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Abstract. Wind turbine controllers are nowadays ever more advanced and rely on accurate
internal controller model information. Therefore a calibrated model is needed for attaining
predictable controller performance and ensuring stable operation. To calibrate the internal
model information, a novel learning control scheme has recently been proposed that exploits
the dynamics of the closed-loop controlled wind turbine system, without the need for wind
speed measurements. The learning algorithm thereby periodically excites the generator power
controller input signal. An extremum-seeking demodulation scheme was used to calibrate the
internal model information. This paper improves the existing learning scheme in two ways:
Firstly, it investigates how the frequency of the excitation signal influences the signal-to-noise
ratio. Secondly, the problem was reformulated as a root-finding problem. This requires using the
in-phase component of the phase-corrected learning signal. In addition, a precalculated lookup
table relates the measured in-phase component directly to model uncertainty. It was found
that an increased excitation frequency improves the signal-to-noise ratio (SNR) by an order of
magnitude. Combined, these contributions improve the convergence speed more than twenty
times, addressing the effect of aerodynamic degradation and its consequences on controller
performance.

1. Introduction
The Intergovernmental Panel on Climate Change report from 2023 concludes that “There is a
rapidly closing window of opportunity to secure a liveable and sustainable future for all”, noting
that very steep reductions of greenhouse gas emissions are now necessary to limit warming to
1.5C [1]. A 43% reduction in emissions by 2030 is now needed to reach this target [1], thus
requiring a very fast transition to renewable energies, and new wind energy on land was in 2022
the cheapest form of renewable energies [2]. To reach this goal it is not only required to deploy
new turbines but also to extend the lifetime of existing turbines.

An accurate internal controller model is required for the efficient and reliable operation of
aging wind turbines [3]. Past research investigated the average performance degradation for a
large ensemble of turbines [4], but this method is not directly applicable to single turbines. In
[5] a sophisticated method for estimating both the power coefficient and the rotor effective wind
speed of a wind turbine was presented. It is based on Gaussian regression and Kalman filtering
but has the limitation that accurate measurements of the wind speed at hub height need to be
available.

This is not required for the novel learning control scheme [6] that has recently been proposed,
which exploits the dynamics of the closed-loop controlled wind turbine system. Therefore with



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 032013

IOP Publishing
doi:10.1088/1742-6596/2767/3/032013

2

this research, we focus on ways to estimate the performance degradation of a single wind turbine
that could be used to recalibrate the internal model. The algorithm excites the controller input
signal and a real-time demodulation scheme is used to calibrate the internal model information.
It makes use of the convex property of the magnitude response between the generator control
input and the power estimation error to diminish under increasing model accuracy. However, the
scheme as presented in [6] shows slow convergence and is not reliable in high wind turbulence.
More specifically, this is caused by high noise levels due to wind turbulence.

This paper improves the existing learning scheme on the previously mentioned issues, and
thereby proposes two contributions: Firstly, this paper investigates how the frequency of the
excitation signal influences the signal-to-noise ratio. Secondly, the problem was reformulated as a
root-finding problem, which allows much faster convergence in the presence of noise than solving
a convex optimization problem. The new approach requires using the in-phase component of
the phase-corrected learning signal instead of the amplitude. The in-phase component is signed,
and the sign indicates whether the estimate is too high or too low which allows fast convergence.
In addition, a pre-calculated lookup table relates the measured in-phase component directly to
model uncertainty. It also allows the calculation of an updated standard deviation of the model
uncertainty after each measurement.

The paper is structured as follows: First, in the Section 2, the turbine model and
controller, assumptions and uncertainty modeling are explained. Then, Section 3 entails the
first contribution, by presenting a derivation of an analytical and frequency-dependent signal-
to-noise expression. Then follows the second contribution, the improved learning algorithm in
Section 4. Finally, we present the simulation results in Section 5, draw conclusions and provide
an outlook in Section 6.

2. Turbine model and controller, assumptions and uncertainty modeling
In this section, we provide the required background information about the system to which
the learning control will be applied. First, the dynamic system model is explained, then the
uncertainty modeling framework is introduced.

2.1. Turbine model, controller and wind speed estimator
This section defines the fundamental relations that constitute the full dynamic system with
partial load control as depicted in Fig. 1. To this end, first, the wind turbine is defined, which

Controller Plant Estimator

PI Turbine

×
J

d/dt

λ̂ = ωrR
Û

1
2 ρ A Û3 Γ̂C�p(λ̂)

Ku 1/srω =
Ûλ∗
R

–rω eω
+

Pg,c Pg+

Pg,e(s)

Pg,e

U(s)

U

λ

ΛP(s),ΛU(s)

ωr

+

ωr

–

P̂r

+Jω̇rωr + ep ÛÛ

λ∗

EP(s), EU(s)

Γ̂

Figure 1. Block diagram of the turbine controller, turbine and wind speed estimator [6]. The

system has the inputs U (REWS), Pg,e (excitation power) and Γ̂ and the outputs λ (tip speed

ratio) and ep (measured error signal). When the modeled Γ̂C�p matches the actual turbine
aerodynamic properties Cp the error signal becomes zero in steady-state conditions.
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is modeled as a first-order system
Jω̇rωr = Pr − Pg , (1)

in which J is the effective rotor inertia at the low-speed shaft, ωr the rotor speed, Pr the
aerodynamic rotor power and Pg the mechanical generator power. It is assumed that this
generator power can be controlled directly.

The aerodynamic power is given by

Pr =
1

2
ρAU3 CP(λ) , (2)

where ρ is the air density, A the rotor area, U the rotor effective wind speed (REWS) and CP(λ)
the power coefficient as a function of the tip speed ratio λ = ωrR/U, with R being the rotor
radius. The REWS, defined as the average wind speed on the rotor surface [7] is estimated using
the following dynamic power balance equation:

˙̂
U = KU eP = KU

(
Pg − P̂r + Jω̇rωr

)
, (3)

where KU is the estimator gain, and the estimated aerodynamic rotor power is defined as

P̂r =
1

2
ρAÛ3 ĈP(λ̂), (4)

with λ̂ = ωrR/Û , and ĈP is the estimated model for the power coefficient and will be defined in
the second part of this section.

The controller for the tip-speed-ratio (TSR) is a proportional-integral (PI) controller that

uses the estimated rotor effective wind speed Û and the set point of the tip speed ratio λ∗ to
calculate the set point of the rotor speed:

rω =
Ûλ∗

R
. (5)

The PI controller is defined by
Ṗg = KPėω +Kieω , (6)

in which the error eω = −(rω−ωr) is the negative difference between the setpoint and the actual
rotor speed ωr. We use the negative difference here for KP and Ki to be positive.

2.2. Assumptions and uncertainty modeling
As shown in the purple estimator block in Fig. 1, the REWS estimator employs aerodynamic
model information of the actual turbine. Inconsistent model information results in a biased
value of the estimated REWS Û . As this estimate is used as a feedback signal, this results in
sub-optimal power extraction [3] and in the worst case a loss of stability. For the considered
learning algorithm, uncertainty is only considered for the power coefficient information using the
uncertainty framework introduced next. The algorithm proposed in [6] used scalar multiplicative
uncertainty in the power coefficient: We make the same assumption. Multiplicative uncertainty
on the ideal power coefficient information for the actual turbine is indicated by the degradation
factor Γ ∈ R

+ for the actual turbine, and by Γ̂ ∈ R
+ for the estimator model:

CP(λ) = Γ C�p(λ) , ĈP(λ̂) = Γ̂ C�p(λ̂) , (7)

where C�p is the original function for the power coefficient as function of the tip speed ratio,
representing nominal (non-degraded) power coefficient characteristics [6]. Fig. 2 illustrates the
concept of multiplicative uncertainty for different values of Γ. The goal is to estimate Γ and
calibrate Γ̂ accordingly in this learning scheme.
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Figure 2. Power coefficient CP as function
of the tip speed ratio λ of the NREL 5MW
reference turbine. Plotted is the original C�P
function, and the CP curves for a degradation
factor of Γ = 0.9 and Γ = 0.8.

Figure 3. Spectrum of the rotor effective
wind speed (REWS) at a wind speed of 7 m/s
and a turbulence intensity at hub height of
4.5%, which results in 3% turbulence intensity
of the REWS.

3. Derivation of the signal-to-noise ratio
The learning algorithm as proposed in [5] works in the following way: In the wind speed
estimator, a power balance is calculated by substracting the estimated rotor power from the
generator power and adding the power needed to accelerate the rotor. If the performance factor
Γ̂ is too large or too small, the excitation signal Pg,e will appear in ep with a sign that indicates

if Γ̂ is too large or too small. To improve the detectability of the excitation in the error signal
with the aim to improve the convergence of the algorithm [6], we need to understand on which
parameters the signal-to-noise ratio of the excitation power in the error signal with respect to
the power of the wind disturbance is depending.

The learning scheme excites the system input with a generator power excitation signal Pg,e
and the error signal ep on the right-hand side is measured, as shown in Fig. 1. Therefore we
define a frequency-dependent expression for the signal-to-noise-ratio (SNR):

SNR(s) =
EP(s)

EU(s)
, (8)

where s is the Laplace operator. The expression is the ratio of the power of the detected
excitation signal EP(s) and the power of the REWS turbulence EU(s). The next section provides
an analytical derivation for this expression to identify the parameters that affect it.

3.1. Transfer functions of the closed loop dynamic system
To explain the derivation of the SNR it is necessary to consider the block diagram of the closed-
loop dynamic system in Fig. 1. First, the following transfer functions (TFs) are defined:

H(s) = EP(s)/Pg,e(s) , J (s) = EU(s)/U(s). (9)

Now by substitution of Eq. (9) in Eq. (8) we obtain

SNR(s) =
Ep(s)

EU (s)
=
H(s)Pg,e(s)
J (s)U(s) . (10)
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A third transfer function is introduced and used to substitute Pg,e to get the TSR amplitude-
dependent expression:

I(s) = ΛP(s)/Pg,e(s) , (11)

and to arrive at

SNR(s) =
H(s)

J (s)I(s)︸ ︷︷ ︸
TFs

1

U(s)︸ ︷︷ ︸
Wind spectrum

ΛP(s)︸ ︷︷ ︸
TSR amplitude

.
(12)

Now, under the condition that the TSR constraint is constant over all frequencies, we can say
that ΛP(s) = Aλ, so that we get the result

SNR(s) =
H(s)

J (s)I(s)
Aλ

U(s) . (13)

This equation relates the SNR to the excitation frequency using three transfer functions of
the system, the TSR amplitude and the wind speed spectrum: Higher amplitudes of the tip
speed ratio λ increase the SNR, and a higher amplitude of the wind turbulence U(s) decreases
it. The first fraction consisting of closed-loop system TFs will be derived in the next section.

3.2. Analytic derivation of the closed-loop transfer functions
We define the left term of the right-hand side of Eq. (13) as

L(s) = H(s)
J (s)I(s) (14)

and investigate it analytically. Before providing the linear derivation, the (estimated) power
coefficient functions are assumed as a linear affine approximation at the considered operating
points:

C�P(λ) = aλ+ b , C�P(λ̂) = cλ̂+ d . (15)

We need to derive the functions H(s), J (s) and I(s) and combine and simplify them to
derive L(s). The following section starts with a time-domain (state-space system) derivation
and is later converted to the frequency domain to arrive at an analytic expression for J (s). As
the derivation of the other two transfer functions follows a similar procedure, only the result is
given at the end of this section.

3.2.1. Derivation of J (s) As the first step, we derive the state space system of the nonlinear
plant, which consists of the wind turbine in series with the wind speed estimator as defined in
Section 2.1. The state, input and output vectors are respectively defined as

x =

[
ωr
Û

]
, u =

[
U
Pg,c

]
, y =

[
eω
eP

]
. (16)

We use the linear power coefficient function approximations of Eq. (15). When linearizing the
state space system of the plant, assuming Pg,e = 0 we obtain

Ap =

⎡
⎣ P̄g−0.5AbΓρU3

Jω̄2
r

0

Ku

(
0.5U2ARaΓρ− 0.5Û2ARcΓ̂ρ

)
−KuV

⎤
⎦ , (17)

Bp =

[
1.5U2AbΓρ+ARUaΓρω̄r

Jω̄r

−1
Jω̄r

(−0.5ARUaΓρω̄r + 1.5A (b U +Raω̄r)UΓρ)Ku 0

]
, (18)

Cp =

[ −1 λ∗
R

Q− Q̂ −V
]

, Dp = 0 (19)
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where P̄g is the equilibrium point of the generator power used for the linearization, and ω̄r the
equilibrium point of the rotor speed. The following terms are introduced to simplify the results:

Q = 0.5U2ARaΓρ , Q̂ = 0.5Û2ARcΓ̂ρ ,

V = 1.5AΓ̂ρÛ(dÛ +Rcω̄r) + 0.5ARcΓ̂ρÛω̄r .
(20)

Now the PI controller is constructed in state-space notation:

Ac = 0 , Bc = 1 , Cc = Ki , Dc = Kp (21)

Connecting the plant and the controller results in the following, combined state space model
with the input and output

u = U , y = eP (22)

and the matrices

A =

⎡
⎢⎢⎣

P̄g+Kpω̄r−0.5U3AbΓρ
ω̄2
r J

−Kpλ∗
JRω̄r

−Ki
Jω̄r(

Q− Q̂
)
Ku −KuV 0

−1 λ∗
R 0

⎤
⎥⎥⎦ (23)

B =

⎡
⎣ 1.5U2AbΓρ+ARUaω̄rΓρ

Jω̄r

(−0.5ARUaω̄rΓρ+ 1.5A (b U +Raω̄r)UΓρ)Ku

0

⎤
⎦ (24)

C =
[ (

Q− Q̂
)
−V 0

]
(25)

D = 1.5U2A
(
b+ Raω̄r

U

)
Γρ− 0.5ARUaΓρω̄r (26)

A unique transfer function representation of the combined state-space system in Eq. (23) to
(26) is obtained using C (sI−A)−1 B+D, resulting in

J (s) = b3s
3 + b2s

2 + b1s

a3s3 + a2s2 + a1s+ a0
, (27)

representing the transfer function from the wind input to the wind speed estimation error, with
the coefficients defined as:

b3 = −ARUΓρ (3b U + 2Raω̄r) ω̄
2
r J

b2 = ARUΓρ (3b U + 2Raω̄r) (Pg + (Q̂−Q+Kp +Ki) ω̄r − 0.5U3AbΓρ)

b1 = ARUΓρ Kiω̄r (3b U + 2Raω̄r)

(28)

a3 = −4 ω̄2r JR

a2 = 2 (2P̄gR+ 2KpRω̄r − 2ω̄2r JKuRV − U3ARbΓρ)

a1 = 4 (KiRω̄r+KuP̄gRV−KpKuQλ∗ω̄r+KpKuQ̂λ∗ω̄r+KpKuRV ω̄r−0.5U3AKuRV bΓρ)

a0 = 4KiKu((Q̂−Q)λ∗ω̄r +RV ω̄r)

(29)

The transfer functions H(s) and I(s) are obtained using a similar procedure. For brevity, these
transfer functions are not derived here. The individual results are validated using the numerical
linearization capabilities of the Julia package ModelingToolkit.jl [8] on a symbolic definition of
the full nonlinear system.
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3.2.2. Simplification of L(s) with the definition of J (s), H(s) and I(s) at hand, L(s) can be
calculated using Eq. (14), and it can be split into a constant, frequency-independent term K
and the frequency-dependent s term Lr(s)

L(s) = K Lr(s) =
U2aΓ− Û2c Γ̂

(3Ub+ 2Raωr) Γ

s3 + b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0
. (30)

We define the relative differences:

d2 =
b2 − a2

b2
, d1 =

b1 − a1
b1

, d0 =
b0 − a0

b0
. (31)

If |d2|, |d1| and |d1| are all << 1 we can assume Lr(s) ≈ 1. In Lr(s) the coefficients of the highest
power of s in the numerator and denominator are the same. The other coefficients only differ
by a term proportional to Γ− Γ̂. Therefore, for (Γ− Γ̂) −→ 0 numerator and denominator of Lr

cancel out and the term approaches the value of one.
Under the resulting assumption that Γ/Γ̂ is close to one, the following approximate analytical

frequency-dependent SNR expression is obtained:

SNR(s) ≈ U2aΓ− Û2c Γ̂

(3Ub+ 2Raωr) Γ

1

U(s)Aλ . (32)

The SNR depends dynamically on the inverse of the rotor effective wind speed spectrum:
therefore a higher excitation frequency results in an improved signal-to-noise ratio. Furthermore,
the SNR depends statically on the amplitude of imposed TSR variations, the turbine operating
point and the degree of turbine degradation. It is concluded that higher TSR amplitudes result
in an overall increased SNR (among all frequencies). Furthermore the coefficients a, b, c that
depend on the shape and height of the function CP = f(λ) influence the SNR. A difference
between the gradients a and c of C�P at the real and the estimated TSR improves the SNR.

Notably, the expression shows that the SNR is independent of the inertia of the turbine and
of the controller parameters Ki, Kp and Ku under the assumption that the system is stable.

3.3. Numerical evaluation and further insights
Numerical simulations were performed to better understand the analytical SNR expression of
Eq. (32). For that we need the spectra U(s) of the rotor effective wind speed. It was derived
from a 3D wind field for an average wind speed of 7 m/s and turbulence intensity at hub height
of 4.5%, and was generated using PyConTurb [9] using the Kaimal spectrum. The spectrum of
this data set is shown in Fig. 3.

For the simulation the NREL 5-MW reference turbine [10] at 90 m hub height was used. The
most important parameters can be found in Tab. 1. The investigation was done for a minimally
degraded turbine with Γ = 0.99 and Γ̂ = 1.0. These values were chosen because the noise is
mainly a problem when the estimated value is close to the real value. Fig 4 depicts the ratio of
signal and noise, the function SNR(s). It can be seen that at low frequencies, signal and noise
increase with the frequency with the same gradient, so the SNR(s) stays constant. At about
0.005 rad/s the increase in the noise level slows down to reach a maximum at about 0.05 rad/s,
declining fast with a further increased frequency. In contrary, for frequencies above 0.3 rad/s,
the signal stays constant. When combining signal and noise we therefore see a strong increase
of the SNR for frequencies above 0.1 rad/s. An excitation frequency of 0.4382 rad/s was chosen,
which results in an SNR of 20dB, but still stays well below the turbine structural resonances.
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Table 1. Turbine, controller and estimator parameters

Variable Value Description Unit
A 1.247·104 Rotor area m2

R 63.0 Rotor radius m
J 4.047·107 Total inertia kgm2

KP 4.426·106 Proportional gain -
Ki 56824 Integral gain -
KU 2.250·10−7 Wind speed estimator gain -
λ∗ 8.0 Tip speed ratio set point -
Aλ 0.5 TSR amplitude of the excitation -

Figure 4. Signal-to-noise ratio of the
excitation signal as measured at ep as function
of the excitation frequency. It can be seen that
the SNR is proportional to the inverse U(s) as
predicted by Eq. (32).

Figure 5. The in-phase signal amplitude
as function of Γ and Γ̂. This function is
derived by simulation and interpolated using
Chebychev polynomials.

Ae sin(ωet) Controlled system FFT

Γ̂i+1 = f(Ie, Γ̂av)

σΓ̂i+1
= g(σe, Ie, Γ̂av)

Weighted Average
Pg,e ep Ie

σe

Γest,i+1

σΓ,i+1

Γ̂av,n

σΓ,av,nΓ̂av,n

−α

Figure 6. Block diagram of the advanced learning control scheme. It works iteratively. Every
30 min a new FFT is performed. The measured signal is phase-corrected by −α to compensate
for the phase shift of the system.

4. The improved learning algorithm
After we explained how to choose a value for the excitation frequency that results in a high SNR
and thus fast convergence, we explain the second contribution, the improved learning scheme.
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4.1. Motivation
The learning scheme as proposed in [6] is based on real-time excitation-based gradient retrieval.
The new method presented here collects data in batches for an extended period of time and
uses root finding to calculate new estimates of the degradation factor Γ. In [6] an integrator

was used to learn Γ̂. Because of the high system nonlinearity for the considered input-output
pair, finding the optimal integrator gain is challenging, and depending on the operating point
will either produce an overshoot or converge very slowly. In addition, a real-time gradient-
based optimization scheme has limited capabilities of including history, whereas the algorithm
proposed here provides an ever-increasing accuracy the longer the measurement is ongoing.

4.2. Lookup tables
In the simulation, it is possible to measure the in-phase signal as a function of Γ and Γ̂, which
is a highly non-linear relationship as shown in Fig. 5. The results of these simulations can be
used to create lookup tables, which can be approximated using a Chebychev function. This
Chebychev function can easily be inverted to obtain Γ = f(Ie, Γ̂). When this function is known,
under ideal conditions one measurement of Ie is sufficient to determine Γ. This function allows
the learning algorithm to converge with optimal speed and little overshoot. A solution that is
robust concerning model uncertainties can be obtained using an iterative scheme.

4.3. Implemented solution
A schematic representation of the iterative learning algorithm is shown in Fig. 6. It starts with
an initial estimate of the degradation factor Γ̂av,0 = 1. On the very left the excitation signal
with the amplitude Ae excites the controlled system as shown in Fig. 1. The error signal ep
is collected for 30 mins. The FFT of the collected signal evaluated at ωe is first turned by the
constant phase shift α, which is the phase we loose at ωe in the closed loop system. Then the real
part represents the in-phase component Ie. The estimated standard deviation σe is calculated
using the average amplitude of the 10 discrete frequencies above and below ωe which represents
the noise level present due to the wind turbulence.

The values of Ie as shown in Fig. 5 and the phase shift α are determined offline using the
linearized system model. A Chebychev interpolation is used to interpolate Ie for any value of Γ
and Γ̂. The interpolated function is then inverted using a root-finding algorithm to obtain the
function Γ̂i+1 = f(Ie, Γ̂av). The function σΓ̂i+1

= g(σe, Ie, Γ̂av) is determined by differentiating

the function f(Ie, Γ̂av).
The Weighted Average block uses the new estimates together with all older estimates to

calculate every 30 min new, best estimates for the degradation and its standard deviation. The
estimated degradation Γ̂av is fed back into the controlled system for the next measurement. It
works as follows: The weight of each measurement should be proportional to the inverse square
of the standard deviation [11]. This can be written as:

Γ̂av,n =

∑n
i=1 xi/σ

2
Γ,i∑n

i=1 σ
2
Γ,i

, σΓ,av,n =
1∑n

i=1 σ
2
Γ,i

. (33)

5. Simulation results of the learning scheme
In Fig. 7 the time domain results of a simulation of 11 hours are shown for an average wind
speed at hub height of 7 m/s and a turbulence intensity of 4.5 %. The actual turbine degradation
is Γ = 0.85, which is what shall be learned in this study. The three test cases differ concerning
the seed of the random generator that created the wind time series. Thanks to the combined
contributions of this work to the SNR and the improved iterative learning algorithm already
after the first iteration (30 min) the Γ̂av is in the range of 0.825 to 0.875, and after 4h the 2σ
confidence interval is down to ±0.01 of the measured value.
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Figure 7. Progress of the learning of the degradation factor Γ̂ for ωe = 0.438 rad/s and I=4.5%.
Convergence is largely reached after the first iteration, with increasing certainty in subsequent
iterations.

6. Conclusions and outlook
This paper proposed promising improvements to a wind speed measurement free learning scheme
for model-based wind turbine controllers. Using the transfer functions of the model it was shown
that a higher excitation frequency improves the signal-to-noise ratio and thus the convergence.
A novel learning scheme further improves the convergence and provides a degradation estimate
with ever-increasing accuracy. If these results can be verified in practice, then this new approach
offers a promising way to auto-calibrate internal controller models of older wind turbines.

Furthermore, the foundations of the learning algorithm allow to detect and quantify possible
damage to the turbine after a storm or similar weather events. Future research shall find out if
not only a degradation of the power coefficient by a constant factor can be learned as explained
in this paper, but also additional internal model parameters. Finally the algorithm was tested
only for turbulence intensities up to 4.5% and it should be investigated if it is possible to adapt
it for higher turbulence intensities.
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