
USING MARKOV-SWITCHING VECTOR
AUTOREGRESSIONS FOR MODELLING

INTRAOPERATIVE HEMODYNAMICS

MSC THESIS REPORT

by

Rutger VAN BEEK

in partial fulfillment of the requirements for the degree of

Master of Science
in Applied Mathematics,

at the Delft University of Technology,

to be defended on the 5th July at 14:30

Student number: 4573145
Supervisors: Dr. N.Parolya TU Delft, DIAM, Statistics

Dr. F. van Lier Erasmus MC, Anesthesiology
Dr. S.E. Hoeks Erasmus MC, Anesthesiology

Thesis committee: Dr. M.B. van Gijzen TU Delft, DIAM, Numerical Analysis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




PREFACE

I vividly remember the moment I started with this thesis. The first paper I read had a
title starting with ’troponin T’. And I remember just stopping with reading at that point
and first finding out what troponin T was even about. For me, that is a large part of what
applied mathematics is about. Understanding the context and modelling the situation
mathematically. Only then turning to mathematical tools. The last step, the translation
of mathematical results into practical, in this case medically relevant, results. I think this
last step is very interesting and was very prominent in this research. A whole chapter in
this thesis, chapter 6 is dedicated to this. I think this also makes applied mathematics
interesting; how can we make the mathematical results meaningful?

This thesis marks the end of my studies at the TU Delft. 6 years ago, I started with the
bachelor, to find there was a whole world of mathematics I had no idea about. I already
turned my mathematical skills into practice during my year at Project March, which I
definitely enjoyed and where I learned a lot besides mathematics. During my masters, I
enjoyed going deep into my main interests, statistics, data, and machine learning.

This thesis incorporates 7 months of hard work, which I could not have done without
help of course. First of all, I want to thank Sanne en Felix from the Erasmus MC. I want
to thank you for providing the project including the interesting dataset, for explaining
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later. Next, I want to thank my TU Delft supervisor, Nestor, for helping me with the
mathematical side of things. I remember asking about covariance shrinkage in weighted
least squares and Nestor telling me about his own research on this specific subject.

Next to my supervisors, I want to thank all the people I studied with at the TU Delft
during the past coming months. Some people on many days and some on less, but I want
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want to thank all these people for the discussions, lunch walks, and just being there.
Especially Roel’s disappointment every time I arrived later or left early to go sporting,
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Rutger van Beek
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ABSTRACT

Cardiac complications after surgery are common irrespective of the underlying condi-
tion. The postoperative level of troponin T is a good marker for cardiac complications.
Little is known on the pathology of the release of troponin T in the blood, while a bet-
ter understanding might provide the ability to reduce the complications. The goal of
the thesis is to find patterns in intraoperative data that are related to the release of tro-
ponin T in the blood during surgery. The states resulting from estimating an MSVAR
on intraoperative hemodynamic data were interpreted and related to postoperative tro-
ponin T measurements. The MSVAR was estimated in two ways: with the EM algorithm
and in Bayesian fashion with the Gibbs sampler. Prior distributions were chosen and a
Gibbs sampler was developed for estimating the MSVAR with these priors. The differ-
ences between the EM algorithm and the Gibbs sampler are mostly fundamental and
not practical. Furthermore, the MSVAR is an appropriate model for modelling intraop-
erative hemodynamic data. The states of the MSVAR were related to various surgery
variables, but did not have any prognostic value for predicting postoperative troponin T.
The states related to the external shocks continuously given to the patient during surgery
rather than the patient’s state.
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1
INTRODUCTION

It is estimated that 4.2 million people die within 30 days after surgery each year [1]. Al-
though surgeries have become much safer over the years, severe risks still exist. In Eu-
rope, the mortality rate for non-cardiac surgery is approximately 4% [2]. Surprisingly,
many patients who undergo non-cardiac surgery end up with myocardial injury, which
appears to be the main cause of postoperative mortality [3, 4, 5, 6]. How can it be that so
many end up with cardiac problems after surgery?

1.1. CARDIAC PROBLEMS AFTER NON-CARDIAC SURGERY
Cardiac problems after non-cardiac surgery is a problem, having a large influence on
the surgery outcome. Cardiovascular complications are generally not related to the pa-
tient’s medical condition, but rather the body and especially the heart being under stress
during surgery. In this section, a deeper look will be shed at cardiac complications from
surgery.

1.1.1. STABILIZING PATIENTS DURING SURGERY

During surgery, general anaesthesia is commonly used. General anesthesia results in
unconsciousness, paralysis, and a blunting of the stress response [7]. Due to anaesthe-
sia, the body is not fully capable of controlling itself, especially when combined with the
stress induced by surgery. Therefore, an anesthesiologist monitors the patient. For ex-
ample, in the USA minimal monitoring includes electrocardiography (ECG), heart rate,
blood pressure, inspired and expired gases, blood oxygen saturation (pulse oximetry),
and temperature [8]. On the basis of these measurements, the anesthesiologist can sup-
ply medication. For example, by giving vasopressors, blood vessels narrow and blood
pressure increases. However, the amount of myocardial injury after surgery tells that
some patients are not stable, which is only observed postoperatively. Myocardial injury
can be observed by measuring an elevated level of troponin T in the blood after the op-
eration, which the next section will be about.

1
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1.1.2. TROPONIN T
Troponin T (TnT) is part of the troponin complex, which is a combination of proteins
important for contracting muscles [9]. Troponin T is present in the heart muscles. After
myocardial injury, such as an heart attack, the troponin T is released into the blood-
stream, where it can be measured with lab tests. TnT concentration in the blood begins
to increase a few hours after the myocardial injury and remains high for a couple of days.

Troponin T is associated with major adverse cardiovascular events in the first year
after surgery [10]. Additionally, Troponin T turns out to have a major prognostic value
in predicting postoperative mortality [3, 5, 11, 12]. Troponin T is still a good predictor
of mortality in the case of kidney injury, which has a major effect on troponin T values
in the blood [13]. In [14] it is shown that troponin T is also a marker for non-cardiac
complications and mortality not related to myocardial injury. One can conclude that
troponin T has a good prognostic value for postoperative complications. However, little
is known about the pathology of troponin T release during surgery [15].

1.1.3. PATHOLOGY OF INTRAOPERATIVE TROPONIN T RELEASE

In the previous section, troponin T was shown to have a major prognostic value in the
prediction of postoperative complications, especially myocardial injury and mortality. It
therefore seems to be a good indicator of the patients state after surgery as it is related
to most major complications. Next to that, it is measured in almost all patients in the
first three days after surgery [10]. However, little is known on the pathology of intra-
operative troponin T release. The goal of this thesis is to find patterns in intraoperative
data that are related to elevated postoperative troponin T measurements. These patterns
can potentially be used to improve patient monitoring during surgery and establish the
pathology of troponin T release.

1.2. DATABASE

To find patterns in data, one of course needs data. The database used in the thesis is
provided by the Erasmus MC and includes data on Erasmus MC patients and surgeries
performed at the Erasmus MC. The database is similar to the ones used in [10, 13, 15, 16].
The database includes patients who underwent intermediate or high-risk non-cardiac
surgery at Erasmus MC between 1 July 2012 and 1 July 2017. Because on 1 July 2012, the
postoperative troponin measurement protocol was started. Furthermore, only patients
aged 60 or older are included as these are mainly at risk.

1.2.1. MEASURING TROPONIN T
As described before, since 1 July 2012 the troponin T is measured in each of the three
postoperative days, unless the patient is discharged earlier. Troponin T is measured as
high-sensitivity troponin T (hsTnT) using the Cobas e602 Troponin T hs STAT assay from
Roch Diagnostics, Germany. This is the fifth generation assay, which has a higher prog-
nostic value [17]. Preoperative measurements are generally only available for patients
with known cardiovascular conditions. The peak value over three days of observations is
considered the most relevant and is usually taken as the postoperative hsTnT value [10].
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1.2.2. OTHER DATA

Next to hsTnT, other data in the database is obtained in the following way. Intraopera-
tive data, such as heart rate and blood pressure, is recorded at irregular 1- to 5- minute
intervals. The dataset also includes ST segments, which are derived from the ECG and
recorded at 1- to 5- minute intervals for each of the leads. The patients had a preoper-
ative screening that included a medical history check, physical examination, laboratory
measurements, and electrocardiogram according to Erasmus MC policies. The preoper-
ative screening, basic patient characteristics, intraoperative data, and preoperative use
of medication can be retrieved from the electronic hospital patient information system.
Survival status was checked with the civil registries.

1.3. RELATION TO OTHER RESEARCH
Related research mainly includes several papers using the same database. In [13] the
prognostic value of hsTnT in the presence of kidney disease was investigated. Further-
more, in [15] the database was used to research the association of postoperative hy-
potension and myocardial injury, which was extended with [16]. Finally, major adverse
cardiovascular events after surgery were found to be related to postoperative hsTnT [10].
These researches focused mainly on the prognostic value of postoperative hsTnT and
not on intraoperative data.

1.3.1. INTERNSHIP REPORTS

Several Applied Mathematics students from TU Delft have done internships at the Eras-
mus MC all using the same database. All used intraoperative data in the database as
well. Thomas van der Jagt researched the relation between ST segments and mean arte-
rial pressure [18]. Extending the modelling of the intraoperative time series data Daniël
Hoonhout introduced VAR modelling [19] and Rissalah Abdellah extended this research
by introducing VECM [20]. Using a different model for each surgery, both VAR and VECM
can be used to model intraoperative hemodynamics. However, model validation hy-
pothesis testing shows that these models are not generally appropriate. Finally, Laura
Veerhoek and Antoine Pomari worked on summarizing the intraoperative data for pre-
diction of hsTnT [21, 22]. The intraoperative data was summarized using statistical func-
tions. In combination with preoperative characteristics, several statistical learning mod-
els were applied. The best model had a 0.75 ROC AUC score in predicting high(> 50 ng/L)
peak posteropative hsTnT. In conclusion, several approaches for modelling intraopera-
tive hemodynamics are already researched, however no consensus is reached.

1.3.2. PREDICTION FROM INTRAOPERATIVE DATA

Finally, there is some research on postoperative prediction from intraoperative data. In
[23] it is stated that in the prediction of postoperative complications generally only pre-
operative features are used. It is shown that random forests trained on both pre- and
intraoperative features have improved accuracy for predicting postoperative complica-
tions. In particular, the accuracy of predicting in-hospital mortality increased from 0.77
to 0.88. The time series was summarized by using statistical functions.

Similarly, research was conducted by Xue et al. [24]. Preoperative and intraoperative
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data was used to identify the risks of postoperative complications, such as pneumonia,
acute kidney injury, deep vein trombosis, pulmonary embolism, and delirium. These
turned out to be quite predictable with ROC AUC scores between 0.831 and 0.905. The
intraoperative data was summarized using normalized values of statistical functionals
applied to the time series, similarly as in [21]. Many different machine learning models
were considered. Gradient boosting trees and deep neural networks performed best.

Finally, in a series of articles a different approach for summarising time series was
shown [25, 26, 27]. The data is not from surgeries, but from ICU monitoring, which is
very similar. Here, the time series data is modelled with a Markov-Switching Vector Au-
toregression. The relative time in each of the states is used as predictive features for pre-
diction mortality. This approach is more elaborately discussed in 3.1.2. It was shown that
time in states has additional prognostic value in addition to preoperative characteristics,
reaching a ROC AUC score of 0.68. The score increased to 0.83 for a small subgroup of
patients, which had a higher incidence of mortality and were identified by intraoperative
hypotension and vasopressor usage.

Research shows that intraoperative data has an additional prognostic value in pre-
dicting postoperative complications, including mortality. Several approaches for deal-
ing with intraoperative data are available. The approach of using statistical functions
to summarise intraoperative time series was found to have a ROC AUC score of 0.75 to
predict elevated hsTnT on the first postoperative day.

1.4. CONTENTS
After the introduction this thesis starts with mathematical theory on modelling time se-
ries. Next, the methods used to obtain troponin predictions from these time series mod-
els are described. From chapter four, the result chapters follow. Chapter four presents
the results for fitting an MSVAR to hemodynamic data with the EM algorithm. Next,
chapter five is a collection of results from fitting an MSVAR in Bayesian fashion with the
Gibbs sampler. The last result chapter, chapter six, is about interpreting the states re-
sulting from the hierarchical Bayes MSVAR model fitted on hemodynamic data. Next,
the results are interpreted and combined in the discussion. The thesis is ended with an
conclusion and several appendices.



2
TIME SERIES MODELLING

A lot of intraoperative data is so-called time series data. A time series is a sequence of
data that have been observed at different points in time. The idea is that the observations
are related based on the observation time. "The obvious correlation introduced by the
sampling of adjacent points in time can severely restrict the applicability of the many
conventional statistical methods traditionally dependent on the assumption that these
adjacent observations are independent and identically distributed." [28]. Examples of
time series are stock prices, weather temperatures and the number of people infected
with Covid per day. Most of the intraoperative data in the database are time series, for
instance heart rate, blood pressures and ST segments. “The primary objective of time
series analysis is to develop mathematical models that provide plausible descriptions
for sample data” [28]. In this thesis, several known methods from time series modelling
will be used for modelling the time series data. The methods and their relations will
be discussed in this chapter. However, first some basic properties of time series will be
introduced.

2.1. INTRODUCTION TO TIME SERIES ANALYSIS
This chapter begins with several characteristics of time series and the notion of station-
arity, which is an essential concept in time series analysis. The definitions in this section
are taken from the book of Shumway and Stoffer, more elaborate information can be
retrieved there [28].

Three basic properties of time series are: the mean function, the autocovariance
function and the autocorrelation function. The mean function is the expectation at any
given time point. For a real-valued stochastic process {X t } with density ft at each time
point t is given by:

µxt = E(xt ) =
∫ ∞

∞
x ft (t )d x (2.1)

The autocovariance function gives the covariance between the distribution of two time

5
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points in a stochastic process:

γX (s, t ) = cov(Xs , X t ) = E[
(xs )−µs )(xt −µt )

]
(2.2)

Using the standard normalizing transformation from covariance to correlation we have
that the autocorrelation function is given by:

ρ(s, t ) = γ(s, t )√
γ(s, s)γ(t , t )

(2.3)

There is a very particular group of time series, which will be used as a building block
for complex models, which is a white-noise sequence. The basic white-noise sequence
is a sequence of uncorrelated random variables wt , with mean 0 and a finite variance
σ2

w , notated as wt ∼ wn(0,σ2
w ). There are other forms of white noise, being independent

white noise, where the variables are not just uncorrelated but also independent. Next
to that, there is also Gaussian white-noise, where the variables are normally distributed
with mean zero and a common variance. For a Gaussian white-noise sequence the inde-
pendence is implied, because the variables are uncorrelated and normally distributed.

2.1.1. STATIONARITY

There are two notions of stationarity, being weak and strict stationarity. A time series is
strictly stationary if for every collection of values {xt1 , xt2 , . . . , xtk } we have that

P{xt1 ≤ c1, . . . , xtk ≤ ck } =P{xt1+h ≤ c1, . . . , xtk+h ≤ ck } (2.4)

for all time points t1, . . . , tk , numbers c1, . . . ,ck and shifts h = 0,±1,±2, . . .. Any joined
distribution does not change when shifted in time for a strictly stationairy time series.
This implies that the distribution of the observations including its dependencies on the
past does not change over time.

An easier, and more generally used form of stationarity is weak stationarity. A stochas-
tic process is weakly stationary if the mean does not depend on time, and the autocovari-
ance function only depends on the time difference. A time series, {X t }, is stationary if

µ(t ) =µ, ∀t (2.5)

γ(s, s +h) = γ(t , t +h), ∀t , s (2.6)

Generally, with stationairy a weakly stationairy time series is meant. For a stationary
time series we can redefine the mean function to be equal to a constant µ. Furthermore,
the autocovariance and autocorrelation functions can be redefined, because the func-
tions do not depend on specific times, but rather only on the time difference or lag, h:

γ(h) = cov(xt , xt+h) (2.7)

ρ(h) = ρ(s, s +h) = γ(s, s +h)√
γ(s, s)γ(s +h, s +h)

= γ(h)

γ(0)
(2.8)
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TESTING FOR STATIONARITY

For an observed time series, being a realisation of a stochastic process, one can never
determine with certainty whether the time series is stationairy, however one can do hy-
pothesis testing for stationarity. The test statistic for this is the Dickey-Fuller test statistic
or an alteration [29]. Here, the basic Dickey-Fuller test statistic will be described as it is
the basis for almost all hypothesis testing for stationairity. The test statistic n(φ− 1) is
based on the assumption that the time series, can be written as xt +φxt +wt , where wt

is a Gaussian white noise sequence. The test is whether φwould be exactly equal to one,
in which case we would have a non-stationairy time series. The test statistic is then given
by: :

n(φ−1) =
1

nσ2
w

∑n
t=1 wt xt−1

1
n2σ2

2

∑n
t=1 x2

t−1

d→
1
2 (χ2

1 −1)∫ 1
0 W 2(t )d t

(2.9)

where φ is the parameter of the model, n is the number of observations, σw is the stan-
dard deviation of the Gaussian white noise sequence, χ2

1 is the chi-squared distribution
with one degree of freedom and W is a standard Brownian motion. Many similar statis-
tics can be derived based on another model, for instance by including an intercept term.
There is no closed form for the distribution of the test statistic and it should be obtained
by simulation.

TRANSFORMATION FOR STATIONARITY

As will be shown in the upcoming section, stationarity is often required for several mod-
els. Therefore, one often checks whether the time series is stationary, before applying
most models. One can use transformations to obtain a stationairy time series from a
non-stationairy time series.

One general approach is to use differencing. The backshift operator, B , is defined by
B xt = xt−1 and extended to B k xt = B k−1(B xt ) = xt−k . The differences of a time series
can be defined in terms of the backshift operator,

∇xt = xt −xt−1 = (1−B)xt (2.10)

and similarly the differences of order d are: ∇d = (1−B)d . Any polynomial trend can be
removed by differencing with the amount equal to the degree of the polynomial. A time
series that is stationairy up to a polynomial trend will then become stationairy.

Sometimes a time series is not stationairy because the fluctuations vary in size. And
in many of these cases the Box-Cox family of transformations can be used [30]. These
transformations are generally used to get a more normally distributed sample, but can
also make the time series more stationairy in some cases. The family of transformations
is given by:

yt =
{

(xλt −1)/λ λ ̸= 0

log xt λ= 0
(2.11)

Especially the log-transformation is used often, mainly in finance. The transformations
is appropriate when the error variance seems to depend on the time series values.
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2.1.2. ARMA
The most well-known time series models are the ARMA models. These consist of two
fundamental building blocks, the autoregressive(AR) and moving average(MA) models.
In this section the time series is assumed to have mean zero. One could replace the time
series, X t with X̃ t = X t −µ to have a mean zero time series and model that time series.
Like last section, the definitions are taken from the book from Shumway and Stoffer [28].

The idea of an autoregressive model is to model the current value as a linear combi-
nation of the past values and some error term [31]. In an AR(p) model, the p last values
are used in the regression, which could be written as:

X t =
p∑

i=1
φi X t−i +εi (2.12)

The error εi is assumed to be a white-noise sequence. One can find the parameters φ
by applying least squares on the lags. The model can be written as a polynomial of the
backshift operator applied to the time series.

X t =
p∑

i=1
φi X t−i +εi =

(
p∑

i=1
φi B i X t +εi =

p∑
i=1

φi B i

)
X t +εi (2.13)

Putting the error terms on one side and the time series on the other the following is
obtained:

φ(B)X t =
(

1−
p∑

i=1
φi B i

)
X t = εt (2.14)

Φ(B) is called the autoregressive operator.
The moving average model is similarly defined, again assuming a mean-zero time se-

ries. The model depends linearly on the past errors. MA(q) is short for a moving average
model of order q, meaning the the last q error terms are used.

X t =
q∑

i=1
θiεt−i +εt =

q∑
i=1

θi B iεt +εt =
(

1+
q∑

i=1
θi B i

)
εt = θ(B)εt (2.15)

Here, again the model is also written as a polynomial in terms of the backshift operator.
Θ(B) is called the moving average operator. εt is a white-noise sequence as usual.

An autoregressive moving average model (ARMA), as the name suggests, is a combi-
nation of these two [31]. The autoregressive model can be viewed as applying a backshift
polynomial to the time series values, whereas the moving average can be viewed as ap-
plying a similar polynomial to the error terms. The ARMA(p, q), meaning p autoregres-
sive and q moving average terms, can than be viewed as equating these.

φ(B)X t =
(

1−
p∑

i=1
φi B i

)
X t =

(
1+

q∑
i=1

θi B i

)
εt = θ(B)εt (2.16)

2.2. MULTI-DIMENSIONAL TIME SERIES
The idea of a time series can easily be extended to multiple dimensions. Instead of map-
ping a value to every time point, a time series can also map a vector of values to every
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time point. One could apply a single dimensional time series model to each of the vector
values, however such a model would not take into account any interaction effects. Think,
for instance, about modelling a blood pressure and heart frequency together. These two
variables clearly interact and should be modelled accordingly. In this section, the vector
autoregressive (VAR) is explained. The definitions are taken from the book of Lüteke-
pohl, which is an extensive book on multivariate time series analysis [32].

2.2.1. VAR
One easy extensions of the univariate time series models, is the vector autoregressive
model. This is the vector extension of the autoregressive model. One still models the
current value as a linear regression on past values. However, the past values of the other
time series are also used as regressors, modelling the influence of other time series. If yt

is a vector of size K , it is modelled by a VAR(p) processes as:

yt = ν+ A1yt−1 + . . .+ Ap yt−p +et (2.17)

Here, ν is a vector of constants of size K , the Ai are K ×K -matrices of coefficients. et is
the vector of error terms that should satisfy three conditions:

• E(et ) = 0, similarly as in a white-noise sequence.

• E(et eT
t ) =Σ, that is the covariance-matrix does not depend on time.

• E(et eT
t−k ) = 0, k ̸= 0, meaning that there is no autocorrelation in the errors.

The defining equation can be concisely written in terms of matrices by defining:

Y : = [
y0, y1, . . . , yT

]
, (2.18)

B : = [
ν, A1 . . . Ap

]
, (2.19)

Z : =


1 1 . . . 1

y0 y1 . . . yT−1

y−1 y0 . . . yT−2
...

...,
. . .

...
y−p y−p+1 . . . yT−p

 , (2.20)

U : = [
e0 e1 . . . eT

]
(2.21)

Using the matrix notation, the VAR(p) can be written as Y = B Z +U .

2.2.2. VAR ESTIMATION
Optimal estimation of VAR models, consists of two parts: estimation for a given lag and
determining the optimal lag. Given a lag, one can view the problem as a linear regression.
It turns out that the maximum likelihood estimator of the coefficients coincides with
multiple least squares.

B̂ = Y Z T (Z Z T )−1 (2.22)

The maximum likelihood estimator for the covariance matrix is estimated as the MLE of
the expectation, E(et eT

t ), where we use the residuals as estimators for the error terms,
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which is Σ̂MLE = 1
T

∑T
t=1 ε̂t ε̂

T
t . This estimator is biased. An unbiased estimator can be

obtained by compensating for the degrees of freedom of the model.

Σ̂= 1

T −np −1

(
Y − B̂ Z )

)(
Y − B̂ Z )

)T
(2.23)

2.3. MODELS FOR MULTIPLE TIME SERIES

For each surgery there is a multidimensional time series available. Although each patient
and situation are different, there might be many similarities. Therefore, models dealing
with several independent time series are discussed here. The basic idea is the pooled
VAR, which is extended with the panel VAR. Both these models and their benefits are
discussed in [33].

2.3.1. POOLED VAR
The idea of a pooled VAR is to estimate a standard VAR as discussed in the previous sec-
tion. However, we pool all the coefficients, meaning that the coefficients are required to
be the same for every time series (or surgery). This means that it is assumed that each
patient behaves the same. A normal VAR can be estimated with ordinary least squares.
As these time series are independent, one can extract the regression equations for each
time step and combine them. This results in a least-squares problem again. Using the
concise matrix notation used from equation 2.18 , the surgeries are combined as follows:

Ỹ =


Y0

Y1
...

Yk−1

YK

 , Z̃ =


Z0

Z1
...

Zk−1

ZK

 (2.24)

Because of independence we can estimate the pooled VAR(p) coefficients, B̂ again with:

B̂ = Y Z T (Z Z T )−1 (2.25)

This results in a VAR model, fitted on many different surgeries.

2.3.2. PANEL VAR
In a pooled VAR each surgery is modelled with exactly the same model. This might be
too far stretching; this can be relaxed a bit by introducing surgery-specific terms in the
equations. In a fixed effects panel VAR a constant term per surgery is added, such that
each surgery can be modelled with an individual mean. This model can be estimated
by adding dummy variables to the MLS in the previous section. Let D be the matrix of
these dummies. It has a column per surgery. In each row there is exactly one one in the
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corresponding surgery column.

D =


1 0 . . . 0
0 1 . . . 0
...

. . .
. . . 0

0 . . . 0 1

=



1 0 . . . 0 0
...

...
. . . 0 0

1 0 . . . 0 0
0 1 0 . . . 0
...

...
...

. . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0
...

... 0 1



(2.26)

Then Z can be updated to Z̃ = [
Z D

]
and the solution becomes again the following.

B̂ = Y Z̃ T (Z̃ Z̃ T )−1 (2.27)

2.4. MSVAR
Another idea is to not have a VAR per surgery, but a VAR per patient state. One can
imagine that patients are in different states during a surgery, i.e. in pain, in stress, stable
etc.. The assumption is that each patient can be modelled similarly as long as they are in
the same state. However, this implies that the patient state should also be modelled. A
general set of such time series models are the state-space models. A state-space model
consists of two parts, a hidden state process {X t , t = 0,1, . . . } and a model for each of the
states [28]. A known model is a Markov-Switching Vector Autoregression (MSVAR) [34],
which will be elaborated in the upcoming section. In an MSVAR the states are modelled
as an Hidden Markov Model. The model in each state is equal to a Vector Autoregression
as in section 2.2.1. First the Markov chain and the Hidden Markov Model are introduced.
Next, their combination is discussed, the MSVAR, is discussed and finally two methods
for estimation are explained.

2.4.1. MARKOV CHAINS
In an MSVAR, the state is modelled as a Markov chain. A Markov chain is a stochas-
tic model, describing a sequence of possible events with the Markov property [35]. The
Markov property in a sequence of stochastic events means that the future events only
depend on the current state and not on the past. Markov chains can be discrete or con-
tinuous in time and also in state space. In an MSVAR a discrete time Markov chain
will be used, because the VAR also operates on discrete time events. Furthermore, a
discrete state space will be used to have a finite number of VAR models. Given a fi-
nite amount, S, of possible states and a stochastic sequence of discrete-time events,
{X t }n∈N, Xi ∈ {1, . . . ,S}. This sequence is a Markov chain if

P(Xn+1 = xn+1|X1 = x1, . . . , Xn = xn) =P(Xn+1 = xn+1|Xn = xn), ∀x1, . . . , xn , xn+1 ∈ {1, . . . ,S}
(2.28)
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With a finite number of states this probability can be modelled with a transition matrix,
P , with

Pi j =P(Xn+1 = j |Xn = i ). ∀i , j ∈ {1, . . . ,S} (2.29)

In addition to a transition matrix, a Markov chain also has an initial distribution, often
called π. Then P(X0 = i ) = πi . Generally, the uniform distribution over the states is
chosen as the initial distribution. The transition matrix and initial distribution together,
fully define a Markov chain.

2.4.2. HIDDEN MARKOV MODELS
Hidden Markov Models are a way of modelling a Markov chain in which the states are not
directly observed. For instance, one can not directly observe whether a patient is stable,
one can only observe things like heart rate and blood pressure, which are dependent
on the patient state. One can use a Hidden Markov Model to model a Markov chain,
without directly the observing it, but rather inferring it from observed variables with a
dependence on the Markov chain. A Hidden Markov Model consists of a Markov chain
with a transition matrix, P , and an initial distribution, π, a sequence of observations
y0, y1, . . . , an unobserved sequence of states X0, X1, . . . , and finally an emission model,
which is a probabilistic model for observing yt in state i , notated as bi (yt ).

The standard method for estimating a Hidden Markov model is the Baum-Welch al-
gorithm [36]. This is an Expectation-Maximization (EM) algorithm specifically for hid-
den Markov models. An EM algorithm is an iterative method for finding a (local) max-
imum likelihood estimate for parameters, where the model depends on unobserved la-
tent variables [37]. There are many special cases of EM algorithms. Generally, the opti-
mal parameters can be found given the latent variables and the most likely latent vari-
ables can be found given the parameters. After random initialisation of the parameters
each iteration consists of two steps. First, the E-step, in which the latent variables given
the parameters are estimated. Next, the M-step, in which the maximum likelihood esti-
mators of the parameters given the latent variables are calculated. Whenever only MLE’s
are used the likelihood is proved to be monotonically increasing, as there always is a
maximum likelihood for a probabilistic model, the algorithm converges [38]. However,
it does not necessarily converge to the maximum; it can also converge to a local maxi-
mum.

BAUM-WELCH ALGORITHM

In the Baum-Welch algorithm, the E-step is to estimate the distribution over the states
for each time step given the observations and the parameters of the Markov chain. The
Baum-Welch algorithm uses the forward-backward algorithm for filtering and smooth-
ing the likelihoods of the observations to get the distributions over the states. The forward-
backward algorithm consists of two steps. First, the joint distribution over the states and
the past and current observations is calculated. This is the forward step. The forward
probability of being in state i at time t , αi (t ) =P(Y1 = y1, . . . ,Yt = yt , X t = i |θ) = is calcu-
lated recursively:

1. Base case:
αi (0) =πi bi (y0) (2.30)
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2. Recursive update:

αi (t +1) = bi (yt+1)
N∑

j=1
α j (t )P j i , t = 0, . . . ,T −1 (2.31)

In the backward step, a similar calculation is done. The backward probability, βi (t ) =
P(Yt+1 = yt+1, . . . ,YT = yT |X t = i ,θ) is the probability of observing the future observa-
tions given the parameters and the current state being equal to i . These can be calcu-
lated with a backward recursion.

1. Base case:
βi (T ) = 1 (2.32)

2. Backwards recursive update:

βi (t ) =
N∑

j=1
β j (t +1)Pi j b j (yt+1), t = T −1, . . . ,1 (2.33)

The results of the filtering and smoothing is a distribution over the states at every time
step given all observations and parameters.

γi (t ) =P(X t = i |Y ,θ) = P(X t = 1,Y |θ)

P(Y |θ)
= αi (t )βi (t )∑N

j=1α j (t )β j (t )
(2.34)

In the M-step, the parameters of the Markov chain, the initial probabilities, transition
matrix and the emission model, are updated using the MLE. The empirical probability
of the transition from state i to state j between time steps t and t +1 is equal to:

ξi j (t ) =P(X t = 1, X t+1 = j |Y ,θ) = P(X t = i , X t+1 = j ,Y |θ)

P(Y |θ)
=

αi (t )ai jβ j (t )b j (yt+1)∑N
k=1

∑N
w=1αk (t )akwβw (t +1)bw (yt+1)

(2.35)

Given the empirical forward, backward, and transition probabilities, the necessary esti-
mators can be formed.

• The initial probability can be estimated as the distribution over the states at the
first time step: π∗ = γ(0).

• The estimator for the transition probabilities is observed number of transitions

normalized with the number the transition was possible: P∗
i j =

∑T−1
t=1 ξi j (t )∑T−1
t=1 γi (t )

.

• The emission model is estimated as the expected number of times the output was

seen, normalized by the expected amount of time in the state: b∗
i (vk ) =

∑T
t=11yt =vk∑T

t=1γi (t )

Given these specific E and M steps the Baum-Welch algorithm is just an EM-algorithm.
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2.4.3. MSVAR
A Markov-Switching Vector Autoregression essentially is a Hidden Markov Model, where
the emission model consists of a Vector Autoregression per state. The model was intro-
duced in 1989 by Hamilton [34]. He modelled macro-economic variables and the states
tended to coincide with different macro-economic regimes. A MSVAR thus consists of a
Markov chain with an initial distribution, π and a transition matrix P . In addition, the
model consists of a state space, S and a vector autoregressive model per state. All pa-
rameters including the transition matrix and initial distribution of the Markov chain are
gathered in a vector θ

2.4.4. ESTIMATION WITH EM ALGORITHM
One can estimate an MSVAR with an EM-algorithm very similar to the Baum-Welch al-
gorithm. Such an algorithm is presented in [39]. First, the weights of the Vector autore-
gression are randomly initialized. Next, the EM iteration is started. The probabilities
are estimated similarly as in the Baum-Welch algorithm. First, the Hamilton filter is ap-
plied, where we estimate the distribution over the states of the observations yt being
generated by a particular state, which is denoted by ξt . If only the current observation is
used, ξt |t is obtained. It can be obtained by normalising the conditional likelihood. The
conditional likelihood is the likelihood of an observation given a specific vector autore-
gression. Gaussian white-noise is assumed to have a probabilistic model.

ξt |t (i ) =P(X t = i |Yt = yt ,θ) = P(Yt = yt |X t = i ,θ)∑|S|
j=1P(Yt = yt |X t = j ,θ)

= ηt (i∑|S|
j=1 et at ( j

(2.36)

ηt (i ) = P(Yt = yt |X t = i ,θ) can be found by using the corresponding VAR model. How-
ever, the states are not independent, but modelled by a Markov chain. This means that
past and future observations should also be taken into account. This can be done by
applying the Hamilton filter [39]. For t = 1, . . .T the following iteration should be done:

• Updating the current value with the information from the observation: ξ̂t |t (i ) =
ξ̂t |t (i )·ηt (i )∑S

j=1 ξ̂t |t ( j )·ηt ( j )
for i = 1, . . . ,S

• Predicting the next distribution: ξ̂t+1|t = P ξ̂t |t (i )

This gives the inference for the state distribution given the current and past observa-
tions. However, future observations should also be taken into account. This is known as
smoothing. For this specific problem the Kim smoother can be used[40]. Again there is
an equation per time step, but this time the iteration is backward, thus for t = T −1, . . . ,1
the calculation is:

ξ̂t |T (i ) = ξ̂t |t (i ) ·
(

Pi ·
ξ̂t+1|T (i )

ξ̂t+1|t (i )

)
, i = 1, . . . ,S (2.37)

This is thus similar as in the forward-backward algorithm, where a forward pass and
backward pass are combined.

In the M-step, θ is updated using MLE estimates. First the parameters of the VAR
models per state are updated. However, the data points should be weighted with the
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probability that of being in that state at that time. The maximum likelihood estimator
for the weighted vector autoregression is the weighted multiple least squares solution of
the same matrix. For each state there is a weight matrix, Wi , with the probabilities of
being in state i on the diagonal.

Wi =


ξ̂0|T (i ) 0 . . . . . . 0

0 ξ̂1|T (i ) 0 . . . 0
... 0

. . . 0 0
0 . . . 0 ξ̂T−1|T (i ) 0
0 . . . . . . 0 ξ̂T |T (i )

 (2.38)

So we can define Ỹ = W Y and Z̃ = W Z , to get again the solution B̂ = Ỹ Z̃ T (Z̃ Z̃ T )−1 =
Y W Z T

(
Z W Z T

)−1
. Furthermore, covariance shrinkage should be added, this generally

gives a better estimates. Next to that, it also convenient that the estimated covariance
matrices are certainly invertible.

COVARIANCE SHRINKAGE FOR WEIGHED MLS
Given a regression, with residuals Y − X B , with n observations and p dimensions, we
have the (unweighted) sample covariance: σ̃ = 1

n (Y − X B)(Y − X B)T = ΣMLE. Given a

weighted matrix W , which is diagonal, we get a weighted MLE:ΣWMLE = 1
n (Y −X B)W (Y −

X B)T = Sn . We want to shrink the covariance matrix with by adding to the diagonal,
Σ̂= α̂∗ΣWMLE + β̂∗I . The optimal estimators are as follows as obtained from [41], which
is a generalization of [42].

β̂∗ = Tr(Sn)

p Tr(W )

(
1− α̂∗)

α̂∗ = 1−
p Tr

(
W 2

)( Tr(Sn )
Tr(W )

)2

p

(
∥Sn∥2

F

Tr(W )2 n
− n2∥W ∥2

F ·Tr(Sn )2

Tr(W )2 +∥W ∥2
F

(
Tr(Sn )
Tr(W )

)2
)
−

(
Tr(Sn )
Tr(W )

)2 ∥W ∥2
F

2.5. BAYESIAN ESTIMATION OF MSVAR
In the previous section, the Markov-Switching Vector Autoregression (MSVAR) was in-
troduced. In addition, an algorithm for finding the maximum likelihood solution was
described. The EM algorithm is a classical approach to finding an optimal MSVAR. How-
ever, there is another approach to statistics called Bayesian statistics. First, Bayesian
statistics in general will be discussed. The section is continued with the Bayesian esti-
mation of the MSVAR.

2.5.1. BAYESIAN ESTIMATION
The Bayesian interpretation of statistics is different from the classical interpretation. In
Bayesian statistics, a probability expresses a degree of belief in an event. This probability
is updated when new information is available. Given two events A and B , one has a prior
belief that the event A happened, P(A), and given that A happened, one knows the influ-
ence on the event B , P(B |A). One can update the prior, P(A) with the new information
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on the event B by using Bayes’ theorem:

P(A|B) = P(B |A)P(A)

P(B)
∝P(B |A)P(A) (2.39)

The updated probability on the event A, P(A|B), is called the posterior. This can be es-
pecially applied to the estimation of model parameters. Given a random variable Y with
observations y and a model for Y , f (Y = y |Θ = θ), which depends on some parame-
ter vector θ. The Θ is the random variable corresponding to the model parameters, as
these are not observed. And in Bayesian statistics all unobserved variables are treated
as random variables. For an MSVAR, the y are the observed variables. The θ consists of
the model parameters, which are the Markov chain parameters, the initial distribution
and transition matrix, and the VAR coefficients for each state. On the parameter random
variable Θ one should have a prior distribution g (Θ).

y = [
y0 y1 . . . yT

]T
, (2.40)

θ =
[

vec(π0)T vec(P )T vec
(

A(1)
1

)T
. . . vec

(
A(S)

p

)T
vec

(
Σ(1)

)T
. . . vec

(
Σ(S)

)T
]T

(2.41)

where the subscripts are for either timestamp or lag, the superscripts are for the different
states. vec(·) is the operator that stacks the columns of a matrix in a vector. One wishes
to obtain the distribution on the parameters given the observations.

g
(
Θ|Y = y

)= f
(
(Y = y|Θ= θ)

g (Θ)

f
(
Y = y

) ∝ f
(
Y = y|Θ= θ)

g (Θ) (2.42)

There are several problems in the case of an MSVAR. The model is a multivariate normal
(if Gaussian noise is assumed), but only given the latent states and past observations.

f (Yt = yt |Θ= θ, X t = j ,Y1:t−1 = y1:t−1) =N

(
p∑

i=1
A( j )

i yt−i ,Σ( j )

)
(2.43)

finding the distribution f
(
(Y = y|Θ= θ)

is generally not tractable. The same holds for
f
(
Y = y

)
, for which one needs to integrate the prior distribution out of the conditional

distribution, which results in a very high-dimensional integral. There are better methods
that directly sample from the posterior distribution, g

(
Θ|Y = y

)
. In the next subsection,

these methods will be explored in general. Subsequently, these methods will be applied
to Bayesian estimation of MSVAR.

2.5.2. MARKOV CHAIN MONTE CARLO
Markov Chain Monte Carlo(MCMC) is a class of algorithms to sample from a posterior
distribution in Bayesian inference. A Monte Carlo method is a method for stochastic
simulation. In a Markov Chain Monte Carlo method a Markov chain is simulated. How-
ever, the Markov chain is chosen such that the stationairy distribution is equal to the
posterior distribution [43]. The Markov chain viewed as a sample will converge in prob-
ability to the posteriord distribution.
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A Markov chain may reach a stationairy distribution π∗. A Markov chain has a sta-
tionairy distribution if it is irreducible and aperiodic [43]. There is a unique stationairy
distribution, when the detailed balance equation holds.

P ( j ,k)π∗
j = P (k, j )π∗

k for j ,k ∈ {1, . . . ,S} (2.44)

METROPOLIS-HASTINGS ALGORITHM

The basic MCMC method is the Metropolis-Hastings algorithm, which assumes that one
knows the posterior distribution up to a constant, which is the case whenever one knows
the model and the prior [44, 45] (see equation 2.42) . It is then not necessary to calcu-
late the normalization constant, which usually is a very high-dimensional integral. Thus

one wishes to draw from a distribution p(x) = f (x)
C , where C is unknown. One should

have a proposal distribution q(x1, x2), which is a Markov kernel. Then one can apply the
Metropolis-Hastings algorithm as depicted in Algorithm 1.

Algorithm 1 Metropolis-Hastings algorithm

Choose an arbitrary point x0 with f (x0) > 0
for i=1, . . . , N do

Draw a candidate point x∗ from the proposal distribution, given x0;

Calculate the acceptance probability α← min
(

f (x∗)q(x∗,xt−1)
f (xt−1)q(xt−1,x∗)

)
Draw a random number, u, from the standard uniform distribution
if u ≤α then

u ← x∗;
else

u ← xi−1;
end if

end for

By choosing α this way, the kernel q is corrected to have p as a stationairy distribu-
tion. This can be shown by evaluating the detailed balance equation. In calculating α
it is used that when one divides two evaluations of p that the unknown constant can be
left out. Generally, the first part of the resulting chain largely depends upon the starting
value x0, whereas it takes time to converge to the stationairy distribution. It is therefore
common to throw away the first few samples. This is called the burn-in period.

For the proposal kernel several options are available, like independent from the pre-
vious value or a normally distributed around the previous value. A good proposal kernel
finds a balance between exploration of the entire distribution space and a high accep-
tance rate.

The Metropolis-Hastings algorithm assumes the posterior distribution to be known
up to a constant. However, in the case of a MSVAR this distribution is only known by
adding more conditional dependencies. The Metropolis-Hastings is thus not appropri-
ate for Bayesian estimation of a MSVAR. The Gibbs sampler is and it will be discussed
next.
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GIBBS SAMPLER

Another MCMC method is the Gibbs Sampler [46]. This method creates a Markov chain,
where each draw consists of several partial updates of the sample. For each draw, all the
partitions of the parameter set are updated sequentially, but conditional on the other
parameters. This is beneficial when the distributions are known conditional on subsets
of parameters. The Gibbs sampler is a special case of the Metropolis-Hastings algorithm,
where the acceptance probability is always one. Given partitions of the parameters set
θ = [

θ(1), . . . ,θ(n)
]

the Gibbs sampler works as in Algorithm 2

Algorithm 2 Gibbs sampling algorithm

Get an initial value θ0 with f (θ0) > 0
for i=1, . . . , N do

for j=1, . . . , n do

θ
( j )
i ∼ p

(
Θ( j )

∣∣Y = y,Θ(− j ) =
[
θ

(1: j−1)
i ,θ( j+1:n)

i−1

])
end for

end for

For each of the partitions one can have a different method for obtaining a sam-
ple. One can have a conjugate prior just for a specific partition or one can use a single
Metropolis-Hastings step for a partition, when one has the conditional distribution for
that partition up to a constant. At the end of this section it will be shown that a MSVAR
can be estimated with a Gibbs sampler, by adding the states as extra parameters to be es-
timated. The problem will be decomposed into three components: sampling the states
from the Markov chain, sampling new VAR coefficients and sampling the properties of
the Markov chain.

2.5.3. SAMPLING STATES
As discussed in the previous section the state variable, x will be added to the parameter
space. In a Gibbs sampler iteration it is needed to sample all the states given the other
parameters and the observations. [47] Mentions several methods for sampling states.
Forward-filtering-backward-sampling(FFBS) seems to have the best theoretic properties
in general, thus it is used in this research. FFBS is a form of multi-move sampling. It is
similar to the forward-backward algorithm as discussed in 2.4.2, but instead of updating
a distribution in the backward iteration, one samples a state. For iteration m of the Gibbs
sampler, one should first run a filter, to obtain a distribution over the state space at each
time given the past observations and current parameter estimates,P(xt = j |y1:t ,θ). Next,
sample x(m)

T the final state of the Markov chain, from the filtered probabilities.. Then for

t = T −1,T −2, . . . , sample x(m)
t from the conditional distribution

P
(
xt = j |S(m)

t+1,y1:t ,θ
)
=

P (m)
j ,l P

(
xt = j |y1:t ,θ

)
∑S

i=1 P (m)
i ,l P

(
xt = i |y1:t ,θ

) (2.45)

P
(
xt = i |y1:t ,θ

)
are the filtered state probabilities calculated at the start of the iteration.

This algorithm provides a way of sampling the states given the parameters and the ob-
servations. The prior is implicitly set to the uniform distribution on the states. There
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is no reason to have a prior preference for any of the states. In an algorithm one would
sample the states at iteration m of a Gibbs sampler as in Algorithm 3

Algorithm 3 Sampling states with FFBS

for m=1, . . . M do
ηt (i ) =P(Yt = yt |X t = i ,θ(m−1)) for i = 1, . . .S
▷ Run Hamilton filter
for t=1, . . . , T do

ξ̂t |1:t (i ) = ξ̂t |t (i )·ηt (i )∑S
j=1 ξ̂t |t ( j )·ηt ( j )

for i = 1, . . . ,S

ξ̂t+1|1:t = P ξ̂t |1:t

end for
x(m)

T ∼ ξ̂T |1:T

for t=T-1, . . . , 1 do

x(m)
t ∼P

(
St = j |S(m)=l

t+1 ,y1:t ,θ(m−1)
)
= P (m)

j ,l P
(
St= j |y1:t ,θ(m−1))∑S

i=1 P (m)
i ,l P(St=i |y1:t ,θ(m−1))

end for
end for

2.5.4. SAMPLING VAR COEFFICIENTS

Each VAR can be separated into two sets of parameters, the coefficients, A = [
A1, . . . , Ap

]
,

and covariance of the noise, Σ. There are four suitable priors for a VAR [48]:

• A normal prior for the A and Σ fixed

• A non-informative prior for A and a non-informative prior for Σ.

• A normal prior for A and a non-informative prior Σ.

• A conditionally conjugate (normal) prior for A and a Inverse-Wishart prior for Σ

The last option will be used. The normal prior is conditionally on Σ conjugate for the
VAR coefficients. First, one should choose a prior mean, Ā and covariance ΣA , such
that α ∼ N (Ā,ΣA). A special case for this specification is the Minnesota prior [49]. In
the Minnesota prior the process is assumed to be like a random walk. The mean of the
multivariate normal is 1 for the coefficients at lag one of the same variable and zero
for the others. In expectation this results in a VAR that predicts the previous values as
the next value. The covariance matrix of the prior is chosen to be diagonal. Given the
parameters φ0, φ1, φ2 and φ3, the lag function is h(l ) = lφ3 , the diagonal elements of σA

with i the equation number and l the lag of the dependent variable, j , are as follows:

σi , j ,l =


φ0

h(l ) if i=j

φ0 · φ1
h(l )

(
si g ma j

σi

)2
if i ̸= j ,but endogenous

φ0φ2 if j exogenous

(2.46)
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with σk the sample standard deviation of variable k. The lag function describes how the
freedom changes with the lags. φ0 describes the general prior strictness. φ1 describes the
relative strictness for endogenous coefficients andφ2 describes the relative strictness for
exogenous coefficients.

The Inverse-Wishart distribution is the standard prior for the covariance matrix of a
multivariate normal distribution. The Inverse-Wishart distribution has two parameters,
ν, the degrees of freedom and Φ, the scale matrix. For ν ≥= p the draw from the distri-
bution is invertible almost surely, whereas for for ν< p that is not guaranteed. The mean
of the Inverse-Wishart distribution is Φ

ν−p−1 , given a prior guess of the covariance matrix
Σ0, Φ should be set to Φ= (ν−p −1)Σ0.

For both these priors are (conditionally) conjugate their updates can be derived and
are as follows: If g (α= A) =N (Ā,ΣA). Define

α̃= [
Σ̃−1

A + (
Σ−1

⊗
X ′X

)]−1
[
Σ̃−1

A Ā+ (
Σ−1

⊗
X

)T
y
]

(2.47)

here Σ̃A = [
Σ−1

A + (
Σ−1 ⊗X T X

)]−1
, and than the normal distribution N (α̃, Σ̃A) is the pos-

terior. For the inverse Wishart, we have ν̃ = n +ν and Φ̃ = Φ−1 +SSE, leading to a new
Wishart distribution, from which a covariance matrix can be sampled.

In conclusion, the following hyperparameters should be chosen:

φ0 the strictness of the Minnesota prior for the VAR coefficients,

φ1 the relative strictness for endogenous coefficients,

φ2 the relative strictness for exogenous coefficients,

φ3 the power of the lag function in the Minnesota prior,

ν the freedom of the Inverse-Wishart prior, measures the confidence in prior informa-
tion,

Σ0 the base VAR covariance.

2.5.5. SAMPLING MARKOV CHAINS
The last set of parameters that should be sampled in a Gibbs sampler for MSVAR are
the properties of the Markov chain. In [47] section 11.5.5 two cases of estimation are
discussed for stationairy and non-stationary Markov chains. The state changes during a
surgery seem to form a non-stationary Markov chain, because it does not seem the cases
that states are equally likely at the start and end of a surgery. The rows of the transition
matrix, P , are a multinomial distribution for the next state, given a current state, and are
independent. The Dirichlet distribution is a conjugate distribution for the multinomial
distribution. Given a matrix of prior weights e, where ei j is the prior weight for Pi j the
posterior distribution is

P̃ j ∼D
(
e j 1 +N j 1(x), . . . ,e j S +N j S (x)

)
, j = 1, . . . ,S (2.48)

where Ni j is the function that counts the number of transitions from state i , to j , Ni j (x) =
#{xt−1 = i , xt = j , t = 1, . . . ,T −1}. The initial distribution is also a multinomial distribu-
tion and can be handled similarly to a row of the transition matrix. Thus, one needs to
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determine the weights for the transition matrix and initial distribution prior Dirichlet
distributions. There is no reason for any prior preference for any of the states, as these
are abstract. This has two consequences. First, the weights for the initial distribution
should all be equal, with only a hyperparameter for the total weight, i.e. the confidence.
Another consequence is that for the transition matrix, there are only two types of co-
efficients, diagonal, called e1, and off-diagonal, e2. These two hyperparameters will be
reparameterized into more informative hyperparameters. Given a transition matrix, P ,
the expected consecutive time in a state i is 1

1−pi i
as the expectation from a geomet-

ric distribution. The expectation of a Dirichlet distribution is equal to the normalised
weights. If a certain expected consecutive time (ect) is desired, it can be enforced by
setting:

e1 = confidence · (1− 1

ect
) (2.49)

e2 = confidence · (
1

ect · |S| ) (2.50)

This leaves three hyperparameters for determining the priors of the Markov chain:

• the expected consecutive time in the same state,

• the confidence in the transition matrix prior,

• the confidence in the initial distribution prior.

2.5.6. GIBBS SAMPLER FOR MSVAR
The previous sections include all the necessary ingredients for the Bayesian estimation
of a Markov-switching vector autoregression. The idea is to make a Gibbs sampler, where
each of the substeps: sampling states, sampling VAR coefficients, and sampling Markov
chain parameters are used.

Suppose the following setting:

• Hyperparameters for all the priors.

• Given a sequence of observed vectors yt , t = 1, . . . ,T , of length d , the dimension of
the time series.

• a prior mean, ᾱ j and covariance Σα, j , for the VAR coefficients for the states j =
1, . . . ,S,

• a initial estimate for the VAR covariance Σ0, j for each state j = 1, . . . ,S, leading to a
Wishart parameter V j = n−1Σ−1

0, j ,

• a matrix e of weights for the prior Dirichlet distributions of the transition matrix
and a vector e0 of weights for the prior Dirichlet distribution of the initial proba-
bility,

• an initial sample ofΘ= θ, the vector with all parameters of the MSVAR model, with
prior probability greater than zero,
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• a burn-in period M0 and a requested number of samples M ,

then the following one can apply the specific Gibbs sampler as developed in the past
sections for the estimation of an MSVAR (see Algorithm 4). This algorithm is a Gibbs
sampler (Algorithm 2) with in each iteration the FFBS algorithm (Algorithm 3), sampling
of the VAR coefficients, and sampling of the Markov chain parameters.

Algorithm 4 Gibbs sampler for MSVAR

for m = 1, . . . , M +M0 do
ηt (i ) =P(Yt = yt |X t = i ,θ(m−1)) for i = 1, . . .S
▷ Run Hamilton filter
for t=1, . . . , T do

ξ̂t |1:t (i ) = ξ̂t |t (i )·ηt (i )∑S
j=1 ξ̂t |t ( j )·ηt ( j )

for i = 1, . . . ,S

ξ̂t+1|1:t = P ξ̂t |1:t

end for
x(m)

T ∼ ξ̂T |1:T

for t=T-1, . . . , 1 do

x(m)
t ∼P

(
St = j |S(m)=l

t+1 ,y1:t ,θ(m−1)
)
= P (m)

j ,l P
(
St= j |y1:t ,θ(m−1))∑S

i=1 P (m)
i ,l P(St=i |y1:t ,θ(m−1))

end for
for j=1, . . . , S do

Σ̃−1
α, j =

[
Σ−1
α, j +

((
Σ−1

j

)(m−1) ⊗X T X

)]
α̃ j =

[
Σ̃−1
α, j +

((
Σ−1

)(m−1) ⊗X ′X
)]−1

[
Σ̃α, j Ā+

((
Σ−1

)(m−1) ⊗X
)T

y

]
A(m)

j ∼N
(
α j , Σ̃α, j

)
ñ = n j +ν, ν= |y|
Ṽ =

(
V −1

j +SSE
(
θ(m),S1:T

))−1(
Σ−1

j

)(m) ∼ Wd (Ṽ , ñ), where SSE computes the sum of squared errors given the

appropriate VAR model for each observation.
end for
π(m)

0 ∼D(e1 +N1(x0), . . . ,eS +NS (x0)

P (m)
j ∼D

(
e j 1 +N j 1(x0), . . . ,e j S +N j S (x0)

)
for j = 1, . . .S

end for

2.6. EVALUATION OF TIME SERIES MODELS
In most cases, time series models are fitted using maximum likelihood estimation (MLE).
The likelihood function is the joint probability distribution of the data given parameters,
which is thus a function of the parameters. In maximum likelihood estimation the maxi-
mum of this function is found and the corresponding parameters are considered the best
estimates for the parameters. The likelihood of a given model is the joint probability of
all the data given the model. The likelihood is a measure of how well the model fits the
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data. Usually, the log of the likelihood is taken because it is easier to compute and the
monotone transformation makes sure that the order is maintained.

2.6.1. PENALIZED LIKELIHOOD
The (log)likelihood is calculated on the same data is that was used for model estima-
tion. This is especially a problem when using the maximum likelihood estimator, as the
models is chosen to optimize the likelihood, which makes the likelihood less suitable as
a measure of the model performance. When adding extra parameters or variability to
the model, the likelihood will always increase when using the MLE. However, this easily
leads to overfitting. It is therefore either good to split the data in fitting and evaluation
parts to get out of sample estimates of model performance. Or, as is more common in
time series analysis, use the likelihood, but compensate for the amount of parameters.
AIC and BIC are two of such generally used measures.

The AIC is an estimator of the prediction error based on information theory [50]. The
result is the likelihood penalised for the number of free parameters.

AIC = 2k −2log
(
L̂
)

(2.51)

where k is the number of free parameters and L̂ is the maximum likelihood value. Simi-
larly, an information criterion can be established based on Bayesian arguments [51].

BIC = k log(n)−2log
(
L̂
)

(2.52)

again k is the number of free parameters, L̂ is the maximum value of the likelihood,
and n is the number of observations. Both these information criterion are suitable for
comparing model performance among a set of different models on the same data.





3
METHOD

The goal of the thesis is to predict postoperative hsTnT. In this chapter, it will be shown
how the theory in the previous chapter can be applied to the Erasmus MC database to
obtain troponin T predictions. First, it will be discussed how to get from time series data
to features for each surgery. It will turn out that some preprocessing is necessary and
that will be discussed next. Finally, some models for actually predicting troponin from
features and their properties will be shown.

3.1. FEATURES FROM TIME SERIES
In the previous chapter a lot of time series models were discussed. However, the main
idea is to get predictors from the time series to predict the hsTnT. This is often not trivial.
Time series usually do not have the same length, because surgeries have different lengths
for instance. Next to that, inputting the raw time series values in a model disregards their
interactions and time dependence. The values mainly mean something with regard to
their timestamp. One wants time series that are similar to lead to similar predictions.
However, similarity of time series can be interpreted in a lot of different ways. One wants
to find a measure of similarity such that time series with similar corresponding troponin
T values are seen as similar. Here, three approaches are discussed for generating pre-
dictors from time series. All these methods map the time series to a finite-dimensional
vector space, where time series that are close in some sense are also close in the new
space. Next, a novel approach used in similar context is discussed and finally it is shown
how this approach can be used in the context of predicting troponin.

3.1.1. KNOWN APPROACHES FOR EXTRACTING FEATURES FROM TIME SE-
RIES

The first approach is applying statistical functionals to the time series. The idea is to
apply functions like, mean, max and min to each of the time series and stack the values
in a vector. This leads to a vector representation of the time series. There are many more
functions and these can also be domain specific. This method was applied for predicting

25
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troponin in [21]. Such a domain-specific function is the mean value of one time series
while the other was under a relevant medical threshold. This approach does not model
the time series with some model, but uses the raw values directly. In [21] this approach
was used to predict troponin T from time series consisting of heart rate, blood pressure
and ST segments. An ROC AUC score in predicting high troponin T (>50 ng/L) of about
0.75 was reached.

Another approach is to use the predictions made by any time series model for an un-
known future as features. For example, in [20], a time series with heart frequency, blood
pressure, and ST segments was modelled with a VECM. Then, predictions were made
for each of the 5 minutes following surgery. In predicting high troponin T(> 50 ng/L)
a balanced accuracy of 58% was achieved. This is only marginally better than random
guessing. Instead of a VECM, any model can be used and any number of predictions.
However, often predictions will be very correlated. Next to that, there are many cases
were patients are observed longer than the surgery. Building a model for prediction does
not seem necessary then.

The final approach that will be discussed here is similar to the previous in that a
model is fitted to the time series. Instead of using predictions, one uses the fitted coeffi-
cients of the model as a vector representation of the time series. Again the features will
be very correlated. This approach was successfully employed in [52]. There principal
component analysis was used to reduce the correlation among features [53]. Especially
combined with principal component analysis the features are hard to interpret.

In the setting of predictions from hemodynamic modelling another approach was
published quite recently and it will be extensively discussed next.

3.1.2. STATE TIMES FROM MSVAR
In a series of papers Lehman et al. discussed the usage of Markov-switching Vector Au-
toregression in hemodynamic modelling and predicting mortality from these models
[25, 26, 27], these papers will be referred to as the ICU-MSVAR papers. Their approach
on ICU data is transferable to the surgery data and is therefore discussed here.

All there work describes a similar procedure, which will be viewed in general here.
The authors extracted minute-by-minute heart rate and blood pressure data from 453
patients while on the intensive care unit (ICU) from MIMIC II [54]. Next, an Markov-
Switching Vector Autoregression, see section 2.4, was fitted to the data. Then, the rela-
tive time each patient was in each state was extracted from the model fit. These relative
times were used as features in predicting 30-day all-cause mortality with logistic regres-
sion. Next to that, they were able to use this method to generate a live risk quantifica-
tion. Their 30-day all-cause mortality estimate was more accurate than standard ICU
risk score [25] and was shown to have additional prognostic value [27]. From the fitted
logistic regression one can derive which states are low-risk (decrease in mortality prob-
ability) and which are high-risk (increase in mortality probability), making this a good
interpretable approach.

The authors claim their success is because the hemodynamics have rich dynamical
structures, as it is part of a feedback control system. The MSVAR is able to capture the
complexity. Next to that, patients can be compared by their shared states, meaning that
their hemodynamics can be modelled with the same Vector Autoregression.



3.2. INTRAOPERATIVE DATA PREPROCESSING

3

27

3.1.3. DIFFERENCES WITH ICU-MSVAR PAPERS

The approach of extracting state time from an MSVAR in hemodynamic modelling is very
relevant, however not the same. In this section the differences will be discussed. First
of all, ICU data was used, while in the troponin prediction cases there is surgery data.
In both cases patients are strictly monitored and often under a lot of stress. It can be
argued that patients in the ICU are generally in a more stressful state. Secondly, the au-
thors selected their patients to have at least 24 hours of hemodynamic monitoring data.
Surgeries generally do not last that long, thus the available time series will be shorter in
general. Next to that, minute-by-minute data was used. There is no minute-by-minute
heart rate and blood pressure data. It is measured irregularly at intervals of a few min-
utes. As noted in [19] one needs time series data, which is equidistant for time series
modelling anyway and the easiest distance to use is one minute. In the next section, it
will be shown how interpolation can be used to get a minute-by-minute time series. Fi-
nally, the authors use the relative state times as features for predicting mortality, whereas
here the goal is to predict troponin T. That is mainly the case because luckily the mor-
tality rate after surgery is not high enough to have enough relevant data. The authors
themselves note that next to predicting mortality many other variables like the event of
hemodialysis, severe sepsis and readmission can be used as endpoints [26]. Tropinin T
measurements are another event that is happening after the surgery and might therefore
be predicted from the time series with this approach.

To summarize, this approach can be adapted for predicting troponin T. After prepro-
cessing minute-by-minute hemodynamic time series can be obtained. This time series
can be modelled with a MSVAR. Next, the proportion of time each patient was in a cer-
tain state can be extracted from the model. This maps the time series to a vector space
from which one can try to predict tropnin T.

3.2. INTRAOPERATIVE DATA PREPROCESSING
As mentioned in the previous section, it is necessary to interpolate the time series data
to obtain a time series appropriate for modelling. But before interpolation, the outliers
should be removed from the time series. And the time series should also be checked
to meet certain quality standards. The four parts of time series preprocessing, filtering,
checking, interpolating and selecting, are discussed in this section. Most of the ideas are
based on [19], who worked on the same time series and encountered similar problems.

3.2.1. FILTERING

In the time series, there are mainly point outliers, single values that do not follow the
general pattern. For instance, for the arterial blood pressure it is known that at random
times very high values are measured, because the patient is moved. Next to that, outliers
occur because of incorrect recording. In figure 3.1 one can see example of such point
outliers. There are two instances, where there are very high values just for one time point.
This motivates two types of filtering

First, a simple threshold will be applied. There are values that are clearly wrong, like
negative or very small heart rate. Similarly, there are values that are unrealistically high.
For each time series, upper and lower bounds will be determined. The bounds can be
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variable minimum value maximum value maximum differ-
ence actual and
interpolated

heart rate 30 200 30
blood pressure 10 300 30

Table 3.1: The minimum, maximum and the max difference between the interpolated and actual value for each
of the variables.

check value
Minimum number of observations 30 observations
Maximum time no observations 15 minutes
Minimum observations density 1 every 5 minutes

Table 3.2: The specific values used for the three checks in checking the suitablity of intraoperative data for
modelling.

found in Table 3.1. Secondly, each point will be considered an outlier if it does not follow
the trend at that point. Each point is estimated by linearly interpolating the surround-
ing points. The value is thrown away whenever the difference between the interpolated
value and the actual value are too high (see Table 3.1). In figure 3.1 one can see that some
blue values do not have an orange plus next to them, which means that these values are
filtered out.

3.2.2. CHECKING

After filtering, one needs to make sure that enough good values are in the time series.
Three criteria are determined which the time series should adhere to be able to reli-
ably fit a model to the data. Generally speaking, when only a relatively small amount
of observations is present, one is fitting a model to interpolated values instead of the
observations.

The first criterion is that the time without observations is limited. When there are
no observations for more than this period, it makes no sense to fit a model. Secondly,
the time series should have a minimum observation density. That is, on average there
should be at least that much observations per minute. Finally, there should be an overall
minimum number of observations. This mainly excludes very short time series. The
actual values used are in Table 3.2 The result of the checks can be found in figure D.1.

3.2.3. INTERPOLATION

The next step of time series preprocessing is interpolating the values. One can only fit a
time series model to an equidistant time series. The time series is interpolated to have a
value for each minute. As the VAR is a linear model, one should probably avoid linear in-
terpolation as the model would probably overfit on the interpolation. The simplest non-
linear interpolation is quadratic spline interpolation, which is what will be used. Spline
interpolation was introduced by [55]. In quadratic spline interpolation a quadratic func-
tion is fitted between two observations, using that the values at the endpoints should



3.3. TROPONIN PREDICTION MODELS

3

29

Figure 3.1: Example of processing time series, with filtering, interpolation and selection. The blue dots indi-
cated the measurements. The blue dots with a red cross are the measurements that are kept after filtering. The
two at the start are below zero and thus obvious outliers. There are also two separate points at about 11:05 and
12:03 that are considered outliers. The filtered values are interpolated, which is indicated by the green line.
The black lines indicate the operation room arrival and departure. Only data within this interval is selected.

correspond to the observations and the derivatives should be continuous. This induces
a series of linear equations, of which the solution gives the coefficients for a piece-wise
quadratic function. The function can be used to determine the value at the times for
which no (valid) observation is present. For the implementation the FITPACK is indi-
rectly used [56, 57]. In figure 3.1 the resulting interpolation is shown.

3.2.4. SELECTION

The final step is selecting the data corresponding to the surgery. Usually the hemody-
namic data is only registered with high frequency around the surgery. To treat all surg-
eries equal the following choice was made. The surgery is considered to start at the time
noted as the operation room arrival in the or room and to end at the time noted as the
operation room departure. This thus includes the waiting in the operation room, the
induction of the patient and if the case the awakening of the patient. An example of the
selection is indicated with the black lines in figure 3.1.

3.3. TROPONIN PREDICTION MODELS
Given the relative state times as extracted from a MSVAR model, one can predict tro-
ponin using the prediction model. In [25] logistic regression was used for predicting
mortality, but other options are available. First, one has to decide whether to do regres-
sion or classification, because with troponin one can do both. There are known classes
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Figure 3.2: Distribution of hsTnT values. The part for the first black line is considered low hsTnT. The region
between the two black lines is considered elevated hsTnT and the last part is considered high hsTnT.

of troponin values: 
low hsTnT 0 ≤ hsTnT ≤ 14,

elevated hsTnT 14 < hsTnT ≤ 50,

high hsTnT 50 < hsTnT

(3.1)

One could predict these classes, or just whether it is high troponin and binary classifi-
cation. As classification seems more medically relevant, it is decided to do classifica-
tion. Two different classification models are considered to distinguish the kind of effects
present in the data. First, logistic regression as in [25] is described, followed by the alter-
native model, random forest.

3.3.1. LOGISTIC REGRESSION

Linear models are the simplest models in general, because calculations with linear func-
tions are easy. The simplest linear classification model is logistic regression. In contrast
to what the name suggests, this is a classification model. It is simple, linear in the fea-
tures and widely used [58]. Given a set of samples with features, X , and labels, y , being 0
or 1, the probability of the label one belonging to the sample is modelled by expressing
the log-odds as a linear function of the features [59]. The log-odds are another way to
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express a probability (equation 3.2).

logit(p) = log

(
p

1−p

)
(3.2)

pk = 1

1−e−βxk
(3.3)

The coefficients (β in equation 3.3) describing the linear dependence of the log-odds
on the features are usually chosen as the maximum likelihood estimate or equally by
minimizing the negative log-likelihood. The negative log-likelihood or the surprise for
sample k is given in equation 3.4.

l lk =
{
− log pk if yk = 1

− log
(
1−pk

)
if yk = 0

(3.4)

The closer that pk is to yk the less the surprise and thus the better the model. The to-
tal negative likelihood is obtained by summing over all samples. There is no analytical
solution for finding the minimum, however numerical solutions are available.

Logistic regression is simple and easily interpretable as there is a single coefficient for
the effect of each feature. The con of the model is that there is no interaction between the
different features. In predicting postoperative troponin T, the labels would be whether
the postoperative hsTnT is high (> 50 ng L−1). The features would be the relative time in
each of the states.

3.3.2. RANDOM FOREST
To see the effect of the model in classifying high postoperative troponin T, the results
obtained with logistic regression are compared to another relatively simple classification
model, namely, random forests. Random forests are an ensemble of decision trees [60].
First, decision trees will be explained. Second, the ensemble of multiple of these trees is
explained.

A decision tree is a binary tree, where each node represents a decision on the features
of the sample [61]. Each decision splits the set of samples in two subsets. The decision
tree thus recursively subsets the sample into smaller subsets. Learning a decision tree
from data usually happens with the top-down-induction-of-decision-trees (TIDIT) al-
gorithm [62]. One starts with the full sample and decides upon the best decision based
on the features at this point. The best decision is the one that splits the labels as well as
possible, which can be defined in many ways. In this thesis, the most common, the Gini
impurity, will be used. The Gini impurity measures how often a random sample from
a set would be incorrectly labelled, if it was labelled randomly according to the other
members of the set. If the decision perfectly splits the labels, the Gini impurity would be
0 as all labels are the same in each set. In the worst case, where each set consists of 50% of
both labels, the probability of wrongly labelling a random point is 0.5. One chooses the
decision that minimizes the Gini impurity. This is recursively continued for each subset
resulting from either side of a decision. The procedure is usually terminated based on
some stopping criterion to reduce overfitting. Usual stopping criteria are a maximum
tree depth or a minimum number of samples required to split a set. The estimate for the
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probability of an unseen sample is the relative number of positive labelled samples in
the subset, where the new sample would end up after following the decision tree.

A random forests is an ensemble or collection of these decision trees. The basic idea
of ensembling different classifiers is bagging [63]. In bagging different random subsam-
ples are taken from the dataset. For each sample, the classifier (decision tree in this case)
is estimated [64]. The idea is that the variance of the resulting classifier is lower. The clas-
sifier is less influenced by a single sample and generalizes better over the entire dataset.
This is especially the case when the decision trees are uncorrelated. To reduce the cor-
relation among different decision trees, extra randomness is induced in a random forest
[60]. For each split, only a random subset of features is considered.The final prediction
is the mean of all predictions by the separate decision trees.
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SELECTION

As discussed in the previous chapter, the idea is to fit a Markov-Switching Vector Au-
toregression to intraoperative data. One can fit an MSVAR with the EM algorithm (see
section refsec: msvar). In this chapter the details of MSVAR estimation and analysis of
the convergence will be presented. Next to that, the most appropriate model for mod-
elling intraoperative heart rate and blood pressure will be chosen.

4.1. SPECIFIC IMPLEMENTATION DETAILS EM ALGORITHM
The general idea of fitting an MSVAR to time series data was already discussed in section
2.4.4. In this section, details of the implementation will be described. The EM algorithm
is an iterative method that monotonically converges to a maximum of the likelihood
function in theory. It should converge to a maximum, but that could also be a local max-
imum. The claim for monotone convergence does not hold anymore in this case, be-
cause the covariance for the VAR models is not estimated with the maximum likelihood
estimator, but with a shrinkage estimator. Furthermore, probabilities can become very
small, leading to numerical imprecision. Both should have little effect on the resulting
model, but convergence is not necessarily monotone anymore.

Given the fitting problem, the following specific implementation details were de-
cided. In an upcoming section, 4.3, the convergence is analysed, and these implemen-
tation details are evaluated. First, the maximum iteration time is set to 200 iterations. In
theory, the model will improve with each iteration, but changes might be insignificant.
In practise, the likelihood might not even increase with it every iteration. It is therefore
decided to always stop iterating when no likelihood improvement is made in the last 10
iterations. The EM algorithm converges to a maximum based on the random initiali-
sation. It is decided to try 5 different random initialisations and choose the model that
corresponds to the highest found maximum. Randomly restarting the EM algorithm is
known as multiple restart EM (MREM) algorithm [65].
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Using these implementation details of the EM algorithm, a fitted model was ob-
tained. Analysis of the model showed some unwanted behaviour, which is discussed
in the next section.

4.2. ADAPTATIONS

An analysis of the resulting models shows a lot of state transitions. The idea of this re-
search is to interpret the states a patients goes through during a surgery. It is therefore
expected that the state a patient is in is quite stable. In this section, this problem is in-
vestigated for the model with 5 states specifically. There is no reason why the solution
would not work for the models with another number of states.

In Figure 4.1 one can see the probability for each of the states as determined by an
MSVAR model. The probabilities frequently switch between zero and almost one and
the most probable state is different almost every minute. This is in contrast to what
one would expect medically. During surgery, the patient is in a similar state most of the
time, with the main changes occurring at the start and end. Switches in the middle of
surgery can occur, but should not occur frequently. Figure 4.1 shows an entirely different
picture and there is no medical reason to have such frequently occurring state switches.
It is therefore desirable to adapt the model and the fit algorithm to have a model that is
potentially better medically interpretable.

First, one should start by analysing the transition matrix, because that mainly deter-
mines the state transitions. The probability of staying in the same state is equal to the
diagonal value of the transition matrix corresponding to the state. The transition matrix
for the model is in 4.2. The large probabilities are not necessarily on the diagonal, but
all over the place. This explains the often occurring transitions. However, it should be
noted that this is a ’chicken and egg’ story as the transitions are mostly determined by
the transition matrix and the transition matrix is directly estimated from the transitions.
To break this loop, shrinkage will be applied to the transition matrix in the E-step of the
EM algorithm.

4.2.1. TRANSITION MATRIX SHRINKAGE

The maximum likelihood estimator for the transition matrix is to count all transitions
and normalize for each of the ’from’ states as more elaborately described in section 2.4.2.
The desired transition matrix has an expected consecutive time in a state of about 90
minutes. The consecutive time in a state is a geometric distribution with the probability
being the probability of leaving the state, 1 minus the diagonal element of the transition
matrix. For an expected value of 90 (minutes), the value on the diagonal should be equal
to 1− 1

90 . Suppose that an expected consecutive time of ect is desired. The rest of the
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Figure 4.1: State probabilities from the resulting model for an MSVAR with ten states for two surgeries with or
codes 51 (left) and 187 (right).

mass can be divided over the other elements of the matrix.

Pdesired =



1− 1
ect

1
|S|·ect . . . . . . 1
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1

|S|·ect 1− 1
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1
|S|·ect . . . 1

|S|·ect
...

. . .
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. . .
...

1
|S|·ect . . . 1

|S|·ect 1− 1
ect

1
|S|·ect

1
|S|·ect . . . . . . 1

|S|·ect 1− 1
ect


(4.1)

One shrinkage estimator 1 for the transition matrix is given by a weighted combination
of the MLE and the desired transition matrix, where the weights sum up to one.

P̂ =αPdesired + (1−α)P̂MLE (4.2)

Using the shrinkage estimator with α = 0.95 and ect = 30, the following results are ob-
tained. Note that using a shrinkage withα= 0.95 is quite strong, but this makes the effect
best visible. In Figure 4.3 the resulting state probabilities over time are visible. The num-
ber of transitions has decreased; however, in the figure for surgery 51, many switches are
still present. Even more worrying is that there seems to be a pattern in the alternation
of state 0 and 3. A closer look shows that this pattern corresponds to the frequency at
which the data was recorded. Some points are almost exactly predictable. This leads to a
state that has a very small covariance, having low likelihood predictions for most points,
but very good predictions for some. The good predictions are so likely that the a switch
occurs with probability almost equal to one almost independent of the previous state
and transition matrix. The prediction for the timestamp after it is so much worse that
the model jumps back to the old state. This results in a state change that corresponds
to the interpolation and has no medical meaning, which is not desirable. Therefore, the
interpolation is changed.

1A shrinkage estimator is an estimator that, either explicitly or implicitly, incorporates the effects of shrinkage.
In loose terms this means that a naive or raw estimate is improved by combining it with other information.
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
0.58 0.39 0.01 0.01 0.01
0.32 0.11 0.01 0.17 0.39
0.02 0.02 0.72 0.23 0.01
0.02 0.21 0.11 0.61 0.05
0.02 0.81 0.01 0.09 0.07

 (4.3)

Figure 4.2: State transition matrix belonging to an MSVAR with 5 states, which is the same model as in Figure
4.1. The important diagonal values are made bold.

Figure 4.3: State probabilities from the resulting model for an MSVAR with ten states for two surgeries with or
codes 51 (left) and 187 (right). In fitting this MSVAR shrinkage is applied to the transition matrix.
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Figure 4.4: State probabilities from the resulting model for an MSVAR with ten states for two surgeries with or
codes 51 (left) and 187 (right). In fitting this MSVAR shrinkage is applied to the transition matrix. Furthermore
the model is applied to 2 minute cubic spline interpolated data.

4.2.2. DIFFERENT INTERPOLATION
As shown in the previous section, there is a relation between the interpolation of the
data to a univariate time series and the state transitions. The model is overfitting on
relations that are part of the data processing and have no medical meaning. Therefore,
it is decided to change the interpolation. Instead of interpolating to a 1-minute interval,
a 2-minute interval is used. That means that there is no series of interpolated points
between two actual data points, making the time series not so predictable. Furthermore,
the order of the spline interpolation is increased from quadratic to cubic.

The resulting state probabilities, as shown in Figure 4.4, are as desired. There are
state switches, but these do not occur very frequently and there is no immediate relation
to the time stamps.

4.3. CONVERGENCE
In this section, the convergence of the EM algorithm is analysed. The EM algorithm
is an iterative method. However, only a finite number of iterations can be computed.
Additionally, the algorithm was implemented with computation time in mind. Reducing
computing time is good as long as the algorithm still (almost) converges. The algorithm
is meant to optimize for the likelihood, that is therefore the best place to start the analysis
2.

4.3.1. CONVERGENCE OF LIKELIHOOD
In Figure 4.5 the convergence of the likelihood for each of the five runs can be seen. One
can see that each run is stopped after 10 iterations without reaching the maximum num-
ber of iterations. All runs stop before the iteration limit of 200. Most convergence occurs
in the first few iterations after which only small improvements are made. There are dif-

2The analysis is done on the convergence of the MSVAR model fitted on 10 lags and using 20 states. This is the
most appropriate model as will be shown in section 4.4.
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Figure 4.5: Trace of the likelihood over the iterations for 5 runs of fitting an MSVAR with the EM algorithm.
Each run the algorithm is initialized randomly.

Table 4.1: Statistics on each of the 5 runs in fitting an MSVAR with the EM algorithm.

final log likelihood number of iterations
run

1 -663636 53
2 -655258 85
3 -668509 56
4 -624659 188
5 -666496 47
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Figure 4.6: Trace of the probability of transitioning from state 0 into state 0 for different runs of the EM algo-
rithm.

ferences between the maximum likelihoods attained, but these are relatively small. One
can than wonder whether the models are similar as they are attaining similar likelihoods.
This is hard to establish, as a permutation of the states and the corresponding param-
eters is again the same model, although, when comparing the parameters, the models
look entirely different. As all estimators depend deterministically on the state probabili-
ties, one can compare two MSVAR models by comparing their state probabilities. Corre-
lations between the state probability vectors are calculated for the model of the best run
compared to the models of the other runs 3. The correlation matrices are in appendix A.
There one can see that the models are almost always about a state permutation different,
because usually one value per row and column is close to one. This means that the runs
converge to similar maxima, up to a permutation of the states.

In appendix C the EM estimation of an extended model is shown. There the con-
clusion can be drawn that due to the increases number of parameters, the algorithm
struggles to find the global maximum. A suited solution would be to increase the num-
ber of randomly initiated runs. For the model estimated only on heart frequency and
blood pressure, this does not seem to be the case. The number of runs, 5, seems to lead
to good convergence.

4.3.2. CONVERGENCE OF PARAMETERS
Next to convergence in likelihood, it is interesting how the parameters change while the
likelihood is optimised. An MSVAR has many parameters. As a representable subset the

3Despite, the other results being on a model with 20 states, these results are obtained from a model with 5
states, because the results are only visualisable for a small number of states



4

40 4. EM ESTIMATION AND MODEL SELECTION

Figure 4.7: Trace of the coefficient describing the effect heart frequency at lag one on heart frequency in state
0 for different runs of the EM algorithm.

Figure 4.8: Trace of the variance of the error term for heart frequency in state 0 for different runs of the EM
algorithm.
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following parameters will be analysed:

• the probability of transitioning from state 0 into state 0,

• the var coefficient, that is the effect of the first lag of heart frequency onto heart
frequency of state 0,

• the variance of the error term of the heart frequency of state 0.

The convergence of the parameters is visualised in figures 4.6, 4.7 and 4.8. A few ob-
servations can be made. First of all, in many of the runs, especially the shorter runs,
the parameters did not seem converged. This indicates that there is a large set of model
parameters with very similar likelihoods. The parameters changed a lot in the last 10
iteration steps, however the likelihood did not increase. Furthermore, the parameter co-
efficients are correlated a lot. There are obvious correlations in MSVAR models, such as
between the different VAR coefficients in the VAR of a specific state. However, the graphs
show correlations in seemingly unrelated parameters. Finally, the fourth run contin-
ued for a long period with only very small likelihood improvements. These parameters
hardly changed in the last 100 iterations. It might have been good enough to half the up-
per bound on the number of iterations in hindsight, however now one can be sure that
the algorithm converged. Better stopping criteria might have been more computation-
ally efficient.

4.4. MODEL SELECTION
In this section, the most appropriate model will be chosen. It is decided that an appro-
priate model is a model that describes the data well, i.e. has a high log-likelihood, with a
minimal number of parameters. This is equivalent to finding a model with minimal BIC
or AIC (see section 2.6). Three comparisons will be made. First, the effect of data trans-
formations, log transformation and differencing (section 2.1), will be discussed. Second,
the (shrinkage) MSVAR is compared with other time series models. Third, the best hy-
perparameters are found.

In Figure 4.9 the likelihood and the number of free model parameters is plotted. One
would like to end up in the left upper corner, where the model makes the data likely with
a minimal set of free parameters. In general, the log likelihood will increase with the
number of free parameters as models are fitted using MLE methods. Similar graphs on
transformed data can be found in Figure B.1. It appears that there is no real difference
between any of the models fitted on the untransformed data or the transformed data
in terms of likelihood. The model with the highest likelihood is fitted to untransformed
data. Using a model on untransformed data makes it easier to interpret. Therefore, the
data will not be transformed from here on.

Looking at Figure 4.9 one can see that the Panel VAR models have a lot of free param-
eters, without actually having a good likelihood. Therefore, these models are not suitable
for the data. The MSVAR models describe the data best. Especially the MSVARs with a
lot of states and lags.
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Figure 4.9: Scatter plot of all considered models with the number of free model parameters on the x-axis and
the log likelihood on the y-axis. The models are Pooled VAR (red), Panel VAR (blue), (shrunken) MSVAR (green),
which also differ in lag (symbol) and for the MSVAR in the number of states (text in plot).
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Figure 4.10: The AIC(top) and BIC(bottom) scores for three different models: PanelVAR, PooledVAR and the
MSVAR. All models are estimated for several different hyperparameter values.
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In the previous chapter a MSVAR was fitted with the EM algorithm. The final hyperpa-
rameters were chosen based on penalized likelihood scores. The optimal lag was 10 and
the optimal number of states was 20. In this chapter the exact same model will be fitted
in Bayesian fashion by using a Gibbs sampler.

5.1. HYPERPARAMETER CHOICES
In section 2.5 it was discussed how one could fit a MSVAR in Bayesian fashion. In the
specifications of the priors, nine hyperparameters were left open. In this section, deci-
sion for these hyperparameters will be made. However, first, the label switching problem
will be discussed.

5.1.1. LABEL SWITCHING PROBLEM
In Bayesian estimation of a MSVAR with a Gibbs sampler, there is the so-called label
switching problem [47, 66, 67]. If the prior distribution for the vector autoregression in
all states is equal, any state permutation of each possible model is equally likely. It will
therefore probably happen that the model samples in the MCMC-chain consist of mul-
tiple (state) permutations of the same model. A state permutation of an MSVAR model
is where all parameters are switched around by relabelling the states. The model is the
same, except for the labels given to the states. An option is to permutate the states ev-
ery sample by by ordering based on some property every state has (identifiability con-
straints). The most straightforward way to circumvent this problem is to choose differ-
ent priors for each state. States will specialize in some direction and the MCMC chain
is more likely to converge. In conclusion, some of the prior hyperparameters will be
chosen to differ over the states to circumvent the the label switching problem.

5.1.2. PRIORS FOR MARKOV CHAIN
In section 2.5.5 it was mentioned that there are three hyperparameters in the prior dis-
tribution for the Markov chain, the expected consecutive time in a state, the confidence
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in the initial probability, and the confidence in the transition matrix prior. The expected
consecutive time, will be, similarly as in the EM algorithm shrinkage case (see 4.2), set
to 90 minutes. The confidence in the transition matrix prior should be set quite high to
have the desired behaviour. To approximate the 0.8 shrinkage coefficient, one should do
the following. The expected number of observations for each separate Dirichlet distri-
bution is the total number of observations divided by the number of states. To have the
shrinkage part of the estimator contribute 80%, the confidence in the prior should be
four times as big as the observations. There is no reason to have the confidence for the
initial distribution prior equally high. It is decided to have it about half of the number of
observations, i.e., the number of surgeries, such that the data outweighs the prior.

The Dirichlet distribution is a conjugate prior for the rows of the transition matrix
and the initial distribution as it is a conjugate prior for a multinomial distribution. A
Dirichlet distribution, D (e1, . . . ,en), has the multinomial distribution with the normal-
ized weights as probabilities as expectation. Where the normalization divides the weights
by their sum. The sum of the prior weights is a measure for the confidence in the prior.

5.1.3. VAR PRIORS
For the VAR priors, 6 hyperparameters should be chosen: φ0, φ1, φ2, φ3, ν and Σ0. Some
of these hyperparameters should differ over the states to avoid the label switching prob-
lem. The following decisions are made.

φ0 The strictness of the prior is decided to differ over the states. The smallerφ0 the more
the resulting VAR will be random walk-like. The five chosen values are: {1, 0.7, 0.5, 0.3, 0.1}.

φ1 The relative strictness of endogenous coefficients is decided to be set to 0.5. A priori,
one would expect to have a lag of the same variable to have a bigger effect than
another variable.

φ2 The relative strictness of exogenous coefficients is decided to be 0.5, for a similar
reason as for φ1.

φ3 The exponent of the lag function determines whether the coefficients at large lags
can still have a large influence. This thus also influences how much the VAR is like
a random walk. For large values of φ3, the coefficients at large lags will be close to
zero and the resulting VAR will be like a random walk. It is decided to differ at the
same time as φ0 over 5 different values being {3,2,1,0.5,0.1}.

ν The confidence of the covariance prior is decided to be the total number of observa-
tions divided by two times the number of states. In expectation, the data has twice
as much influence as the prior.

Σ0 The basic VAR covariance matrix is decided to differ over the states. As a basis it is
chosen to take the covariance of the PooledVAR with the same number of lags. This
covariance matrix is equal to

ΣPooledVAR =
[

14.13 2.03
2.03 18.80

]
(5.1)
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In conclusion, Σ0 = λiΣPooledVAR with λi ∈ {10,1,10−1,10−2}. There are thus states
that are quite predictable (low λ) and states that are not predictable (high λ).

ν The confidence in the covariance prior is chosen to equal the total number of obser-
vations divided by six, to have a relatively loose prior.

The different priors for the twenty states are given by the Cartesian product of the 5
types of random walk-like states and four types of predictability.

5.2. RESULTING MODEL
Using the Gibbs simpler (see 2.5.2) a Markov Chain Monte Carlo sample was created for
the MSVAR model with 20 states, 10 lags, and prior hyperparameters as in the above
section. It was chosen to get 5000 samples.

5.2.1. CONVERGENCE

First, the trace of the MCMC is analysed. Next to that, a burn-in size should be chosen.
Finally, it is interesting to see whether the chain converges in some sense.

In figures 5.1, 5.2, 5.3 MCMC trace plots are shown for many parameters in the model.
These plots do not contain all parameters, but it is checked that these plots are represen-
tative for the general behaviour. Many things stand out. First, of all one can see that the
most change is happening at the start. From a random start, the chain is converging to-
wards a more probable configuration. The last major changes are happening just before
the thousandth step. Hence, the burn-in period is set to 1000 iterations. One can see that
the changes are correlated, which is to be expected. After the thousandth step the algo-
rithm seems converged towards a state in which it is varying around an optimal value as
to be expected in a MCMC-method.

5.2.2. POSTERIOR DISTRIBUTIONS

Given the burn-in period, the posterior distribution can be determined. In Figure 4.2
the histogram for the diagonal values of the transition matrix are shown. These are the
most important probabilities of the transition matrix as these determine the probability
of staying in the same state. The value of the prior mean is added. Similarly as with the
EM algorithm, the maximum likelihood estimates of the probabilities are much lower.
There is no state for which this probability is higher than the prior mean. Due to shrink-
age or using a prior with a mean close to one, in this case, the values are closer to one
than with the maximum likelihood estimate. This induces more stability in the Markov
chain, which is desired. A model with a not so stable Markov chain is also more prone
to overfitting. State 3 stands out. The transition probability is very low given the prior
mean. This means that the MLE is very low and that patients do not stay in this state for
a long time. The uncertainty in the posterior estimate seems similar for each state.

In Figure 5.5 a similar graph is shown for the VAR coefficient describing the effect of
heart rate lag 1 on heart rate for each of the states. For this coefficient, the prior mean was
1, like in a random walk. Both the location and the scale of the posterior distributions
differ a lot between states. The strictness of the prior increased with the state number.
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Figure 5.1: MCMC trace plot for the probabilities of the initial distribution for the first 10 states. The burn-in is
decided to bet set at 1000. The colours are given by the usual state colouring as can be found in Figure F.1.

Figure 5.2: MCMC trace plot for the first 10 diagonal elements of the transition matrix. The burn-in is decided
to bet set at 1000. The colours are given by the usual state colouring as can be found in Figure F.1.
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Figure 5.3: MCMC trace plot of the coefficient for the effect of heart at lag 1 on heart rate for all the states. The
burn-in is decided to bet set at 1000. The colours are given by the usual state colouring as can be found in
Figure F.1.

However, there does not really seem to be a relation between the state number and the
posterior mean. However, it is the case, that most posteriors are located close to one.

Finally, in Figure 5.6 the sample histogram is plotted for the prediction variance of the
heart rate. There are a lot of variances close to zero, but there are also large variances.
The posterior uncertainty seems to be related to the location, which is not surprising.
The states differ a lot in how predictable the heart rate is apparently. The prior mean for
the var covariance is highest for states divisible by four. This seemed to have a big effect.
The group with approximately a variance of 150 consists of states 4, 8, 12, and 16. The
only state with a high prior mean as well, state 0, is located at about 65. The prior seems
to have a large influence. Of course, the prior has influence, however there seems to be
going on more here. Unpredictable data points seem to have been gathered in certain
states, increasing the effect of the higher prior variance.
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Figure 5.4: MCMC sample histogram of the diagonal values of the transition matrix of the MSVAR. The sample
consists of 4000 samples obtained after a burn-in period of 1000. The colours are given by the usual state
colouring as can be found in Figure F.1.

Figure 5.5: MCMC sample histogram of the MSVAR coefficient describing the effect van heart rate lag 1 at heart
rate for each state. The sample consists of 4000 samples obtained after a burn-in period of 1000. The colours
are given by the usual state colouring as can be found in Figure F.1.



5.3. HIERARCHICAL MODEL

5

51

Figure 5.6: MCMC sample histogram of the covariance of the heart rate as modelled with a MSVAR. The sample
consists of 4000 samples obtained after a burn-in period of 1000. The colours are given by the usual state
colouring as can be found in Figure F.1.

5.3. HIERARCHICAL MODEL
In section 5.1 choices were made on the hyperparameters. In many cases, these choices
were quite arbitrary. To research the influence of uncertainty in these hyperparameters,
a hierarchical model will be constructed. Most of the hyperparameters will be suited
with a prior distribution. This prior distribution will be independent of the data and
other parameters. First, these distributions will be chosen. Next, the resulting model
will be presented, including a comparison with the non-hierarchical model.

5.3.1. HYPERPARAMETER PRIORS
To create a hierarchical model, the hyperparameters should be equipped with probabil-
ity distributions. There are already multiple values in use for the hyperparameters that
differ over the states. Therefore, it is decided to not equip these with a distribution. The
others will be discussed one by one. In general, the prior mean is chosen equal to the
fixed value in the non-hierarchical model, as that seems the best value a priori. The other
degrees of freedom in the distribution are chosen to represent the a priori uncertainty in
the hyperparameter.

φ1 The relative strictness of endogenous variables of other variables should be between
zero and one. The fixed value was 0.5. An appropriate distribution is therefore a
Beta(2,2) distribution. It has the same mean as the fixed value and a high variance.

φ2 The relative strictness for exogenous variables is actually not interesting, because
there are no exogenous variables in the model.
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ν The confidence in the covariance prior will be reparametrized. Because the inverse-
Wishart prior is conjugate and can be viewed as a weighted combination of the
prior and the MLE, ν can be reparametrized as the relative part the prior con-
tributes to the new estimate in expectation. For this new ν, ν̃, a Beta(2,10) is ap-
propriate. The variance is medium and the mean corresponds with the fixed value
version.

confidence initial distribution For the confidence in the initial distribution, a similar
approach is used. The value is reparametrized to the fraction the prior contributes
to the posterior (mean). Again, using a semi-strict prior with a mean correspond-
ing to the fixed value, a Beta(2,12) distribution is appropriate.

confidence transition matrix For the confidence in the transition matrix the same ap-
proach is used again. The value is reparametrized to the fraction the prior con-
tributes. In the EM algorithm, it was found that the shrinkage of the transition
matrix is important to obtain good results, this means more is known about ap-
propriate values, and a stricter prior will be used, namely, the Beta(40,10) distri-
bution.

expected consecutive time To have a uniform approach, the parameter is rewritten as
the probability of staying in the same state, i.e. the diagonal elements of the tran-
sition matrix. This should again be a very strict prior to obtain a model with a
stable Markov chain. The prior distribution of this probability is decided to be the
Beta(88,2) distribution.

Given these prior distributions, a step should be added to the Gibbs sampler (Al-
gorithm 4) to obtain a valid posterior sample. In each iteration, the hyper parameters
should be independently drawn. These new hyperparameter values should be used in
the other priors in the current iteration step. In the next section, the effect of this added
layer will be discussed.

5.3.2. POSTERIOR DISTRIBUTIONS
In the previous section the model was expanded with an extra layer of priors for the hy-
per parameters. The most interesting part is whether this extra prior uncertainty also
results in posterior uncertainty. A glance at the trace plots shows that there is more vari-
ability. Most of the big changes are gone after the thousandth sample, however some are
still left. For comparison reasons still a burn-in period of 1000 iterations will be used.

Figure 5.7 is similar to Figure 5.4 except for the hierarchical model used. In this case,
it is very clear that the extra layer of uncertainty resulted in a lot of posterior uncertainty.
This can be explained by the strong prior on the transition matrix in combination with
a looser prior on the desired transition matrix, this leads to a posterior with a high vari-
ance. Similarly, Figure 5.8 is the update of Figure 5.5. In this case, the plots look very
similar, with a similar distribution of the peaks and the scales vary in a similar way. It
must be noted that specific peaks changed a lot, indicating that the states are permu-
tated in some kind. Finally, Figure 5.9 is the hierarchical model version of 5.6. The same
things can be set as about the VAR coefficient. In general, it looks the same with the
same distributions of location and scale. However, looking at a specific state shows big
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Figure 5.7: MCMC sample histogram of the diagonal values of the transition matrix of the MSVAR. The models
includes a hierarchical model for the priors. The sample consists of 4000 samples obtained after a burn-in
period of 1000. The colours are given by the usual state colouring as can be found in Figure F.1.

changes. This contributes to the hypothesis that the states are permutated in some way.
In conclusion, the extra layer of uncertainty seems to mainly have affected the Markov
chain for the states. This is not unreasonable, as this is where the strongest priors are
applied. The VARs per state have a relatively loose prior and changing these hyperpa-
rameters has little effect.
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Figure 5.8: MCMC sample histogram of the MSVAR coefficient describing the effect van heart rate lag 1 at
heart rate for each state. The models includes a hierarchical model for the priors. The sample consists of 4000
samples obtained after a burn-in period of 1000. The colours are given by the usual state colouring as can be
found in Figure F.1.

Figure 5.9: MCMC sample histogram of the covariance of the heart rate as modelled with a MSVAR. The models
includes a hierarchical model for the priors. The sample consists of 4000 samples obtained after a burn-in
period of 1000. The colours are given by the usual state colouring as can be found in Figure F.1.



6
INTERPRETING STATES

The MSVAR model was chosen with the idea in mind to see whether the states are medi-
cally interpretable. Especially of interest is whether it is possible to predict postoperative
troponin T from the relative time in each of the states. In this chapter, it will be investi-
gated how the states can be interpreted and how they can be related to other variables
related to the surgery. The idea is to see whether there is any practical meaning to the
(so-far) abstract states. The results are based on the bayesian hierarchical model as that
is the most extensive model, describing the uncertainties best.

6.1. GENERAL DISTRIBUTION OF STATES
In this section, light will be shed on the general distribution of the states. First, whether
the states are equally occurring. Next, whether the states occur in different parts of the
surgery.

In Figure 6.1 the total number of periods is counted where each state is the mode
(most probable) state. There are a lot of differences among the states. State 7 is by far
the most occurring. There are also many states patients are hardly in, being: 4, 8, 11, 12,
14, 15, 16, 17, and 20. This is remarkable as the 20-state model clearly outperformed the
10-state model on both the AIC and BIC criteria (Figure 4.9). There does not seem to be
any pattern of states on a first glance. Next, each surgery is divided into 30 time periods.
For each period, it is recorded how much the patient is in each state and this is com-
bined for each surgery. The total per period is normalized to sum to one. The relative
time in each state per surgery period is visualized in Figure 6.2. Clear patterns are visi-
ble. Some states (0, 5, 13) are more prominent at the start, whereas others (7, 10, 17, 18)
are more prominent during the middle phase of the surgery. There is a clear final phase
of the surgery, where (6, 14) are occurring relatively more. It is remarkable how well these
phases are visible given that the surgeries have very different durations. Furthermore, it
can be noticed that the start is much longer than the end. This seems to be because the
first 20 minutes of each surgery are not taken into account. To have lagged data for the
autoregressions, no inference is possible for the first 20 minutes of each surgery. There-
fore, the sharpest change of the surgery start has already been. The last section seems to
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Figure 6.1: The amount of time points each of the state is most likely to be the state. The colours are given by
the usual state colouring as can be found in Figure F.1.

coincide with the awakening of the patient leading to big changes in the hemodynam-
ics. In conclusion, the amount states are occurring differs a lot. Furthermore, the state
occurrence is clearly related to the different phases of the surgery.
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Figure 6.2: For each of 30 quantiles the (relative) occurrence of the different states is determined. At the start,
in the middle and at the end different states are dominant. The colours are given by the usual state colouring
as can be found in Figure F.1.

6.2. POSTOPERATIVE PREDICTIONS
The main goal of the research is to find intraoperative variables with prognostic value
for postoperative troponin T. As explained in chapter 3 the idea in this research is to
use the relative time in states per surgery as predictors for high troponin T. This idea
is based on the approach used in [25, 26, 27] to use MSVAR relative time in states as
predictors for mortality. In this section, the prognostic value of the relative time in states
for postoperative variables is researched.

The following binary variables were taken into account:

• High postoperative troponin T, that means that at least one of the high-sensitivity
troponin T in the three days following surgery was above 50 ng L−1. (N=1516)

• 30-day mortality, which is whether the patient deceased in the 30 days following
surgery. (N=1558)

• 1-year mortality is whether the patient deceased within one year following surgery.
(N=1376)

• Whether there is a positive change in troponin T measurement over the course of
the surgery. (N=280)

Three different feature sets were used, purely the relative time in states, just preoperative
features (see the list in appendix E) and the combination of both. Results are obtained
using 5-fold cross validation. That is, the sample is splitted in 5 folds. 5 times a model
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Figure 6.3: Balanced accuracy scores for several post operative predictions made by using a logistic regressions
(left) and random forest (right) on three different feature sets. Each time the score is based on 5-fold cross
validation. The 0.5 line corresponds to the score random guessing would receive.

is estimated on 4 of the 5 folds and the results are obtained on the remaining fold. This
gives reliable results on unseen data. The score measure used is the balanced accuracy,
as the data is quite unbalanced, especially for the mortality variables. Two different mod-
els are used as discussed in 3.3. The results of the experiment can be found in Figure 6.3.

Many conclusions can be drawn from Figure 6.3. First of all, there are no real differ-
ences between using either logistic regression or random forests. Secondly, the relative
time in states alone have no prognostic value for any of the postoperative variables. The
line at a balanced accuracy score of 0.5 indicates the line of random guessing, and the
performance of the models on the relative state times achieves that score. Thirdly, the
preoperative features have a little bit of prognostic value, especially for postoperative
hsTnT. Finally, the prognostic value of the combination is approximately the same as for
the preoperative values. There is thus no prognostic and no added prognostic value in
the relative state times for any of the postoperative variables. As this includes troponin
T, one can conclude that the MSVAR approach does not yield variables with prognostic
value for postoperative troponin T.

6.3. INTRAOPERATIVE PROPERTIES PER STATE
The next way the states will be interpreted is by calculating the mean values for each
state. The mean values considered are on vasopressor usage and the actual hemody-
namic values.

In Figure 6.4 the mean heart rate and mean blood pressure are plotted for each of the
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Figure 6.4: Scatter plot of the mean blood pressure and hart rate for each of the states. The colours are given
by the usual state colouring as can be found in Figure F.1.

states. There is a clear trend, where the mean heart rate and mean blood pressure is high,
as is the case in general. There are no states that differ from this trend. The states seem
specialized and are divided over the spectrum. It is unclear whether this is significant.
The Kruskal-Wallis test has a test statistic of 8464.637466002121 and a p-value numeri-
cally equal to zero. However, the test assumes independent samples, which is definitely
not the case. Often the hemodynamics are quite stable and similar values follow each
other. Together with the fact that the transition matrix has large diagonal values, there
is a lot of dependence, which makes the test much more erroneous significant. There is
no clear alternative to test the significance of this. However, because we are dealing with
clearly visible differences over more than 200.000 data points, it looks significant.

For the vasopressors, only three vasopressors are considered as these are supplied
most often. The results are in Figure 6.5. The values for each of the three vasopressors
are clearly related. The amount of dobutamine differs a lot more than fenylefrine, which
seems to be provided almost always. Again, the states seem specialized in states where
more and less vasopression is supplied.

Finally, a relation between vasopressor usage and blood pressure is expected. Vaso-
pressors are used to increase the blood pressure when it is too low. Therefore, one would
expect vasopressors to be used in states that also have a low average blood pressure (see
Figure 6.6). The relations found are too be expected and exist in general. It is interesting
to see though that the states are clearly specialized over this spectrum.
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Figure 6.5: Overview of the relative amount of vasopressor usage per state for the three most common vaso-
pressors. The colours are given by the usual state colouring as can be found in Figure F.1.

Figure 6.6: Relation between relative dobutamine usage over the states and the mean blood pressure mean
per state. The graphs for the other vasopressors are similar as these are all related. Each point represents a
state, where the number is the state number and the colours are the same for the states as in the other graphs.
Vasopressor (dobutamine) usage is mainly present in states with low mean blood pressure. The colours are
given by the usual state colouring as can be found in Figure F.1.
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6.4. VAR ANALYSIS
The final analysis of the states is by analysing the VAR corresponding to the state itself.
This will be done in two ways. First, the covariances of the VARs are analysed. Next, the
VARs are simulated and properties are extracted from the simulations

The diagonal elements of the covariance matrix (variances) of a VAR show the pre-
dictability of the model. High covariances mean that there is little relationship and a lot
of uncertainty in the data. The prior covariances were different for each state and ex-
actly that pattern is visible in Figure 6.7. The posterior mean covariance is clearly related
to the prior. There was a lot of uncertainty in what was a good covariance prior. Be-
cause there was a lot of uncertainty in the prior covariance it was varied over the states
at four levels of magnitude. Because it was varied over the states, it was not taken as an
hyperparameter in the hierarchical model. If the pattern in the covariance is compared
with the occurrence of each state in Figure 6.1 there is a pattern that the states with the
highest order of magnitude in the prior, and hence also in posterior covariance are the
least occurring. The prior covariance is thus one of the reasons why states are not occur-
ring. However, it also shows that difference in VAR priors are effective in preventing label
switching as the posterior are actually quite different.

From the simulations, as shown in Figure 6.8, several conclusions can be drawn. First
of all, the VARs differ widely in their stability. States 11, 24, 25, and 19 are clearly not sta-
ble. In addition, states 12 and 16 also have a clear trend. All these states are not occurring
so much. The frequently occurring states are all stable. Next to the stability, one can also
look at the smoothness. One can see the differences best when one compares states 4
and 7. Both are stable with a similar general pattern, however, the VAR simulation for
state 7 is much smoother. Each column in Figure 6.8 has the same covariance prior and
unsurprisingly the smoothness is related to the covariance and thus covariance prior as
well. This is because a large covariance matrix is the main source of jaggedness. In Fig-
ure 6.9 it can be seen that vasopressor usage and posterior covariance are related. Again,
this is a relation that is to be expected as vasopression suppresses the natural dynamics
of the hemodynamics. However, it is interesting to see that the states specialized over
this relation.



6

62 6. INTERPRETING STATES

Figure 6.7: The variance (diagonal elements of covariance matrix) for each variable and for each state. The
point estimate of the covariance element is the posterior mean.
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Figure 6.8: VAR simulations for each of the states in the MSVAR. For each of the coefficients the posterior mean
is taken and the resulting VARs are simulated for 100 steps. Note that y-axis can differ a lot.
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Figure 6.9: The relation for a specific vasopressor, namely dobutamine and the smoothness, or predictability
of the VAR. The predictability or smoothness is inverse to the variance of the VAR, which is on the x-axis here.
The more to the left, the more predictable or smooth. The colours are given by the usual state colouring as can
be found in Figure F.1.

6.5. CONCLUSION
In this section, we try to combine the insights from the previous few sections into general
conclusions on the states. First, the most occurring state, state 7 is discussed. This state
mainly occurs in the middle part of the surgery. The mean heart rate and especially the
mean blood pressure are low. This explains why a lot of vasopressor is used. This is thus
the state most patients are in during the big middle part of the surgery. A simulation of
the corresponding Vector Autoregression shows that it is very smooth. This corresponds
to a low covariance, or a very predictable part. This is not surprising as a lot of vasopres-
sion is used. Other states that occur a lot in the big middle part of the surgery are states
17, 18. Here, less vasopression is used. This results in more jagged simulations, because
the time series is less predictable.

The states mostly occurring at the start of the surgery are quite similar. They are all
quite unpredictable. In addition, there is a relatively high blood pressure and heart rate.
These values are especially high in state 0. Lastly, there is little vasopression used in all
states.

In general, simulating these VARs shows that some are stable and some are not sta-
ble. Interestingly, from all VARs corresponding to states that occur frequently, only the
VAR corresponding to state 9 is increasing a bit. All really unstable VARs correspond to
states that hardly occur. These states are probably overfitting on a few data points and
therefore show unrealistic behaviour.

Several general conclusions can be drawn. First, we have seen that the prior influ-
ences the occurrence of states. In addition, there are many associations between state
properties. The amount of vasopressor usage is related to the smoothness or covari-
ance of the VAR corresponding to the state. The vasopressor usage is also related to the
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mean heart frequency, mean blood pressure and VAR covariance (see figures 6.6 and 6.9
). These relations are all known and to be expected. What is interesting is that these
things differ over the states. The states thus specialized in a part of the spectrum of the
relation. Next to that, the states are occurring at different parts of the surgery. Three
parts can be identified, a start, a large middle part, and a short final part. The states
dominant in each of these parts have the mean hemodynamic values which is as to be
expected from that part. The states thus largely seem to coincide with general patterns
in surgery. However, no prognostic value could be found for postoperative variables,
including troponin T.





7
DISCUSSION

In the previous three chapters, many results were presented. In this chapter, the re-
sults are interpreted and combined to answer relevant questions. First, it will be dis-
cussed whether the chosen model is a good way of modelling intraoperative hemody-
namic data. Next, the difference between the results corresponding to the estimation
with the Gibbs sampler and the EM algorithm is investigated. Finally, a closer look is
taken on whether postoperative troponin t is predictable from the states resulting from
a fitted MSVAR.

7.1. MODEL CORRECTNESS
In this section, it is tried to answer the question whether the chosen model is an appro-
priate model for modelling intraoperative hemodynamics. The first notable thing is the
interpolation of the data as described in section 3.2.3. For the estimation of (MSV)AR
models, it is required that the data is equidistant. It was chosen to interpolated the data
to 1-minute intervals. However, in section 4.2 it was shown that the interpolation had
a large effect on the resulting model. Among other things, it was decided to interpo-
lated the data to a 2-minute interval. Most immediate problems (state switches cor-
responding to interpolated and non-interpolated points) were solved. However it re-
mains debatable that all data points are treated equally, whereas some are real measure-
ments and some are interpolated with the measurements and thus include a lot more
uncertainty. It might be a good idea to weight the interpolated points as there is already
the weighted estimation of vector autoregressions in MSVAR. An even better approach
might be Bayesian imputation. One can treat the missing data points as latent variables
and sample them each step of the Gibbs sampler. One could take the distribution of all
measured values as a prior. The posterior would be based on the prediction of the cor-
responding VAR and on the effect of predictions by VARs on future points. One could
not obtain the posterior directly, however, it is good enough for the Metropolis-Hastings
algorithm (see 2.5. One could use a Metropolis-Hastings step in the Gibbs sampler to
obtain samples for the necessary, but unobserved data points. This is more in line with
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Bayesian principles and adequately addresses the uncertainty in the currently interpo-
lated values.

Given the interpolated values, the MSVAR seems suitable to model the hemodynamic
data. In figures 4.9 (heart rate and blood pressure) and C.2 (also with ST segments) it was
shown that the MSVAR is more suitable than the other considered models, namely, the
PooledVAR and the PanelVAR. The best AIC and BIC scores corresponded to the MSVAR
model. Next to that, patients switched states and states were shared among patients.
Several intraoperative variables differed a lot over the different states, indicating that
states specialize in certain situations. Hence, the states add value to the time series
modelling. In [25] it was already claimed that the rich dynamical structure of hemo-
dynamic time series is best captured by an MSVAR model. However, in [20] it was shown
that is probably cointegration in the data with Johansen test [68]. Cointegration was
not considered in this thesis. The extension of the VAR model dealing with cointegra-
tion is VECM [32]. Equivalently, there also is the MSVECM, which can also be estimated
in Bayesian fashion [69]. The VECM and MSVECM were not considered in this thesis
and especially the MSVECM might be even more appropriate than the MSVAR. From the
considered models, the MSVAR was by far the most suitable. Another pro for the MSVAR
is that it is a model with a lot of coefficients, but it remains interpretable. The idea of
patients being in several states speaks to medical professionals.

In conclusion, the MSVAR is the most suitable model of the considered models. The
MSVECM might be an even more appropriate extension. The preprocessing of the data,
especially the interpolation, is debatable. Especially Bayesian imputation seems like a
good alternative to the current interpolation, because it fully uses that Bayesian principle
that everything that is not observed is a random variable.

7.2. DIFFERENCE BETWEEN EM ALGORITHM AND GIBBS SAM-
PLER

The second question that should be answered is the difference in results between esti-
mating using the Gibbs sampler and the EM algorithm. First, the theoretical differences
are discussed. Next, the similarities in the implementations in this thesis are discussed.
Finally, the results between the algorithms are compared. In theory, the biggest differ-
ences are in the foundations of the algorithm. The EM algorithm is an algorithm for
maximum likelihood estimation of models with latent variables. The Gibbs sampler is
an MCMC method for sampling from a posterior distribution in Bayesian estimation.
The result of the EM algorithm is a point estimate for all model parameters without ob-
vious uncertainty estimates. The result of the Gibbs sampler is a chain of samples from
the posterior distribution. Point estimates can be obtained by taking the posterior mean
or median. The sample from the posterior, if large enough, also gives a good estimate for
the uncertainty. Next to that, one can incorporate prior beliefs into the model.

In this thesis, a Bayesian version of the MSVAR model was developed by selecting
appropriate priors. Additionally, given these priors, a Gibbs sampler was developed to
estimate the model in Bayesian fashion. This model was extended to an hierarchical
model by equipping the hyperparameters with prior distributions. The Gibbs sampler
worked and converged. The hierarchical model showed that most priors were appro-
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priate. The prior covariance was the only prior which is retrospectively quite debatable.
The large variations in prior covariance over the states resulted in states that were not
occurring at all. Having the prior covariances differing less over the states would have
made the model more appropriate.

Although the theoretical foundations for the Gibbs sampler and EM algorithm are
quite different, the implementations are surprisingly similar. In the implementation of
the EM algorithm, it was eventually decided to use shrinkage for the transition matrix
(see 4.2). There are many cases in which a maximum likelihood estimator with shrink-
age is equal to the posterior mean of some conjugate Bayesian model. An example is
simple linear regression. The posterior mode (MAP) is equal to the estimate from maxi-
mum likelihood estimator with l2-regularization [70]. In this case, the equations for the
transition matrix are surprisingly similar. Next to that, both are iterative methods, where
subsets of parameters are updated sequentially. Both algorithms can get stuck in local
minima. The EM algorithm can be initiated randomly several times to reduce this prob-
lem. The Gibbs sampler includes a lot of randomness and a burn-in period to get out of
local minima. As such, the implementations have a lot of similarities. Both result in an
estimate of an MSVAR, one with point estimates and the other with a sample from the
posterior distribution. If the posterior mean is taken as a point estimate than the EM
algorithm with shrinkage is very comparable to the Gibbs sampler.

However, the main question is whether the estimation algorithm influenced the ob-
tained results. The uncertainty estimate was hardly used, only to see that the Gibbs sam-
pler did converge. The priors were mainly used to get a transition matrix with some
desired properties. Shrinkage in the EM algorithm did the same. With the hierarchi-
cal model, it was shown that many of the priors hardly influenced the resulting model.
The only real influential prior, besides the one on the transition matrix, was the prior
on the covariance, which was differing among the states. The prior caused many states
to hardly occur at all, because the prior induces covariances not appropriate for any of
the data. Thus, in practice the main differences are that the Gibbs simpler can give easy
uncertainty estimates, however unused states are easily created with priors that are dif-
fering.

In conclusion, although based on very different principles, the EM algorithm and
Gibbs sampler are surprisingly similar. This is especially the case when shrinkage is ap-
plied in the EM algorithm and only point estimates are used from the Gibbs sampler. In
practice, the difference was the available uncertainty estimates for the Gibbs sampler.
Additionally, different priors for different states also lead to states hardly occurring.

7.3. PREDICTING TROPONIN T FROM TIME IN STATES
The final question discussed in this chapter is more related to the main goal of this the-
sis. The question is to what extend it is possible to predict postoperative troponin T from
the time in states in an MSVAR. The prediction of troponin T and other postoperative
variables was mainly discussed in section 6.2. The main results are in Figure 6.3. It is
quite clear that the states hold no prognostic value nor additional prognostic value for
troponin T or other postoperative variables. The analysis with multiple prediction mod-
els makes sure that there is no model dependent association. This is on the contrary
to, for instance [21], where statistical functionals were used to summarize intraoperative
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data and some prognostic value was found.

The states do thus not hold any prognostic value, however the states are shown to be
interpretable in other ways. Chapter 6 shows several of these interpretations. The main
relation is that three clear surgery parts can be established: a start, a long middle part,
and a short finish. Furthermore, states seem to be related to both vasopressor usage and
mean hemodynamic values. The vasopressor usage seems to relate to more predictable
parts of the hemodynamic data. The states thus more or less seem to coincide with the
factors external to the patient during surgery instead of the state of the patient itself.

The states are thus interpreted entirely different than in the series of papers [25, 26,
27]. There, a very similar approach was applied to patients in the ICU. These patients are
monitored similarly, however, the result in predicting postoperative variables are quite
different. Before execution of the research, a preliminary analysis of the differences and
similarities was done (see section 3.1.2). Now, possible explanations for the differences
in the results are given. First of all, the data used in these papers is over a longer pe-
riod, at least 24 hours, whereas the surgery data is usually about 2 hours. This means
that periods like the start and end are not significant. However, more importantly, dur-
ing surgery many external shocks are applied to the patient. The hemodynamics of a
patient is a feedback control system, which continuously adapts to the state of the body.
During surgery, many shocks are applied to this system like induction, the moment cuts
are made, or the wounds are sealed. The hemodynamics change accordingly and thus
the states are related to these external circumstances, instead of the actual patient state,
which is not so important anymore. These differences are apparently so significant that
all prognostic value for postoperative variables disappears.

In future research, it might be beneficial to incorporate many of the external circum-
stances into the model. This will result in that a state change is caused by a patient’s
reaction to a change in circumstances rather than a change in external circumstances.
For instance, the amount of supplied vasopressor could be incorporated. Other exter-
nal circumstances are much harder to incorporate, like the amount of stress put on the
body by the medical intervention. States that actually relate to the patient’s state proba-
bly hold prognostic value for the postoperative values. The patient is the constant factor
from the surgery to the postoperative variables. Prognostic value should thus be found
in describing the patient’s state. Furthermore, it might also be good to look at the time in
states at several different time points. Some time points might be informative and other
not.

Finally, the idea is to see the effect of the surgery on troponin levels. However, many
patients have chronic cardiac problems before surgery already. These patients have
chronically elevated troponin T levels. In [22] it was already shown that preoperative and
postoperative hsTnT are highly correlated. However, the change in troponin T is hard to
model, as only a small number of patient’s have preoperative troponin T measurements.
More consistent hsTnT measurements, especially preoperatively, are necessary to have
a better picture in what way the surgery influences the troponin T level.

In conclusion, the relative time in states of the fitted MSVAR models does not have
any prognostic value for postoperative variables including troponin T. The states are in-
terpretable in other ways, like time in surgery, vasopressor usage, and mean hemody-
namic values. It seems that the states are mostly related to the circumstances external to
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the patient instead of the patient state. State changes occur because of a change in ex-
ternal circumstances rather than a change in the patients reaction to the circumstances.
This probably explains why the states do not have any prognostic value. Finally, more
consistent hsTnT measurements, especially preoperatively might allow for a better un-
derstanding of the effect of surgery on the troponin T level.





8
CONCLUSION

Many surgeries result in cardiac complications irrespective of the underlying condition.
A good marker for cardiac problems is the troponin T level in the blood, which is usu-
ally measured postoperatively. Little is known on the pathology of troponin T release
in the blood stream during surgery. The goal of this thesis is to find patterns in intra-
operative surgery data related to postoperative troponin T measurements. The chosen
method was to fit a Markov-Switching Vector Autoregression in two separate ways, the
EM algorithm and Gibbs sampler. The relative time a patient is in a state would be used
as features for predicting the postoperative troponin T level.

In this thesis, it was shown that the MSVAR model is appropriate for modelling in-
traoperative hemodynamic data. The model has a high (log-)likelihood relative to the
number of parameters, is interpretable and the states of MSVAR model specialized in
different surgery circumstances. Interpolation of the intraoperative data seems dubious
and it would be better to do Bayesian imputation for instance. Next to that, cointegration
was not considered in this thesis although it is probably present. It would be good to re-
search the possibility of using an MSVECM for modelling intraoperative hemodynamic
data.

The Bayesian MSVAR model for intraoperative hemodynamic data was developed
by providing the parameters with prior distributions. The corresponding Gibbs sampler
was developed by using the conjugacy of the priors. The model was extended to an hier-
archical model by adding prior distributions to the hyperparameters for which the Gibbs
sampler could easily be extended.

Both the EM algorithm and the Gibbs sampler were used for estimating the MSVAR.
These algorithms come from different theoretic principles. However, in practice, espe-
cially with using shrinkage in the EM algorithm, the algorithms are very similar. Using
prior information is similar as to applying shrinkage. The Gibbs sampler gives a sample
of the posterior and therefore an estimate of coefficients distribution instead of a point
estimate.

Finally, the goal was to predict postoperative troponin T. It turned out that the relative
time in states does not hold any prognostic value for prediction troponin T. It seems to
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be due to the amount of external shocks applied to the patient during surgery. The states
seem more related to these circumstances than to the patient state. It is recommended
to incorporate more of these external circumstances into the model.

In conclusion, this thesis presents a way to model intraoperative hemodynamic data.
The MSVAR is an appropriate model and can be estimated both based on frequentist
and Bayesian principles, although in practice the differences are small. The states are
related to many variables related to the surgery, but do not hold any prognostic value for
troponin T.
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A
STATE CORRELATION MATRICES

This appendix includes the matrices with correlation coefficients between the state prob-
abilities resulting from the most likely model in different runs of the EM algorithm. It
should help answer the question of whether the different runs converge towards similar
or totally different maxima.
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0 1 2 3 4

0 -0.02 -0.75 0.98 -0.07 -0.02
1 0.84 -0.31 0.04 0.12 -0.01
2 -0.33 1.00 -0.74 -0.25 -0.44
3 0.09 -0.44 -0.13 0.04 0.92
4 0.26 -0.24 -0.06 0.93 -0.05

(a)

0 1 2 3 4

0 -0.33 0.99 -0.74 -0.24 -0.44
1 0.70 -0.31 0.04 0.42 -0.06
2 0.00 -0.74 0.95 -0.10 0.00
3 0.23 -0.24 -0.04 0.84 -0.02
4 0.12 -0.45 -0.10 0.00 0.91

(b)

0 1 2 3 4

0 -0.01 -0.44 -0.08 -0.06 0.96
1 0.82 -0.31 -0.00 0.34 -0.03
2 -0.33 1.00 -0.72 -0.25 -0.47
3 0.37 -0.28 -0.07 0.82 0.03
4 0.01 -0.73 0.98 -0.06 -0.08

(c)

0 1 2 3 4

0 0.44 -0.26 -0.08 0.78 -0.01
1 0.05 -0.54 0.19 0.04 0.65
2 -0.08 -0.54 0.65 -0.13 0.13
3 0.55 -0.43 0.30 0.20 -0.06
4 -0.31 0.96 -0.70 -0.22 -0.44

(d)

Figure A.1: For each of the 4 runs of fitting with the EM algorithm not containing the best model, the state
probabilities are correlated with the state probabilities of the model resulting from the best run. The numbers
labelling the rows and columns are the state numbers. The correlations of 0.8 or eight are high-lighted. One
can see that except for the last one the others are almost only a state permutation different from the best run.



B
MODEL SELECTION PLOTS

In section 4.4 the model comparison scatter plot for untransformed data was shown. In
this appendix, the model comparison plots for the transformed intraoperative data are
shown. The transformations are: log-transformations, differencing and the difference of
the logs. All, including the one corresponding to the untransformed data (see Figure 4.9,
are very similar. No, reason for any data transformation can be established.
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(a) Differenced data

(b) Log-transformed data

(c) Log-transformed and differenced data

Figure B.1: Scatter plot of all considered models with the number of free model parameters on the x-axis and
the log likelihood on the y-axis. The models are Pooled VAR (red), Panel VAR (blue), (shrunken) MSVAR (green),
which also differ in lag (symbol) and for the MSVAR in the number of states (added text).



C
RESULTS EM ESTIMATION FOR

HEMO-ST MODEL

In chapter 4 the result of estimation of a MSVAR model with the EM algorithm was
shown. These results were obtained by fitting the model to the hemodynamics data
(heart frequency and blood pressure). This model can easily extended by adding the
st data as three extra endegenous variables. The results for fitting this model are in this
chapter. However, is these results are similar as for fitting a MSVAR to hemodyanmics
data the details are skipped. Next, data transformation did not seem benificiary for the
hemodynamic model and will therefore not be used in this expanded model.

The convergence of the likelihood is shown in Figure C.1. The convergence seems
similar as in Figure 4.5, except that the iterations are stopped a lot earlier. Local optima
are found earlier. This seems counterintuitive as the model consists of a lot more param-
eters. Intuitively, one would say that is harder to optimize for more parameters. It could
be because with many more parameters there are more local optima. Another explana-
tion could be just randomness as the algorithm is initialized randomly each time.

Next to the convergence graph, the model scatter graph is also presented for the
hemodynamic-st data combination. Several interesting things can be observed. First
of all, there is the reassurance that the log likelihood is lower for every single model in
4.9. This is as expected as the new dataset is a superset of the old dataset and the model
parameters are a superset of the old model parameters. Secondly, the distribution of the
models over the spectrum is similar in general. It is therefore unsurprising that accord-
ing to both the AIC and BIC scores, the model with 10 lags and 20 states is best. Thirdly,
some models are oddly placed with respect to their neighbours, for instance, the model
with 10 states and 10 lags. It has a lower log likelihood than the same model with 5 lags.
This indicates that the EM algorithm gets stuck in local maxima earlier and struggles to
find the global maximum due to the extra number of parameters.
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Figure C.1: Trace of the likelihood over the iterations for 5 runs of fitting a MSVAR.

Figure C.2: Scatter plot of all considered models with the number of free model parameters on the x-axis and
the log likelihood on the y-axis. The models are Pooled VAR (red), Panel VAR (blue), (shrunken) MSVAR (green),
which also differ in lag (symbol) and for the MSVAR in the number of states (added text).



D
SURGERY SELECTION

There is intraoperative hemo
data for 7223 surgeries

Check: is data suitable
for time series modelling?

Can fit time series mod-
els to 2189 surgeries

Check: hsTnT available

Can estimate hsTnT for 1516 ors

Check: preop
hsTnT available

Can estimate delta hsTnT for 275 ors.

NO good intra for 5034, because

• 1240 (minimum number of
states)

• 170 (minimum obs density)

• 3624 (maximum time no
obs)

403 no extra data at all
on top of that 270 no

good hsTnT post value

No pre hasTnT for 1241

Figure D.1: The different checks and there results. There are 7223 different surgeries with hemodynamic data.
2189 surgeries have hemodynamic data that is suitable for MSVAR modelling. From these 2189 1516 have
postoperative hsTnT measurements and 275 have preoperative hsTnT measurements as well.
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E
PREOPERATIVE FEATURES

In predicting postoperative variables, often next to intraoperative features preoperative
features are used as well.

• patient’s age

• patient’s gender

• surgery type

• medicine usage:

– diuretics

– atii

– oac

– ccb

– ace

– statins

– aspirin

– bb

• known conditions:

– HT

– MI

– RENAL

– RENAL type

– PAD

– DM type

– CHF

– CVA
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F
STATE COLOURS

Figure F.1: The legend for many graphs, where colours are used to distinguish between states. These color
labellings are used throughout the report.
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