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1. CHAPTER: INTRODUCTION
-

This thesis concerns the application of system-#texa techniques in reduced-order
modeling, to upscaling of grid-based reservoir ni@d€he main research question is
related to the optimal level of complexity requiredsimulate, predict and control the flow
behaviour in porous media. We start from an ovevwié the classical upscaling techniques
in reservoir simulation, and then we develop a ffiedligrid-based upscaling algorithm that
is based on control-relevant properties of the rkese model. Finally, we explain several
order-reduction techniques and investigate thernpialebenefit of using them in combination

with our control-relevant upscaling approach.

1.1. Petroleum production

‘Petroleum production’ involves diverse technolagiéor exploration, drilling, and
production of oil and gas from a petroleum reservAi‘reservoir’ is a body of porous
sedimentary rock formations that contain naturaltgurring hydrocarbons (mainly oil
and gas). These hydrocarbons have been trappedg®rmeable rock layers in the deep
subsurface, resulting in a very high pressure amperature of the order of hundreds of
bars and hundreds of degrees centigrade, respgctindially, the oil is produced by
natural drive mechanisms of the pressurized reserveferred to as ‘primary
production’. As the oil and the gas are producée, teservoir pressure is depleted.
Injecting of another fluid (mostly water or gashaaaintain the pressure and push the
hydrocarbons out of the reservoir. Nevertheless,tyipical ultimate oil recovery for a
reservoir is up to around 40 percent of its initiddin-place.

The increase in worldwide energy demand and thengecf easy-to-produce oil and gas
resources in recent years have motivated the eatmarand production (E&P) industry
to look for expensive enhanced oil recovery (EO&t)itsons, such as foam and polymer
injections and thermal methods, and to move to-higihdevelopment areas like offshore
production in deep water. This has also resultedninntense research in understanding
complex fluid flow mechanisms and, in particulagivanced numerical reservoir
simulators.
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The goal of a ‘reservoir simulator’ is to build adel of the reservoir that represents the
true system such that it can be used to predictcamdrol the flow behaviour in the
subsurface. The simulator is built on a reservoodet that includes physical flow
relations and different data from geological intetption, seismic interpretation and
reservoir characterization, as well as the assegtiahcertainty. Usually, the simulator is
scaled up to a coarser representation during ascalimg’ step and it is calibrated based
on historic pressure and production data in a m®ceferred to as ‘history matching’.
Figurel.1l shows the schematic workflow of reservoir modglMultiple geological and
production scenarios then can be simulated to staledt the behaviour of fluid flow over
time in each setting.

Physical fluid model

(PDEs - ODESs) ,—>S|mgla't|0n and
prediction

A ]

Upscaling
History matching

Reservoir data |—> Control

(geology, seismic
well & fluid data, etc.)

Figure 1.1 Reservoir modeling workflow.

1.1.1. Reservoir management

Nowadays, ‘reservoir management’ is an integrateckflow that covers reservoir life-
cycle from exploration to abandonment. The ultimgtal is to maximize the oil
production or another economic objective and redteerisk of failure, particularly in
expensive high-risk E&P projects. In this workfloreservoir simulation plays a central
role in aligning the primary seismic, geologicatlajeophysical data with the production
data through ‘model-based optimization’ and ‘magedating’.

In model-based optimization, the oil recovery pssces optimized using the predictions
from the reservoir model. This optimization can gerformed for different objectives
(e.g., the number and locations of wells, or in@dproduction rates), as well as
different time cycles to improve the field perfonmca and economics. A typical
application is in dynamic water flooding optimizatiover the life-cycle of the reservaoir,
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where the scope of the flooding process can bestmated through a model-based
optimization framework (Brouwer & Jansen 2004). dach a process, an objective
function (e.g., cumulative oil production or NeteBent Value) of the scenario is
optimized by changing the controls of the mode. (iwater injection rates or down-hole
valve settings). More details of this activity che found in, e.g., Ramirez (1987),
Brouwer (2004), Sarma et al. (2005), Jansen e(2808), Markovinow (2009), and
Zandvliet (2008).

As the oil and gas are produced from the reservaw pressure and production data
become available. In particular, the introductioh ‘emart wells’, with down-hole
measurement sensors, and ‘4D (time-lapse) seismpiovides an abundance of
measurement data. This data can be used for thelmapdating step, also referred to as
‘data assimilation’ or ‘automated history matchingd obtain a more accurate and
reliable simulator. A systematic approach is tarfa ‘variational’ problem, in which the
controls are formed by unknown reservoir parameters., permeability and porosity
values, while the objective function is defined terms of the mismatch between
simulated and measured production data (Li et @032 Rommelse 2009). Another
approach that allows the updating of uncertainestah large nonlinear models is
ensemble Kalman filtering (EnKF). This techniqueliries the model error by taking an
ensemble of model realizations, and updates the stctor at every time that a new
measurement is available. For the application oKFEnn reservoir engineering see
Neevdal et al. (2005), Evensen (2009) and Romme&889), where in the latter an
overview of different data assimilation techniqigealso provided.

Closing theloop

Sequential data assimilation and computer-assigpéichization at every time that new
measurements become available leads to a ‘closg+leservoir management approach
(Jansen et al. 2005). The process involves theotiseveral realizations of simulation
models during the producing life of a reservoir fiear-continuous flooding optimization
based on frequently updated reservoir models (spad-1.2). Brouwer et al. (2004),
Naevdal et al. (2006), Sarma et al. (2006), Jaesah (2009) and Chen & Oliver (2009)
reported successful application of the closed-lammtrol approach, although the
resulting reservoir performance has been only edatlby numerical simulations.
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Noise Input System Output Noise
> (reservoirs, wells >@ >
and facilities)

v

»

Optimization

: Sensors
algorithms | | _____f T b ____
0 ] -
/" . \\\\
/ Up/down|scaling \
'\ Reservoir models  [* \,qilreduction Geological models )
\\ coarse-scale/low-order fine-scale/high-order |-~
- | =mT== E 3
R | ismi
_| Data assimilation Geology, seismic,

well data, well test,

algorithms fluid properties, etc.

Figure 1.2 Closed-loop reservoir management (after Jansah 2009).

The outcome of closed-loop reservoir managemer e ideal case, a set of multiple
potential development scenarios with associatddai&l economic analysis, resulting in
improved decision makings and increased returns homan asset and capital
investments.

1.1.2. Upscaling/model reduction

As a precursor to flow simulation, reservoir data eollected from different sources with
various temporal and spatial scales. For examplkxetare core measurements in the
order of centimetres, well log measurements indtfuer of tens of centimetres, and well
test and seismic data in the order of meters. Thas® are integrated into a system of
numerical grid blocks that should represent thehhapmplexity of the geological
environment with heterogeneities of different splagcales, and also the associated
uncertainties. The results are geological reabnatiwith tens to hundred layers and
around 18 to 10 grid cells. Adding nonlinear dynamical flow relat® with different
flow mechanisms that vary over spatial and tempstales makes the efficient and
accurate modeling of the flow behaviour on suchaitkd models computationally
extremely challenging. Therefore, in addition te thodel updating and the optimization
elements, reducing the complexity of reservoir ni@dérough an ‘upscaling/model
reduction’ step is another essential part of tlseaxdl-loop reservoir management concept.
This part, as depicted with the dashed oval in f&du2, is the main focus of our
research.
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1.2. Problem statement

1.2.1. Issueswith large-scale models

Geological subsurface models often represent theustace heterogeneity with %L
10° parameters (‘voxels’). The major issues with shigh-ordet (large-scale) systems
are related to computational costs such as CPU & storage requirements, and
system-theoretical properties like controllabiliphservability and identifiability of the
system.

Computational costs

Notwithstanding the rapid increase in cluster cotmgu power is facilitating the
simulation of more sophisticated and detailed resemodels, the increasing resolution
and multi-scale complexity of geological models oirme keep the quest for faster and
more efficient reservoir simulators ongoing. Moregwhe uncertainty of the geological
parameters is increasingly taken into account lgukiting an ensemble of model
realizations which significantly increases the camational demands, especially when it
is also required to perform repeated simulations ¢omputer-assisted flooding
optimization or history matching (e.g., applicatioihreservoir simulation in closed-loop
reservoir management). This requires an ‘upscandgt-reduction’ solution that
transfers the relevant features of a geologicalehtia flow simulation model such that
cost-efficient simulation, prediction and contréltbe fluid flow in the reservoir become
feasible. The model size is often determined suwt the flow simulation can be
performed within a practical time frame. At presetamputational limits of reservoir
flow simulators restrict the model order to typlgal0* to 10 (depending on the type of
the model).

System-theor etical properties

The input into the upscaling/model-reduction prables itself an uncertain set of data
which are often obtained by geostatistical intempiohs of a limited amount of direct
measurements (mainly adjacent to the wells), amtleimes from indirect global
measurements such as seismic inversions. Therdéora, given configuration of wells,
there are only a limited number of degrees of foeedh the input-output dynamics of a
reservoir system. From a system-theoretical pdintew, this means that a large number

! Here, the model order (dimension) is defined as riimber of time-dependent variables (i.e., state
variables such as grid block pressures, saturatipaemponent accumulations) which is typically &co

the number of active grid blocks times the numberomnponents (i.e., hydrocarbon components andrjvate
in the simulation. The number of time-independemtdel parameters is usually of the same order of
magnitude because they are also proportional totimeber of grid blocks (e.g. grid block permeaigitit
and porosities).
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of combinations of the state variables (pressuck saturation values) are not actually
‘controllable’ and ‘observable’ from the wells, aadcordingly, they are not affecting the
input-output behavior of the system (ZandvlietleRA08).

The problem with the uncontrollable/unobservabledewis two-fold. Firstly, they may
waste computational effort. Secondly, they may leadl-posed inverse problems and
even wrong answers (Skogestad & Postlethwaite 2A0tjulas 2005). More specifically,
in model updating or in history matching we arelidgawith a very large number of
model parameters and states that need to be atljiesteatch the model predicted data
with the real measurements. This is inherentlyllgposed problem due to the relatively
small  number of measurements and, therefore, pcesenof  an
uncontrollable/unobservable system.

In conclusion, in most reservoir applications, toatrollable and observable subspaces
are rather small compared to the total system-sfadee, in which case the complexity
level of the model can be reduced by leaving ow timcontrollable/unobservable
subspaces.

1.2.2. Research objective

Although considerable research has been devotegdoaling techniques in reservoir
engineering to overcome the computational limitsthed simulator, fewer efforts have

been put on studying the issues related to the@emievant properties and adjusting the
complexity of the reservoir model to the availablmount of control and information.

Therefore, the main objective of this research gmjs to replace a fine-scale (high-
order) reservoir model with an ‘optimal’ represeiaia, based on the control-relevant
properties of the system. The optimal model shiyelch coarse-scale (low-order) system
that preserves the essential properties of thenatignodel in terms of input-output

behaviour, while reducing its computational compiex

1.2.3. Approach

Various approaches have been developed over the&@eades to reduce the complexity
of a system model. The most widely used technideesreservoir simulations are
classical grid-based upscaling methods that vaoynfisimple averaging methods on
uniform Cartesian cells to sophisticated flow-basedhniques on adaptive and
unstructured grids (for an overview see e.g., Weal.e1996; Renard & Marsily 1997;
Durlofsky 2005). In most cases, the coarse-scalanpeters are approximated based on
fine-scale parameters and/or some local flow catauts, subjected to generic boundary
conditions. Therefore, the performance of thesehous often depends on the choice of
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the local boundary conditions and may not adequatapture the key features of the
fine-scale flow behaviour, especially in the nealhwegion (Durlofsky et al. 2000).

System-theoretical model reduction techniques siscproper orthogonal decomposition
(POD) appear to provide another helpful tool toueethe complexity of a large-scale
model (Heijn et al., 2004; Antoulas 2005; Gildin08) Markovinové 2002 and 2009). In
these methods, we use the spatial correlationarstates (pressures and saturations) to
compute a limited number of spatial patterns (dioes) in the state-space coordinates,
which can be used to characterize the dominant rdigs variations of the system.
These dominant patterns are obtained by selechiegld¢ading eigen vectors of the
covariance (correlation) matrix of several finelscgimulation data. We can then project
the high-order system of reservoir equations dméodominant spatial patterns to obtain a
reduced-order model. Reparameterization of the eehitity field is somehow a similar
technique that benefits from the spatial corretatrothe model parameters to reduce the
dimension of the parameter spa&al{ni & Horne 2005; Sarma et 2007; Jafarpour &
McLaughlin 2007; Van Doren et al. 200@lthough these methods might outperform the
grid-based upscaling techniques in terms of issekded to the system properties, they
often lead to a non-physical reduced-order modeledver, in strongly nonlinear cases,
reducing the dynamical order might not necessaeitiuce the computational complexity
as the expensive nonlinear reduction step may teebd repeated during the simulation.

Recent advances in multi-scale methods also sed&® poomising to address the issue of
scales. In this approach, different grid blocks arged for flow and transport
computations. Therefore, fine-scale information niey used at various stages of the
simulation, though it might require a large memoapacity to carry the fine-scale data
through the multi-scale simulation (Hou & Wu 199&arnes 2004, Gerritsen &
Durlofsky 2005).

The present study focuses on system-theoreticactspf grid-based upscaling, whereby
we develop an upscaling methodology that coarseasdservoir model based on the
relevant level of control and information; i.e. nt@llability and observability properties
of the system. The main benefit of this approachhat, unlike in most reduction
techniques, the approximated model is still in gsptal space, while for most cases that
we investigated it outperforms the classical graddd upscaling techniques in terms of
input/output behavior. Different algorithms, recunrents and limitations of this control-
relevant approach are presented in this thesis.
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1.2.4. Thesisstructure

We started the thesis by a general introductiorpeétroleum production and a brief
description of the research problem. Ghapter 2, we present the governing flow
equations, followed by an overview and discussibvarious upscaling methods that
have been developed in both hydrology and resesumiulation.Chapter 3 is devoted to
derivation of linear ‘state-space formulation’ ofr@servoir system. Furthermore, some
system-theoretical properties like controllabilignd observability are discussed to
understand how much of the state-space can bea@dicdm the input side, and how the
internal behaviour of the system can be obtaineth fthe output information. We use
these properties i@hapter 4 to develop a ‘control-relevant upscaling (CRU)aaithm’
that indirectly uses the controllable and obsemaidrt of the system to determine the
coarse-scale parameters. The accuracy of the toetevant approach is further
improved inChapter 5 by leaving out the controllable/observable partshef reservoir
domain and scaling up only the uncontrollable/ueobsble parts. This is referred to as
‘control-relevant selective coarsening’ or, in ghahe ‘CRSC algorithm’Chapter 6
explains some system-theoretical reduction teclmsgand investigates the potential
benefit of using them in combination with the CRbldaCRSC methods. Finally, the
conclusions and the recommendations for the fuesearch are given @hapter 7.



2. CHAPTER: FLOW MODELING AND UPSCALING FOR
RESERVOIR SIMULATIONS

This chapter provides a brief explanation of theegoing equations that describe the
fluid flow behaviour in porous media, followed by averview of current upscaling

techniques in reservoir simulation. Particularrttn is paid to single-phase flow equations
and single-phase numerical upscaling methods asdte frequently used throughout this

thesis.

2.1. Flow modeling

We consider simplified partial differential flow egtions and their spatial and temporal
discretization to model fluid flow in porous medi@erivations of the equations are
mainly borrowed form Aziz & Settari (1979) and Peaan (1977).

2.1.1. Governing equations

The fundamental equation that models the isotheamdlimmiscible multi-phase flow in
porous media is the continuity (mass conservagagpigtion, given by

%(msn)m-(paua) = P G, (2.1)

wheret is time, @ is porosityp is density,Sis the phase saturatiog, represents source
(sink) term expressed as volumetric flow rate (tiggdor production), and denotes the
fluid velocity. In a two-phase flow system, subptti refers too for the oil phase and

for the water phase. For low velocities, insteathef momentum balance, we may relate
the fluid velocity for each phase to the fluid m@®p and gravity forces through the
empirical relation of Darcy, written as

_ka

a

Ug = K.O(ps — £292). (2.2)

In this equationy is viscosity, k., is the relative permeability of phaseK is a diagonal
absolute permeability tensog, represents the gravitational acceleration, and the
distance in the direction of gravity. Note that mwhough the permeability tensor is
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generally a full tensor, we can often align the rdomate directions to the geological
layering in the reservoir such that we obtain agdmal permeability tensor
K(x v, 2= diag K, K, K).

More equations are given by closure relations Fer phase saturations and capillary
pressures written, respectively, as

S+ 5 =1 (2.3)
Pe = Po — Pu- (2.4)

For simplicity, we assume that the paramekei@ndu are pressure independent, while
andp are related to the pressure by isothermal relgtion

Q(p) _,O_ap’ (2.5)
_10¢ 26
cr(p) —w—ap, (2.6)

where ¢ is the isothermal liquid compressibility andis the rock compressibility.
Moreover, the phase mobility is defined &s=k., /i, , and the fractional flow is
fw(Sw) = Aw/(Aw+A) . Therefore, from Eqgs. (2.1) to (2.6), the presdfi@v) and the
saturation (transport) equations are correspohdgigen by

0

ma—fm-[—AwK-D(m—pwgz)—/\oK O(p-p.93= ¢ (2.7)
S, _

(/)WHZI.[ fu (U + K Ope + Ao (Ow= 0o) K 02)| = G (2.8)

Here, the total flow rate, velocity and compredsibiare correspondingly defined as
g=0v*+ @, U=U,t+U, andc =S, (;v+(1— s,) ¢+ ¢. The saturation equation clearly
explains three different forces involved in fluldW. These are viscous forces, expressed
by the termq, =0.[ fuu], capillary forces, represented by the tegn® O.[ fuAK .Opd],

and gravity forces, given bg, = IZI.[ fudo(Ow— 00o) IK .Elz]. The influence of each force
depends on flow rates and reservoir heterogenditiames et al. 2007). In the absence
of the capillary and gravity forces (i.epw = p, 0z=0), the simplified pressure
equation describing an immiscible incompressible-phase flow is written as

9
P

o -0.4K.Op)=¢a (2.9
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2.1.2. Single-phase flow equation

In most cases, there is more than one fluid phaseept in the reservoir system.
Nevertheless, there are some examples such asgsairs, or oil reservoirs in an early
production stage, for which there is only one phaesent. Moreover, single-phase flow
simulation, as the simplest way of describing flowa porous medium, is used in
simplified fundamental studies such as upscaling.

Combining Egs. (2.1) and (2.2) for slightly commibte rock and fluid, and in the
absence of the gravity force, we obtain the singaikingle-phase pressure equation as

ct%—ljl.(iK.IZIp)= o} (2.10)
ot U
This form of the pressure equation is very simtlarthe two-phase pressure equation
(2.9), except for that is replaced I/ 1. They also take the same form in case of a unit
mobility ratio, where tp, = tiy , ke =S, and A =1/, =1/, . From the similarity
between single- and two-phase pressure equatiorescan conclude that single-phase
upscaling approaches might be sufficient and agblefor more general cases of multi-
phase flow simulations. This is particularly vait low degree of coarsening, i.e., one or
two orders of magnitude reduction in the numbergafl cells (Durlofsky 2005).
Therefore, a simplified form of Eq. (2.10) for digestate incompressible single-phase
flow is often used in upscaling procedures.

2.1.3. Discretization

Spatial discretization

Consider a two-dimensional horizontal reservoir domwith regular rectangular grid
cells, where the grids are aligned with the priatipoordinate axes. We use a flux-
continuous finite volume discretization (FVD) tohs® the single-phase flow equation
over the given domain (Edwards & Roger 1998; Pall &006). In this method, physical
values are represented as averaged values ovaerta fiumber of control volumes
denoted here b . Conservation of mass, thus integrating Eq. (2Mer each control
volume, gives

I(%(W)jdVJFI(D-(,OU)) dv=[(pq v, (2.12)

wheredV denotes a volume element. Using the divergenagéhe and Darcy’s law, and
assuming slightly compressible rock and fluid vigtal compressibility o, we obtain
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oM +24: j (—%K(x yOpn d$ gV (2.12)

k=1 5Q;,

wheredS denotes a surface element,is a unit outward normal vector @, and
0Qi (i=1,2,3,4) surrounds the control volurf®. This equation simply states that the
total fluxes to or from the four neighboring comtvolumes are equal to the source and
accumulation terms. For a diagonal permeabilitgoenhe flux integral at each boundary
can be approximated by a two-point flux approximat{TPFA) approach, resulting in
the classical five-point scheme in a two-dimensiopeoblem. In case of a full
permeability tensor, a 9-point scheme in 2D andp@nt scheme in 3D can be
implemented (Aavatsmark 2002).

In TPFA the flux of each boundary is related to ¢eé-centered pressures of two blocks
that share that boundary. For grid blockshdi-1, this relation can be derived from the
continuity of the pressure at the interface andm&written as

G-vz2j =~ F-12i (P-3 = Pj.), (2.13)

whereT_,; is the transmissibility between two grid blocksfided as
1 2Ki—1’j Ki ,j

Ti—1/2,j =—

HOAGKi ) +AX K

AyAz (2.14)

This can also be seen as a local upscaling proioléwo adjacent half grid blocks, where
the upscaled permeability at their interface isaot#d by distance-weighted harmonic
average of thex component of the permeability tensor in the gridcks i andi-1
(Edwards & Roger 1998). The transmissibility redatifor other interfaces is defined
similarly. Eventually, for a system ofgrid blocks, we can compute the flux integral in
(2.12) by Eq. (2.13) and writerelations in the matrix form of

annp <1 +Trr<rp 1 :q x1, (215)

whereV is a diagonal accumulation matrik,is a symmetric transmissibility matrig, is
the pressure vector, ang represents the source/sink vector that inclugésvalues for
all grid blocks.

Furthermore, we need to set boundary conditiortt@inodel. For reservoir simulation
purposes, the boundary conditions are usually pbestin two types (see Aziz & Settari
1979). In the first one the pressure values atbitvendaries are specified (Dirichlet),
whereas in the second typp/dn over the boundaries is given (Neumann). Heris, an
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outward normal unit vector. Using Darcy’s law, bdirichlet and Neumann boundary

conditions can directly or indirectly be expressederms of fluxes and added to the
source/sink term in the right hand side of Eq.%2.The simplest boundary condition is
to assume no flow across all boundaries. This méaatsthe velocity vector normal to

the boundaries of the reservoir as well as thestméssibility through them is zero.

Consequently, the flow into or out of the systenotidy occurring through source/sink

terms (wells). Nevertheless, for incompressiblggleifphase flow equation, a pressure
value has to be specified in at least one poiobtain a unique solution.

Timediscretization
We approximate the accumulation term in Eq. (212)

9P g 4y = PKHD - KK (2.16)
dt At

wherek is the time-step number. Moreover, we choose vazi@s the initial condition
(pressure) of the reservoir. Eg. (2.16) is solvgdan implicit Euler method that in
contrary to an explicit Euler approximation regsire limitation on the time step size to
guarantee the stability of the numerical model. Eesr, even in the implicit time
discretization scheme, we need to be aware of hgsipal smearing effects due to very
large time-step sizes.

2.2. Upscaling

2.2.1. Introduction

Reservoir simulators are established from detaidgblogical models, which are
themselves often a result of several geostatistiealizations of petrophysical and
geological data with different temporal and spat@dles. Even though the resulting high-
resolution geo-model (that typically consists of 110 cells) is still unable to present
all existing small-scale heterogeneities in thaesys it is simply too fine to be used in
existing simulators, which can typically handle ratsdwith grid cells of the order of up
to 1. Therefore, ‘upscaling’ for reservoir simulatios defined as a procedure of
transferring flow and transport processes from taildel fine-scale model to a more
practical and courser one (Durlofsky 2005). Thisgedure includes both equations and
properties of the reservoir system. The propettebe scaled up are static parameters
such as absolute permeability, porosity, net tsgrand connate water saturation, and
dynamic properties like relative permeability argpiiary curves. The upscaling process
should be implemented in a way that it is managedl existing reservoir simulators,
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yet take into account the effect of heterogenedias$ geological complexities in the flow
and transport simulation. In other words, an appatg upscaling technique aims at an
optimum compromise between the quality of simutatimd the required computational
time.

The correctness criterion of an upscaling procedsirgften the equality of flow for a

given potential (Renard & Marsily 1997; Gueguerakt2006). Accordingly, the coarse
model should be capable of reproducing the maieaspf the fine-scale flow behavior
such as flow rates, averaged pressures, averagedtsgms, and breakthrough times.
However, all coarsening procedures introduce arefsncy and loss of detail in the
numerical model due to the uncertain definitiontleé boundary conditions and the
geological heterogeneities in the coarse-scale m8tedy of upscaling techniques is not
new, but still an ongoing research area as it @a bignificant source of the simulation
error, when it is done improperly.

2.2.2. Coarse-scale equations

In general, there are some flow features such aardical or non-equilibrium effects in
the coarse-scale processes that are not presenthen small-scale description
(Hassanizadeh et al. 2005). Therefore, in an ap@tepupscaling procedure, both
equations and parameters need to be scaled upseCs@ale equations are often derived
by using procedures such as homogenization andnlaveraging. Nevertheless, in
most reservoir practices, the resulting coarsees@uations from homogenization
analysis follow mathematically the same form as fine-scale equations with the
difference that the fine-scale parameters are cegldy upscaled (effective) ones (Saez
et al. 1989; Durlofsky 1998). Therefore, it is gudommon to assume that, for instance,
Darcy’s law is valid for both fine- and coarse-gcaimulations, and only new upscaled
permeability values need to be calculated. AccalginEq. (2.10) for course-scale
modelling of a steady-state incompressible singlase flow can be rewritten as

—D.(%K*.Dp°)= q°, (2.17)

where superscripts asterisk andesignate an upscaled parameter and upscaledlearia
respectively. In fact, during the upscaling processiations of the permeability tensor
K in Eqg. (2.10) over the scale at which the fineleseguations are valid, are averaged or
homogenized to obtain an equivalent or effeciVeover the coarse grid block scale.
Note that depending on the upscaling techniquerdbelting permeability matrix might
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be a full tensor even if the original fine-scalameability tensor is diagonal (see e.g.
Durlofsky 1991).

The terms ‘effective’, ‘equivalent’ and ‘block’ pameters have been frequently used in
the literature. Effective permeability is used fonedia, which are statistically
homogeneous in the coarse scale (Renard & Mar9i97;1Gueguen et al. 2006). This
means that the scale, over which the flow properéiee averaged, is large enough to
include all heterogeneity scales present in therves (Begg et al. 1989). Therefore, the
fine grid model can be replaced by a single cogr&gkblock with a constant ‘effective’
permeability. The concept of effective permeapilg an intrinsic physical magnitude
independent of the boundary and flow conditionanlyst cases, however, the conditions
for existence of an effective permeability value aot met. Thus, fine scale permeability
values are often replaced by a set of ‘equivalpatimeability values instead of a single
one. This set is computed based on the equalitipwf (or equality of dissipated energy
by different forces) between the fine- and the setgrid models (Gueguen et al. 2006).
Unlike the effective permeability, the equivalemrmeability depends on the flow and
boundary conditions and, hence is not unique ifeifit calculations. It goes without
saying that equivalent permeability tends to tHeative one as the size of the coarse
block become larger. Finally, if averaged permetgbit calculated over the scale of
simulator grid blocks, it is called the ‘block’ peeability. Henceforth, we simply refer to
all effective, equivalent and block parametersugescaled’ or ‘coarse scale’ parameters,
while we keep in mind the differences. A wide vgri®f upscaling techniques is
available to calculate the coarse-scale parametansidering the effect of geological
features and small-scale heterogeneities on teld&Ehavior.

2.2.3. Single- and two-phase upscaling

There are several classifications of upscalingriggles in the literature (see, e.g., Wen
& Gomez-Hernandez 1996; Renard & Marsily 1997; Far@002; Durlofsky 2005). An
important classification is based on the type @&f plarameters that have to be upscaled
(Durlofsky 2005). In a ‘single-phase upscaling’ ggdure, we only calculate equivalent
permeability and porosities for the coarse-scale fequation, whereas in a ‘two-phase
upscaling’ method both flow and transport equatiare considered and relative
permeability curves and capillary pressures ame sdaled up.

Even though, in most cases, there are more tharploagse present in the reservoir, the
coarse-scale flow parameters are commonly computadsing a single-phase upscaling
method, and the two-phase-flow upscaling is lesguently applied in practical reservoir
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simulations (Christie & Blunt 2001). One reason tftat is the similarity of the single-
phase and two-phase flow equations, as we mentitweéare. Therefore, it is often
reasonable to use only a single-phase upscalingeguve for two-phase flow simulations,
particularly for low degree of coarsening (Durlofsk005). The other reason is related to
the inefficiency of existing two-phase upscalingheiques. In ‘dynamic’ two-phase
upscaling methods, for instance, the fine-scale flomulations are used to calculate
pseudo-functions or pseudo-relative permeabilitves, which are used to correct for
numerical dispersion and account for the effectsiwfall-scale heterogeneities in the
coarse-scale model. However, the calculation of feeudo-functions is often
computationally expensive, yet not robust and bédigBarker & Thibeau 1997; Darman
et al. 2002). In addition, ‘steady-state’ methodssén been introduced, in which the
steady-state assumption is used to calculate tiherasan distribution. Once the
saturation distribution is known, any single-phagescaling technique can be used to
calculate the upscaled relative permeability andilleay pressure curves (Ekrann &
Aasen 2000). Unlike dynamic pseudo-functions, stestidte methods do not refer to
expensive transient flow simulations on the finaksarid blocks, but only to the steady-
state saturation distribution. Nevertheless, thiggnoassume viscous and capillary limits
which are correspondingly valid for high and lowwl rate areas. Unfortunately the
domains, on which these assumptions are valid,garerally unknown or limited to
small parts of the reservoir (Virnovsky et al. 2R04~or a more detail description of
dynamic upscaling methods, see e.g., Kyte & Bet§76), Barker & Thibeau (1997),
Christie (2001), Darman et al. (2002), and Artudl&etinger (2004), and for the steady-
state techniques see e.g., Dale et al. (1997),nBk&aAasen (2000), Pickup & Stephen
(2000) and Virnovsky et al. (2004).

In any case, upscaling of absolute permeabilityt{@nsmissibility) values is always a
key step (even in a multi-phase upscaling problamy that is done through a single-
phase upscaling procedure. Therefore, in this shes only focus on single-phase
upscaling of the absolute permeability, with thelenstanding that its results can be used
for both single- and or multi-phase problems. Weusth also mention that a lot of topics
such as multi-scale methods, dual-gridding techesquupscaling with flow-based
gridding and near-well upscaling are also relatedhe upscaling problem in reservoir
simulation, but they are not discussed here. Favanview of those topics see Gerritsen
& Durlofsky (2005) and references therein.
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2.3. Overview of single-phase upscaling techniques

‘Single-phase upscaling’ refers to an upscalingcedare that only includes static
parameters such as the absolute permeability arasipovalues. Porosiiy in a coarse
grid block with bulk volumé/ is usually upscaled using a simple volume averagin

g =V1 J AX)dV. (2.18)

Calculating the upscaled permeability (or transihibty) values is more challenging, as
we shall discuss here.

Depending on how we calculate the upscaled equatemd parameters, we can
categorize the existing single-phase upscalingiigcies. These techniques vary between
purely numerical methods based on the discretesiiade properties to more analytical
and physical approaches that focus on the algefoait of the equations. Here, we only
mention several common single-phase upscaling tgobs that are presented as
averaging techniques, theoretical methods and Hased numerical techniques.
Particular attention is paid to the averaging, 8od-based numerical methods, seeing
that they are widely used in the reservoir simalatiThe material presented here is
mainly borrowed from more extensive reviews in Maors (1994), Wen & Gomez-
Hernandez (1996), Christie (1996), Renard & Mar¢il997), Farmer (2002), He et al
(2002), Hartanto (2004), Durlofsky (2002 and 2008grritsen & Durlofsky (2005),
Dasheng & Hesketh (2005) and Noetinger et al. (2005

2.3.1. Averaging methods

We consider a reservoir witN layers of isotropic permeabiliti(; and thicknessh;,
assuming that the fluid flows only in the x-directi parallel to the permeable layers
(Figure 2.1). Therefore, there is no flux from the top ottbm of the reservoir and the
pressure is constant at both inlet and outlet @fsgrstem. Our objective is to calculate the
coarse-scale permeability value in the x-direck@n such that the same flow rate of the
layered system is recovered from the coarse maddhelefore, using Darcy’s law for an
incompressible single-phase flow, we can writetthial flux through the reservoir as

__l N ) (R)ut_Pm):_ﬁ(R)ut_ Rﬂ) N
Q = ﬂizl(K.h)—IX T zl:h (2.19)
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A
v

Figure 2.1 Layered reservoir with flow direction parallelttte permeable layers.

From this equation, the calculated equivalent pebiléy is given by weighted
arithmetic averaging

Ky=K,=1%1 (2.20)

The same procedure for the flow perpendicular te ldyers gives the equivalent
permeability K as the weighted harmonic averaging of the layersnpability values

(Cardwell and Parsons 1945). This upscaling praeedksults in a diagonal permeability

tensor due to heterogeneity (layering) of the finale model.

A more general algebraic relation for calculating tiveraged permeability is the power-
law averaging method introduced by Journel et #86) and Deutsch (1989). In this

method the effective permeability is defined as

K, :{Vijk(x)wvaw. (2.21)

b Vb

Here, V,, is bulk volume and exponemt is obtained by tuning it against numerical
upscaling results. The same exponent can then déx fas similar permeability fields.
The value ofw can vary between 1 and. Basically,w=1 represents the arithmetic
average, whereas=-1 gives the harmonic average. This also statestltieatpscaled
permeability is bounded above and below by aritionetnd harmonic means,
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respectively. These upper and lower permeabilitynois are often referred to as ‘Wiener
bounds’.

The geometric average is also obtained when expengoes to zero. Mathematically,
the geometric average contains both arithmeticlanchonic effects of the permeability
field and it is an appropriate method when the matolity field is isotropic, but
randomly distributed regarding to the flow directidcor cases of large variations in
permeability or finite fraction of zero permealyiltowever, this is not a suitable method
(King 1989; Renard & Marsily 1997).

Simple averaging methods are known to be fast ndstlior upscaling. However, their
main drawback is the limited range of applicatioompared to other methods such as
numerical upscaling tourniquets. Furthermore, zeEnaneability domains cause an error
in upscaled permeability obtained by these methods.

2.3.2. Theoretical methods

In theoretical methods, it is assumed that theaggchl model, in particular, permeability
field and boundary conditions are known. Then, stimeries are applied to calculate an
approximation of the upscaled equations and paemeExamples of them, which are
mainly adapted from the field theofyare ‘perturbation theory’ and the ‘theory of
effective media’ (King 1987, 1989; Drummond & Hong&a987; Gueguen et al. 2006).
However, the application of perturbation and effectnedium theories is limited to very
small fluctuations in permeability values. More erg@sting theories for reservoir
applications are renormalization, percolation aondthbgenization as we describe them
here.

Renormalization

The drawback of perturbation and effective mediudmeoty leads to an alternative
approach, which does not make any assumption dbegcale of the fluctuations. Such
a method was developed in permeability upscalingkiyg (1989), and was named
‘renormalization technique’. The idea came agaomfrfield theory, but this time King
used the analogy of a resistor network to reprefenporous medium. In this method,
the upscaling is performed successively, suchithaach sequence permeability values

% In mathematical physics, fields are used to deeaystems with infinite degrees of freedom. Thaay loe
scalar, vector or tensor, and they are functionsosition, so that we are able to integrate anfeihtiate
them. A reservoir is considered as a large disediaystem, where permeability is a random stoahasti
variable with a probability distribution and animife number of degrees of freedom. King (1987)duibes
analogy to develop theories for calculating effextproperties and modeling the flow in heterogeseou
porous media.
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are averaged over a smaller region in the resetwdorm a permeability field with lower
permeability variance. For each small region (aamegf two-by-two grid blocks in a
two-dimensional problem), a single value for blgekmeability is calculated, so that it
gives the same flow as the fine-grid simulationoasrthe corresponding region. The
process is repeated until we reach the desiredeaqaid.

To calculate the effective permeability of renorized blocks, they are modeled by
an equivalent resistor network. The equivalentstesibetween the midpoint of a block
with permeabilityK and its edge i$/K. Thus, we can replace each grid block with a cross

of resistors.
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Figure 2.2 Resistor analogues in renormalization (after Kieg9).

For instance, consider an isotropic two-dimensianatium with uniform pressures at
the sides of the blocks and no-flow boundariehattop and bottom of the blocks (see
Figure2.2). We can replace each block with a cross a$t@s and we can join the nodes
with the same pressure. This network is further pfted using a star-triangle
transformatiofiand finally the effective permeability of the siagquivalent resistance is
given as

= 4Ky +K3) (Ko + Ka)[ KK (K1t K +K K {K 2K )]
T [KeKa (Kot Ko) + KK (K o+ K ) (K H K 4K 3K )|
{+3(K1+Kz)(K3+K4)(K1+K3)(K2+K4) }

(2.22)

Renormalization techniques are seen to be accumateomparison to the simple
averaging methods and they can handle large peiliedluctuations. Nevertheless,
Peaceman (1997) found out that the renormalizajgproach is less accurate for non-
rectangular grids and in the presence of anisotrdpgreover, like any other local
method, errors arise from the boundary conditipasticularly for highly anisotropic and
heterogeneous media (King 1996; Yeo & Zimmermari200

3 Star-triangle or YA transformation is a technique of simplifying aeattical network by establishing
equivalences for resistor networks with three teats. The name refers to two star-shape and teangl
shape resistor networks, which are equivalentAggeendix 1 in King 1989)
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Per colation theory

Percolation theory is a mathematical theory of emtinity between different objects in a
complex system (Berkowitz & Balberg 1993; Renard/&rsily 1997, King et al. 2002).
In many reservoirs flow is strongly controlled Hyetconnectivity between different
geological features, e.g., shale layers and samte®distributed randomly in space.
Therefore, percolation theory can give an approt@nmeasurement of the connectivity
in a porous medium. Then, effective permeabilitthiat medium can be calculated by the
following relations:

p<p - Kes =0, (2.23)
P>p - K ~( p- p)y. (2.24)

Here, p is the proportion of permeable medium to the tdalk volume, andp:is a
fundamental characteristic of percolation theorywn as the percolation threshold. In
our case, the percolation threshold is a particukue of proportion of permeable
medium, such that fop > pthere is a continuous pathway through the mediuhe T
exact value ofp, depends on the type and the dimension of the lgadks. 1 is an
exponent that depends only on the space dimersiwmot on the shape of flow unitg (
=1.3 in two-dimensions and =1.8 in three-dimensions). Hence, this exponemtise
referred to as a universal exponent (King et 80220

Homogenization

The basic hypothesis in homogenization is the apaeriodicity in a medium. From
there, the medium can be represented by small ba#ig; subject to periodic boundary
conditions. Therefore, space scales in the modet ha be separated into two distinct
scales. One is the coarse scale or the observatale,L, and the other one is the
permeability oscillation scald, Moreover, a length scale parameter, denoted, by
defined as the ratio between these two scaless&bend assumption is that basic cells
are very small compared to the given medium, Ee-~ 0. As a consequence, any space
dependent quantity in the system is a functionaihtscales and the gradient operator
should be written a8l =0, +[J,.

In order to obtain the coarse-scale equationsfitieescale equations are rewritten based
on an expansion in the length scale parameter.,Ttheg are solved for different orders
of ¢ separately. The lowest order ©fjives the upscaled equation. In single-phase flow
homogenization, the upscaled equation keeps ealenlie same form, although coarse-
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scale parameters are different from the fine-soakes. The upscaled parameters of the
model are also defined from the basic cell problem.

A benefit of this method is that we can use homagion to upscale both equations and
their parameters. This method is also applied io-pvase flow, although the procedure
is then more complicated (see e.g., Van Duijn e2@2; Salimi & Bruining 2009).
Homogenization is a very useful tool to improve ouderstanding of the processes in
porous media. However, we have to be aware of theng assumptions and
approximations made. For further details and resielvhomogenization applications in
porous media, we refer to Renard & Marsily (19%armer (2002), Hornung (1997),
Van Duijn et al (2002), Neuweiler & Cirpka (200aynd Salimi & Bruining (2009).

2.3.3. Flow-based numerical methods

In many cases, geological complexities and stragtgrbbgeneity in oil reservoirs allows
none of the assumptions made in averaging, theatetr any other such approximation
methods to be valid. In other words, those appreseine useful in very limited numbers
of cases, where their hypothesis is met, or in &mmehtal studies. In general reservoir
simulation, however, flow-based numerical methods @quired to transfer the flow
properties of a fine-grid model to a coarser on@m@on numerical methods are based
on the criterion of flow equality between fine- acdarse-scale models. Therefore, the
upscaling procedure is divided into two steps:

Step (1) the first step implies the solution of the floguation over the fine-scale grid
blocks. From Eg. (2.10) and assuming zero sourcek)(sterms, the simplified
incompressible single-phase flow equation is given

o0&k op)=o. (2.25)
U

Flow-based numerical upscaling techniques are ifieddsbased on the domain, over
which this equation is solved (see e.g., Wen & Goidernandez 1996; Renard &

Marsily 1997; Farmer 2002; Durlofsky 2005). If tiemain is only limited to the target

course grid block, it is called a local upscalieghnique. When it also includes some
neighboring grids of that coarse grid, the upsgatachnique is called an extended-local
method. Finally, when the flow equation is solvecothe entire fine-grid model, the

upscaling procedure is called a global upscalinthote(Figure2.3).
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Figure 2.3 Different domains, over which the flow equatiors@ved in local (L), extended-local (E) and
global (G) numerical upscaling. Here, the targearse grid block corresponds to four fine grid bak
the middle.

Step (2) in this step, we solve the coarse-scale flow dl7) and then, from the flow
equality criterion between fine- and coarse-scaledeis, we calculate the upscaled
permeability tensoK”™. When this is done only from the coarse-scale flover the
target course grid, the procedure is called a leeethnique; otherwise it is a non-local
method. The classification of local-local, locablghl, global-local, and global-global
upscaling is also related to steps (1) and (2).

We should mention that most numerical upscalinghriegpies are able to directly
compute the coarse-scale transmissibility valueg @.g., Romeu & Noetinger 1995).
However, the procedure is similar to the above mesd permeability upscaling. In the
following, we present a brief overview of local andn-local upscaling techniques to
compute the upscaled permeability values on stredtCartesian grids.

L ocal methods

In local upscaling methods, coarse scale paramatersomputed by considering only the
fine-scale region corresponding to the target aatsck. However, flow directions and
proper local boundary conditions have to be spetifin fact, the resulting upscaled
parameters are dependent on the selected bounatzditions.

One approach is to assume pressure-no-flow bourdtanglitions, which are originally
taken from pressure solver methods of Warren & éP(it961). In this approach, a
constant pressure (potential) is assigned to twisipg sides, while no-flow boundary
conditions are assumed on the other sides. Figutedepicts this type of boundary
conditions for a part of the fine-scale model, esponding to a coarse grid block.
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Figure 2.4 Constant pressure and no-flow boundary conditions.

In order to calculate the upscaled permeabilitytfiss domain, first, we solve the flow Eq.
(2.25) over the fine grid domain of FiguBe4 to obtain the pressure distribution. It is
assumed that the pressure gradient is constang dlon x-direction and, therefore,

analogous to averaging method for a layered resewe can write the total flow rate in

the x-direction as

1 Ny =D
Q= ——Z( Ki1/z,] b= Ry Ay) ==
M= |

X

Aow Wy (2.26)

|&
E
F’I
50
N—r

whereny is the number of grid blocks in the y-directibyandly are the coarse grid block
lengths in the x- and y-directions, respectivelpd &;_1,»; is the distance-weighted
harmonic average of the fine-scale permeability@alin blocks andi-1. Therefore, the
equivalent coarse-scale permeability is given by

Z(Ki—lllj B~ R _| R-1, AYJ

Ky =22 X L =—yQ+'X. (2.27)
(R)ut_ I:?n)ly (POUI_ Pln)ly

Now, we rotate the boundary conditions so that ftbev occurs in the y-direction.
Similarly we can write

Ej(thﬂzrhiIrh=lej

L |
K. =12 Y |, =— L, 2.28
’ (P = Bl Y B P, (2.28)

whereny is the number of grid blocks in the x-directiorheTlocal upscaling procedure
with pressure-no-flow boundary conditions resuftsaidiagonal permeability tensor. In
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other words, the cross terms of the permeabilityste are assumed to be zero.
Consequently, the method is less accurate forlgoicks, in which the directional flow is
significant.

An alternative solution to compute the full tengmrmeability is to choose periodic
boundary conditions, in which it is assumed thatréservoir domain is a periodic cell in
a periodic medium. The assumption of periodicitiatess the pressures and velocities at
opposite boundaries of the reservoir domain to etioér (Durlofsky 1991):

pP(x0)= p(x ), (2.29)
P(0,y)= p(k,y)— Gk, (2.30)
u(x,0)Ny ==U (Xl )Ny, (2.31)
u(0,y)naa =-u(lx,y)nwe, (2.32)

whereG, is an arbitrary pressure gradient in the x-digectLike in the pressure-no-flow

boundary conditions, we need to rotate the boundaryditions and solve the flow

problem again. The main advantage of this methdlgaisit can compute a full symmetric

and positive definite permeability tenSoHowever, this method is only accurate if the
assumption of periodicity is valid, otherwise tla¥gle-scale permeability connectivity
may be lost (Durlofsky 2005).

Non-local methods

In general, the resulting upscaled parameters fomal methods depend on the choice of
boundary conditions, which are often unknown. Ascansequence, these generic
boundary conditions might lead to a significantoerin approximation of the upscaled
permeability field. In addition, the assumption afconstant pressure gradient over a
coarse grid block is not valid for a highly hetezngous or channelized reservoir (Chen
et al. 2003). In such cases, the behaviour ottaese-scale reservoir depends on some
global flow patterns that cannot be captured byalldechniques. This leads to the
development of non-local methods that considerttadl fine-scale grid blocks (global
methods) or at least the neighboring grid cells$giested-local methods) in the calculation
of the coarse-scale parameters. Extended-localadstfas depicted in Figuge3, reduce
the effect of the boundary conditions by includittte neighboring grids into the

* For a symmetric permeability tenséf, = K',, and for a positive definite tensdty,, K}, >0 and

(K5y)" < Kk
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upscaling calculations (see e.g., Wen et al. 2aQ88)vever, in order to resolve the global
permeability connectivity in some cases, partidular strongly channelized systems, we
may need to use a global technique that include$ldlv information from a global fine-
scale simulation into the calculations (White & Herl987; Holden & Nielsen 2000).

Another alternative to expensive global fine-sd&de calculations is a ‘local-global’ or
‘quasi-global’ approach, in which the generic baanydconditions are only used to obtain
an initial coarse-scale flow solution. The integi@n of the coarse-scale solution then
gives more accurate local boundary conditions rid the new coarse-scale parameters
and the process is iterated until the solution eoges (see Chen et al. 2003; Chen and
Durlofsky 2006). Generally, the non-local methods eomputationally more accurate,
but also more expensive than the local techniques.

2.4. Summary of upscaling techniques

Upscaling techniques are classified in terms oftyipes of the parameters that are scaled
up (Single- or two-phase upscaling), and the ficedes domain, over which these
parameters are computed (local or non-local medhods

The earliest upscaling techniques were local mettheded on some form of averaging of
the fine-block permeability values. Cardwell andgas (1945) found that the arithmetic
and harmonic averages are, respectively, the uppeérlower limits of the equivalent
permeability for a heterogeneous block (Wiener lisynLater, this observation was used
to develop a power-law averaging relation that gitlee equivalent permeability of a
group of heterogeneous grid blocks as a value legtwiee upper and lower bounds by
varying the power exponent (Journel et al. 198a;tBeh 1989). Because the equivalent
permeability depends on fine-scale permeabilitytritistions with respect to the flow
directions, averaging methods are reliable only particular reservoirs and flow
geometries.

Theoretical methods, like perturbation and effectimedium theory, resolved the
problem of simple averaging methods, in which ze@omeability fractions cause an error.
However, they both fail when the permeability flugtions become larger.
Renormalization, overcomes this problem, sinceoésdnot make any assumption about
the scale of fluctuations. Nevertheless, its aaguneduces for non-rectangular grid
blocks and in the presence of anisotropy. Homagdioin techniques also provide a
mathematic tool to derive both upscaled equatiovwk marameters, assuming a periodic
medium, although no natural medium is periodic. S'the theoretical methods are based
on strong assumptions and approximations abouipémmeability field and boundary
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conditions, which can be useful and efficient irittspecified cases. They can also be a
valuable tool in a better understanding of the dsaand theories related to the upscaling
issues in porous media. However, just like the ayieg methods, they lack generality of
the numerical techniques.

In flow-based numerical local methods, the equivapermeability is calculated from the
equality of flow through a coarse grid block arnsl ¢gbrresponding fine grid cells for a
given potential. However, a flow direction and peojocal boundary conditions have to
be selected a-priori to solve the pressure equdtidarren & Price 1961; Durlofsky
1991). The coarse-scale parameters from the logalencal methods are, therefore,
heavily dependent on the choice of the genericl Iboandary conditions, which are in
general unknown. This can lead to a significantorerrparticularly in highly
heterogeneous cases in which the behavior of tlaeseescale model may depend on
global flow patterns and large-scale permeabiltprectivities that cannot be captured
by local techniques. More recently, non-local mdthaere developed to overcome this
problem by considering the flow behavior of an exted domain around the fine-scale
grid blocks that make up the target coarse blokte(@ed-local methods), or of the entire
fine-scale model (global methods) (see DurlofskQ220Nen et al. 2003; White & Horne
1987; Holden & Nelson 2000; Chen et al. 2003). Bseaof their more extensive
applications, the flow-based numerical methodspaeéerable in reservoir simulation.

In conclusion, although there are different singi@se upscaling techniques available,
most of them lack generality and case independeascyhey are only valid under certain
reservoir and boundary conditions. Moreover, in tteshniques, it is assumed that the
computed coarse-scale parameters, based on aispedt of boundary conditions often
with no sink/source terms, will be applicable tbather flow scenarios. The validity of
this assumption is not warranted, seeing that ieah reservoir the global flow is often
driven by wells rather than by fixed-pressure a@edi-rate boundary conditions. This is
also a motivation for us to develop a control-ral@wupscaling approach that is related to
a particular configuration of wells in the reservoi
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State-space representation of a reservoir system thadrelating system-theoretical
notations are briefly discussed in this chaptepdrticular, we define the controllability
and the observability properties to understand Hiog system inputs influence the state
variables, and how the outputs give informationwdlibe states. Hankel singular values of
the system are then defined to obtain a measuréhefcombined controllability and
observability of the state variables, and from ¢hdo identify those linear combinations of

the states that represent the most important ioptgut characteristics of the system.

3.1. State-space representation of areservoir model

In system theory, a reservoir model is considesed dynamic system that evolves with
time. The relation between the initial conditiotise inputs of the system, the internal
variables (states), and the outputs are expressedstate-space form that is discussed
briefly here (see also FiguBl). To simplify our study, we only consider agdéxphase
flow reservoir that leads to a linear time-invatighTl) system. For a more detailed
derivation of the state-space representation @rves models, in particular, in case of a
two-phase flow system see Jansen (2009).

3.1.1. Continuoustime

Consider an isothermal weakly compressible singkesp flow model with a given set of
boundary and well conditions. In Chapter 2, we dbed the flow behavior of such a
model through Eq. (2.13). This equation can be iteamrin a partitioned form as

Vi O 0 || p1 T T Tis P 0
0 V22 0 Dz + T21 T22 T23 p 2| = qw ’ (31)
0 0O V|| ps Tar Ta Tastdp||Ps] | JoPw

where the diagonal block matric¥sg, i = 1, 2, 3 are accumulation matrices with entries
that depend on the grid block size, grid block gaies, and the total compressibility, and
the band-diagonal block matricé&g, i = 1, 2, 3, = 1, 2, 3 are transmissibility matrices
with entries that depend on the grid block sizél gtock permeabilities, and the fluid
viscosity. The elements of vectpy are the pressures in those grid blocks (elemémas)

29
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are not penetrated by a well. The elements,@re the pressures in the blocks where the
source terms are prescribed well flow rafgs and those ops are the pressures in the
blocks where the source terms are obtained thrquelscription of the bottomhole
pressures with the aid of a well model,

Gu =Jp(Pw—ps). (3:2)

Here J, is a diagonal matrix of well indices, the elemenfsp, are the prescribed
pressures, and the elementstpfare the resulting well flow rates. To compute the
bottomhole pressurgs, in the wells where the flow rates have been pilesdr we need
an additional diagonal matrd of well indices such that

Qu =Jq(Pu=p2). (3.3)

Egs. (3.2) and (3.3) can be combined to give
0 0 0 Of|pmp 0O 0 0] O

Pw|={0 I 0 |lp2|+|0 J& O} qu (3.4)
Qw 0 0 -J,||ps 0 0 Jy|lpw
If we define the vectors
oy
X=|p2 |, (3.5)
| ps
u=| ™| (3.6)
[ Pw
B
y=1_ | (3.7)
[ Ow |
Egs. (3.1) and (3.4) can be rewritten, respectj\edy
X=AXx+B.u, (3.8)
y =Cx+Du, (3.9)

Where
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u y
X=AX+BU LTI system y =Cx+Du
S Y >
(ABCD)
t

Input u(t) t m Output y(t)
State X(t

Figure 3.1 Schematic description of the state-space reprasemtof a dynamic system.

ViiTi ViiTa V1T 13
A.=—|VuTa ViIT VT 23 , (3.10)
VaiTar Vil V _3%(T agtJp )

[0 0
Bc.=|Vsz 0 |, (3.11)
| 0 Vil
01 0
C= , (3.12)
0 0 -J,
JP 0
D=|"¢ . (3.13)
0o J,

Egs. (3.8) and (3.9) give the standard continuous-{CT) ‘state-space representation’
of a LTI system, as used in systems and controbrtheThe matricesA. OR™",
B.OR™™, CORP", andDORP™ are respectively referred to as the ‘system niadsx

it contains the properties of the system, the ‘tnpatrix’ since it maps the inputs to the
states, the ‘output matrix’ as it maps the statethé outputs, and the ‘direct-throughput
matrix’. Here, the subscrigtrefers to the CT form. Moreover, for a system witinputs,

p outputs andn state variables, the input vectat)JR™ and the output vector
y(t) ORP include the flow rate or bottom-hole pressure aclewell. The state vector
x(t) ORY represents the state variables i.e. pressure svatuall grid blocks that are a
function of time @R ) and other independent variables e.g. space. Tder qor
dimension) of the system is also equahto

3.1.2. Discretetime

In order to derive the discrete-time (DT) LTI stafgace representation of the reservoir
system, we use an implicit time discretization watlixed time stept. Therefore, EgQs.
(3.8) and (3.9) can be rewritten in DT form as
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Xis1 = AXy + Buy, (3.14)
Yk =Cxy +Duy (3.15)
where
A=(1-AA:)7, (3.16)
B =(I -AtA:) " AtB.. (3.17)

Egs. (3.14) and (3.15) are also referred to as‘shstem’ and ‘output’ equations,
respectively. LTI state-space models are sometidesignated with). :=(ABCD),
because the matricés B, C andD can completely describe the system.

We note that although Eq. (3.14) appears to bei@pit time, the underlying implicit
discretization scheme results in the need to salsgstem of equations at each time step.
Moreover, in a practical computational scheme tiverise matrices in Egs. (3.10), (3.11),
(3.16) and (3.17) will not actually be computedd an computationally more efficient
approach will be followed. In the sequel, we assuha the system is stable (i.e., the
discrete eigen values @& have a norm smaller than unity). Moreover, we @néshe
analysis only for a DT system as most of the resemodels are given in discrete time.
However, also in a CT case, the theory discussezlrieenains valid.

3.2. Controllability and observability

In order to improve the dynamical behavior of atsys we need to observe and control
the inaccessible internal (state) variables throtnghavailable inputs and outputs. More
specifically, in a reservoir system, our succesgptimizing the model predictions by
manipulating the inputs (e.g., well settings), amgdating the reservoir model by
assimilating measured data (e.g., production dd¢pends on how much of the state-
space can be reached from the input side (i.e.,ddgree to which the system is
‘controllable’), and how the internal behaviour tbe system can be obtained from the
output information (i.e., the degree to which taservoir is ‘observable’) We formulate
the controllability and observability concepts imist section. The system-theoretical
material presented here is well-established andbeaiound in related textbooks such as
Kailath (1980), DeCarlo (1989), Polderman & Wille(d998), Olsder & Van der Woude
(2005), Antoulas (2005), and Skogestad & Postleit@n@005). For recent applications

® Another important property, which is excluded hése‘identifiability’. A system is ‘identifiable’if its
parameters can be uniguely estimated from the medsiata by a suitable choice of the admissiblatgp
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of systems theory to reservoir modeling see Markovic et al. (2002), Heijn et al.
(2004), Gildin et al. (2006), Zandvliet (2008), datiet et al. (2008), Van Doren et al.
(2008), Cardoso et al. (2009), Markovinovic (200apd Vakili-Ghahani & Jansen
(20104, 2010b).

3.21. Controllability matrix

Consider a stable LTI system with inputs,n state variables an@ outputs. Roughly
speaking, this system is ‘state controllable’ if g@n steer it from an arbitrary initial state
to an arbitrary final state by choosing a prop¢rn$@admissible inputs (Olsder & van der
Woude, 2005). From Eq. (3.14), the system trajeztori.e. the set of state variable
values as a function of time, feitime steps are obtained by simply integratingriret

X1 A B 0 -« 0|l ug
X A? AB B . Ofu
2= et R s (3.18)
Xe | | A A¥IB A ... Bl U
or in short
n-1
Xi = A¥Xo + " AT BuU,. (3.19)
k=0

The first term of this equation is related to thigial state, which is known. The states are
then fully controllable if the second term has b fank equal tan. The second term that
gives a linear map between the inputs and thesstatealled the ‘controllability matrix’
of the system, written as

€=[B AB A’B - A"B], (3.20)

with n rows andnxm columng. Therefore, the system is fully state controllaiflthe
controllability matrix has a full rank equal toor, in general cases thaft) OR" , the
controllable subspac&*" =image =R".

® According to the Cayley-Hamilton theorem! for k > ncan be expressed as a linear combination of
A% A',..,A"and thereforémage@ )= image€, andkernel¢ )= kernel¢% for k= n. Accordingly,

the rank of the controllability matrix and the sprits columns can be determined by the firs¢rms. An
immediate consequence is that for a DT systemyesattrollable state can be reached in (at mosithe
step (Antoulas 2005). Similarly, for an observabjstem, the initial state can be reconstructed from
output measurements.
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3.2.2. Observability matrix
The full ‘state observability’ means that we camstouct the initial state from the

knowledge of the inputs and the outputs. From titegration of the output equation
(3.15), we get

Yo C D 0 -0 Uog

CA CB D . 0|l u
e e N S (3.21)
Via| |CA*? CA¥'B CA¥%B ... D | uw

Since the inputs are known, the second term islkalsavn and the relation between the
outputs and the initial state variables are givgnthie ‘observability matrix’ witm
columns andhx p rows, defined as

¢=[C cA CA’ ... cA™]. (3.22)

Therefore, the system is observable if the obsdiyalnatrix has full rankn or the
unobservable subspac&X'"=kernel¢? )= . Note that the controllability and
observability concepts for a LTI system depend amyproperties of the pairé (B) and
(A,C), and not on time or the input function. This isespective of whether we are
dealing with DT or CT systems.

3.2.3. Gramians
We define the finite square symmetric controllapiind observability Gramian as

n-1
We =¢€" =Y A*BBT(AT)", (3.23)
k=0
n-1
W, =0"¢ = (AT)C'CAX (3.24)
k=0

The controllability Gramian measures to what degrstate is excited by an input, while
the observability Gramian measures to what degaeb states excites future outputs. A
system is controllable/observable if and only & tontrollability/observability Gramian
is positive definite. Instead of computing the soiniEgs. (3.23) and (3.24), the Gramians
can be found as solutions of the DT Lyapunov ($tequations

AW.AT +BB" = W,, (3.25)

ATWﬂA + CTC = W(y. (326)



3.2. Controllability and obser vability 35

For a brief overview of numerical techniques to pome the solutions of Lyapunov
equations, see section 6.4.

3.2.4. Control and observation ener gy

The degree of controllability for a given state is also defined in terms of ‘control
energy’, i.e., the minimum energy of the input sigthat is required to bring the system
to statex, given by’

Ee(X) FJu [f=X"We X (3.27)

This means that, for two states andx, with x| = x2||, if xIWe™x; <x2W,"'x then
statex; is ‘more controllable’, i.e., it takes a smallaput to bring the system from the
initial state to state;. Mathematically, ifW.™ is large, there will be some states that
require a large control (input) energy to reacho{@r 1984). Accordingly, the
combination of states that needs the minimum en&gyach, is corresponding to the
largest eigen value olNV.. Similarly, the ‘observation energy’, i.e., theeegy of the
output function caused by the initial stateis defined as

Eo(x) =[ly [f=x"Wex. (3.28)

Hence, the combinations of states that releaseth@mum observation energy, i.e., they
excite larger output signals, are ‘more observablathematically, these states are
related to the largest eigen valueWwf,. The definition of the control and observation
energy in terms of the Gramians can be used toirolstaneasure of the degree of
controllability and observability of individual cdrmations of states, i.e., the degree to
which a combination of states is influenced byitiputs, and the effect that changes in a
combination of states has on the outputs. In thisss, ‘more controllable’ and ‘more
observable, states are dynamically more importéntmore detailed discussion of
controllability and observability concepts in reggr engineering can be found in
Zandvliet et al. (2008).

" Note that the term ‘energy’ is used loosely heretivated by the fact that energy can often beterias
a quadratic form (e.g. potential energy as a fonobf squared pressure).
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3.3. Balanced realization of alinear system

By balancing we aim at finding a state-space coatéi system, in which the states are
equally controllable and observable. This means tthe states that are least influenced
by the inputs have least influence on the outgsiieh a balanced realization is obtained
by finding a transformation matriX , such that the state-coordinate transformation,
X =Tx, produces an equivalent model with equal and diaga@ontrollability and
observability Gramians. This transformation carob&ined by a Cholesky factorization
of W, =L.L% and a eigen value decompositionLdfW,L . = UX?U". Then, it can be
shown that the balanced Gramians are given by

Wg = TW@TT , (329)
W, =TTW, T, (3.30)

whereT =XY2U"L# and Tt =L .UX Y2, This transformation leads to

W@ = V_V[ﬂ =X= diag(01,02,~-- ,Jn): diag(ch), (331)

where g, =20, 2--->20, and the diagonal entries of the balanced Gramians,are
known as Hankel singular values (HSVs) of the syst&ccording to Egs. (3.27), (3.28)
and (3.31), each HSV offers a measure of the ensogtribution of a component of the
transformed (balanced) state to the input-outpubabier, where the transformed
(balanced) state is itself a linear combinatiorihef original states. Therefore, the HSVs
can be used to identify those linear combinatiohshe states that represent the most
important input-output characteristics of the syste

For a DT system, the Hankel mafriwhich represents a mapping from the past infauts
the future outputs, is written as

F =00, (3.32)

and, therefore, the Hankel singular values canla¢sobtained as

on = JA(FF) = JMNCTOEC) = JA(CCTOTO) = JA(WeW,).  (3.33)

Note that from Eqgs. (3.29), (3.30) and (3.33),uins out that, for the product of the
Gramians, the similarity transformatigiV,W,) = T(W.W,)T* holds. As a result, the
eigen values of the product of the Gramians, ite,HSVs, are coordinate-independent

8 This is called a Hankel matrix since it has a klbankel structure, i.e#,; = #.; ;.
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or ‘input-output invariant’, whereas the eigen \uof the controllability and
observability Gramians are coordinate-dependentvalidchange as the coordinates are
changed (see also Moore 1981). Furthermore, thesH8¥ identical for the DT and CT
forms of a system. This makes the HSVs a systemepty rather than a model property,
and gives a promising tool in determining the opfincomplexity of a model for
describing the system’s dynamics. We demonstrage bithavior of the HSVs for a
reservoir system in the following example.

331 Example3.l

Consider the small reservoir system given in Tea$eC(1), which is a 2D horizontal
reservoir with a heterogeneous and isotropic pebitiggafield depicted in Figure.2.
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Figure 3.2 Log10 permeability field for Test Case (1).

Table 3.1 Reservoir model parameters and fluid propertieg &st Case (1).

parameter value unit
reservoir length 800 m
reservoir width 800 m
reservoir height 2 m
fluid density 1000 kg/mi
fluid viscosity 1.0e-03 Pas
porosity 0.3 -
total compressibility 2.0e-08 1/Pa

initial reservoir
pressure

3.0e07 Pa
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This simulation model has 20x20 grid blocks witheation and production wells
controlled by time-varying bottomhole pressurese Well flow rates are then measured
as the system outputs. Rock and reservoir progatiegiven in Tablg.2.

Figure3.3 displays the first 150 diagonal entries oftthkanced Gramians (i.e., the HSVs)
for the given reservoir system. Note that the ysagirepresented on a logarithmic scale,
and that the smallest singular values of the systensmaller than the machine precision
in Matlab (10'°). We performed the simulation for different nunibef wells including
one injector in the middle and one producer in¢bmer (2 wells), one injector in the
middle and two producers in the opposite cornemsglss), one injector in the middle and
three producers in the corners (4 wells), and ojeetor in the middle and four producers
in the corners (5 wells). Different markers, theref represent the HSV plots for
simulations with the different number of wells.

Given that each HSV provides a measure of the gnesgtribution, i.e., the degree of
combined controllability and observability of a &#ated state, the rapid decline in the
magnitude of HSVs shows that a large number of #tates are weakly
controllable/observable, hence, they weakly infeesthe input-output behavior of the
system. Therefore, the intrinsic order of the systee. the number of balanced states
required to describe the input-output behaviorhef $ystem, is much smaller than 400,
which is the total number of the original stateBisTis also in line with earlier results in
Markovinovi et al (2002), Heijn et al. (2004) and Zandvlieaket(2008).

‘ ‘
2 wells
3 wells 1
4 wells
5 wells

o o o »

Hankel singular value

number

Figure 3.3 HSV plots for different number of wells in Test €44).
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The second observation is that the slope of the HIBVdecreases as the number of wells
(i.e., the number of inputs and outpltincreases. Accordingly, any change in the
number of wells and, consequently, the number pluts/outputs will influence the
degree of controllability and observability of thgstem. This mathematically means that
the lower the rank of the input and output matriBeand C, the lower the number of
required linear combinations of the states to egmethe system dynamics. On the other
hand, the order reduction is modest when thera séasge number of inputs/outputs.

Finally, to demonstrate the effect of well locasaim the controllability and observability
of the system, we present the HSV plots for twéedént simulations of Test Case (1) in
Figure 3.4. The first simulation was performed with ongeator in the middle and one
producer in the corner (middle-corner), while tbead one is related to a simulation run
with one injector and one producer at the oppositeers (corner-corner). The figure
shows that the slope of the HSV plots is slighttgrad as the well locations are changed,
though the variation is less, compared to the areetd a change in the number of wells.
The effect of the well locations is more pronoungedase of a reservoir with a more
heterogeneous permeability field.
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Figure3.4 HSV plots for different well locations in TeSase (1).

° Here, we assume one input (bottomhole pressurkpae measurement (flow rate) at each well location
Accordingly, the numbers of both inputs and outfastsequal to the number of wells for each simaifati
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3.4. Markov parameters

Consider the LTI systenZ:=(ABCD). Assuming a zero initial state vectdr the
impulse response of this system (for a unit inpupulse) is easily calculated by using
Egs. (3.14) and (3.15):

Mo=y0=DUO=D
M1=y1=CX1=CB

M k =Yk = CXk = CAk_lB.

The impulse response terms are known as the Mapkoameters\) of the systert,
whereM, =D andM, =CA*'B, (k=1, 2, ...) or

M=[Mo; M: -+ My]=[D CB - CA'B]. (3.34)

Note that the Markov parameters are directly relatethe Hankel matrix and, therefore,
the HSVs of the system as the following relatioidbo

M, M,
F =M, M; | (3.35)

Given an arbitrary inputu, the output vector of the system is obtained bg th
convolutiort? of the input signal with the impulse response (arparameters), written
as

yk:Duk+zk:CAi‘18uk_i:[D CB - CA*BJuc Uer ... o] . (3.36)
i=1

Furthermore, the z-transform of the output vecagiven by

y(2) =H(20( 3, (3.37)

1011 the case of a nonzero initial state veatpwe can redefine the state-variables such thanttial state
vector becomes zero through a translation by aruatbxg.

™n a single-input/single-output (SISO) system, Ktar parameters are scalars, whereas for a multi-
input/multi-output (MIMO) case, they are matrices.

2 For our linear system, the convolution sum\of andu for time sequences of lengthis given by

(M Du)(k) = z:M iUk-i =M oUx +M U1+ (Antoulas 2005).
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wherel(z) depicts the z-transform of the input vector, ah(k) is the z-transform of
the impulse response (Markov parameters) or thensfer function’ of the system
defined as

H(z)=C(2 -A)'B+D. (3.38)

The Markov parameters (as well as the transfer tiomc of a system completely
determine its dynamic behavior, and, therefore, égoivalent systems in terms of input-
output behavior have the same Markov parametemssfier function) (Antoulas, 2005).

3.5. System norms

System norms provide a helpful tool to quantify thput-output behavior of a given

system. Consequently, they can be used to invéstighether two systems are close or
far apart. In this section, we briefly define thregstem norms. A more detailed
description can be found in, e.g., Antoulas (2005).

35.1. H2-norm

The H-norm of a DT LTI system is defined as the L2-noomits impulse response,
written as

=], =tr(M™™) =tr (CW,CT +DDT) =tr (B"W,-B + D D). (3.39)

The second equality denotes the Frobenius normghaisi also equal to the root mean
square value of the Markov parameters (i.e., ofitifgulse responses) and, hence, it can
be interpreted as the energy of the impulse regsoofsthe system.

3.5.2. HSH-norm

Hilbert-Schmidt-Hankel norm (HSH-norm) is definesitae Hilbert-Schmidt norm of the
Hankel Matrix (Hanzon 1992), and it is also equalthe square root of the sum of
squares of the HSVs, and, equivalently, to theeti@icthe product of controllability and
observability Gramians:

[S)f s =tr (FEHT) = OF1 +..4 OB =tr (We W), (3.40)

The second equality shows that the HSH-norm is legqu¢ghe Frobenius norm of the
impulse response matrix (Hankel matrix) of the eystand, therefore, it can be
considered as the total energy transferred throtigln system. Note that the
transformation between the DT and CT cases ledeesdntrollability and observability
Gramians and, consequently, the HSH-norm inva(se# e.g., Antoulas 2005).
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3.5.3. Hankd norm

The Hankel norm or H-norm of a system is definetha$2 -induced norm of its impulse
matrix, given by

2], = (1 o = 92() = T (3.41)

2-ind

where gnmax IS the largest HSV of he system. As a result, Hraorm gives the
maximum energy gain from the past inputs to tharlibutputs. Summary of the system
norms is given in Tabld.2.

Table 3.2 Summary of the system norms.

system norm expression interpretation
||Z||§.2 tr(CW,C" +DD") =tr (B"W,B + D'D) energy of the impulse response
2 — 2 2 the total energy transferred through
b2 r(WeWe) =0y, +...% iy the system
1= Amax(We W) maximum energy gain
3.6. Summary

The dynamic behavior of a reservoir model can bscrileed by(A,B,C,D) matrices
through the state-space relations, the Markov perens, or the transfer function of the
system. The degree of combined controllability abdervability of such a system can be
obtained by computing the HSVs, which can be usedidentify those linear
combinations of the states that represent the mgsdrtant input-output characteristics
of the system. As demonstrated in Example 3.1pal @ecline in the HSV plot indicates
that there are a large number of uncontrollablddgaovable states that are not affecting
the input-output behaviour of the reservoir systétrerefore, they can be used to adjust
(reduce) the level of the model complexity (or mooleler) to the available amount of
control and information. Note that the controllghibind observability of a linear system
is independent of the specific values of the timaant inputsu, but dependent on well
configuration. This means that any change in th# eamfiguration (i.e., any change in
either the number of wells or the well locationg)l affect the controllability and the
observability of the system. The controllabilitydaobservability analysis presented here
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forms the basis for the development of controlwate upscaling algorithms in the next
two chapters.






4. CHAPTER: CONTROL-RELEVANT UPSCALING (CRU)
-

I n this chapter, we consider a control-relevant alisg approach, which is based on the
controllability and the observability of a resenveystem. More specifically, we aim at
minimizing the difference between fine- and coassale models of a reservoir in terms of

several system norms that characterize the inpipbbehaviour of the system.

4.1. Introduction

41.1. Motivation

The primary objective of conventional upscaling hteques is to overcome the
computational limit of the reservoir simulator. Tére, in the most common techniques,
a coarser model is created of which the coarseguatameters are calculated on the
basis of the fine-scale parameters and/or somé flova calculations (see Chapter 2).
The upscaled parameters are, therefore, heavilgndigmt on the choice of the local
boundary conditions, which are, in general, unknoWmworeover, even in non-local
methods that consider extended-local (global) flomwperties of the system, often the
assumption is that the coarse-scale parametersutethpased on a set of generic (e.g.,
fixed-pressure and no-flow) boundary conditionsl wi¢ applicable to all other flow
scenarios. This can lead to a significant errogwkng that in reservoir simulation the
global flow is largely driven by wells rather thahe fixed boundary conditioh$
Moreover, as demonstrated in example 3.1, any ehamghe well configuration can
significantly change the system properties like taglability and observability, thus
resulting in wrong input-output predictions if thearse-scale model is not adapted for
that.

Therefore, in this thesis, we look at the upscalmgblem from a system-theoretical
perspective. We argue that, in addition to the aaammnal difficulties, a more

fundamental reason for upscaling is that, for &gigonfiguration of wells in a reservoir,
there is only a limited degree of freedom in thauitloutput dynamics of the system [i.e.,

13 The assumption of fixed boundary conditions miglso lead to a poor capturing of near-well effests
the global flow pattern unless a near-well upseatechnique is added (Ding 1995 and 2004; Durlofsky
al. 2000).

45
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there is only a limited amount of information (outp that can be observed from
production data, while there is also a limited antoaf control (input) that can be
exercised by adjusting the well parameters]. Thisams that a large number of
combinations of the state variables (pressure ahdation values in the grid blocks) are
not actually controllable and observable, and, atingly, they are not affecting the
input/output behavior of the model (see Chaptavi&kovinovic et al 2002, Heijn et al.
2004, and Zandvliet et al. 2008). Therefore, theglexity level of a model should be
adjusted to the amount of available information #relextent of control that is possible
in the reservoir system.

The problem with uncontrollable states and the @ated parameters is two-fold. First,
they lead to an ill-posed parameter-updating prabland second, they increase the
computational time. A potential approach to addtasse issues is through model-order
reduction using system-theoretical methods (Mamkavic et al 2002; Heijn et al. 2004;
Cardoso et al. 2009). Alternatively, the numberstate variables and parameters and,
consequently, the computational time, may be deexkthrough a control-relevant grid-
based upscaling. The former is briefly discusse@hapter 6, and the latter is described
in this chapter.

4.1.2. Behavior of HSVsfor fine- and coar se-scale models

In reservoir simulation, we use a spatial discegizn method to solve the flow equation
over a given reservoir domain, (see Chapter 2).magimum number of grid blocks that
are used to generate the grid system is usualgrméted by the computational power
and the storage capacity of our simulator. On ttiierohand, a straightforward way to
reduce the simulation time of our model is to cleoasmaller number of grid blocks for
the spatial discretization. However, the paramef@rshe resulting coarse-scale model
need to be computed such that the input-output\vbehaf the coarse-scale model is as
close as possible to the fine-scale one.

Figure4.1 and Figuret.2 show the behavior of the HSVs for three différeeservoir
models. All models describe the input-out behawiothe reservoir system given as Test
Case (1) in Chapter 3. However, each model has thiseretized by a different number
of grid blocks. The coarse-scale parameters wetairea from a local flow-based
upscaling method (described in section 2.3.3). \Mesider a production scenario with
one injector and one producer that are controliedriescribed flow rates and bottomhole
pressures, respectively. For both homogenous (E#d) and heterogeneous (Figure)
permeability fields, the first few HSVs are clodeit not identical. Actually, since the
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controllability and the observability are reservoioperties and not just the properties of
the coarse- or fine-scale models, the spatial eligation should not have a significant
effect on them (Zandvliet 2008). Accordingly, th&W¥s of three mentioned models, as a
measure of the combined controllability and obdeitigg of the system, are also
expected to be similar. However, we observe thatdiscrepancies in the HSV plots
increase for smaller HSVs as well as for a higlegrede of coarsening. Both homogenous
and heterogeneous cases follow the same trenduglththe HSV plots are less steep in
the latter, indicating a more complex system.
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Figure 4.1 Behavior of HSVs for the homogenous fine-scale ehaghd two different coarse-scale
representations of Test Case (1).

Note that, as we mentioned in Chapter 3, any changie state-space coordinates
through, e.g., change in the grid numbering will affect the HSVs as they are system-
invariant. However, a different model representatio terms of a different number of
grid blocks gives a different HSV plot. The disaapies mainly arise from the errors
associated with the computation of the equivalgrsicaled parameters and equations as
well as the error due to the numerical disper$ioim fact, because of these inevitable
errors, our coarse-scale models might unintentipndescribe a slightly different
physical system from the one represented by tlggnadifine-scale model.

1 In this thesis, we refer to the both errors asubecaling error’.
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Figure 4.2 Behavior of HSVs for the heterogeneous fine-scatedel and two different coarse-scale
representations of that for Test Case (1).
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Figure 4.3 The first three HSVs of the heterogeneous findescmodel and two coarse-scale
representations of that for Test Case (1).

To illustrate the effect of the upscaling errortbe controllability and the observability
and, consequently, the HSVs of the system, we coedpthe HSVs of Test Case (1)
obtained from two different coarse-scale modelshwitose of the original fine-scale
model. Both coarse models have 5x5 grid blocks,dvew one is obtained by a local
upscaling technique with relative cumulative pracucerror (Eq. 4.14) of 7.6%, while
the other one is calculated by an arithmetic avegagith 24.1% error. Figuré.3 shows
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the result for the first 3 HSVs. Evidently, for shexample, the coarse-scale model with
smaller upscaling error gives HSVs closer to thafdbe fine-scale model.

4.1.3. Control-relevant grid-based upscaling

By control-relevant grid-based upscaling we ainolattaining a coarse-scale model that
reproduces the original fine-scale input-outputasédr as close as possible. To match
the system properties, we propose to minimize tistamce (error) between the
input/output behaviors of the fine- and coarseescabdels in terms of several system
norms, which are based on the observability andralbability properties of the system.
The advantage of this control-relevant upscalinBWEapproach is that it focuses on the
observable/controllable state variables and, tbegefrelies on those grid blocks that are
most important to the input/output behavior of thedel. A possible application of the
CRU algorithm would be in closed-loop reservoir mg@ment (see Chapter 1), in which
use is made of an ensemble of high-order geologizalels that are scaled up to low-
order coarser representations for the actual fiowlkations, the continuous model-based
optimization, and model updating or data assingitatiTo simplify our study, we focus
on a single-phase-flow case that is described byl aystem.

In the next sections, we describe the CRU algoritimd illustrate its performance by
several numerical examples. The material is maéaked on Vakili-Ghahani et al. (2008),
and Vakili-Ghahani & Jansen (2010a).

4.2. CRU algorithm

4.2.1. CRU problem

Consider the fine-scale reservoir modet (ABCD)with parameter®, whereAOR™",
BOR™™, CORP", andDOR™™. We search for coarse-scale paramedtmt give a
coarse-scale (lower dimensional) mocﬁeiz(,&ééf)) , where AOR™ , BOR™,
CORP', DORP™Mandr < n, such that reproduces the input-output behavior of the
original system as close as possible. Figudeschematically depicts the CRU problem.

To solve the CRU problem, we start with an inigakss for coarse-scale parameters that
can be obtained from a simple averaging technifpreexample, or a local upscaling
method. Then, we defind(@), not as the direct difference between the outpfitthe
fine- and the coarse-scale models (g~ ¥|), but as a measure (i.e. some norm in terms
of system properties) of the difference between ithmut-output behaviors of two
systems . Mathematically, we formulate the CRU faobas
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ﬁza}rgminuz 0)-26 ﬂ = argmind § ) (4.1)
01p <0<Oup 01p <0<0up
i.e. we search for optimum coarse-scale paramét@sunded byd,, and@.,), such that
the cost functiod (@) is minimized. We investigate various choices #{f) as we
explain different CRU methods.

u y ) J6)

A\ 4
|
>

——(ABCD),0 ——

lUpscaIing

Y

(ABED),0

Figure 4.4 Schematic representation of the CRU problem. Theisito find an equivalent coarse-scale
model with an input-output behavior as close asiptesto that of the original fine-scale model.

4.2.2. CRU methods

A key aspect of the CRU approach is that we camoparthe minimization without
performing any fine- or coarse-scale simulation #rat the results do not depend on a
specific input. This is achieved by making use loé fact that the dynamic system
behavior is completely characterized by the elemehthe four matrice(sA,B,C,D) in

the dynamic system equations (Egs. 3.14 and 3Thgxefore, we can quantify the input-
output behavior of the system with the aid of aesysnorm that is directly expressed in
terms of these matrices. We can then define afaostion J(8) as a system norm of an
error model (CRU method 1), or we may formulate ¢bst function as the difference
between input/output behaviors of the fine anddbarse models expressed in terms of
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different system norms (CRU methods>2)To recall the system-theoretical notations
used here, the reader is referred to chapter 3.

CRU Method (1)
In this method, we consider an ‘error model’ deguicby the dashed rectangle in Figure

4.5. The state-space representation of this neversys’ ::(A'B’C’D’) is obtained by
subtracting the fine- and coarse-scale representtivritten as

Y =3-3, (4.2)
where
A’:ﬁ; 2}, (4.3)
B'{ﬂ (4.4)
B
c'=[c -C] (4.5)
D'=D-D, (4.6)
y'=y-y. (4.7)

The input vectou remains the same for all three systems3, and’). The CRU
problem is now to find the coarse-scale paramdieuch that the cost functioh(6) is
minimized, whereJ(@) is defined as a system norm of the error mobel We
investigated three different norms defined by H&s39), (3.40) and (3.41). The cost
function J(0) is, therefore, chosen as

JO)=|z-=%

(4.8)

— ]
HaHSH/H ” Ha/HSH/H "

The expression and interpretation of each systemn n® also given in section 3.5 and
Table 3.2.

15 For reasons of clarity, we present here a sligtiffgrent classification of the CRU methods from dme
given in Vakili-Ghahani et al (2008) and Vakili-Gteni & Jansen (2010a). However, the theory behind
them remains the same.
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Figure 4.5 Schematic representation of the CRU problem with élror model depicted by the dashed
rectangle.

CRU Method (2)

For this method, the ‘distance’ between the inputpat behaviors of the fine- and the
coarse-scale models is represented by the differeetween their Markov parameters, or
their system norms. Consider the fine-scale andseescale model§ andZ . For an
arbitraryu and a zero initial state, we can use Eq. 3.36ritethe output signals of two
systems at time stdpas

T

Yk :[D cB - CAHB][Uk U1 ... Uo], (4.9)

yk:[D c

0o

éAk-lé][uk U .. Uo]' . (4.10)

Seeing that the inputs of two systems are equalneesl to match the elements of the
sequence[D CB .- CA*'B] and [D CB .. CAk‘lé] , i.e., the Markov
parameters of two systems to obtain the same autplierefore, systenis and are
equivalent (i.e..y =y for any G=u) if their Markov parameters are equal [i.e., if
M (0) =M (0) ]*°. Another interpretation is possible by expandihg transfer function
(Eq. 3.38) for large, i.e. in the neighborhood of infinity:

% We emphasize that, in general, the fine- and eescale Markov parameters are not equal, since the
inevitable upscaling errors may lead to a slighkiifjerent system, compared to the original finelsame.
Moreover, it is not (easily) possible to find a jeiion between the coarse- and fine-scale modatsh

that we can formulate the errors. Neverthelesstrwio find coarse-scale parameters that resutbarse-
scale Markov parameters ‘as close as possibléidset of the fine-scale ones.
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H(2)=C(4-A)'B+D+CBZz'+CAB Z°+..+CA*B Z+..,, (4.11)

Accordingly, matching the Markov parameters is egl@nt to the matching of the high-
frequency moments of the system. Therefore, wedeéine the cost function as

3(0) =[m©)-M@®)|. (4.12)

However, the direct match of the Markov parametiens large systems might be
numerically problematic, resulting in a non-conyawblem (see Vakili-Ghahani et al.
2008). This is probably because the power cal@ratif the matrices may introduce a
large numerical error, in particular, for Markovragaeters with widely ranging values.
For this reason, we use, instead, the energy nbthedVarkov parameters of the system
(i.e. H-norm), as defined by Eq. (3.39). Alternatively, may choose the cost function
as the difference between the HSH-norm or H-normthaf two systems. The cost
function J(0) is then defined as

J (6) = ||Z||H2/ HIHSH _Hi (4.13)

Ha/H/ HSH

Note that the choice of(8) in Method 1 implies that we take a norm in terrisystem
properties of the error mod&l, whereas in Methods 2, we take the differencenaf t
norms in terms of system properties of the moBeiad X .

4.2.3. Algorithm
1) Divide the fine-grid model into a coarser mesh. Tegree of coarsening can be
roughly determined by inspecting the behavior ohkéd singular values of the
system.

2) Construct the state-space formulation of the cesecaée system, using an initial
guess for the equivalent permeability val@lesA local upscaling or a simple
averaging technique can be used to obtain a feistl iguess.

3) Define J(8) according to one of the methods described above.

4) Calculate the equivalent coarse-scale parametesm fthe solution of a
minimization algorithm that minimize§(0) , by changing the parameter values
of the coarse model.

Remarks

» The upscaled permeability for each coarse gridkbiecbounded by the
arithmetic and harmonic averages of the correspondiine-scale
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permeability values (according to the Wiener boyné&or the sake of
simplicity, we considered an isotropic, and therefscalar, permeability
value for each grid block. However, we foresee that CRU approach
can be extended to the case of anisotropic ortémbor permeabilities,
although the latter may require a somewhat morewrackd minimization
algorithm.

In the examples presented, the well indices wemapced following
either the standard Peaceman method for blockiezhtevells or the
method of Abou Kassem and Aziz (1985) for wellsaled at the corner of
a gridblock. In both cases, the permeability inwedl model was updated
at every iteration.

We performed the minimization using ‘fmincon’ rowi in Matlab. To
speed up the convergence of the minimization prope added a so-
called Tikhonov regularization termr||0 -6 || to the objective function
J(0) , whereu is a small positive number.

We note that, although our approach is based oimalty representing
input/output data, we do not consider the resereatirely as a ‘black
box’. In particular, the use of a numerical resargmulator implies

adherence to physical relations, such as mass m@tie®n and Darcy’s
law. Moreover, we constrain the permeability valtestay between the
Wiener bounds, which could be interpreted as inm@fing a form of

geological information. In theory, it may be possjliherefore, to include
other constraints and prior information to ensutbegience to geological
data and interpretations (e.g., in the form of ¢gcgical relationships or
other quantitative measures).

4.3. Results and discussion

In this section, we will illustrate the performarafehe CRU algorithm for two numerical
examples. To evaluate the upscaling performancecamepare the upscaled results to
those from a given high fidelity fine-scale modkraugh a ‘relative error’ relation,

defined as

- ”Zfine - Zcoarss”

x100%, (4.14)
| Zine]

74
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wherez may be chosen to represent a particular varidoleterest. In particular, we will
choosez to represent the pressure field in all time steps:

p=[pl p! - pk], (4.15)

wherepy is a 1 vector of the averaged fine-scale pressures inahrse grid blocks at
time stepk andK is the total number of time steps, such that is tasen, = rK. The
corresponding coarse-scale measure is then sirplyédctor of pressures in all coarse
grid blocks at time stek. As a second measure, we chade represent the cumulative
total production:

K
qcpum = Z CIfAtk, (416)
k=1

where the superscrift is used to indicate that we only consider produrctvells, and
whereqy is the vector of well flow rates in time stkpTherefore, we introduce, and
ey,cumas the relative errors between fine- and coarakegwessure fields and cumulative
production rates, respectively. In general, acemydo the correctness criterion of an
upscaling procedure (see subsection 2.2.1), theseomodel should be capable of
reproducing the main aspects of the fine-scale t@avior, among which an accurate
prediction of the cumulative production, which iscaone of the main objectives of most
reservoir simulations.

Finally, to show the relative size of each coarseleh we define then‘ratio’ as the ratio
of the number of the grid blocks in each modelhat tof the original fine-scale one,
written as

ncoarse

Nfine

n-ratio= (4.17)

This ratio also relates to the number of lineavesland, accordingly, gives a rough
estimation of the computational time that is neettegdimulate each reservoir model,
compared to that of the fine-scale one. Clearlg, ritratio for the fine-scale model is
equal to 1.

4.3.1. Example4.l

In this example, we study the reservoir systemepresl as Test Case (1) in subsection
3.3.1. Reservoir parameters and fluid propertiesgaven in Table (3.1). The original
fine-scale reservoir model has 20x20x1 grid bloekt a heterogeneous and isotropic
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permeability field, depicted in Figure 3.2. We cdes a production scenario with one
injector and one producer that are located on trthwest and southeast corners of the
reservoir, resembling a quarter five-spot patté@ire injection rates in the injection well
and the bottomhole pressures in the production avelithe system inputs (controls). The
output vector then contains the bottomhole pressurdéhe injector and the production
rates in the producer. The bottomhole pressurbamtoducer is set to 2.5e7 Pa and the
injection rates versus time are shown in Figug

x 10°

q, m3/s
N
|

0 L L L L
0 200 400 600 800 1000

Time t, days

Figure 4.6 Prescribed injection rates for the injector in Exde 4.1.

We scaled up the original 20x20 model of Exampléo la 5x5 coarse model using
different CRU algorithms and compared the resolthose of the local-upscaling and the
geometric-averaging techniques (see also Chapter @ review of different upscaling
techniques). For all CRU methods, geometric avaragias used as an initial guess and,
during the minimization process, the coarse-scalenpability values were bounded by
the Wiener bounds. Figu#.7 shows the upscaled permeability field, obtaibgdhe
CRU method, and Tabk1 presents the upscaling errors for differentoes.
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Figure 4.7 Log10 permeability fields for Example 4.1. Lefind-scale permeability field from Test Case
(). Right: coarse-scale permeabilities, calculégethe CRU method.

Table 4.1 CRU performance for Example 4.1.

geometric local CRU1- CRU1l- CRUl- CRU2- CRU2- CRU2- CRU2-

H2 HSH H M H2 HSH H
€ (%) 1.5 1.5 0.9 0.9 0.9 1.0 1.4 1.1 1.1
€y,cum(%0) 7.9 7.6 0.5 0.5 0.5 45 6.3 0.6 0.6

n-ratio 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.06250626. 0.0625

In this table, CRU 1-2 refer to the CRU methodsndl @ described in the preceding
section, where H2, HSH, H and M refer to H2-nornSHAnorm, H-norm and the
Markov parameters, respectively. We observe froemtiddle row that all CRU methods
give superior results compared to the local andrggoc-averaging techniques. This is
true for the errors in the average pressures aksagelor the errors in the cumulative
production. Moreover, different system norms in Mets 1 give identical resulfsFor
Method 2; however, only the HSH-norm and the H-nagive comparable results to
Method 1. We will discuss the computational andesystheoretical aspects of different
methods in subsections 4.3.3 and 4.3.4.

4.3.2. Example4.2

In this example, we consider a larger system wiBx®50x1 grid blocksi(= 1, 2, ...,
220;] =1, 2, ..., 60 andk = 1), referred to as Test Case (2). Reservoirrparars and
fluid properties are given in Tabte2. We choose a standard five-spot pattern with on

We note, however, that this identity occurs only $orall models, as will be discussed in more detail
later.
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injector located at the center of the grid blockiw,j,k) coordinates (110,30,1) and four
producers at the outside corners of the four cogra blocks. Injection rates in the
injector and bottomhole pressures in the produeere considered as system inputs. We
chose two different permeability fields taken frdrmayers 30 and 80 of the SPE 10
Comparative Solution Project (Christie and BlunO20 The fine-scale permeability
realizations of these two layers are shown in #fedarts of Figurel.8 and Figurel.9,
respectively.

Table 4.2 Reservoir parameters and fluid properties for Test (se

parameter value unit
reservoir length 700 m
reservoir width 400 m
reservoir height 2 m
fluid density 1000 kg/mi
fluid viscosity 3.0e-04 Pas
porosity 0.3 -
total compressibility 5.8e-07 1/Pa

initial reservoir
pressure

4.1e07 Pa

We scaled up the original 220x60 model to a 22>&s®-scale one. Similar to Test Case
(1), we compared the relative errors of averagessumes and cumulative production for
different upscaling methods. Because of computatiogasons, discussed in more detail
later, we considered only CRU Method 2 (by using HSH-norm of the fine and the
coarse models). Tabke3 and Figurel.9 summarize the upscaling results for Layers 30
and 80, respectively. It turns out that, for bo#ses, the CRU method gives superior
results in reducing the upscaling error for cumuéatproduction compared to the
geometric-averaging and local methods. The diffeesnn the pressure errors are less
pronounced. Most notable is the good performancth@fCRU method to predict the
cumulative production from Layer 80. This is a sfity channelized system for which
the geometric-averaging and the local methods trésulery large upscaling errors
because they cannot resolve the permeability caivitexs between different coarse
blocks. The CRU method gives the smallest errorttie test case, which, because of
strong large-scale flow paths in the channels, @ffecult problem for upscaling. The
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error of approximately 20% is still considerablat twve note that we applied a coarsening
factor of 100. For such large coarsening factotarge part of the error is because of the
numerical diffusion resulting from the coarse déi@ation rather than from calculation
of the upscaled parameters (Durlofsky 2005). Thersmscale permeability fields of Test
Case 2 as obtained with CRU Method 2 have beeraglisgp at the right-hand sides of

Figure4.8 and Figurd.9.
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Figure 4.8 Log10 permeability fields for Example 4.2. Left: fiseale permeability field from Test Case
(2), SPE10 layer 30. Right: coarse-scale permeabilta@sulated by the CRU method.

Table 4.3 CRU performance in Example 4.2 (layer 30).

geometric local CRU2-HSH
€, (%) 5.69 5.52 3.93
€y,cum(%0) 79.73 75.44 31.93
n-ratio 0.01 0.01 0.01
0
TII 1
E_ 200 -14
>
| -16
400
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Figure 4.9 Log10 permeability fields for Example 4.2. Left: fiseale permeability field from Test Case
(2), SPE10 layer 80. Right: coarse-scale permeabilg&ésulated by the CRU method.

Table 4.4 CRU performance in Example 4.2 (layer 80).

geometric local CRU2-HSH
(%) 1.82 2.39 1.57
€,cum(%0) 413.37 315.64 20.44

n-ratio 0.01 0.01 0.01
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4.3.3. Computational Aspects

Figure 4.10 shows the values of the cost function for féyations of the CRU
minimization problem in Eq. (4.1), correspondingittierent CRU methods in Tab&1.

As follows from the plots in this figure, the CRUbarithm converges after only a few
iterations for the given small example. We alsedrdifferent initial guesses to upscale
Test Case (1), including different averaging me¢hadd a local upscaling technique. For
this small reservoir, they all lead to almost tlane solutio®. However, calculating
Hankel singular values and controllability and aliability Gramians requires the
solution of Lyapunov equations (Egs. 3.25 and 3ui)g standard algorithms in Matlab,
which is an expensive task, particularly for lagystems. In most cases, we can reduce
the computational cost of the method by some farthedifications. For instance, in
CRU method 1, the order (i.e., the number of sjadéshe error model is equal to the
sum of the orders of the fine and the coarse mopddieh makes the computation of the
Gramians even more expensive than the originaldoase model. However, we can
write the controllability Gramian of the error syst as

|:W€,11 Wé ,12j|

W, =
W@,Zl WL’ ,22

(4.18)

Subsequently, from Egs. (4.3), (4.4) and (3.25pb&in
A 0| W W, AT 0 B . W W
- el €12 e | [BT BT] — el e 12 . (4.19)
0 A||Wear Wenf|l O A B We o1 We 2
Therefore,W, 11 and W, », satisfy the DT Lyapunov (Stein) equations
AW, AT +BBT = We 1, (4.20)
AWeyngT +BBT = Wg,zz, (421)

and, hence, they are equal to the Gramians of ittee fand coarse-scale systems,
respectively. In addition, from Eq. (4.19). ., satisfies the DT Sylvester equation

AW@vleT + BBT = We 12 (422)

18 Note that in the case of using a local upscalindirtiezie to obtain the initial guess, we obtain a
directional permeability tensor as an initial guess. dtoee, for some CRU methods, we needed a few
more iteration to converge.
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Figure 4.10 Cost function values corresponding to different CRUhwoés in Table 4.1.

Finally, since the Gramians are symmetrM/c .. =We 1, . Therefore, instead of
computing the high-order controllability Gramiantbé error system in each iteration, we
only updateW, ,,and We 1, in Eq. (4.18) by solving the low-order equatiod2() and
(4.22). The same procedure is used to calculateliservability Gramian of the error
system (see also Bunse-Gerstner et al. 2010).

Another improvement in the computational efficiermay be achieved by computing only
the first few largest HSV’a of the system. Thabézause, in most reservoir systems, the
HSVs are rapidly decreasing, indicating that thstesy dynamics can be described by
only a few modes, i.e. those corresponding to dingelst HSVs (see e.g. Figute?). As

an example, we calculated the HSH-norm (given by34p) for the fine-scale model in
Example 4.1. Figurd.11 shows the calculated value using different lmemof HSVs.
Clearly, the HSH-norm can be accurately obtainethfless than 10 HSVs instead of 400
HSVs.

Despite the above-mentioned modifications, standaethods for calculating the exact
full-rank Gramians have to be replaced by some a@pration techniques to solve the
Lyapunov equations, such that we can apply CRUetdistic reservoir models. The
description of some approximation methods and themplexity analysis is given in



62 Chapter 4 CRU

sections 6.4 and 6.5. An alternative approach ttuge the computational burden

involves replacing the fine-scale model by a reduasler realization of that model (see
also Vakili-Ghahani et al. 2008). This approachjoihis referred to as ‘reduced-order
CRU’ is discussed in section 6.3. Finally, instezda control-relevant upscaling on

uniform coarse grid blocks, we can perform a sbrsedective coarsening based on the
controllability and the observability of the systeiirhe latter is the topic of the next

chapter.
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Figure4.11 HSH-norm vs. number of Hankel singular values fofrfifie-scale model in example 4.1.

4.3.4. System-Theoretical Aspects

The definition of the objective functiod() in Method 1, Eq. (4.8), is theoretically

correct in the sense that it is defined directlytenms of the error model, such that
reduction ofJ(0) to zero implies equality between the fine-scald #re coarse-scale

models. However, the computational disadvantag®lethod 1 is that the order of the
error model is equal to the sum of the orders effthe and the coarse models, which
makes it less attractive for large models, althoughcomputational efficiency can be
improved, as we discussed before.

On the other hand, although CRU Method 2 is contjmnally more attractive, the
definition of J(8) by Eq. (4.13), in terms of the differences betwaen system norms,

is theoretically less sound. That is because thealgy of these norms does not
necessarily imply the equivalence of the correspandystems. However, in practice,
the results of Method 2 is comparable to thosehefNlethod 1, at least in those cases
where we could compute their values (i.e., for $mehmples). For instance, in Example
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4.1, both methods, when using the HSH-norm, giveoat equal relative errors (see
Table6.1). Even the HSVs of the resulting coarse-scaldats are almost identical (see
Figure4.12).

{
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Figure4.12 The first 3 HSVs of the fine-scale and three differerrse-scale models in example 4.1.

The good performance of CRU Method 2, despitehiéntetical deficiency, may be the
result of starting from a ‘reasonable’ guess in them of a geometric average in
combination with the requirement that the resutts swithin the Wiener bounds. In
addition, the fixed structure of the parameterreation problem in the form of a banded
system matrixA with to-be-estimated parameters and matrige€, andD with known
parameters may also play an important role. Naié Method 2 in case of the direct use
of the Markov parameters performs poorly for largeamples (see Vakili-Ghahani et al.
2008), most likely because of the widely ranginduea of the Markov parameters and
associated large numerical errors in matrix povedécutations.

Finally, we used three different system norms ithtdRU Method 1 and 2. Unlike the
H2-norm, the HSH-norm and the H-norm are input-atiipvariant as they depend on
the product of the Gramians (see sections 3.3 &)d Bhe H2-norm can be obtained by
only computing one of the Gramians; however, itosinput-output invariant, and hence,
the performance of the CRU method, when using tBenétm, might depend on the
chosen coordinates. Further research is requirathderstand the performance of these
norms under different circumstances and to assesaatives.
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4.4. Summary

As a first step in developing grid-based upscal@chniques that take account of the
amount of available control and measurements, welied the possibility of
implementing a single-phase control-relevant upsgalechnique. In this method, the
coarse-scale-model parameters are calculated aolingon of an optimization problem
that minimizes the distance between the input/dubgaviors of the fine- and coarse-
scale models. This distance is measured in terndéfefent system norms, in which we
use Hankel singular values as a measure of theioeohibontrollability and observability
and Markov parameters as a measure of the respbtise system, respectively.

The CRU approach considers more realistic boundanditions in comparison with
most conventional upscaling techniques, as it damsithe given well configuration.
Therefore it is particularly attractive to scale gpnulation models in flooding-
optimization or history-matching studies for a giveonfiguration of wells. Furthermore,
it focuses on the observable and controllable siat@bles and, therefore, relies on those
grid blocks that are most important to the inpuoti behavior of the model. Since these
grid blocks are generally close to the well locasiothe near-well effects are also better
captured. We emphasize that the CRU approach Iskalgmethod in the sense that it
relies on the system properties of the entire vesebut that it does not require any
forward simulation either of the full or of the waded model. It also does not depend on
a particular control strategy but instead useslyimamical system equations directly.

The price to pay, however, is that any change éenvtiell configuration (including both
well locations and the number of inputs and oufprgquires a (partial) repetition of the
upscaling procedure. Moreover, computational issneapplying CRU to large-scale
reservoir models form another limitation of this thw. Nevertheless, current
developments addressing the approximate solutiohigli-order Lyapunov equations
(section 6.4) and a combination with model-ordeluction techniques (section 6.3) may
to a large extent solve the computational issuemti#er alternative is to use a control-
relevant selective coarsening approach, whichssugised in the next chapter.



5. CHAPTER: CONTROL-RELEVANT SELECTIVE
COARSENING (CRSC)

I n this chapter, we present a multi-level selective godreening method to allow
treatment of very large models with a high degree eiitogeneity in their parameter
fields. In this control-relevant method, the criterion fuid size adaptation is based on the

spatial quantification of the controllability and observabitifythe reservoir system.

5.1. Introduction

In most reservoir systems, there are only a limitachber of degrees of freedom in the
input-output dynamics for a given configuratiorvgélls. This means that a large number
of combinations of the state variables (pressuik saturation values) are not actually
controllable and observable from the wells, andoetiagly, they are not affecting the
input-output behavior of the system. Thus, the demity level of a model should be
adjusted to the amount of available information #relextent of control that is possible
in the reservoir system. In Chapter 4, we therefargposed a single-phase control-
relevant upscaling methodology that uniformly ceass’ the reservoir model based on
the relevant level of information and control. Hweg the formulation as presented in
Chapter 4 is restricted to fine-scale models witmaximum of around FOgrid blocks
because of current limits on the computation ofuthderlying system norms.

In section 6.3, we will propose techniques to sotre@vevercome the computational limit
by combining CRU with model-order reduction techugg (see also Vakili-Ghahani et al.
2008). Here, we follow a different route and présarmulti-level selective (i.e. non-
uniform) grid coarsening method to allow treatmehtvery large models with a high
degree of heterogeneity in their parameter fiells.this control-relevant selective
coarsening (CRSC) method, the criterion for gridesadaptation is based on the
controllability and observability properties of treservoir system. The multi-level CRSC
algorithm starts from a uniformly coarsened grid #men adaptively refines it to various
degrees in the most controllable and observables mdrthe reservoir. In addition to a
computational advantage, the selective coarsemiinggment is also expected to be more

19 Note that we use the terms ‘upscaling’ and ‘coarseriitigichangeably.

65
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accurate, in the sense that a selectively upscatatel is expected to introduce smaller
upscaling errors than a uniformly upscaled moddhwhe same number of grid blocks.
The CRSC method is attractive for use in compussiséed flooding optimization or
history matching studies for a given configuratiohwells, and in particular for the
combined use of optimization and history matchimg a closed-loop reservoir
management setting.

This chapter is mainly based on Vakili-Ghahani &skn (2009), and Vakili-Ghahani &
Jansen (2010b) and its main contribution is togmea control-relevant criterion for grid
adaptation, and use it in a selective (non-unifocogrsening/refinement approach that is
applicable to arbitrarily large fine-scale moddiberefore, in the next sections, we will
first explain the spatial quantification and vismation of the controllability and
observability as a motivation to perform a selextmoarsening. Thereafter, we will
describe the CRSC algorithm and demonstrate itfoqmeance using two numerical
examples. For background information on the sydtesoretical concepts and notations
used here, the reader is referred to Chapter 3.

5.2. Spatial quantification of controllability and observability

As discussed in Chapter 3, we can quantify therothability and the observability of a
linear reservoir system by computing the Gramiss and W, . The square roots of the
eigen values oW.W, are then equal to the Hankel singular values (HMsthe
system (Moore 1981). Recall that the HSVs give aasuee of the combined
controllability and observability of the balancedtss of the system. In Chapter 4 we
used this analysis to develop a uniform contradgweaht upscaling (CRU) method that
indirectly focuses on the most controllable andeobsble states of the system. Here, in
addition to the HSVs, we also consider the singukstors, which are obtained by a
singular value decomposition of

WeW, = UZ2VT, (5.1)

where X contains the HSVs antl contains the corresponding singular vectors as
columns. Using Egs. (3.29), (3.30) and (3.31), b&aio

WeW, = T WW, T = TE2T. (5.2)
Consequently, for a balanced realization of théesgsthe singular vectors are equivalent

to the columns off %, whereT is a balancing transformation matrix that givesiaq
and diagonal Gramians.
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As demonstrated by Example 3.1, in most reservases, the magnitude of HSVs are
rapidly decreasing, indicating that a large numbmr the states are weakly
controllable/observable, hence, they weakly infeeethe input-output behavior of the
system. Considering that, we can rewrite Eq. (&sl)

B 2 o][vr
WeW, =[U; uz]{O 2%}{%}’ (5.3)

where X; =diag(oi,0,---,0;) contains the first HSVs of the system (corresponding to
the most controllable/observable states), whichsageificantly larger than the HSVs in
¥, =diag(Ty+1,0:+2,-+-,0n ). Note that each column &f hasn entries that are related to
n states, which are in turns connectechtgrid blocks. Moreover, the firstcolumns of
U, corresponding to the firstHSVs, are representing the most controllable/oladxe
subspace of the state-space and, consequentlyglated to those combination of the
states that are most controllable/observable. Thexgethe singular vectors related to the
first few HSVs of the system can be used to sppteplantify the controllability and the
observability concepts (see also Zandvliet et @8 Van Doren 2010). We illustrate the
procedure by the following example.

5.21. Example5.1

As an illustration of our approach consider a sfglhase two-dimensional (2D) reservoir
system, referred to as Test Case (3). Reservoiehpaitameters and fluid properties are
given by Tables.1, and the permeability field is shown in Figbté. The permeability
values vary between 5 mD and 1000 mD. There isigeetor in the middle and four
producers surrounding the injector, resemblingreverited five-spot pattern (see Figure
5.1). All wells are controlled by prescribed botttiwle pressures. The time-varying
bottom-hole pressure for injector 1 is shown inurgpb.2. Note that the placement of a
well in a low-permeable area is not a common pecactiWe did this, nevertheless, for
producer 4 to illustrate the controllability/obsabiity variation for different well
placements. Moreover, due to relatively poor resmtuof seismic data, in practice the
exact location of the channels may be uncertaim&nown.

The fine-scale reservoir model has 16384 grid dp@nd therefore 16384 (pressure)
states. Figur®.3 displays the first 130 diagonal entries oftthéanced Gramians, i.e. the
Hankel singular values, for this reservoir systdime rapid decline in the magnitude of
these values implies that the number of combinatisaquired to describe the
input/output behavior of the system is much smahan 16384.
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Figure 5.1 Logl0 permeability field for Test Case (3), and tams of the injector (cross) and the
producers (dots) in Example 5.1.
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Figure5.2 Prescribed well bottom-hole pressures in Example 5.1.

Table 5.1 Reservoir model parameters and fluid properties é&st Tase (3).

parameter value unit
reservoir length 256 m
reservoir width 128 m
reservoir height 2 m
fluid density 1000 kg/mi
fluid viscosity 3.0e-04 Pas
porosity 0.3 -
total compressibility 5.8e-08 1/Pa

initial reservoir

Dressure 3.0e07 Pa
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To visualize the controllability/observability, weonsider ‘directions’us,us,...,us ,
corresponding to the six largest HSVs of the systeaiterns 1 to 6 in Figuf&4 show
the directions mapped onto the computational @&tause each component of the state
represents the pressure in a grid block, this nmgpallows us to quantify the variation of
the controllability and observability of the syst@wer the spatial domain in the form of
‘patterns’. For a better visualization in Figusel, we have sorted the grid blocks based
on their importance (the magnitude of their nomezealues). Colors from red to blue,
therefore, represent the ‘grid importance’; i.e.e thvariation from strongly
controllable/observable to weakly controllable/aliable areas.
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Figure 5.3 Hankel singular values for Example 5.1.

pattern 1 pattern 2 pattern 3

pattern 4 pattern 5 pattern 6

Figure 5.4 Patterns 1 to 6 represent the singular vectors camespg to the six largest Hankel singular
values of the system in Example 5.1. Colors from rdulue represent the grid importance.
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Figure 5.5 Visualization of the dominant pattern for controllabilapd observability variation over the
spatial domain for Example 5.1; the Gramians were obdaiith the LR-ADI algorithm. Colors from red
to blue represent the grid importance obtained fromsiteed weighted sum of the singular vectors
corresponding to the first sixty Hankel singular valuethe system.

The significance of each mapped pattern is propoatito the magnitude of the related
Hankel singular value. The vector sum of all pasereach weighted with its
corresponding singular value, therefore gives tlarfinant’ pattern that represents the
spatial variation of the combined controllabilitycaobservability of the system. However,
because of the rapid decay of the singular valugly, a few patterns related &, in Eq.
(5.3) need to be taken into account to accuratyure this combined controllability and
observability. Accordingly, the dominant pattesrgiven by

U= zﬂu (5.4)

Here, we use the weighted sum of the first 60 pagteHowever, according to Figuse3,

we could have chosen an even smaller number oérpatt Figure5.5 presents the
resulting dominant pattern. Recall that colors freed to blue represent the grid
importance obtained by sorting all grid blocks lohea the magnitude of their non-zero
values. From this figure and for the given examtile,most controllable and observable
regions are in the vicinity of the wells and inlmgermeable areas connected and close to
the wells. The blue areas in Figlsé® are weakly controllable/observable. Note that
area in the vicinity of producer 4 is less conable/observable, compared to other
producers, because it is located in a low-permgadnteof the reservoir.

The spatial quantification of the observability acmhtrollability of a reservoir model
forms the basis for our CRSC algorithm. The badeaiis to perform grid coarsening
only in the weakly controllable and observable srea. in those areas that have the least
effect on the input/output behavior of the system.
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5.3. CRSC algorithm

The general idea behind selective (non-uniformyse@ing is to only coarsen those parts
of the spatial domain that are the least imporfantthe flow simulation according to
some predefined criterion. In our CRCS applicatwe, use a control-relevant criterion
based on the quantification of the controllabilégd observability subspaces over the
spatial domain. Other selective gridding methodsehaeen proposed, sometimes with an
adaptive, i.e. time-dependent, strategy for seleatefinement and coarsening based on
different criteria. In particular, adaptive griddims often applied to maintain a fine grid
in areas of high permeability or in areas wherd lggturation or concentration gradients
occur; see e.g. Berger & Colella (1989), or Gesrit& Lambers (2008) and references
therein.

5.3.1. Algorithm
The CRSC algorithm includes three main steps:
1. Obtain a uniform coarse-scale model with a metHazhoice.

2. Spatially quantify the combined controllability awtbservability of the system
using either fine- or coarse-scale Gramians.

3. Selectively refine the domain depending on thellefeeombined controllability
and observability.

A schematic overview of the procedure is depictedrigure5.6. In the following, we
will explain the algorithm in more detail:

Local
Upscaling refinement

»

\ 4

Selective coarsening

Figure 5.6 Control-relevant multi-scale gridding through uniformitiai coarsening and subsequent
selective refinement.
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Step (1)

We choose an upscaling technique to generate aesgaale model. A fast and simple
upscaling method is a so called local upscalingrigpie (see subsection 2.3.3), in which
coarse-scale parameters are calculated from ldoal €alculations subject to some
generic boundary conditions (Warren & Price 19&{%).alternative technique is a local-
global approach, in which the generic boundary damr are only used to obtain an
initial coarse-scale flow solution. The interpatetiof the coarse-scale solution then gives
more accurate local boundary conditions to findribe coarse-scale parameters and the
process is iterated until the solution convergdse(Cet al. 2003, Gerritsen & Lambers
2008). The accuracy of the coarse-scale approxamaét this step is of limited
importance, as long as it can be used to condwctctmtrollability and observability
analysis in the next step.

Step (2)

To spatially quantify the most controllable/obsdreapatterns, we first need to compute
the balanced Gramians of the system by solving ugap equations (Egs. 3.25 and 3.26).
A brief overview of different methods to compute txact and approximate solution of
these equations is given in section 6.4. The dialgentries of the balanced Gramians
(HSVs) and the corresponding direction are therd usequantify the variation of the
system’s controllability and observability propegiover the spatial domain (see Figure
5.5). Finally, the coarse-scale grid blocks that lacated in the areas corresponding to
highly controllable/observable states (red aredsguare5.5), are flagged to be refined in
the next step. A grid block is flagged if the follimg condition holds:

U s (5.5)
[l

where ¢ is a threshold value. A zero threshold value mdfaaisall the grid blocks should
be flagged and the corresponding coarse-scalebtgraks need to be refined, while a unit
threshold value means no refinement. From our éxpez and for the following
examples, we found out that setting a thresholdevalf about 0.005 produced accurate
coarse-scale results, while significantly redudimg number of grid blocks. However, the
optimal choice of the threshold value is still gen question.

An alternative and faster approach to spatiallyngjiathe controllability/observability is

to use the coarse-scale Gramians from the appréeih@oarse-scale model of Step 1.
However, Steps 2 and 3 may need to be iteratedvdifiees to obtain a more accurate
approximation of the controllable/observable subspa The use of the coarse-scale
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model in this way is somehow similar to the adaplical-global approach of Chen &
Durlofsky (2006), in which they use a coarse-ssateulation to find areas for which the
initial local upscaling with generic boundary cammhs needs to be repeated with
specific boundary conditions related to a partictltav scenario.

Step (3)

The last step is to refine the flagged coarse-sgatkeblocks to finer ones, or even back
to the initial fine-scale grid blocks. The resudta system of non-uniform grid blocks as
depicted in Figur®.7. To discretize partial differential flow equats over non-matching
grid blocks, we choose a cell-centered finite vatutechnique. The interface fluxes for
each control volume are calculated by using a teiotpflux approximation method
(Edwards 1996, Aavatsmark 2002). For instancefltixebetween grid blocks 2 and 1 in
Figureb5.7 is given by

1 2k, ky
=—=———=- A - , 5.6
07 (,quzkﬁAXlkz yZ](pz R2) (5.6)
d,
.az — .2
Q,
.1 q3 r Y
®a3  %; Ay,
A%

Figure 5.7 Non-uniform grid blocks.

where k; and k; are the permeability values of grid blocks 1 andp2 and p.. are
pressure values at points 2 aa#, 4 is the fluid viscosity, andxand Ay are the grid
block dimensions. An issue here is to calculateptt@ssure values at the auxiliary points
like a2 anda3. Although there are various ways to do so, forpdicity we assume that
they are equal to the average pressure for theeegrid block. However, to maintain the
accuracy around the interface, we require that gaichblock may only be refined once
in each direction, i.e. at each refinement levajrid block may contain up to four sub
grid blocks. More accurate pressure calculationthatauxiliary points can be found in
e.g. Gerritsen & Lambers (2008), Khattri et al.q2)) Nilsson et al. (2005), and Edwards
(1996). Spatial and temporal discretization of tlosv equation over the non-uniform
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grid blocks leads to a system of equations that lmamwritten in the state-space form
given by Eqgs. 3.14.

5.4. Resultsand discussion

We demonstrate the performance of CRSC with theoftd/o numerical test cases. The
first one concerns a channelized reservoir witatnedly small permeability fluctuations,
while the second one concerns a strongly chanmkfygstem. In both cases, we assume
single-phase flow subject to no-flow boundary ctinds. The liquid flow into and out of
the reservoir is therefore through the wells. Wasitder a fixed configuration of the
wells which are controlled by a prescribed variallettom-hole pressure, while
production and injection rates are recorded a®thput of the system. The bottom-hole
pressure is related to the grid block pressurediygua well index which is a function of
the grid block geometry and permeability (Peaced288). Like in the CRU algorithm,
we use the relative error (Eg. 4.14) in terms efdlieraged pressures and the cumulative
production rates to compare the performance ohtireuniform coarse model obtained
by the CRSC algorithm with those of the originalefiscale model and the uniformly
coarsened model. Furthermore, we use thetio’ defined by Eq. 4.17, to compare the
size, and roughly the computational time that iedesl to simulate a coarse-scale
reservoir model, to that of the fine-scale one.

54.1. Exampleb5.2

In this example we consider the reservoir systerast Case (3) with the production
scenario described in Example 5.1. The permealbiéityy and well locations are depicted
in Figure5.1. We chose factors of 8 in each direction tdesaa the 256x64 fine-scale
model to a uniform 32x8 coarse model by using allepscaling technique. The grid
refinement for this example was then based on thentification of the state’s
controllability and observability over the spat@ddmain of the fine-scale model (FS-
CRSCQC), as illustrated in Figuge5. The level of refinement for each flagged ceaysd
depends on its ‘importance’ compared to other ghatks. Thus, in red grid blocks that
correspond to the most controllable/observable sarege perform three levels of
refinement to return to the original fine-scale mlodrigure5.8 shows the selectively
coarsened grid obtained by the CRSC algorithm. Gle¢le refinement around producer
4 is less than around the other wells becauseptbiducer is located in a low-permeable
part of the reservoir and it has less effect onirpat-output behavior of the system.
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fﬁr

Figure 5.8 Selectively coarsened grid in Example 5.2. The refem is based on the spatial quantification
of the controllability/observability of the fine-scale madel

Table 5.2 CRSC performance for Example 5.2 using fine-scadn@ans.

fine-scale coarse (32x8) FC-CRSC coarse (128x32)
€,(%) 0 0.6 0.1 0.4
€,cum(%0) 0 28.9 0.6 13.8
n-ratio 1 0.02 0.23 0.25

Table5.2 represents the relative error amdhtio for the simulation of Test Case (1) with
different models. Although the uniform coarse mo@2x8) gives a very fast simulation

with ann-ratio of 0.02, the CRSC algorithm vastly outpenisrthe uniformly coarsened

grid in terms of accuracy. More interestingly, B®&SC model with 3794 grid blocks

even gives a much smaller error than the uniforarsmmodel (128x%32) with 4096 cells.
This illustrates that, for this example, in additito a computational advantage, the
selective coarsening is also more accurate thanifaronly upscaled model with the same
number of grid blocks.

We can also use the Gramians of the initial coacs¢e model for spatial quantification
of the controllability/observability, and thus fdlagging the most controllable and
observable parts of the reservoir. We set the iotdssalue such that the resultingatio

is comparable to that of the CRSC-FS model usimgfitme-scale Gramians. Tabe3
gives the results after two iterations. Surprisigle observe that, for this example, the
errors are comparable to the result of FS-CRSCn(svithout any iteration), while the
computational time that is needed to compute th&&CRyrid is decreased from 115
seconds for the FS-CRSC to 48 seconds for CS-CRBC ame iteration, and to 10
seconds for CS-CRSC without any iteration. Notd thare is no change in the results
after two iterations.
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Figure 5.9 Dominant patterns (left) and selectively coarsened (@igght) in Example 5.2, using coarse-
scale Gramians. The first row: iteration O; the secomd iteration 1.

Table 5.3 CRSC performance for Example 5.2 using coarse-&xamians.

CRSC-CS
iteration 0 1 2
& (%) 0.16 0.16 0.16
€g,cum(%0) 0.81 0.80 0.80
Number of grid blocks 3794 3824 3824
gridding time (s) 10 48 81

Nevertheless, the spatial quantification of thetalability/observability using fine-and
coarse-scale Gramians and, consequently, theirgs@RSC grids are slightly different.
This is evident from Figuré&.9, in which we show the dominant patterns (leftyl the
corresponding CS-CRSC grids (right). The spatialsualization of the
controllability/observability in Figure5.9 is different from the one in Figurg.5,
indicating that the spatial quantification of thentrollable/observable subspaces based
on the coarse-scale model is less accurate.

Finally, we compare the HSV plots of all uniformdanon-uniform coarse models of
Example 5.2 in Figur®.10. As expected, the HSV plots of the CRSC modedsmuch
closer to the HSV plot of the fine-scale model. sThiustrates again that the selective
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coarsening is more accurate than a uniformly upsicaiodel with a similar number of
grid blocks.
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Figure5.10 HSV plots for the fine-scale, uniform coarse-scatel @RSC models in Example 5.2.

54.2. Exampleb5.3

As the second example, we consider again the msesystem of Test Case (2) in
Chapter 4 with reservoir model parameters givemadhle 4.2. The permeability field is
taken from layer 44 of the SPE10 comparative smtufiroject (Christie & Blunt 2001),
which represents a channelized reservoir with pehitiey values between 0.0001 mD
and 17000 mD. The fine-scale reservoir model h&x@Q grid blocks with one injection
and two production wells controlled by prescribedtttim-hole pressures. The
permeability field and the well locations are dégutin Figure5.11. Figure5.12
illustrates the dominant pattern obtained from weeghted sum of the Hankel singular
vectors corresponding to the first 60 HSVs of thetam. Recall that the red grid blocks
are the most relevant ones in terms of input/out@itavior. We observe again that the
highly controllable/observable states corresponthéogrid blocks in the vicinity of the
wells and of adjacent connected high-permeableszdneerestingly, the high permeable
areas in the upper left and lower right cornersctviare either disconnected or far away
from the wells, are weakly controllable/observable.
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Figure 5.11 Logl10 permeability field from Test Case (2), SPEMEi#ad4, and locations of the injector
(cross) and the producers (dot) in Example 5.3.

We scaled up the fine-scale model to a 15x55 coarseel using a local upscaling
technique. Subsequent refinement of the grid blocksresponding to the most
controllable/observable parts of Figlrd 2 lead to a pattern of selectively coarsenadl gri
blocks shown in Figur&.13. The original fine-scale grid, the uniformiyacsened grids
(15%55) and (30x110), and the CRSC grids were tsesimulate the flow behavior in
the reservoir. Tablé.1 gives the simulation results for different misdm terms of
cumulative production error andratio. As in Example 5.2, it turns out that the SIR
method appropriately reproduces the fine-scaleltsesand clearly outperforms both
uniformly coarsened models obtained with a locadaafing technique. Note that in
highly channelized cases local techniques are kmellvn not to resolve the permeability
connectivities between different coarse blocks dnekefore, to result in large upscaling
errors.

Figure 5.12 Visualization of the dominant pattern for controllabilitydambservability variation over the
spatial domain in Example 5.3. Colors from red to bkgresent the grid importance obtained from the
scaled weighted sum of the singular vectors corresponditige Hankel singular values of the system.
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Figure5.13 Selectively coarsened grid in Example 5.3.

Table 5.4 CRSC performance for Example 5.3.

fine-scale coarse (15x55) CRSC coarse (30x10)
& (%) 0 22 0.3 0.8
&,cum(%0) 0 76.2 0.4 39.6
n-ratio 1 0.06 0.20 0.25

5.4.3. Computational aspects

Similar to the CRU method, the most expensive dmeran CRSC algorithm is to
compute the Gramians of the system. Thereforedatdnmethods for calculating the
exact full-rank Gramians in Matlab, which are irded for small systems (with less than
10* grid cells) have to be replaced by approximatiechhiques for large systems. The
description of several approximation methods amr tbomplexity analysis is given in
sections 6.4 and 6.5. Alternatively, using the seamodel to compute the Gramians
allows the application of the CRU algorithm to véayge systems, although the spatial
guantification of the controllable/observable sidugs is then less accurate (see Example
5.2).

To have a computationally more efficient multi-levefinement procedure and similar to
Gerritsen & Lambers (2008), we applied an unstmactwdata approach to store the grid
block and interface data. In this method, each ftatk requires the storage of its
geometrical and physical data, interface infornrmratiad neighbor’s indices. This allows a
fast and easy accessibility to grid block dataardlgss its level of coarsening. A detailed
description of the unstructured data approach edolnd in Ham et al. (2002).
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Figure 5.14 Uniform and non-uniform grid systems (first rowpysplots’ of the corresponding system
matrices (second row).

Furthermore, we used theratio to compare the relative size and, consedyetite
required computational time for solving a lineastsyn of pressure equations in different
models. However, computing the pressure solutiar tve CRSC grid is more expensive
than over a uniform coarse grid with the same nurobgrid blocks. This is because the
bandwidti° of a CRSC system matrix is larger compared toothe for a uniform grid
(see Figurés.14). This bandwidth can be optimized by an appatg renumbering of the
grid blocks as well as reordering the elementshefdystem matrix to produce a matrix
with a significantly smaller bandwidth. For instanaeordering the elements of the
system matrixA using the reverse Cuthill-McKee (RCM) ordering Matlab gives a
much narrower bandwidth, as the right spy plotiguFe 5.15 shows. Such a reordering
can often make some operations like LU decompasitidich is used in the linear solver,
sparser and faster. Note that the cost of the baltidwptimizer is negligible, compared
to the total CPU time of the solver and , therefdine n-ratio can still roughly represent
the relative CPU time spent to solve the pressgquations of the CRSC model.

% The bandwidth of a matrix is computed as the maxinmamdwidth of each row of the matrix. The
bandwidth of a row of the matrix is the number of madnitries between the first and last nonzero entries
in the row.
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Figure 5.15 Spy plot of a system matrix before (left) and afteght) the bandwidth optimization by RCM.

In summary, for large systems, the CRSC grid caretfieiently obtained by using
approximation methods to compute the Gramians, yagpla proper grid block
numbering, optimizing the bandwidth of the systemtn®, and using the unstructured
data approach to optimize the grid data storing landing during the simulation. Note
that the CRSC grid blocks need to be obtained onlge and in an offline part of the
simulation, whereas simulation of the flow equatomer the CRSC grid blocks might be
performed many times in different applications.

5.4.4. Remarks

For the sake of simplicity, we used simple griddamgl discretization techniques,
and we implemented them in MATLAB. Alternative gitidg and discretization
strategies might further improve the CRSC perforoean terms of both accuracy
and computational efficiency.

The CRSC method can conceptually simply be extetml&® applications.

In this Chapter, we developed a single-phase upgctdchnique (CRSC method),
which is based on single-phase flow equations. Negkess, the resulting CRSC
grids are expected to outperform the uniform cogrs#s even in two-phase flow
applications Furthermore, the CRSC algorithm can also be exignol two-phase
flow simulations. However, for nonlinear two-phdk®v cases, we need to either
linearize the system, or compute the controllgbifind observability Gramians
empirically (for the empirical calculations of tké&ramians see subsection 6.4.3).
The other important issue in two-phase flow is &aldwith moving saturation
fronts. Since the saturations are only controllableng the front and only
observable after water breakthrough in the wellanVDoren 2010), the
performance of CRSC algorithm would be improvedatdging grid adaptations to
resolve the strongly controllable/observable aralamg the moving saturation
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fronts. Further research is required to evaluagectbmputational benefits of the
CRSC approach in multi-phase flow applications.

» Other possible solution to treat saturations imwa-phase flow simulation might
be applying a multi-scale framework, in which thRSC grid blocks are only
used to solve the pressure equation while the atatarequation is solved over
the fine-scale grid blocks.

5.5. Summary

We proposed a multi-level CRSC method to allowttrest of very large models with a
high degree of heterogeneity in their parametdddieln this control-relevant selective
coarsening method, the criterion for grid size &al&m is based on the spatial
guantification of the controllability and observidtgi properties of the reservoir system
and, hence, the level of refinement for each coauriseblock depends on its ‘importance’
compared to other grid blocks. We applied our algor to two numerical examples and
found that it can accurately reproduce results frdme corresponding fine-scale
simulations, while significantly speeding up themsiation. In addition to a
computational advantage, the selective coarsemfiggment is also more accurate,
compared to a uniformly upscaled model with the essamamber of grid blocks. That is
the case because the most controllable/observabkes,awhich appear to be in the
vicinity of the wells and in high-permeable are&sse to and connected to the wells,
remain unchanged and, therefore, global flow pastemd permeability contrasts of the
fine-scale model are better preserved by the CR&®idom.

Similar to the CRU approach, the CRSC techniquesidens the global flow effects by
relying on the system properties of the entire mese but it does not depend on a
particular control strategy. However, it should fmartially) repeated if the well

configuration is changed.



6. CHAPTER: REDUCED-ORDER CONTROL-RELEVANT
UPSCALING

I n this chapter, we explain several system-theoreticalctieutechniques followed by
investigating the potential benefits of using them in comation with our control-relevant
upscaling approach. Thereafter, several approximatiethods to compute the Gramians are

discussed and a brief complexity analysis of differgtrations is presented.

6.1. Introduction

The main concern about CRU and CRSC algorithm&eg applicability, in terms of
required computational power, to more realistic sénde reservoir systems. The most
expensive phase of numerical calculations assatciatgh both methods is the
computation of the Gramians which requires thetgmiuof (large) Lyapunov equations
(Egs. 3.25 and 3.26). On the other hand, the stdneleact methods in Matlab (e.g.,
Bartels-Stewart algorithm) are intended for smg#items (with an order of @ells),
and they are computationally too expensive or ewdractable for larger systems.
Therefore, the main focus of this chapter is testigate possible approaches to improve
the computational efficiency of CRU and CRSC method

The first attempt is made by performing our contedévant upscaling method on a low-
dimensional approximation of the original fine-salystem obtained by a system-
theoretical model reduction technique, so that teerder Lyapunov equations are to be
solved. The second approach is to use computalyoefficient algorithms to solve large
Lyapunov equations. Alternatively, a fast approxioraof the Gramians can be obtained
from sufficient snapshots of the simulation datéinme. The latter is mainly based on the
same principles that are used in common model teputechniques. In the following
sections, first, we present a short descriptiosedMeral model reduction techniques and
then explain both above-mentioned approaches. Mereave investigate the possibility
of using the spatial quantification of the contability and observability of the system in
developing a missing point estimation approach fadel reduction. At the end, we
discuss the computational complexity of differepertions that are needed to perform
the CRU and CRSC upscaling.

83
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6.2. Model reduction

System-theoretical model reduction provides a syatie tool to reduce the complexity
of large-scale models. Consider a linear resemmoidel with a state-space representation
given by Eg. (3.14) and (3.15). To derive a redumettr model of the system, we
project’ the state vector onto a subspace defined by bagdnal projection matrices
(bases)” and %/, so that2’"? =1 and x =X . We can partition the transformed state

as
o | X
x=[A } (6.1)

wherer<<n and the states iR, are corresponding to columns of?’ that represent the
dominantbasis vectors (functions). The basis functions cdresen appropriately, such
that the system dynamics are captured accuratelpdyesulting reduced-order model.
The states in vectax, are considered ‘unimportant’, and explicitly setzero. Therefore
we can write

X = VX = UK. . (6.2)

In most model reduction techniques, we proceed wiiime variation of a Petrov-
Galerkin projectiorf? to construct the reduced-order model. THBorder low-
dimensional approximation of the origindl-order model is then written as

5\.(r,k+1:l8\r5\(rk +éruk, (63)
yr,k = érXr Kk + DUk, (64)

where A, =2/ A%, B, =2/"B,andC, =C% . The performance of the reduced system
depends on the choices @&f and %7 . In the following, we will discuss balanced
truncation (BT), proper orthogonal decompositio®[®, and balanced POD (BPOD)
approaches to obtain the bases.

Note that the material presented in this sectiolmased on well-established system-
theoretical reduction techniques developed andiegpph different disciplines such as
electrical circuit analysis, mechanical system gesi weather forecasting and

L There is another category of model reduction methiasitvolves no projections. Examples of those
methods are Hankel optimal model reduction (Glover 198d) singular perturbation approximation (Liu

& Anderson 1989).

22|f 90 = % the projection is orthogonal and it is called a Galegkinjection, otherwise it is an oblique

(Petrov-Galerkin) projection.
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oceanography. The most widely used reduction metrex@ BT, moment matching
(Krylov methods), POD, BPOD, and trajectory-basecewise linear (TPWL)
approximation, where the last three can be alsd t@enonlinear models. For a general
overview of different methods see Antoulas (20080l aeferences therein. For recent
applications of model reduction techniques to nesemodeling see Markovinogiet al.
(2002), Heijn et al. (2004), Gildin et al. (2006}ardoso et al. (2009), Cardoso &
Durlofsky (2010a, 2010b) and Markovinév(2009).

6.2.1. Balanced truncation (BT)

The concept of BT, introduced by Moore (1981), Issely related to the definition of
balanced realization described in section 3.3 és®Glover 1984). The idea is to use the
combined knowledge of both inputs and outputs terd@ne the state variables that can
be truncated in a reduced-order representatiomefsystem. In a balanced realization,
these states are related to the least controltdigefvable subspaces described by the
singular vectors corresponding to small HSVs ofsy&em. Therefore, we can define the
projection subspaces as the dominant eigen spddbs product of controllability and
observability Gramians. The balanced realiz&floas proposed by Laub et al. (1987),
can be obtained by Cholesky factorizations of thean@ans, i.e., W, =L.L% and
W, =L L}, followed by a singular value decomposition of

N RVA
LLLe =UEVT =[U, LJZ]L)1 zj{vﬂ’ (6.5)

after which the balancing transformation matrices defined asT =L.VX™? and
Tt=xVTLY, . The partition £; contains ther largest HSVs of the system
corresponding to the most controllable/observabbeninations of states, i.e. the
combinations that have the largest contributioth&input-output behavior of the system.
Therefore, for the BT procedure, we chodée L V.2 and24/™ = X;Y2UJL%. . The
HSVs corresponding to the truncated states giva-priori error bound on the output
(Enns 1984), written as

ly-y[=23 oiful. (6.6)

i=r+1

23 Contrary to the balancing procedure described in se8t®yrthis approach uses the Cholesky factors of
the Gramians which can be directly computed, i.e., witbgplicitly forming the Gramian matrices.
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This makes the BT approach a rigorous reductiohnigcie, for which the accuracy is
guaranteed. However, the computation of the Grasnifam large systems such as
reservoir models is often impractical.

6.2.2. Proper orthogonal decomposition (POD)

A model reduction method based on PODses the spatial correlation in the states
(pressures and saturations) to compute a limitedoen of spatial patterns (directions) in

the state-space coordinates, which can be usebai@aterize the dominant dynamical

variations of the system. These dominant patterasohtained by selecting the leading

eigen vectors of the covariance matrix obtainedhfseveral fine-scale simulation data.

The covariance matrix is defined as

X =XXT, (6.7)

where X =[x;-X X,—X ... Xy—X] is a shifted snapshot matrix containing
shifted snapshots of the fine-scale solution dedsht points in time for a particular set
of wells and boundary conditions, with=(I/N) Zi“ilxi representing the average state.
Often a simplification is introduced by operatingredtly on the snapshot matrix
X=[X1 Xz ... Xn], i.e. without shifting the snapshots. Sirovich§IPproposed the
‘method of snapshots’ that avoid the explicit cidtion of the correlation matrix. In this
method, we compute a singular value decompositfoX e UXV™,WhereU and V are
orthogonal matrices, antl is a diagonal matrix containing the singular valué the
snapshot matrfX. In most applications, these singular values deapidly and onlyr of
them are significantr€<n). The reduced bases are then chosen as

Y=U-=-o, (6.8)

where®, contains the leadingleft singular vectors in matrik) . Note that®, ®, =1 .
We choose POD basis functions based on the definition aflative ‘energy level’ that
is present in the snapshots, given by

(iaﬁliazjsa, (6.9)

%4 Depending on the area of application, POD is alsowknas Karhunen-Loeve (K-L) and Principal
Component Analysis (PCA).

5 The columns ofU are also the eigenvectors of the data covariance mxiiX, and the diagonal
X contains the square-roots of the corresponding eigkres.
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where g; represent the POD singular values ang a fraction of ‘energy’ that we need
to retain. The base®# and?/ can be substituted in Egs. (6.3) and (6.4) to caosthe
reduced-order model.

POD can be used to obtain efficient projection roas for large systems resulting in a
reduction level of the several orders of magnitudewever, unlike the BT, it has no
guality guaranties and the range of validity of thsulting low-order model is restricted
to the region of the state-space, where the data been collected. For a more detailed
description of the POD method see e.g. Antoula8%20

6.2.3. Balanced POD (BPOD)

BPOD is based on the idea of combining BT and PODpdrform an approximate
balanced truncation, in which the Gramians are @pprated by the method of snapshots.
Therefore, the method is tractable for very largstems (Willcox & Peraire 2002;
Rowely 2005). As is shown in Lall et al. (1999, 2DP@or the time domain and in Willcox
& Peraire (2002) for the frequency domain, the P@&des of the impulse response of
the system are equivalent to the dominant eigetox®of the controllability Gramian
and, accordingly,

W, = XXT, (6.10)

If the snapshots are generated with inputs othaar timpulses, as is often the case in our
application, Eg. (6.10) gives an approximation lie tontrollability Gramian over the
chosen region of state-space, where the data lemredollected (Willcox & Peraire 2002;
Bui-Thanh & Willcox 2005). Note that in a multipleput case, the snapshots are
obtained for each input in turn and they are altiséd in one snapshot maffixSimilarly,
the observability Gramighcan be approximated by

W, =277, (6.11)

whereZ is the snapshot matrix of an adjoint (dual) systenich for a continuous-time
linear system, is defined as

z=A{z+Clu,, (6.12)

% |In case of a large number of inputs (outputs), weatsm compute a POD input (output) projection basis
and apply the BPOD technique to the resulting system witbaed number of inputs (outputs) (see Bui-
Thanh & Willcox 2005; Rowley 2005).

*’ The observability Gramian of a system is equivalent toctirollability Gramian of its adjoint (dual)
system (see e.g. Antoulas 2005).
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where A.is the continuous-time system matr®;is the continuous-time output matrix
andu, represents the adjoint input.

Computing the approximate Gramians for a particdat of well and boundary
conditions involves several training simulationstloé forward and the adjoint systems.
Subsequently, a sufficient number of snapshothefforward and the adjoint run are
stored in the snapshot matricésand Z . Similar to the BT method and using the
‘method of snapshots’, we compute the singularezale@compositiorZ™X =UXV'. The
balanced transformation matrices are written2as XVX™? and " =xY2U'Z",
where the diagonal entries &f give the Hankel singular values of the system. Nesv
can choose

U =XVix1?, (6.13)
" =x"UIZ7, (6.14)

where X; contains ther largest HSVs of the system andi, and V; contain the
corresponding singular vectors as columns.

Note that BT and BPOD are both related to the roostrollable/observable subspaces of
the system. However, from a computational pointvigiv, the BT approach is only
applicable to small system (order of*t®id blocks). Therefore, the main advantage of
BPOD is that using the method of snapshots we a#ulate an approximate balanced
transformation without requiring the explicit contgtion of the Gramians, and since it
only involves matrix-vector operations, it can Ippléed to very large systems. Moreover,
unlike BT, this method can also be used for noalingystems such as two-phase flow
models. However, BPOD requires several trainingutations, with different input
sequences, of the forward and adjoint systems.

6.3. Model reduction and Control-relevant upscaling

6.3.1. Reduced-order CRU

As discussed in Chapter 4, the CRU algorithm treeseduce the distance between the
coarse- and fine-scale models by changing the eeaale parameters. Since this
distance is measured by a system norm that repsestae controllability and
observability properties of the system, the CRUWatgm indirectly focuses on system
parameters that are related to most controllabéefolable states of the system. The basic
idea of reduced-order CRU is to apply the CRU tepto a reduced-order subspace of
the system that represents to the most controlltattdervable subspace of the system (see
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also Vakili-Ghahani et al. 2008). Therefore, in teeluced-order CRU algorithm, we
replace the originaln™order fine-scale system by ari™order low-dimensional
approximation, where<<n. The schematic representation of the CRU probtefigure
(4.4) is then replaced by the one in Fig@d. Otherwise, the reduced-order CRU
algorithm is the same as the full-order version tires described in section 4.2. The main
improvement here is that the minimization probldfq.(4.1) is accelerated since lower-
order Lyapunov equations have to be solved.

1),

» (A,B,C.D,),0

lUpscaIing

(ABED) 6

o\
"y

Figure 6.1 Schematic representation of the reduced-order CRhlgaro

To determine a reduced-order model we can use tiltelneduction techniques based on
POD or BPOD methods described in the previous @ectiote that, while BPOD is
related to the most controllable/observable sultespaxf the system, the POD modes
approximate only the most controllable subspacerdfore, in applications, for which
the observability of the system is important, BP{SDecommended. On the other hand,
BPOD requires several training simulation of theMard and adjoint systems, while the
POD approach only requires several simulationhiefforward model. In both cases, the
results of POD and BPOD are only valid for a regainstate-space, from which the
snapshots are collected.

In summary, reduced-order CRU enables the use @fctintrol-relevant upscaling
approach for large models. However, unlike the inabfull-order CRU, it requires
forward simulations and, in case of BPOD, also iatljsimulations of the fine-scale
model. We illustrate the performance of reducednf@RU by the following example.
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6.3.2. Example6.1

We consider the reservoir system of Test Case ith)the production scenario described
in Example 4.1. To illustrate the performance afueed-order CRU, we rerun the CRU
algorithm for Example 4.1, while replacing the fiseale model with a reduced-order
representation obtained by POD. The POD basesoanputed using 100 snapshots of a
forward training simulation. The corresponding P€iBgular values have been plotted in
Figure6.2. We chose 6 basis functions to simulate theaediorder model, such that the
retained ‘energy’ according to Eq. (6.9) is 99.9989The results in terms of the relative
error in the average pressure and the cumulativéugtion are given in Tabi1.
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Figure 6.2 Singular values corresponding to the POD bases impbea6.1.

Table 6.1 Reduced-order CRU performance for Example 6.1.

CRUI- CRUI- CRU1- CRU2- CRU2- CRU2- CRU2-

H2 HSH H M H2  HSH H
€ (%) 0.7 0.7 0.6 1.4 1.8 1.1 1.1
€. cum(%6) 0.4 0.5 0.5 5 6.3 0.6 0.6
(deuced CRUtme 4, 15 11 10 10 14 12
CRU time (s) 139 1518 281 10 10 18 13

Comparing Tables.1 with Table 4.1 shows that, for this examplelueed-order CRU
gives almost identical results to full-order CRUskghtly smaller error for some of the
CRU methods is probably due to a better-conditiom#dimization problem when we
work with a smaller system in the reduced-ordeeca®wever, according to rows 3 and
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4 of Table6.1, reduced-order CRU can significantly speed hgp €RU procedure,
particularly, for CRU method 1. This is becausangiseduced-order CRU, we need to
solve the Lyapunov equations for a much smalleresystem in each iteration. For CRU
method 2, full-order and reduced-order CRU giveniaal results so that for CRU2-HSH
and CRU2-H even the cost function values in eaelation are equal (see FiguBe3).
Note that in case of a larger system, for whichekact computation of the Gramians is
intractable, reduced-order CRU would be beneficiaboth CRU methods.
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Figure 6.3 Cost function values corresponding to different QRéthods in Table 4.1 and 6.1.

As explained in Chapter 4, the CRU algorithm incline focuses on the grid blocks

which are related to the more controllable/obsdesabbspaces of the system. Therefore,
in general, using BPOD bases, which also consigerobservability of the system, is

expected to be more accurate compared to ordin@fy Fases, which only represent the
most controllable subspace of the system. Nevesbelfor this example, the most
controllable directions are sufficient as the coltdible and observable directions are
equivalent. This is evident from Figu&4, where we project the first two singular
vectors (directions) of the controllability Gramjatiie observability Gramian and the

product of them on the spatial grid. Mathematicatys is valid when in Egs. (3.25) and

(3.26), ATA = AAT (Farrell & loannou 1993). Then, for such a systékh, and W,
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have the same singular vectors and the POD directime equivalent to the balancing
directions as demonstrated by Figwel for Example 6.1. For our application this
implies that control and observation should be @ged at the same points in the
reservoir. If this is not the case, e.g. when treee only a limited number of wells in
which rates or bottomhole pressures can be obsemvele may be a significant
difference between the controllable and unobseevabbspaces, in which case the use of

BPOD may have benefits.
0.02 -0.02
0.04 -0.04
-0.06 -0.06
-0.08 0,08
01 0.1
012 012

Figure 6.4 The first two singular vectors (directions) of the Colability Gramian (column 1),
observability Gramian (column 2) and the produchefit (column 3) in Example 6.1.

6.3.3. Control-relevant missing point estimation

As explained in section 6.1, we can construct aiced-order model of a given high-
order system by projecting the state-space ontoweertdimensional space using the
projection matrice® and?/ . Thecolumns of# and?/ giver basis vectors with the
length ofn, wheren is the number of grid blocks. Therefore, the cartdion cost of the
reduced-order model and, in particul,” A% (in terms of both computational time and
storage requirement) can be further reduced, i€avealso reduce the length of the basis
functions by selecting a number of grid pointstof spatial domaffi. This idea, known
as Missing Point Estimation (MPE), was first progidy Astrid et al. (2004) to model a
glass feeder. Later Cardoso et al. (2009) appledMPE approach to reservoir flow
simulation. In their work, they used a conditionmher criterion to select the most
important!| grid blocks and, accordingly, they obtained POBidb&unctions of length

8 Reducing the construction cost #41"A# (equivalent to2/"J%/ , whereJ is the Jacobian matrix) is
even more significant in two-phase flow simulations, whbege are more than one state variables per grid
block resulting in high construction time and storage reguént due to a large Jacobian matrix (see
Cardoso et al. 2009).
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instead of lengthn where |l <n. More specifically, for the POD bases the relation
®,"®, =1 holds, meaning that the condition number of ma®ix®, is equal to one.
The idea of MPE is to remove a number of grid béoakd the corresponding rows from
the basis matrix®, , while allowing the condition number to increase & specific
number. The grid blocks are sorted and selecteddbas their contribution to deviating
from the unit condition number.

In a similar approach, here, we consider anothierion to select the relevant grid
blocks and, subsequently, relevant rows of thesbésnctions for the input/output
behavior. In our control-relevant MPE (CR-MPE) agwh, we use the spatial
quantification of controllability and observabilifisee section 5.2) to select the grid
blocks related to the most controllable and obd#eveegions of the spatial domain. The
overall procedure of CR-MPE is as follows. Firbg dominant pattero is obtained by
Eqg. (5.4) and the grid blocks are sorted basedhenmagnitude of the corresponding
elements (rows) ofi. Then, thel grid blocks that satisfy Eq. (5.5), i.e. thoset thee
located in areas corresponding to highly contrédladibservable states are selected. This
approach can be applied to both POD and BPOD lhasdions. To perform the CR-
MPE using POD or BPOD bases, we replace rthken matrices? and 24/ by r x |
matrices?/, and##, , where thel rows of %, and?/, are related to the selected grid
blocks. (Note that for the POD bas#s=2/,). The MPE and CR-MPE performances
are demonstrated by the following numerical example

6.3.4. Example6.2

Consider again the reservoir system of Test Caswifth one injector and one producer
that are controlled by time-variant bottomhole ptess. The permeability field and the
well locations are described in the left part ofjufe 6.5. From 100 snapshots of the
solution of a training simulation, we compute 7 P8d3is functions with a length of 400
elements each. The bases are stacked in the coloihmmsatrix ®,. We applied both
original MPE approach (Astrid et al. 2004) and CR®Imethod to select the relevant
grid blocks. Figure6.5 and Figure6.6 show the results for MPE and CR-MPE,
respectively. In these figures, the first columpides the log10 permeability field and the
well locations, the second column shows the grittlkimportance based on the MPE or
CR-MPE criteria and the third column illustrate9Z&lected grid blocks. In both cases,
we replace the 408 7 bases matri®, by a 200x 7 one. Recall that colors from red to
blue in the middle part of Figuré.6 also represents the spatial variation of the
controllability and the observability of the system
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log10 (k) grid block importance selected grid blocks (200)
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Figure 6.5 Left: Log1l0 permeability field and locations of one injedimross) and one producer (dot) for
Test Case (1) in Example 6.2. Middle: grid importancenfred to blue based on condition number. Right:
selected grid blocks using the original MPE method.
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Figure 6.6 Left: Logl0 permeability field and locations of one inggcfcross) and one producer (dot) for
Test Case (1) in Example 6.2. Middle: grid importanaemf red to blue based on controllability and
observability. Right: selected grid blocks using the l@RE method.

Comparing Figuré.5 with Figure6.6, we observe that both methods correctly séthect
grid blocks close to the wells, which are morevaig in terms of input-output behavior.
However, the MPE method also selects some additgmé blocks on the corners far
from the wells that are related to weakly contial#observable states (c.f. the middle
part of Figure6.6). Opposedly, the CR-MPE method selects ondy itiput-output
relevant grid blocks. Therefore, as shown in Figeirg the CR-MPE method slightly
outperforms the MPE method in simulating the prdoiducrates of the system, when
compared to the original high-order model.



6.3. Model reduction and CRU 95

10.5

ie o high-order
ffffffff AT o MPE
! o CR-MPE
|
|
|

10

9.5

-Q, m3/s

Time t, days

Figure 6.7 Production rates in Example 6.2 from the simulatiotheforiginal high-order model and two
reduce-order representations obtained by MPE and CR-MP

6.4. Approximation of the Gramians

To study the controllability and observability ofeservoir system in either the CRU or
the CRSC method, we first need to compute the Guasnof the system by solving the
Lyapunov equations (Eqgs. 3.25 and 3.26). Therefarghis section, we briefly explain
three different methods to compute the Gramians.eAiensive overview of different
techniques to compute the exact and approximaigtico$ of these equations can be
found in Antoulas (2005), Penzl (2006), Markovinof2009) and the references therein.

6.4.1. Exact methods

The first method is to use direct algorithms forairdense Lyapunov equations, such as
the Bartels-Stewart technique (Bartels and Stedfit2) and Hammarling’s method
(Hammarling 1982), which are already implementedMiatlab as functionsyap and
lyapchol Such methods rely on an initial Schur decompasitf the system matrid
followed by additional factorizations of dense neas (see Antoulas 2005). Therefore,
an important shortcoming is a very high computatidime and memory requirement
that make them intractable for large systems (a#ttorder larger than 0

6.4.2. Low-rank iterative approximation of the Gramians

To overcome the computational shortcomings of tkace methods, one may use
different iterative techniques to approximate thewr@ans (see Penzl 2006). Here we
only mention the alternating direction-implicit (ADalgorithm that seekdV as the
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solution of the continuous-time Lyapunov equatidw + WAT™ +BB" =0, in an
iteration step of the form
Wo = (A=A Wal(A - )@+ u1)* ]
20 A+ )TBB (A+41),

(6.15)

where 4 OC™ (i=1,2,3,..) are the shift parametersg =Re( ) and W, =0 .
Furthermore, in many cases like in our applicatidhe eigen values of the Gramians are
decaying very fast, indicating that there existuaate low-rank approximations. For each
Gramian, letW =LL", whereL is the Cholesky decomposition (square root) of the
Gramian. For large systems we replace the full-r@hbklesky factol. by a low-rank
approximationL ,, wherer < n is a rank ofL related to the order of the controllable and
observable subspaces. Consequently, we only haster® thenxr matrix L, instead of
the densenx n matrix W . Therefore, in addition to reducing the computadiocost, we
reduce the memory requirements.

Rewriting Eq. (6.15) in terms of the low rank appnoation of the Cholesky factors
results in a low rank ADI (LR-ADI) approach. Thigpmoach, which has been
implemented in LYAPACK®, leads to an efficient algorithm that can appratenthe
system Gramians nearly up to machine precisionggample 6.3). The fast and reliable
LR-ADI approach, therefore, was used to computeGhnhamians in most examples in
Chapter 4 and 5. For a detailed implementatiomisfrnethod, see Penzl (1999, 2006).
6.4.3. Empirical Gramians

Instead of solving the Lyapunov equations, we mgy@ximate the Gramians from the
numerical simulation data for a particular setrgduts and initial conditions. The initial
approach was proposed by Lall et al. (1999, 206@wever, they used direct POD
methods to obtain approximate system Gramians,hwisicomputationally expensive, in
particular, for large systems as it leads to thestoction of twonxn dense matrices.
Therefore, we use here an alternative formulati@t ts based on the BPOD (Willcox
and Peraire 2002; Rowely 2005). In this approach @pproximate Gramians are
computed as described by Egs.(6.10) and (6.11ulsextion 6.2.3. Note that in our
application, i.e. using spatial quantification éetcontrollability and the observability
properties, we need the columnsTof, which are equivalent here to the column<4f

2 LYAPACK is a Matlab toolbox for the solution of largeate problems in control theory. It uses iterative
algorithms and it is intended for solving large and spassapunov equations (see Penzl 1999). Note that
LYAPCK only solves the continuous-time Lyapunov equatidimvever, the discrete- and continues-time
Lyapunov equations have the same solutions (Antoul@s)20
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given by Eq. (6.14). Therefore, we never directynpute the Gramian matrices. In other
applications a low rank approximation of the Gramsiaould be formed using, , #
and 2/ (see Willcox and Peraire 2002).

6.4.4. Example6.3

To compare the approximate Gramians obtained byADR-and BPOD to the exact
Gramians, first we consider the small reservoir ehad Test Case (1) (see Examples 6.1
and 4.1). For the LR-ADI method, the low-rank Clstde factors are computed by
LYAPACK and in BPOD case we use the snapshots tra@rsolution of the forward and
the adjoint models. Figuré.8 shows the square root of first 200 singulauesalof the
product of the Gramians (i.e., HSVs) computed Bfecent methods. Evidently, the LR-
ADI approach gives a much more accurate solutionpaoed to the BPOD approach.
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Figure 6.8 Hankel singular values computed by exact and appragir@eamians for test case (1) in
Example 6.3.

Nevertheless, the accuracy in finding the more rotiable/observable subspaces seems
to be sufficient in applications such as the CR&forghm that only requires a rough
approximation of these subspaces. This is illustraby Figure6.9 that depicts the
dominant pattern obtained from the approximate BR&Bmians for a larger reservoir
system described in Example 5.1. The resulting nngps very close to the one in
Figure 5.5, which was obtained by the LR-ADI tecjud. In this case, the computational
time for the LR-ADI and the BPOD methods are 1Gind 52 s, respectively. Note that
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the BPOD method only involves matrix-vector openasi and, therefore, it can be
applied to very large systems.

Figure 6.9 Visualization of the dominant pattern for controllabiland observability variation over the
spatial domain for Test Case (3); the Gramians wegradt using the ‘method of snapshots’. Colors from
red to blue represent the grid importance obtaineoh fifve scaled weighted sum of the singular vectors
corresponding to the Hankel singular values of the syste

6.5. Complexity analysis

In order to obtain a rough approximation of the patational efficiency of the CRSC
and CRU algorithms, we investigated the computatibthe most expensive operations.
This includes the computation of the Gramians d&edctalculation of the Hankel singular
values (balancing). The balancing step as desciibbeskction 3.3 requires a singular
value decomposition of operation of ord€r However, in practice, we only perform it
for the firstk largest singular values and therefore the comiouiat overhead is in the
order of K, wherek < n. In particular, using the formulation describedsimbsection
6.2.1 in combination with low-rank Cholesky decorsiion, we may implement the
SVD on very large matrices. Therefore, the limitpeayt in the application of CRSC and
CRU algorithms to large systems is the computadiotihe Gramians, i.e. the solution of
Lyapunov equations.

6.5.1. Computation of the Gramians

In case of direct Lyapunov solvers, as describesuimsection 6.4.1, the solver requires
arithmetic operations in the order wfand storage of several dense matrices of arder

i.e., n” storage. The high storage requirement is becauseldition to producing dense

Gramians, these methods are based on Schur dedtiopos$ the sparse system matrix
which produces dense matrices. Consequently, thet@ods are only applicable to

systems with an order of <10

The second approach is the LR-ADI method, for wtileh operation requirement is in
the order ofrn wherer is the number of columns that are used for the pudation.
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Moreover, the storage cost for this method is naroaller (also in the order of). The
reason is that here we directly work with low-ra@kolesky factors of the Gramians,
compared to direct methods, in which we need teediee full-rank dense Gramians (in
the order ofn?). Therefore, this is the method that can be afsulied to very large
systems. In particular, for large systems in whtoh input and output matric&andC
have a low numerical rank, i.e. for small numbdrgputs and outputs, the eigen values
of the Gramians are decaying very fast, indicatingt there exist accurate low-rank
approximations. For instance, Figure 5.3 shows ttatHankel singular values for Test
case (3) are rapidly decreasing. This means thathfe example (=16384),k can be
chosen around 100 or even less (note that thesyismxepresented on a logarithmic scale).
Therefore, the use of the LR-ADI method for thiseple can considerably reduce the
computational time and storage requirement, congp@reirect methods.

The last approach was to approximate the Gramiams the method of snapshots or
BPOD. In this case, the Lyapunov equations are msglved and to approximate the
Gramians only one SVD is needed of a matrix withehsionN; x N, , whereN; andN,
are the number of snapshots from the forward aedatfjoint simulations. Therefore,
assumingN; = N,, the computational overhead is in the orderNgf, where often
N¢ < n. Interestingly, the size of the SVD problem herendependent af (the number
of grid blocks) and, therefore, this method carapplied to very large systems. However,
it requires also several flow simulations over thrginal fine-scale model and the
associated adjoint model with operations in theeoaln. Note that for large systems it is
more efficient to use an iterative method to sdhie system of equations. For a more
detailed complexity analysis of different methods ¢omputation of the Gramians, the
reader is referred to Antoulas (2005) and Markovio¢2009).

6.5.2. CRU versusCRSC

In general, CRSC is a faster approach since itiresjuno iterations (unless we use an
approximate initial coarse-scale model to  spatiallyquantify  the
controllability/observability). Moreover, the CRUimmization algorithm requires the
computation of the gradient of the cost functionthwrespect to the coarse-scale
parameters which can be very expensive particulanign we use an error system, i.e., in
CRU method 1, in combination with perturbation-lthsgradients (We note that
computation of the gradients can be performed nmuate efficiently using adjoint-based
methods but we did not pursue this possibility he@a the other hand, the resulting grid
from the CRSC algorithm implies the solution of flewv equation on multi-level non-
uniform grids, which requires more computationaidiand memory space, compared to



100 Chapter 6 Reduced-order CRU

the flow simulation on uniform cells. In this casee effective bandwidth of the system
matrix can be optimized by an extra operationwhich the extra computational cost can
be neglected particularly for larger systems (s#¥saction 5.4.3). The other steps in the
simulation are similar for CRU and CRSC grid systeand the simulation cost is roughly
related toO(n) for both cases.

Note that, in any case, the upscaled model neells tdbtained only once (or a few times
in case of changes in the well configuration) amcan offline part of the simulation,
whereas many forward simulations of the flow equegimay be required in applications
such as computer-assisted history matching or iihgpdptimization under uncertainty.

6.6. Summary

We investigated the potential benefits of using @deh reduction technique (POD) in
combination with the CRU method. In the examplesidered, a reduced-order model
based on POD could accelerate the upscaling proeguauticularly for CRU method 1.
Note that, in general, POD only considers the im@labetween the inputs and the states
(controllability), while the goal of simulation isften to predict an accurate output.
Moreover, a reduction based on only inputs or astpoight be strongly dependent on a
particular scaling of the states (state-space @oaie), whereas a balanced case is
coordinate-invariant. Further research is requicedddress the computational aspects of
CRU, and the potential use of other model-ordeucgdn techniques in combination
with our control-relevant upscaling approach.

The computational efficiency can be also improvedising approximate Gramians. The
solution of the Lyapunov equations can be approteohdy iterative methods followed
by a low rank Cholesky factorization of the Gransiae.g., LR-ADI method).
Alternatively, the Gramians can be approximatedanfithe snapshots of the trajectories
(states) that the forward system and its adjoitioio when simulating some training
inputs. The approximate techniques to obtain theantans can improve the
computational efficiency of both CRU and CRSC aitpons, which increases their
applicability to realistic, large-scale reservoioaels.
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I n this thesis, we developed control-relevant uniform seldctive upscaling algorithms,
which are based on the controllability and observabifitthe reservoir system for a given
well configuration. This chapter presents the conclusidnthe thesis and gives several

recommendations for future research.

7.1. Conclusions
Geological subsurface models often represent theustace heterogeneity with %0
to 10 parameters. The major issues with such high-ofidege-scale) systems are
related to both computational and system-theodetspects (Chapter 1). In this
research, we approached the upscaling problem dregstem-theoretical perspective
and we developed two control-relevant upscalingortigns. In the end, the

following remarks and conclusions are emphasized:

» Although different upscaling techniques are avddaim reservoir simulation,
most of them lack generality and case independaxyhey are only valid under
certain reservoir and boundary conditions. Morepwermost techniques, it is
assumed that the computed coarse-scale paramedses] on a specified set of
boundary conditions often with no sink/source termdl be applicable to all
other flow scenarios. The validity of this assumptis not warranted, seeing that
in a real reservoir the global flow is often driven wells rather than by fixed-

pressure or fixed-rate boundary conditions (Chapter

» For a given configuration of wells, there are oallimited number of degrees of
freedom in the input-output dynamics of a reserwystem. From a system-
theoretical point of view, this means that a langenber of combinations of the
state variables are not actually controllable abhdeovable from the wells, and
accordingly, they are not affecting the input-oatgaehavior of the system
(Chapter 3).

101
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HSVs of a system can indicate those linear cominnatof the states that
represent the most important input-output charesties of the system, and
consequently determine the order of the input-dutiynamics. Accordingly, they
can be used to adjust (reduce) the level of theeinoamplexity (or model order)
to the available amount of control and informatfon a given configuration of
wells. Note that the controllability and observdpilof a linear system is
independent of the specific values of time-variapits, but dependent on well

configurations (Chapter 3).

We introduced a single-phase control-relevant UpsrgdCRU) technique that
minimizes the difference between a fine-scale andaase-scale reservoir model
in terms of system norms that characterize thetioptput behavior for a given
configuration of wells. We defined two CRU methadth three system norms to
guantify the difference between the fine-scale #red coarse-scale models. The
definition of the objective function in Method 1 tilseoretically more justified,
while Method 2 is computationally more attractiva. addition, based on the
examples, the HSH-norm and the H-norm seem to laabetter performance

compared to the H2-norm (Chapter 4).

Computation of the largest Hankel singular valuésaoreservoir model and
mapping the corresponding directions on the resegrid allows for a spatial
guantification of the combined controllability arabservability. For a given
configuration of wells, the most controllable/obhs#ie areas appear to be in the
vicinity of the wells and in high-permeable areésse to and connected to the

wells (chapter 5).

Control-relevant selective coarsening (CRSC) camadieeved by initial uniform
coarsening and subsequent selective refinementrdasaof highest combined
controllability and observability. We proposed altinievel CRSC method to
allow treatment of very large models with a higlye of heterogeneity in their
parameter fields. Based on the numerical exampBRSC can accurately
reproduce the flow response of the fine scale nsoftel time varying inputs. In

addition to giving a computational advantage, thledive coarsening gives also
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more accurate results than a uniformly upscaledeainatith the same number of
grid blocks (Chapter 5).

* For large systems, the CRSC grid can be efficienithpined by using appropriate
approximation methods to compute the Gramians,yapgpla proper grid block
numbering, optimizing the bandwidth of the systenatn®, and using the
unstructured data approach to optimize the griéh d&dring and loading during
the simulation (Chapter 5).

* Both CRU and CRSC are global methods in the sdraddhey rely on the system
properties of the entire reservoir. However, they ribt require any forward
simulation either of the full or of the upscaleddeb They also do not depend on
a particular control strategy but instead use thrathical system equations
directly. However, any change in the well configima (including both well
locations and the number of inputs and outputsireg a (partial) repetition of
the upscaling procedure. Accordingly, these methaids attractive for use in
computer-assisted flooding optimization or histamgtching studies for a given
configuration of wells, and in particular for thensbined use of optimization and
history matching in a closed-loop reservoir manag@nsetting, but unattractive

in applications like well placement optimizations.

 The use of CRU in conjunction to a model-order otidn technique seems
promising to obtain a reduced-order CRU algoritivat to a large extent solves
the computational issues in applying CRU to largalesreservoir models. On the
other hand, the spatial quantification of contioility and observability can be
used to define a new criterion for selecting orilg input-output relevant grid
blocks in a missing point estimation (MPE) procesbgere we can reduce the
computational and storage cost of the model redgirocedure by retaining
only those rows of the basis functions that areesmponding to the selected grid
blocks (Chapter 6).

* Current developments addressing the approximatetisol of high-order (i.e.
fine-scale) Lyapunov equations make it likely tHaélRU and CRSC will be

applicable to realistic reservoir models with upL grid blocks. Alternatively, a



104

Chapter 7 Conclusions & recommendations

fast approximation of the Gramians can be obtafinea sufficient snapshots of
the simulation data in time. Conceptually, this raygh is applicable to any
realistic large-scale reservoir. However, it regsirseveral high-order training
simulations, while the resulting low-order modelrestricted to the region of

state-space from which the data have been collé¢Cleapter 6).

Note that in any case the upscaled model from CRUWCRSC needs to be
obtained only once and in an offline part of thewation, whereas simulation of
the flow equation over the resulting coarse-scaié glocks might be repeated

many times in different applications.

This research was primarily concerned with the esystheoretical aspects of
upscaling in reservoir simulation. Therefore, tlmnputational efficiency of the
presented algorithms was not optimized. Howeverspide its preliminary

character, the research reported here may off@awainsight into the upscaling

problem from a system-theoretical perspective.

7.2. Recommendations

The coarse-scale models obtained by single-phadg &Rl CRSC can be also
used for two-phase simulations. Nevertheless, #ropnance of the methods
needs to be tested. Moreover, the algorithms caextended to include two-
phase flow controllability and observability anatyshat includes also the
saturation equation. However, for nonlinear twogghdlow cases, we need to
either linearize the system, or compute the coatrdity and observability

Gramians empirically. The other important issuetvilo-phase flow cases is to
deal with moving saturation fronts. Since the sattans are only controllable
along the front and only observable after waterakiferough in the wells, the
performance of the CRSC algorithm might be improusd adding (partial)

dynamic grid adaptations to resolve the strongiptialable/observable areas
along the moving saturation fronts. Further redeascrequired to evaluate the
computational benefits of applying the CRSC appno&m multi-phase flow

applications.
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Another possible solution to treat saturations itwa-phase flow simulation
might be applying a multi-scale framework, in whitte CRSC grid blocks are
only used to solve the pressure equation whilestitaration equation is solved
over the fine-scale grid blocks.

To efficiently apply the CRU and CRSC algorithmdammge reservoir models, we
could also investigate a local-global frameworkwinich the reservoir domain is
divided into several compartments, such that eaampartment includes one well
(or a couple of wells). CRU and CRSC could thenpbdormed on each local
compartment, for which the boundary conditionsagegved from an approximate

initial coarse-scale model. The procedure shoubthaibly be iterated to converge.

The accuracy of the CRU and CRSC algorithms migtiteiase by improving the
controllability and observability of the reservosystem by adding more
measurement points from monitoring wells, or addiata sources like time-lapse
seismic. Moreover, adding a near-well upscalindiégue would improve the

results.

Despite the presented discussions on the compuodhtaspects of the CRU and
the CRSC algorithms, further research is requicedddress undiscussed issues.
Examples of those are the convergence of the CRumiaation algorithm for
realistic large reservoirs, performance of the allgm for gravity-driven or
aquifer-driven flow, accuracy of the approximatea@rans for different systems,
combination of CRU with other model reduction teclues (other than POD-
based technique), alternative gridding and distatin strategies for CRSC
(particularly, in reservoir applications with corapl geologies and advanced
multilateral well configurations), a systematic amtimal choice of the threshold
value in the spatial quantification of controllatyil and observability, and

extending the algorithms to 3D applications.
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system matrix

input matrix

output matrix

direct-throughput matrix

surface element

volume element

energy

fractional flow function
acceleration of gravity, [& m/<
arbitrary pressure gradient?t?, Pa/m
transfer function

thickness, L, m

identity matrix

well index matrix, ’t/m, n¥/(Pa s)
counter

permeability, [, n?
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length of MPE basis function
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unit outward normal vector
number of snapshots

number of layers in a layered reservoir
pressure, !'mt?, Pa

proportion of permeable medium
pressure vector

volumetric flow rate, £t m¥s
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flow rate vector

number of states in reduced-order model
phase saturation

time, t, s

transmissibility, 2M™t, m*/(Pa s)
transmissibility matrix

phase velocity, Lt, m/s

input vector

singular vector

matrix of left singular vectors
grid block volume, E, m®
accumulation matrix

matrix of right singular vectors
Gramian

distance in the x-direction, L, m
state vector

snapshot matrix of forward model
distance in the y-direction, L, m
output vector

distance in the z-direction, L, m
adjoint state vector

shapshot matrix of adjoint model
controllability matrix
observability matrix

Hankel matrix (impulse response matrix)
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right projection matrix
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real part of shift parameter
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system notation

diagonal matrix containing singular values
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t threshold
w water
X x-direction
y y-direction
a fluid phase (oil or water)
a auxiliary
Super scripts
* coarse-scale parameter
c coarse-scale variable
con controllable
I liquid
T transpose
unobs unobservable
® arbitrary exponent
Glossary
BPOD Balanced Proper Orthogonal Decomposition
BT Balanced Truncation
CR-MPE Control-Relevant Missing Point Estimation
CRSC Control-Relevant Selective Coarsening
CRU Control-Relevant Upscaling
CT Continuous-Time
DT Discrete-Time
FVD Finite Volume Discretization
HSH Hilbert-Schmidt-Hankel norm
HSV Hankel Singular Value
LR-ADI Low-Rank Alternating Direction-Implicit
LTI Linear Time-Invariant
MPE Missing Point Estimation
POD Proper Orthogonal Decomposition
RCM Reverse Cuthill-McKee
TPFA Two-Point Flux Approximation
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SUMMARY

Geological models often represent the subsurfat&rdgeneity by using a large number
of parameters (f0o 10 voxels). Moreover, the uncertainty of the geolagjjgarameters

is increasingly taken into account by simulatingeasemble of model realizations which
significantly increases the computational demaedpgecially when it is also required to
perform repeated simulations for computer-assigtedding optimization or history
matching (e.g., application of reservoir simulatiorclosed-loop reservoir management).
This requires an ‘upscaling/order-reduction’ sauatithat transfers the relevant features
of a geological model to a flow simulation modektlsuhat cost-efficient simulation,
prediction and control of the fluid flow in the s¥goir become feasible.

In addition to the computational issues, a moredéumental reason for upscaling/order-
reduction is related to system-theoretical conclgescontrollability and observability of
the system which indicate how much of the statespean be influenced through
changing the input (i.e., the degree to which tfstesn is ‘controllable’), and how much
of the internal behaviour of the system can beriatefrom the output (i.e., the degree to
which the reservoir is ‘observable’). In most resa@r applications and for a given
configuration of wells, there is only a limited anmb of information (output) that can be
observed from production data, while there is aléimited amount of control (input) that
can be exercised by adjusting the well parameten@n a system-theoretical point of
view, this means that a large number of combinatiminthe state variables (pressure and
saturation values) are not actually controllablel abservable from the wells, and
accordingly, they are not affecting the input-outfmehavior of the system. In this
research, therefore, we approach the upscalinglgroldrom a system-theoretical
perspective, and we aim at adjusting (reducing)l¢kel of model complexity (order) to
the level of relevant dynamics in terms of inputput behaviour.

As the first approach, we propose a control-relevascaling (CRU) algorithm, in which
the coarse-scale-model parameters are selected thath the distance between
input/output behaviors of the fine- and coarseesoabdels is minimized. This distance is
measured in terms of different system norms thatatterize the input-output behavior
of the system. The advantage of this approach iat tit focuses on the
observable/controllable state variables and, tbeeefrelies on those grid blocks that are
most important to the input/output behavior of thedel.
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The second approach is a multi-level selective Kiog-uniform) grid coarsening method,
in which the criterion for grid size adaptatiorbeissed on the spatial quantification of the
controllability and observability properties of theservoir system. In this control-
relevant selective coarsening (CRSC) method thel leivrefinement for each coarse grid
block depends on its importance compared to othdrldocks. Based on the numerical
examples, the CRSC algorithm can accurately repedie flow response of the fine
scale models. Moreover, the selective coarseningsgmore accurate results than a
uniformly upscaled model with the same number af glocks. That is the case because
the most controllable/observable areas, which apdae in the vicinity of the wells and
in high-permeable areas close to and connectethigonells, remain unchanged and,
therefore, global flow patterns and permeabilityntcasts of the fine-scale model are
better preserved by the CRSC algorithm.

Both CRU and CRSC are global methods in the semgethey rely on the system
properties of the entire reservoir. However, theyndt require any forward simulation,
neither of the full nor of the upscaled model. Tlgo do not depend on a particular
control strategy but instead use the dynamicalesystquations directly. However, any
change in the well configuration (including weltlgions and the number of inputs and
outputs) requires a (partial) repetition of the aghmg procedure. Accordingly, these
methods are attractive for use in computer-assifiteatiing optimization or history
matching studies for a given configuration of webst unattractive in applications like
well placement optimization.

The use of the CRU technique in conjunction witm@del-order reduction method such
as proper orthogonal decomposition promises CRUicghipn to large-scale reservoir
models. Alternatively, the computational efficiermfyboth CRU and CRSC algorithms is
improved using approximate techniques to obtain dbetrollability and observability
Gramians. However, this research was primarily eomed with the system-theoretical
aspects of upscaling in reservoir simulation. Ferttesearch is required to evaluate the
computational benefits of applying CRU and CRSCetlistic large reservoirs and also
multi-phase flow applications. Despite its preliavy character, the research reported
here may offer a new insight into the upscalingbfgm from a system-theoretical
perspective.



SAMENVATTING

Het aantal modelparameters waarmee de heteroderareide geologische ondergrond
wordt gekarakteriseerd is vaak heel groot®(1® 10 voxels). Bovendien wordt de
onzekerheid betreffende de geologische parameteécenemende mate opgevangen door
simulaties van een ensemble van modelrealisatielgen de vereiste rekenkracht
significant doet toenemen. Dit is in het bijzondet geval wanneer de (ensemble-
)simulaties herhaaldelijk uitgevoerd dienen te weordin het kader van een
computerondersteunde reservoiroptimalisatie ofohysimatching (parameterschatting)
zoals, bijvoorbeeld, in een “closed-loop resermoamagement” toepassing. Dit vraagt om
een “opschalings-/orde-reductie” oplossing die ddewante kenmerken van een
geologisch model vertaalt naar een stromingsmodadlat een efficiénte simulatie,
voorspeling, en beheersing van de vloeistofstromiritet reservoir haalbaar worden.

Behalve de rekenkundige aspecten zijn er ook meedaimentele redenen voor
opschaling/orde-reductie, die verband houden metesyn-theoretische concepten zoals
‘regelbaarheid” en ‘waarneembaarheid’ van het ®yste waarmee respectievelijk
aangegeven wordt hoeveel van de toestandsruimed dansysteemingangen te regelen
valt en hoeveel van het inwendig dynamisch gedraan \het systeem uit
uitgangsmetingen bepaald kan worden. In de meestrvoirtoepassingen en voor een
gegeven puttenconfiguratie is er namelijk sleclds beperkte hoeveelheid informatie
(uitgang) die uit productiedata waargenomen kandetwr Aan de andere kant is er ook
slechts een beperkte mate van besturing (ingang)elijijo door het regelen van de
putparameters. Vanuit een systeemtheoretisch oodmmiekent dit dat een groot aantal
combinaties van de toestandsvariabelen (drukkersatratiewaardes) vanuit de putten
feitelijk onregelbaar en onwaarneembaar zijn, netesultaat dat ze het ingang-uitgang
gedrag van het systeem niet beinvioeden. In dit ek wordt het
opschalingsprobleem derhalve vanuit een systeemgtigche perspectief benaderd, met
als doel het verlagen van het complexiteitsniveau lvet model (d.w.z. het reduceren van
de modelorde) tot het niveau van relevante dynammea betrekking tot het ingang-
uitgang gedrag van het systeem.

In de eerste aanpak stellen we een “control-re\apschalingsalgorithme (CRU) voor,
waarin de grove-rooster parameters zo geselecigerden dat de afwijking van het
ingang-uitgang gedrag van het grove-rooster maetelopzichte van het gedrag van het
fijne-rooster model geminimaliseerd wordt. De akivig wordt gedefinieed met behulp
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van verschillende systeemnormen die het ingangwgggedrag van het systeem
karakteriseren. Het voordeel van deze aanpak is hogt zich focust op de
regelbare/waarneembare toestandsvariabelen/condsinan zich derhalve op die
roosterpunten richt die voor het ingang-uitgang rggdvan het model het meest
belangrijk zijn.

De tweede aanpak is een multi-level selectieve .fd.wniet-uniforme) rooster-
opschalingsmethode, waarin het roosteradaptagecmh gebaseerd wordt op de
ruimtelijke kwantificatie van de regelbaarheids-vemarneemaarbaarheidseigenschappen
van het reservoirsysteem. In deze control-relevasgkectieve opschalingsmethode
(CRSC) hangt het verfijningsniveau voor elk rogstert af van zijn gewicht in
vergelijking tot andere roosterpunten. Numeriekerbbeelden geven aan dat met behulp
van het CRSC algoritme de stromingsresponsie vafijhe-rooster model nauwkeurig
gereproduceerd wordt. Bovendien levert de selestigschaling nauwkeuriger resultaten
dan een uniform opgeschaald model met hetzelfd¢éala@aoosterpunten. Dat is het
resultaat van het feit dat de meest regelbare/\eaanbare gebieden, dat wil zeggen de
gebieden dichtbij de putten en in hoogdoorlatenatgeg dichtbij en verbonden met de
putten, in een selectieve opschaling onverandepeebl Globale stromingspatronen en
doorlatendheidscontrasten worden met het CRSCitatgodaardoor beter behouden.

Zowel CRU als CRSC zijn globale methoden in de ziat ze berusten op
systeemeigenschappen van het hele reservoir. Zisgarechter voorwaartse simulatie
van noch het volle noch het opgeschaalde modelzigeook onafhankelijk van de
regelstrategie en maken rechtsreeks gebruik van vdegelijkingen van de
systeemdynamica. Elke wijziging in de putconfidierdzowel wat betreft putlocaties als
het aantal van ingangen en uitgangen) vereist ecga (gedeeltelijke) herhaling van de
opschalingsprocedure. Deze methoden zijn derhabmtrekkelijk voor gebruik in
computergesteunde optimalisatie of history matchistgdies voor een gegeven
putconfiguratie, maar niet voor toepassingen iplaatsingoptimalisatie.

Het gebruik van de CRU techniek in combinatie nest mmodel-orde reductie methoden
zoals “proper orthogonal decomposition” opent migijetden voor het toepassen van
CRU op grootschalige reservoir modellen. Als aligief is de rekenefficiéntie van zowel
CRU als CRCS algoritmen te verbeteren door gebtaikmaken van benaderende
technieken voor het verkrijgen van de regelbaagiegh waarneembaarheids-Gram
matrices. Het huidige onderzoek was primair geraghtde systeemtheoretische aspecten
van opschaling in reservoirsimulatie, en verderesndek is nodig om de rekenvoordelen
te evalueren van het toepassen van CRU en CRSEatiptisch grote reservoirs alsook
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meerfasestroming toepassingen. Ondanks zijn vogdopkarakter levert het
gerapporteerde onderzoek een nieuw inzicht op tnopschalingsprobleem vanuit een
systeemtheoretische invalshoek.
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