0−λ2)·λ0 − λ1
λ0 − λ2

⊗ pλ0xpλ1ypλ2

=
∑

λ0≥λ1≥λ2
λ0>λ2

ei((λ0−λ1)+(λ1−λ2))· λ0 − λ1
(λ0 − λ1) + (λ1 − λ2)

⊗ pλ0
xpλ1

ypλ2
.

Define m1(λ, µ) :=
λ

λ+µ to see

ιp(Mψ1
(x, y)) =

∑
λ0≥λ1≥λ2
λ0>λ2

ei((λ0−λ1)+(λ1−λ2))·m1(λ0 − λ1, λ1 − λ2)⊗ pλ0
xpλ1

ypλ2

=
∑
λ0≥λ1

∑
µ0≥µ1
λ0>µ1

m1(λ0 − λ1, λ1 − λ2)e
i(λ0−λ1)·ei(µ0−µ1)· ⊗ (pλ0

xpλ1
) (pµ0

ypµ1
)

=
∑
λ>µ

m1(λ, µ)
∑
λ0≥λ1

∑
µ0≥µ1

δλ0−λ1
(λ)δµ0−µ1

(µ)ei(λ+µ)· ⊗ (pλ0
xpλ1

) (pµ0
ypµ1

) .

Using Lemma 5.2, we now have

ιp(Mψ1(x, y)) =
1

2π

∑
λ>µ

m1(λ, µ)
∑
λ0≥λ1

∑
µ0≥µ1

êλ0,λ1(λ)êµ0,µ1(µ)e
i(λ+µ)· ⊗ (pλ0xpλ1) (pµ0ypµ1)

= (T4off
lower

◦ Tm1
◦ (T4lower × T4lower) ◦ (ιp1 × ιp2))(x, y).

By the same calculation,

ιp(Mψ1(x, y)) = (T4off
upper

◦ Tm1 ◦ (T4off
upper

× T4off
upper

) ◦ (ιp1 × ιp2))(x, y)

holds for x,y off-diagonal upper triangular. A similar calculation yields the candidates m0(λ, µ) := −λ
µ ,

m2(λ, µ) := λ
µ for the transference of the Schur multipliers with symbols ψ0 and ψ2. Note however

that boundedness of m is a necessary condition for the boundedness of Lp-Fourier multipliers (see [15,
Section 2.5.5]), hence we need to refine our symbols in a suitable way.

Set m1(λ, µ) := λ
λ+µ on the domain {(λ, µ) ∈ R2 \ {0} | |λ| ≤ |λ + µ|}. Outside of this domain,

we extend m1 onto R2 \ {0} such that it remains homogeneous of degree 0 (i.e. m1(sλ, sµ) = m1(λ, µ)
for s 6= 0), such that it is smooth away from the origin, and such that its integral along the unit circle
vanishes. We extend m0 and m2 in the same manner, with initial domain {(λ, µ) ∈ R2 \ {0} | |λ| ≤ |µ|}.
Note that for (λ0, λ1, λ2) ∈ ∆j as defined in (??), we have that (λ0 − λ1, λ1 − λ2) is an element of
the initial domain of mj , j = 0, 1, 2. This domain ∆j was constructed such that it corresponds to the
triangular truncations applied in Figure 5.1, hence the diagram commutes for the extended symbol mj

by precisely the same calculation as above.

5.3. Tm as a Calderón-Zygmund operator
For p 6= 2, boundedness of the symbol m is a necessary but not sufficient condition for the boundedness
of the Fourier multiplier Tm. In order to show the boundedness of Tmj , j = 0, 1, 2, with mj as
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defined in Section 5.2, we will use Theorem 1.4. By Lemma 5.3, this theorem implies boundedness of
Tmj : Lp1(T, Sp1) × Lp2(T, Sp2) → Lp(T, Sp). It hence remains to show that the Fourier multipliers
Tmj : L

p1(R,C)× Lp2(R,C) → Lp(R,C), j = 0, 1, 2, are Calderón-Zygmund operators.
Recall from Section 5.2 that all mj were constructed such that they are homogeneous of degree 0,

smooth away from the origin, and have vanishing integral along the unit circle. Following the arguments
in the proof of [6, Lemma 4.3], such functions can be expressed in polar coordinates as

λ+ iµ = reiθ ⇒ m(λ, µ) =
∑

0 6=k∈Z

ake
ikθ, (5.1)

where the coefficients (ak)k decrease faster than any power of k. Note that since m is homogeneous, we
have

λ+ iµ = reiθ ⇒
∑

0 6=k∈Z

(−1)kake
ikθ = m(−λ,−µ) = m(λ, µ) =

∑
0 6=k∈Z

ake
ikθ,

where by orthogonality of (θ 7→ eikθ)k 6=0 we have uniqueness of (ak)k and thus ak = 0 for k odd.
This allows us to treat all cases j = 0, 1, 2 at once by showing that a generic bilinear Fourier

multiplier with symbol m as in (5.1) is a Calderón-Zygmund operator as defined in Definition 2.33. We
first rewrite the integral expression for the Fourier multiplier Tm in order to construct its integral kernel
K. In this calculation, the Fourier transform of m will be important. Following the proof of [6, Lemma
4.3], it is given by

ξ1 + iξ2 = reiθ ⇒ m̂(ξ1, ξ2) =
1

|r|2
∑

0 6=k∈Z

|k|
2πik

ake
ikθ =

1

|r|2
∑
k even
k 6=0

(−1)k/2|k|
2π

ake
ikθ. (5.2)

Note that for the remainder of this section, x, y, z will denote real numbers rather than operators.
We calculate

Tm(f, g)(x) =
1

2π

∫
R2

m(ξ1, ξ2)f̂1(ξ1)f̂2(ξ2)e
i(ξ1+ξ2)xdξ

=
1

2π

∫
R2

m(ξ1, ξ2)(e
iξ1xf̂1(ξ1))(e

iξ2xf̂2(ξ2))dξ

=
1

2π

∫
R2

m(ξ1, ξ2) ̂f(·+ x)(ξ1) ̂g(·+ x)(ξ2)dξ

=
1

2π

∫
R2

m̂(ξ1, ξ2)f(ξ1 + x)g(ξ2 + x)dξ

=
1

2π

∫
R2

m̂(−ξ1,−ξ2)f(x− ξ1)g(x− ξ2)dξ,

where by substituting y = x− ξ1, z = x− ξ2 and using the homogeneity of m̂, we obtain

Tm(f, g)(x) =
1

2π

∫
R2

m̂(x− y, x− z)f(y)g(z)dydz =

∫
R2

K(x, y, z)f(y)g(z)dydz

with

K(x, y, z) :=
1

2π
m̂(x− y, x− z) =

1

(x− y)2 + (x− z)2

∑
k even
k 6=0

(−1)k/2|k|
4π2

ak

(
(x− y) + i(x− z)

|(x− y) + i(x− z)|

)k
.

(5.3)
In the following lemmas, we will show that K satisfies the properties in Definition 2.33. As in

Definition 2.33, set ∆ := {(x, y, z) ∈ R3 | x = y = z}.

Lemma 5.4 (Size condition). For all (x, y, z) ∈ R3 \∆,

|K(x, y, z)| ≤ CK
(|x− y|+ |x− z|)2

for some constant CK > 0.
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Proof. Recall that (ak)k decays faster than any polynomial in k. Furthermore, by using polar coordi-
nates we have

(x− y) + i(x− z) = reiθ ⇒

∣∣∣∣∣
(

(x− y) + i(x− z)

|(x− y) + i(x− z)|

)k∣∣∣∣∣ = |eikθ| = 1.

Hence we conclude

|K(x, y, z)| =

∣∣∣∣∣∣∣
1

(x− y)2 + (x− z)2

∑
k even
k 6=0

(−1)k/2|k|
4π2

ak

(
(x− y) + i(x− z)

|(x− y) + i(x− z)|

)k∣∣∣∣∣∣∣
≤ 1

|x− y|2 + |x− z|2
∑
k even
k 6=0

|kak|
4π2

≤ C

|x− y|2 + |x− z|2

≤ 2C

(|x− y|+ |x− z|)2
,

where in the last inequality we used (λ+ µ)2 ≤ 2(λ2 + µ2) for λ, µ ≥ 0.

Lemma 5.5 (Smoothness condition). Let (x1, x2, x3) ∈ R3 \ ∆. For any j = 1, 2, 3, choose x̃j such
that |xj − x̃j | ≤ 1

2 max(|x1 − x2|, |x1 − x3|). Furthermore, set x̃k := xk for all k 6= j. Then there exist
CK <∞ and α ∈ (0, 1] such that

|K(x1, x2, x3)−K(x̃1, x̃2, x̃3)| ≤
CK |xj − x̃j |α

(|x1 − x2|+ |x1 − x3|)2+α
.

Proof. We will show this estimate for α = 1. For clearer notation, we rename (x1, x2, x3) to (x, y, z);
accordingly, the cases j = 1, 2, 3 will be referred to as the x-, y-, or z-case. We will give the proof
explicitly for the z-case and then discuss the necessary modifications for the x- and y-cases.

Fix x and y. For k ∈ Z, define the map

fk : R → C, fk(z) :=
((x− y) + i(x− z))k

|(x− y) + i(x− z)|k+2
,

or in polar coordinates

(x− y) + i(x− z) = reiθ ⇒ fk(z) =
eikθ

r2
. (5.4)

We can now rewrite |K(x, y, z)−K(x, y, z̃)| as

|K(x, y, z)−K(x, y, z̃)| =

∣∣∣∣∣∣∣
∑
k even
k 6=0

(−1)k/2|k|
4π2

ak

(
((x− y) + i(x− z))k

|(x− y) + i(x− z)|k+2
− ((x− y) + i(x− z̃))k

|(x− y) + i(x− z̃)|k+2

)∣∣∣∣∣∣∣
≤
∑
k even
k 6=0

|kak|
4π2

|fk(z)− fk(z̃)|.

Denote by gk the real part of fk and by hk its imaginary part. We will show that there exist a
constant C and a polynomial p, both independent of x and y, such that

max (|gk(z)− gk(z̃)|, |hk(z)− hk(z̃)|) ≤ C
p(k)|z − z̃|

(|x− y|+ |x− z|)3
(5.5)

for |z − z̃| ≤ 1
2 max(|x− y|, |x− z|).
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Figure 5.2: Relationship between x, z, and z̃ in the z-case with x = y in the proof of Lemma 5.5 for 0 < z < x. The
blue lines denote the interval [z − |x−z|

2
, z +

|x−z|
2

] in which z̃ can lie.

We first consider the case x = y, for which (5.4) implies

fk(z) =
(i sgn(x− z))k

(x− z)2
=

(−1)k/2

(x− z)2
= gk(z), hk(z) = 0,

since we are only considering even k. By a slight abuse of notation, we will let [z, z̃] denote the closed
interval between z and z̃, even if z̃ < z. The mean value theorem yields a ζ ∈ [z, z̃] such that

|fk(z)− fk(z̃)| =
∣∣∣∣ 1

(x− z)2
− 1

(x− z̃)2

∣∣∣∣ = |z − z̃|
|x− ζ|3

.

Here, we used that sgn(x − z) = sgn(x − z̃), since z̃ ∈ [z − |x−z|
2 , z + |x−z|

2 ]; see Figure 5.2 for an
illustration. By construction, we have the estimate

|x− ζ| ≥ min
ζ′∈[z,z̃]

|x− ζ ′| ≥ min
ζ′∈[z−

|x−z|
2 ,z+

|x−z|
2 ]

|x− ζ ′| = 1

2
|x− z|,

hence altogether,

|fk(z)− fk(z̃)| ≤ 8
|z − z̃|
|x− z|3

=
8|z − z̃|

(|x− y|+ |x− z|)3
.

Now let x 6= y. We will prove (5.5) explicitly for gk, the estimate for hk follows by the same
arguments. By fixing x 6= y and using (5.4), we have

gk(z) =
cos(kθ(z))
r(z)2

,

where the polar coordinates are given by

r(z) =
√

(x− y)2 + (x− z)2, θ(z) =

arccos
(
x−y
r(z)

)
, x− z ≥ 0,

2π − arccos
(
x−y
r(z)

)
, x− z < 0.

We apply the mean value theorem to find a ζ ∈ [z, z̃] such that

|gk(z)− gk(z̃)| = |g′k(ζ)||z − z̃|,

hence it remains to estimate g′k. We calculate the derivative as

d

dz
gk(z) =

d

dz

cos(kθ(z))
r(z)2

=
−k sin(kθ(z))θ′(z)

r(z)2
− 2r′(z) cos(kθ(z))

r(z)3
.
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We further calculate

r′(z) =
d

dz

√
(x− y)2 + (x− z)2 =

−(x− z)√
(x− y)2 + (x− z)2

= −x− z

r(z)
,

θ′(z) = sgn(x− z)
d

dz
arccos

(
x− y

r(z)

)
= sgn(x− z)

−1√
1−

(
x−y
r(z)

)2 −(x− y)

r(z)2
r′(z)

= −sgn(x− z)

√
(x− y)2 + (x− z)2

(x− z)2
x− y

r(z)2
x− z

r(z)

= −|x− z|(x− y)

|x− z|r(z)2

= −x− y

r(z)2
.

Hence altogether,

d

dz
gk(z) =

k sin(kθ(z))(x− y) + 2 cos(kθ(z))(x− z)

r(z)4
.

We can thus estimate g′k(ζ) by

|g′k(ζ)| ≤ (|k|+ 2)
|x− y|+ |x− ζ|

(|x− y|2 + |x− ζ|2)2
.

Now we distinguish two cases:

1. |x− z| ≤ |x− y|: In this case, we have

|x− ζ| ≤ |x− z|+ |z − ζ| ≤ |x− y|+ |z − ζ| ≤ |x− y|+ |z − z̃| ≤ 2|x− y|.

Hence,

|x− y|+ |x− ζ|
(|x− y|2 + |x− ζ|2)2

≤ 3|x− y|
(|x− y|2 + |x− ζ|2)2

≤ 3
|x− y|
|x− y|4

=
3

|x− y|3
≤ 24

(|x− y|+ |x− z|)3
,

where in the last inequality we used our assumption |x − z| ≤ |x − y| to obtain the estimate
|x− y|3 ≥

(
|x−y|+|x−z|

2

)3
.

2. |x− y| ≤ |x− z|: This implies |z − z̃| ≤ 1
2 |x− z|, hence we have by construction that

|x− ζ| ≤ |x− z|+ |z − ζ| ≤ |x− z|+ |z − z̃| ≤ 3

2
|x− z|,

|x− ζ| ≥ min
ζ′∈[z,z̃]

|x− ζ ′| ≥ min
ζ′∈[z−

|x−z|
2 ,z+

|x−z|
2 ]

|x− ζ ′| = 1

2
|x− z|.

Hence by similar estimates as in the previous case we have

|x− y|+ |x− ζ|
(|x− y|2 + |x− ζ|2)2

≤
5
2 |x− z|

( 14 |x− z|2)2
=

40

|x− z|3
≤ 320

(|x− y|+ |x− z|)3
.

Altogether, we thus have

|gk(z)− gk(z̃)| = |g′k(ζ)||z − z̃| ≤ C(|k|+ 2)
|z − z̃|

(|x− y|+ |x− z|)3
.
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For the imaginary part
hk(z) =

sin(kθ(z))
r(z)2

,

the estimate follows in the same manner. Hence,

|K(x, y, z)−K(x, y, z̃)| ≤
∑

0 6=k∈Z

|kak|
4π2

|fk(x− y, x− z)− fk(x− y, x− z̃)|

≤
∑

0 6=k∈Z

|kak|
4π2

(|gk(z)− gk(z̃)|+ |hk(z)− hk(z̃)|)

≤ 2C
∑

0 6=k∈Z

|k|(|k|+ 2)|ak|
4π2

|z − z̃|
(|x− y|+ |x− z|)3

≤ CK
|z − z̃|

(|x− y|+ |x− z|)3
.

We now sketch the proof in the x-case and y-case. In the y-case, the proof proceeds in the same
manner. In particular, we define the polar coordinate functions r(y) and θ(y) exactly as above. For the
derivatives, we have

r′(y) = −x− y

r(y)

immediately by symmetry. The derivative of θ can be calculated for x 6= y as

θ′(y) = sgn(x− z)
d

dy
arccos

(
x− y

r(y)

)
= sgn(x− z)

−1√
1−

(
x−y
r(y)

)2 d

dy

x− y

r(y)

= sgn(x− z)
r(y)

|x− z|
r(y) + r′(y)(x− y)

r(y)2

= sgn(x− z)
1

|x− z|

(
1 +

r′(y)(x− y)

r(y)

)
= sgn(x− z)

1

|x− z|

(
1− (x− y)2

r(y)2

)
= sgn(x− z)

(x− z)2

|x− z|r(y)2

=
x− z

r(y)2
.

Hence the proof in the y-case proceeds in the same manner as in the z-case.
In the x-case, first let y = z. Then

fk(x) =
eikθ(x)

r(x)2
=


eikπ/4

2(x− y)2
, x− y > 0

e5ikπ/4

2(x− y)2
, x− y < 0.

Hence the proof reduces to applying the mean value theorem to x 7→ (x− y)−2 as in the other cases. In
the remaining case y 6= z, we find

r′(x) =
(x− y) + (x− z)

r(x)
, θ′(x) =

(x− y)− (x− z)

r(x)2
,

allowing us to finish the proof as in the z-case.

It remains to show the last condition of Definition 2.33, namely the boundedness condition. For this,
we use the following theorem.



5.3. Tm as a Calderón-Zygmund operator 39

Theorem 5.6 (Bilinear version of [24, Theorem 8]). Let p1, p2 ∈ (1,∞) and let p be such that
1/p1 + 1/p2 = 1/p, Let k be an integral kernel in R2 that is homogeneous of degree −2, smooth
away from the origin, and such that its integral along the circle vanishes. Then the integral opera-
tor Tk : Lp1(R)× Lp2(R) → Lp(R),

Tk(f1, f2)(x) :=

∫
R2

k(y1, y2)f1(x− y1)f2(x− y2)dy1dy2

is a bounded operator.

Lemma 5.7 (Boundedness). For all p1, p2 ∈ (1,∞) and p ∈ (1/2,∞) such that 1/p1+1/p2 = 1/p, and
m as in (5.1) we have

‖Tm(f, g)‖Lp(R) ≲ ‖f‖Lp1 (R)‖g‖Lp2 (R).

Proof. When deriving (5.3), we saw that

Tm(f, g)(x) =
1

2π

∫
R2

m̂(ξ1, ξ2)f(x− ξ1)g(x− ξ2)dξ.

It is immediate from (5.2) that m̂ satisfies the conditions of Theorem 5.6 — it is smooth away from the
origin by construction, the integral along the unit circle vanishes for every (θ 7→ eikθ)k 6=0 and hence for
m̂, and for s ∈ R \ {0}, the homogeneity property holds since

ξ1 + iξ2 = reiθ ⇒ m̂(sξ1, sξ2) =
1

|sr|2
∑
k even
k 6=0

(−1)k/2|k|
2π

sgn(s)kakeikθ = s−2m(ξ1, ξ2).



6
p-dependence of the constant in

Theorem 1.3 for n = 2

In Sections 3–5, we have presented an alternative proof of Theorem 1.3 based on bilinear transference.
In this section, we will compare our proof to the original proof by Potapov, Skripka, and Sukochev
in [35] by comparing the growth rate in p of the constant Cp1,··· ,pn in the special case of the multiplier
Mf [2] : Sp × Sp → Sp/2 for p ∈ (1,∞), i.e. in the case n = 2 and p1 = p2.

Since not all relevant constants are explicitly stated in the literature, we first repeat proofs where
necessary, while keeping track of the p-dependent constants. We first focus on the proof of Theorem 1.3
in [35] in Section 6.1. Our presentation is mostly self-contained, merely a few proof steps that are
not relevant to the p-dependence of the constant are omitted. In order to discuss the constant in our
alternative proof, it remains to determine the constant in Theorem 1.4. This is done in Section 6.2,
which is again mostly self-contained up to some steps that are not relevant to the constant. Finally, we
compare and discuss the constant yielded by both proof methods in Section 6.3.

6.1. Original proof by Potapov, Skripka, and Sukochev
As in Section 3, we first compose the Schur multiplier Mf [2] with triangular truncations such that we can
decompose the resulting truncated terms into bilinear Toeplitz form multipliers and linear multipliers.
All cases as listed in Table 3.1 arise. In this section we demonstrate the proof for the λ0 ≥ λ1 ≥ λ2
term.

Similar to our work in Section 3, the function f [2] is decomposed on this domain as

f [2](λ0, λ1, λ2) =
λ0 − λ1
λ0 − λ2

(ϕ1,f ′′(λ1, λ0)− ϕ2,f ′′(λ1, λ0)) +
λ1 − λ2
λ0 − λ2

(ϕ1,f ′′(λ1, λ2)− ϕ2,f ′′(λ1, λ2)), (6.1)

for λ0 > λ2, where for m ∈ N and h a continuous and bounded function we define

ϕm,h(λ, µ) :=

∫ 1

0

tm−1h(λ+ (µ− λ)t)dt. (6.2)

Note that this decomposition of f [2] is equal to the decomposition (3.1) we used in Section 3: One can
show using Lemma 2.4 and Lemma 4.1 that ϕ1,f ′′(λ, µ) = f ′[1](λ, µ) and ϕ2,f ′′(λ, µ) = f [2](λ, µ, µ), thus

ϕ1,f ′′(λ, µ)− ϕ2,f ′′(λ, µ) =
f ′(λ)− f ′(µ)− f [1](λ, µ) + f ′(µ)

λ− µ
=
f ′(λ)− f [1](λ, µ)

λ− µ
= f [2](λ, λ, µ).

The difference between the proof by Potapov, Skripka, and Sukochev in [35] and the method we
demonstrated in Sections 3–5 lies in the fact that the proof in [35] heavily relies on a linear transfer-
ence argument, where the Fourier multiplier considered is a complex power. This multiplier is indeed
bounded.

40
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Theorem 6.1. Let p ∈ (1,∞) and s ∈ R. Define φs : R → C, φs(ξ) := ξis. Then the associated
periodic Fourier multiplier Tφs is bounded on Lp(T, Sp) with

‖Tφsf‖Lp(T,Sp) ≤ cp(1 + |s|)‖f‖Lp(T,Sp).

We shall sketch two proofs for this theorem here. In both proofs, the constant cp has the upper
bound

cp ≲ h̄p.Sp(βp,Sp)
2.

where the constants βp,Sp and h̄p.Sp are from Lemma 2.25.

Proof 1 [20, Corollary 5.3.19]. This proof uses the Mihlin multiplier theorem (Theorem 2.30). Applied
to our multiplier φs(ξ) = |ξ|is, it states that

‖Tφs‖Lp(R,Sp) ≤ cp

(
sup

ξ∈R\{0}
|φs(ξ)|+ sup

ξ∈R\{0}
|ξφ′

s(ξ)|)

)
,

with cp bounded as stated above, from which we deduce

‖Tφs‖Lp(R,Sp) ≤ cp

(
sup

ξ∈R\{0}
||ξ|is|+ sup

ξ∈R\{0}
|ξ is
ξ
|ξ|is|

)
= cp(1 + |s|).

By Theorem 2.31, ‖Tφs‖Lp(T,Sp) ≤ ‖Tφs‖Lp(R,Sp), which completes the proof.

Proof 2 [36, Lemma 5]. This proof uses the vector-valued Marcinkiewicz multiplier theorem (Theo-
rem 2.29), which gives the bound

‖Tφs‖L2(T,X) ≤ cp

sup
k

|φs(k)|+ sup
k

∑
2k−2≤j≤2k−1

|φs(j + 1)− φs(j)|

 .

The required estimates hold for the sequence (kis)k∈N, since |kis| = 1 for all k and

∑
2k−2≤j≤2k−1

|(j + 1)is − jis| =
∑

2k−2≤j≤2k−1

|
∫ j+1

j

d

dx
xisdx|

=
∑

2k−2≤j≤2k−1

|
∫ j+1

j

is
xis

x
dx|

≤
∑

2k−2≤j≤2k−1

|s|
|j|

≤ |s|

by the fundamental theorem of calculus.

These Fourier multipliers appear by linear transference, where the multilinear Schur multiplier with
symbol (λ0, λ1, λ2) 7→ λ0−λ1

λ0−λ2
is first decomposed into two linear multipliers by using the following

lemma.

Lemma 6.2 ([36], Lemma 6). There exists a function g : R → C such that∫
R
|s|n|g(s)|ds <∞

for all n ∈ N, and such that for every λ, µ > 0 with 0 ≤ λ
µ ≤ 2,

λ

µ
=

1√
2π

∫
R
g(s)λisµ−isds.
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Proof. We set g = f̂ , where f is a C∞-function such that 1) f ≥ 0, 2) f(t) = 0 if t ≥ 1 + log 2, and 3)
f(t) = et if t ≤ log 2. For this function,∫

R
|s|n|g(s)|ds =

∫
R
|snf̂(s)|ds = C

∫
R
|f̂ (n)(s)|ds ≤

√
2C(‖f̂ (n)‖L2 + ‖f̂ (n+1)‖L2),

for all n ∈ N0, where the last estimate is from [34, Lemma 7]. For all derivatives of f , it holds that

‖f (n)‖2L2 =

∫ log 2

−∞
e2sds+

∫ 1+log 2

log 2

|f (n)(s)|2ds ≤ 4 + sup
s∈[log 2,1+log 2]

|f (n)(s)| <∞,

hence
∫
R |s|n|g(s)|ds < ∞ for all n ∈ N0 by Plancherel’s theorem. Furthermore, for t ≤ log 2 it holds

by the inverse Fourier transform that

et = f(t) =
1√
2π

∫
R
g(s)eitsds,

hence for t = log λ
µ the second statement follows.

Using this decomposition, we can now prove the boundedness of the Schur multiplier with symbol
(λ0, λ1, λ2) 7→ λ0−λ1

λ0−λ2
on the domain where λ0 ≥ λ1 ≥ λ2. This proof can be found in the proof of

Lemma 4.6 in [35].
Theorem 6.3. Let p1, p2, p ∈ (1,∞) such that 1/p1 + 1/p2 = 1/p. Let x ∈ Sp1 and y ∈ Sp2 be lower
triangular operators. Define ψ : {(λ0, λ1, λ2) ∈ Z3 | λ0 ≥ λ1 ≥ λ2} → R, (λ0, λ1, λ2) 7→ λ0−λ1

λ0−λ2
, where

we set ψ(λ, λ, λ) := 1. Then the associated Schur multiplier Mψ is bounded with

‖Mψ(x, y)‖Sp ≤ cp1,p2‖x‖Sp1 ‖y‖Sp2 .

Proof. We split the multiplier into its diagonal and off-diagonal part.

Mψ(x, y) =
∑

λ0≥λ1≥λ2

λ0 − λ1
λ0 − λ2

pλ0
xpλ1

ypλ2
=
∑
λ

pλxpλypλ +
∑

λ0≥λ1≥λ2
λ0>λ2

λ0 − λ1
λ0 − λ2

pλ0
xpλ1

ypλ2
.

Note that the since ψ = 1 on the diagonal, the first sum can be expressed as a truncation of x and y
to their diagonals, hence by Theorem 2.12,

‖
∑
λ

pλxpλypλ‖Sp = ‖(
∑
λ

pλxpλ)(
∑
µ

pµypµ)‖Sp ≤ ‖
∑
λ

pλxpλ‖Sp1 ‖
∑
µ

pµypµ‖Sp2

= ‖Tdiagx‖Sp1 ‖Tdiagy‖Sp2 ≤ 4C4,p1C4,p2‖x‖Sp1 ‖y‖Sp2 .

We now focus on the off-diagonal sum. Define φs(λ, µ) := (λ − µ)is, s ∈ R. Assume that x and y can
be expressed as finite sums x =

∑
λ0,λ1

pλ0
xpλ1

, y =
∑
λ1,λ2

pλ1
ypλ2

; the general case then follows by
continuity. Using Lemma 6.2, we can rewrite the Schur multiplier as follows.

Mψ(x, y) =
∑

λ0≥λ1≥λ2
λ0>λ2

λ0 − λ1
λ0 − λ2

pλ0
xpλ1

ypλ2

=
1√
2π

∑
λ0≥λ1≥λ2
λ0>λ2

∫
R
g(s)(λ0 − λ1)

is(λ0 − λ2)
−isdspλ0xpλ1ypλ2

=
1√
2π

∫
R
g(s)

∑
λ0≥λ1≥λ2
λ0>λ2

(λ0 − λ2)
−ispλ0(

∑
µ0≥µ1

(µ0 − µ1)
ispµ0xpµ1)pλ1ypλ2ds

=
1√
2π

∫
R
g(s)

∑
λ0≥λ1≥λ2
λ0>λ2

(λ0 − λ2)
−ispλ0

(Mφsx)pλ1
ypλ2

ds

=
1√
2π

∫
R
g(s)

∑
λ0>λ2

(λ0 − λ2)
−ispλ0(Mφsx)ypλ2ds

=
1√
2π

∫
R
g(s)Mφ−s((Mφsx)y)ds.
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Sp Sp

Lp(T, Sp) Lp(T, Sp)

ι

Mφs

ι

Tφs

Figure 6.1: Transference argument in the proof of Theorem 6.3 illustrated as a commutative diagram. Here,
ι : x 7→ u∗(1⊗ x)u is the isometry defined in Lemma 5.1 with u(t) =

∑
λ eiλt ⊗ pλ.

It is hence sufficient to that Mφs : Sp → Sp is bounded for all p ∈ (1,∞) and s ∈ R, and that the
bound grows polynomially in s. We can show this using Theorem 6.1 and a linear transference argument
similar to Section 5.1, see Figure 6.1. The diagram in Figure 6.1 indeed commutes, since for x ∈ Sp,
t ∈ [0, 2π],

[(ι ◦Mφs)x](t) =
∑
λ,µ

ei(λ−µ)t ⊗ pλ(Mφsx)pµ =
∑
λ,µ

ei(λ−µ)t(λ− µ)is ⊗ pλxpµ

= Tφs(
∑
λ,µ

ei(λ−µ)· ⊗ pλxpµ)(t) = [(Tφs ◦ ι)x](t),

where the third equality was shown in Lemma 5.2. Boundedness of Tφs was shown in Theorem 6.1,
hence ‖Mφs‖Sp→Sp = ‖Tφs‖Lp(T,Sp)→Lp(T,Sp) and thus for the off-diagonal operator,

‖Mψ(x, y)‖Sp ≤ 1√
2π

∫
R
|g(s)|‖Mφ−s((Mφsx)y)‖Spds

≤ 1√
2π

∫
R
|g(s)|‖Mφ−s‖Sp→Sp‖Mφs‖Sp1→Sp1

ds‖x‖Sp1 ‖y‖Sp2

≲ h̄p.Sp(β
+
p,Sp

)2h̄p1,Sp1 (β
+
p1,Sp1

)2
∫
R
|g(s)|(1 + |s|)2ds‖x‖Sp1 ‖y‖Sp2

≲ h̄p.Sp(β
+
p,Sp

)2h̄p1,Sp1 (β
+
p1,Sp1

)2‖x‖Sp1 ‖y‖Sp2 .

Remark 6.4. Following [23, Corollary 5.4], the Lp-estimate of the multiplier Tφs can be improved
significantly in p, with

‖Tφs‖Lp→Lp ≲ max(p, 1

p− 1
)(|s|−1eπ|s|)|1/2−1/p|.

Note however that this constant grows exponentially in s. Therefore, the integral in the proof of
Theorem 6.3 would diverge if this constant was used.

To prove Theorem 1.3 as in [35] for n = 2, it remains to show the boundedness of the Schur multiplier
with symbol ϕm,h. In this proof, linear transference again plays a key role.

Theorem 6.5 ([35, Theorem 5.6]). Let m ∈ N and h ∈ Cb(R). Let ϕm,h be as defined in (6.2). Then
the associated Schur multiplier Mϕm,h is bounded on Sp, p ∈ (1,∞), with

‖Mϕm,h‖Sp→Sp ≤ cp,m‖h‖∞.

Proof. Let x ∈ Sp and y ∈ Sq be such that 1/p+ 1/q = 1, p, q ∈ (1,∞), and ‖x‖p = ‖y‖q = 1. Assume
p > 2; the case 1 < p < 2 then follows by duality (see Lemma 2.17) and the case p = 2 from Lemma 2.16.

We shall consider τ(yMϕm,hx) to estimate the norm of Mϕm,h . By Lemma 2.18, we may assume
that x is off-diagonal. Furthermore, we decompose x as

x = T4off
upper

x+ T4off
lower

x.

Without loss of generality, we first assume that x = T4off
upper

x and return to this decomposition at the
end of the proof; the same estimate will hold for both T4off

upper
x and T4off

lower
x. By Lemma 2.13, we may

in this case assume that y is off-diagonal lower triangular.



6.1. Original proof by Potapov, Skripka, and Sukochev 44

By [28, Theorem 4.3] we may for any ε > 0 decompose y as y = ab, where a ∈ S2 and b ∈ Sr with
1/r + 1/2 = 1/q are both lower triangular, and 1 ≤ ‖a‖2‖b‖r ≤ 1 + ε. By the permutation property of
the trace (see Lemma 2.9), we have

τ(yMϕm,hx) = τ(abMϕm,hx) =
∑

λ0≥λ1≥λ2
λ0>λ2

τ(pλ0apλ1bpλ2Mϕm,hx)

=
∑

λ0≥λ1≥λ2
λ0>λ2

τ(pλ0apλ1bpλ2Mϕm,hxpλ0)

=
∑

λ0≥λ1≥λ2
λ0>λ2

∑
µ1,µ2

ϕm,h(µ1, µ2)τ(pλ0
apλ1

bpλ2
pµ1

xpµ2
pλ0

)

=
∑

λ0≥λ1≥λ2
λ0>λ2

ϕm,h(λ2, λ0)τ(pλ0
apλ1

bpλ2
xpλ0

).

Following [35, Lemma 5.7], we can decompose ϕm,h(λ, µ) for λ < µ as

ϕm,h(λ, µ) = (
λ− ξ

λ− µ
)mϕm,h(λ, ξ) + (

ξ − µ

λ− µ
)mϕm,h(ξ, µ) +

m−1∑
l=1

Cl−1
m−1(

λ− ξ

λ− µ
)m−l(

ξ − µ

λ− µ
)lϕl,h(ξ, µ),

where Cl−1
m−1 is a scalar constant and λ ≤ ξ ≤ µ. Hence we have

τ(yMϕm,hx) =
∑

λ0≥λ1≥λ2
λ0>λ2

(
λ1 − λ2
λ0 − λ2

)mϕm,h(λ2, λ1)τ(pλ0
apλ1

bpλ2
xpλ0

)

+
∑

λ0≥λ1≥λ2
λ0>λ2

(
λ0 − λ1
λ0 − λ2

)mϕm,h(λ1, λ0)τ(pλ0apλ1bpλ2xpλ0)

+
∑

λ0≥λ1≥λ2
λ0>λ2

m−1∑
l=1

(
λ0 − λ1
λ0 − λ2

)l(
λ1 − λ2
λ0 − λ2

)m−lϕl,h(λ1, λ0)τ(pλ0
apλ1

bpλ2
xpλ0

).

Define ϕ̃m,h(λ, µ) := ϕm,h(µ, λ). By using Lemma 6.2 with φs(ξ) = ξis, this yields

τ(yMϕm,hx) =
1√
2π

∫
R
g(s)τ(a((MφmsMϕ̃m,h

b)Mφ−msx)ds

+
1√
2π

∫
R
g(s)τ((MφmsMϕ̃m,h

a)bMφ−msx)ds

+

m−1∑
l=1

1√
2π

∫
R
g(s)τ((Mφ(m−l)sa)((MφlsMϕ̃l,h

b)Mφ−msx)ds.

We apply Theorem 6.3 to estimate the Mφms terms and obtain

|τ(yMϕm,hx)| ≤ c2cp
1√
2π

∫
R
g(s)(1 + |ms|)2ds‖Mϕ̃m,h

a‖S2‖b‖Sr‖x‖Sp

+ crcp
1√
2π

∫
R
g(s)(1 + |ms|)2ds‖a‖S2

‖Mϕ̃m,h
b‖Sr‖x‖Sp

+

m−1∑
l=1

c2crcp
1√
2π

∫
R
g(s)(1 + |(m− l)s|)(1 + |ls|)(1 + |ms|)ds‖a‖S2

‖Mϕ̃l,h
b‖Sr‖x‖Sp

≲ cp(c2‖Mϕ̃m,h
a‖S2

‖b‖Sr + cr‖a‖S2
‖Mϕ̃m,h

b‖Sr +
m−1∑
l=1

c2cr‖a‖S2
‖Mϕ̃l,h

b‖Sr )‖x‖Sp ,
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where cα denotes the constant from Theorem 6.1, α = 2, r, p. Note that we may use the estimate c2 ≤ 1
by Lemma 2.16. This lemma also implies

‖Mϕ̃m,h
a‖S2 ≤ ‖ϕ̃m,h‖∞‖a‖S2 , (6.3)

hence by definition of ϕ̃m,h we have

|τ(yMϕm,hx)| ≲ cp(‖h‖∞‖a‖S2
‖b‖Sr + cr‖a‖S2

‖Mϕ̃m,h
b‖Sr +

m−1∑
l=1

cr‖a‖S2
‖Mϕ̃l,h

b‖Sr )‖x‖Sp

≲ cp(‖h‖∞ + cr‖Mϕ̃m,h
‖Sr→Sr +

m−1∑
l=1

cr‖Mϕ̃l,h
‖Sr→Sr )(1 + ε)‖x‖Sp .

Note that by Lemma 2.15, ‖Mϕ̃m,h
‖Sp→Sp = ‖Mϕm,h‖Sp→Sp for all p ∈ (1,∞). The same estimate as

above follows for x = T4off
lower

x, hence in total we have for general x ∈ Sp (letting ε→ 0)

|τ(yMϕm,hx)| ≤ |τ(yMϕm,hT4off
upper

x)|+ |τ(yMϕm,hT4off
lower

x)|+ |τ(yMϕm,hTdiagx)|

≲ C4,pcp(‖h‖∞ + cr‖Mϕm,h‖Sr→Sr +

m−1∑
l=1

cr‖Mϕl,h‖Sr→Sr )‖x‖Sp .

The statement of the theorem now follows by induction on m. For the purpose of keeping track of
the constants in our particular case, we restrict the following discussion to the cases m = 1, 2 appearing
in (6.1); the proof for higher m follows the same inductive approach.

Case 1: m = 1. We now have the estimate

|τ(yMϕ1,h
x)| ≲ C4,pcp(‖h‖∞ + cr‖Mϕ1,h

‖Sr→Sr )‖x‖Sp .

We first let p > 4, where 1/p + 1/r = 1/2 implies 2 < r < p by construction. Thus there exists a
θ ∈ (0, 1) such that θ/p + (1 − θ)/2 = 1/r. By complex interpolation (see Lemma 2.7) and (6.3), it
follows that

‖Mϕ1,h
‖Sr→Sr ≤ ‖Mϕ1,h

‖θSp→Sp‖Mϕ1,h
‖1−θS2→S2

≤ ‖Mϕ1,h
‖θSp→Sp‖h‖

1−θ
∞ . (6.4)

We may assume that ‖h‖∞ ≤ 1 (the general case then follows by scaling), hence

‖Mϕ1,h
‖Sp→Sp = sup

‖x‖Sp=1

sup
‖y‖Sq=1

|τ(yMϕ1,h
x)|

≤ CC4,pcp max(cr, 1)︸ ︷︷ ︸
=:C̃

(1 + ‖Mϕ1,h
‖θSp→Sp).

From this, our statement follows from the following observation: If λ ≤ 1 then 1 + λθ ≤ 2, thus
C̃ ≥ λ

1+λθ
≥ λ

2 . If λ ≥ 1, then C̃ ≥ λ
1+λθ

≥ λ
2λθ

= λ1−θ

2 . Hence we conclude for p > 4,

‖Mϕ1,h
‖Sp→Sp ≲ max(C4,pcp max(cr, 1), (C4,pcp max(cr, 1))1/1−θ) =: Cp,1.

Boundedness for 2 < p < 4 follows from (6.4): Let r′ such that 1/p+ 1/r′ = 1/2, then

‖Mϕ1,h
‖Sp→Sp ≤ max(1, ‖Mϕ1,h

‖Sr′→Sr′ ).

Boundedness for p = 4 may thus be concluded by interpolation.

Case 2: m = 2. Using the previous case and assuming ‖h‖∞ ≤ 1, we now have the estimate

|τ(yMϕ2,h
x)| ≲ C4,pcp(1 + cr‖Mϕ2,h

‖Sr→Sr + cr‖Mϕ1,h
‖Sr→Sr )‖x‖Sp .
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As in the previous case, we use interpolation to show

‖Mϕ2,h
‖Sp→Sp ≲ C4,pcp(1 + cr‖Mϕ1,h

‖Sr→Sr + cr‖Mϕ2,h
‖θSp→Sp)

for large p, and thus for p > 4 we have

‖Mϕ2,h
‖Sp→Sp ≲ max(C4,pcp max(cr, 1 + cr‖Mϕ1,h

‖Sr→Sr ),

(C4,pcp max(cr, 1 + cr‖Mϕ1,h
‖Sr→Sr ))

1/1−θ).

Boundedness for 2 < p ≤ 4 follows as in the previous case.

6.2. Alternative proof based on bilinear transference
In this section, we collect the p-dependent constants of our proof method from Sections 3–5. We
restrict our attention to the constant in Theorem 1.4, since the p-dependence of the constants of the
other theorems used in our proof (Theorem 2.12, Theorem 1.5, and Lemma 5.3) has already been
recorded in their respective statements.

Key to the proof of Theorem 1.4 is the decomposition of Calderón-Zygmund operators (see Defi-
nition 2.33) into dyadic model operators. Recall from Section 2.8 that a bilinear Calderón-Zygmund
operator T can be decomposed as

〈T (f, g), h〉 = CTEω
∑
k∈N3

0

∑
u

2− maxi kiα/2〈UkDω,u(f, g), h〉, (6.5)

where f, g, h ∈ L∞
c (R), CT is a constant depending only on T and UkDω,u denote dyadic model operators.

Following [12], UkDω,u denotes a sum of cancellative dyadic shifts and their adjoints for maxi ki > 0,
whereas for maxi ki = 0 it either denotes a cancellative dyadic shift or a bilinear paraproduct.

For 1/p1 + 1/p2 + 1/p3 = 1, we can extend the trilinear form (6.5) associated with T to a trilinear
form (L∞

c (R)⊗ Sp1)× (L∞
c (R)⊗ Sp2)× (L∞

c (R)⊗ Sp3) → C by setting

〈Text(

N∑
j=1

fj ⊗ xj ,

M∑
k=1

gk ⊗ yk),

L∑
l=1

hl ⊗ zl〉 :=

N∑
j=1

M∑
k=1

L∑
l=1

〈T (fj , gk), hl〉τ(xjykzl).

To show that for 1/p1 + 1/p2 = 1/p, Text is a bounded map Lp1(R, Sp1)× Lp2(R, Sp2) → Lp(R, Sp),
we need a uniform bound of the form

|〈Text(f, g), h〉| ≲ ‖f‖Lp1 (R,Sp1 )‖g‖Lp2 (R,Sp2 )‖h‖Lp3 (R,Sp3 )

for all f ∈ L∞
c (R)⊗Sp1 , g ∈ L∞

c (R)⊗Sp2 , h ∈ L∞
c (R)⊗Sp3 . By the decomposition (6.5), it is sufficient

to show such a bound for all dyadic model operators. In fact, we will show that the decomposition of
our Calderón-Zygmund operator from Section 5.3 only consists of dyadic shifts and does not contain
paraproducts. However, we will give the boundedness proof for bilinear paraproducts regardless, as
this demonstrates how vanishing paraproducts impact the p-dependence of the boundedness constant
of Theorem 1.4.

The following theorems are a collection of estimates that are used in the boundedness proofs. Many
of them rely on the theory of UMD spaces, see Section 2.6 for a very brief overview.

Theorem 6.6 (Decoupling Inequality [18, Theorem 6]). Let p ∈ (1,∞), let X be a UMD space with
UMD constant βp,X , and let D be a dyadic grid. Further define the following:

• Dj,k := {Q ∈ D | |Q| = 2m(k+1)+j for some m ∈ Z} for j, k ∈ Z fixed,
• VQ := (Q,Leb(Q), λQ) is a probability space, where Leb(Q) denotes the Lebesgue measurable

subsets of Q and λQ is the normalised restriction of the Lebesgue measure to Q,
• V :=

∏
Q∈D VQ is a product probability space with measure ν and elements y = (yQ)Q∈D.
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Let (εQ)Q∈D be a Rademacher sequence. Let (fQ)Q∈D be a sequence of functions such that for all Q ∈ D,
fQ is 1) supported on Q, 2) constant on every Q′ ∈ chD(Q), and 3) 〈fQ〉Q = 0 holds. Then

1

βpp,Sp
E
∫
R

∫
V
‖
∑

Q∈Dj,k

εQ1Q(x)fQ(yQ)‖pSpdν(y)dx

≤
∫
R
‖
∑

Q∈Dj,k

fQ(x)‖pSpdx ≤ βpp,SpE
∫
R

∫
V
‖
∑

Q∈Dj,k

εQ1Q(x)fQ(yQ)‖pSpdν(y)dx. (6.6)

This inequality also holds when replacing Dj,k with D.

Following [12], the decoupling inequality is applied in this section with

fQ := ∆l
Qf :=

∑
R∈D
R(l)=Q

DRf =
∑
R∈D
R(l)=Q

∑
R′∈chD(R)

(〈f〉R′ − 〈f〉R)1R′ (6.7)

for 0 ≤ l ≤ k. For the relevant notation regarding dyadic cubes, see Section 2.5. Note that (∆l
Qf)Q∈Dj,k

indeed satisfies the required properties of Theorem 6.6:

1. By construction, R′ ⊂ Q for all R′ considered in (6.7), hence

supp ∆l
Qf ⊆

⋃
R∈D
R(l)=Q

⋃
R′∈chD(R)

R′ ⊆ Q.

2. Let Q′ ∈ chDj,k(Q). Note that here we are considering the children of Q in Dj,k, hence if
|Q| = 2m(k+1)+j for some m ∈ Z, then |Q′| = 2(m−1)(k+1)+j . Note further that by construction
R′(l+1) = Q for all R′ considered in (6.7), i.e.

|R′| = 2−(l+1)|Q| = 2m(k+1)+j−(l+1).

Therefore, R′ ∈ Dj,k if and only if l = k (in this case, R′ ∈ chDj,k(Q)). In either case, there exists
exactly one R′

∗ such that R′(l+1)
∗ = Q and Q′ ⊆ R′

∗. Hence by construction,

(∆l
Qf)1Q′ = (〈f〉R′

∗
− 〈f〉R∗)1R′

∗∩Q′ = (〈f〉R′
∗
− 〈f〉R∗)1Q′ ,

thus ∆l
Qf is constant on Q′.

3. Note that DRf = 〈f, hR〉hR by Lemma 2.21. Hence,

〈∆l
Qf〉Q =

∑
R∈D
R(l)=Q

〈f, hR〉〈hR〉Q = 0,

since R ⊆ Q and the Haar functions hR are cancellative.

Theorem 6.7 (Kahane-Khintchine inequality [20, Theorem 3.2.23]). Let (εn)n be a Rademacher se-
quence on a probability space Ω, and let X be a Banach space. Then for all p, q ∈ (0,∞), there exists
κp,q <∞ such that

‖
N∑
n=1

εnxn‖Lp(Ω,X) ≤ κp,q‖
N∑
n=1

εnxn‖Lq(Ω,X)

.

Remark 6.8. Relevant in this section is the constant κ2,q, where the optimal constant has been
determined in [17] as κ2,q = 1 for q ∈ [2,∞). For q ∈ (0, 2), it follows from more general estimates that
κ2,q ≤

√
2
q , see [21, Theorem 6.6.5]. In particular, κ2,q ≤

√
2 for all q ∈ (1,∞).
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Theorem 6.9 (Kahane contraction principle [20, Proposition 3.2.10]). Let (εn)n be a Rademacher
sequence on a probability space Ω, (an)n a finite scalar sequence, and (xn)n a finite sequence in a
Banach space X. Let 1 ≤ p ≤ ∞. Then

‖
N∑
n=1

anεnxn‖Lp(Ω;X) ≤ max
n

|an|‖
N∑
n=1

εnxn‖Lp(Ω;X).

The following theorem has been specialised to our dyadic setting.

Theorem 6.10 (Stein’s inequality, adapted from [20, Theorem 4.2.23]). Let X be a UMD space,
let (fQ ∈ L1

loc(X))Q be such that suppfQ ⊆ Q and such that the sum below is finite, and p ∈ (1,∞).
Then

E‖
∑
Q∈D

εQ〈fQ〉Q1Q‖Lp(R,X) ≤ β+
p,XE‖

∑
Q∈D

εQfQ‖Lp(R,X).

Lemma 6.11 (Special case of [12, Lemma 4.1]). Let K ∈ N and let p1, p2, p ∈ (1,∞) be such that
1/p1 + 1/p2 = 1/p. For each k = 1, . . . ,K, let ak be a scalar such that |ak| ≤ 1, and for each j = 1, 2
let xj,k ∈ Spj . Then

‖
K∑
k=1

akx1,kx2,k‖Sp ≤
2∏
j=1

‖(xj,k)Kk=1‖Rad(Spj ). (6.8)

Here,

‖(xk)Kk=1‖Rad(Sp) :=

(
E‖

K∑
k=1

εkxk‖2Sp

)1/2

,

where (εk)k denotes a Rademacher sequence.

Let us further recall Jensen’s inequality.

Lemma 6.12 (Jensen’s inequality [20, Proposition 1.2.11]). Let (Ω, µ) be a probability space and let
X be a Banach space. Let f : Ω → X be a Bochner integrable function and let ϕ : X → R be a convex
and lower semi-continuous function. If ϕ ◦ f is integrable, then

ϕ

(∫
Ω

fdµ

)
≤
∫
Ω

ϕ ◦ fdµ.

6.2.1. Dyadic shifts
We can now prove the boundedness of bilinear dyadic shifts, following [12, Section 4].

Theorem 6.13. Let p1, p2, p3 ∈ (1,∞) such that 1/p1 + 1/p2 + 1/p3 = 1. Let Sk be a bilinear dyadic
shift of complexity k as in Definition 2.34 and let fj ∈ L∞

c (R, Spj ), j = 1, 2, 3. It then holds that

|〈Sk(f1, f2), f3〉| ≲ Cshift
p1,p2

3∏
j=1

‖fj‖Lpj (R,Spj ). (6.9)

Proof. The dyadic shift is first rewritten as

〈Sk(f1, f2), f3〉 =
κ∑
i=0

〈Ski (f1, f2), f3〉, (6.10)

〈Ski (f1, f2), f3〉 =
∑

K∈Di,κ

∑
L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,Kτ

 3∏
j=1

〈fj , h′Lj 〉

 , (6.11)

bL1,L2,L3,K =
∑

Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

aQ1,Q2,Q3,K

3∏
j=1

|Qj |1/2

|Lj |1/2
, (6.12)
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where 0 ≤ lj ≤ kj and κ = max kj . This is a new shift operator with h′Lj ∈ {h0Lj , hLj} such that there
may be more than two indices j such that their associated Haar functions are cancellative, whereas in
Definition 2.34, the Haar functions are cancellative for exactly two indices. Furthermore, the construc-
tion is such that if h′Lj is not cancellative, then lj = 0. For details on how to construct this new shift,
see [12].

The proof now proceeds as follows. First, boundedness is shown in the case where all Haar functions
h′Lj are cancellative. In the second case, where not all Haar functions are cancellative, the fact h′Lj =
h0Lj ⇒ lj = 0 allows us to reduce the trilinear form (6.11) to a bilinear form with only cancellative Haar
functions. For this new bilinear form, boundedness follows by the same proof method as in the first
case.

Case 1. Let 0 ≤ i ≤ κ be such that all associated Haar functions in (6.11) are cancellative. Note that
for L(l3)

3 ∈ Di,κ, we have∑
K∈Di,κ

∆l3
KhL3 =

∑
K∈Di,κ

∑
L∈D

L(l3)=K

DLhL3 =
∑

K∈Di,κ

∑
L∈D

L(l3)=K

〈hL3 , hL〉hL = hL3

by Lemma 2.21 and the orthogonality of the Haar functions. Using the decoupling inequality from
Theorem 6.6, we thus have

‖Ski (f1, f2)‖Lp(R,Sp) = ‖
∑

K∈Di,κ

∑
L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,K〈f1, hL1
〉〈f2, hL2

〉hL3
‖Lp(R,Sp)

≤ βp,Sp

E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)
∑

L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,K

2∏
j=1

〈fj , hLj 〉hL3
(yK)‖pSpdν(y)dx


1/p

.

We can rewrite the inner sum in the integral by using 〈fj , hLj 〉 = 〈∆lj
Kfj , hLj 〉. Indeed,

〈∆lj
Kfj , hLj 〉 =

∑
L∈D

L(lj)=K

〈DLfj , hLj 〉 =
∑
L∈D

L(lj)=K

〈fj , hL〉〈hL, hLj 〉 = 〈fj , hLj 〉.

Hence we can write

∑
L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,K

2∏
j=1

〈fj , hLj 〉hL3(yK)

=
∑

L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,K

2∏
j=1

〈∆lj
Kfj , hLj 〉hL3

(yK)

=

∫
K2

∑
L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,K

2∏
j=1

∆
lj
Kfj(zj)hLj (zj)hL3

(yK)dz

=
1

|K|2

∫
K2

bK(yK , z)

2∏
j=1

∆
lj
Kfj(zj)dz =

∫
V2

bK(yK , zK)

2∏
j=1

∆
lj
Kfj(zj,K)dν(z),

where V and ν are as defined in Theorem 6.6, and

bK(yK , zK) = |K|2
∑

L1,L2,L3∈D
L

(lj)

j =K

bL1,L2,L3,K

2∏
j=1

hLj (zj,K)hL3
(yK).
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Since V2 is a probability space, we can use monotonicity of the integral and Jensen’s inequality (see
Lemma 6.12) to show

‖Ski (f1, f2)‖Lp(R,Sp)

≤ βp,Sp

E
∫
R

∫
V
‖
∫
V2

∑
K∈Di,κ

εK1K(x)bK(yK , zK)

2∏
j=1

∆
lj
Kfj(zj,K)dν(z)‖pSpdν(y)dx

1/p

≤ βp,Sp

E
∫
R

∫
V

∫
V2

‖
∑

K∈Di,κ

εK1K(x)bK(yK , zK)

2∏
j=1

∆
lj
Kfj(zj,K)‖Spdν(z)

p

dν(y)dx

1/p

≤ βp,Sp

E
∫
R

∫
V

∫
V2

‖
∑

K∈Di,κ

εK1K(x)bK(yK , zK)

2∏
j=1

∆
lj
Kfj(zj,K)‖pSpdν(z)dν(y)dx

1/p

.

Note that by construction (see Definition 2.34),

|bK(yK , zK)| ≤ |K|2
∑

L1,L2,L3∈D
L

(lj)

j =K

|bL1,L2,L3,K |
2∏
j=1

|hLj (zj,K)||hL3
(yK)|

≤ |K|2
∑

L1,L2,L3∈D
L

(lj)

j =K

∑
Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

|aQ1,Q2,Q3,K |
3∏
j=1

|Qj |1/2

|Lj |1/2
1L1

(z1,K)

|L1|1/2
1L2

(z2,K)

|L2|1/2
1L3

(yK)

|L3|1/2

≤
∑

L1,L2,L3∈D
L

(lj)

j =K

∑
Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

3∏
l=1

|Ql|1/2
3∏
j=1

|Qj |1/2

|Lj |
1L1(z1,K)1L2(z2,K)1L3(yK)

=
∑

L1,L2,L3∈D
L

(lj)

j =K

∑
Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

3∏
j=1

|Qj |
|Lj |

1L1(z1,K)1L2(z2,K)1L3(yK)

=
∑

L1,L2,L3∈D
L

(lj)

j =K

∑
Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

3∏
j=1

2lj−kj1L1
(z1,K)1L2

(z2,K)1L3
(yK)

=
∑

L1,L2,L3∈D
L

(lj)

j =K

3∏
j=1

2kj−lj2lj−kj1L1
(z1,K)1L2

(z2,K)1L3
(yK)

=
∑

L1,L2,L3∈D
L

(lj)

j =K

1L1(z1,K)1L2(z2,K)1L3(yK)

= 1K(z1,K)1K(z2,K)1K(yK)

≤ 1.
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We can now finish the proof of this case with

‖Ski (f1, f2)‖Lp(R,Sp)

≤ βp,Sp

E
∫
R

∫
V

∫
V2

‖
∑

K∈Di,κ

εK1K(x)bK(yK , zK)

2∏
j=1

∆
lj
Kfj(zj,K)‖pSpdν(z)dν(y)dx

1/p

≤ βp,Sp

∫
R

∫
V

∫
V2

2∏
j=1

‖(1K(x)∆
lj
Kfj(zj,K))K∈Di,κ‖

p
Rad(Spj )

dν(z)dν(y)dx

1/p

Lemma 6.11

= βp,Sp

∫
R

∫
V2

2∏
j=1

‖(1K(x)∆
lj
Kfj(zj,K))K∈Di,κ‖

p
Rad(Spj )

dν(z)dx

1/p

V probability space

≤ βp,Sp

2∏
j=1

(∫
R

∫
V2

‖(1K(x)∆
lj
Kfj(zj,K))K∈Di,κ‖

pj
Rad(Spj )

dν(z)dx

)1/pj

Hölder’s inequality

= βp,Sp

2∏
j=1

∫
R

∫
V2

(E‖
∑

K∈Di,κ

εK1K(x)∆
lj
Kfj(zj,K)‖2Spj )

pj/2dν(z)dx

1/pj

definition ‖ · ‖Rad

≤ βp,Sp

2∏
j=1

κ2,pj

∫
R

∫
V2

E‖
∑

K∈Di,κ

εK1K(x)∆
lj
Kfj(zj,K)‖pjSpj dν(z)dx

1/pj

Theorem 6.7

= βp,Sp

2∏
j=1

κ2,pj

E
∫
R

∫
V2

‖
∑

K∈Di,κ

εK1K(x)∆
lj
Kfj(zj,K)‖pjSpj dν(z)dx

1/pj

Fubini’s theorem

≤ βp,Sp

2∏
j=1

κ2,pjβpj ,Spj ‖fj‖Lpj (R,Spj ). decoupling estimate

Case 2. Let 0 ≤ i ≤ κ be such that one Haar function in (6.11) is not cancellative. We assume that
h′L2

= h0L2
and h′Lj = hLj , j = 1, 3; the estimates for the other cases follow in the same manner. Note

that (6.11) has been constructed such that this implies l2 = 0, hence L2 = K; see [12] for details. We
use the decoupling estimate (Theorem 6.6) to estimate

‖Ski (f1, f2)‖Lp(R,Sp) = ‖
∑

K∈Di,κ

∑
L1,L3∈D
L

(lj)

j =K

bL1,L3,K〈f1, hL1
〉|K|1/2〈f2〉KhL3

‖Lp(R,Sp)

≤ βp,Sp

E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)〈φK,y〉K‖pSpdν(y)dx

1/p

,

where the function φK,y : R → Sp is defined as

φK,y(x) := |K|1/2
∑

L1,L3∈D
L

(lj)

j =K

bL1,L3,K〈f1, hL1〉f2(x)hL3(yK).

We can now apply Stein’s inequality (Theorem 6.10) with respect to x ∈ R to obtain

‖Ski (f1, f2)‖Lp(R,Sp) ≤ βp,Spβ
+
p,Sp

E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)φK,y(x)‖pSpdν(y)dx

1/p

.
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By Lemma 2.7 and Hölder’s inequality we can further estimate

‖Ski (f1, f2)‖Lp(R,Sp)
≤ βp,Spβ

+
p,Sp

× (E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)|K|1/2
∑

L1,L3∈D
L

(lj)

j =K

bL1,L3,K〈f1, hL1
〉hL3

(yK)‖pSp1 ‖f2(x)‖
p
Sp2

dν(y)dx)1/p

≤ βp,Spβ
+
p,Sp

(E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)|K|1/2
∑

L1,L3∈D
L

(lj)

j =K

bL1,L3,K〈f1, hL1
〉hL3

(yK)‖p1Sp1dν(y)dx)
1/p1

× ‖f2‖Lp2 (R,Sp2 ).

We now proceed as in Case 1 to estimate the remaining term. We use

|K|1/2
∑

L1,L3∈D
L

(lj)

j =K

bL1,L3,K〈f1, hL1
〉hL3

(yK) =

∫
V
bK(yk, zK)∆l1

Kf1(zK)dν(z),

bK(yk, zK) = |K|3/2
∑

L1,L3∈D
L

(lj)

j =K

bL1,L3,KhL1(z)hL3(yK)

and estimate the remaining integral asE
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)|K|1/2
∑

L1,L3∈D
L

(lj)

j =K

bL1,L3,K〈f1, hL1
〉hL3

(yK)‖p1Sp1dν(y)dx


1/p1

=

E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)

∫
V
bK(yk, zK)∆l1

Kf1(zK)dν(z)‖p1Sp1dν(y)dx

1/p1

≤

E
∫
R

∫
V

∫
V
‖
∑

K∈Di,κ

εK1K(x)bK(yk, zK)∆l1
Kf1(zK)‖p1Sp1dν(z)dν(y)dx

1/p1

Using Fubini’s theorem and the Kahane contraction principle (Theorem 6.9) we further haveE
∫
R

∫
V

∫
V
‖
∑

K∈Di,κ

εK1K(x)bK(yk, zK)∆l1
Kf1(zK)‖p1Sp1dν(z)dν(y)dx

1/p1

=

∫
R

∫
V

∫
V
E‖

∑
K∈Di,κ

εK1K(x)bK(yk, zK)∆l1
Kf1(zK)‖p1Sp1dν(z)dν(y)dx

1/p1

≤

∫
R

∫
V

∫
V

max
K∈Di,κ

|bK(yk, zK)|E‖
∑

K∈Di,κ

εK1K(x)∆l1
Kf1(zK)‖p1Sp1dν(z)dν(y)dx

1/p1

.
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As in Case 1, we have the pointwise estimate |bK(yk, zK)| ≤ 1, since

|bK(yk, zK)| ≤ |K|3/2
∑

L1,L3∈D
L

(lj)

j =K

|bL1,L3,K ||hL1(z)||hL3(yK)|

= |K|3/2
∑

L1,L3∈D
L

(lj)

j =K

|bL1,L3,K | 1L1
(z)

|L1|1/2
1L3

(yK)

|L3|1/2

≤ |K|3/2
∑

L1,L3∈D
L

(lj)

j =K

∑
Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

|aQ1,Q2,Q3,K |
3∏
j=1

|Qj |1/2

|Lj |1/2
1L1

(z)

|L1|1/2
1L3

(yK)

|L3|1/2

≤
∑

L1,L3∈D
L

(lj)

j =K

∑
Q1,Q2,Q3∈D
Q

(kj−lj)
j =Lj

3∏
j=1

|Qj |
|Lj |

1L1(z)1L3(yK)

≤ 1.

Using the decoupling estimate (Theorem 6.6) we thus conclude∫
R

∫
V

∫
V

max
K∈Di,κ

|bK(yk, zK)|E‖
∑

K∈Di,κ

εK1K(x)∆l1
Kf1(zK)‖p1Sp1dν(z)dν(y)dx

1/p1

≤

∫
R

∫
V

∫
V
E‖

∑
K∈Di,κ

εK1K(x)∆l1
Kf1(zK)‖p1Sp1dν(z)dν(y)dx

1/p1

=

E
∫
R

∫
V
‖
∑

K∈Di,κ

εK1K(x)∆l1
Kf1(zK)‖p1Sp1dν(z)dx

1/p1

≤ βp1,Sp1

∫
R
‖f1‖pSpdx.

Combining all cases, we conclude (using κ2,q ≤
√
2, see Remark 6.8)

Cshift
p1,p2 ≲ βp,Spβp1,Sp1βp2,Sp2 + βp,Spβ

+
p,Sp

βp1,Sp1 + βp1,Sp1β
+
p1,Sp1

βp2,Sp2 + βp2,Sp2β
+
p2,Sp2

βp,Sp .

6.2.2. Paraproducts
It remains to show the boundedness of bilinear paraproducts. For this, we first need the boundedness
of the linear paraproduct.

Theorem 6.14. Let D be a dyadic grid and let (aQ)Q∈D be scalars satisfying

sup
Q0∈D

 1

|Q0|
∑
Q∈D
Q⊂Q0

|aQ|2


1/2

≤ 1.

Then the linear paraproduct

π(f) :=
∑
Q∈D

aQ〈f〉QhQ,

where hQ denotes a cancellative Haar function, is a bounded map on Lp(R, Sp), p ∈ (1,∞), with

‖πf‖Lp(R,Sp) ≲ pp′CBMOpβ
2
p,Spβp,R‖f‖Lp(R,Sp).
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A proof with explicit constants was given in [18, Theorem 3] for a more general definition of the
paraproduct via BMO-functions (see Section 2.9):

Theorem 6.15 ([18, Theorem 3]). Let X be a Banach space and let T be a UMD subspace of B(X),
the bounded linear operators on X. Let b ∈ BMOp(R, T ) and f ∈ Lp(R, X). The paraproduct is defined
as

Πbf :=
∑
Q∈D

DQb〈f〉Q.

This paraproduct is a bounded operator on Lp(R, X) with

‖Πbf‖Lp(R,X) ≲ pp′β2
p,Xβp,T ‖b‖BMOp‖f‖Lp(R,X).

Note that since DQb = 〈b, hQ〉hQ by Lemma 2.21, this definition coincides for scalar-valued b with
the definition of the paraproduct in Theorem 6.14 for X = Sp, p ∈ (1,∞), and aQ := 〈b, hQ〉, up to
the boundedness constant of (aQ)Q. On the other hand, given (aQ)Q as in Definition 2.35, setting
b :=

∑
Q∈D aQhQ yields DQb =

∑
Q′ aQ′〈hQ′ , hQ〉hQ = aQhQ. Hence the definition of the paraproduct

used in [18] is equivalent to the one used in this section.

Proof of Theorem 6.14. Using Theorem 6.15 with T ' K, K scalar field, it remains to show that for
b :=

∑
Q∈D aQhQ, ‖b‖BMOp is bounded. By the John-Nirenberg inequality (Theorem 2.39), we have

‖b‖BMOp ≤ CBMOp‖b‖BMO2
.

Note that for any Q0 ∈ D, {h0Q0
} ∪ {hQ | Q ⊆ Q0 dyadic cube} is an orthonormal basis of L2(Q0).

Hence we can write b1Q0
= 〈b, h0Q0

〉h0Q0
+
∑

Q∈D
Q⊆Q0

〈b, hQ〉hQ. Therefore,

‖b‖BMO2 = sup
Q0∈D

(
1

|Q0|

∫
Q0

|b− 〈b〉Q0 |2dx
)1/2

= sup
Q0∈D

(
1

|Q0|

∫
Q0

|b1Q0
− 〈b, h0Q0

〉h0Q0
|2dx

)1/2

= sup
Q0∈D

 1

|Q0|

∫
Q0

|
∑
Q∈D
Q⊆Q0

〈b, hQ〉hQ|2dx


1/2

.

By using the orthogonality of the Haar functions, we can pull the sum out of the integral and conclude

‖b‖BMO2
= sup
Q0∈D

 1

|Q0|
∑
Q∈D
Q⊆Q0

∫
Q0

|〈b, hQ〉hQ|2dx


1/2

= sup
Q0∈D

 1

|Q0|
∑
Q∈D
Q⊆Q0

1

|Q|

∫
Q

|〈b, hQ〉|2dx


1/2

= sup
Q0∈D

 1

|Q0|
∑
Q∈D
Q⊆Q0

|〈b, hQ〉|2


1/2

= sup
Q0∈D

 1

|Q0|
∑
Q∈D
Q⊆Q0

|aQ|2


1/2

.
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Remark 6.16. In the boundedness proof of the bilinear paraproduct, we will not apply Theorem 6.14
directly; rather, we will estimate a term that arises in the proof of Theorem 6.15. We will therefore
demonstrate the first step of the proof of Theorem 6.15 here, namely an application of the decoupling
inequality (Theorem 6.6).

Define fQ := aQ〈f〉QhQ for a dyadic cube Q ∈ D. These functions fulfil the conditions in Theo-
rem 6.6, hence we may apply the decoupling inequality and have

‖πf‖pLp(R,Sp) =
∫
R
‖
∑
Q∈D

fQ(x)‖pSpdx ≤ βpp,SpE
∫
R

∫
V
‖
∑
Q∈D

εQ1Q(x)fQ(yQ)‖pSpdν(y)dx

= βpp,SpE
∫
R

∫
V
‖
∑
Q∈D

εQ1Q(x)aQ〈f〉QhQ(yQ)‖pSpdν(y)dx.

Note that for fixed yQ ∈ VQ, the families (εQhQ(yQ))Q and (εQ|hQ(yQ)|)Q are identically distributed,
hence

βpp,SpE
∫
R

∫
V
‖
∑
Q∈D

εQ1Q(x)aQ〈f〉QhQ(yQ)‖pSpdν(y)dx

= βpp,SpE
∫
R

∫
V
‖
∑
Q∈D

εQ1Q(x)aQ〈f〉Q|hQ(yQ)|‖pSpdν(y)dx.

By construction of the Haar functions, |hQ| = 1
|Q|1/2 1Q is constant on VQ. Since V =

∏
Q VQ is a

probability space and
∑
Q∈D

1
|Q|1/2 εQ1Q(x)aQ〈f〉Q|1Q(yQ)| is constant in all yQ, Q ∈ D, we now have

βpp,SpE
∫
R

∫
V
‖
∑
Q∈D

εQ1Q(x)aQ〈f〉Q|hQ(yQ)|‖pSpdν(y)dx

= βpp,SpE
∫
R

∫
V
‖
∑
Q∈D

1
|Q|1/2 εQ1Q(x)aQ〈f〉Q|1Q(yQ)|‖

p
Sp
dν(y)dx

= βpp,SpE
∫
R
‖
∑
Q∈D

1
|Q|1/2 εQ1Q(x)aQ〈f〉Q‖

p
Sp
dx

= βpp,SpE
∫
R
‖
∑
Q∈D

εQaQ〈f〉Q|hQ(x)|‖pSpdx

This term (up to taking 1/p-th powers) will appear in the proof of Theorem 6.17. Hence when estimating
it using Theorem 6.14, we may omit a constant βp,Sp , as the remaining proof of Theorem 6.15 showsE

∫
R
‖
∑
Q∈D

εQaQ〈f〉Q|hQ(x)|‖pSpdx

1/p

≲ pp′βp,Spβp,RCBMOp‖f‖Lp(R,Sp).

We now follow [12] to prove boundedness of the paraproduct in the bilinear case.

Theorem 6.17 ([12, Theorem 5.1]). Let fj ∈ L∞
c (R, Spj ), j = 1, 2, 3, be such that 1/p1+1/p2+1/p3 = 1.

Then

|Λπ(f1, f2, f3)| ≤ Cpara
p1,p2

3∏
j=1

‖fj‖Lpj (R,Spj ) (6.13)

with
Cpara
p1,p2 ≲ β−

p,Sp
β+
p,Sp

pp′βp1,Sp1βp1,T CBMOp1 .

Proof. Recall from the definition of the multilinear paraproduct (see Definition 2.35) that there is one
index j0 ∈ {1, 2, 3} such that the associated Haar function is cancellative. We will assume that j0 = 3
(the other cases follow in the same manner) and choose p ∈ (1,∞) such that 1/p1 + 1/p2 = 1/p.



6.2. Alternative proof based on bilinear transference 56

Using the UMD property of Sp, we have

‖π(f1, f2)‖Lp(R,Sp) = ‖
∑
Q∈D

aQ〈f1〉Q〈f2〉QhQ‖Lp(R,Sp)

≤ β−
p,Sp

E
∫
R
‖
∑
Q∈D

εQaQ〈f1〉Q〈f2〉QhQ(x)‖pSpdx

1/p

.

As in Remark 6.16, we use that for fixed x ∈ R, the families (εQhQ(x))Q and (εQ|hQ(x)|)Q are identically
distributed and apply Stein’s inequality (Theorem 6.10) to show

‖π(f1, f2)‖Lp(Sp) ≤ β−
p,Sp

E
∫
R
‖
∑
Q∈D

εQaQ〈f1〉Q〈f2〉Q|hQ(x)|‖pSpdx

1/p

≤ β−
p,Sp

β+
p,Sp

E
∫
R
‖
∑
Q∈D

εQaQ〈f1〉Qf2(x)|hQ(x)|‖pSpdx

1/p

.

Using the product property of the Schatten spaces (see Lemma 2.7) and Hölder’s inequality, we hence
conclude

‖π(f1, f2)‖Lp(R,Sp) ≤ β−
p,Sp

β+
p,Sp

E
∫
R
‖
∑
Q∈D

εQaQ〈f1〉Q|hQ(x)|‖pSp1 ‖f2(x)‖
p
Sp2

dx

1/p

≤ β−
p,Sp

β+
p,Sp

E
∫
R
‖
∑
Q∈D

εQaQ〈f1〉Q|hQ(x)|‖p1Sp1dx

1/p1

‖f2‖Lp2 (R,Sp2 ).

The remaining term is related to a linear paraproduct as discussed in Remark 6.16. We therefore obtain
the estimate

‖π(f1, f2)‖Lp(R,Sp) ≤ Cpara
p1,p2‖f1‖Lp1 (R,Sp1 )‖f2‖Lp2 (R,Sp2 )

with

Cpara
p1,p2 ≲ β−

p,Sp
β+
p,Sp

pp′βp1,Sp1βp1,RCBMOp1 .

6.2.3. Vanishing paraproducts for Tm
It is evident that at Cpara

p1,p2 = O(p6), the paraproducts have a drastic impact on the boundedness
constant of Theorem 1.4. However, as noted in Remark 2.37, the paraproducts in the decomposition of
a Calderón-Zygmund operator T vanish if 〈T (1, . . . , 1), hQ〉 = 0, for all considered dyadic cubes Q, as
well as for adjoints of T . These adjoints are defined via 〈T (f, g), h〉 = 〈T 1∗(h, g), f〉 = 〈T 2∗(f, h), g〉 in
the bilinear case.

We will show that paraproducts vanish for the operator Tm treated in Section 5.3. Note that since
the kernel K (see (5.3)) has a singularity at the origin, Tm(1, 1) may not be well-defined. We will follow
the construction in [27] and approximate Tm by operators formally defined as

Tm,ε(f, g)(x) :=

∫
max(|x−y|,|x−z|)>ε

K(x, y, z)f(y)g(z)dydz (6.14)

and show that suitable approximations of 〈Tm,ε(1, 1), hQ〉, 〈T 1∗
m,ε(1, 1), hQ〉, 〈T 2∗

m,ε(1, 1), hQ〉 vanish for
all ε > 0 and all dyadic cubes Q.
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Theorem 6.18. Let Q be a dyadic cube and let ε > 0. Let Tm,ε as in (6.14) with kernel

K(x, y, z) =
1

(x− y)2 + (x− z)2

∑
k even
k 6=0

bk

(
(x− y) + i(x− z)

|(x− y) + i(x− z)|

)k

with bk = (−1)k/2|k|(4π2)−1ak, (ak)k scalars. Then 〈Tm,ε(1, 1), hQ〉 = 0, 〈T 1∗
m,ε(1, 1), hQ〉 = 0, 〈T 2∗

m,ε(1, 1), hQ〉 =
0.

Proof. We will give the proof explicitly for Tm,ε(1, 1), the proof for the adjoints will be sketched.
In order to ensure the well-definedness of all terms, we approximate 〈Tε(1, 1), hQ〉 as follows. Let

Qε(x) := {(y, z) ∈ R2 | max(|x− y|, |x− z|) ≤ ε}

and let
Br(x) := {(y, z) ∈ R2 | |x− y|2 + |x− z|2 ≤ r2}

be the closed ball with radius r > 0 around the point (x, x) ∈ R2. Now choose cQ ∈ R such that there
exists R0 > 0 such that for all R > R0, all x ∈ Q, and all (y, z) /∈ BR(x), we have

|x− cQ| ≤
1

2
max (|x− y|, |x− z|) .

Using
∫
Q
hQ(x)dx = 0, we can now approximate 〈Tε(1, 1), hQ〉 as∫

R

∫
B√

2ε(x)\Qε(x)
K(x, y, z)hQ(x)dydzdx

+ lim
R→∞

(∫
R

∫
BR(x)\B√

2ε(x)

K(x, y, z)hQ(x)dydzdx

+

∫
R

∫
R2\BR(x)

(K(x, y, z)−K(cQ, y, z))hQ(x)dydzdx

)
.

We now show that these integrals vanish separately. Letting k(x − y, x − z) := K(x, y, z), translation
invariance of the integral yields∫

R

∫
B√

2ε(x)\Qε(x)
k(x− y, x− z)hQ(x)dydzdx =

∫
R

∫
B√

2ε(0)\Qε(0)
k(y, z)hQ(x)dydzdx.

We can estimate this term using Fubini’s theorem and Lemma 5.4 as∣∣∣∣∣
∫
R

∫
B√

2ε(0)\Qε(0)
k(y, z)hQ(x)dydzdx

∣∣∣∣∣ =
∣∣∣∣∣
∫
B√

2ε(0)\Qε(0)
k(y, z)dydz

∣∣∣∣∣
∣∣∣∣∫

R
hQ(x)dx

∣∣∣∣ ,
where the second integral vanishes and the first integral can be uniformly bounded using Lemma 5.4 as∣∣∣∣∣

∫
B√

2ε(0)\Qε(0)
k(y, z)dydz

∣∣∣∣∣ ≤
∫
B√

2ε(0)\Qε(0)

1

(|y|+ |z|)2
dydz

≤ vol
(
B√

2ε(0) \Qε(0)
)(

sup
(y,z)∈B√

2ε(0)\Qε(0)

1

(|y|+ |z|)2

)

≤ vol
(
B√

2ε(0) \Qε(0)
)(

sup
max(|y|,|z|)>ε

1

(|y|+ |z|)2

)

= (2πε2 − 4ε2)
1

ε2
= 2π − 4.

For sufficiently large R, the second integral can similarly be expressed by translation invariance as∫
R

∫
BR(x)\B√

2ε(x)

k(x− y, x− z)hQ(x)dydzdx =

∫
R

∫
BR(0)\B√

2ε(0)

k(y, z)hQ(x)dydzdx.
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Transforming the inner two integrals into polar coordinates yields∫
R

∫
BR(0)\B√

2ε(0)

k(y, z)hQ(x)dydzdx =

∫
R

∫ R

√
2ε

∫ 2π

0

1

r2

∑
k

bke
ikθrdθdr hQ(x)dx = 0,

hence the second integral vanishes for all sufficiently large R.
Finally, we estimate the remaining integral. Using Lemma 5.5, we can estimate the inner integral

for x ∈ Q as∫
R2\BR(x)

|(K(x, y, z)−K(cQ, y, z))| dydz ≤ CK

∫
R2\BR(x)

|x− cQ|
(|x− y|+ |x− z|)3

dydz.

By construction, we can estimate |x− cQ| by

|x− cQ| ≤ inf
R>R0

1

2
inf

(y,z)/∈BR(x)
(|x− y|, |x− z|) ≤ 1

2
inf

(y,z)/∈BR0
(x)

(|x− y|, |x− z|) = R0

2
√
2
,

hence by using translation invariance and transforming to polar coordinates,∫
R2\BR(x)

|x− cQ|
(|x− y|+ |x− z|)3

dydz ≤ R0

2
√
2

∫
R2\BR(x)

1

(|x− y|+ |x− z|)3
dydz

=
R0

2
√
2

∫
R2\BR(0)

1

(|y|+ |z|)3
dydz

≤ R0

2
√
2

∫
R2\BR(0)

1√
y2 + z2

3 dydz

=
R0

2
√
2

∫ ∞

R

∫ 2π

0

1

r3
rdθdr

=
R0π√

2

∫ ∞

R

1

r2
dr

=
R0π√
2R

.

Hence we can estimate the full remaining integral as∣∣∣∣∣
∫
R

∫
R2\BR(x)

(K(x, y, z)−K(cQ, y, z))hQ(x)dydzdx

∣∣∣∣∣
≤ CK
|Q|1/2

∫
R

∫
R2\BR(x)

|x− cQ|
(|x− y|+ |x− z|)3

1Q(x)dydzdx

≤ CK
|Q|1/2

R0π√
2R

∫
R
1Q(x)dx

=
CKR0π√
2|Q|R

,

which vanishes for R→ ∞.
For the adjoints, the statement follows the same proof idea. Formally, we have

〈T 1∗
ε (1, 1), hQ〉 :=

∫
R

∫
max(|x−y|,|x−z|)>ε

k(x− y, x− z)hQ(y)dxdzdy,

〈T 2∗
ε (1, 1), hQ〉 :=

∫
R

∫
max(|x−y|,|x−z|)>ε

k(x− y, x− z)hQ(z)dxdydz,

where as for 〈Tε(1, 1), hQ〉, the integral needs to be approximated to ensure well-definedness. Our
construction needs some slight modifications, however, which we will demonstrate for T 1∗

ε . Let now

Q′
ε(y) := {(x, z) ∈ R2 | max(|x− y|, |x− z|) ≤ ε}
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and let
B′
r(y) := {(x, z) ∈ R2 | |x− y|2 + |x− z|2 ≤ r2}, r > 0.

This again allows us to choose cQ ∈ R and R0 > 0 such that for all R > R0, all y ∈ Q, and all
(x, z) /∈ B′

R(y), we have
|y − cQ| ≤

1

2
max(|x− y|, |x− z|).

The remaining key step to show is the translation invariance of the integrals in x and z; all other
proof steps then proceed in the same manner as in the non-adjoint case. We demonstrate this for the
integral ∫

R

∫
B′√

2ε
(y)\Q′

ε(y)

k(x− y, x− z)hQ(y)dxdzdy.

Substituting first ξ = x− y we have∫
R

∫
B′√

2ε
(y)\Q′

ε(y)

k(x− y, x− z)hQ(y)dxdzdy =

∫
R

∫
Ω′′
ε (y)

k(ξ, ξ + y − z)hQ(y)dξdzdy,

where
Ω′′
ε (y) := {(ξ, z) ∈ R2 | |ξ|2 + |ξ + y − z|2 ≤ 2ε2 and max(|ξ|, |ξ + y − z|) > ε}.

Lemma 5.4 allows us to apply Fubini’s theorem, hence we next substitute ζ = ξ + y − z to obtain∫
R

∫
Ω′′
ε (y)

k(ξ, ξ + y − z)hQ(y)dξdzdy =

∫
R

∫
B√

2ε(0)\Qε(0)
k(ξ, ζ)hQ(y)dξdζdy.

This is (up to renaming variables) the same integral as in the non-adjoint case, hence the same proof
method can be applied to the T 1∗

ε -case. For T 2∗
ε , the same arguments hold, allowing us to conclude

〈Tε(1, 1), hQ〉 = 〈T 1∗
ε (1, 1), hQ〉 = 〈T 2∗

ε (1, 1), hQ〉 = 0

for all dyadic cubes Q and all ε > 0.

6.3. Comparison of the resulting constants
We can now compare the constant in Theorem 1.3 resulting from the proof methods presented in
Section 6.1–6.2. For this, we consider our multiplier as a map Mf [2] : Sp × Sp → Sp/2 and compare the
growth of the constant in p. Our results are summarised in Table 6.1.

Both proofs follow a similar structure: First, up to three triangular truncation are applied as sum-
marised in Table 3.1. Following Theorem 2.12, this yields in total a constant of order O(p3). Next, the
operator Mf [2] is decomposed into a sum of compositions of a bilinear Toeplitz form Schur multipliers
with symbol (λ0, λ1, λ2) 7→ λ0−λ1

λ0−λ2
(up to permutation of variables) with a linear Schur multiplier. We

now collect the growth rate of the relevant constants.

Toeplitz form Schur multiplier In Section 6.1, boundedness of the bilinear Toeplitz form Schur
multiplier is shown in Theorem 6.3. The boundedness constant in our case Sp × Sp → Sp/2 is given by
a term of the form

cp,p ≲ C2
4,p + h̄p/2,Sp/2(βp/2,Sp/2)

2h̄p,Sp(βp,Sp)
2.

By Lemma 2.26, h̄p,Sp = O(p), βp,Sp = O(p), and furthermore C4,p = O(p) by Theorem 2.12. Hence
in total, cp,p = O(p6).

In Section 6.2, the Fourier multiplier associated with the corresponding Toeplitz form Schur multi-
plier is shown to be a Calderón-Zygmund operator and split into a sum over dyadic shifts and para-
products.

• The boundedness of dyadic shifts was shown in Theorem 6.13. The boundedness constant was
determined as

Cshift
p,p ≲ βp/2,Sp/2(βp,Sp)

2 + (βp/2,Sp/2)
2βp,Sp ,

where we used β+
p,Sp

≤ βp,Sp from Lemma 2.25. Since βp,Sp = O(p) by Lemma 2.26, we have
Cshift
p,p = O(p3).
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• Bilinear paraproducts were shown to be bounded in Theorem 6.17 with constant

Cpara
p,p ≲ β−

p/2,Sp/2
β+
p/2,Sp/2

pp′βp,Spβp,KCBMOp .

By [20, Corollary 4.5.15], we have βp,K = max(p, p′) − 1 = O(p) for K ∈ {R,C}. Furthermore,
CBMOp = O(p) by Theorem 2.39, and β−

p,Sp
= O(p) by Lemma 2.26. Altogether, this yields

Cpara
p,p = O(p6).

• In Theorem 6.18, we have shown that the operator Tm that Theorem 1.4 is applied to in our proof
(see Section 5) can be expressed solely as dyadic shifts without paraproducts.

Hence, the norm of the Toeplitz form Schur multiplier is bounded by Cshift
p,p = O(p3), according to the

proof presented in Section 6.2.

Linear Schur multiplier We first consider the linear operators in [35]. By decomposition (6.1), we
need to estimate the norms of both Mϕ1,f′′ and Mϕ2,f′′ on Sp. This was shown in Theorem 6.5. Note
that we may now assume that triangular truncations have already been applied, hence the constant
C4,p is omitted. Furthermore, since we are interested in the growth of the constant for p → ∞, we
restrict our discussion to the constants determined for large p.

We have shown the following for 1/p+ 1/r = 1/2.

• For m = 1,

‖Mϕ1,f′′ ‖Sp→Sp ≲ max(cp max(cr, 1), (cp max(cr, 1))1/1−θ)‖f ′′‖∞ =: Cp,1.

Here, cp ≲ h̄p,Sp(β
+
p,Sp

)2 = O(p3) is from Theorem 6.1. For 1/p + 1/r = 1/2, we have r → 2 as
p→ ∞, hence cr = O(1). Altogether, we conclude Cp,1 = O(p3).

• For m = 2,

‖Mϕ2,f′′ ‖Sp→Sp ≲ Cp,2 := max(cp max(cr, 1 + cr‖Mϕ1,f′′ ‖Sr→Sr ),

(cp max(cr, 1 + cr‖Mϕ1,f′′ ‖Sr→Sr ))
1/1−θ)‖f ′′‖∞.

From (6.4), we know
‖Mϕ1,f′′ ‖Sr→Sr ≤ ‖Mϕ1,f′′ ‖

θ
Sp→Sp‖f

′′‖1−θ∞ ,

where θ ∈ (0, 1) is such that θ/p + (1 − θ)/2 = 1/r. This allows us to estimate the growth of
‖Mϕ1,f′′ ‖Sr→Sr for p→ ∞ as follows.
We know that ‖Mϕ1,f′′ ‖Sp→Sp = O(p3), hence

‖Mϕ1,f′′ ‖
θ
Sp→Sp ≲ p3θ.

By elementary calculations, we have

θ =
1
2 − 1

r
1
2 − 1

p

=
2

p− 2
.

This allows us to conclude

‖Mϕ1,f′′ ‖
θ
Sp→Sp ≲ p3θ = exp(6 ln p

p−2 ) → 1, p→ ∞,

thus ‖Mϕ1,f′′ ‖Sr→Sr = O(1). Hence altogether, Cp,2 = O(p3).

For the alternative proof, the linear term was shown to be bounded by Theorem 1.5. The constant
in this theorem is given explicitly as p2

p−1 = O(p).
Altogether, we conclude that the constant in the original proof in [35] is of order O(p12), whereas

our alternative proof gives a constant of order O(p7). This improvement has two sources – the use of
Theorem 1.5 for the linear term, and the fact that our specific operator contains no paraproducts.



6.3. Comparison of the resulting constants 61

Original proof (Section 6.1) Alternative proof (Section 6.2)
Triangular truncations O(p3)

Toeplitz form Schur mult. O(p6) O(p3)
Linear Schur multiplier O(p3) O(p)

Total O(p12) O(p7)

Table 6.1: Comparison of the growth rate of the constant in Theorem 1.3 in the case Sp × Sp → Sp/2.

In the case where paraproducts do not vanish, which is generally to be expected for Calderón-
Zygmund operators with a kernel that is not of convolution type, the bound yielded by Theorem 1.4
increases. While the dyadic shifts in Section 6.2 have a bound of order O(p3), they are dominated by
the paraproducts, which have a bound of order O(p6). This is mainly due to the bound of order O(p5)
on the linear paraproducts in Theorem 6.14.

It is however not known if the determined constants are optimal. Improvements may furthermore
be possible by avoiding the use of triangular truncations in the bilinear transference approach, this is
future research.



7
Outlook: Decomposition of higher

order divided differences
In this section, we give an overview over our ongoing work on proving Theorem 1.3 for any n ∈ N using
multilinear transference. We first illustrate the challenges arising in higher order cases, before giving a
systematic decomposition of divided differences. While a general statement is not yet available, we will
finally demonstrate this approach with an example.

In Theorem 4.3, we have already shown that the linear Schur multiplier with a symbol given by
an n-th order divided difference in two variables is bounded. The challenge lies in finding a suitable
decomposition of the original divided difference, which not only yields multilinear Toeplitz symbols and
divided differences in two variables, but does this in such a way that the associated Schur multiplier can
be decomposed accordingly using Lemma 2.15. This was not problematic in the bilinear case: a linear
multiplier acting on the indices (λ0, λ1) or (λ1, λ2) can always be applied before a bilinear multiplier,
and a linear multiplier acting on (λ0, λ2) can be applied after a bilinear multiplier. We illustrate the
problems that can arise in the third order case in the following example.
Example 7.1 (Unsuitable decomposition of a third-order divided difference). Let f ∈ C3(R) and let
λ0, . . . , λ3 ∈ R be such that λ0 > λ3 > λ1 > λ2. Permuting variables and applying Lemma 3.1 twice
with µ = λ3 yields

f [3](λ0, λ1, λ2, λ3) = f [3](λ0, λ3, λ1, λ2) =
λ0 − λ3
λ0 − λ2

f [3](λ0, λ3, λ3, λ1) +
λ3 − λ2
λ0 − λ2

f [3](λ3, λ3, λ1, λ2)

=
λ0 − λ3
λ0 − λ2

(
λ0 − λ3
λ0 − λ1

f [3](λ0, λ3, λ3, λ3) +
λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ3, λ1)

)
+
λ3 − λ2
λ0 − λ2

f [3](λ3, λ3, λ1, λ2).

Let us focus on the term

m1,3 : (λ0, . . . , λ3) 7→
λ0 − λ3
λ0 − λ2

λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ3, λ1).

This symbol is a product of Toeplitz form symbols and a divided difference in two variables. However,
the corresponding Schur multiplier cannot be decomposed into Schur multipliers associated with its
component functions. To see this, let x, y, z be suitable Schatten space elements and consider

Mm1,3
(x, y, z) =

∑
λ0,...,λ3

λ0 − λ3
λ0 − λ2

λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ3, λ1)pλ0
xpλ1

ypλ2
zpλ3

. (7.1)

• Letting the linear multiplier with symbol ϕ1,3 : (µ1, µ3) 7→ f [3](µ3, µ3, µ3, µ1) act first yields

Mm1,3(x, y, z) =
∑

λ0,...,λ3

λ0 − λ3
λ0 − λ2

λ3 − λ1
λ0 − λ1

pλ0xpλ1

(∑
µ1,µ3

f [3](µ3, µ3, µ3, µ1)pµ1ypλ2zpµ3

)
pλ3

=
∑

λ0,...,λ3

λ0 − λ3
λ0 − λ2

λ3 − λ1
λ0 − λ1

pλ0
xpλ1

Mϕ1,3
(ypλ2

z) pλ3
.
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The remaining term is not of Schur multiplier form, since the projection pλ2 is now inside the
argument of Mϕ1,3

.
• Now consider the bilinear Schur multiplier with symbol

ψ0,2,3 : (λ0, λ2, λ3) 7→
λ0 − λ3
λ0 − λ2

.

Applying it directly in (7.1) yields

M1,3(x, y, z) =
∑

λ0,λ1,λ3

λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ3, λ1)pλ0

( ∑
µ0,µ2µ3

µ0 − µ3

µ0 − µ2
pµ0xpλ1ypµ2zpµ3

)
pλ3

=
∑

λ0,λ1,λ3

λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ3, λ1)pλ0
Mψ0,2,3

(xpλ1
y, z)pλ3

.

The fact that pλ1
is now in the argument of Mψ0,2,3

again means that this term is no longer of
Schur multiplier form.

In this manner, one can see that symbols with arguments that are non-adjacent variables (here,
(λ0, λ2, λ3) and (λ1, λ3)) are generally not well-suited for decomposing Schur multipliers.

This example shows that a “good” decomposition of the divided difference is one in which the compo-
nent functions take adjacent variables λj , . . . , λj+k as arguments. In constructing such a decomposition,
we follow a similar approach as in [35].

Step 1: Decomposition of f [n]. As in Section 3.1, we restrict our symbols to a domain on which
the order of λ0, . . . , λn ∈ R is fixed. Set λn+1 := λ0, λ−1 := λn. Using this cyclic notation, there now
always exists a j∗ ∈ {1, . . . , n} such that λj∗−1 ≤ λj∗+1 ≤ λj∗ or λj∗+1 ≤ λj∗−1 ≤ λj∗ . For example, if
λ0 ≤ . . . ≤ λn, then j∗ = n fulfills the second condition.

Assuming the second condition, applying Lemma 3.1 with µ = λj∗−1 yields

f [n](λ0, . . . , λn) =
λj∗+1 − λj∗−1

λj∗+1 − λj∗
f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗+1, . . . , λn)

+
λj∗−1 − λj∗
λj∗+1 − λj∗

f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗ , λj∗+2, . . . , λn)

=: mg +mb.

Step 2: Decomposition of the “good” term mg. First consider the term mg. Its associated Schur
multiplier, applied to suitable Schatten space elements x1, . . . , xn, can be decomposed as∑

λ0,...,λn

λj∗+1 − λj∗−1

λj∗+1 − λj∗
f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗+1, . . . , λn)pλ0x1pλ1 . . . pλn−1xnpλn

=
∑

λ0,...,λn

f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗+1, . . . , λn)pλ0
x1pλ1

. . . pλ∗−1

×

 ∑
µj∗+1≤µj∗−1≤µj∗

µj∗+1 − µj∗−1

µj∗+1 − µj∗
pµj∗−1xj∗pµj∗xj∗+1pµj∗+1

 pλj∗+1 . . . pλn−1xnpλn .

We have chosen j∗ in such a way that on our chosen domain (with fixed order of λ0, . . . , λn), the fraction
is always bounded. In fact, we recognise the Schur multiplier Mψ0

from Section ?? and write∑
λ0,...,λn

λj∗+1 − λj∗−1

λj∗+1 − λj∗
f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗+1, . . . , λn)pλ0

x1pλ1
. . . pλn−1

xnpλn

=
∑

λ0,...,λn

f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗+1, . . . , λn)pλ0
x1pλ1

. . .

× pλ∗−1Mψ0
(xj∗ , xj∗+1)pλj∗+1

. . . pλn−1
xnpλn .

=Mϕj∗,n
(x1, . . . , xj−1,Mψ0

(xj∗ , xj∗+1), xj∗+2, . . . , xn),
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where we used notation from Section 2.2 and

ϕj∗,n : (λ0, . . . , λn−1) 7→ f [n](λ0, . . . , λ
(2)
j∗−1, λj∗+1, . . . , λn−1).

Since we have shown the boundedness of Mψ0
in Section 5, it remains to show the boundedness of the

n− 1-linear multiplier Mϕj∗,n
. Note that the map ϕj∗,n is again a divided difference and can be further

decomposed as in Step 1.

Step 3: Decomposition of the “bad” term mb. Since the Toeplitz form symbol in mb takes
as variables (λj∗−1, λj∗ , λj∗+1), while the divided difference takes (λ0, . . . , λj∗−1, λj∗ , λj∗+2, . . . , λn) as
variables, these symbols are not suitable in the sense of Lemma 2.15 for the decomposition of Schur
multipliers.

However, if one is willing to use linear transference as in [35], then one can decompose this function
as

λj∗−1 − λj∗
λj∗+1 − λj∗

f [n](λ0, . . . , λj∗−1, λj∗−1, λj∗ , λj∗+2, . . . , λn)

=

∫
R
g(s)(λj∗−1 − λj∗)

is(λj∗+1 − λj∗)
−isf [n](λ0, . . . , λj∗−1, λj∗−1, λj∗ , λj∗+2, . . . , λn)ds

by Lemma 6.2. By setting

ϕ′j∗,n(λ0, . . . , λj∗−1, λj∗ , λj∗+2, . . . , λn) = f [n](λ0, . . . , λ
(2)
j∗−1, λj∗ , λj∗+2, . . . , λn)

we decompose the corresponding Schur multiplier as

MM2
(x1, . . . , xn)

=

∫
R
g(s)

∑
λ0,...,λn

ϕ′j∗,n(λ0, . . . , λn)pλ0
x1pλ1

. . . pλj∗−1
(Mφsxj∗)pλj∗ (Mφ−sxj∗+1)pλj∗+1

xj∗+2 . . . pλnds,

where φs is as in the proof of Theorem 6.3. Note that since ϕ′j∗,n is does not depend on λj∗+1, we have

MM2(x1, . . . , xn)

=

∫
R
g(s)

∑
λ0,...,λn

ϕ′j∗,n(λ0, . . . , λn)pλ0x1pλ1 . . . pλj∗−1(Mφsxj∗)pλj∗ (Mφ−sxj∗+1)xj∗+2pj∗+2 . . . pλnds

=

∫
R
g(s)Mϕ′

j∗,n
(x1, . . . , xj∗−1,Mφsxj∗ , (Mφ−sxj∗+1)xj∗+2, . . . , xn)ds.

It is hence sufficient to show the boundedness of Mϕ′
j∗,n

.

Step 4: Boundedness of Schur multipliers of divided differences in k < n variables In the
steps above, we have reduced the proof to inductively showing that Schur multipliers Mϕl , where ϕl is
given by a divided differences function of order n with k + 1 pairwise different variables and k < n, i.e.

ϕl(λ0, . . . , λk) := f [n](λ
(l0)
0 , . . . , λ

(lk)
k )

such that l0 + . . . + lk = n + 1. For k = 1, we have shown this statement in Theorem 4.3. Repeated
application of the steps outlined above eventually leads to a reduction of the number of variables in the
divided difference functions, such that the proof can further be reduced to the k = 1 case.

The approach outlined above is still unsatisfying, as it relies on linear transference. Let us anecdo-
tally demonstrate that this approach can in fact yield a suitable decomposition of f [3] on the domain
considered in Example 7.1, which does not require linear transference as in Step 3 above.

Example 7.2. Let f ∈ C3(R) and let λ0, . . . , λ3 ∈ R be such that λ0 > λ3 > λ1 > λ2. Choose j∗ = 0,
then λj∗+1 ≤ λj∗−1 ≤ λj∗ . Applying Lemma 3.1 with µ = λj∗−1 = λ3 yields

f [3](λ0, λ1, λ2, λ3) = f [3](λ0, λ3, λ1, λ2) =
λ0 − λ3
λ0 − λ1

f [3](λ0, λ3, λ3, λ2) +
λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ1, λ2).
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We apply Lemma 3.1 again, with µ = λ3 in the first summand and µ = λ1 in the second summand to
get

λ0 − λ3
λ0 − λ1

f [3](λ0, λ3, λ3, λ2) +
λ3 − λ1
λ0 − λ1

f [3](λ3, λ3, λ1, λ2)

=
λ0 − λ3
λ0 − λ1

(
λ0 − λ3
λ0 − λ2

f [3](λ0, λ3, λ3, λ3) +
λ3 − λ2
λ0 − λ2

f [3](λ3, λ3, λ3, λ2)

)
+
λ3 − λ1
λ0 − λ1

(
λ3 − λ1
λ3 − λ2

f [3](λ3, λ3, λ1, λ1) +
λ1 − λ2
λ3 − λ2

f [3](λ3, λ1, λ1, λ2)

)
.

One final application of Lemma 3.1 in the last summand with µ = λ1 yields

f [3](λ0, λ1, λ2, λ3) =
λ0 − λ3
λ0 − λ1

(
λ0 − λ3
λ0 − λ2

f [3](λ0, λ3, λ3, λ3) +
λ3 − λ2
λ0 − λ2

f [3](λ3, λ3, λ3, λ2)

)
+
λ3 − λ1
λ0 − λ1

λ3 − λ1
λ3 − λ2

f [3](λ3, λ3, λ1, λ1)

+
λ3 − λ1
λ0 − λ1

λ1 − λ2
λ3 − λ2

(
λ3 − λ1
λ3 − λ2

f [3](λ3, λ1, λ1, λ1) +
λ1 − λ2
λ3 − λ2

f [3](λ1, λ1, λ1, λ2)

)
.

The first, second, and last divided differences in the formula above take adjacent indices as values
(with λ4 := λ0), hence their associated linear Schur multipliers can immediately be applied, whereas
the linear multipliers in the third and fourth summand need to be composed with a bilinear Schur
multiplier. Applied to Schatten space elements x1, x2, x3, each summand can be expressed as the
following composition of Schur multipliers. Here, the multilinear symbols are to be understood as being
restricted to the domain where λ0 > λ3 > λ1 > λ2. On this domain, we have the decomposition

Mf [3](x1, x2, x3) =Mf1(Mm1
(x1, x2, x3)) +Mm2

(x1, x2,Mf2x3)

+Mm3,1
(x1,Mf3(Mm3,2

(x2, x3)))

+Mm4,1
(x1,Mf4(Mm4,2

(x2, x3))) +Mm5,1
(x1,Mm5,2

(Mf5x2, x3)),

where the symbols are defined as follows.

f1 : (λ0, λ3) 7→ f [3](λ0, λ3, λ3, λ3), m1 : (λ0, λ1, λ2, λ3) 7→
λ0 − λ3
λ0 − λ1

λ0 − λ3
λ0 − λ2

,

f2 : (λ2, λ3) 7→ f [3](λ3, λ3, λ3, λ2), m2 : (λ0, λ1, λ2, λ3) 7→
λ0 − λ3
λ0 − λ1

λ3 − λ2
λ0 − λ2

,

f3 : (λ1, λ3) 7→ f [3](λ3, λ3, λ1, λ1),

m3,1 : (λ0, λ1, λ3) 7→
λ3 − λ1
λ0 − λ1

, m3,2 : (λ1, λ2, λ3) 7→
λ3 − λ1
λ3 − λ2

,

f4 : (λ1, λ3) 7→ f [3](λ3, λ1, λ1, λ1),

m4,1 : (λ0, λ1, λ3) 7→
λ3 − λ1
λ0 − λ1

, m4,2 : (λ1, λ2, λ3) 7→
λ1 − λ2
λ3 − λ2

λ3 − λ1
λ3 − λ2

,

f5 : (λ1, λ2) 7→ f [3](λ1, λ1, λ1, λ2),

m5,1 : (λ0, λ1, λ3) 7→
λ3 − λ1
λ0 − λ1

, m5,2 : (λ1, λ2, λ3) 7→
(
λ1 − λ2
λ3 − λ2

)2

.

We can already see in the example above some indication on how “bad” terms can become unprob-
lematic with further applications of Lemma 3.1. For example, the symbols in the term

λ0 − λ3
λ0 − λ1

f [3](λ0, λ3, λ3, λ2)
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are incompatible, yet the second application of Lemma 3.1 yields that this term is equal to

λ0 − λ3
λ0 − λ1

(
λ0 − λ3
λ0 − λ2

f [3](λ0, λ3, λ3, λ3) +
λ3 − λ2
λ0 − λ2

f [3](λ3, λ3, λ3, λ2)

)
.

Here, both divided difference terms take adjacent variables as input, hence by Lemma 2.15 they are
compatible with any multivariable symbol for the decomposition of Schur multipliers. It remains to
show that such a decomposition for which the boundedness proof does not require linear transference
can be found for all f [n] and all orderings of variables λ0, . . . , λn, this is future research.
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