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Barrier Function-based Safe Reinforcement Learning for
Formation Control of Mobile Robots

Xinglong Zhang', Yaogian Peng!, Wei Pan?, Xin Xu!, Haibin Xie'

Abstract— Distributed model predictive control (DMPC) con-
cerns how to online control multiple robotic systems with
constraints effectively. However, the nonlinearity, nonconvexity,
and strong interconnections of dynamic system models and
constraints can make the real-time and real-world DMPC
implementations nontrivial. Reinforcement learning (RL) algo-
rithms are promising for control policy design. However, how
to ensure safety in terms of state constraints in RL remains
a significant issue. This paper proposes a barrier function-
based safe reinforcement learning algorithm for DMPC of
nonlinear multi-robot systems under state constraints. The
proposed approach is composed of several local learning-
based MPC regulators. Each regulator, associated with a local
system, learns and deploys the local control policy using a safe
reinforcement learning algorithm in a distributed manner, i.e.,
with state information only among the neighbor agents. As
a prominent feature of the proposed algorithm, we present a
novel barrier-based policy structure to ensure safety, which has
a clear mechanistic interpretation. Both simulated and real-
world experiments on the formation control of mobile robots
with collision avoidance show the effectiveness of the proposed
safe reinforcement learning algorithm for DMPC.

I. INTRODUCTION

Distributed model predictive controls (DMPC) of multi-
robot systems have received significant attention in recent
years [1]-[3]. Compared with centralized control solutions,
the distributed control structure is more efficient, scalable,
and friendly to maintain [4]. A well-studied solution to multi-
robot control with state constraints relies on a distributed
structure based on model predictive control (MPC) [5], [6].
In this setting, many DMPC approaches have been pro-
posed [7]-[11] where local MPC problems are transformed
into several optimization problems which can be solved
online in parallel with information exchanges from their
neighbors. Such a procedure requires periodic access to the
local onboard computational resources. To reduce the com-
putational burden, an explicit distributed MPC algorithm was
proposed [12], in which a set of piece-wise explicit control
policies, associated with marked separate constraint regions,
are firstly computed offline. Then, the control policies are
searched online according to the region where the state lies.
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However, the approach is designed only for linear systems
and relies on a separability assumption of systems.

In a different setting, distributed solutions based on re-
inforcement learning (RL) and adaptive dynamic program-
ming (ADP) have also received great attention in the past
decades [13]-[19]. In the RL-based distributed approaches,
RL and ADP usually rely upon an actor-critic structure to
learn a near-optimal control policy of the infinite horizon
optimal control problem in a forward-in-time manner. Com-
pared with DMPC, distributed RL methods [13]-[19] can
solve the optimization problem more efficiently. Moreover,
the resulting control policy can be learned offline and de-
ployed online, dramatically reducing the computational load.
Given the key feature, actor-critic reinforcement learning
has been used in a receding horizon manner to learn an
explicit control policy of a centralized MPC in [20]-[22].
In this paper, we extend the work [20]-[22] to the scenario
of distributed control for multiple agents.

Crucially, the satisfaction of state constraint in actor-critic
learning is a difficult task and an indispensable requirement
in many safety-critical distributed control applications. To
the best of our knowledge, this issue has not been addressed
in the above-mentioned learning-based MPC [20], [21] and
RL algorithms [13]-[19], [23], [24]. In [25], a safe rein-
forcement learning algorithm was proposed for multi-robot
motion planning. An impulsive potential field was utilized
to reconstruct the cost function, which was inspired by the
Lyapunov barrier-based cost function shaping approach for
the centralized safe RL [26]-[28]. However, such a cost
function-shaping treatment could introduce abrupt changes
in the cost function gradient, prone to diverging behavior of
the weights of both actor and critic networks.

This paper proposes a barrier function-based safe rein-
forcement learning (BSRL) approach for distributed MPC
(DMPC), termed as SL-DMPC, of nonlinear multi-robot
systems with state constraints. The proposed approach is
composed of several local BSRL-based MPC regulators.
Each regulator, associated with a local system, learns and
deploys the local MPC policy with the BSRL algorithm in
a distributed manner, i.e., with state information exchanges
only among the neighbor agents. Note that how to guarantee
to learn safety under state constraints is still challenging
in the reinforcement learning community. In the proposed
BSRL algorithm, different from [25], [27], [28], we present
a novel barrier-based control policy structure to guarantee
learning safety under state constraints, which has a clear
mechanistic interpretation for a safety certificate.

Unlike DMPC with numerical solutions, the implemen-
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tation of SL-DMPC relies upon several barrier-based actor-
critic RL algorithms, generating for each agent a local ex-
plicit state-feedback control policy rather than an open-loop
control sequence using policy gradient. These local control
policies can be learned and deployed online synchronously
or learned offline and deployed online. Moreover, the safety
guarantee of the barrier-based reinforcement learning algo-
rithm is proven in each prediction horizon. Both simulated
and real-world experiments on formation control of mobile
robots with collision avoidance have been demonstrated,
which shows the effectiveness of the proposed SL-DMPC.
The rest of the paper is organized as follows. Section II
introduces the problem formulation and a preliminary on
DMPC for linear dynamical systems. In Section III, SL-
DMPC algorithm is proposed for nonlinear systems. The
theoretical analysis is presented. In Section IV, both the
simulation and real-world experimental results for nonlinear
formation control of mobile robots are demonstrated. Con-
clusions are drawn in Section V.
Notation: We use Nﬁf to denote the set of integers /1,11 +
1,---,ly. For a group of vectors z; € R™, ¢ € NM | we
use col;cym (%) to denote (2], , 25", where M is an
integer. We use u(k) to represent a control policy formed by
the control sequence u(k),--- ,u(k + N — 1), where N is
the prediction horizon of MPC, k is the discrete-time index.

II. PROBLEM FORMULATION
AND PRELIMINARY ON DMPC

A. Problem formulation

The overall system under control is composed of M
discrete-time, nonlinear, interacting subsystems, which are
described by

N wi(k+1) = fi(w(k)) + gi(zi(k))ui(k) (D

Vi € NM | where 7; € X; C R™ and u; € R™ are the state
and input variables associated with the subsystem X;, while
k is the discrete-time index, f; € R™ and g; € R™*™i
are smooth state transition and input mapping functions
respectively and f;(0) = 0. The local state sets are defined
as X; = {x; € R"|Bi(x;) <0,t € N¥},i € NM, Bl isa
C' function, and X = X X --- x Xy.

Collecting all the subsystems from (1), the overall central-
ized dynamical model, denoted as X, can be written as

S a(k +1) = Fz(k) + Ga(k))u(k) 2)

where z = coljcym(z;) € R, n = Zgl N, 4 =
COliEN{VI (uz) e R™, m = Z?il m;, F' = (fl, s ,f]\/[), the
diagonal blocks of G are input matrices g;, i € NM. Now
we give a definition of neighbor subsystem in a multi-robot
system.

Definition 1 (Neighbor subsystem): For a subsystem 3J;,
the state z; is a neighbor state of X; if x7, :c;? with 2§ # x?
implies different values of f;. The state x,, € R™: is the
collection of all the neighbor states, i.e., z, = coljcy,T;,
where N is the set of all the indices j associated with the
neighbor states. <

With Definition 1, model (1) can be written as
it wi(k+1) = fi(aw, (k) + gi(zi(k))ui(k) . 3)

Here we give the assumption on the communication protocol
among the robots below:

Assumption 1 (Communication protocol): The communi-
cations among the neighbor subsystems are allowed, i.e., the
state information can be exchanged in a bidirectional way
between 3; and ¥, if i € N or j € N;. <

The control objective considered in this paper is to drive
x(k) — 0 and u(k) — 0 as k — 400, meanwhile enforcing
local state constraints z;(k) € X;, for all i € N}/,

B. Preliminary on DMPC for linear systems

Given the capability of MPC in dealing with state con-
straints explicitly, DMPC can be naturally used to solve the
considered multi-robot control problem. First, let us recall
a DMPC formulation [29] for linear systems. At each time-
step k the following finite horizon cooperative cost function
is to be minimized:

min
'LLl(k), e ,'LLM(IC)
where the global cost J is defined as

J@k) = Sy S0 v (b + 5), ik + 5))
+zi(k+ N)I%,,

Ja(k) W

)
the stage costri(z, () wa(K) = v, ()3, + s () 3,
N > 0 is the prediction horizon, Q; = Q; € R"™ X"V,
Qi=0,R;=R] eR™>™i R, ~0,ic NM; P, =P -
0.

The optimization problem in (4) with cost (5) can be
solved numerically subject to a linear version of model (2),
local state constraints z;(k + j) € &;, Vj € NV, i € NM.
This problem can be solved in a distributed manner via
numerical optimization tools, see [29], [30], since the local
state constraints are decoupled. As such, the local open-
loop control sequence can be computed for each agent in
each prediction horizon. As in the procedure of dynamic
programming, the first control action is applied, and (4) is
solved repeatedly at the next time instant.

C. Definitions on barrier function and safe control

We introduce a definition of barrier function on state con-
straint, which will be used for state constraint satisfaction in
the barrier function-based reinforcement learning algorithm.

Definition 2 (Barrier function): For any set &, © € NM,
a barrier function is defined as
B (1) = { — 37 log( - Bl(z;)) x; € Int(X;)

400 otherwise.
(6)

A recentered transformation of B?(xz;) centered at z; €
R™ is defined as B;(x;) = B?(x;) — B(z;) — VB¢ (2) "=,
where z; = 0 if {0} C X or z; is selected such that z; € X;
otherwise. |

Definition 3 (Safe control in the prediction horizon):

At a generic time k, a control policy denoted as wu(k)
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is safe for (2) if the resulting state evolutions satisfy
o(k+1),-- ,z(k+ N)ex¥N. <

III. BARRIER FUNCTION-BASED SAFE REINFORCEMENT
LEARNING FOR DMPC

Since the dynamic system model (1) is nonlinear even non-
convex, solving the considered multi-robot control problem
using DMPC like (4) is nontrivial. This section presents a
barrier function-based safe reinforcement learning algorithm
to solve DMPC, i.e., SL-DMPC, to learn each agent’s local
state feedback control policy in a distributed manner. In
Section III-A, we first present the main idea of SL-DMPC,
in which a barrier function-based control policy is utilized to
deal with state constraints. The associated safety guarantee
and convergence analysis of the proposed approach are given
in each prediction horizon. In Section III-B, the barrier
function-based reinforcement learning algorithm is presented
to implement SL-DMPC.

A. Design of SL-DMPC

The main difficulty of designing an RL algorithm to
solve DMPC lies in guaranteeing safety under local state
constraints. To address this issue, in SL-DMPC we propose
a barrier function-based control policy structure to guarantee
safety. To this end, we first reconstruct the performance index
J with barrier functions, i.e.,

J(k) = £ty Sso il (k + 5), uilh + 1))+
(7

where the stage cost is
Ti(@x, (1), wi(7)) = i@, (7), wi(7)) + pBi(z(1)),

Ji(@i(k+ N)) = |lzi(k + N)||3, + pBi(x;(k+ N)), p >0
is a tuning parameter.

In a collective form, for any 7 € [k, k + N — 1], one can
write

J(z(7)) = 7(2(r),u(r)) + J(x(r + 1)) ®)

where 7(2(7),u(r)) = 7, Fil, (1),
[y
N)) =iz Ji(zi(k + N)).
To optimize (8) in a distributed manner, we construct a

local barrier-based control policy for subsystem X;:

u; (7)), j(m(k +

where v; € R is a new virtual control policy, L; € R™:*™
is a decision variable to be further optimized (deferred in
Section III-B).

Remark 1: The second term in (9) is to generate a local
repulsive force associated with the i-th agent, which grows
as the state x; moves toward the boundary of X;. In doing
so, the local state x; can be restricted in their interiors, i.e.,
safety is guaranteed by the gradients of the barrier functions
of state constraints in (9). A

At any time instant 7 € [k, k+ N —1], let J*(x(7)) be an
optimal value function under the control structure (9), then
one can write the discrete-time HJB equation as

J*(x(1)) = 7(r) + J* (:17(7' + 1)),

min
wi(zar; (1)) ,4€ENM

(10)

for each local optimal control policy:

uj (z, (7)) =argmin {7i(r) + Y J7 (a0, (r+ 1))} (11)
wi(T) JEN
for i € NM, where A is the collection of subsystems with
the ¢-th subsystem its neighbor.
Different from the classical numerical optimization meth-

ods, we present in the following the SL-DMPC algorithm to
solve (10) and (11), see Algorithm 1.

Algorithm 1: Pseudocode of SL-DMPC
Require: J?(7), € > 0, safe policy u?, i € NM, ¢ = 0.
for k=1,2,--- do loop
1+ while XV Jt(r) — J(7) > € do
2 fort=Fk - k+N—1do
3 Receive the neighbor state x . (7).
4
5

Compute z;(7 + 1) with ul(z,, (7)) using (3);
Distributed policy evaluation:

T e (1) = mlm) + T@x (r+ 1) (120)

6: Receive the cost JI ™ (zx, (7 + 1)) for j € Ni.
7: Distributed barrier-based policy update:

(v;, L)+t :argmin {Fi(7) + Zje/\’[i jjt~+1 (JUNj (T+ 1))}
ui (@) = o (ww,) + L VB (2i(7)).
(12b)

8:  end for

9 t+t+1.

10: end while

11: Update x;(k + 1) by applying u!(z,, (k)) to (1).

In the following theorem, we prove that in each pre-
diction horizon, the control policy in (12) is safe (see
Definition 3), also the control policy and value function will
eventually converge to their optimal values respectively, i.e.,
ul (2, (7)) = uf(zp, (7)) and JH(7) — J7 (1) as t = +o0,
Vi e NM,

Theorem 1 (Safety guarantee and convergence): Let
u’(k) be a safe policy and the initial value function
JO(T) > #(x(1),u° (1)) + JO(x(r + 1)), T € [k, k+ N —1];
then under iteration (12), it holds that
D JHYr) < Vi) < JYr), where Vi(r) =

Fa(r),u (7)) + T (e(r + 1));
2) ut(k) is a safe control policy;
3) Ji(r) — J*(r) forall T € [k,k+ N],as t = +oco. N
Proof. 1): First, by collecting the iterative step (12a) for all
i € NM results in the following centralized form

JH (7)) =F(7) + JH(x(r + 1)) (13a)
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Moreover, since u; is only related to ,, (12b) is equivalent
to

Uz, (7)) = argmin_ {r,(r) + I (x(r + 1))} (13b)

and equivalent to the centralized form of the policy update,

ie.,
UH_I(CU(T)) = {7F(1) + Jtt (x(T + 1))}

(13c)

argmin
ui (w7, (7)), iENY

Then, one can apply the proof arguments in [31] for
the centralized system, which proves that J'*!(z(7)) <
Vi(z(r)) < JH(x(7)), for all T € [k, k+ N —1].
Moreover, in line with [31], the second and third points
can be naturally proven. Interested readers may refer to [31]
for more details. O

B. Distributed Barrier Function-based RL for DMPC

In the following, Algorithm 1 is implemented with a
distributed barrier function-based RL algorithm using actor-
critic framework [16]. Compared with numerical solution of
DMPC, such an implementation has the merit of generating
a local explicit state-feedback control policy for each agent,
rather than an open-loop control sequence. This allows the
direct deployment of the learned control policy offline. The
proposed distributed barrier-based RL consists of M actor-
critic network pairs, each one designed for each local agent
to learn the local control policy and the value function of
information exchange among its neighbor agents. For any
subsystem i € N{/, the critic network is constructed as

Ji(@p, (1)) = (W) Tocimn, (1), 7) + W iBi(wi(7)),
(14)
where Wcll € RNe.ixi js the weighting matrix, o, ; € RNVe
is a vector composed of activation functions, Wfl c R
Let hey = (0ci(wn,(7),7),Bi(xi(7))), (VVC,Z-)T =
[(W};,)T W2,]. one can write

Ji(@x, (1)) = (Wei) The,i(, (1), 7).

To minimize the deviation between J¥ and J,, in view
of (12a), we define the following J{l as the desired value
of J;, such that

jfi(xNi(T)) = 7(r)+ ji(xNi(T +1)),

15)

(16)

for 7 € [k, k + N — 1], where J; (2, (k + N)) = ||lz:(k +
N)|\§31+MBZ(£B1(/€+N)) )

Let €.; = J(an, (7)) — Ji(zn, (1)), Vi € N} be the
local approximation error. The following quadratic cost is to

be minimized for each 7 € N{w, ie.,
60,1'(7-) = QC,lec,i(T)Z + QC,Zec,i(k + N)27 a7

where ¢. 1, g¢2 > 0 are tuning parameters. Minimizing (17)
leads to the update rule of the weighting matrix W ; as

where «.; is the local learning rate.
Likewise, we construct the local barrier-based actor for
each agent, i.e.,

Ui (2a, (1)) = W i00,i(za, (7),7) + LiVB;i(:(7)), (19)

i € NM_ where Wai € RNw.iXmi g the weighting matrix,
04,; € RMwi is a vector composed of activation functions,
Ei € R™i*™i ig the approximation of L;. In view of (12b),
we design a desired value of u;(7), i.e., ul(7) as

%

Jj(, (T + 1))

1 aJ.

d - p—1 § T, J

U, (T) i 2R - 9i (:E1) 83%(7’ + 1)
JEN;

(20)
fori e NM, re[k,k+ N —1].

Let €,:(7) = ud(r) — u;(7), where €, ; is the approxi-
mation error. At each time instant 7 € [k, k + N — 1], each
agent minimizes €, ;(7) with a cost of quadratic type, i.e.,
8ai(T) = ||€a.i(7)]|? leading to the update rule of W, ; and

L; as

a(sai
Wa,i(T + 1) :Wa,i(T) - ’Ya,iam/% (213)
~ ~ 86a l(T)
Li 1 :Li — Yayi——= 21b
(T +1) =Li(7) = 7a, oL.(7) (21b)

where -, ; is the local learning rate.

The learning steps of the proposed distributed barrier
function-based safe RL algorithm in each prediction hori-
zon [k,k + N] can be summarized as follows. For 7 =
k,k+1,--- ,k+ N —1, the following steps are repetitively
performed:

o Generate z;(7 + 1) using (1), Vi € N},

o Calculate J{(z, (7)) with (16) and uf(r) with (20)

using @, (7 + 1) and z;(7), for all j € N.

« Update in parallel W, ;(7+1) with (18) and W, ;(7+1),

Li(t + 1) with 21).
After the learning process in the prediction horizon [k, k +
N, the first control action u;(x, (k)) computed with (20)
is to be applied to (1). Then at the subsequent prediction
horizon [k + 1,k + N + 1], the above learning process is
repeated.

Remark 2: Note that the training process (18) and (21)
of the RL algorithm only uses the partial model information
G(x). In a slight different way, one can change the role of the
local critic for estimating the local state \; = 0.J;(z,) /0,
according to the dual heuristic programming [32], which can
speed up the convergence process by also utilization of the
model information F'(z). A

Remark 3: Tt should be highlighted that the distributed
barrier function-based RL algorithm is trained and deployed
in a completely distributed manner, i.e., the state information
is communicated among neighbor agents in each training
time instant for weight update of the actor-critic and in each
deployment time instant for realizing distributed control. A

Now we give some discussions on the computational com-

06.,:(T) plexity issue. The computational complexity of the classic
Weilr +1) = Wei(7) = e OW, (1) (18) distributed linear MPC is roughly O(M N (n, + mz)n/zvi) if
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a fast local MPC implementation like [33] is used. The main
computational complexity of our approach in the training
process is the update of (18), (21), and the forward model
prediction, which is roughly O(M N ((1¢,i 41,4+, )10, ))
for linear systems. When directly deploying the learned
control policy, the overall online computational complexity
is reduced to O(M (ny,iny,)) even for nonlinear multi-robot
systems. In summary, the overall computational complexity
grows linearly with the number of agents to go. A

O—=O——O

|1
el

\Z/
Fig. 1. Communication graph of mobile robots, where the arrows indicate
the direction for information transmission of the mobile robots, and the
robot 0 is the leading robot.

Leader

IV. SIMULATION AND EXPERIMENTAL RESULTS ON
FORMATION CONTROL OF MOBILE ROBOTS

A. Simulated experiments

Consider the formation control of M (M = 8) mobile
robots with collision avoidance. The communication directed
graph between the local mobile robots is shown in Fig. 1.
The kinematic model of the ¢-th robot is given as

i‘i V; COS 92
. yz V; sin 91
- . = 22
V; a;

where (x;, y;) is the coordinate of the i-th robot in Cartesian
frame, 0; and v; are the yaw angle and the linear velocity
respectively, u; = [ai,wi]T is the control input, where a;
and w; are the acceleration and yaw rate, respectively.

Let us define the formation error of the i-th robot in the
local coordinate frame as

ei = T30, cij (Mi(gy — qi) + Ahji)+

(23)
si(qr — @i + Ahyy)) + Ma(qr — @),

where a;; = 0,1 represents the connection status, a;; =
1 if robot 7 receives state information from robot j and
a;; = 0 otherwise; s; represents the pinning gain, s; = 1
if the robot ¢ can receive the information of the leader,
Ay = diag{1,1,0,0}, Ay = diag{0,0,1,1}. Ahj; and Ah,;
are coordinate correction variable, which is determined by
the formation shape and size; the coordinate transformation
matrix is

cosf; sin6f; O
T; = |—sin#; cosf; 0 24)
0 0 I

By discretizing (22) under the transformation (23), one can

write the discrete-time local formation error model as
61'7;5(]6 + 1) = em(k) + At(wi(k)ei7y(k) - (hl + sl)vl(k)
+ ZjeNi’j# ¢;jvj(k) cos 0 (k)
+ sivy (k) cos O, (k))
eiy(k+1) = eiy(k) + At(— wi(k)esy (k) +
Eje./\fi,j;éi cijvi(k)sinbj; (k) + s;vp(k) sin 6, (k ))
eio(k+1)=-e;0(k)+ At (w, (k) —w; (k))
ei,v(k"'l) :ei,v( ) + At (ar (k) — a; (k) ,

(25)
where (€ 4, €;.y,€i0,€i0) = €, vp = lm/s and w, =
Orad/s are the reference linear velocity and angular velocity
respectively, h; = Zjej\/i,j;ti Cij,05i = 0; — 0;,0,, = 0, —
0;, At = 0.05s is the adopted sampling interval.

In the simulation process, the control objective is that the
mobile robots can follow a straight line with a rectangular
formation shape of four rows and two columns, as well
as avoiding the obstacles on the path (see Fig. 2), where
the desired distances between neighbor mobile robots in
the same row and column were 2m and lm respectively.
All the obstacles to be avoided are circular objects with a
diameter of 0.5m (see also Fig. 2). The coordinates of two
obstacles were (0, 2) and (25, 0). In the proposed SL-DMPC,
the penalty matrices were selected as @, N = 1, N R, =1
and the prediction horizon was set as N = 20. In the
training process, the weighting matrices of the actor and
critic were set as uniformly distributed random values and
were updated at each time instant according to (18) and (21).
The simulation was performed using MATLAB on a Laptop
with Intel Core i7@2.30 GHz.

The simulation results in Fig. 2 show that the mobile
robots can achieve a predefined formation shape from the dis-
ordered initial state condition, while avoiding all encountered
obstacles on the path and recovering the formation shape
after collision avoidance. Moreover, it is also observed in
Fig. 2 that the formation error of each local robot converges
to the origin.

B. Real-world experiments

We also tested our proposed algorithm on two real-world
mobile robots for formation control with collision avoidance
(see Fig. 3). In the experiment, we directly deployed the
offline learned local policies to control the local mobile
robots. At each sampling instant, the onboard satellite inertial
guidance integrated positioning system measured each local
state ¢;, ¢ = 1,2. The measured ¢; and the correspond-
ing reference ¢, were transmitted from the first robot to
the second by radio. Furthermore, the measured g2 was
transmitted from the second robot to the first one. Each
robot was equipped with a Laptop in which the Unbuntu
operating system was installed. In each laptop, the control
input was computed in real-time by using the measured state
information. The sampling interval was set as At = 0.1s. In
the experiment, we added a static obstacle on the reference
path. The first robot is expected to avoid the obstacle. To
simplify the experimental setup, we assume the location
information of the obstacle was pre-detected using some
computer vision algorithms. Experimental results under local
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Fig. 2. Formation control of 8 mobile robots with collision avoidance in the simulation tests, where the black circular areas (0.5m in diameter) represent
the obstacles, the colored lines represent the trajectories of mobile robots, meanwhile the mobile robots in the same column are marked with the same

colored dots.
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Fig. 4.  State errors of the mobile robots.

collision avoidance were illustrated in Figs. 3 and 4, which
show that the mobile robots can successfully avoid the
obstacle. In the meanwhile, the formation shape was kept
even in the collision avoidance process. Note that there was
an evident asynchronous issue in the built software between
the measured state and the one received from the radio, which
could cause non-negligible uncertainties. Even so, in this
case, our algorithm shows strong robustness (see also Fig. 4).

V. CONCLUSION

This paper proposed a barrier function-based safe rein-
forcement learning for distributed model predictive control
(i.e., SL-DMPC) of nonlinear multi-robot systems with state

constraints. As opposed to classic DMPC algorithms, the
implementation of SL-DMPC relies on a distributed safe
reinforcement learning algorithm based on the actor-critic
framework, resulting for each agent a local explicit state-
feedback control policy rather than an open-loop control
sequence. These local control policies can be learned and
deployed online synchronously or learned offline and de-
ployed online, leading to significant computational load
reduction concerning DMPC. As another prominent feature,
we present a novel barrier-based control policy structure to
guarantee safety in the distributed reinforcement learning
algorithm. Moreover, the learning safety and convergence
of the proposed barrier function-based safe reinforcement
learning algorithm are proven in each prediction horizon.
Both simulated and real-world experimental results on for-
mation control of mobile robots with collision avoidance
have validated the effectiveness of the proposed approach.
The future direction will focus on the closed-loop recursive
feasibility and stability guarantees of SL-DMPC and the
application to formation transformation of mobile robots.
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