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1. CHAPTER: INTRODUCTION  

 

his thesis concerns the application of system-theoretical techniques in reduced-order 

modeling, to upscaling of grid-based reservoir models. The main research question is 

related to the optimal level of complexity required to simulate, predict and control the flow 

behaviour in porous media. We start from an overview of the classical upscaling techniques 

in reservoir simulation, and then we develop a modified grid-based upscaling algorithm that 

is based on control-relevant properties of the reservoir model. Finally, we explain several 

order-reduction techniques and investigate the potential benefit of using them in combination 

with our control-relevant upscaling approach. 

1.1. Petroleum production

‘Petroleum production’ involves diverse technologies for exploration, drilling, and 

production of oil and gas from a petroleum reservoir. A ‘reservoir’ is a body of porous 

sedimentary rock formations that contain naturally occurring hydrocarbons (mainly oil 

and gas). These hydrocarbons have been trapped by impermeable rock layers in the deep 

subsurface, resulting in a very high pressure and temperature of the order of hundreds of 

bars and hundreds of degrees centigrade, respectively. Initially, the oil is produced by 

natural drive mechanisms of the pressurized reservoir, referred to as ‘primary 

production’. As the oil and the gas are produced, the reservoir pressure is depleted. 

Injecting of another fluid (mostly water or gas) can maintain the pressure and push the 

hydrocarbons out of the reservoir. Nevertheless, the typical ultimate oil recovery for a 

reservoir is up to around 40 percent of its initial oil-in-place. 

The increase in worldwide energy demand and the decline of easy-to-produce oil and gas 

resources in recent years have motivated the exploration and production (E&P) industry 

to look for expensive enhanced oil recovery (EOR) solutions, such as foam and polymer 

injections and thermal methods, and to move to high-risk development areas like offshore 

production in deep water. This has also resulted in an intense research in understanding 

complex fluid flow mechanisms and, in particular, advanced numerical reservoir 

simulators.  

T 
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The goal of a ‘reservoir simulator’ is to build a model of the reservoir that represents the 

true system such that it can be used to predict and control the flow behaviour in the 

subsurface. The simulator is built on a reservoir model that includes physical flow 

relations and different data from geological interpretation, seismic interpretation and 

reservoir characterization, as well as the associated uncertainty. Usually, the simulator is 

scaled up to a coarser representation during an ‘upscaling’ step and it is calibrated based 

on historic pressure and production data in a process referred to as ‘history matching’. 

Figure  1.1 shows the schematic workflow of reservoir modeling. Multiple geological and 

production scenarios then can be simulated to understand the behaviour of fluid flow over 

time in each setting.  

Simulation and 
prediction

Upscaling

Reservoir data
(geology, seismic

well & fluid data, etc.)

Control

Physical fluid model           
(PDEs � ODEs)

History matching

Simulation and 
prediction

Upscaling

Reservoir data
(geology, seismic

well & fluid data, etc.)

Control

Physical fluid model           
(PDEs � ODEs)

History matching

 

Figure  1.1 Reservoir modeling workflow. 

1.1.1. Reservoir management 

Nowadays, ‘reservoir management’ is an integrated workflow that covers reservoir life-

cycle from exploration to abandonment. The ultimate goal is to maximize the oil 

production or another economic objective and reduce the risk of failure, particularly in 

expensive high-risk E&P projects. In this workflow, reservoir simulation plays a central 

role in aligning the primary seismic, geological and geophysical data with the production 

data through ‘model-based optimization’ and ‘model updating’.  

In model-based optimization, the oil recovery process is optimized using the predictions 

from the reservoir model. This optimization can be performed for different objectives 

(e.g., the number and locations of wells, or injection/production rates), as well as 

different time cycles to improve the field performance and economics. A typical 

application is in dynamic water flooding optimization over the life-cycle of the reservoir, 
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where the scope of the flooding process can be investigated through a model-based 

optimization framework (Brouwer & Jansen 2004). In such a process, an objective 

function (e.g., cumulative oil production or Net Present Value) of the scenario is 

optimized by changing the controls of the model (i.e., water injection rates or down-hole 

valve settings). More details of this activity can be found in, e.g., Ramirez (1987), 

Brouwer (2004), Sarma et al. (2005), Jansen et al. (2008), Markovinović (2009), and 

Zandvliet (2008).  

As the oil and gas are produced from the reservoir, new pressure and production data 

become available. In particular, the introduction of ‘smart wells’, with down-hole 

measurement sensors, and ‘4D (time-lapse) seismic’ provides an abundance of 

measurement data. This data can be used for the model updating step, also referred to as 

‘data assimilation’ or ‘automated history matching’, to obtain a more accurate and 

reliable simulator. A systematic approach is to form a ‘variational’ problem, in which the 

controls are formed by unknown reservoir parameters, e.g., permeability and porosity 

values, while the objective function is defined in terms of the mismatch between 

simulated and measured production data (Li et al. 2003; Rommelse 2009). Another 

approach that allows the updating of uncertain states in large nonlinear models is 

ensemble Kalman filtering (EnKF). This technique includes the model error by taking an 

ensemble of model realizations, and updates the state vector at every time that a new 

measurement is available. For the application of EnKF in reservoir engineering see 

Nævdal et al. (2005), Evensen (2009) and Rommelse (2009), where in the latter an 

overview of different data assimilation techniques is also provided.   

Closing the loop 

Sequential data assimilation and computer-assisted optimization at every time that new 

measurements become available leads to a ‘closed-loop’ reservoir management approach 

(Jansen et al. 2005). The process involves the use of several realizations of simulation 

models during the producing life of a reservoir for near-continuous flooding optimization 

based on frequently updated reservoir models (see Figure  1.2).  Brouwer et al. (2004), 

Naevdal et al. (2006), Sarma et al. (2006), Jansen et al. (2009) and Chen & Oliver (2009) 

reported successful application of the closed-loop control approach, although the 

resulting reservoir performance has been only evaluated by numerical simulations.  
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Figure  1.2 Closed-loop reservoir management (after Jansen et al. 2009).  

The outcome of closed-loop reservoir management is, in the ideal case, a set of multiple 

potential development scenarios with associated risk and economic analysis, resulting in 

improved decision makings and increased returns on human asset and capital 

investments.  

1.1.2. Upscaling/model reduction 

As a precursor to flow simulation, reservoir data are collected from different sources with 

various temporal and spatial scales. For example, there are core measurements in the 

order of centimetres, well log measurements in the order of tens of centimetres, and well 

test and seismic data in the order of meters. These data are integrated into a system of 

numerical grid blocks that should represent the high complexity of the geological 

environment with heterogeneities of different spatial scales, and also the associated 

uncertainties. The results are geological realizations with tens to hundred layers and 

around 106 to 109 grid cells. Adding nonlinear dynamical flow relations with different 

flow mechanisms that vary over spatial and temporal scales makes the efficient and 

accurate modeling of the flow behaviour on such detailed models computationally 

extremely challenging. Therefore, in addition to the model updating and the optimization 

elements, reducing the complexity of reservoir models through an ‘upscaling/model 

reduction’ step is another essential part of the closed-loop reservoir management concept. 

This part, as depicted with the dashed oval in Figure  1.2, is the main focus of our 

research.
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1.2. Problem statement 

1.2.1. Issues with large-scale models 

Geological subsurface models often represent the subsurface heterogeneity with 106 to 

109 parameters (‘voxels’). The major issues with such high-order1 (large-scale) systems 

are related to computational costs such as CPU time and storage requirements, and 

system-theoretical properties like controllability, observability and identifiability of the 

system.  

Computational costs 

Notwithstanding the rapid increase in cluster computing power is facilitating the 

simulation of more sophisticated and detailed reservoir models, the increasing resolution 

and multi-scale complexity of geological models over time keep the quest for faster and 

more efficient reservoir simulators ongoing. Moreover, the uncertainty of the geological 

parameters is increasingly taken into account by simulating an ensemble of model 

realizations which significantly increases the computational demands, especially when it 

is also required to perform repeated simulations for computer-assisted flooding 

optimization or history matching (e.g., application of reservoir simulation in closed-loop 

reservoir management). This requires an ‘upscaling/order-reduction’ solution that 

transfers the relevant features of a geological model to a flow simulation model such that 

cost-efficient simulation, prediction and control of the fluid flow in the reservoir become 

feasible. The model size is often determined such that the flow simulation can be 

performed within a practical time frame. At present, computational limits of reservoir 

flow simulators restrict the model order to typically 104 to 106 (depending on the type of 

the model). 

System-theoretical properties 

The input into the upscaling/model-reduction problem is itself an uncertain set of data 

which are often obtained by geostatistical interpolations of a limited amount of direct 

measurements (mainly adjacent to the wells), and sometimes from indirect global 

measurements such as seismic inversions. Therefore, for a given configuration of wells, 

there are only a limited number of degrees of freedom in the input-output dynamics of a 

reservoir system. From a system-theoretical point of view, this means that a large number 
                                                 
1 Here, the model order (dimension) is defined as the number of time-dependent variables (i.e., state 
variables such as grid block pressures, saturations or component accumulations) which is typically equal to 
the number of active grid blocks times the number of components (i.e., hydrocarbon components and water) 
in the simulation. The number of time-independent model parameters is usually of the same order of 
magnitude because they are also proportional to the number of grid blocks (e.g. grid block permeabilities 
and porosities). 
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of combinations of the state variables (pressure and saturation values) are not actually 

‘controllable’ and ‘observable’ from the wells, and accordingly, they are not affecting the 

input-output behavior of the system (Zandvliet et al. 2008).  

The problem with the uncontrollable/unobservable modes is two-fold. Firstly, they may 

waste computational effort. Secondly, they may lead to ill-posed inverse problems and 

even wrong answers (Skogestad & Postlethwaite 2005; Antoulas 2005). More specifically, 

in model updating or in history matching we are dealing with a very large number of 

model parameters and states that need to be adjusted to match the model predicted data 

with the real measurements. This is inherently an ill-posed problem due to the relatively 

small number of measurements and, therefore, presence of an 

uncontrollable/unobservable system.  

In conclusion, in most reservoir applications, the controllable and observable subspaces 

are rather small compared to the total system state-space, in which case the complexity 

level of the model can be reduced by leaving out the uncontrollable/unobservable 

subspaces.  

1.2.2. Research objective  

Although considerable research has been devoted to upscaling techniques in reservoir 

engineering to overcome the computational limits of the simulator, fewer efforts have 

been put on studying the issues related to the control-relevant properties and adjusting the 

complexity of the reservoir model to the available amount of control and information. 

Therefore, the main objective of this research project is to replace a fine-scale (high-

order) reservoir model with an ‘optimal’ representation, based on the control-relevant 

properties of the system. The optimal model should be a coarse-scale (low-order) system 

that preserves the essential properties of the original model in terms of input-output 

behaviour, while reducing its computational complexity. 

1.2.3. Approach 

Various approaches have been developed over the past decades to reduce the complexity 

of a system model. The most widely used techniques for reservoir simulations are 

classical grid-based upscaling methods that vary from simple averaging methods on 

uniform Cartesian cells to sophisticated flow-based techniques on adaptive and 

unstructured grids (for an overview see e.g., Wen et al. 1996; Renard & Marsily 1997; 

Durlofsky 2005). In most cases, the coarse-scale parameters are approximated based on 

fine-scale parameters and/or some local flow calculations, subjected to generic boundary 

conditions. Therefore, the performance of these methods often depends on the choice of 
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the local boundary conditions and may not adequately capture the key features of the 

fine-scale flow behaviour, especially in the near-well region (Durlofsky et al. 2000).   

System-theoretical model reduction techniques such as proper orthogonal decomposition 

(POD) appear to provide another helpful tool to reduce the complexity of a large-scale 

model (Heijn et al., 2004; Antoulas 2005; Gildin 2006; Markovinović 2002 and 2009).  In 

these methods, we use the spatial correlation in the states (pressures and saturations) to 

compute a limited number of spatial patterns (directions) in the state-space coordinates, 

which can be used to characterize the dominant dynamical variations of the system. 

These dominant patterns are obtained by selecting the leading eigen vectors of the 

covariance (correlation) matrix of several fine-scale simulation data. We can then project 

the high-order system of reservoir equations onto the dominant spatial patterns to obtain a 

reduced-order model. Reparameterization of the permeability field is somehow a similar 

technique that benefits from the spatial correlation in the model parameters to reduce the 

dimension of the parameter space (Sahni & Horne 2005; Sarma et al. 2007; Jafarpour & 

McLaughlin 2007; Van Doren et al. 2008). Although these methods might outperform the 

grid-based upscaling techniques in terms of issues related to the system properties, they 

often lead to a non-physical reduced-order model. Moreover, in strongly nonlinear cases, 

reducing the dynamical order might not necessarily reduce the computational complexity 

as the expensive nonlinear reduction step may need to be repeated during the simulation.  

Recent advances in multi-scale methods also seem to be promising to address the issue of 

scales. In this approach, different grid blocks are used for flow and transport 

computations. Therefore, fine-scale information may be used at various stages of the 

simulation, though it might require a large memory capacity to carry the fine-scale data 

through the multi-scale simulation (Hou & Wu 1997; Aarnes 2004, Gerritsen & 

Durlofsky 2005). 

The present study focuses on system-theoretical aspects of grid-based upscaling, whereby 

we develop an upscaling methodology that coarsens the reservoir model based on the 

relevant level of control and information; i.e., controllability and observability properties 

of the system. The main benefit of this approach is that, unlike in most reduction 

techniques, the approximated model is still in a physical space, while for most cases that 

we investigated it outperforms the classical grid-based upscaling techniques in terms of 

input/output behavior. Different algorithms, requirements and limitations of this control-

relevant approach are presented in this thesis. 
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1.2.4. Thesis structure 

We started the thesis by a general introduction to petroleum production and a brief 

description of the research problem. In Chapter 2, we present the governing flow 

equations, followed by an overview and discussion of various upscaling methods that 

have been developed in both hydrology and reservoir simulation. Chapter 3 is devoted to 

derivation of linear ‘state-space formulation’ of a reservoir system. Furthermore, some 

system-theoretical properties like controllability and observability are discussed to 

understand how much of the state-space can be reached from the input side, and how the 

internal behaviour of the system can be obtained from the output information.  We use 

these properties in Chapter 4 to develop a ‘control-relevant upscaling (CRU) algorithm’ 

that indirectly uses the controllable and observable part of the system to determine the 

coarse-scale parameters. The accuracy of the control-relevant approach is further 

improved in Chapter 5 by leaving out the controllable/observable parts of the reservoir 

domain and scaling up only the uncontrollable/unobservable parts. This is referred to as 

‘control-relevant selective coarsening’ or, in short, the ‘CRSC algorithm’. Chapter 6 

explains some system-theoretical reduction techniques and investigates the potential 

benefit of using them in combination with the CRU and CRSC methods. Finally, the 

conclusions and the recommendations for the future research are given in Chapter 7. 
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2. CHAPTER: FLOW MODELING AND UPSCALING FOR 
RESERVOIR SIMULATIONS  

 

his chapter provides a brief explanation of the governing equations that describe the 

fluid flow behaviour in porous media, followed by an overview of current upscaling 

techniques in reservoir simulation. Particular attention is paid to single-phase flow equations 

and single-phase numerical upscaling methods as they are frequently used throughout this 

thesis. 

2.1. Flow modeling

We consider simplified partial differential flow equations and their spatial and temporal 

discretization to model fluid flow in porous media. Derivations of the equations are 

mainly borrowed form Aziz & Settari (1979) and Peaceman (1977).  

2.1.1. Governing equations  

The fundamental equation that models the isothermal and immiscible multi-phase flow in 

porous media is the continuity (mass conservation) equation, given by 

 ) .( ) ,α α α α α αφρ ρ ρ∂ + =
∂

uS q
t

( ∇( ∇( ∇( ∇  (2.1) 

where t is time, φ  is porosity, ρ is density, S is the phase saturation, q  represents source 

(sink) term expressed as volumetric flow rate (negative for production), and u denotes the 

fluid velocity. In a two-phase flow system, subscript α refers to o for the oil phase and w 

for the water phase. For low velocities, instead of the momentum balance, we may relate 

the fluid velocity for each phase to the fluid pressure p and gravity forces through the 

empirical relation of Darcy, written as 

 . ).α
α α α

α
ρ

µ
= − −u Krk

p gz∇(∇(∇(∇(  (2.2) 

In this equation, µ is viscosity, αrk  is the relative permeability of phase α, K is a diagonal 

absolute permeability tensor, g represents the gravitational acceleration, and z is the 

distance in the direction of gravity. Note that even though the permeability tensor is 

T 
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generally a full tensor, we can often align the coordinate directions to the geological 

layering in the reservoir such that we obtain a diagonal permeability tensor 

( , , ) ( , , )=K x y zx y z diag K K K .  

More equations are given by closure relations for the phase saturations and capillary 

pressures written, respectively, as  

 1,+ =o wS S  (2.3) 

 .= −c o wp p p  (2.4) 

For simplicity, we assume that the parameters K and µ are pressure independent, while φ  

and ρ are related to the pressure by isothermal relations  

 ( ) 1
,

ρ
ρ

∂=
∂

lc p
p

 (2.5) 

 ( ) 1
,

φ
φ

∂=
∂

rc p
p

 (2.6) 

where lc is the isothermal liquid compressibility andrc is the rock compressibility. 

Moreover, the phase mobility is defined as /α α αλ µ= rk , and the fractional flow  is 

( ) /( )λ λ λ= +w w w wf S . Therefore, from Eqs. (2.1) to (2.6), the pressure (flow) and the 

saturation (transport) equations are  correspondingly given by  

 [ ]. . ) . ) ,φ λ ρ λ ρ∂ − − − − =
∂

K Kt w w w o o o
p

c p gz p gz q
t

+ ∇ ∇( ∇(+ ∇ ∇( ∇(+ ∇ ∇( ∇(+ ∇ ∇( ∇(  (2.7) 

 [ ]. ( . ( ) . ) .φ λ λ ρ ρ∂ + + + − =
∂

u K Kw
w o c o w o w

S
f p g z q

t
∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (2.8) 

Here, the total flow rate, velocity and compressibility are correspondingly defined as 

= +w oq q q , = +u u uw o  and ( )1= + − +t w w w o rc S c S c c. The saturation equation clearly 

explains three different forces involved in fluid flow. These are viscous forces, expressed 

by the term [ ]. uv wq f= ∇= ∇= ∇= ∇ , capillary forces, represented by the term [ ]. .λ Kc w o cq f p= ∇ ∇= ∇ ∇= ∇ ∇= ∇ ∇ , 

and gravity forces, given by [ ]. ( ) .λ ρ ρ− Kg w o w oq f g z= ∇ ∇= ∇ ∇= ∇ ∇= ∇ ∇ .  The influence of each force 

depends on flow rates and reservoir heterogeneities (Aarnes et al. 2007). In the absence 

of the capillary and gravity forces (i.e., ,  0= =w op p z∇∇∇∇ ), the simplified pressure 

equation describing an immiscible incompressible two-phase flow is written as 

 .( . ) .λ∂ =
∂

Kt
p

c p q
t

− ∇ ∇− ∇ ∇− ∇ ∇− ∇ ∇  (2.9) 
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2.1.2. Single-phase flow equation  

In most cases, there is more than one fluid phase present in the reservoir system. 

Nevertheless, there are some examples such as gas reservoirs, or oil reservoirs in an early 

production stage, for which there is only one phase present. Moreover, single-phase flow 

simulation, as the simplest way of describing flow in a porous medium, is used in 

simplified fundamental studies such as upscaling. 

Combining Eqs. (2.1) and (2.2) for slightly compressible rock and fluid, and in the 

absence of the gravity force, we obtain the simplified single-phase pressure equation as 

 
1

.( . ) .
µ

∂ − =
∂

Kt
p

c p q
t

∇ ∇∇ ∇∇ ∇∇ ∇  (2.10) 

This form of the pressure equation is very similar to the two-phase pressure equation 

(2.9), except for λ that is replaced by1/ µ . They also take the same form in case of a unit 

mobility ratio, where µ µ=o w , α α=rk S , and 1/ 1/λ µ µ= =w o . From the similarity 

between single- and two-phase pressure equations, one can conclude that single-phase 

upscaling approaches might be sufficient and applicable for more general cases of multi-

phase flow simulations. This is particularly valid for low degree of coarsening, i.e., one or 

two orders of magnitude reduction in the number of grid cells (Durlofsky 2005). 

Therefore, a simplified form of Eq. (2.10) for steady-state incompressible single-phase 

flow is often used in upscaling procedures. 

2.1.3. Discretization 

Spatial discretization 

Consider a two-dimensional horizontal reservoir domain with regular rectangular grid 

cells, where the grids are aligned with the principal coordinate axes. We use a flux-

continuous finite volume discretization (FVD) to solve the single-phase flow equation 

over the given domain (Edwards & Roger 1998; Pal et al 2006). In this method, physical 

values are represented as averaged values over a finite number of control volumes 

denoted here by Ω . Conservation of mass, thus integrating Eq. (2.1) over each control 

volume, gives 

 ( )) .( ) ( ) ,φρ ρ ρ
Ω Ω Ω

∂  + = ∂ 
∫ ∫ ∫u

i i i

dV dV q dV
t

( ∇( ∇( ∇( ∇  (2.11) 

where dV denotes a volume element. Using the divergence theorem and Darcy’s law, and 

assuming slightly compressible rock and fluid with total compressibility of tc , we obtain 
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4

1

1
( ( , ). ). ,φ

µ= ∂Ω

+ − =∑ ∫ K nɺ

ik

t i i i i i

k

c V p x y p dS qV∇∇∇∇  (2.12) 

where dS denotes a surface element, ni  is a unit outward normal vector on ∂Ωik , and 

∂Ωik  (i=1,2,3,4) surrounds the control volume Ωi . This equation simply states that the 

total fluxes to or from the four neighboring control volumes are equal to the source and 

accumulation terms. For a diagonal permeability tensor the flux integral at each boundary 

can be approximated by a two-point flux approximation (TPFA) approach, resulting in 

the classical five-point scheme in a two-dimensional problem. In case of a full 

permeability tensor, a 9-point scheme in 2D and 27-point scheme in 3D can be 

implemented (Aavatsmark 2002).  

In TPFA the flux of each boundary is related to the cell-centered pressures of two blocks 

that share that boundary.  For grid blocks i and i-1, this relation can be derived from the 

continuity of the pressure at the interface and can be written as  

 1/ 2, 1/ 2, 1, ,( ),− − −= − −i j i j i j i jq T p p  (2.13) 

where 1,−i jT  is the transmissibility between two grid blocks, defined as 

 1, ,
1/ 2,

1, 1 ,

1 2

µ
−

−
− −

= ∆ ∆
∆ + ∆

i j i j
i j

i i j i i j

K K
T y z

x K x K
 (2.14) 

This can also be seen as a local upscaling problem in two adjacent half grid blocks, where 

the upscaled permeability at their interface is obtained by distance-weighted harmonic 

average of the x component of the permeability tensor in the grid blocks i and i-1 

(Edwards & Roger 1998). The transmissibility relation for other interfaces is defined 

similarly. Eventually, for a system of n grid blocks, we can compute the flux integral in 

(2.12) by Eq. (2.13) and write n relations in the matrix form of  

 1 1 1,× × × × ×+ =V p T p qɺn n n n n n n  (2.15) 

where V is a diagonal accumulation matrix, T is a symmetric transmissibility matrix, p is 

the pressure vector, and  q represents the source/sink vector that includes i iqV  values for 

all grid blocks.  

Furthermore, we need to set boundary conditions of the model.  For reservoir simulation 

purposes, the boundary conditions are usually prescribed in two types (see Aziz & Settari 

1979). In the first one the pressure values at the boundaries are specified (Dirichlet), 

whereas in the second type /∂ ∂np over the boundaries is given (Neumann). Here, n is an 
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outward normal unit vector. Using Darcy’s law, both Dirichlet and Neumann boundary 

conditions can directly or indirectly be expressed in terms of fluxes and added to the 

source/sink term in the right hand side of Eq. (2.15). The simplest boundary condition is 

to assume no flow across all boundaries. This means that the velocity vector normal to 

the boundaries of the reservoir as well as the transmissibility through them is zero. 

Consequently, the flow into or out of the system is only occurring through source/sink 

terms (wells). Nevertheless, for incompressible single-phase flow equation, a pressure 

value has to be specified in at least one point to obtain a unique solution.  

Time discretization 

We approximate the accumulation term in Eq. (2.12) by 

 
( 1) ( )

( 1) ,
+ −+ =

∆
dp p k p k

k
dt t

 (2.16) 

where k is the time-step number. Moreover, we choose vector 0p  as the initial condition 

(pressure) of the reservoir. Eq. (2.16) is solved by an implicit Euler method that in 

contrary to an explicit Euler approximation requires no limitation on the time step size to 

guarantee the stability of the numerical model. However, even in the implicit time 

discretization scheme, we need to be aware of non-physical smearing effects due to very 

large time-step sizes. 

2.2. Upscaling  

2.2.1. Introduction 

Reservoir simulators are established from detailed geological models, which are 

themselves often a result of several geostatistical realizations of petrophysical and 

geological data with different temporal and spatial scales. Even though the resulting high-

resolution geo-model (that typically consists of 106 to 109 cells) is still unable to present 

all existing small-scale heterogeneities in the system, it is simply too fine to be used in 

existing simulators, which can typically handle models with grid cells of the order of up 

to 106. Therefore, ‘upscaling’ for reservoir simulation is defined as a procedure of 

transferring flow and transport processes from a detailed fine-scale model to a more 

practical and courser one (Durlofsky 2005). This procedure includes both equations and 

properties of the reservoir system. The properties to be scaled up are static parameters 

such as absolute permeability, porosity, net to gross and connate water saturation, and 

dynamic properties like relative permeability and capillary curves. The upscaling process 

should be implemented in a way that it is manageable by existing reservoir simulators, 
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yet take into account the effect of heterogeneities and geological complexities in the flow 

and transport simulation. In other words, an appropriate upscaling technique aims at an 

optimum compromise between the quality of simulation and the required computational 

time. 

The correctness criterion of an upscaling procedure is often the equality of flow for a 

given potential (Renard & Marsily 1997; Gueguen et al. 2006). Accordingly, the coarse 

model should be capable of reproducing the main aspects of the fine-scale flow behavior 

such as flow rates, averaged pressures, averaged saturations, and breakthrough times. 

However, all coarsening procedures introduce a discrepancy and loss of detail in the 

numerical model due to the uncertain definition of the boundary conditions and the 

geological heterogeneities in the coarse-scale model. Study of upscaling techniques is not 

new, but still an ongoing research area as it can be a significant source of the simulation 

error, when it is done improperly. 

2.2.2. Coarse-scale equations 

In general, there are some flow features such as dynamical or non-equilibrium effects in 

the coarse-scale processes that are not present in the small-scale description 

(Hassanizadeh et al. 2005). Therefore, in an appropriate upscaling procedure, both 

equations and parameters need to be scaled up. Coarse-scale equations are often derived 

by using procedures such as homogenization and volume averaging. Nevertheless, in 

most reservoir practices, the resulting coarse-scale equations from homogenization 

analysis follow mathematically the same form as the fine-scale equations with the 

difference that the fine-scale parameters are replaced by upscaled (effective) ones (Saez 

et al. 1989; Durlofsky 1998). Therefore, it is quite common to assume that, for instance, 

Darcy’s law is valid for both fine- and coarse-scale simulations, and only new upscaled 

permeability values need to be calculated. Accordingly, Eq. (2.10) for course-scale 

modelling of a steady-state incompressible single-phase flow can be rewritten as  

 *1
.( . ) ,

µ
− =K c cp q∇ ∇∇ ∇∇ ∇∇ ∇  (2.17) 

where superscripts asterisk and c designate an upscaled parameter and upscaled variable, 

respectively. In fact, during the upscaling process, variations of the permeability tensor 

K  in Eq. (2.10) over the scale at which the fine-scale equations are valid, are averaged or 

homogenized to obtain an equivalent or effective *K  over the coarse grid block scale. 

Note that depending on the upscaling technique, the resulting permeability matrix might 
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be a full tensor even if the original fine-scale permeability tensor is diagonal (see e.g. 

Durlofsky 1991). 

The terms ‘effective’, ‘equivalent’ and ‘block’ parameters have been frequently used in 

the literature. Effective permeability is used for media, which are statistically 

homogeneous in the coarse scale (Renard & Marsily 1997; Gueguen et al. 2006). This 

means that the scale, over which the flow properties are averaged, is large enough to 

include all heterogeneity scales present in the reservoir (Begg et al. 1989). Therefore, the 

fine grid model can be replaced by a single coarse grid block with a constant ‘effective’ 

permeability.  The concept of effective permeability is an intrinsic physical magnitude 

independent of the boundary and flow conditions. In most cases, however, the conditions 

for existence of an effective permeability value are not met. Thus, fine scale permeability 

values are often replaced by a set of ‘equivalent’ permeability values instead of a single 

one. This set is computed based on the equality of flow (or equality of dissipated energy 

by different forces) between the fine- and the course-grid models (Gueguen et al. 2006).  

Unlike the effective permeability, the equivalent permeability depends on the flow and 

boundary conditions and, hence is not unique in different calculations. It goes without 

saying that equivalent permeability tends to the effective one as the size of the coarse 

block become larger. Finally, if averaged permeability is calculated over the scale of 

simulator grid blocks, it is called the ‘block’ permeability. Henceforth, we simply refer to 

all effective, equivalent and block parameters as ‘upscaled’ or ‘coarse scale’ parameters, 

while we keep in mind the differences. A wide variety of upscaling techniques is 

available to calculate the coarse-scale parameters considering the effect of geological 

features and small-scale heterogeneities on the flow behavior. 

2.2.3. Single- and two-phase upscaling 

There are several classifications of upscaling techniques in the literature (see, e.g., Wen 

& Gomez-Hernandez 1996; Renard & Marsily 1997; Farmer 2002; Durlofsky 2005). An 

important classification is based on the type of the parameters that have to be upscaled 

(Durlofsky 2005). In a ‘single-phase upscaling’ procedure, we only calculate equivalent 

permeability and porosities for the coarse-scale flow equation, whereas in a ‘two-phase 

upscaling’ method both flow and transport equations are considered and relative 

permeability curves and capillary pressures are also scaled up.  

Even though, in most cases, there are more than one phase present in the reservoir, the 

coarse-scale flow parameters are commonly computed by using a single-phase upscaling 

method, and the two-phase-flow upscaling is less frequently applied in practical reservoir 
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simulations (Christie & Blunt 2001).  One reason for that is the similarity of the single-

phase and two-phase flow equations, as we mentioned before. Therefore, it is often 

reasonable to use only a single-phase upscaling procedure for two-phase flow simulations, 

particularly for low degree of coarsening (Durlofsky 2005). The other reason is related to 

the inefficiency of existing two-phase upscaling techniques. In ‘dynamic’ two-phase 

upscaling methods, for instance, the fine-scale flow simulations are used to calculate 

pseudo-functions or pseudo-relative permeability curves, which are used to correct for 

numerical dispersion and account for the effect of small-scale heterogeneities in the 

coarse-scale model. However, the calculation of the pseudo-functions is often 

computationally expensive, yet not robust and reliable (Barker & Thibeau 1997; Darman 

et al. 2002). In addition, ‘steady-state’ methods have been introduced, in which the 

steady-state assumption is used to calculate the saturation distribution. Once the 

saturation distribution is known, any single-phase upscaling technique can be used to 

calculate the upscaled relative permeability and capillary pressure curves (Ekrann & 

Aasen 2000). Unlike dynamic pseudo-functions, steady-state methods do not refer to 

expensive transient flow simulations on the fine-scale grid blocks, but only to the steady-

state saturation distribution. Nevertheless, they often assume viscous and capillary limits 

which are correspondingly valid for high and low flow rate areas. Unfortunately the 

domains, on which these assumptions are valid, are generally unknown or limited to 

small parts of the reservoir (Virnovsky et al. 2004).  For a more detail description of 

dynamic upscaling methods, see e.g., Kyte & Berry (1975), Barker & Thibeau (1997), 

Christie (2001), Darman et al. (2002), and Artus & Noetinger (2004), and for the steady-

state techniques see e.g., Dale et al. (1997), Ekrann & Aasen (2000), Pickup & Stephen 

(2000) and Virnovsky et al. (2004). 

In any case, upscaling of absolute permeability (or transmissibility) values is always a 

key step (even in a multi-phase upscaling problem) and that is done through a single-

phase upscaling procedure. Therefore, in this thesis we only focus on single-phase 

upscaling of the absolute permeability, with the understanding that its results can be used 

for both single- and or multi-phase problems. We should also mention that a lot of topics 

such as multi-scale methods, dual-gridding techniques, upscaling with flow-based 

gridding and near-well upscaling are also related to the upscaling problem in reservoir 

simulation, but they are not discussed here. For an overview of those topics see Gerritsen 

& Durlofsky (2005) and references therein. 
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2.3. Overview of single-phase upscaling techniques 

‘Single-phase upscaling’ refers to an upscaling procedure that only includes static 

parameters such as the absolute permeability and porosity values. Porosityφ  in a coarse 

grid block with bulk volume V is usually upscaled using a simple volume averaging 

 
1

( ) .φ φ∗ = ∫
V

x dV
V

 (2.18) 

Calculating the upscaled permeability (or transmissibility) values is more challenging, as 

we shall discuss here.  

Depending on how we calculate the upscaled equations and parameters, we can 

categorize the existing single-phase upscaling techniques. These techniques vary between 

purely numerical methods based on the discrete fine-scale properties to more analytical 

and physical approaches that focus on the algebraic form of the equations. Here, we only 

mention several common single-phase upscaling techniques that are presented as 

averaging techniques, theoretical methods and flow-based numerical techniques. 

Particular attention is paid to the averaging, and flow-based numerical methods, seeing 

that they are widely used in the reservoir simulation. The material presented here is 

mainly borrowed from more extensive reviews in Mansoori (1994), Wen & Gomez-

Hernandez (1996), Christie (1996), Renard & Marsily (1997), Farmer (2002), He et al 

(2002), Hartanto (2004), Durlofsky (2002 and 2005), Gerritsen & Durlofsky (2005), 

Dasheng & Hesketh (2005) and Noetinger et al. (2005). 

2.3.1. Averaging methods 

We consider a reservoir with N layers of isotropic permeability Ki and thickness hi, 

assuming that the fluid flows only in the x-direction parallel to the permeable layers 

(Figure  2.1). Therefore, there is no flux from the top or bottom of the reservoir and the 

pressure is constant at both inlet and outlet of the system. Our objective is to calculate the 

coarse-scale permeability value in the x-direction*
xK , such that the same flow rate of the 

layered system is recovered from the coarse model. Therefore, using Darcy’s law for an 

incompressible single-phase flow, we can write the total flux through the reservoir as 

 ( )
*

1 1

1 ( ) ( )
.

µ µ= =

− −= − = −∑ ∑
N N

out in x out in
x i i i

x xi i

P P K P P
Q K h h

l l
 (2.19) 
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Figure  2.1 Layered reservoir with flow direction parallel to the permeable layers. 

From this equation, the calculated equivalent permeability is given by weighted 

arithmetic averaging 

 * 1
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=

= =
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i

K h
K K

h
 (2.20) 

The same procedure for the flow perpendicular to the layers gives the equivalent 

permeability *
yK  as the weighted harmonic averaging of the layers permeability values 

(Cardwell and Parsons 1945). This upscaling procedure results in a diagonal permeability 

tensor due to heterogeneity (layering) of the fine-scale model. 

A more general algebraic relation for calculating the averaged permeability is the power-

law averaging method introduced by Journel et al. (1986) and Deutsch (1989). In this 

method the effective permeability is defined as 

 

1

* 1
( ) .

ω
ω

 
=   
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∫
b

p
b V

K k x dV
V

 (2.21) 

Here, Vb is bulk volume and exponent ω is obtained by tuning it against numerical 

upscaling results. The same exponent can then be used for similar permeability fields. 

The value of ω can vary between 1 and -1. Basically, ω=1 represents the arithmetic 

average, whereas ω=-1 gives the harmonic average. This also states that the upscaled 

permeability is bounded above and below by arithmetic and harmonic means, 
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respectively. These upper and lower permeability bounds are often referred to as ‘Wiener 

bounds’.  

The geometric average is also obtained when exponent ω goes to zero. Mathematically, 

the geometric average contains both arithmetic and harmonic effects of the permeability 

field and it is an appropriate method when the permeability field is isotropic, but 

randomly distributed regarding to the flow direction. For cases of large variations in 

permeability or finite fraction of zero permeability however, this is not a suitable method 

(King 1989; Renard & Marsily 1997). 

Simple averaging methods are known to be fast methods for upscaling. However, their 

main drawback is the limited range of application, compared to other methods such as 

numerical upscaling tourniquets.  Furthermore, zero permeability domains cause an error 

in upscaled permeability obtained by these methods.   

2.3.2. Theoretical methods 

In theoretical methods, it is assumed that the geological model, in particular, permeability 

field and boundary conditions are known. Then, some theories are applied to calculate an 

approximation of the upscaled equations and parameters. Examples of them, which are 

mainly adapted from the field theory,2  are ‘perturbation theory’ and the ‘theory of 

effective media’ (King 1987, 1989; Drummond & Horgan 1987; Gueguen et al. 2006). 

However, the application of perturbation and effective medium theories is limited to very 

small fluctuations in permeability values. More interesting theories for reservoir 

applications are renormalization, percolation and homogenization as we describe them 

here.  

Renormalization 

The drawback of perturbation and effective medium theory leads to an alternative 

approach, which does not make any assumption about the scale of the fluctuations. Such 

a method was developed in permeability upscaling by King (1989), and was named 

‘renormalization technique’. The idea came again from field theory, but this time King 

used the analogy of a resistor network to represent the porous medium. In this method, 

the upscaling is performed successively, such that in each sequence permeability values 

                                                 
2 In mathematical physics, fields are used to describe systems with infinite degrees of freedom. They can be 
scalar, vector or tensor, and they are functions of position, so that we are able to integrate and differentiate 
them. A reservoir is considered as a large disordered system, where permeability is a random stochastic 
variable with a probability distribution and an infinite number of degrees of freedom. King (1987) used this 
analogy to develop theories for calculating effective properties and modeling the flow in heterogeneous 
porous media. 
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are averaged over a smaller region in the reservoir to form a permeability field with lower 

permeability variance. For each small region (a region of two-by-two grid blocks in a 

two-dimensional problem), a single value for block permeability is calculated, so that it 

gives the same flow as the fine-grid simulation across the corresponding region. The 

process is repeated until we reach the desired coarse grid.  

To calculate the effective permeability of renormalized blocks, they are modeled by 

an equivalent resistor network. The equivalent resistor between the midpoint of a block 

with permeability K and its edge is 1/K. Thus, we can replace each grid block with a cross 

of resistors.  

Pout

PoutPin

Pin

K1 K2

K3 K4

Pout

PoutPin

Pin

Pout

PoutPin

Pin

K1 K2

K3 K4

K1 K2

K3 K4

 

Figure  2.2 Resistor analogues in renormalization (after King 1989). 

For instance, consider an isotropic two-dimensional medium with uniform pressures at 

the sides of the blocks and no-flow boundaries at the top and bottom of the blocks (see 

Figure  2.2). We can replace each block with a cross of resistors and we can join the nodes 

with the same pressure. This network is further simplified using a star-triangle 

transformation3 and finally the effective permeability of the single equivalent resistance is 

given as 

 
( )( ) ( ) ( )

( ) ( ) ( )
( )( )( )( )

1 3 2 4 2 4 1 3 1 3 2 4

2 4 1 3 1 3 2 4 1 2 3 4

1 2 3 4 1 3 2 4

4
.

3

+ + + + +  =
 + + + + + +   
 

+ + + + +  

eff

K K K K K K K K K K K K
K

K K K K K K K K K K K K

K K K K K K K K

 (2.22) 

Renormalization techniques are seen to be accurate in comparison to the simple 

averaging methods and they can handle large permeability fluctuations. Nevertheless, 

Peaceman (1997) found out that the renormalization approach is less accurate for non-

rectangular grids and in the presence of anisotropy. Moreover, like any other local 

method, errors arise from the boundary conditions, particularly for highly anisotropic and 

heterogeneous media (King 1996; Yeo & Zimmerman 2001).  

                                                 
3 Star-triangle or Y-∆ transformation is a technique of simplifying an electrical network by establishing 
equivalences for resistor networks with three terminals. The name refers to two star-shape and triangle-
shape resistor networks, which are equivalent (see Appendix 1 in King 1989) 
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Percolation theory 

Percolation theory is a mathematical theory of connectivity between different objects in a 

complex system (Berkowitz & Balberg 1993; Renard & Marsily 1997, King et al. 2002). 

In many reservoirs flow is strongly controlled by the connectivity between different 

geological features, e.g., shale layers and sand bodies distributed randomly in space.  

Therefore, percolation theory can give an approximate measurement of the connectivity 

in a porous medium. Then, effective permeability in that medium can be calculated by the 

following relations: 

 0,< → =t effp p K  (2.23) 

 ( )~ .
µ> → −t eff tp p K p p  (2.24) 

Here, p is the proportion of permeable medium to the total bulk volume, and tp is a 

fundamental characteristic of percolation theory, known as the percolation threshold.  In 

our case, the percolation threshold is a particular value of proportion of permeable 

medium, such that for > tp p there is a continuous pathway through the medium. The 

exact value of tp  depends on the type and the dimension of the grid blocks. µ  is an 

exponent that depends only on the space dimension, but not on the shape of flow units (µ  
≈1.3 in two-dimensions and µ  ≈1.8 in three-dimensions).  Hence, this exponent is also 

referred to as a universal exponent (King et al. 2002).  

Homogenization 

The basic hypothesis in homogenization is the spatial periodicity in a medium. From 

there, the medium can be represented by small basic cells, subject to periodic boundary 

conditions. Therefore, space scales in the model have to be separated into two distinct 

scales. One is the coarse scale or the observation scale, L, and the other one is the 

permeability oscillation scale, l. Moreover, a length scale parameter, denoted by ε, is 

defined as the ratio between these two scales. The second assumption is that basic cells 

are very small compared to the given medium, i.e., 0ε → . As a consequence, any space 

dependent quantity in the system is a function of both scales and the gradient operator 

should be written as ∇ = ∇ + ∇L l .   

In order to obtain the coarse-scale equations, the fine-scale equations are rewritten based 

on an expansion in the length scale parameter. Then, they are solved for different orders 

of ε separately. The lowest order of ε gives the upscaled equation. In single-phase flow 

homogenization, the upscaled equation keeps essentially the same form, although coarse-
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scale parameters are different from the fine-scale ones.  The upscaled parameters of the 

model are also defined from the basic cell problem.  

A benefit of this method is that we can use homogenization to upscale both equations and 

their parameters. This method is also applied in two-phase flow, although the procedure 

is then more complicated (see e.g., Van Duijn et al 2002; Salimi & Bruining 2009). 

Homogenization is a very useful tool to improve our understanding of the processes in 

porous media. However, we have to be aware of the strong assumptions and 

approximations made. For further details and reviews of homogenization applications in 

porous media, we refer to Renard & Marsily (1997), Farmer (2002), Hornung (1997), 

Van Duijn et al (2002), Neuweiler & Cirpka (2005), and Salimi & Bruining (2009). 

2.3.3. Flow-based numerical methods 

In many cases, geological complexities and strong heterogeneity in oil reservoirs allows 

none of the assumptions made in averaging, theoretical, or any other such approximation 

methods to be valid. In other words, those approaches are useful in very limited numbers 

of cases, where their hypothesis is met, or in fundamental studies. In general reservoir 

simulation, however, flow-based numerical methods are required to transfer the flow 

properties of a fine-grid model to a coarser one. Common numerical methods are based 

on the criterion of flow equality between fine- and coarse-scale models. Therefore, the 

upscaling procedure is divided into two steps: 

Step (1): the first step implies the solution of the flow equation over the fine-scale grid 

blocks. From Eq. (2.10) and assuming zero source (sink) terms, the simplified 

incompressible single-phase flow equation is given by 

 
1

.( . ) 0.
µ

− =K p∇ ∇∇ ∇∇ ∇∇ ∇  (2.25) 

Flow-based numerical upscaling techniques are classified based on the domain, over 

which this equation is solved (see e.g., Wen & Gomez-Hernandez 1996; Renard & 

Marsily 1997; Farmer 2002; Durlofsky 2005). If this domain is only limited to the target 

course grid block, it is called a local upscaling technique. When it also includes some 

neighboring grids of that coarse grid, the upscaling technique is called an extended-local 

method. Finally, when the flow equation is solved over the entire fine-grid model, the 

upscaling procedure is called a global upscaling method (Figure  2.3).  
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Figure  2.3 Different domains, over which the flow equation is solved in local (L), extended-local (E) and 
global (G) numerical upscaling. Here, the target coarse grid block corresponds to four fine grid blocks in 
the middle.  

Step (2): in this step, we solve the coarse-scale flow Eq. (2.17) and then, from the flow 

equality criterion between fine- and coarse-scale models, we calculate the upscaled 

permeability tensor *K . When this is done only from the coarse-scale flow over the 

target course grid, the procedure is called a local technique; otherwise it is a non-local 

method. The classification of local-local, local-global, global-local, and global-global 

upscaling is also related to steps (1) and (2). 

We should mention that most numerical upscaling techniques are able to directly 

compute the coarse-scale transmissibility values (see e.g., Romeu & Noetinger 1995). 

However, the procedure is similar to the above described permeability upscaling. In the 

following, we present a brief overview of local and non-local upscaling techniques to 

compute the upscaled permeability values on structured Cartesian grids. 

Local methods 

In local upscaling methods, coarse scale parameters are computed by considering only the 

fine-scale region corresponding to the target coarse block. However, flow directions and 

proper local boundary conditions have to be specified. In fact, the resulting upscaled 

parameters are dependent on the selected boundary conditions. 

One approach is to assume pressure-no-flow boundary conditions, which are originally 

taken from pressure solver methods of Warren & Price (1961). In this approach, a 

constant pressure (potential) is assigned to two opposing sides, while no-flow boundary 

conditions are assumed on the other sides. Figure  2.4 depicts this type of boundary 

conditions for a part of the fine-scale model, corresponding to a coarse grid block.  
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Figure  2.4 Constant pressure and no-flow boundary conditions. 

In order to calculate the upscaled permeability for this domain, first, we solve the flow Eq. 

(2.25) over the fine grid domain of Figure  2.4 to obtain the pressure distribution. It is 

assumed that the pressure gradient is constant along the x-direction and, therefore, 

analogous to averaging method for a layered reservoir, we can write the total flow rate in 

the x-direction as 
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where ny is the number of grid blocks in the y-direction, lx and ly are the coarse grid block 

lengths in the x- and y-directions, respectively, and 1/ 2,−i jK  is the distance-weighted 

harmonic average of the fine-scale permeability values in blocks i and i-1. Therefore, the 

equivalent coarse-scale permeability is given by 
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Now, we rotate the boundary conditions so that the flow occurs in the y-direction. 

Similarly we can write 
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where nx is the number of grid blocks in the x-direction. The local upscaling procedure 

with pressure-no-flow boundary conditions results in a diagonal permeability tensor. In 
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other words, the cross terms of the permeability tensor are assumed to be zero. 

Consequently, the method is less accurate for grid blocks, in which the directional flow is 

significant.  

An alternative solution to compute the full tensor permeability is to choose periodic 

boundary conditions, in which it is assumed that the reservoir domain is a periodic cell in 

a periodic medium. The assumption of periodicity relates the pressures and velocities at 

opposite boundaries of the reservoir domain to each other (Durlofsky 1991): 

 ( ,0) ( , ),= yp x p x l  (2.29) 

 (0, ) ( , ) ,= −x x xp y p l y G l  (2.30) 

 1 2( ,0). ( , ). ,= −u n u ny y yx x l  (2.31) 

 1 2(0, ). ( , ). ,= −u n u nx x xy l y  (2.32) 

where xG  is an arbitrary pressure gradient in the x-direction. Like in the pressure-no-flow 

boundary conditions, we need to rotate the boundary conditions and solve the flow 

problem again. The main advantage of this method is that it can compute a full symmetric 

and positive definite permeability tensor4. However, this method is only accurate if the 

assumption of periodicity is valid, otherwise the large-scale permeability connectivity 

may be lost (Durlofsky 2005). 

Non-local methods 

In general, the resulting upscaled parameters from local methods depend on the choice of 

boundary conditions, which are often unknown. As a consequence, these generic 

boundary conditions might lead to a significant error in approximation of the upscaled 

permeability field. In addition, the assumption of a constant pressure gradient over a 

coarse grid block is not valid for a highly heterogeneous or channelized reservoir (Chen 

et al. 2003).  In such cases, the behaviour of the coarse-scale reservoir depends on some 

global flow patterns that cannot be captured by local techniques. This leads to the 

development of non-local methods that consider all the fine-scale grid blocks (global 

methods) or at least the neighboring grid cells (extended-local methods) in the calculation 

of the coarse-scale parameters. Extended-local methods, as depicted in Figure  2.3, reduce 

the effect of the boundary conditions by including the neighboring grids into the 

                                                 
4 For a symmetric permeability tensor* *=xy yxK K , and for a positive definite tensor * *, 0>xx yyK K  and 

( )2* * *<xy xx yyK K K . 
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upscaling calculations (see e.g., Wen et al. 2003). However, in order to resolve the global 

permeability connectivity in some cases, particularly in strongly channelized systems, we 

may need to use a global technique that includes the flow information from a global fine-

scale simulation into the calculations (White & Horne 1987; Holden & Nielsen 2000).   

Another alternative to expensive global fine-scale flow calculations is a ‘local-global’ or 

‘quasi-global’ approach, in which the generic boundary conditions are only used to obtain 

an initial coarse-scale flow solution. The interpolation of the coarse-scale solution then 

gives more accurate local boundary conditions to find the new coarse-scale parameters 

and the process is iterated until the solution converges (see Chen et al. 2003; Chen and 

Durlofsky 2006). Generally, the non-local methods are computationally more accurate, 

but also more expensive than the local techniques. 

2.4. Summary of upscaling techniques 

Upscaling techniques are classified in terms of the types of the parameters that are scaled 

up (Single- or two-phase upscaling), and the fine-scale domain, over which these 

parameters are computed (local or non-local methods).  

The earliest upscaling techniques were local methods based on some form of averaging of 

the fine-block permeability values. Cardwell and Parsons (1945) found that the arithmetic 

and harmonic averages are, respectively, the upper and lower limits of the equivalent 

permeability for a heterogeneous block (Wiener bounds). Later, this observation was used 

to develop a power-law averaging relation that gives the equivalent permeability of a 

group of heterogeneous grid blocks as a value between the upper and lower bounds by 

varying the power exponent (Journel et al. 1986; Deutsch 1989). Because the equivalent 

permeability depends on fine-scale permeability distributions with respect to the flow 

directions, averaging methods are reliable only for particular reservoirs and flow 

geometries.  

Theoretical methods, like perturbation and effective medium theory, resolved the 

problem of simple averaging methods, in which zero permeability fractions cause an error. 

However, they both fail when the permeability fluctuations become larger. 

Renormalization, overcomes this problem, since it does not make any assumption about 

the scale of fluctuations. Nevertheless, its accuracy reduces for non-rectangular grid 

blocks and in the presence of anisotropy.  Homogenization techniques also provide a 

mathematic tool to derive both upscaled equations and parameters, assuming a periodic 

medium, although no natural medium is periodic. Thus the theoretical methods are based 

on strong assumptions and approximations about the permeability field and boundary 
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conditions, which can be useful and efficient in their specified cases. They can also be a 

valuable tool in a better understanding of the basics and theories related to the upscaling 

issues in porous media. However, just like the averaging methods, they lack generality of 

the numerical techniques. 

In flow-based numerical local methods, the equivalent permeability is calculated from the 

equality of flow through a coarse grid block and its corresponding fine grid cells for a 

given potential. However, a flow direction and proper local boundary conditions have to 

be selected a-priori to solve the pressure equation (Warren & Price 1961; Durlofsky 

1991). The coarse-scale parameters from the local numerical methods are, therefore, 

heavily dependent on the choice of the generic local boundary conditions, which are in 

general unknown. This can lead to a significant error, particularly in highly 

heterogeneous cases in which the behavior of the coarse-scale model may depend on 

global flow patterns and large-scale permeability connectivities that cannot be captured 

by local techniques. More recently, non-local methods were developed to overcome this 

problem by considering the flow behavior of an extended domain around the fine-scale 

grid blocks that make up the target coarse block (extended-local methods), or of the entire 

fine-scale model (global methods) (see Durlofsky 2005; Wen et al. 2003; White & Horne 

1987; Holden & Nelson 2000; Chen et al. 2003). Because of their more extensive 

applications, the flow-based numerical methods are preferable in reservoir simulation. 

In conclusion, although there are different single-phase upscaling techniques available, 

most of them lack generality and case independency, as they are only valid under certain 

reservoir and boundary conditions. Moreover, in most techniques, it is assumed that the 

computed coarse-scale parameters, based on a specified set of boundary conditions often 

with no sink/source terms, will be applicable to all other flow scenarios. The validity of 

this assumption is not warranted, seeing that in a real reservoir the global flow is often 

driven by wells rather than by fixed-pressure or fixed-rate boundary conditions. This is 

also a motivation for us to develop a control-relevant upscaling approach that is related to 

a particular configuration of wells in the reservoir. 
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tate-space representation of a reservoir system and the relating system-theoretical 

notations are briefly discussed in this chapter. In particular, we define the controllability 

and the observability properties to understand how the system inputs influence the state 

variables, and how the outputs give information about the states. Hankel singular values of 

the system are then defined to obtain a measure of the combined controllability and 

observability of the state variables, and from there, to identify those linear combinations of 

the states that represent the most important input-output characteristics of the system. 

3.1. State-space representation of a reservoir model

In system theory, a reservoir model is considered as a dynamic system that evolves with 

time. The relation between the initial conditions, the inputs of the system, the internal 

variables (states), and the outputs are expressed in a state-space form that is discussed 

briefly here (see also Figure  3.1). To simplify our study, we only consider a single-phase 

flow reservoir that leads to a linear time-invariant (LTI) system. For a more detailed 

derivation of the state-space representation of reservoir models, in particular, in case of a 

two-phase flow system see Jansen (2009). 

3.1.1. Continuous time 

Consider an isothermal weakly compressible single-phase flow model with a given set of 

boundary and well conditions. In Chapter 2, we described the flow behavior of such a 

model through Eq. (2.13). This equation can be rewritten in a partitioned form as 

 

11 1 11 12 13 1

22 2 21 22 23 2

33 3 31 32 33 3

0 0 0

0 0 ,

0 0

         
         + =         
         +         

V p T T T p

V p T T T p q

V p T T T J p J p

ɺ
⌣

ɺ
⌣

ɺ

w

p p w

 (3.1) 

where the diagonal block matrices Vii, i = 1, 2, 3 are accumulation matrices with entries 

that depend on the grid block size, grid block porosities, and the total compressibility, and 

the band-diagonal block matrices Tij, i = 1, 2, 3, j = 1, 2, 3 are transmissibility matrices 

with entries that depend on the grid block size, grid block permeabilities, and the fluid 

viscosity. The elements of vector p1 are the pressures in those grid blocks (elements) that 

S 
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are not penetrated by a well. The elements of p2 are the pressures in the blocks where the 

source terms are prescribed well flow rates wq
⌣

, and those of p3 are the pressures in the 

blocks where the source terms are obtained through prescription of the bottomhole 

pressures with the aid of a well model, 

 ( )3 .= −q J p p
⌣

w p w  (3.2) 

Here Jp is a diagonal matrix of well indices, the elements of wp
⌣

are the prescribed 

pressures, and the elements of wq are the resulting well flow rates. To compute the 

bottomhole pressures wp  in the wells where the flow rates have been prescribed, we need 

an additional diagonal matrix Jq of well indices such that  

 ( )2 .= −q J p p
⌣

w q w  (3.3) 

Eqs. (3.2) and (3.3) can be combined to give 
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If we define the vectors 
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Eqs. (3.1) and (3.4) can be rewritten, respectively, as 

 ,= +x A x B uɺ c c  (3.8) 

 ,= +y Cx Du  (3.9) 

Where 
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Figure  3.1 Schematic description of the state-space representation of a dynamic system. 
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Eqs. (3.8) and (3.9) give the standard continuous-time (CT) ‘state-space representation’ 

of a LTI system, as used in systems and control theory. The matrices ×∈A n n
c R , 

×∈B n m
c R , ×∈C p n

R , and ×∈D p m
R  are respectively referred to as the ‘system matrix’ as 

it contains the properties of the system, the ‘input matrix’ since it maps the inputs to the 

states, the ‘output matrix’ as it maps the states to the outputs, and the ‘direct-throughput 

matrix’. Here, the subscript c refers to the CT form. Moreover, for a system with m inputs, 

p outputs and n state variables, the input vector ( )∈u mt R  and the output vector 

( )∈y pt R  include the flow rate or bottom-hole pressure in each well. The state vector 

( ) +∈x nt R  represents the state variables i.e. pressure values in all grid blocks that are a 

function of time ( ∈t R ) and other independent variables e.g. space. The order (or 

dimension) of the system is also equal to n.  

3.1.2. Discrete time 

In order to derive the discrete-time (DT) LTI state-space representation of the reservoir 

system, we use an implicit time discretization with a fixed time step ∆t. Therefore, Eqs. 

(3.8) and (3.9) can be rewritten in DT form as 
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 1 ,+ = +x Ax Buk k k  (3.14) 

 = +y Cx Duk k k  (3.15) 

where 

 ( ) 1
,

−= − ∆A I Act  (3.16) 

 ( ) 1
.

−= − ∆ ∆B I A Bc ct t  (3.17) 

Eqs. (3.14) and (3.15) are also referred to as the ‘system’ and ‘output’ equations, 

respectively. LTI state-space models are sometimes designated with ( ): ,∑ = ABCD  

because the matrices A, B, C and D can completely describe the system.  

We note that although Eq. (3.14) appears to be explicit in time, the underlying implicit 

discretization scheme results in the need to solve a system of equations at each time step. 

Moreover, in a practical computational scheme the inverse matrices in Eqs. (3.10), (3.11), 

(3.16) and (3.17) will not actually be computed, and a computationally more efficient 

approach will be followed. In the sequel, we assume that the system is stable (i.e., the 

discrete eigen values of A have a norm smaller than unity). Moreover, we present the 

analysis only for a DT system as most of the reservoir models are given in discrete time. 

However, also in a CT case, the theory discussed here remains valid. 

3.2. Controllability and observability 

In order to improve the dynamical behavior of a system, we need to observe and control 

the inaccessible internal (state) variables through the available inputs and outputs. More 

specifically, in a reservoir system, our success in optimizing the model predictions by 

manipulating the inputs (e.g., well settings), and updating the reservoir model by 

assimilating measured data (e.g., production data) depends on how much of the state-

space can be reached from the input side (i.e., the degree to which the system is 

‘controllable’), and how the internal behaviour of the system can be obtained from the 

output information (i.e., the degree to which the reservoir is ‘observable’)5. We formulate 

the controllability and observability concepts in this section. The system-theoretical 

material presented here is well-established and can be found in related textbooks such as 

Kailath (1980), DeCarlo (1989), Polderman & Willems (1998), Olsder & Van der Woude 

(2005), Antoulas (2005), and Skogestad & Postlethwaite (2005). For recent applications 

                                                 
5 Another important property, which is excluded here, is ‘identifiability’. A system is ‘identifiable’ if its 
parameters can be uniquely estimated from the measured data by a suitable choice of the admissible inputs. 
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of systems theory to reservoir modeling see Markovinovic et al. (2002), Heijn et al. 

(2004), Gildin et al. (2006), Zandvliet (2008), Zandvliet et al. (2008), Van Doren et al. 

(2008), Cardoso et al. (2009), Markovinovic (2009), and Vakili-Ghahani & Jansen 

(2010a, 2010b).  

3.2.1. Controllability matrix 

Consider a stable LTI system with m  inputs, n  state variables and p  outputs. Roughly 

speaking, this system is ‘state controllable’ if we can steer it from an arbitrary initial state 

to an arbitrary final state by choosing a proper set of admissible inputs (Olsder & van der 

Woude, 2005). From Eq. (3.14), the system trajectories, i.e. the set of state variable 

values as a function of time, for k time steps are obtained by simply integrating in time  
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 (3.18) 

or in short 
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=

= +∑x A x A Bu
n
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k

 (3.19) 

The first term of this equation is related to the initial state, which is known. The states are 

then fully controllable if the second term has a full rank equal to n. The second term that 

gives a linear map between the inputs and the states, is called the ‘controllability matrix’ 

of the system, written as  

 2 1 ,−  = B AB A B A B⋯
nC  (3.20) 

with n  rows and ×n m columns6. Therefore, the system is fully state controllable if the 

controllability matrix has a full rank equal to n or, in general cases that ( )∈x nt R  , the 

controllable subspace  image( )= =con n
X RC .  

                                                 
6 According to the Cayley-Hamilton theorem, Αn  for k n≥ can be expressed as a linear combination of 

0 1 1, ,..., −
Α Α Α

n and therefore kimage( ) image( )= nC C  and kkernel( ) kernel( )= nO O  for ≥k n . Accordingly, 

the rank of the controllability matrix and the span of its columns can be determined by the first n terms. An 
immediate consequence is that for a DT system, every controllable state can be reached in (at most) n time 
step (Antoulas 2005). Similarly, for an observable system, the initial state can be reconstructed from n 
output measurements. 
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3.2.2. Observability matrix 

The full ‘state observability’ means that we can construct the initial state from the 

knowledge of the inputs and the outputs. From the integration of the output equation 

(3.15), we get 
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 (3.21) 

Since the inputs are known, the second term is also known and the relation between the 

outputs and the initial state variables are given by the ‘observability matrix’ withn  

columns and ×n p rows, defined as  

 2 1 .−  = C CA CA CA⋯
TnO  (3.22) 

Therefore, the system is observable if the observability matrix has full rank n  or the 

unobservable subspace kernel( ) .= = ∅unobs
X O Note that the controllability and 

observability concepts for a LTI system depend only on properties of the pairs (A,B) and 

(A,C), and not on time or the input function. This is irrespective of whether we are 

dealing with DT or CT systems.  

3.2.3. Gramians 

We define the finite square symmetric controllability and observability Gramian as 

 ( )
1

0

, 
−

=
∑W = A BB A
n

kT k T T

k

C CC =  (3.23) 

 
1

0

 ( ) .
−

=
∑W = A C CA
n

T T k T k

k

O O O =  (3.24) 

The controllability Gramian measures to what degree a state is excited by an input, while 

the observability Gramian measures to what degree each states excites future outputs. A 

system is controllable/observable if and only if the controllability/observability Gramian 

is positive definite. Instead of computing the sum of Eqs. (3.23) and (3.24), the Gramians 

can be found as solutions of the DT Lyapunov (Stein) equations 

 ,+ =AW A BB WT T
C C  (3.25) 

 .+ =A W A C C WT T
O O  (3.26) 
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For a brief overview of numerical techniques to compute the solutions of Lyapunov 

equations, see section 6.4.  

3.2.4. Control and observation energy 

The degree of controllability for a given state x , is also defined in terms of ‘control 

energy’, i.e., the minimum energy of the input signal that is required to bring the system 

to state ,x  given by 7 

 2 1
2( ) || || .−= =x u x W xTEC C  (3.27) 

This means that, for two states 1x  and 2x  with 1 2=x x , if 1 1
1 1 2 2

− −<x W x x W xT T
C C  then 

state 1x  is ‘more controllable’, i.e., it takes a smaller input to bring the system from the 

initial state to state 1x . Mathematically, if 1−WC  is large, there will be some states that 

require a large control (input) energy to reach (Glover 1984). Accordingly, the 

combination of states that needs the minimum energy to reach, is corresponding to the 

largest eigen value of WC . Similarly, the ‘observation energy’, i.e., the energy of the 

output function caused by the initial state x , is defined as 

 2
2( ) || || .= =x y x W xTEO O  (3.28) 

Hence, the combinations of states that release the maximum observation energy, i.e., they 

excite larger output signals, are ‘more observable’. Mathematically, these states are 

related to the largest eigen value of WO . The definition of the control and observation 

energy in terms of the Gramians can be used to obtain a measure of the degree of 

controllability and observability of individual combinations of states, i.e., the degree to 

which a combination of states is influenced by the inputs, and the effect that changes in a 

combination of states has on the outputs. In this sense, ‘more controllable’ and ‘more 

observable, states are dynamically more important. A more detailed discussion of 

controllability and observability concepts in reservoir engineering can be found in 

Zandvliet et al. (2008).  

                                                 
7 Note that the term ‘energy’ is used loosely here, motivated by the fact that energy can often be written as 
a quadratic form (e.g. potential energy as a function of squared pressure). 
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3.3. Balanced realization of a linear system 

By balancing we aim at finding a state-space coordinate system, in which the states are 

equally controllable and observable. This means that the states that are least influenced 

by the inputs have least influence on the outputs. Such a balanced realization is obtained 

by finding a transformation matrix T , such that the state-coordinate transformation, 

,=x Tx  produces an equivalent model with equal and diagonal controllability and 

observability Gramians. This transformation can be obtained by a Cholesky factorization 

of =W L LT
C C C  and a eigen value decomposition of 2=L W L UΣ UT T

C O C . Then, it can be 

shown that the balanced Gramians are given by 

 ,=W TW TT
C C  (3.29) 

 1,− −=W T W TT
O O  (3.30) 

where 1/ 2 1−=T Σ U LT
C  and 1 1/ 2− −=T L UΣC . This transformation leads to  

 1 2( , , , ) ( ),σ σ σ= = = =W W Σ σ⋯ n hdiag diagC O  (3.31) 

where 1 1σ σ σ≥ ≥ ≥⋯ n  and the diagonal entries of the balanced Gramians, σh , are 

known as Hankel singular values (HSVs) of the system. According to Eqs. (3.27), (3.28) 

and (3.31), each HSV offers a measure of the energy contribution of a component of the 

transformed (balanced) state to the input-output behavior, where the transformed 

(balanced) state is itself a linear combination of the original states. Therefore, the HSVs 

can be used to identify those linear combinations of the states that represent the most 

important input-output characteristics of the system.  

For a DT system, the Hankel matrix8 , which represents a mapping from the past inputs to 

the future outputs, is written as  

 ,=H OC  (3.32) 

and, therefore, the Hankel singular values can also be obtained as 

 ( ) ( ) ( ) ( ).λ λ λ λ= = = =σ W WT T T T T
h C OH H C O OC CC O O  (3.33) 

Note that from Eqs. (3.29), (3.30) and (3.33), it turns out that, for the product of the 

Gramians, the similarity transformation 1( ) ( ) −=W W T W W TC O C O  holds. As a result, the 

eigen values of the product of the Gramians, i.e., the HSVs, are coordinate-independent 

                                                 
8 This is called a Hankel matrix since it has a block Hankel structure, i.e. , 1+ −=i j i jH H . 
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or ‘input-output invariant’, whereas the eigen values of the controllability and 

observability Gramians are coordinate-dependent and will change as the coordinates are 

changed (see also Moore 1981). Furthermore, the HSVs are identical for the DT and CT 

forms of a system. This makes the HSVs a system property rather than a model property, 

and gives a promising tool in determining the optimal complexity of a model for 

describing the system’s dynamics. We demonstrate the behavior of the HSVs for a 

reservoir system in the following example. 

3.3.1. Example 3.1 

Consider the small reservoir system given in Test Case (1), which is a 2D horizontal 

reservoir with a heterogeneous and isotropic permeability field depicted in Figure  3.2.  
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Figure  3.2 Log10 permeability field for Test Case (1). 

Table  3.1 Reservoir model parameters and fluid properties for Test Case (1). 

parameter value unit 

reservoir length 800 m 

reservoir width 800 m 

reservoir  height 2 m 

fluid density 1000 kg/m3 

fluid viscosity 1.0e-03 Pa s 

porosity 0.3 - 

total compressibility 2.0e-08 1/Pa 

initial reservoir 
pressure 

3.0e07 Pa 
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This simulation model has 20×20 grid blocks with injection and production wells 

controlled by time-varying bottomhole pressures. The well flow rates are then measured 

as the system outputs. Rock and reservoir properties are given in Table  5.2.  

Figure  3.3 displays the first 150 diagonal entries of the balanced Gramians (i.e., the HSVs) 

for the given reservoir system. Note that the y-axis is represented on a logarithmic scale, 

and that the smallest singular values of the system are smaller than the machine precision 

in Matlab (10-16). We performed the simulation for different numbers of wells including 

one injector in the middle and one producer in the corner (2 wells), one injector in the 

middle and two producers in the opposite corners (3 wells), one injector in the middle and 

three producers in the corners (4 wells), and one injector in the middle and four producers 

in the corners (5 wells). Different markers, therefore, represent the HSV plots for 

simulations with the different number of wells.  

Given that each HSV provides a measure of the energy contribution, i.e., the degree of 

combined controllability and observability of a balanced state, the rapid decline in the 

magnitude of HSVs shows that a large number of the states are weakly 

controllable/observable, hence, they weakly influence the input-output behavior of the 

system. Therefore, the intrinsic order of the system, i.e. the number of balanced states 

required to describe the input-output behavior of the system, is much smaller than 400, 

which is the total number of the original states. This is also in line with earlier results in 

Markovinović et al (2002), Heijn et al. (2004) and Zandvliet et al. (2008). 
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Figure  3.3 HSV plots for different number of wells in Test Case (1). 
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The second observation is that the slope of the HSV plot decreases as the number of wells 

(i.e., the number of inputs and outputs9) increases. Accordingly, any change in the 

number of wells and, consequently, the number of inputs/outputs will influence the 

degree of controllability and observability of the system. This mathematically means that 

the lower the rank of the input and output matrices B and C, the lower the number of 

required linear combinations of the states to represent the system dynamics. On the other 

hand, the order reduction is modest when there are a large number of inputs/outputs. 

Finally, to demonstrate the effect of well locations on the controllability and observability 

of the system, we present the HSV plots for two different simulations of Test Case (1) in 

Figure  3.4. The first simulation was performed with one injector in the middle and one 

producer in the corner (middle-corner), while the second one is related to a simulation run 

with one injector and one producer at the opposite corners (corner-corner). The figure 

shows that the slope of the HSV plots is slightly altered as the well locations are changed, 

though the variation is less, compared to the one due to a change in the number of wells. 

The effect of the well locations is more pronounced in case of a reservoir with a more 

heterogeneous permeability field. 

 

 

5 10 15 20 25 30 35 40 45 50
10

-20

10
-15

10
-10

10
-5

number

H
an

ke
l s

in
gu

la
r 

va
lu

e

 

 

center-corner

corner-corner

 

Figure  3.4 HSV plots for different well locations in Test Case (1). 

                                                 
9 Here, we assume one input (bottomhole pressure) and one measurement (flow rate) at each well location. 
Accordingly, the numbers of both inputs and outputs are equal to the number of wells for each simulation.  
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3.4. Markov parameters 

Consider the LTI system ( ):∑ = ABCD . Assuming a zero initial state vector10, the 

impulse response of this system (for a unit input impulse) is easily calculated by using 

Eqs. (3.14) and (3.15): 
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1 1 1

1 .−

= = =
= = =

= = =

M y Du D
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The impulse response terms are known as the Markov parameters (M) of the system11, 

where 0 =M D  and 1−=M CA Bk
k , (k = 1, 2, …) or   

 [ ] 1
0 1 .−= =   M M M M D CB CA B⋯ ⋯

k
k  (3.34) 

Note that the Markov parameters are directly related to the Hankel matrix and, therefore, 

the HSVs of the system as the following relation holds 
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Given an arbitrary input u, the output vector of the system is obtained by the 

convolution12 of the input signal with the impulse response (Markov parameters), written 

as 

 [ ]1 1
1 0

1

.− −
− −

=

= + =   ∑y Du CA Bu D CB CA B u u u⋯ …

k
Ti k

k k k i k k

i

 (3.36) 

Furthermore, the z-transform of the output vector is given by 

 ˆ ˆ( ) ( ) ( ),=y H uz z z  (3.37) 

                                                 
10 In the case of a nonzero initial state vector x0, we can redefine the state-variables such that the initial state 
vector becomes zero through a translation by an amount x0. 
11 In a single-input/single-output (SISO) system, Markov parameters are scalars, whereas for a multi-
input/multi-output (MIMO) case, they are matrices. 
12 For our linear system, the convolution sum of M  and u  for time sequences of length k is given by 

1
0 1 10

( )( )
−

− −=
∗ = = + +∑M u M u M u M u ⋯

k
i k i k ki

k  (Antoulas 2005). 
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where ̂ ( )u z  depicts the z-transform of the input vector, and ( )H z  is the z-transform of 

the impulse response (Markov parameters) or the ‘transfer function’ of the system 

defined as 

 1( ) ( ) .−= − +Η C I A B Dz z  (3.38) 

The Markov parameters (as well as the transfer function) of a system completely 

determine its dynamic behavior, and, therefore, two equivalent systems in terms of input-

output behavior have the same Markov parameters (transfer function) (Antoulas, 2005). 

3.5. System norms 

System norms provide a helpful tool to quantify the input-output behavior of a given 

system. Consequently, they can be used to investigate whether two systems are close or 

far apart. In this section, we briefly define three system norms. A more detailed 

description can be found in, e.g., Antoulas (2005). 

3.5.1. H2-norm 

The H2-norm of a DT LTI system is defined as the L2-norm of its impulse response, 

written as 

 
2

2

H
( ) ( ) ( ).Σ = = + = +M M CW C DD B W B D DT T T T Ttr tr trC O  (3.39) 

The second equality denotes the Frobenius norm, which is also equal to the root mean 

square value of the Markov parameters (i.e., of the impulse responses) and, hence, it can 

be interpreted as the energy of the impulse responses of the system.  

3.5.2. HSH-norm 

Hilbert-Schmidt-Hankel norm (HSH-norm) is defined as the Hilbert-Schmidt norm of the 

Hankel Matrix (Hanzon 1992), and it is also equal to the square root of the sum of 

squares of the HSVs, and, equivalently, to the trace of the product of controllability and 

observability Gramians: 

 
2 2 2

,1 ,HSH
( ) ... ( ).σ σ∑ = = + + = W WT

h h ntr tr C OHH  (3.40) 

The second equality shows that the HSH-norm is equal to the Frobenius norm of the 

impulse response matrix (Hankel matrix) of the system and, therefore, it can be 

considered as the total energy transferred through the system. Note that the 

transformation between the DT and CT cases leaves the controllability and observability 

Gramians and, consequently, the HSH-norm invariant (see e.g., Antoulas 2005).  
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3.5.3. Hankel norm 

The Hankel norm or H-norm of a system is defined as the l2 -induced norm of its impulse 

matrix, given by 

 1 ,maxH 2 ind
( ) ,σ σ

−
∑ = = = hH H  (3.41) 

 where ,maxσ h  is the largest HSV of he system. As a result, the H-norm gives the 

maximum energy gain from the past inputs to the future outputs. Summary of the system 

norms is given in Table  3.2. 

 

Table  3.2 Summary of the system norms. 

system norm expression interpretation 
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2
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maximum energy gain 

 

3.6. Summary  

The dynamic behavior of a reservoir model can be described by ( , , , )A B C D  matrices 

through the state-space relations, the Markov parameters, or the transfer function of the 

system. The degree of combined controllability and observability of such a system can be 

obtained by computing the HSVs, which can be used to identify those linear 

combinations of the states that represent the most important input-output characteristics 

of the system. As demonstrated in Example 3.1, a rapid decline in the HSV plot indicates 

that there are a large number of uncontrollable/unobservable states that are not affecting 

the input-output behaviour of the reservoir system. Therefore, they can be used to adjust 

(reduce) the level of the model complexity (or model order) to the available amount of 

control and information. Note that the controllability and observability of a linear system 

is independent of the specific values of the time-variant inputs u, but dependent on well 

configuration. This means that any change in the well configuration (i.e., any change in 

either the number of wells or the well locations) will affect the controllability and the 

observability of the system. The controllability and observability analysis presented here 



3.6. Summary  43 

 

forms the basis for the development of control-relevant upscaling algorithms in the next 

two chapters. 
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4. CHAPTER: CONTROL-RELEVANT UPSCALING (CRU) 

 

n this chapter, we consider a control-relevant upscaling approach, which is based on the 

controllability and the observability of a reservoir system. More specifically, we aim at 

minimizing the difference between fine- and coarse-scale models of a reservoir in terms of 

several system norms that characterize the input-output behaviour of the system. 

4.1. Introduction

4.1.1. Motivation 

The primary objective of conventional upscaling techniques is to overcome the 

computational limit of the reservoir simulator. Therefore, in the most common techniques, 

a coarser model is created of which the coarse-scale parameters are calculated on the 

basis of the fine-scale parameters and/or some local flow calculations (see Chapter 2). 

The upscaled parameters are, therefore, heavily dependent on the choice of the local 

boundary conditions, which are, in general, unknown. Moreover, even in non-local 

methods that consider extended-local (global) flow properties of the system, often the 

assumption is that the coarse-scale parameters computed based on a set of generic (e.g., 

fixed-pressure and no-flow) boundary conditions will be applicable to all other flow 

scenarios. This can lead to a significant error, knowing that in reservoir simulation the 

global flow is largely driven by wells rather than the fixed boundary conditions13. 

Moreover, as demonstrated in example 3.1, any change in the well configuration can 

significantly change the system properties like controllability and observability, thus 

resulting in wrong input-output predictions if the coarse-scale model is not adapted for 

that.  

Therefore, in this thesis, we look at the upscaling problem from a system-theoretical 

perspective. We argue that, in addition to the computational difficulties, a more 

fundamental reason for upscaling is that, for a given configuration of wells in a reservoir, 

there is only a limited degree of freedom in the input/output dynamics of the system [i.e., 

                                                 
13 The assumption of fixed boundary conditions might also lead to a poor capturing of near-well effects on 
the global flow pattern unless a near-well upscaling technique is added (Ding 1995 and 2004; Durlofsky et 
al. 2000).   

I 
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there is only a limited amount of information (output) that can be observed from 

production data, while there is also a limited amount of control (input) that can be 

exercised by adjusting the well parameters]. This means that a large number of 

combinations of the state variables (pressure and saturation values in the grid blocks) are 

not actually controllable and observable, and, accordingly, they are not affecting the 

input/output behavior of the model (see Chapter 3, Markovinović et al 2002, Heijn et al. 

2004, and Zandvliet et al. 2008). Therefore, the complexity level of a model should be 

adjusted to the amount of available information and the extent of control that is possible 

in the reservoir system.  

The problem with uncontrollable states and the associated parameters is two-fold. First, 

they lead to an ill-posed parameter-updating problem; and second, they increase the 

computational time. A potential approach to address these issues is through model-order 

reduction using system-theoretical methods (Markovinović et al 2002; Heijn et al. 2004; 

Cardoso et al. 2009). Alternatively, the number of state variables and parameters and, 

consequently, the computational time, may be decreased through a control-relevant grid-

based upscaling. The former is briefly discussed in Chapter 6, and the latter is described 

in this chapter. 

4.1.2. Behavior of HSVs for fine- and coarse-scale models  

In reservoir simulation, we use a spatial discretization method to solve the flow equation 

over a given reservoir domain, (see Chapter 2). The maximum number of grid blocks that 

are used to generate the grid system is usually determined by the computational power 

and the storage capacity of our simulator. On the other hand, a straightforward way to 

reduce the simulation time of our model is to choose a smaller number of grid blocks for 

the spatial discretization. However, the parameters for the resulting coarse-scale model 

need to be computed such that the input-output behavior of the coarse-scale model is as 

close as possible to the fine-scale one.    

Figure  4.1 and Figure  4.2 show the behavior of the HSVs for three different reservoir 

models. All models describe the input-out behavior of the reservoir system given as Test 

Case (1) in Chapter 3. However, each model has been discretized by a different number 

of grid blocks. The coarse-scale parameters were obtained from a local flow-based 

upscaling method (described in section 2.3.3). We consider a production scenario with 

one injector and one producer that are controlled by prescribed flow rates and bottomhole 

pressures, respectively. For both homogenous (Figure  4.1) and heterogeneous (Figure  4.2) 

permeability fields, the first few HSVs are close, but not identical. Actually, since the 
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controllability and the observability are reservoir properties and not just the properties of 

the coarse- or fine-scale models, the spatial discretization should not have a significant 

effect on them (Zandvliet 2008). Accordingly, the HSVs of three mentioned models, as a 

measure of the combined controllability and observability of the system, are also 

expected to be similar. However, we observe that the discrepancies in the HSV plots 

increase for smaller HSVs as well as for a higher degree of coarsening. Both homogenous 

and heterogeneous cases follow the same trend, although the HSV plots are less steep in 

the latter, indicating a more complex system. 
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Figure  4.1 Behavior of HSVs for the homogenous fine-scale model and two different coarse-scale 
representations of Test Case (1). 

Note that, as we mentioned in Chapter 3, any change in the state-space coordinates 

through, e.g., change in the grid numbering will not affect the HSVs as they are system-

invariant. However, a different model representation in terms of a different number of 

grid blocks gives a different HSV plot. The discrepancies mainly arise from the errors 

associated with the computation of the equivalent upscaled parameters and equations as 

well as the error due to the numerical dispersion14. In fact, because of these inevitable 

errors, our coarse-scale models might unintentionally describe a slightly different 

physical system from the one represented by the original fine-scale model.  

                                                 
14 In this thesis, we refer to the both errors as the ‘upscaling error’.  
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Figure  4.2 Behavior of HSVs for the heterogeneous fine-scale model and two different coarse-scale 
representations of that for Test Case (1). 
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Figure  4.3 The first three HSVs of the heterogeneous fine-scale model and two coarse-scale 
representations of that for Test Case (1). 

To illustrate the effect of the upscaling error on the controllability and the observability 

and, consequently, the HSVs of the system, we compared the HSVs of Test Case (1) 

obtained from two different coarse-scale models with those of the original fine-scale 

model. Both coarse models have 5×5 grid blocks, however, one is obtained by a local 

upscaling technique with relative cumulative production error (Eq. 4.14) of 7.6%, while 

the other one is calculated by an arithmetic averaging with 24.1% error. Figure  4.3 shows 
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the result for the first 3 HSVs. Evidently, for this example, the coarse-scale model with 

smaller upscaling error gives HSVs closer to those of the fine-scale model.  

4.1.3. Control-relevant grid-based upscaling 

By control-relevant grid-based upscaling we aim at obtaining a coarse-scale model that 

reproduces the original fine-scale input-output behavior as close as possible. To match 

the system properties, we propose to minimize the distance (error) between the 

input/output behaviors of the fine- and coarse-scale models in terms of several system 

norms, which are based on the observability and controllability properties of the system. 

The advantage of this control-relevant upscaling (CRU) approach is that it focuses on the 

observable/controllable state variables and, therefore, relies on those grid blocks that are 

most important to the input/output behavior of the model. A possible application of the 

CRU algorithm would be in closed-loop reservoir management (see Chapter 1), in which 

use is made of an ensemble of high-order geological models that are scaled up to low-

order coarser representations for the actual flow simulations, the continuous model-based 

optimization, and model updating or data assimilation. To simplify our study, we focus 

on a single-phase-flow case that is described by a LTI system. 

In the next sections, we describe the CRU algorithm and illustrate its performance by 

several numerical examples. The material is mainly based on Vakili-Ghahani et al. (2008), 

and Vakili-Ghahani & Jansen (2010a). 

4.2. CRU algorithm 

4.2.1. CRU problem 

Consider the fine-scale reservoir model ( ):Σ = ABCD with parameters θ, where ×∈A n n
R , 

×∈B n m
R , ×∈C p n

R , and ×∈D p m
R . We search for coarse-scale parameters θɶ that give a 

coarse-scale (lower dimensional) model ( ):Σ = ABCDɶ ɶɶ ɶɶ , where ×∈Aɶ r r
R , ×∈Bɶ r m

R , 
×∈Cɶ p r

R , ×∈Dɶ p m
R and r < n, such that Σɶ  reproduces the input-output behavior of the 

original system as close as possible. Figure  4.4 schematically depicts the CRU problem.  

To solve the CRU problem, we start with an initial guess for coarse-scale parameters that 

can be obtained from a simple averaging technique, for example, or a local upscaling 

method. Then, we define ( )θɶJ , not as the direct difference between the outputs of the 

fine- and the coarse-scale models (i.e., −y yɶ ), but as a measure (i.e. some norm in terms 

of system properties) of the difference between the input-output behaviors of two 

systems . Mathematically, we formulate the CRU problem as 
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 arg min ( ) ( ) arg min ( ),
< < < <

= Σ − Σ =
θ θ θ θ θ θ

θ θ θ θ
ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶɶ

lb ub lb ub

J  (4.1) 

i.e. we search for optimum coarse-scale parameters θɶ (bounded by θɶ lb  and θɶ ub ), such that 

the cost function ( )θɶJ  is minimized. We investigate various choices for ( )θɶJ  as we 

explain different CRU methods.  

 

−

u

Upscaling

yɶ

y
+

( ) ,ABCD θɶ ɶ ɶɶ ɶ

( ) ,ABCD θ

( )J θɶ

−

u

Upscaling

yɶ

y
++

( ) ,ABCD θɶ ɶ ɶɶ ɶ

( ) ,ABCD θ

( )J θɶ

 

Figure  4.4 Schematic representation of the CRU problem. The aim is to find an equivalent coarse-scale 
model with an input-output behavior as close as possible to that of the original fine-scale model.  

4.2.2. CRU methods 

A key aspect of the CRU approach is that we can perform the minimization without 

performing any fine- or coarse-scale simulation and that the results do not depend on a 

specific input. This is achieved by making use of the fact that the dynamic system 

behavior is completely characterized by the elements of the four matrices ( ), , ,A B C D  in 

the dynamic system equations (Eqs. 3.14 and 3.15). Therefore, we can quantify the input-

output behavior of the system with the aid of a system norm that is directly expressed in 

terms of these matrices. We can then define a cost function ( )θɶJ  as a system norm of an 

error model (CRU method 1), or we may formulate the cost function as the difference 

between input/output behaviors of the fine and the coarse models expressed in terms of 
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different system norms (CRU methods 2)15. To recall the system-theoretical notations 

used here, the reader is referred to chapter 3. 

CRU Method (1) 

In this method, we consider an ‘error model’ depicted by the dashed rectangle in Figure 

 4.5. The state-space representation of this new system ( ):′ ′ ′ ′ ′∑ = A B C D is obtained by 

subtracting the fine- and coarse-scale representations, written as  

 ,′Σ = Σ − Σɶ  (4.2) 

where 

 
0

,
0

 ′ =  
 

A
A

Aɶ
 (4.3) 

 ,
 ′ =  
 

B
B

Bɶ
 (4.4) 

 , ′ = − C C Cɶ  (4.5) 

 ,′ = −D D Dɶ  (4.6) 

 .′ = −y y yɶ  (4.7) 

The input vector u remains the same for all three systems (Σ, Σɶ , and Σ′). The CRU 

problem is now to find the coarse-scale parameters ,θɶ  such that the cost function ( )J θɶ  is 

minimized, where ( )J θɶ  is defined as a system norm of the error model Σ′. We 

investigated three different norms defined by Eqs. (3.39), (3.40) and (3.41). The cost 

function ( )J θɶ  is, therefore, chosen as 

 
22 H /HSH / HH /HSH / H

( ) .′= Σ − Σ = Σθɶ ɶJ  (4.8) 

The expression and interpretation of each system norm is also given in section 3.5 and 

Table 3.2.  

                                                 
15 For reasons of clarity, we present here a slightly different classification of the CRU methods from the one 
given in Vakili-Ghahani et al (2008) and Vakili-Ghahani & Jansen (2010a). However, the theory behind 
them remains the same. 



52  Chapter 4 CRU 

 

−

u

Upscaling

yɶ

y
+

( ) ,ABCD θɶ ɶ ɶɶ ɶ

( ) ,ABCD θ

( )J θɶ

( )′ ′ ′ ′A B C D

′y−

u

Upscaling

yɶ

y
+

( ) ,ABCD θɶ ɶ ɶɶ ɶ

( ) ,ABCD θ

( )J θɶ

−

u

Upscaling

yɶ

y
++

( ) ,ABCD θɶ ɶ ɶɶ ɶ

( ) ,ABCD θ

( )J θɶ

( )′ ′ ′ ′A B C D

′y

( )′ ′ ′ ′A B C D

′y

 

Figure  4.5 Schematic representation of the CRU problem with the error model depicted by the dashed 
rectangle. 

CRU Method (2) 

For this method, the ‘distance’ between the input-output behaviors of the fine- and the 

coarse-scale models is represented by the difference between their Markov parameters, or 

their system norms. Consider the fine-scale and coarse-scale models Σ and Σɶ . For an 

arbitrary u and a zero initial state, we can use Eq. 3.36 to write the output signals of two 

systems at time step k as 

 [ ]1
1 0 ,−

−=   y D CB CA B u u u⋯ …
Tk

k k k  (4.9) 

 [ ]1
1 0 .−

− =  y D CB CA B u u uɶ ɶ ɶɶ ɶ ɶɶ ⋯ …
Tk

k k k  (4.10) 

Seeing that the inputs of two systems are equal, we need to match the elements of the 

sequence 1−  D CB CA B⋯
k  and 1−  D CB CA Bɶ ɶ ɶɶ ɶ ɶ⋯

k , i.e., the Markov 

parameters of two systems to obtain the same outputs. Therefore, systems Σ and Σɶ  are 

equivalent (i.e., =y yɶ  for any =u uɶ ) if their Markov parameters are equal [i.e., if 

( ) ( )=M θ M θɶɶ ]16. Another interpretation is possible by expanding the transfer function 

(Eq. 3.38) for large z, i.e. in the neighborhood of infinity: 

                                                 
16 We emphasize that, in general, the fine- and coarse-scale Markov parameters are not equal, since the 
inevitable upscaling errors may lead to a slightly different system, compared to the original fine-scale one. 
Moreover, it is not (easily) possible to find a projection between the coarse- and fine-scale models, such 
that we can formulate the errors. Nevertheless, we try to find coarse-scale parameters that result in coarse-
scale Markov parameters ‘as close as possible’ to those of the fine-scale ones. 
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 1 1 2 1( ) ( ) ... ...,− − − − −= − + + + + + +Η C I A B D CB CAB CA Bk kz z z z z  (4.11) 

Accordingly, matching the Markov parameters is equivalent to the matching of the high-

frequency moments of the system. Therefore, we can define the cost function as 

 ( ) ( ) ( ) .= −θ M θ M θɶ ɶɶJ  (4.12) 

However, the direct match of the Markov parameters for large systems might be 

numerically problematic, resulting in a non-convex problem (see Vakili-Ghahani et al. 

2008). This is probably because the power calculation of the matrices may introduce a 

large numerical error, in particular, for Markov parameters with widely ranging values. 

For this reason, we use, instead, the energy norm of the Markov parameters of the system 

(i.e. H2-norm), as defined by Eq. (3.39). Alternatively, we may choose the cost function 

as the difference between the HSH-norm or H-norm of the two systems. The cost 

function ( )J θɶ  is then defined as  

 ( )
2 2H / H/HSH H /H/ HSH

.= Σ − Σθɶ ɶJ  (4.13) 

Note that the choice of ( )θɶJ  in Method 1 implies that we take a norm in terms of system 

properties of the error model Σ′, whereas in Methods 2, we take the difference of two 

norms in terms of system properties of the models Σ and Σɶ .  

4.2.3. Algorithm  

1) Divide the fine-grid model into a coarser mesh. The degree of coarsening can be 

roughly determined by inspecting the behavior of Hankel singular values of the 

system. 

2) Construct the state-space formulation of the coarse-scale system, using an initial 

guess for the equivalent permeability values θɶ . A local upscaling or a simple 

averaging technique can be used to obtain a fast initial guess.  

3) Define ( )θɶJ  according to one of the methods described above. 

4) Calculate the equivalent coarse-scale parameters from the solution of a 

minimization algorithm that minimizes ( )θɶJ , by changing the parameter values 

of the coarse model. 

Remarks 

• The upscaled permeability for each coarse grid block is bounded by the 

arithmetic and harmonic averages of the corresponding fine-scale 
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permeability values (according to the Wiener bounds). For the sake of 

simplicity, we considered an isotropic, and therefore scalar, permeability 

value for each grid block. However, we foresee that the CRU approach 

can be extended to the case of anisotropic or full tensor permeabilities, 

although the latter may require a somewhat more advanced minimization 

algorithm.  

• In the examples presented, the well indices were computed following 

either the standard Peaceman method for block-centered wells or the 

method of Abou Kassem and Aziz (1985) for wells located at the corner of 

a gridblock. In both cases, the permeability in the well model was updated 

at every iteration.  

• We performed the minimization using ‘fmincon’ routine in Matlab. To 

speed up the convergence of the minimization problem, we added a so-

called Tikhonov regularization term || ||α −θ θɶ  to the objective function 

( )θɶJ , where α is a small positive number.  

• We note that, although our approach is based on optimally representing 

input/output data, we do not consider the reservoir entirely as a ‘black 

box’. In particular, the use of a numerical reservoir simulator implies 

adherence to physical relations, such as mass conservation and Darcy’s 

law. Moreover, we constrain the permeability values to stay between the 

Wiener bounds, which could be interpreted as incorporating a form of 

geological information. In theory, it may be possible, therefore, to include 

other constraints and prior information to ensure adherence to geological 

data and interpretations (e.g., in the form of geostatistical relationships or 

other quantitative measures). 

4.3. Results and discussion 

In this section, we will illustrate the performance of the CRU algorithm for two numerical 

examples. To evaluate the upscaling performance, we compare the upscaled results to 

those from a given high fidelity fine-scale model through a ‘relative error’ relation, 

defined as 

 100%,
−

= ×z
fine coarse

fine

z z
e

z
 (4.14) 
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where z may be chosen to represent a particular variable of interest. In particular, we will 

choose z to represent the pressure field in all time steps: 

 1 2 ,=   p p p p⋯
TT T T

K  (4.15) 

where pk is a 1×r vector of the averaged fine-scale pressures in all r coarse grid blocks at 

time step k and K is the total number of time steps, such that in this case nz = rK. The 

corresponding coarse-scale measure is then simply the vector of pressures in all coarse 

grid blocks at time step k. As a second measure, we chose z to represent the cumulative 

total production: 

 
1

,
=

= ∆∑
K

pp
cum kk

k

q q t  (4.16) 

where the superscript p is used to indicate that we only consider production wells, and 

where qk is the vector of well flow rates in time step k. Therefore, we introduce ep  and 

eq,cum as the relative errors between fine- and coarse-scale pressure fields and cumulative 

production rates, respectively. In general, according to the correctness criterion of an 

upscaling procedure (see subsection 2.2.1), the coarse model should be capable of 

reproducing the main aspects of the fine-scale flow behavior, among which an accurate 

prediction of the cumulative production, which is also one of the main objectives of most 

reservoir simulations.  

Finally, to show the relative size of each coarse model, we define the ‘n-ratio’ as the ratio 

of the number of the grid blocks in each model to that of the original fine-scale one, 

written as 

 - ratio .= coarse

fine

n
n

n
 (4.17) 

This ratio also relates to the number of linear solves and, accordingly, gives a rough 

estimation of the computational time that is needed to simulate each reservoir model, 

compared to that of the fine-scale one. Clearly, the n-ratio for the fine-scale model is 

equal to 1. 

4.3.1. Example 4.1 

In this example, we study the reservoir system presented as Test Case (1) in subsection 

3.3.1. Reservoir parameters and fluid properties are given in Table (3.1). The original 

fine-scale reservoir model has 20×20×1 grid blocks with a heterogeneous and isotropic 
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permeability field, depicted in Figure 3.2. We consider a production scenario with one 

injector and one producer that are located on the northwest and southeast corners of the 

reservoir, resembling a quarter five-spot pattern. The injection rates in the injection well 

and the bottomhole pressures in the production well are the system inputs (controls). The 

output vector then contains the bottomhole pressures in the injector and the production 

rates in the producer. The bottomhole pressure in the producer is set to 2.5e7 Pa and the 

injection rates versus time are shown in Figure  4.6.  
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Figure  4.6 Prescribed injection rates for the injector in Example 4.1. 

We scaled up the original 20×20 model of Example 1 to a 5×5 coarse model using 

different CRU algorithms and compared the results to those of the local-upscaling and the 

geometric-averaging techniques (see also Chapter 2 for a review of different upscaling 

techniques). For all CRU methods, geometric averaging was used as an initial guess and, 

during the minimization process, the coarse-scale permeability values were bounded by 

the Wiener bounds. Figure  4.7 shows the upscaled permeability field, obtained by the 

CRU method, and Table  6.1 presents the upscaling errors for different methods.  
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Figure  4.7 Log10 permeability fields for Example 4.1. Left: fine-scale permeability field from Test Case 
(1). Right: coarse-scale permeabilities, calculated by the CRU method. 

 

Table  4.1 CRU performance for Example 4.1. 

 
geometric 

 
local 

 
CRU1-  

H2 
CRU1-
HSH 

CRU1-
H 

CRU2-   
M 

CRU2-
H2 

CRU2-
HSH 

CRU2-
H 

(%)pe  1.5 1.5 0.9 0.9 0.9 1.0 1.4 1.1 1.1 

, (%)q cume  7.9 7.6 0.5 0.5 0.5 4.5 6.3 0.6 0.6 

-ration  0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 

 

In this table, CRU 1–2 refer to the CRU methods 1 and 2 described in the preceding 

section, where H2, HSH, H and M refer to H2-norm, HSH-norm, H-norm and the 

Markov parameters, respectively. We observe from the middle row that all CRU methods 

give superior results compared to the local and geometric-averaging techniques. This is 

true for the errors in the average pressures as well as for the errors in the cumulative 

production. Moreover, different system norms in Methods 1 give identical results17.For 

Method 2; however, only the HSH-norm and the H-norm give comparable results to 

Method 1. We will discuss the computational and system-theoretical aspects of different 

methods in subsections 4.3.3 and 4.3.4.  

4.3.2. Example 4.2 

In this example, we consider a larger system with 220×60×1 grid blocks (i = 1, 2, …, 

220 ;  j = 1, 2, …, 60 and  k = 1), referred to as Test Case (2). Reservoir parameters and 

fluid properties are given in Table  5.2. We choose a standard five-spot pattern with one 

                                                 
17 We note, however, that this identity occurs only for small models, as will be discussed in more detail 
later. 
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injector located at the center of the grid block with (i,j,k) coordinates (110,30,1) and four 

producers at the outside corners of the four corner grid blocks. Injection rates in the 

injector and bottomhole pressures in the producers were considered as system inputs. We 

chose two different permeability fields taken from Layers 30 and 80 of the SPE 10 

Comparative Solution Project (Christie and Blunt 2001). The fine-scale permeability 

realizations of these two layers are shown in the left parts of Figure  4.8 and Figure  4.9, 

respectively.  

 

Table  4.2 Reservoir parameters and fluid properties for Test Case (2). 

parameter value unit 

reservoir length 700 m 

reservoir width 400 m 

reservoir  height 2 m 

fluid density 1000 kg/m3 

fluid viscosity 3.0e-04 Pa s 

porosity 0.3 - 

total compressibility 5.8e-07 1/Pa 

initial reservoir 
pressure 

4.1e07 Pa 

 

We scaled up the original 220×60 model to a 22×6 coarse-scale one. Similar to Test Case 

(1), we compared the relative errors of average pressures and cumulative production for 

different upscaling methods. Because of computational reasons, discussed in more detail 

later, we considered only CRU Method 2 (by using the HSH-norm of the fine and the 

coarse models). Table  4.3 and Figure  4.9 summarize the upscaling results for Layers 30 

and 80, respectively. It turns out that, for both cases, the CRU method gives superior 

results in reducing the upscaling error for cumulative production compared to the 

geometric-averaging and local methods. The differences in the pressure errors are less 

pronounced. Most notable is the good performance of the CRU method to predict the 

cumulative production from Layer 80. This is a strongly channelized system for which 

the geometric-averaging and the local methods result in very large upscaling errors 

because they cannot resolve the permeability connectivities between different coarse 

blocks. The CRU method gives the smallest error for this test case, which, because of 

strong large-scale flow paths in the channels, is a difficult problem for upscaling. The 
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error of approximately 20% is still considerable, but we note that we applied a coarsening 

factor of 100. For such large coarsening factors, a large part of the error is because of the 

numerical diffusion resulting from the coarse discretization rather than from calculation 

of the upscaled parameters (Durlofsky 2005). The coarse-scale permeability fields of Test 

Case 2 as obtained with CRU Method 2 have been displayed at the right-hand sides of 

Figure  4.8 and Figure  4.9. 
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Figure  4.8 Log10 permeability fields for Example 4.2. Left: fine-scale permeability field from Test Case 
(2), SPE10 layer 30. Right: coarse-scale permeabilities, calculated by the CRU method. 

Table  4.3 CRU performance in Example 4.2 (layer 30). 

 geometric local CRU2-HSH 

(%)pe   5.69 5.52 3.93 

, (%)q cume   79.73 75.44 31.93 

-ration   0.01 0.01 0.01 
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Figure  4.9 Log10 permeability fields for Example 4.2. Left: fine-scale permeability field from Test Case 
(2), SPE10 layer 80. Right: coarse-scale permeabilities, calculated by the CRU method. 

Table  4.4 CRU performance in Example 4.2 (layer 80). 

 geometric local CRU2-HSH 

(%)pe   1.82 2.39 1.57 

, (%)q cume   413.37 315.64 20.44 

-ration   0.01 0.01 0.01 
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4.3.3. Computational Aspects  

Figure  4.10 shows the values of the cost function for 15 iterations of the CRU 

minimization problem in Eq. (4.1), corresponding to different CRU methods in Table  6.1. 

As follows from the plots in this figure, the CRU algorithm converges after only a few 

iterations for the given small example. We also tried different initial guesses to upscale 

Test Case (1), including different averaging methods and a local upscaling technique. For 

this small reservoir, they all lead to almost the same solution18. However, calculating 

Hankel singular values and controllability and observability Gramians requires the 

solution of Lyapunov equations (Eqs. 3.25 and 3.26) using standard algorithms in Matlab, 

which is an expensive task, particularly for large systems. In most cases, we can reduce 

the computational cost of the method by some further modifications. For instance, in 

CRU method 1, the order (i.e., the number of states) of the error model is equal to the 

sum of the orders of the fine and the coarse models, which makes the computation of the 

Gramians even more expensive than the original fine-scale model. However, we can 

write the controllability Gramian of the error system as 

 
,11 ,12

,21 ,22

.
 ′ =  
 

W W
W

W W
C C

C

C C

 (4.18) 

Subsequently, from Eqs. (4.3), (4.4) and (3.25) we obtain  

 
,11 ,12 ,11 ,12

,21 ,22 ,21 ,22

0 0
.

0 0

        
 + =         

        

A W W B W WA
B B

A W W B W WA
ɶ

ɶ ɶɶ

T
T T

T

C C C C

C C C C

 (4.19) 

Therefore, ,11WC  and ,22WC satisfy the DT Lyapunov (Stein) equations 

 ,11 ,11,+ =AW A BB WT T
C C  (4.20) 

 ,22 ,22,+ =AW A BB Wɶ ɶ ɶ ɶT T
C C  (4.21) 

and, hence, they are equal to the Gramians of the fine- and coarse-scale systems, 

respectively. In addition, from Eq. (4.19), ,12WC  satisfies the DT Sylvester equation  

 ,12 ,12.+ =AW A BB Wɶ ɶT T
C C  (4.22) 

                                                 
18 Note that in the case of using a local upscaling technique to obtain the initial guess, we obtain a 
directional permeability tensor as an initial guess. Therefore, for some CRU methods, we needed a few 
more iteration to converge. 
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Figure  4.10 Cost function values corresponding to different CRU methods in Table 4.1. 

Finally, since the Gramians are symmetric, ,21 ,12=W WC C . Therefore, instead of 

computing the high-order controllability Gramian of the error system in each iteration, we 

only update ,22WC and ,12WC  in Eq. (4.18) by solving the low-order equations (4.21) and 

(4.22). The same procedure is used to calculate the observability Gramian of the error 

system (see also Bunse-Gerstner et al. 2010). 

Another improvement in the computational efficiency can be achieved by computing only 

the first few largest HSV’a of the system. That is because, in most reservoir systems, the 

HSVs are rapidly decreasing, indicating that the system dynamics can be described by 

only a few modes, i.e. those corresponding to the largest HSVs (see e.g. Figure  4.2). As 

an example, we calculated the HSH-norm (given by Eq. 3.40) for the fine-scale model in 

Example 4.1. Figure  4.11 shows the calculated value using different number of HSVs. 

Clearly, the HSH-norm can be accurately obtained from less than 10 HSVs instead of 400 

HSVs. 

Despite the above-mentioned modifications, standard methods for calculating the exact 

full-rank Gramians have to be replaced by some approximation techniques to solve the 

Lyapunov equations, such that we can apply CRU to realistic reservoir models. The 

description of some approximation methods and their complexity analysis is given in 
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sections 6.4 and 6.5. An alternative approach to reduce the computational burden 

involves replacing the fine-scale model by a reduced-order realization of that model (see 

also Vakili-Ghahani et al. 2008). This approach, which is referred to as ‘reduced-order 

CRU’ is discussed in section 6.3. Finally, instead of a control-relevant upscaling on 

uniform coarse grid blocks, we can perform a sort of selective coarsening based on the 

controllability and the observability of the system. The latter is the topic of the next 

chapter.  
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Figure  4.11 HSH-norm vs. number of Hankel singular values for the fine-scale model in example 4.1. 

4.3.4. System-Theoretical Aspects  

The definition of the objective function ( )θɶJ  in Method 1, Eq. (4.8), is theoretically 

correct in the sense that it is defined directly in terms of the error model, such that 

reduction of ( )θɶJ  to zero implies equality between the fine-scale and the coarse-scale 

models. However, the computational disadvantage of Method 1 is that the order of the 

error model is equal to the sum of the orders of the fine and the coarse models, which 

makes it less attractive for large models, although its computational efficiency can be 

improved, as we discussed before.  

On the other hand, although CRU Method 2 is computationally more attractive, the 

definition of ( )θɶJ  by Eq. (4.13), in terms of the differences between two system norms, 

is theoretically less sound. That is because the equality of these norms does not 

necessarily imply the equivalence of the corresponding systems. However, in practice, 

the results of Method 2 is comparable to those of the Method 1, at least in those cases 

where we could compute their values (i.e., for small examples). For instance, in Example 
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4.1, both methods, when using the HSH-norm, give almost equal relative errors (see 

Table  6.1). Even the HSVs of the resulting coarse-scale-models are almost identical (see 

Figure  4.12).  
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Figure  4.12 The first 3 HSVs of the fine-scale and three different coarse-scale models in example 4.1. 

The good performance of CRU Method 2, despite its theoretical deficiency, may be the 

result of starting from a ‘reasonable’ guess in the form of a geometric average in 

combination with the requirement that the results stay within the Wiener bounds. In 

addition, the fixed structure of the parameter-estimation problem in the form of a banded 

system matrix A with to-be-estimated parameters and matrices B, C, and D with known 

parameters may also play an important role. Note that Method 2 in case of the direct use 

of the Markov parameters performs poorly for larger examples (see Vakili-Ghahani et al. 

2008), most likely because of the widely ranging values of the Markov parameters and 

associated large numerical errors in matrix power calculations.  

Finally, we used three different system norms in both CRU Method 1 and 2. Unlike the 

H2-norm, the HSH-norm and the H-norm are input-output invariant as they depend on 

the product of the Gramians (see sections 3.3 and 3.5). The H2-norm can be obtained by 

only computing one of the Gramians; however, it is not input-output invariant, and hence, 

the performance of the CRU method, when using the H2-norm, might depend on the 

chosen coordinates. Further research is required to understand the performance of these 

norms under different circumstances and to assess alternatives. 
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4.4. Summary  

As a first step in developing grid-based upscaling techniques that take account of the 

amount of available control and measurements, we studied the possibility of 

implementing a single-phase control-relevant upscaling technique. In this method, the 

coarse-scale-model parameters are calculated as the solution of an optimization problem 

that minimizes the distance between the input/output behaviors of the fine- and coarse-

scale models. This distance is measured in terms of different system norms, in which we 

use Hankel singular values as a measure of the combined controllability and observability 

and Markov parameters as a measure of the response of the system, respectively.  

The CRU approach considers more realistic boundary conditions in comparison with 

most conventional upscaling techniques, as it considers the given well configuration. 

Therefore it is particularly attractive to scale up simulation models in flooding-

optimization or history-matching studies for a given configuration of wells. Furthermore, 

it focuses on the observable and controllable state variables and, therefore, relies on those 

grid blocks that are most important to the input/output behavior of the model. Since these 

grid blocks are generally close to the well locations, the near-well effects are also better 

captured. We emphasize that the CRU approach is a global method in the sense that it 

relies on the system properties of the entire reservoir but that it does not require any 

forward simulation either of the full or of the upscaled model. It also does not depend on 

a particular control strategy but instead uses the dynamical system equations directly.  

The price to pay, however, is that any change in the well configuration (including both 

well locations and the number of inputs and outputs) requires a (partial) repetition of the 

upscaling procedure. Moreover, computational issues in applying CRU to large-scale 

reservoir models form another limitation of this method. Nevertheless, current 

developments addressing the approximate solution of high-order Lyapunov equations 

(section 6.4) and a combination with model-order reduction techniques (section 6.3) may 

to a large extent solve the computational issues. Another alternative is to use a control-

relevant selective coarsening approach, which is discussed in the next chapter. 
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5. CHAPTER: CONTROL-RELEVANT SELECTIVE 
COARSENING (CRSC)  

 

n this chapter, we present a multi-level selective grid coarsening method to allow 

treatment of very large models with a high degree of heterogeneity in their parameter 

fields. In this control-relevant method, the criterion for grid size adaptation is based on the 

spatial quantification of the controllability and observability of the reservoir system. 

5.1. Introduction

In most reservoir systems, there are only a limited number of degrees of freedom in the 

input-output dynamics for a given configuration of wells. This means that a large number 

of combinations of the state variables (pressure and saturation values) are not actually 

controllable and observable from the wells, and accordingly, they are not affecting the 

input-output behavior of the system. Thus, the complexity level of a model should be 

adjusted to the amount of available information and the extent of control that is possible 

in the reservoir system. In Chapter 4, we therefore proposed a single-phase control-

relevant upscaling methodology that uniformly coarsens19 the reservoir model based on 

the relevant level of information and control. However, the formulation as presented in 

Chapter 4 is restricted to fine-scale models with a maximum of around 105 grid blocks 

because of current limits on the computation of the underlying system norms.  

In section 6.3, we will propose techniques to somewhat overcome the computational limit 

by combining CRU with model-order reduction techniques (see also Vakili-Ghahani et al. 

2008). Here, we follow a different route and present a multi-level selective (i.e. non-

uniform) grid coarsening method to allow treatment of very large models with a high 

degree of heterogeneity in their parameter fields. In this control-relevant selective 

coarsening (CRSC) method, the criterion for grid size adaptation is based on the 

controllability and observability properties of the reservoir system. The multi-level CRSC 

algorithm starts from a uniformly coarsened grid and then adaptively refines it to various 

degrees in the most controllable and observable parts of the reservoir. In addition to a 

computational advantage, the selective coarsening/refinement is also expected to be more 

                                                 
19 Note that we use the terms ‘upscaling’ and ‘coarsening’ interchangeably. 

I 
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accurate, in the sense that a selectively upscaled model is expected to introduce smaller 

upscaling errors than a uniformly upscaled model with the same number of grid blocks. 

The CRSC method is attractive for use in computer-assisted flooding optimization or 

history matching studies for a given configuration of wells, and in particular for the 

combined use of optimization and history matching in a closed-loop reservoir 

management setting. 

This chapter is mainly based on Vakili-Ghahani & Jansen (2009), and Vakili-Ghahani & 

Jansen (2010b) and its main contribution is to present a control-relevant criterion for grid 

adaptation, and use it in a selective (non-uniform) coarsening/refinement approach that is 

applicable to arbitrarily large fine-scale models. Therefore, in the next sections, we will 

first explain the spatial quantification and visualization of the controllability and 

observability as a motivation to perform a selective coarsening. Thereafter, we will 

describe the CRSC algorithm and demonstrate its performance using two numerical 

examples. For background information on the system-theoretical concepts and notations 

used here, the reader is referred to Chapter 3. 

5.2. Spatial quantification of controllability and observability 

As discussed in Chapter 3, we can quantify the controllability and the observability of a 

linear reservoir system by computing the Gramians WC  and WO . The square roots of the 

eigen values of W WC O  are then equal to the Hankel singular values (HSVs) of the 

system (Moore 1981). Recall that the HSVs give a measure of the combined 

controllability and observability of the balanced states of the system. In Chapter 4 we 

used this analysis to develop a uniform control-relevant upscaling (CRU) method that 

indirectly focuses on the most controllable and observable states of the system. Here, in 

addition to the HSVs, we also consider the singular vectors, which are obtained by a 

singular value decomposition of  

 2 ,T=W W UΣ VC O  (5.1) 

where Σ  contains the HSVs and U  contains the corresponding singular vectors as 

columns. Using Eqs. (3.29), (3.30) and (3.31), we obtain 

 1 1 .− −= 2W W T W W T = T Σ TC O C O  (5.2) 

Consequently, for a balanced realization of the system, the singular vectors are equivalent 

to the columns of 1,−T  where T  is a balancing transformation matrix that gives equal 

and diagonal Gramians.  
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As demonstrated by Example 3.1, in most reservoir cases, the magnitude of HSVs are 

rapidly decreasing, indicating that a large number of the states are weakly 

controllable/observable, hence, they weakly influence the input-output behavior of the 

system. Considering that, we can rewrite Eq.  (5.1) as  

 [ ]
2
1 1

1 2 2
2 2

,
T

T

   
=    

   

Σ 0 V
W W U U

0 Σ V
C O  (5.3) 

where 1 1 2( , , , )rdiag σ σ σ=Σ ⋯  contains the first r HSVs of the system (corresponding to 

the most controllable/observable states), which are significantly larger than  the HSVs in 

2 1 2( , , , )r r ndiag σ σ σ+ +=Σ ⋯ . Note that each column of U has n entries that are related to 

n states, which are in turns connected to n grid blocks. Moreover, the first r columns of  

U , corresponding to the first r HSVs, are representing the most controllable/observable 

subspace of the state-space and, consequently, are related to those combination of the 

states that are most controllable/observable. Therefore, the singular vectors related to the 

first few HSVs of the system can be used to spatially quantify the controllability and the 

observability concepts (see also Zandvliet et al. 2008; Van Doren 2010). We illustrate the 

procedure by the following example.  

5.2.1. Example 5.1 

As an illustration of our approach consider a single-phase two-dimensional (2D) reservoir 

system, referred to as Test Case (3). Reservoir model parameters and fluid properties are 

given by Table  5.1, and the permeability field is shown in Figure  5.1. The permeability 

values vary between 5 mD and 1000 mD. There is one injector in the middle and four 

producers surrounding the injector, resembling an inverted five-spot pattern (see Figure 

 5.1). All wells are controlled by prescribed bottom-hole pressures. The time-varying 

bottom-hole pressure for injector 1 is shown in Figure  5.2. Note that the placement of a 

well in a low-permeable area is not a common practice. We did this, nevertheless, for 

producer 4 to illustrate the controllability/observability variation for different well 

placements. Moreover, due to relatively poor resolution of seismic data, in practice the 

exact location of the channels may be uncertain or unknown. 

The fine-scale reservoir model has 16384 grid blocks, and therefore 16384 (pressure) 

states. Figure  5.3 displays the first 130 diagonal entries of the balanced Gramians, i.e. the 

Hankel singular values, for this reservoir system. The rapid decline in the magnitude of 

these values implies that the number of combinations required to describe the 

input/output behavior of the system is much smaller than 16384. 
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Figure  5.1 Log10 permeability field for Test Case (3), and locations of the injector (cross) and the 
producers (dots) in Example 5.1. 
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Figure  5.2 Prescribed well bottom-hole pressures in Example 5.1. 

Table  5.1 Reservoir model parameters and fluid properties for Test Case (3). 

parameter value unit 

reservoir length 256 m 

reservoir width 128 m 

reservoir  height 2 m 

fluid density 1000 kg/m3 

fluid viscosity 3.0e-04 Pa s 

porosity 0.3 - 

total compressibility 5.8e-08 1/Pa 

initial reservoir 
pressure 

3.0e07 Pa 
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To visualize the controllability/observability, we consider ‘directions’ 1 2 6, ,...,u u u , 

corresponding to the six largest HSVs of the system. Patterns 1 to 6 in Figure  5.4 show 

the directions mapped onto the computational grid. Because each component of the state 

represents the pressure in a grid block, this mapping allows us to quantify the variation of 

the controllability and observability of the system over the spatial domain in the form of 

‘patterns’. For a better visualization in Figure  5.4, we have sorted the grid blocks based 

on their importance (the magnitude of their non-zero values). Colors from red to blue, 

therefore, represent the ‘grid importance’; i.e. the variation from strongly 

controllable/observable to weakly controllable/observable areas.   
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Figure  5.3 Hankel singular values for Example 5.1. 
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Figure  5.4 Patterns 1 to 6 represent the singular vectors corresponding to the six largest Hankel singular 
values of the system in Example 5.1. Colors from red to blue represent the grid importance. 
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Figure  5.5 Visualization of the dominant pattern for controllability and observability variation over the 
spatial domain for Example 5.1; the Gramians were obtained with the LR-ADI algorithm. Colors from red 
to blue represent the grid importance obtained from the scaled weighted sum of the singular vectors 
corresponding to the first sixty Hankel singular values of the system. 

The significance of each mapped pattern is proportional to the magnitude of the related 

Hankel singular value. The vector sum of all patterns, each weighted with its 

corresponding singular value, therefore gives the ‘dominant’ pattern that represents the 

spatial variation of the combined controllability and observability of the system. However, 

because of the rapid decay of the singular values, only a few patterns related to 1Σ  in Eq. 

(5.3) need to be taken into account to accurately capture this combined controllability and 

observability.  Accordingly, the dominant pattern is given by 

 
11

.
r

i
i

i

σ
σ=

=∑u u  (5.4) 

Here, we use the weighted sum of the first 60 patterns. However, according to Figure  5.3, 

we could have chosen an even smaller number of patterns. Figure  5.5 presents the 

resulting dominant pattern. Recall that colors from red to blue represent the grid 

importance obtained by sorting all grid blocks based on the magnitude of their non-zero 

values. From this figure and for the given example, the most controllable and observable 

regions are in the vicinity of the wells and in high-permeable areas connected and close to 

the wells. The blue areas in Figure  5.5  are weakly controllable/observable. Note that the 

area in the vicinity of producer 4 is less controllable/observable, compared to other 

producers, because it is located in a low-permeable part of the reservoir.  

The spatial quantification of the observability and controllability of a reservoir model 

forms the basis for our CRSC algorithm. The basic idea is to perform grid coarsening 

only in the weakly controllable and observable areas, i.e. in those areas that have the least 

effect on the input/output behavior of the system. 
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5.3. CRSC algorithm 

The general idea behind selective (non-uniform) coarsening is to only coarsen those parts 

of the spatial domain that are the least important for the flow simulation according to 

some predefined criterion. In our CRCS application, we use a control-relevant criterion 

based on the quantification of the controllability and observability subspaces over the 

spatial domain. Other selective gridding methods have been proposed, sometimes with an 

adaptive, i.e. time-dependent, strategy for selective refinement and coarsening based on 

different criteria. In particular, adaptive gridding is often applied to maintain a fine grid 

in areas of high permeability or in areas where high saturation or concentration gradients 

occur; see e.g. Berger & Colella (1989), or Gerritsen & Lambers (2008) and references 

therein.  

5.3.1. Algorithm 

The CRSC algorithm includes three main steps: 

1. Obtain a uniform coarse-scale model with a method of choice. 

2. Spatially quantify the combined controllability and observability of the system 

using either fine- or coarse-scale Gramians.  

3. Selectively refine the domain depending on the level of combined controllability 

and observability. 

A schematic overview of the procedure is depicted in Figure  5.6. In the following, we 

will explain the algorithm in more detail: 

 

 

Upscaling
Local 

refinement

Selective coarsening

Upscaling
Local 

refinement

Selective coarsening  

Figure  5.6 Control-relevant multi-scale gridding through uniform initial coarsening and subsequent 
selective refinement. 
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Step (1) 

We choose an upscaling technique to generate a coarse-scale model. A fast and simple 

upscaling method is a so called local upscaling technique (see subsection 2.3.3), in which 

coarse-scale parameters are calculated from local flow calculations subject to some 

generic boundary conditions (Warren & Price 1961). An alternative technique is a local-

global approach, in which the generic boundary conditions are only used to obtain an 

initial coarse-scale flow solution. The interpolation of the coarse-scale solution then gives 

more accurate local boundary conditions to find the new coarse-scale parameters and the 

process is iterated until the solution converges (Chen et al. 2003, Gerritsen & Lambers 

2008). The accuracy of the coarse-scale approximation at this step is of limited 

importance, as long as it can be used to conduct the controllability and observability 

analysis in the next step.  

Step (2) 

To spatially quantify the most controllable/observable patterns, we first need to compute 

the balanced Gramians of the system by solving Lyapunov equations (Eqs. 3.25 and 3.26). 

A brief overview of different methods to compute the exact and approximate solution of 

these equations is given in section 6.4. The diagonal entries of the balanced Gramians 

(HSVs) and the corresponding direction are then used to quantify the variation of the 

system’s controllability and observability properties over the spatial domain (see Figure 

 5.5). Finally, the coarse-scale grid blocks that are located in the areas corresponding to 

highly controllable/observable states (red areas in Figure  5.5), are flagged to be refined in 

the next step. A grid block is flagged if the following condition holds:  

 ,iu ε>
u

 (5.5) 

where ε  is a threshold value. A zero threshold value means that all the grid blocks should 

be flagged and the corresponding coarse-scale grid blocks need to be refined, while a unit 

threshold value means no refinement. From our experience and for the following 

examples, we found out that setting a threshold value of about 0.005 produced accurate 

coarse-scale results, while significantly reducing the number of grid blocks. However, the 

optimal choice of the threshold value is still an open question. 

An alternative and faster approach to spatially quantify the controllability/observability is 

to use the coarse-scale Gramians from the approximated coarse-scale model of Step 1. 

However, Steps 2 and 3 may need to be iterated a few times to obtain a more accurate 

approximation of the controllable/observable subspaces. The use of the coarse-scale 
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model in this way is somehow similar to the adaptive local-global approach of Chen & 

Durlofsky (2006), in which they use a coarse-scale simulation to find areas for which the 

initial local upscaling with generic boundary conditions needs to be repeated with 

specific boundary conditions related to a particular flow scenario.  

Step (3) 

The last step is to refine the flagged coarse-scale grid blocks to finer ones, or even back 

to the initial fine-scale grid blocks. The result is a system of non-uniform grid blocks as 

depicted in Figure  5.7. To discretize partial differential flow equations over non-matching 

grid blocks, we choose a cell-centered finite volume technique. The interface fluxes for 

each control volume are calculated by using a two-point flux approximation method 

(Edwards 1996, Aavatsmark 2002). For instance, the flux between grid blocks 2 and 1 in 

Figure  5.7 is given by 

 2 1
2 2 2 2

2 1 1 2

1 2
( ),a

k k
q y p p

x k x kµ
 = − ∆ − ∆ + ∆ 
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Figure  5.7 Non-uniform grid blocks.  

where 1k  and 2k  are the permeability values of grid blocks 1 and 2, 2p  and 2ap  are 

pressure values at points 2 and 2a , µ  is the fluid viscosity, and x∆ and y∆  are the grid 

block dimensions. An issue here is to calculate the pressure values at the auxiliary points 

like 2a  and 3a . Although there are various ways to do so, for simplicity we assume that 

they are equal to the average pressure for the entire grid block. However, to maintain the 

accuracy around the interface, we require that each grid block may only be refined once 

in each direction, i.e. at each refinement level, a grid block may contain up to four sub 

grid blocks. More accurate pressure calculations at the auxiliary points can be found in 

e.g. Gerritsen & Lambers (2008), Khattri et al. (2007), Nilsson et al. (2005), and Edwards 

(1996). Spatial and temporal discretization of the flow equation over the non-uniform 
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grid blocks leads to a system of equations that can be written in the state-space form 

given by Eqs. 3.14. 

5.4. Results and discussion 

We demonstrate the performance of CRSC with the aid of two numerical test cases. The 

first one concerns a channelized reservoir with relatively small permeability fluctuations, 

while the second one concerns a strongly channelized system. In both cases, we assume 

single-phase flow subject to no-flow boundary conditions. The liquid flow into and out of 

the reservoir is therefore through the wells. We consider a fixed configuration of the 

wells which are controlled by a prescribed variable bottom-hole pressure, while 

production and injection rates are recorded as the output of the system. The bottom-hole 

pressure is related to the grid block pressure by using a well index which is a function of 

the grid block geometry and permeability (Peaceman 1983). Like in the CRU algorithm, 

we use the relative error (Eq. 4.14) in terms of the averaged pressures and the cumulative 

production rates to compare the performance of the non-uniform coarse model obtained 

by the CRSC algorithm with those of the original fine-scale model and the uniformly 

coarsened model. Furthermore, we use the ‘n-ratio’ defined by Eq. 4.17, to compare the 

size, and roughly the computational time that is needed to simulate a coarse-scale 

reservoir model, to that of the fine-scale one.   

5.4.1. Example 5.2 

In this example we consider the reservoir system of Test Case (3) with the production 

scenario described in Example 5.1. The permeability field and well locations are depicted 

in Figure  5.1. We chose factors of 8 in each direction to scale up the 256×64 fine-scale 

model to a uniform 32×8 coarse model by using a local upscaling technique. The grid 

refinement for this example was then based on the quantification of the state’s 

controllability and observability over the spatial domain of the fine-scale model (FS-

CRSC), as illustrated in Figure  5.5. The level of refinement for each flagged coarse grid 

depends on its ‘importance’ compared to other grid blocks. Thus, in red grid blocks that 

correspond to the most controllable/observable areas, we perform three levels of 

refinement to return to the original fine-scale model. Figure  5.8 shows the selectively 

coarsened grid obtained by the CRSC algorithm. Clearly the refinement around producer 

4 is less than around the other wells because this producer is located in a low-permeable 

part of the reservoir and it has less effect on the input-output behavior of the system.  
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Figure  5.8 Selectively coarsened grid in Example 5.2. The refinement is based on the spatial quantification 
of the controllability/observability of the fine-scale model. 

Table  5.2 CRSC performance for Example 5.2 using fine-scale Gramians. 

 fine-scale coarse (32×8) FC-CRSC coarse (128×32) 

(%)pe  0 0.6 0.1 0.4 

, (%)q cume  0 28.9 0.6 13.8 

n-ratio  1 0.02 0.23 0.25 

 

Table  5.2 represents the relative error and n-ratio for the simulation of Test Case (1) with 

different models. Although the uniform coarse model (32×8) gives a very fast simulation 

with an n-ratio of 0.02, the CRSC algorithm vastly outperforms the uniformly coarsened 

grid in terms of accuracy. More interestingly, the CRSC model with 3794 grid blocks 

even gives a much smaller error than the uniform coarse model (128×32) with 4096 cells. 

This illustrates that, for this example, in addition to a computational advantage, the 

selective coarsening is also more accurate than a uniformly upscaled model with the same 

number of grid blocks. 

We can also use the Gramians of the initial coarse-scale model for spatial quantification 

of the controllability/observability, and thus for flagging the most controllable and 

observable parts of the reservoir. We set the threshold value such that the resulting n-ratio 

is comparable to that of the CRSC-FS model using the fine-scale Gramians. Table  5.3 

gives the results after two iterations. Surprisingly, we observe that, for this example, the 

errors are comparable to the result of FS-CRSC (even without any iteration), while the 

computational time that is needed to compute the CRSC grid is decreased from 115 

seconds for the FS-CRSC to 48 seconds for CS-CRSC with one iteration, and to 10 

seconds for CS-CRSC without any iteration. Note that there is no change in the results 

after two iterations.     
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Figure  5.9 Dominant patterns (left) and selectively coarsened grid (right) in Example 5.2, using coarse-
scale Gramians. The first row: iteration 0; the second row: iteration 1. 

Table  5.3 CRSC performance for Example 5.2 using coarse-scale Gramians. 

 CRSC-CS 

iteration 0 1 2 

(%)pe  0.16 0.16 0.16 

, (%)q cume  0.81 0.80 0.80 

Number of grid blocks 3794 3824 3824 

gridding time (s)  10 48 81 

 

Nevertheless, the spatial quantification of the controllability/observability using fine-and 

coarse-scale Gramians and, consequently, the resulting CRSC grids are slightly different. 

This is evident from Figure  5.9, in which we show the dominant patterns (left) and the 

corresponding CS-CRSC grids (right). The spatial visualization of the 

controllability/observability in Figure  5.9 is different from the one in Figure  5.5, 

indicating that the spatial quantification of the controllable/observable subspaces based 

on the coarse-scale model is less accurate.  

Finally, we compare the HSV plots of all uniform and non-uniform coarse models of 

Example 5.2 in Figure  5.10. As expected, the HSV plots of the CRSC models are much 

closer to the HSV plot of the fine-scale model. This illustrates again that the selective 
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coarsening is more accurate than a uniformly upscaled model with a similar number of 

grid blocks.  
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Figure  5.10 HSV plots for the fine-scale, uniform coarse-scale, and CRSC models in Example 5.2. 

5.4.2. Example 5.3 

As the second example, we consider again the reservoir system of Test Case (2) in 

Chapter 4 with reservoir model parameters given in Table 4.2. The permeability field is 

taken from layer 44 of the SPE10 comparative solution project (Christie & Blunt 2001), 

which represents a channelized reservoir with permeability values between 0.0001 mD 

and 17000 mD. The fine-scale reservoir model has 220×60 grid blocks with one injection 

and two production wells controlled by prescribed bottom-hole pressures. The 

permeability field and the well locations are depicted in Figure  5.11. Figure  5.12 

illustrates the dominant pattern obtained from the weighted sum of the Hankel singular 

vectors corresponding to the first 60 HSVs of the system. Recall that the red grid blocks 

are the most relevant ones in terms of input/output behavior. We observe again that the 

highly controllable/observable states correspond to the grid blocks in the vicinity of the 

wells and of adjacent connected high-permeable zones. Interestingly, the high permeable 

areas in the upper left and lower right corners, which are either disconnected or far away 

from the wells, are weakly controllable/observable. 
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Figure  5.11 Log10 permeability field from Test Case (2), SPE10 layer 44, and locations of the injector 
(cross) and the producers (dot) in Example 5.3. 

We scaled up the fine-scale model to a 15×55 coarse model using a local upscaling 

technique. Subsequent refinement of the grid blocks corresponding to the most 

controllable/observable parts of Figure  5.12 lead to a pattern of selectively coarsened grid 

blocks shown in Figure  5.13. The original fine-scale grid, the uniformly coarsened grids 

(15×55) and (30×110), and the CRSC grids were used to simulate the flow behavior in 

the reservoir. Table  6.1 gives the simulation results for different models in terms of 

cumulative production error and n-ratio. As in Example 5.2, it turns out that the CRSC 

method appropriately reproduces the fine-scale results, and clearly outperforms both 

uniformly coarsened models obtained with a local upscaling technique. Note that in 

highly channelized cases local techniques are well known not to resolve the permeability 

connectivities between different coarse blocks and, therefore, to result in large upscaling 

errors.  

 

Figure  5.12 Visualization of the dominant pattern for controllability and observability variation over the 
spatial domain in Example 5.3. Colors from red to blue represent the grid importance obtained from the 
scaled weighted sum of the singular vectors corresponding to the Hankel singular values of the system. 
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Figure  5.13 Selectively coarsened grid in Example 5.3. 

Table  5.4 CRSC performance for Example 5.3. 

 fine-scale coarse (15×55) CRSC coarse (30×10) 

(%)pe  0 2.2 0.3 0.8 

, (%)q cume  0 76.2 0.4 39.6 

n-ratio  1 0.06 0.20 0.25 

 

5.4.3. Computational aspects 

Similar to the CRU method, the most expensive operation in CRSC algorithm is to 

compute the Gramians of the system. Therefore, standard methods for calculating the 

exact full-rank Gramians in Matlab, which are intended for small systems (with less than 

104 grid cells) have to be replaced by approximation techniques for large systems. The 

description of several approximation methods and their complexity analysis is given in 

sections 6.4 and 6.5. Alternatively, using the coarse model to compute the Gramians 

allows the application of the CRU algorithm to very large systems, although the spatial 

quantification of the controllable/observable subspaces is then less accurate (see Example 

5.2). 

To have a computationally more efficient multi-level refinement procedure and similar to 

Gerritsen & Lambers (2008), we applied an unstructured data approach to store the grid 

block and interface data. In this method, each grid block requires the storage of its 

geometrical and physical data, interface information and neighbor’s indices. This allows a 

fast and easy accessibility to grid block data, regardless its level of coarsening. A detailed 

description of the unstructured data approach can be found in Ham et al. (2002).  
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Figure  5.14 Uniform and non-uniform grid systems (first row) ‘spy plots’ of the corresponding system 
matrices (second row). 

Furthermore, we used the n-ratio to compare the relative size and, consequently, the 

required computational time for solving a linear system of pressure equations in different 

models. However, computing the pressure solution over the CRSC grid is more expensive 

than over a uniform coarse grid with the same number of grid blocks. This is because the 

bandwidth20 of a CRSC system matrix is larger compared to the one for a uniform grid 

(see Figure  5.14). This bandwidth can be optimized by an appropriate renumbering of the 

grid blocks as well as reordering the elements of the system matrix to produce a matrix 

with a significantly smaller bandwidth. For instance, reordering the elements of the 

system matrix A using the reverse Cuthill-McKee (RCM) ordering in Matlab gives a 

much narrower bandwidth, as the right spy plot in Figure  5.15 shows. Such a reordering 

can often make some operations like LU decomposition, which is used in the linear solver, 

sparser and faster. Note that the cost of the bandwidth optimizer is negligible, compared 

to the total CPU time of the solver and , therefore, the n-ratio can still roughly represent 

the relative CPU time spent to solve the pressure equations of the CRSC model.  

                                                 
20 The bandwidth of a matrix is computed as the maximum bandwidth of each row of the matrix. The 
bandwidth of a row of the matrix is the number of matrix entries between the first and last nonzero entries 
in the row. 
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Figure  5.15 Spy plot of a system matrix before (left) and after (right) the bandwidth optimization by RCM. 

In summary, for large systems, the CRSC grid can be efficiently obtained by using 

approximation methods to compute the Gramians, applying a proper grid block 

numbering, optimizing the bandwidth of the system matrix, and using the unstructured 

data approach to optimize the grid data storing and loading during the simulation. Note 

that the CRSC grid blocks need to be obtained only once and in an offline part of the 

simulation, whereas simulation of the flow equation over the CRSC grid blocks might be 

performed many times in different applications. 

5.4.4. Remarks 

• For the sake of simplicity, we used simple gridding and discretization techniques, 

and we implemented them in MATLAB. Alternative gridding and discretization 

strategies might further improve the CRSC performance in terms of both accuracy 

and computational efficiency. 

• The CRSC method can conceptually simply be extended to 3D applications. 

• In this Chapter, we developed a single-phase upscaling technique (CRSC method), 

which is based on single-phase flow equations. Nevertheless, the resulting CRSC 

grids are expected to outperform the uniform coarse grids even in two-phase flow 

applications. Furthermore, the CRSC algorithm can also be extended to two-phase 

flow simulations. However, for nonlinear two-phase flow cases, we need to either 

linearize the system, or compute the controllability and observability Gramians 

empirically (for the empirical calculations of the Gramians see subsection 6.4.3). 

The other important issue in two-phase flow is to deal with moving saturation 

fronts. Since the saturations are only controllable along the front and only 

observable after water breakthrough in the wells (Van Doren 2010), the 

performance of CRSC algorithm would be improved by adding grid adaptations to 

resolve the strongly controllable/observable areas along the moving saturation 
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fronts. Further research is required to evaluate the computational benefits of the 

CRSC approach in multi-phase flow applications. 

• Other possible solution to treat saturations in a two-phase flow simulation might 

be applying a multi-scale framework, in which the CRSC grid blocks are only 

used to solve the pressure equation while the saturation equation is solved over 

the fine-scale grid blocks. 

5.5. Summary 

We proposed a multi-level CRSC method to allow treatment of very large models with a 

high degree of heterogeneity in their parameter fields. In this control-relevant selective 

coarsening method, the criterion for grid size adaptation is based on the spatial 

quantification of the controllability and observability properties of the reservoir system 

and, hence, the level of refinement for each coarse grid block depends on its ‘importance’ 

compared to other grid blocks. We applied our algorithm to two numerical examples and 

found that it can accurately reproduce results from the corresponding fine-scale 

simulations, while significantly speeding up the simulation. In addition to a 

computational advantage, the selective coarsening/refinement is also more accurate, 

compared to a uniformly upscaled model with the same number of grid blocks. That is 

the case because the most controllable/observable areas, which appear to be in the 

vicinity of the wells and in high-permeable areas close to and connected to the wells, 

remain unchanged and, therefore, global flow patterns and permeability contrasts of the 

fine-scale model are better preserved by the CRSC algorithm. 

Similar to the CRU approach, the CRSC technique considers the global flow effects by 

relying on the system properties of the entire reservoir but it does not depend on a 

particular control strategy. However, it should be (partially) repeated if the well 

configuration is changed. 
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UPSCALING  

 

n this chapter, we explain several system-theoretical reduction techniques followed by 

investigating the potential benefits of using them in combination with our control-relevant 

upscaling approach. Thereafter, several approximation methods to compute the Gramians are 

discussed and a brief complexity analysis of different operations is presented. 

6.1. Introduction

The main concern about CRU and CRSC algorithms is their applicability, in terms of 

required computational power, to more realistic and large reservoir systems. The most 

expensive phase of numerical calculations associated with both methods is the 

computation of the Gramians which requires the solution of (large) Lyapunov equations 

(Eqs. 3.25 and 3.26). On the other hand, the standard exact methods in Matlab (e.g., 

Bartels-Stewart algorithm) are intended for small systems (with an order of 104 cells), 

and they are computationally too expensive or even intractable for larger systems. 

Therefore, the main focus of this chapter is to investigate possible approaches to improve 

the computational efficiency of CRU and CRSC methods. 

The first attempt is made by performing our control-relevant upscaling method on a low-

dimensional approximation of the original fine-scale system obtained by a system-

theoretical model reduction technique, so that lower-order Lyapunov equations are to be 

solved. The second approach is to use computationally efficient algorithms to solve large 

Lyapunov equations. Alternatively, a fast approximation of the Gramians can be obtained 

from sufficient snapshots of the simulation data in time. The latter is mainly based on the 

same principles that are used in common model reduction techniques. In the following 

sections, first, we present a short description of several model reduction techniques and 

then explain both above-mentioned approaches. Moreover, we investigate the possibility 

of using the spatial quantification of the controllability and observability of the system in 

developing a missing point estimation approach for model reduction. At the end, we 

discuss the computational complexity of different operations that are needed to perform 

the CRU and CRSC upscaling. 

I 
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6.2. Model reduction 

System-theoretical model reduction provides a systematic tool to reduce the complexity 

of large-scale models. Consider a linear reservoir model with a state-space representation 

given by Eq. (3.14) and (3.15). To derive a reduced-order model of the system, we 

project21 the state vector onto a subspace defined by bi-orthogonal projection matrices 

(bases) V and W , so that T = IW V and ˆ=x xV . We can partition the transformed state 

as 

 
2

ˆ
ˆ ,

ˆ
r 

=  
 

x
x

x
 (6.1) 

where r<<n and the states in ˆ rx are corresponding to r columns of V that represent the 

dominant basis vectors (functions). The basis functions are chosen appropriately, such 

that the system dynamics are captured accurately by the resulting reduced-order model. 

The states in vector 2x̂  are considered ‘unimportant’, and explicitly set to zero. Therefore 

we can write 

 ˆ ˆ .r r= ≈x x xV V  (6.2) 

In most model reduction techniques, we proceed with some variation of a Petrov-

Galerkin projection22  to construct the reduced-order model. The rth-order low-

dimensional approximation of the original nth-order model is then written as 

 , 1 ,
ˆ ˆˆ ˆ ,r k r r k r k+ = +x A x B uɺ  (6.3) 

 , ,
ˆ ,r k r r k k= +y C x Du  (6.4) 

where ˆ ,T
r r r=A AW V ˆ ,T

r r=B BW and ˆ r r=C CV . The performance of the reduced system 

depends on the choices of rV and rW . In the following, we will discuss balanced 

truncation (BT), proper orthogonal decomposition (POD), and balanced POD (BPOD) 

approaches to obtain the bases.  

Note that the material presented in this section is based on well-established system-

theoretical reduction techniques developed and applied in different disciplines such as 

electrical circuit analysis, mechanical system design, weather forecasting and 

                                                 
21 There is another category of model reduction methods that involves no projections. Examples of those 
methods are Hankel optimal model reduction (Glover 1984) and singular perturbation approximation (Liu 
& Anderson 1989). 
22 If =W V the projection is orthogonal and it is called a Galerkin projection, otherwise it is an oblique 
(Petrov-Galerkin) projection. 
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oceanography. The most widely used reduction methods are BT, moment matching 

(Krylov methods), POD, BPOD, and trajectory-based piecewise linear (TPWL) 

approximation, where the last three can be also used for nonlinear models. For a general 

overview of different methods see Antoulas (2005) and references therein. For recent 

applications of model reduction techniques to reservoir modeling see Markovinović et al. 

(2002), Heijn et al. (2004), Gildin et al. (2006), Cardoso et al. (2009), Cardoso & 

Durlofsky (2010a, 2010b) and Markovinović  (2009). 

6.2.1. Balanced truncation (BT) 

The concept of BT, introduced by Moore (1981), is closely related to the definition of 

balanced realization described in section 3.3 (see also Glover 1984). The idea is to use the 

combined knowledge of both inputs and outputs to determine the state variables that can 

be truncated in a reduced-order representation of the system. In a balanced realization, 

these states are related to the least controllable/observable subspaces described by the 

singular vectors corresponding to small HSVs of the system. Therefore, we can define the 

projection subspaces as the dominant eigen spaces of the product of controllability and 

observability Gramians. The balanced realization23, as proposed by Laub et al. (1987), 

can be obtained by Cholesky factorizations of the Gramians, i.e., T=W L LC C C  and 
T=W L LO O O , followed by a singular value decomposition of  

 [ ] 1
1 2

2

,
T

T T

T

  
= =   

   

1

2

Σ 0 V
L L UΣV U U

0 Σ V
O C  (6.5) 

after which the balancing transformation matrices are defined as 1/ 2−=T L VΣC  and 
1 1/ 2− −=T Σ U LT T

O . The partition 1Σ  contains the r largest HSVs of the system 

corresponding to the most controllable/observable combinations of states, i.e. the 

combinations that have the largest contribution to the input-output behavior of the system. 

Therefore, for the BT procedure, we choose 1/ 2
1 1r

−= L VΣCV  and 1/ 2
1 1

T T T
r

−= Σ U LOW . The 

HSVs corresponding to the truncated states give an a-priori error bound on the output 

(Enns 1984), written as  
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n

r i

i r

σ
= +

− ≤ ∑y y u  (6.6) 

                                                 
23 Contrary to the balancing procedure described in section 3.3, this approach uses the Cholesky factors of 
the Gramians which can be directly computed, i.e., without explicitly forming the Gramian matrices. 



86  Chapter 6 Reduced-order CRU 

 

This makes the BT approach a rigorous reduction technique, for which the accuracy is 

guaranteed. However, the computation of the Gramians for large systems such as 

reservoir models is often impractical.   

6.2.2. Proper orthogonal decomposition (POD) 

A model reduction method based on POD24 uses the spatial correlation in the states 

(pressures and saturations) to compute a limited number of spatial patterns (directions) in 

the state-space coordinates, which can be used to characterize the dominant dynamical 

variations of the system. These dominant patterns are obtained by selecting the leading 

eigen vectors of the covariance matrix obtained from several fine-scale simulation data. 

The covariance matrix is defined as 

 T ,=X XX  (6.7) 

where 1 2[ ]= − − −X x x x x x x… N  is a shifted snapshot matrix containing N  

shifted snapshots of the fine-scale solution at different points in time for a particular set 

of wells and boundary conditions, with (1 )=x N
1=∑ x

N
ii
 representing the average state. 

Often a simplification is introduced by operating directly on the snapshot matrix 

1 2[ ]N=X x x x… , i.e. without shifting the snapshots. Sirovich (1987) proposed the 

‘method of snapshots’ that avoid the explicit calculation of the correlation matrix. In this 

method, we compute a singular value decomposition of T ,=X UΣV Where U and V are 

orthogonal matrices, and Σ  is a diagonal matrix containing the singular values of the 

snapshot matrix25. In most applications, these singular values decay rapidly and only r of 

them are significant (r<<n ). The reduced bases are then chosen as 

 ,= =Φr r rV W  (6.8) 

where Φr  contains the leading r left singular vectors in matrix U . Note that =Φ Φ IT
r r . 

We choose r POD basis functions based on the definition of a relative ‘energy level’ that 

is present in the snapshots, given by 

 2 2

1 1

/ ,σ σ α
= =

  ≤ 
 
∑ ∑ i

r N

i

i i

 (6.9) 

                                                 
24 Depending on the area of application, POD is also known as Karhunen-Loeve (K-L) and Principal 
Component Analysis (PCA). 
25 The columns of U are also the eigenvectors of the data covariance matrix T ,XX and the diagonal  
Σ contains the square-roots of the corresponding eigen values. 
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where iσ  represent the POD singular values andα  is a fraction of ‘energy’ that we need 

to retain. The bases rV  and rW can be substituted in Eqs. (6.3) and (6.4) to construct the 

reduced-order model.  

POD can be used to obtain efficient projection matrices for large systems resulting in a 

reduction level of the several orders of magnitude. However, unlike the BT, it has no 

quality guaranties and the range of validity of the resulting low-order model is restricted 

to the region of the state-space, where the data have been collected. For a more detailed 

description of the POD method see e.g. Antoulas (2005). 

6.2.3. Balanced POD (BPOD) 

BPOD is based on the idea of combining BT and POD to perform an approximate 

balanced truncation, in which the Gramians are approximated by the method of snapshots. 

Therefore, the method is tractable for very large systems (Willcox & Peraire 2002; 

Rowely 2005). As is shown in Lall et al. (1999, 2002) for the time domain and in Willcox 

& Peraire (2002) for the frequency domain, the POD modes of the impulse response of 

the system are equivalent to the dominant eigen vectors of the controllability Gramian 

and, accordingly,  

 ,≈W XXT
C  (6.10) 

If the snapshots are generated with inputs other than impulses, as is often the case in our 

application, Eq. (6.10) gives an approximation to the controllability Gramian over the 

chosen region of state-space, where the data have been collected (Willcox & Peraire 2002; 

Bui-Thanh & Willcox 2005). Note that in a multiple-input case, the snapshots are 

obtained for each input in turn and they are all stacked in one snapshot matrix26. Similarly, 

the observability Gramian27 can be approximated by 

  ,≈W ZZT
O  (6.11) 

where Z  is the snapshot matrix of an adjoint (dual) system which for a continuous-time 

linear system, is defined as 

 ,T T
c c a= +z A z C uɺ  (6.12) 

                                                 
26 In case of a large number of inputs (outputs), we can also compute a POD input (output) projection basis 
and apply the BPOD technique to the resulting system with reduced number of inputs (outputs) (see Bui-
Thanh & Willcox 2005; Rowley 2005). 
27 The observability Gramian of a system is equivalent to the controllability Gramian of its adjoint (dual) 
system (see e.g. Antoulas 2005). 
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where cA is the continuous-time system matrix, cC is the continuous-time output matrix 

and au  represents the adjoint input.  

Computing the approximate Gramians for a particular set of well and boundary 

conditions involves several training simulations of the forward and the adjoint systems. 

Subsequently, a sufficient number of snapshots of the forward and the adjoint run are 

stored in the snapshot matrices X  and Z . Similar to the BT method and using the 

‘method of snapshots’, we compute the singular value decomposition T T=Z X UΣV . The 

balanced transformation matrices are written as 1/ 2−= XVΣV  and 1/ 2−= Σ U ZT T TW , 

where the diagonal entries of Σ  give the Hankel singular values of the system. Now we 

can choose  

 1/ 2
1 1 ,−= XVΣrV  (6.13) 

 1/ 2
1 1 ,−= Σ U ZT T T

rW  (6.14) 

where 1Σ  contains the r largest HSVs of the system and 1U  and 1V  contain the 

corresponding singular vectors as columns.  

Note that BT and BPOD are both related to the most controllable/observable subspaces of 

the system. However, from a computational point of view, the BT approach is only 

applicable to small system (order of 104 grid blocks). Therefore, the main advantage of 

BPOD is that using the method of snapshots we can calculate an approximate balanced 

transformation without requiring the explicit computation of the Gramians, and since it 

only involves matrix-vector operations, it can be applied to very large systems. Moreover, 

unlike BT, this method can also be used for nonlinear systems such as two-phase flow 

models. However, BPOD requires several training simulations, with different input 

sequences, of the forward and adjoint systems. 

6.3. Model reduction and Control-relevant upscaling  

6.3.1. Reduced-order CRU 

As discussed in Chapter 4, the CRU algorithm tries to reduce the distance between the 

coarse- and fine-scale models by changing the coarse-scale parameters. Since this 

distance is measured by a system norm that represents the controllability and 

observability properties of the system, the CRU algorithm indirectly focuses on system 

parameters that are related to most controllable/observable states of the system. The basic 

idea of reduced-order CRU is to apply the CRU technique to a reduced-order subspace of 

the system that represents to the most controllable/observable subspace of the system (see 
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also Vakili-Ghahani et al. 2008). Therefore, in the reduced-order CRU algorithm, we 

replace the original nth-order fine-scale system by an rth-order low-dimensional 

approximation, where r<<n. The schematic representation of the CRU problem in Figure 

(4.4) is then replaced by the one in Figure  6.1. Otherwise, the reduced-order CRU 

algorithm is the same as the full-order version that was described in section 4.2. The main 

improvement here is that the minimization problem (Eq. 4.1) is accelerated since lower-

order Lyapunov equations have to be solved.  
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Figure  6.1 Schematic representation of the reduced-order CRU problem. 

To determine a reduced-order model we can use the model reduction techniques based on 

POD or BPOD methods described in the previous section. Note that, while BPOD is 

related to the most controllable/observable subspaces of the system, the POD modes 

approximate only the most controllable subspace. Therefore, in applications, for which 

the observability of the system is important, BPOD is recommended. On the other hand, 

BPOD requires several training simulation of the forward and adjoint systems, while the 

POD approach only requires several simulations of the forward model. In both cases, the 

results of POD and BPOD are only valid for a region of state-space, from which the 

snapshots are collected.  

In summary, reduced-order CRU enables the use of the control-relevant upscaling 

approach for large models. However, unlike the original full-order CRU, it requires 

forward simulations and, in case of BPOD, also adjoint simulations of the fine-scale 

model. We illustrate the performance of reduced-order CRU by the following example. 
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6.3.2. Example 6.1 

We consider the reservoir system of Test Case (1) with the production scenario described 

in Example 4.1. To illustrate the performance of reduced-order CRU, we rerun the CRU 

algorithm for Example 4.1, while replacing the fine-scale model with a reduced-order 

representation obtained by POD. The POD bases are computed using 100 snapshots of a 

forward training simulation. The corresponding POD singular values have been plotted in 

Figure  6.2. We chose 6 basis functions to simulate the reduced-order model, such that the 

retained ‘energy’ according to Eq. (6.9) is 99.9999 %. The results in terms of the relative 

error in the average pressure and the cumulative production are given in Table  6.1. 
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Figure  6.2 Singular values corresponding to the POD bases in Example 6.1. 

Table  6.1 Reduced-order CRU performance for Example 6.1. 

 
CRU1-   

H2 
CRU1-
HSH 

CRU1-     
H 

CRU2-    
M 

CRU2-
H2 

CRU2-
HSH 

CRU2-
H 

(%)pe  0.7 0.7 0.6 1.4 1.8 1.1 1.1 

, (%)q cume  0.4 0.5 0.5 5 6.3 0.6 0.6 

Reduced CRU time 
(s) 

10 15 11 10 10 14 12 

CRU time (s) 139 1518 281 10 10 18 13 

 

Comparing Table  6.1 with Table 4.1 shows that, for this example, reduced-order CRU 

gives almost identical results to full-order CRU. A slightly smaller error for some of the 

CRU methods is probably due to a better-conditioned minimization problem when we 

work with a smaller system in the reduced-order case. However, according to rows 3 and 
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4 of Table  6.1, reduced-order CRU can significantly speed up the CRU procedure, 

particularly, for CRU method 1. This is because, using reduced-order CRU, we need to 

solve the Lyapunov equations for a much smaller error system in each iteration. For CRU 

method 2, full-order and reduced-order CRU give identical results so that for CRU2-HSH 

and CRU2-H even the cost function values in each iteration are equal (see Figure  6.3). 

Note that in case of a larger system, for which the exact computation of the Gramians is 

intractable, reduced-order CRU would be beneficial for both CRU methods. 
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Figure  6.3 Cost function values corresponding to different CRU methods in Table 4.1 and 6.1. 

As explained in Chapter 4, the CRU algorithm indirectly focuses on the grid blocks 

which are related to the more controllable/observable subspaces of the system. Therefore, 

in general, using BPOD bases, which also consider the observability of the system, is 

expected to be more accurate compared to ordinary POD bases, which only represent the 

most controllable subspace of the system. Nevertheless, for this example, the most 

controllable directions are sufficient as the controllable and observable directions are 

equivalent. This is evident from Figure  6.4, where we project the first two singular 

vectors (directions) of the controllability Gramian, the observability Gramian and the 

product of them on the spatial grid. Mathematically, this is valid when in Eqs. (3.25) and 

(3.26), =A A AAT T (Farrell & Ioannou 1993). Then, for such a system, WC  and WO  
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have the same singular vectors and the POD directions are equivalent to the balancing 

directions as demonstrated by Figure  6.4 for Example 6.1. For our application this 

implies that control and observation should be exercised at the same points in the 

reservoir. If this is not the case, e.g. when there are only a limited number of wells in 

which rates or bottomhole pressures can be observed, there may be a significant 

difference between the controllable and unobservable subspaces, in which case the use of 

BPOD may have benefits. 
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Figure  6.4 The first two singular vectors (directions) of the Controllability Gramian (column 1), 
observability Gramian (column 2) and the product of them (column 3) in Example 6.1. 

6.3.3. Control-relevant missing point estimation  

As explained in section 6.1, we can construct a reduced-order model of a given high-

order system by projecting the state-space onto a lower-dimensional space using the 

projection matricesrV  and rW . The columns of rV  and rW  give r basis vectors with the 

length of n, where n is the number of grid blocks. Therefore, the construction cost of the 

reduced-order model and, in particular, AT
r rW V  (in terms of both computational time and 

storage requirement) can be further reduced, if we can also reduce the length of the basis 

functions by selecting a number of grid points of the spatial domain28. This idea, known 

as Missing Point Estimation (MPE), was first proposed by Astrid et al. (2004) to model a 

glass feeder. Later Cardoso et al. (2009) applied the MPE approach to reservoir flow 

simulation. In their work, they used a condition number criterion to select the most 

important l grid blocks and, accordingly, they obtained POD basis functions of length l 

                                                 
28 Reducing the construction cost of AT

r rW V  (equivalent to JT
r rW V , where J  is the Jacobian matrix) is 

even more significant in two-phase flow simulations, where there are more than one state variables per grid 
block resulting in high construction time and storage requirement due to a large Jacobian matrix (see 
Cardoso et al. 2009).  
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instead of length n where l < n. More specifically, for the POD bases the relation 

=Φ Φ IT
r r  holds, meaning that the condition number of matrix Φ Φ

T
r r  is equal to one. 

The idea of MPE is to remove a number of grid blocks and the corresponding rows from 

the basis matrix Φr , while allowing the condition number to increase to a specific 

number. The grid blocks are sorted and selected based on their contribution to deviating 

from the unit condition number.  

In a similar approach, here, we consider another criterion to select the relevant grid 

blocks and, subsequently, relevant rows of the basis functions for the input/output 

behavior. In our control-relevant MPE (CR-MPE) approach, we use the spatial 

quantification of controllability and observability (see section 5.2) to select the grid 

blocks related to the most controllable and observable regions of the spatial domain. The 

overall procedure of CR-MPE is as follows. First, the dominant pattern u  is obtained by 

Eq. (5.4) and the grid blocks are sorted based on the magnitude of the corresponding 

elements (rows) of u . Then, the l grid blocks that satisfy Eq. (5.5), i.e. those that are 

located in areas corresponding to highly controllable/observable states are selected. This 

approach can be applied to both POD and BPOD basis functions. To perform the CR-

MPE using POD or BPOD bases, we replace the r × n matrices rV  and rW  by r × l 

matrices ,r lV  and ,r lW , where the l rows of ,r lV  and ,r lW  are related to the selected grid 

blocks. (Note that for the POD bases , ,=r l r lV W ). The MPE and CR-MPE performances 

are demonstrated by the following numerical example. 

6.3.4. Example 6.2 

Consider again the reservoir system of Test Case (1) with one injector and one producer 

that are controlled by time-variant bottomhole pressures. The permeability field and the 

well locations are described in the left part of Figure  6.5. From 100 snapshots of the 

solution of a training simulation, we compute 7 POD basis functions with a length of 400 

elements each. The bases are stacked in the columns of matrix  Φr . We applied both 

original MPE approach (Astrid et al. 2004) and CR-MPE method to select the relevant 

grid blocks. Figure  6.5 and Figure  6.6 show the results for MPE and CR-MPE, 

respectively. In these figures, the first column depicts the log10 permeability field and the 

well locations, the second column shows the grid block importance based on the MPE or 

CR-MPE criteria and the third column illustrates 200 selected grid blocks. In both cases, 

we replace the 400 × 7 bases matrix Φr by a 200 × 7 one. Recall that colors from red to 

blue in the middle part of Figure  6.6 also represents the spatial variation of the 

controllability and the observability of the system. 
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Figure  6.5 Left: Log10 permeability field and locations of one injector (cross) and one producer (dot) for 
Test Case (1) in Example 6.2. Middle: grid importance from red to blue based on condition number. Right: 
selected grid blocks using the original MPE method. 
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Figure  6.6 Left: Log10 permeability field and locations of one injector (cross) and one producer (dot) for 
Test Case (1) in Example 6.2. Middle: grid importance from red to blue based on controllability and 
observability. Right: selected grid blocks using the CR-MPE method. 

Comparing Figure  6.5 with Figure  6.6, we observe that both methods correctly select the 

grid blocks close to the wells, which are more relevant in terms of input-output behavior. 

However, the MPE method also selects some additional grid blocks on the corners far 

from the wells that are related to weakly controllable/observable states (c.f. the middle 

part of Figure  6.6).  Opposedly, the CR-MPE method selects only the input-output 

relevant grid blocks. Therefore, as shown in Figure  6.7, the CR-MPE method slightly 

outperforms the MPE method in simulating the production rates of the system, when 

compared to the original high-order model. 
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Figure  6.7 Production rates in Example 6.2 from the simulation of the original high-order model and two 
reduce-order representations obtained by MPE and CR-MPE. 

6.4. Approximation of the Gramians 

To study the controllability and observability of a reservoir system in either the CRU or 

the CRSC method, we first need to compute the Gramians of the system by solving the 

Lyapunov equations (Eqs. 3.25 and 3.26). Therefore, in this section, we briefly explain 

three different methods to compute the Gramians. An extensive overview of different 

techniques to compute the exact and approximate solutions of these equations can be 

found in Antoulas (2005), Penzl (2006), Markovinović (2009) and the references therein. 

6.4.1. Exact methods 

The first method is to use direct algorithms for small dense Lyapunov equations, such as 

the Bartels-Stewart technique (Bartels and Stewart 1972) and Hammarling’s method 

(Hammarling 1982), which are already implemented in Matlab as functions lyap and 

lyapchol. Such methods rely on an initial Schur decomposition of the system matrix A 

followed by additional factorizations of dense matrices (see Antoulas 2005). Therefore, 

an important shortcoming is a very high computational time and memory requirement 

that make them intractable for large systems (with an order larger than 104).  

6.4.2. Low-rank iterative approximation of the Gramians 

To overcome the computational shortcomings of the exact methods, one may use 

different iterative techniques to approximate the Gramians (see Penzl 2006). Here we 

only mention the alternating direction-implicit (ADI) algorithm that seeks W as the 
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solution of the continuous-time Lyapunov equation + + =AW WA BB 0T T , in an 

iteration step of the form 

 
** 1 * 1

1

1 * * *

( )( ) ( )( )

2 ( ) ( ) ,

µ µ µ µ

ρ µ µ

− −
−

− −

= − + − +  

− + +

W A I A I W A I A I

A I BB A I

i i i i i i

i i i

 (6.15) 

where µ −∈ℂi ( 1,2,3,...=i ) are the shift parameters, Re( )ρ µ=i i  and 0 =W 0 . 

Furthermore, in many cases like in our applications, the eigen values of the Gramians are 

decaying very fast, indicating that there exist accurate low-rank approximations. For each 

Gramian, let T=W LL , where L  is the Cholesky decomposition (square root) of the 

Gramian. For large systems we replace the full-rank Cholesky factor L  by a low-rank 

approximation Lr , where r < n is a rank of L  related to the order of the controllable and 

observable subspaces. Consequently, we only have to store the n r×  matrix Lr instead of 

the dense n n×  matrix W . Therefore, in addition to reducing the computational cost, we 

reduce the memory requirements.  

Rewriting Eq. (6.15) in terms of the low rank approximation of the Cholesky factors 

results in a low rank ADI (LR-ADI) approach. This approach, which has been 

implemented in LYAPACK29, leads to an efficient algorithm that can approximate the 

system Gramians nearly up to machine precision (see example 6.3). The fast and reliable 

LR-ADI approach, therefore, was used to compute the Gramians in most examples in 

Chapter 4 and 5. For a detailed implementation of this method, see Penzl (1999, 2006).  

6.4.3. Empirical Gramians 

Instead of solving the Lyapunov equations, we may approximate the Gramians from the 

numerical simulation data for a particular set of inputs and initial conditions. The initial 

approach was proposed by Lall et al. (1999, 2002). However, they used direct POD 

methods to obtain approximate system Gramians, which is computationally expensive, in 

particular, for large systems as it leads to the construction of two n×n dense matrices. 

Therefore, we use here an alternative formulation that is based on the BPOD (Willcox 

and Peraire 2002; Rowely 2005). In this approach the approximate Gramians are 

computed as described by Eqs.(6.10) and (6.11) in subsection 6.2.3. Note that in our 

application, i.e. using spatial quantification of the controllability and the observability 

properties, we need the columns of 1,−T which are equivalent here to the columns of T
rW  

                                                 
29 LYAPACK is a Matlab toolbox for the solution of large-scale problems in control theory. It uses iterative 
algorithms and it is intended for solving large and sparse Lyapunov equations (see Penzl 1999). Note that 
LYAPCK only solves the continuous-time Lyapunov equations. However, the discrete- and continues-time 
Lyapunov equations have the same solutions (Antoulas 2005). 



6.4. Approximation of the Gramians  97 

 

given by Eq. (6.14). Therefore, we never directly compute the Gramian matrices. In other 

applications a low rank approximation of the Gramians could be formed using 1Σ , rV  

and rW  (see Willcox and Peraire 2002). 

6.4.4. Example 6.3 

To compare the approximate Gramians obtained by LR-ADI and BPOD to the exact 

Gramians, first we consider the small reservoir model of Test Case (1) (see Examples 6.1 

and 4.1). For the LR-ADI method, the low-rank Cholesky factors are computed by 

LYAPACK and in BPOD case we use the snapshots from the solution of the forward and 

the adjoint models. Figure  6.8 shows the square root of first 200 singular values of the 

product of the Gramians (i.e., HSVs) computed by different methods. Evidently, the LR-

ADI approach gives a much more accurate solution compared to the BPOD approach.  
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Figure  6.8 Hankel singular values computed by exact and approximate Gramians for test case (1) in 
Example 6.3. 

Nevertheless, the accuracy in finding the more controllable/observable subspaces seems 

to be sufficient in applications such as the CRSC algorithm that only requires a rough 

approximation of these subspaces. This is illustrated by Figure  6.9 that depicts the 

dominant pattern obtained from the approximate BPOD Gramians for a larger reservoir 

system described in Example 5.1. The resulting mapping is very close to the one in 

Figure 5.5, which was obtained by the LR-ADI technique. In this case, the computational 

time for the LR-ADI and the BPOD methods are 105 s and 52 s, respectively. Note that 
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the BPOD method only involves matrix-vector operations and, therefore, it can be 

applied to very large systems. 

 

Figure  6.9 Visualization of the dominant pattern for controllability and observability variation over the 
spatial domain for Test Case (3); the Gramians were obtained using the ‘method of snapshots’. Colors from 
red to blue represent the grid importance obtained from the scaled weighted sum of the singular vectors 
corresponding to the Hankel singular values of the system. 

6.5. Complexity analysis 

In order to obtain a rough approximation of the computational efficiency of the CRSC 

and CRU algorithms, we investigated the computation of the most expensive operations. 

This includes the computation of the Gramians and the calculation of the Hankel singular 

values (balancing). The balancing step as described in section 3.3 requires a singular 

value decomposition of operation of order n3. However, in practice, we only perform it 

for the first k largest singular values and therefore the computational overhead is in the 

order of k3, where k n≪ . In particular, using the formulation described in subsection 

6.2.1 in combination with low-rank Cholesky decomposition, we may implement the 

SVD on very large matrices. Therefore, the limiting part in the application of CRSC and 

CRU algorithms to large systems is the computation of the Gramians, i.e. the solution of 

Lyapunov equations. 

6.5.1. Computation of the Gramians 

In case of direct Lyapunov solvers, as described in subsection 6.4.1, the solver requires 

arithmetic operations in the order of n3 and storage of several dense matrices of order n, 

i.e., n2 storage. The high storage requirement is because, in addition to producing dense 

Gramians, these methods are based on Schur decomposition of the sparse system matrix 

which produces dense matrices. Consequently, these methods are only applicable to 

systems with an order of <104.  

The second approach is the LR-ADI method, for which the operation requirement is in 

the order of rn where r is the number of columns that are used for the computation. 
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Moreover, the storage cost for this method is much smaller (also in the order of rn). The 

reason is that here we directly work with low-rank Cholesky factors of the Gramians, 

compared to direct methods, in which we need to store the full-rank dense Gramians (in 

the order of n2). Therefore, this is the method that can be also applied to very large 

systems. In particular, for large systems in which the input and output matrices B and C 

have a low numerical rank, i.e. for small numbers of inputs and outputs, the eigen values 

of the Gramians are decaying very fast, indicating that there exist accurate low-rank 

approximations. For instance, Figure 5.3 shows that the Hankel singular values for Test 

case (3) are rapidly decreasing. This means that for this example (n=16384), k can be 

chosen around 100 or even less (note that the y-axis is represented on a logarithmic scale). 

Therefore, the use of the LR-ADI method for this example can considerably reduce the 

computational time and storage requirement, compared to direct methods. 

The last approach was to approximate the Gramians from the method of snapshots or 

BPOD. In this case, the Lyapunov equations are never solved and to approximate the 

Gramians only one SVD is needed of a matrix with dimension ×f aN N , where Nf and Na 

are the number of snapshots from the forward and the adjoint simulations. Therefore, 

assuming =f aN N , the computational overhead is in the order of 3
fN , where often 

fN n≪ . Interestingly, the size of the SVD problem here is independent of n (the number 

of grid blocks) and, therefore, this method can be applied to very large systems. However, 

it requires also several flow simulations over the original fine-scale model and the 

associated adjoint model with operations in the order of n. Note that for large systems it is 

more efficient to use an iterative method to solve this system of equations. For a more 

detailed complexity analysis of different methods for computation of the Gramians, the 

reader is referred to Antoulas (2005) and Markovinovic (2009). 

6.5.2. CRU versus CRSC 

In general, CRSC is a faster approach since it requires no iterations (unless we use an 

approximate initial coarse-scale model to spatially quantify the 

controllability/observability). Moreover, the CRU minimization algorithm requires the 

computation of the gradient of the cost function with respect to the coarse-scale 

parameters which can be very expensive particularly when we use an error system, i.e., in 

CRU method 1, in combination with perturbation-based gradients (We note that 

computation of the gradients can be performed much more efficiently using adjoint-based 

methods but we did not pursue this possibility here). On the other hand, the resulting grid 

from the CRSC algorithm implies the solution of the flow equation on multi-level non-

uniform grids, which requires more computational time and memory space, compared to 
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the flow simulation on uniform cells. In this case, the effective bandwidth of the system 

matrix can be optimized by an extra operation, for which the extra computational cost can 

be neglected particularly for larger systems (see subsection 5.4.3). The other steps in the 

simulation are similar for CRU and CRSC grid systems and the simulation cost is roughly 

related to O(n) for both cases.  

Note that, in any case, the upscaled model needs to be obtained only once (or a few times 

in case of changes in the well configuration) and in an offline part of the simulation, 

whereas many forward simulations of the flow equations may be required in applications 

such as computer-assisted history matching or flooding optimization under uncertainty. 

6.6. Summary 

We investigated the potential benefits of using a model reduction technique (POD) in 

combination with the CRU method. In the example considered, a reduced-order model 

based on POD could accelerate the upscaling procedure particularly for CRU method 1. 

Note that, in general, POD only considers the relation between the inputs and the states 

(controllability), while the goal of simulation is often to predict an accurate output. 

Moreover, a reduction based on only inputs or outputs might be strongly dependent on a 

particular scaling of the states (state-space coordinate), whereas a balanced case is 

coordinate-invariant. Further research is required to address the computational aspects of 

CRU, and the potential use of other model-order reduction techniques in combination 

with our control-relevant upscaling approach. 

The computational efficiency can be also improved by using approximate Gramians. The 

solution of the Lyapunov equations can be approximated by iterative methods followed 

by a low rank Cholesky factorization of the Gramians (e.g., LR-ADI method). 

Alternatively, the Gramians can be approximated from the snapshots of the trajectories 

(states) that the forward system and its adjoint follow when simulating some training 

inputs. The approximate techniques to obtain the Gramians can improve the 

computational efficiency of both CRU and CRSC algorithms, which increases their 

applicability to realistic, large-scale reservoir models. 
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n this thesis, we developed control-relevant uniform and selective upscaling algorithms, 

which are based on the controllability and observability of the reservoir system for a given 

well configuration. This chapter presents the conclusions of the thesis and gives several 

recommendations for future research. 

7.1. Conclusions

Geological subsurface models often represent the subsurface heterogeneity with 106 

to 109 parameters. The major issues with such high-order (large-scale) systems are 

related to both computational and system-theoretical aspects (Chapter 1). In this 

research, we approached the upscaling problem from a system-theoretical perspective 

and we developed two control-relevant upscaling algorithms. In the end, the 

following remarks and conclusions are emphasized: 

• Although different upscaling techniques are available in reservoir simulation, 

most of them lack generality and case independency, as they are only valid under 

certain reservoir and boundary conditions. Moreover, in most techniques, it is 

assumed that the computed coarse-scale parameters, based on a specified set of 

boundary conditions often with no sink/source terms, will be applicable to all 

other flow scenarios. The validity of this assumption is not warranted, seeing that 

in a real reservoir the global flow is often driven by wells rather than by fixed-

pressure or fixed-rate boundary conditions (Chapter 2).  

• For a given configuration of wells, there are only a limited number of degrees of 

freedom in the input-output dynamics of a reservoir system. From a system-

theoretical point of view, this means that a large number of combinations of the 

state variables are not actually controllable and observable from the wells, and 

accordingly, they are not affecting the input-output behavior of the system 

(Chapter 3). 

I 
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• HSVs of a system can indicate those linear combinations of the states that 

represent the most important input-output characteristics of the system, and 

consequently determine the order of the input-output dynamics. Accordingly, they 

can be used to adjust (reduce) the level of the model complexity (or model order) 

to the available amount of control and information for a given configuration of 

wells. Note that the controllability and observability of a linear system is 

independent of the specific values of time-variant inputs, but dependent on well 

configurations (Chapter 3). 

• We introduced a single-phase control-relevant upscaling (CRU) technique that 

minimizes the difference between a fine-scale and a coarse-scale reservoir model 

in terms of system norms that characterize the input/output behavior for a given 

configuration of wells. We defined two CRU methods with three system norms to 

quantify the difference between the fine-scale and the coarse-scale models. The 

definition of the objective function in Method 1 is theoretically more justified, 

while Method 2 is computationally more attractive. In addition, based on the 

examples, the HSH-norm and the H-norm seem to have a better performance 

compared to the H2-norm (Chapter 4). 

• Computation of the largest Hankel singular values of a reservoir model and 

mapping the corresponding directions on the reservoir grid allows for a spatial 

quantification of the combined controllability and observability. For a given 

configuration of wells, the most controllable/observable areas appear to be in the 

vicinity of the wells and in high-permeable areas close to and connected to the 

wells (chapter 5). 

• Control-relevant selective coarsening (CRSC) can be achieved by initial uniform 

coarsening and subsequent selective refinement in areas of highest combined 

controllability and observability. We proposed a multi-level CRSC method to 

allow treatment of very large models with a high degree of heterogeneity in their 

parameter fields. Based on the numerical examples, CRSC can accurately 

reproduce the flow response of the fine scale models for time varying inputs. In 

addition to giving a computational advantage, the selective coarsening gives also 
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more accurate results than a uniformly upscaled model with the same number of 

grid blocks (Chapter 5).  

• For large systems, the CRSC grid can be efficiently obtained by using appropriate 

approximation methods to compute the Gramians, applying a proper grid block 

numbering, optimizing the bandwidth of the system matrix, and using the 

unstructured data approach to optimize the grid data storing and loading during 

the simulation (Chapter 5). 

• Both CRU and CRSC are global methods in the sense that they rely on the system 

properties of the entire reservoir. However, they do not require any forward 

simulation either of the full or of the upscaled model. They also do not depend on 

a particular control strategy but instead use the dynamical system equations 

directly. However, any change in the well configuration (including both well 

locations and the number of inputs and outputs) requires a (partial) repetition of 

the upscaling procedure. Accordingly, these methods are attractive for use in 

computer-assisted flooding optimization or history matching studies for a given 

configuration of wells, and in particular for the combined use of optimization and 

history matching in a closed-loop reservoir management setting, but unattractive 

in applications like well placement optimizations. 

• The use of CRU in conjunction to a model-order reduction technique seems 

promising to obtain a reduced-order CRU algorithm that to a large extent solves 

the computational issues in applying CRU to large-scale reservoir models. On the 

other hand, the spatial quantification of controllability and observability can be 

used to define a new criterion for selecting only the input-output relevant grid 

blocks in a missing point estimation (MPE) process, where we can reduce the 

computational and storage cost of the model reduction procedure by retaining 

only those rows of the basis functions that are corresponding to the selected grid 

blocks (Chapter 6). 

• Current developments addressing the approximate solution of high-order (i.e. 

fine-scale) Lyapunov equations make it likely that CRU and CRSC will be 

applicable to realistic reservoir models with up to 106 grid blocks. Alternatively, a 
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fast approximation of the Gramians can be obtained from sufficient snapshots of 

the simulation data in time. Conceptually, this approach is applicable to any 

realistic large-scale reservoir. However, it requires several high-order training 

simulations, while the resulting low-order model is restricted to the region of 

state-space from which the data have been collected (Chapter 6).  

• Note that in any case the upscaled model from CRU or CRSC needs to be 

obtained only once and in an offline part of the simulation, whereas simulation of 

the flow equation over the resulting coarse-scale grid blocks might be repeated 

many times in different applications. 

• This research was primarily concerned with the system-theoretical aspects of 

upscaling in reservoir simulation. Therefore, the computational efficiency of the 

presented algorithms was not optimized. However, despite its preliminary 

character, the research reported here may offer a new insight into the upscaling 

problem from a system-theoretical perspective. 

7.2. Recommendations 

• The coarse-scale models obtained by single-phase CRU and CRSC can be also 

used for two-phase simulations. Nevertheless, the performance of the methods 

needs to be tested. Moreover, the algorithms can be extended to include two-

phase flow controllability and observability analysis that includes also the 

saturation equation. However, for nonlinear two-phase flow cases, we need to 

either linearize the system, or compute the controllability and observability 

Gramians empirically. The other important issue in two-phase flow cases is to 

deal with moving saturation fronts. Since the saturations are only controllable 

along the front and only observable after water breakthrough in the wells, the 

performance of the CRSC algorithm might be improved by adding (partial) 

dynamic grid adaptations to resolve the strongly controllable/observable areas 

along the moving saturation fronts. Further research is required to evaluate the 

computational benefits of applying the CRSC approach to multi-phase flow 

applications. 
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• Another possible solution to treat saturations in a two-phase flow simulation 

might be applying a multi-scale framework, in which the CRSC grid blocks are 

only used to solve the pressure equation while the saturation equation is solved 

over the fine-scale grid blocks.  

• To efficiently apply the CRU and CRSC algorithms to large reservoir models, we 

could also investigate a local-global framework, in which the reservoir domain is 

divided into several compartments, such that each compartment includes one well 

(or a couple of wells). CRU and CRSC could then be performed on each local 

compartment, for which the boundary conditions are derived from an approximate 

initial coarse-scale model. The procedure should probably be iterated to converge. 

• The accuracy of the CRU and CRSC algorithms might increase by improving the 

controllability and observability of the reservoir system by adding more 

measurement points from monitoring wells, or adding data sources like time-lapse 

seismic. Moreover, adding a near-well upscaling technique would improve the 

results.  

• Despite the presented discussions on the computational aspects of the CRU and 

the CRSC algorithms, further research is required to address undiscussed issues. 

Examples of those are the convergence of the CRU minimization algorithm for 

realistic large reservoirs, performance of the algorithm for gravity-driven or 

aquifer-driven flow, accuracy of the approximate Gramians for different systems,  

combination of CRU with other model reduction techniques (other than POD-

based technique), alternative gridding and discretization strategies for CRSC 

(particularly, in reservoir applications with complex geologies and advanced 

multilateral well configurations), a systematic and optimal choice of the threshold 

value in the spatial quantification of controllability and observability, and 

extending the algorithms to 3D applications. 
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NOMENCLATURE 

List of symbols 

A system matrix 

B input matrix 

C output matrix 

D direct-throughput matrix 

dS surface element 

dV volume element 

E energy  

f fractional flow function 

g acceleration of gravity, Lt-2, m/s2 

G arbitrary pressure gradient, L-2mt-2, Pa/m  

H transfer function 

h thickness, L, m 

I identity matrix 

J well index matrix, L2t/m, m3/(Pa s) 

k counter  

k permeability, L2, m2  

K permeability matrix 

l length, L, m 

l length of MPE basis function 

L Cholesky factor 

M matrix of Markov parameters 

n number of grid blocks 

n unit outward normal vector 

N number of snapshots 

N number of layers in a layered reservoir 

p pressure, L-1mt-2, Pa 

p proportion of permeable medium 

p pressure vector 

q volumetric flow rate, L3t-1, m3/s 
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q flow rate vector 

r number of states in reduced-order model 

S phase saturation 

t time, t, s 

T transmissibility, L2M-1t, m3/(Pa s) 

T transmissibility matrix 

u phase velocity, Lt-1, m/s 

u input vector 

u singular vector 

U matrix of left singular vectors 

V grid block volume, L3, m3 

V accumulation matrix 

V matrix of right singular vectors 

W Gramian 

x distance in the x-direction, L, m 

x state vector 

X snapshot matrix of forward model 

y distance in the y-direction, L, m 

y output vector 

z distance in the z-direction, L, m 

z adjoint state vector 

Z snapshot matrix of adjoint model 

C  controllability matrix 

O  observability matrix 

H     Hankel matrix (impulse response matrix) 

V  left projection matrix 

W  right projection matrix 

µ  shift parameter 

ρ  real part of shift parameter 

ε  threshold value 

Φ  POD bases matrix 

Ω domain, L3,m3 
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Σ system notation 

ΣΣΣΣ    diagonal matrix containing singular values 

φ porosity 

µ viscosity, L-1mt-1, Pa s 

µ universal exponent 

λ eigenvalue 

σ singular value 

ρ density, L-3m, kg/m3 

λ mobility, LM-1t, m2/(Pa s) 

α small number 

Subscripts 

C  controllability 

O  observability 

ε length scale parameter 

a adjoint 

b bulk volume 

c continuous-time 

c capillary 

cum cumulative 

f forward 

f fluid 

h Hankel 

i counter  

k counter  

L coarse-scale (observation) scale, L, m 

l permeability oscillation scale, L, m 

o oil 

p pressure 

q flow rate 

r reduced 

r relative 

r rock 
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t threshold 

w water 

x x-direction 

y y-direction 

α fluid phase (oil or water) 

α auxiliary 

Superscripts 

* coarse-scale parameter 

c coarse-scale variable 

con controllable 

l liquid 

T transpose 

unobs unobservable  

ω arbitrary exponent 

Glossary 

BPOD Balanced Proper Orthogonal Decomposition 

BT Balanced Truncation 

CR-MPE Control-Relevant Missing Point Estimation 

CRSC Control-Relevant Selective Coarsening 

CRU Control-Relevant Upscaling 

CT Continuous-Time 

DT Discrete-Time 

FVD Finite Volume Discretization 

HSH Hilbert-Schmidt-Hankel norm 

HSV Hankel Singular Value 

LR-ADI Low-Rank Alternating Direction-Implicit 

LTI Linear Time-Invariant 

MPE Missing Point Estimation 

POD Proper Orthogonal Decomposition 

RCM Reverse Cuthill-McKee 

TPFA Two-Point Flux Approximation 
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SUMMARY 

Geological models often represent the subsurface heterogeneity by using a large number 

of parameters (106 to 109 voxels). Moreover, the uncertainty of the geological parameters 

is increasingly taken into account by simulating an ensemble of model realizations which 

significantly increases the computational demands, especially when it is also required to 

perform repeated simulations for computer-assisted flooding optimization or history 

matching (e.g., application of reservoir simulation in closed-loop reservoir management). 

This requires an ‘upscaling/order-reduction’ solution that transfers the relevant features 

of a geological model to a flow simulation model such that cost-efficient simulation, 

prediction and control of the fluid flow in the reservoir become feasible. 

In addition to the computational issues, a more fundamental reason for upscaling/order-

reduction is related to system-theoretical concepts like controllability and observability of 

the system which indicate how much of the state-space can be influenced through 

changing the input (i.e., the degree to which the system is ‘controllable’), and how much 

of the internal behaviour of the system can be inferred from the output (i.e., the degree to 

which the reservoir is ‘observable’). In most reservoir applications and for a given 

configuration of wells, there is only a limited amount of information (output) that can be 

observed from production data, while there is also a limited amount of control (input) that 

can be exercised by adjusting the well parameters. From a system-theoretical point of 

view, this means that a large number of combinations of the state variables (pressure and 

saturation values) are not actually controllable and observable from the wells, and 

accordingly, they are not affecting the input-output behavior of the system. In this 

research, therefore, we approach the upscaling problem from a system-theoretical 

perspective, and we aim at adjusting (reducing) the level of model complexity (order) to 

the level of relevant dynamics in terms of input-output behaviour.  

As the first approach, we propose a control-relevant upscaling (CRU) algorithm, in which 

the coarse-scale-model parameters are selected such that the distance between 

input/output behaviors of the fine- and coarse-scale models is minimized. This distance is 

measured in terms of different system norms that characterize the input-output behavior 

of the system. The advantage of this approach is that it focuses on the 

observable/controllable state variables and, therefore, relies on those grid blocks that are 

most important to the input/output behavior of the model.  
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The second approach is a multi-level selective (i.e. non-uniform) grid coarsening method, 

in which the criterion for grid size adaptation is based on the spatial quantification of the 

controllability and observability properties of the reservoir system. In this control-

relevant selective coarsening (CRSC) method the level of refinement for each coarse grid 

block depends on its importance compared to other grid blocks. Based on the numerical 

examples, the CRSC algorithm can accurately reproduce the flow response of the fine 

scale models. Moreover, the selective coarsening gives more accurate results than a 

uniformly upscaled model with the same number of grid blocks. That is the case because 

the most controllable/observable areas, which appear to be in the vicinity of the wells and 

in high-permeable areas close to and connected to the wells, remain unchanged and, 

therefore, global flow patterns and permeability contrasts of the fine-scale model are 

better preserved by the CRSC algorithm.  

Both CRU and CRSC are global methods in the sense that they rely on the system 

properties of the entire reservoir. However, they do not require any forward simulation, 

neither of the full nor of the upscaled model. They also do not depend on a particular 

control strategy but instead use the dynamical system equations directly. However, any 

change in the well configuration (including well locations and the number of inputs and 

outputs) requires a (partial) repetition of the upscaling procedure. Accordingly, these 

methods are attractive for use in computer-assisted flooding optimization or history 

matching studies for a given configuration of wells, but unattractive in applications like 

well placement optimization. 

The use of the CRU technique in conjunction with a model-order reduction method such 

as proper orthogonal decomposition promises CRU application to large-scale reservoir 

models. Alternatively, the computational efficiency of both CRU and CRSC algorithms is 

improved using approximate techniques to obtain the controllability and observability 

Gramians. However, this research was primarily concerned with the system-theoretical 

aspects of upscaling in reservoir simulation. Further research is required to evaluate the 

computational benefits of applying CRU and CRSC to realistic large reservoirs and also 

multi-phase flow applications. Despite its preliminary character, the research reported 

here may offer a new insight into the upscaling problem from a system-theoretical 

perspective.



 

 123 
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Het aantal modelparameters waarmee de heterogeniteit van de geologische ondergrond 

wordt gekarakteriseerd is vaak heel groot (106 to 109 voxels). Bovendien wordt de 

onzekerheid betreffende de geologische parameters in toenemende mate opgevangen door 

simulaties van een ensemble van modelrealisaties, hetgeen de vereiste rekenkracht 

significant doet toenemen. Dit is in het bijzonder het geval wanneer de (ensemble-

)simulaties herhaaldelijk uitgevoerd dienen te worden in het kader van een 

computerondersteunde reservoiroptimalisatie of history matching (parameterschatting) 

zoals, bijvoorbeeld, in een “closed-loop reservoir management” toepassing. Dit vraagt om 

een “opschalings-/orde-reductie” oplossing die de relevante kenmerken van een 

geologisch model vertaalt naar een stromingsmodel, zodat een efficiënte simulatie, 

voorspeling, en beheersing van de vloeistofstroming in het reservoir haalbaar worden. 

Behalve de rekenkundige aspecten zijn er ook meer fundamentele redenen voor 

opschaling/orde-reductie, die verband houden met systeem-theoretische concepten zoals 

‘regelbaarheid’ en ‘waarneembaarheid’ van het systeem, waarmee respectievelijk 

aangegeven wordt hoeveel van de toestandsruimte vanaf de systeemingangen te regelen 

valt en hoeveel van het inwendig dynamisch gedrag van het systeem uit 

uitgangsmetingen bepaald kan worden. In de meeste reservoirtoepassingen en voor een 

gegeven puttenconfiguratie is er namelijk slechts een beperkte hoeveelheid informatie 

(uitgang) die uit productiedata waargenomen kan worden. Aan de andere kant is er ook 

slechts een beperkte mate van besturing (ingang) mogelijk door het regelen van de 

putparameters. Vanuit een systeemtheoretisch oogpunt betekent dit dat een groot aantal 

combinaties van de toestandsvariabelen (drukken- en saturatiewaardes) vanuit de putten 

feitelijk onregelbaar en onwaarneembaar zijn, met als resultaat dat ze het ingang-uitgang  

gedrag van het systeem niet beïnvloeden. In dit onderzoek wordt het 

opschalingsprobleem derhalve vanuit een systeemtheoretische perspectief benaderd, met 

als doel het verlagen van het complexiteitsniveau van het model (d.w.z. het reduceren van 

de modelorde) tot het niveau van relevante dynamica met betrekking tot het ingang-

uitgang gedrag van het systeem. 

In de eerste aanpak stellen we een “control-relevant” opschalingsalgorithme (CRU) voor, 

waarin de grove-rooster parameters zo geselecteerd worden dat de afwijking van het 

ingang-uitgang gedrag van het grove-rooster model ten opzichte van het gedrag van het 

fijne-rooster model geminimaliseerd wordt. De afwijking wordt gedefinieed met behulp 
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van verschillende systeemnormen die het ingang-uitgang gedrag van het systeem 

karakteriseren. Het voordeel van deze aanpak is dat het zich focust op de 

regelbare/waarneembare toestandsvariabelen/combinaties en zich derhalve op die 

roosterpunten richt die voor het ingang-uitgang gedrag van het model het meest 

belangrijk zijn.  

De tweede aanpak is een multi-level selectieve (d.w.z., niet-uniforme) rooster-

opschalingsmethode, waarin het roosteradaptatiecriterium gebaseerd wordt op de 

ruimtelijke kwantificatie van de regelbaarheids- en waarneemaarbaarheidseigenschappen 

van het reservoirsysteem. In deze control-relevante selectieve opschalingsmethode  

(CRSC) hangt het verfijningsniveau voor elk roosterpunt af van zijn gewicht in 

vergelijking tot andere roosterpunten.  Numerieke voorbeelden geven aan dat met behulp 

van het CRSC algoritme de stromingsresponsie van het fijne-rooster model nauwkeurig 

gereproduceerd wordt. Bovendien levert de selectieve opschaling nauwkeuriger resultaten 

dan een uniform opgeschaald model met hetzelfde aantal roosterpunten. Dat is het 

resultaat van het feit dat de meest regelbare/waarneembare gebieden, dat wil zeggen de 

gebieden dichtbij de putten en in hoogdoorlatende zones dichtbij en verbonden met de 

putten, in een selectieve opschaling onveranderd blijven. Globale stromingspatronen en 

doorlatendheidscontrasten worden met het CRSC algoritme daardoor beter behouden.  

Zowel CRU als CRSC zijn globale methoden in de zin dat ze berusten op 

systeemeigenschappen van het hele reservoir. Ze vereisen echter voorwaartse simulatie 

van noch het volle noch het opgeschaalde model. Ze zijn ook onafhankelijk van de 

regelstrategie en maken rechtsreeks gebruik van de vergelijkingen van de 

systeemdynamica.  Elke wijziging in de putconfiguratie (zowel wat betreft putlocaties als 

het aantal van ingangen en uitgangen) vereist echter  een (gedeeltelijke) herhaling van de 

opschalingsprocedure. Deze methoden zijn derhalve aantrekkelijk voor gebruik in 

computergesteunde optimalisatie of history matching studies voor een gegeven 

putconfiguratie, maar niet voor toepassingen in putplaatsingoptimalisatie.  

Het gebruik van de CRU techniek in combinatie met een model-orde reductie methoden 

zoals “proper orthogonal decomposition” opent mogelijkheden voor het toepassen van 

CRU op grootschalige reservoir modellen. Als alternatief is de rekenefficiëntie van zowel 

CRU als CRCS algoritmen te verbeteren door gebruik te maken van benaderende 

technieken voor het verkrijgen van de regelbaarheids- en waarneembaarheids-Gram 

matrices. Het huidige onderzoek was primair gericht op de systeemtheoretische aspecten 

van opschaling in reservoirsimulatie, en verder onderzoek is nodig om de rekenvoordelen 

te evalueren van het toepassen van CRU en CRSC op realistisch grote reservoirs alsook 
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meerfasestroming toepassingen. Ondanks zijn voorlopige karakter levert het 

gerapporteerde onderzoek een nieuw inzicht op in het opschalingsprobleem vanuit een 

systeemtheoretische invalshoek. 
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