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 A B S T R A C T

Conditionally automated driving requires drivers to resume vehicle control within constrained time budgets 
upon receiving takeover requests. Accurately predicting drivers’ takeover time (ToT) is essential for dynam-
ically adjusting time budgets to individual needs across scenarios. This study addresses enduring challenges 
in reliability and interpretability of ToT prediction models by optimizing predictor selection. Using a driving 
simulator experiment, we examine the relationship between ToT, driver characteristics, and perceived Spare 
Capacity (pSC, a cognitive construct from Task-Capability Interface theory) using Category Boosting models. 
Results show that (i) incorporating 13 additional driver characteristics does not significantly improve prediction 
accuracy when pSC is already considered; and (ii) individual characteristics influence how drivers cognitively 
process takeover scenarios, and their predictive contribution likely overlaps with pSC. These findings suggest 
that monitoring cognitive states may be more effective for ToT prediction than extensive profiling of driver 
characteristics. This study provides a critical first step toward predictive frameworks for adaptive takeover 
strategies and offers guidance for designing personalized human–vehicle interactions.
1. Introduction

In conditionally automated driving, one primary concern pertains 
to the transition of vehicle control (ToC) between human drivers and 
automation. This transition contains complex human-automation inter-
actions (Lu et al., 2016), especially during takeovers when drivers must 
promptly detach from non-driving-related activities and resume active 
driving within constrained time budgets. Ensuring safety and comfort 
during ToC requires providing sufficient time budgets (Weaver and 
DeLucia, 2022) to accommodate drivers’ takeover time (ToT, the inter-
val between the initiation of a takeover request and drivers’ resumption 
of manual vehicle control ISO 21959:2020, 2020). Tight time budgets 
that fail to allow drivers’ required ToT can elevate accident risks and 
compromise driver comfort (Gold et al., 2013), while time budgets that 
excessively exceed the necessary ToT may be perceived as false alarms, 
resulting in decreased vigilance and increased danger (Huang and Pitts, 
2022). Thus, determining sufficient time budgets necessitates a deep 
understanding and precise prediction of drivers’ ToT.

Predicting drivers’ ToT can facilitate the development of adap-
tive takeover strategies (Du et al., 2020), particularly by tailoring 
time budgets to accommodate drivers’ varied needs across diverse 
scenarios. To our knowledge, research on predicting drivers’ ToT is 
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limited in both reliability (consistency and accuracy across scenar-
ios and drivers) and interoperability (clarity in how input features 
influence predictions). Specifically, (i) concerning model inputs, ex-
isting literature have identified diverse predictors for ToT. For ex-
ample, Huang et al. (2023) broadly classified influencing factors into 
system-, scenario-, and human-related categories, emphasizing the com-
plexity of thoroughly examining human-related factors. Chen et al. 
(2024) developed a comprehensive ToT prediction model using 18 
predictive features, including individual traits, environment, and situa-
tion awareness. Despite these contributions, the dynamic and complex 
nature of real-world driving suggests further refinement of feature 
selection is needed to enhance model reliability and generalizability; 
(ii) regarding model outputs, existing studies have made notable con-
tributions to ToT, particularly through classification and average-based 
approaches. For instance, Pakdamanian et al. (2021) proposed a Deep 
Neural Network (DNN)-based model that achieved high accuracy (93%) 
in classifying ToTs into three intervals: short (< 3 s), medium (3–7 s), 
and long (> 7 s). Similarly, Ayoub et al. (2022) applied an eXtreme Gra-
dient Boosting (XGBoost) model to predict average ToT using literature 
data, reporting an RMSE of 0.806 and an MAE of 0.505. These models 
offer useful insights and represent meaningful steps forward in the field. 
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Fig. 1. The driving simulator at Delft University of Technology.

However, ToT is known to vary widely across drivers and scenarios. For 
example, Zhang et al. (2019) observed a range from 0.69 s to 19.79 s 
across 520 takeovers. The classification and average-based predictions 
therefore oversimplify this variability and risk overlooking individual 
differences. In sum, improving drivers’ actual ToT prediction models 
with reliable and interpretable feature selection is critical for aligning 
adaptive strategies with drivers’ cognitive capacities and situational 
demands, ultimately enhancing the safety and comfort of Conditionally 
Automated Driving Systems (CADS).

This study takes a fundamental step toward improving the reliability 
and interpretability of ToT prediction models by optimizing input 
feature selection. We examine the influence of both latent cognitive 
constructs and observable driver characteristics. Guided by Fuller’s 
Task-Capacity Interface (TCI) model, our findings in Liang et al. (2024) 
suggest that ToT is negatively correlated with perceived spare task 
capacity (pSC), that is, the difference between the total cognitive 
and perceptual-motor resources drivers believe they have available 
for a specific task (pTC) and the amount of those resources they 
perceive the task to demand (pTD). In the current study, we therefore 
consider pSC (=pTC-pTD) as an explanatory variable to predict ToT, 
which can help to reveal the underlying influencing mechanisms behind 
drivers’ ToT and improve the interpretability of the prediction mod-
els. Besides, we conduct a comprehensive investigation of inter-driver 
heterogeneity in ToT by examining 13 driver characteristics (cover-
ing demographic, skill-related, and style-related factors) using tailored 
questionnaires. Based on data from a driving simulator experiment, we 
propose CatToT, a CatBoost-based ToT prediction model, to analyze the 
relationship among drivers’ ToT, pSC, and driver characteristics using 
feature importance and SHapley Additive exPlanations (SHAP).

This study has three main contributions: 

• provides more contextually relevant and valid tools for assessing 
driver profiles in takeover scenarios;

• reveals the cognitive mechanism underlying takeover behaviors 
and supports the development of dynamic time budget strate-
gies that accommodate individual driver needs across various 
scenarios; and

• contributes to understanding inter-driver heterogeneity in cogni-
tive responses, informing the design of more personalized and 
adaptive conditionally automated driving systems.

The findings provide valuable insights to readers who are interested 
in drivers’ heterogeneous takeover behaviors and their implications for 
designing personalized interventions and training strategies tailored to 
diverse driver needs.
2 
2. Related work

Predicting drivers’ actual takeover time (ToT) necessitates a thor-
ough understanding of driver heterogeneity, as it accounts for the 
diverse range of behaviors exhibited by drivers (Ansar et al., 2024; 
Sharma et al., 2018). From this point of view, we examine previous 
studies on ToT predictions from two dimensions: inter-driver hetero-
geneity and intra-driver heterogeneity.

In terms of inter-driver heterogeneity, driver characteristics have 
been shown to affect drivers’ behaviors and performance in various 
driving contexts (Eboli et al., 2017; Zhao et al., 2019). Differences 
in driver characteristics will thus likely affect drivers’ responses to 
takeover requests. Zhang et al. (2024) observed that different driving 
styles lead to varied ToT, where defensive drivers exhibited shorter 
ToT compared to aggressive drivers. However, such characteristics have 
not been sufficiently considered in ToT prediction models. Gold et al. 
(2018) integrated age in a generalized non-linear model and argued 
that drivers’ age is correlated to their reaction time, physical skills 
and driving experience. Results show that drivers’ age has a positive 
correlation with their ToT. Ayoub et al. (2022) considered gender as an 
important input in a deep neural network-based ToT prediction model 
which achieved accurate (93%) prediction of ToT intervals. Investiga-
tions of integrating other driver characteristics (such as drivers’ driving 
skills and trust in conditionally automated driving) in ToT prediction 
models are required to capture drivers’ attributes from diverse aspects. 
Therefore, this study constructs a prediction model for drivers’ actual 
ToT with 13 driver characteristics, which is critical for the reliability 
of the prediction model across diverse drivers.

As for intra-driver heterogeneity, previous studies on ToT predic-
tions have primarily focused on situational factors which can be divided 
into objective situational factors and subjective situational factors. On 
one hand, objective situational factors are derived from vehicle and 
environment settings. Yoon et al. (2021) modeled drivers’ ToT with 
physical, visual, and cognitive attributes of non-driving related tasks 
using multiple linear regression analysis. The prediction results are 
generally shorter than the drivers’ actual ToT. Ayoub et al. (2022) 
considered 17 scenario settings in predicting drivers’ average ToT, in-
cluding automation level, situation complexity, etc. While many factors 
are already considered, drivers’ ToT can be affected by other objective 
situational factors, such as takeover information support (Weaver and 
DeLucia, 2022). Given the multitude of these objective situational 
factors, selecting appropriate objective situational features for ToT 
prediction models is crucial for ensuring the models’ reliability and 
practical feasibility. On the other hand, subjective situational factors 
are derived from human drivers, typically including drivers’ psycho-
physiological and/or behavioral data. Rangesh et al. (2021) trained a 
Long Short Term Memory (LSTM) model using drivers’ eyes-on-road 
time, foot-on-pedal time, and hands-on-wheel time before takeover 
requests. Results show that the proposed model can achieve continuous 
predictions of ToT under various secondary activity conditions. Du 
et al. (2020) employed drivers’ gaze behaviors, heart rates, and gal-
vanic skin responses to predict ToT and identified average heart rate 
as well as maximum and average phasic GSRs are important physiolog-
ical factors for drivers’ ToT. Such subjective situational factors-based 
models generally possess two limitations: (i) potential lurking factors 
behind the changes in physiological signals and behaviors may reduce 
the reliability of prediction results (McDonald et al., 2019), and (ii) 
the opacity of these models diminishes both algorithm interpretability 
and result reliability. These limitations can introduce uncertainties and 
potential safety risks to control transitions. This study emphasizes the 
importance of integrating cognitive constructs into the ToT prediction 
model, as cognitive constructs: (i) represent drivers’ comprehensive 
understanding of the entire objective scenarios, which synthetically 
reflect the effects of all related objective situational factors. (ii) play a 
decisive role in drivers’ decision-making process (Endsley, 2021), which 
are responsible for the changes in drivers’ physiological signals and 
behaviors. We argue that cognitive constructs hold the potential to be 
reliable predictors for drivers’ actual ToT, thus improving the reliability 
and interpretability of the prediction models.
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3. Method

This study recruited participants through the method described in 
Section 3.1. They were instructed to detach from non-driving related 
tasks and take over vehicle control from a simulated Conditionally Au-
tomated Driving System (CADS) nine times (Section 3.2). Participants 
were required to complete a spare capacity survey after each takeover 
and another post-questionnaire detailing their takeover-related charac-
teristics. The relationship between participants’ ToT, perceived spare 
capacity, and driver characteristics was analyzed by the method in 
Section 3.3. This study was approved by the Human Research Ethics 
Committee (HREC) of Delft University of Technology (ID: 3499).

3.1. Recruitment

Participants were recruited through both online (emails and
LinkedIn) and offline (flyers) channels. Eligibility criteria require indi-
viduals to possess a valid driver’s license and the ability to drive with-
out glasses. Details about the study, encompassing research objectives, 
experimental procedures, anticipated duration, and data anonymiza-
tion principles, were conveyed to participants through Informed Con-
sent Forms. Additionally, participants were informed of the financial 
compensation, with each participant receiving a 20-euro voucher for 
their participation.

The target sample size for this study was 40 participants, based on 
practical considerations (e.g., participant availability and experimental 
resources) and reference to comparable driving simulator studies in 
takeover time prediction. For example, Yoon et al. (2021) modeled 
takeover time using multiple linear regression with 30 participants; Liu 
et al. (2024) adopted a Latin square design with 37 participants to 
explore takeover time using Convolutional Neural Networks (CNN); 
and Liu et al. (2025) predicted takeover time using a Deep Learning 
framework distilled by Gradient Boosting Decision Tree (DeepGBM), 
with an average of 27 data points per variable across 15 features. To 
enhance statistical robustness and account for participant variability, 
we actively recruited beyond the initial target and ultimately included 
57 valid participants in the final analysis. We believe our sample 
provides a strong basis for exploratory modeling and interpretation, 
though we also acknowledge its limitations and highlight the value of 
larger samples in future research (see Section 5.3).

3.2. Driving simulator experiment

3.2.1. Instrumentation
The experiment was conducted in a fixed-base, medium-fidelity 

driving simulator on the campus of Delft University of Technology. 
A demonstration of the simulator can be seen in Fig.  1. The views 
from the windshield and two side windows are provided by three 4k-
resolution screens. To imitate the interior of a vehicle, this driving 
simulator comprises a driver’s seat, a steering wheel, three pedals, a 
turn signal lever, and a mock dashboard on the bottom of the middle 
screen. Experiment scenarios are programmed in a desktop computer 
running Windows 10.

3.2.2. Experiment setup
The experiment takes place on a two-lane motorway with a speed 

limit of 100 km/h (following daytime regulations on Dutch motor-
ways). The CADS enables participants to engage in non-driving related 
activities in the automated mode, while the boundary of the Opera-
tional Design Domain (ODD) is programmed to be the point at which 
the CADS encounters two vehicles that have collided in the path of the 
ego vehicle. A takeover request is initiated when the time gap between 
the collision location and the ego vehicle reaches seven seconds, a 
widely used time budget in takeover-related research (Deniel et al., 
2024; Gold et al., 2013). The request is signaled by three beeps and 
three text messages ‘‘Please Take Over!’’ in the top-left corner of the 
3 
windshield. To mitigate potential simulator sickness, takeover requests 
only occur on straight road sections (Hock et al., 2018).

The experiment comprises nine takeover scenarios (3 traffic den-
sities × 3 non-driving related tasks) to vary drivers’ ToT. Three traf-
fic density levels (low/medium/high) are manipulated by generating 
0∕10∕20 vehicles per kilometre. Three non-driving related task levels 
(low/medium/high) are controlled by assigning participants to 𝑛-back 
tasks (𝑛 = 0, 1, 2) of varying cognitive workloads. In 𝑛-back tasks, par-
ticipants view a sequence of positions of a blue box and are instructed 
to press a button when the current position is the same as the one that 
occurred 𝑛 steps back in the sequence. A demonstration of the 1-back 
and 2-back tasks is shown in Fig.  2, while the 0-back task is a reference 
and requires no sequence recall.

These nine takeover scenarios are arranged using a Latin Square 
design (Calvert et al., 2014) to minimize potential order effects. Each 
scenario appears equally across all ordinal positions (1st to 9th) to 
ensure balanced representation. Because we have an odd number of 
scenarios (nine), achieving full pairwise balance requires 18 order 
groups, so that each scenario precedes and follows every other scenario 
equally often. The full set of Latin Square orderings used in the study 
is provided in Appendix  A.

3.2.3. Procedures
This experiment included three main procedures, i.e., prepara-

tion procedure, takeover procedure, and post-questionnaire procedure. 
Specifically,

(1) Preparation procedure: Participants were briefed on the abilities 
and boundaries of the CADS, as well as on the 𝑛-back task. A ten-
minute practice drive was provided for participants to get familiar 
with the simulator and the takeover process, which helped to 
reduce the learning effects during the experiment. Participants 
could ask for more time to practice until they were confident 
in controlling the ego vehicle. They were queried if they felt 
uncomfortable while driving in the simulator and were instructed 
to inform the experimenter if the discomfort increased.

(2) Takeover procedure: Each participant experienced nine takeover
events, with each event including five phases:
(i) Automated mode: The takeover event started from automated 
mode while participants were engaged in the 𝑛-back task.
(ii) Takeover request: The takeover request was randomly initiated 
between 30 and 60 s after entering the automated mode. This 
time window ensures participants have sufficient time to engage 
with the 𝑛-back task before the request, as well as to take over and 
stabilize the ego vehicle after the request. Randomizing the timing 
of takeover requests aims to eliminate predictability associated 
with fixed duration in automated mode.
(iii) Takeover: Participants were instructed to promptly detach 
from the 𝑛-back task and begin resuming control of the ego 
vehicle upon receiving the request. Drivers’ takeover time was 
measured as the interval between the takeover request and the 
first conscious manual input, i.e., when the steering wheel angle 
exceeded 2 degrees or the braking/accelerator pedal position 
surpassed 10% (Liang et al., 2024; Gold et al., 2013).
(iv) Manual mode: After regaining conscious control of the ego ve-
hicle, participants were tasked with an evasive manoeuvre, which 
involved pulling out to the left lane, overtaking the detected 
collision ahead, and pulling over to the right lane after bypassing 
the collision.
(v) Handover: Participants were instructed to hand over vehicle 
control back to the CADS once they believed it was safe to do so 
after stabilizing the vehicle on the right hand lane.
A flow chart of a takeover event is shown in Fig.  3. The duration 
of each takeover event is flexible: it consists of a randomized 
automated driving period (30–60 s), followed by the driver’s 
takeover time, a variable period of manual driving, and then 
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Fig. 2. Demonstration of the 𝑛-back task: example of 1-back and 2-back tasks.
Fig. 3. The flowchart of a takeover event (DDT: Dynamic Driving Task).
another fixed 30-second automated driving. After each takeover 
event, participants took a short break and completed a survey 
assessing their perceived Task Demand (pTD) and perceived Task 
Capability (pTC) during the preceding takeover. The survey was 
adapted for takeover contexts using items from the NASA Task 
Load Index (NASA-TLX) (Hart and Staveland, 1988), the Driving 
Activity Load Index (DALI) (Pauzié, 2008), and the Driver Skill 
Inventory (DSI) (Lajunen and Summala, 1995; Martinussen et al., 
2014). The complete survey is provided in Appendix  B.

(3) Post-questionnaire procedure: After completing nine takeover 
events, participants were requested to fill in a questionnaire 
which collected their background information (e.g., age, gender, 
etc.) and measured their perceived risk-taking attitude, takeover 
skill, takeover style, and trust in the CADS. Details of the ques-
tionnaire are provided in Appendix  C.

An overview of all three procedures of the experiment is provided in 
Fig.  4 to ensure methodological clarity and enhance the reproducibility 
of the study.

3.3. CatBoost-based takeover time prediction model

To better understand the mechanisms shaping drivers’ takeover time 
(ToT), we developed CatBoost models to predict ToT based on per-
ceived spare capacity (pSC) and driver characteristics (Section 3.3.1). 
Model performance is evaluated using four metrics (Section 3.3.2), 
and interpretability is enhanced through feature importance and SHAP 
analysis (Section 3.3.3).

3.3.1. Model development
CatBoost is a high-performance gradient boosting algorithm that 

reduces overfitting and delivers strong predictive accuracy with min-
imal tuning (Prokhorenkova et al., 2018; Kulkarni, 2022). It has been 
4 
applied successfully in ranking, classification, and regression tasks (Ma 
et al., 2021; Liu et al., 2020; Li et al., 2023). While ToT prediction has 
typically used XGBoost (Wang et al., 2024; Chen et al., 2024; Ayoub 
et al., 2022), CatBoost offers key advantages: (i) efficient handling of 
categorical features common in driver data, (ii) reduced gradient bias 
and prediction shift, and (iii) faster training suited for large-scale and 
real-time applications (Dorogush et al., 2018). These strengths make 
CatBoost well-suited for predicting drivers’ ToT.

Assume that a dataset is given as 𝐷 = {𝑋𝑖, 𝑦𝑖}𝑖=1,2,…,𝑛 where 𝑋𝑖 =
{𝑥𝑘𝑖 }𝑘=1,2,…,𝑚 is a vector of 𝑚 input variables that include both numerical 
and categorical features; 𝑦𝑖 ∈ R is a target variable; and 𝑛 is the total 
number of the observations. In this study, the dataset is randomly split 
into a training set 𝐷𝑡𝑟𝑎𝑖𝑛 (80%) and a test set 𝐷𝑡𝑒𝑠𝑡 (20%). To process 
features containing both categorical and numerical data, CatBoost (i) 
performs a random permutation of the dataset as 𝜎 =

(

𝜎1,… , 𝜎𝑛
)

; and 
(ii) substitutes the categorical feature 𝑥𝑘𝑖  with a new numerical feature 
calculated by the corresponding Ordered Target Statistics (TS) on a 
subset of examples 𝑖 =

{

𝑋𝑗 ∶ 𝜎𝑗 < 𝜎𝑖
}

: 

𝑥̂𝑘𝑖 =

∑

𝑋𝑗∈𝑖

[

𝑥𝑘𝑗 = 𝑥𝑘𝑖
]

∗ 𝑦𝑗 + 𝛼 ⋅ 𝑃
∑

𝑋𝑗∈𝑖

[

𝑥𝑘𝑗 = 𝑥𝑘𝑖
]

+ 𝛼
(1)

where 𝑃  represents the prior value, which is typically set to the average 
target value (Micci-Barreca, 2001); parameter 𝛼 (> 0) signifies the 
weight of the prior; and [⋅] denotes Iverson brackets, i.e., 

[

𝑥𝑘𝑗 = 𝑥𝑘𝑖
]

= 1
if 𝑥𝑘𝑗 = 𝑥𝑘𝑖  and 0 otherwise.

Catboost uses oblivious decision trees as base predictors, where all 
decision nodes employ the same splitting criteria at every depth level. 
This symmetrical approach helps mitigate over-fitting and enhances 
execution speed. On this basis, CatBoost iteratively builds a sequence 
of approximations to minimize the expected loss, which is Root Mean 
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Fig. 4. Overview of the experiment procedures (pSC: perceived Spare Capacity; pTD: perceived Task Demand; pTC: perceived Task Capacity).
Squared Error (RMSE) in this study:

𝐿𝑜𝑠𝑠(𝑡) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂(𝑡)𝑖
)2

+𝛺(𝑓𝑡)

=

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 − (𝑦̂(𝑡−1)𝑖 + 𝑓𝑡(𝑥𝑘𝑖 ))
]2

+𝛺(𝑓𝑡) (2)

where 𝑁 is the number of samples; 𝑦𝑖 is the true target value; 𝑦̂(𝑡)𝑖  and 
𝑦̂(𝑡−1)𝑖  are the predicted target values for sample 𝑖 at the 𝑡th and (𝑡-1)th 
iterations respectively; 𝑓𝑡(𝑥𝑘𝑖 ) is the 𝑡th tree to be added; and 𝛺(𝑓𝑡) is 
the regularization term to avoid over-fitting.

This study develops three CatBoost-based models for predicting ToT: 
CatToT𝑑𝑐 , incorporating 13 driver characteristics as inputs, CatToT𝑠𝑐 , 
utilizing drivers’ pSC as the only input, and CatToT𝑑𝑐+𝑠𝑐 , incorporat-
ing both driver characteristics and pSC. Similarly, we construct an-
other three CatBoost-based models for predicting drivers’ pSC: CatSC𝑑𝑐 , 
which leverages 13 driver characteristics as inputs, CatSC𝑑𝑛, which 
incorporates only 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑛𝑑𝑟𝑡 as inputs, and CatSC𝑑𝑐+𝑑𝑛, which 
integrates 13 driver characteristics, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, and 𝑛𝑑𝑟𝑡. To achieve stable 
model performance, this study runs the 10-fold cross-validation 100 
times during training.

3.3.2. Model evaluation
The performance of the CatBoost-based models is studied using 

multiple metrics to provide a comprehensive assessment of their pre-
dictive capabilities. Following previous research (Antypas et al., 2024; 
Ayoub et al., 2022; Yang et al., 2021), four metrics are selected: Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient 
of Determination (𝑅2), and Pearson Correlation Coefficient (𝑟). By 
using a combination of these metrics, this study assesses the models’ 
predictive capabilities across different aspects of their performance. A 
better prediction performance is indicated by lower RMSE, lower MAE, 
higher 𝑅2, and higher absolute value of 𝑟.

3.3.3. Model explanation
Explainability is crucial for enhancing users’ trust and acceptance 

of a machine-learning-based prediction model (Ayoub et al., 2022). 
5 
Therefore, two tools are employed to interpret the model prediction 
processes: feature importance from the CatBoost model (Hastie et al., 
2009) and SHapley Additive exPlanation (SHAP) values from game 
theory (Lundberg and Lee, 2017).

On one hand, feature importance provides a high-level overview 
of the relative contributions of input features in changing the model’s 
output. A larger importance value indicates a greater potential for 
changing the prediction output when that feature is altered. The fea-
ture importance values sum to 100, enabling direct comparison of 
the relative contribution of each feature on the model’s predictions. 
Specifically, for a given feature 𝑥𝑘, its importance is calculated as the 
sum of the gains (i.e., the reduction of loss) of all splits across the entire 
dataset (Hastie et al., 2009):

𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑥𝑘 =
∑

𝑡𝑟𝑒𝑒𝑠,𝑙𝑒𝑎𝑓𝑠𝑥𝑘

(

𝑣1 −
𝑣1 ⋅ 𝑐1 + 𝑣2 ⋅ 𝑐2

𝑐1 + 𝑐2

)2
⋅ 𝑐1

+
(

𝑣2 −
𝑣1 ⋅ 𝑐1 + 𝑣2 ⋅ 𝑐2

𝑐1 + 𝑐2

)2
⋅ 𝑐2 (3)

where 𝑐1 and 𝑐2 denote the total weight of objects in the left and right 
leaves respectively; 𝑣1 and 𝑣2 represent the formula value in the left 
and right leaves respectively.

On the other hand, SHAP values dive deeper by capturing both the 
direction and magnitude of each feature’s impact on predictions, which 
offer a more detailed explanation of model behaviors. SHAP values 
assign an importance value to each feature, indicating its contribution 
to the prediction. Positive SHAP values denote features that increase 
the prediction, whereas negative values denote features that decrease 
the prediction. For a given feature 𝑥𝑘, its SHAP values are calculated 
as (Shapley et al., 1953): 

𝑆𝐻𝐴𝑃 _𝑉𝑎𝑙𝑢𝑒𝑠𝑥𝑘 =
∑

𝑆⊆𝑋\{𝑥𝑘}

|𝑆|! (𝑚 − |𝑆| − 1)!
𝑚!

[

𝑓
(

𝑆 ∪ {𝑥𝑘}
)

− 𝑓 (𝑆)
]

(4)

where 𝑚 is the total number of input features; 𝑋 denotes the set of all 
input features; 𝑋\{𝑥𝑘} refers to removing feature 𝑥𝑘 from the set 𝑋; 𝑆
is the set of non-zero feature indices, with the summation covering all 
subsets of 𝑋 that do not include feature 𝑥𝑘; and 𝑓 (

𝑆 ∪ {𝑥𝑘}
)

− 𝑓 (𝑆)
signifies the contribution margin of feature 𝑥𝑘.
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Fig. 5. The distribution of driver characteristics among participants.
4. Results

4.1. Participants

A total of 57 drivers participated in this study, including 33 males 
and 24 females. Their average age is 38.51 years (SD = 17.23). The rel-
atively balanced gender distribution and broad age variability support 
the representativeness of the sample by capturing a diverse spectrum 
of life stages and driving backgrounds. The distribution of individual 
driver characteristics is illustrated in Fig.  5, which further demon-
strates diversity across a wide range of relevant attributes. While only 
a small number of participants self-identified their driving skill as 
‘‘inexperienced’’ in the subjective questionnaire, the sample reflects 
broader diversity in objective indicators such as driving frequency, 
years of driving experience, and accumulated driving distance. This 
discrepancy highlights the distinction between perceived and actual 
driving experience. By including participants with a broad spectrum of 
characteristics, this study ensures a robust and representative analysis 
of the factors shaping takeover time (ToT). Additionally, drivers’ per-
ceived task demands (pTD) and perceived driver task capabilities (pTC) 
across nine takeovers are shown in Fig.  6. The wide variability in these 
cognitive constructs highlights the diversity in drivers’ cognitive styles, 
even when faced with identical takeover scenarios. This emphasizes 
the significance of considering driver heterogeneity in drivers’ ToT and 
takeover behaviors.

The experiment initially generated a dataset of 513 takeovers. 16 
takeovers were excluded, because participants (i) resumed vehicle con-
trol before takeover requests, or (ii) neglected to press the button 
for activating manual inputs. These exclusions are necessary as they 
can lead to considerable deviations between the measured ToT and 
the actual ToT. Moreover, 18 takeovers from two participants were 
removed due to incomplete questionnaire responses. Consequently, the 
refined dataset, comprising 479 takeovers, is further analyzed.
6 
Table 1
Feature Importance from the CatToT𝑑𝑐+𝑠𝑐 model.
 Feature Importance Feature Importance

 𝑝𝑆𝐶 64.82 𝑎𝑔𝑒 1.54  
 𝑎𝑐𝑐𝑢_𝑑𝑖𝑠 11.39 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 1.53  
 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑔𝑟𝑦 4.64 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑘𝑖𝑙𝑙 1.16  
 𝑅𝑇𝐴 3.85 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙 0.94  
 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒 3.23 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑟𝑒𝑐𝑘𝑙𝑒𝑠𝑠 0.88  
 𝑡𝑟𝑢𝑠𝑡 2.62 𝑎𝑠𝑠𝑖𝑠𝑡_𝑓𝑟𝑒 0.78  
 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡 2.09 𝑔𝑒𝑛𝑑𝑒𝑟 0.53  

4.2. Takeover time prediction

According to Task-Capability Interface (TCI) theory, drivers adjust 
their driving behaviors based on the dynamic interactions between 
their perceived task demand (pTD) and perceived driver task capability 
(pTC) (Fuller, 2011). Liang et al. (2024) found that drivers gener-
ally experience longer takeover time (ToT) as their perceived Spare 
Capacity (pSC, i.e., pTC - pTD) diminishes. On this basis, this study 
explores the relationship among drivers’ ToT, pSC, and multiple driver 
characteristics.

In this research, we collected 14 characteristics of participants using 
the questionnaire described in Appendix  C. Variance Inflation Factors 
(VIF) are computed for these characteristics to identify the potential 
multicollinearity. The analysis reveals a high correlation between 𝑎𝑔𝑒
(VIF: 22.67) and 𝑎𝑐𝑐𝑢𝑦𝑒𝑎𝑟𝑠 (VIF: 24.60). Hence, the effect of 𝑎𝑐𝑐𝑢_𝑦𝑒𝑎𝑟𝑠
on drivers’ ToT is not further examined in this study. The remaining 
13 characteristics, along with drivers’ pSC, were incorporated into the 
CatToT𝑑𝑐+𝑠𝑐 model for predicting drivers’ ToT. The mean importance 
of each input feature, obtained after 10-fold cross-validation repeated 
100 times, is given in Table  1.

The experimental results indicate that 𝑝𝑆𝐶 stands out as the most 
influential feature concerning drivers’ ToT, whereas the impact of other 
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Fig. 6. Drivers’ perceived task demand (pTD) and perceived driver task capability (pTC) across nine takeover scenarios (Score: 1 = low, 5 = high).
Table 2
Performance of CatToT𝑑𝑐 model, CatToT𝑠𝑐 model, and CatToT𝑑𝑐+𝑠𝑐 model.
 Model Inputs RMSE (↓) MAE (↓) 𝑅2 (↑) 𝑟 (↑)  
 CatToT𝑑𝑐 13 driver characteristics 1.3030 1.0042 0.0116 0.2000 
 CatToT𝑠𝑐 𝑝𝑆𝐶 1.2163 0.9418 0.1315 0.4029 
 CatToT𝑑𝑐+𝑠𝑐 13 driver characteristics + 𝑝𝑆𝐶 1.2146 0.9376 0.1371 0.4135 
features appears limited. This underscores the potential significant 
influence of drivers’ 𝑝𝑆𝐶 on the model learning process. Consequently, 
an ablation study is conducted to delve deeper into the contributions 
of 𝑝𝑆𝐶 and driver characteristics to drivers’ ToT. To this end, three 
additional CatBoost-based models are trained: (i) the CatToT𝑑𝑐 model, 
incorporating 13 driver characteristics as inputs; (ii) the CatToT𝑠𝑐
model, incorporating only 𝑝𝑆𝐶; and (iii) the CatToT𝑑𝑐+𝑠𝑐 model, in-
corporating both 13 driver characteristics and 𝑝𝑆𝐶. To assess model 
performance, four metrics (namely, RMSE, MAE, 𝑅2, and 𝑟) are em-
ployed, as detailed in Section 3.3.2. Lower values of RMSE and MAE 
indicate better predictive accuracy, while higher values of 𝑅2 and 𝑟
reflect stronger explanatory power and correlation, respectively. The 
stabilized results following 10-fold cross-validation repeated 100 times 
are presented in Table  2.

These results indicate that the CatToT𝑠𝑐 model significantly outper-
forms the CatToT𝑑𝑐 model (𝑝 < 0.01), reducing RMSE by 6.65% and 
MAE by 6.21% while increasing 𝑅2 by 1033.62% and 𝑟 by 101.45%. 
This demonstrates that 𝑝𝑆𝐶 is a more effective predictor of ToT than 
driver characteristics alone. Particularly, the significant increases in 
𝑅2 and 𝑟 highlight that pSC not only captures a greater proportion of 
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the variance in ToT but also aligns more closely with actual takeover 
behaviors, making it a more reliable and interpretable predictor for 
ToT predictions. Notably, there is no significant difference between the 
CatToT𝑠𝑐 model and the CatToT𝑑𝑐+𝑠𝑐 model (𝑝 > 0.05). This suggests 
that the addition of 13 driver characteristics does not meaningfully 
enhance prediction accuracy when pSC is already included.

The above findings give grounds to further explore the relationship 
between drivers’ 𝑝𝑆𝐶 and their ToT. As shown in Fig.  7, a statistically 
significant negative linear correlation is observed between drivers’ 
average takeover time (𝑇𝑜𝑇 ) and perceived spare capacity (𝑝𝑆𝐶) (𝑟 =
−0.98, 𝑝 < 0.01), except for a slight upward fluctuation when drivers’ 
𝑝𝑆𝐶 reaches its highest level. This linear relationship can be effectively 
represented by the equation (𝑅2=0.96, RMSE = 0.16): 
𝑇𝑜𝑇 = −0.33 ∗ 𝑝𝑆𝐶 + 3.01 (5)

This strong linear relationship between 𝑇𝑜𝑇  and 𝑝𝑆𝐶 indicates 
that predicting drivers’ ToT using 𝑝𝑆𝐶 without incorporating driver 
characteristics is feasible and yields reliable predictions. However, 
previous research has established correlations between drivers’ ToT and 
various characteristics (Chen et al., 2023; Gasne et al., 2022), such 
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Table 3
Performance of CatSC𝑑𝑐 model, CatSC𝑑𝑛 model, and CatSC𝑑𝑐+𝑑𝑛 model.
 Model Inputs RMSE (↓) MAE (↓) 𝑅2 (↑) 𝑟 (↑)  
 CatSC𝑑𝑐 13 driver characteristics 1.5291 1.2280 0.2013 0.4786 
 CatSC𝑑𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑛𝑑𝑟𝑡 1.5481 1.2654 0.1797 0.4525 
 CatSC𝑑𝑐+𝑑𝑛 13 driver characteristics + 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑛𝑑𝑟𝑡 1.3321 1.0645 0.3924 0.6647 
Fig. 7. Drivers’ takeover time across perceived spare capacity (confidence bounds: 25th 
and 75th percentiles).

differences with our finding may stem from the influence mechanism 
of driver characteristics. It is plausible that these characteristics affect 
how drivers cognitively process the objective takeover scenarios, con-
sequently shaping their 𝑝𝑆𝐶, and ultimately impacting ToT. Therefore, 
it appears that driver characteristics do not directly influence the rela-
tionship between 𝑝𝑆𝐶 and ToT. To delve deeper into this hypothesis, 
this study investigated the effects of driver characteristics on drivers’ 
𝑝𝑆𝐶 across different takeover scenarios in Section 4.3.

4.3. Effects of driver characteristics

To examine the influence of diverse driver characteristics on drivers’ 
perceived spare capacity (𝑝𝑆𝐶) under varying traffic densities (𝑑𝑒𝑛𝑠𝑖𝑡𝑦) 
and non-driving-related tasks (𝑛𝑑𝑟𝑡), an ablation study is conducted. 
This approach allows us to isolate the impact of different sets of vari-
ables on 𝑝𝑆𝐶 and understand their relative importance. Specifically, 
three CatBoost-based models are developed for predicting drivers’ 𝑝𝑆𝐶: 
(i) the CatSC𝑑𝑐 model, incorporating the full set of 13 driver charac-
teristics as inputs; (ii) the CatSC𝑑𝑛 model, incorporating only 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
and 𝑛𝑑𝑟𝑡; (iii) the CatSC𝑑𝑐+𝑑𝑛 model, incorporating 13 driver character-
istics, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, and 𝑛𝑑𝑟𝑡. The use of these specific models allows for a 
comprehensive analysis of how both situational and personal attributes 
influence 𝑝𝑆𝐶. Model performance is evaluated using four metrics: 
RMSE, MAE, 𝑅2, and 𝑟. Lower values of RMSE and MAE indicate better 
predictive accuracy, while higher values of 𝑅2 and 𝑟 reflect stronger 
explanatory power and correlation, respectively. The results from 100 
iterations of 10-fold cross-validation are presented in Table  3.

The comparison of model performance demonstrates that among 
the three models, the CatSC𝑑𝑐+𝑑𝑛 model provides the most accurate 
predictions of drivers’ perceived 𝑝𝑆𝐶. Specifically, when comparing 
with the CatSC𝑑𝑐 model, incorporating objective situational factors 
(𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑛𝑑𝑟𝑡) results in enhanced performance (𝑝 < 0.01), reflected 
in lower RMSE (−13%), lower MAE values (−13%), higher 𝑅2 (+95%), 
and stronger 𝑟 (+39%). Similarly, compared to the CatSC𝑑𝑛 model, 
integrating 13 driver characteristics yields improved performance (𝑝 <
0.01), indicated by lower RMSE (−14%) and MAE values (−16%), higher 
𝑅2 (+118%), and stronger 𝑟 (+47%). This finding emphasizes the im-
pact of both driver characteristics and objective takeover scenarios on 
drivers’ pSC.

From the results in Table  3 we can derive that the CatSC𝑑𝑐 model 
slightly outperforms the CatSC  model (𝑝 < 0.05), evident in lower 
𝑑𝑛
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RMSE (−1%) and MAE values (−3%), higher 𝑅2 (+12%), and stronger 𝑟
(+6%). While objective scenario factors contribute to predictive accu-
racy, the inclusion of driver characteristics alone can yield more precise 
predictions of drivers’ 𝑝𝑆𝐶. This finding reveals the importance of 
considering individual differences in understanding drivers’ cognitive 
constructs, highlighting the potential for more accurate takeover time 
prediction models. To dive deeper into the influence of these charac-
teristics on drivers’ 𝑝𝑆𝐶, the average importance of each input feature 
derived from the CatSC𝑑𝑐+𝑑𝑛 model is shown in Table  4.

Table  4 indicates that the objective situational factor 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 holds 
the highest importance in determining drivers’ 𝑝𝑆𝐶. Following closely 
are 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠, 𝑡𝑟𝑢𝑠𝑡, and the other objective situational 
factor 𝑛𝑑𝑟𝑡. Conversely, characteristics such as 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙, 
𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡, and 𝑎𝑠𝑠𝑖𝑠𝑡_𝑓𝑟𝑒 exhibit minimal impact on drivers’ 
𝑝𝑆𝐶. It is intuitive that 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑛𝑑𝑟𝑡 significantly impact drivers’ 
𝑝𝑆𝐶, as these situational factors directly influence the demands placed 
on drivers during takeover tasks and their capability to effectively 
resume vehicle control. It is noteworthy that two driver characteris-
tics, namely 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 and 𝑡𝑟𝑢𝑠𝑡, demonstrate greater im-
portance in shaping drivers’ 𝑝𝑆𝐶 compared to 𝑛𝑑𝑟𝑡. This is a clear 
indication of the significance of integrating driver characteristics into 
𝑝𝑆𝐶 prediction models, as it suggests that certain driver traits have 
a more substantial influence on drivers’ cognitive processes during 
takeovers than objective situational factors.

To further interpret the determination processes of drivers’ 𝑝𝑆𝐶, the 
SHAP summary plot of the CatSC𝑑𝑐+𝑑𝑛 model is illustrated in Fig.  8. 
Each point in the plot represents a SHAP value corresponding to its 
respective variable instance. As depicted in Fig.  8, there exists a nega-
tive correlation between 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and drivers’ 𝑝𝑆𝐶. This correlation may 
stem from the fact that higher traffic density often entails more complex 
driving environments, necessitating drivers to allocate additional effort 
to execute a safe takeover of vehicle control, consequently diminishing 
their 𝑝𝑆𝐶. Notably, the influence of medium traffic density on 𝑝𝑆𝐶
appears concentrated around zero, indicating a more consistent impact 
on drivers’ perceptions. However, for the highest and lowest traffic 
densities, the distributions of their influence exhibit right-tailed and 
left-tailed patterns respectively. This observation suggests that drivers 
demonstrate more consistent takeover behaviors and responses in mod-
erately busy traffic conditions. However, in extreme traffic density 
scenarios, other factors (such as takeover styles) could have a more 
significant impact on drivers’ ToT compared to situations with medium 
traffic density. Another objective situational factor 𝑛𝑑𝑟𝑡 also exhibits a 
negative correlation with drivers’ 𝑝𝑆𝐶. Specifically, the highest level 
of 𝑛𝑑𝑟𝑡𝑇  decreases 𝑝𝑆𝐶 by approximately 0.2, while the lowest level 
increases it by the same amount. Unlike the traffic density, the impact 
of extreme 𝑛𝑑𝑟𝑡 levels on ToT is more focused, with short tails in the 
distribution. This suggests that the relatively lower feature importance 
of 𝑛𝑑𝑟𝑡 (compared with 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 and 𝑡𝑟𝑢𝑠𝑡) does not stem 
from drivers employing coping strategies to mitigate the impact of 𝑛𝑑𝑟𝑡
based on their individual characteristics. Rather, it implies that drivers 
may exhibit heightened vigilance and preparedness to resume vehicle 
control promptly, even in distracting environments.

While the impacts of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑛𝑑𝑟𝑡 on drivers’ 𝑝𝑆𝐶 exhibit 
nearly symmetric distributions, those of 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 and 𝑡𝑟𝑢𝑠𝑡
display short-head-long-tail patterns. For example, the impacts of low 
and medium levels of 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 on 𝑝𝑆𝐶 are concentrated, 
with minimal differences between the two levels. This results in shorter 
heads in the distributions of the impact of 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠, in-
dicating drivers’ similar cognitive processing of takeovers. However, 
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Table 4
Feature importance from the CatSC𝑑𝑐+𝑑𝑛 model.
 Feature Importance Feature Importance Feature Importance

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 37.33 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑟𝑒𝑐𝑘𝑙𝑒𝑠𝑠 5.37 𝑎𝑐𝑐𝑢_𝑑𝑖𝑠 0.96  
 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 18.77 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑔𝑟𝑦 2.89 𝑔𝑒𝑛𝑑𝑒𝑟 0.31  
 𝑡𝑟𝑢𝑠𝑡 14.81 𝑎𝑔𝑒 2.87 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙 0.22  
 𝑛𝑑𝑟𝑡 6.63 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒 2.54 𝑎𝑠𝑠𝑖𝑠𝑡_𝑓𝑟𝑒 0.22  
 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑘𝑖𝑙𝑙 5.88 𝑅𝑇𝐴 0.99 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡 0.20  
Fig. 8. Feature contributions in the CatSC𝑑𝑐+𝑑𝑛 model.
the high value of 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 exhibits a spreading impact on 
drivers’ 𝑝𝑆𝐶, leading to long tails. This phenomenon may be due to 
anxious drivers experiencing heightened stress, leading them to poten-
tially overestimate task demands and/or underestimate their capability 
to different extents, resulting in lower and more varied 𝑝𝑆𝐶. Con-
versely, heightened levels of 𝑡𝑟𝑢𝑠𝑡 may promote a more relaxed attitude 
toward takeover scenarios. This relaxed attitude could lead drivers to 
underestimate task demands and/or overestimate their capability to 
different extents, resulting in larger and more varied 𝑝𝑆𝐶.

5. Discussion

To develop a reliable and interpretable prediction model for drivers’ 
actual takeover time (ToT), this research focuses on predictive feature 
selection. For this purpose, we analyze the effects of drivers’ perceived 
Spare Capacity (pSC) and 13 driver characteristics. In this section, we 
further discuss the input features in ToT predictions (Section 5.1), the 
effects of driver characteristics (Section 5.2), and the limitations of the 
study (Section 5.3).

5.1. Features in takeover time predictions

Previous studies have made important progress in developing ToT 
prediction models by incorporating a broad range of takeover-related 
factors. Building on that foundation, this study emphasizes the impor-
tance of feature selection, particularly the role of cognitive constructs. 
9 
Specifically, we concentrate on drivers’ perceived spare capacity (𝑝𝑆𝐶, 
𝑝𝑇𝐶 - 𝑝𝑇𝐷), an important cognitive construct that potentially affects 
drivers’ takeover decisions according to TCI theory. Three CatBoost-
based ToT prediction models are constructed with different inputs: 
CatToT𝑑𝑐 , CatToT𝑠𝑐 , and CatToT𝑑𝑐+𝑠𝑐 . We find that predicting drivers’ 
ToT solely through 𝑝𝑆𝐶, without considering driver characteristics, 
proves feasible and yields reliable predictions. This suggests that mon-
itoring cognitive states such as 𝑝𝑆𝐶 may be more effective for pre-
dicting ToT than collecting extensive driver-specific data. This offers 
a more efficient and generalizable modeling approach across diverse 
driver populations and takeover contexts. Building on this, we de-
velop three additional CatBoost-based spare capacity prediction mod-
els: CatSC𝑑𝑐 , CatSC𝑑𝑛, and CatSC𝑑𝑐+𝑑𝑛. Our findings indicate that, apart 
from objective takeover situations (e.g., traffic density), multiple driver 
characteristics significantly influence drivers’ 𝑝𝑆𝐶. It underscores that 
drivers’ cognitive constructs stem from both the influence of objective 
takeover situations and diverse driver characteristics, making them 
comprehensive and reliable predictors of ToT.

We infer that the mechanism underlying drivers’ ToT is as follows: 
drivers perceive and interpret objective takeover situations (e.g., traffic 
density, non-driving related task) differently depending on their in-
dividual characteristics (e.g., driving skill, risk-taking attitude). These 
variations lead to diverse driver cognition, typically indicated by psy-
chophysiological signals (e.g., eye movements, heart rate) and self-
reported perceptions (e.g., perceived spare capacity). These cognitive 
states shape observable driver behavior (e.g., speed adjustments, lane 
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Fig. 9. Conceptual framework of how driver characteristics and cognition influence takeover time.
changes), which ultimately contributes to variations in drivers’ ToT. 
Based on this hypothesis, we present the structure of factors influencing 
ToT in Fig.  9.

This overview of input features offers valuable insights into feature 
selection for ToT prediction models. It can also aid in selecting psy-
chophysiological, perceptive, and behavioral data for predicting ToT, 
as these data should align closely with specific takeover-related cog-
nition, such as perceived spare capacity in this study. By substituting 
drivers’ cognition with psychophysiological, perceptive, and/or behav-
ioral data, the practical validity of the proposed ToT prediction model 
can be enhanced while maintaining model interpretability. However, 
further investigation is needed in this regard.

Note that while adding 13 driver characteristics did not significantly 
improve ToT prediction beyond pSC, these characteristics still hold 
value. In cases where pSC is difficult to assess or unavailable, static 
characteristics can provide a baseline for initializing driver models, 
setting defaults, or serving as fallback inputs. They also offer useful 
context for interpreting dynamic cognitive data. Rather than being 
excluded, static driver characteristics and dynamic cognitive indica-
tors can play complementary roles. A hybrid approach may enhance 
the robustness and personalization of adaptive takeover strategies, 
particularly in complex or uncertain scenarios.

5.2. Effects of driver characteristics

According to the feature importance (Table  4) and SHAP values (Fig. 
8) from the CatSC𝑑𝑑+𝑑𝑐 model, we find that in predicting drivers’ per-
ceived spare capacity (𝑝𝑆𝐶): (i) 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠, and 𝑡𝑟𝑢𝑠𝑡
are the most relevant features, (ii) 𝑛𝑑𝑟𝑡, 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑘𝑖𝑙𝑙, and
𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑟𝑒𝑐𝑘𝑙𝑒𝑠𝑠 are moderately relevant features, (iii)
𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑔𝑟𝑦, 𝑎𝑔𝑒, 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒, 𝑅𝑇𝐴, and 𝑎𝑐𝑐𝑢_𝑑𝑖𝑠 are less rele-
vant features, and (iv) 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙, 𝑎𝑠𝑠𝑖𝑠𝑡_𝑓𝑟𝑒, and
𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡 have minimal relevance. The above findings can 
help designers prioritize the most important factors in the development 
of CADS, highlight the focus of driver training and education, and 
inform customized interventions to promote safer and more efficient 
human–vehicle interactions. Additionally, two observations from the 
study initially seem counterintuitive, but upon closer inspection, they 
reflect nuanced insights rather than genuine contradictions:

(i) Although the direct relationship between drivers’ general
𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙 ratings and their 𝑝𝑆𝐶 is not significant, specific skill-
related metrics such as 𝑎𝑐𝑐𝑢_𝑑𝑖𝑐 and 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒 do correlate with 
pSC. This discrepancy may be attributed to two factors. First, there 
were few participants who identified themselves as ‘‘inexperienced’’. 
While the remaining participants were fairly evenly distributed be-
tween the ‘‘intermediate’’ and ‘‘experienced’’ groups-suggesting some 
variation still exists-the limited presence of low-skill self-ratings may 
have reduced the sensitivity of the general 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙 measure. 
Second, 𝑎𝑐𝑐𝑢_𝑑𝑖𝑐 and 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒 represent objective, precise indicators 
of driving ability. This suggests that the observed discrepancy may 
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not be inherently contradictory but rather underscores the potential 
inaccuracy of self-assessed general driving skills. It highlights the 
importance of incorporating objective metrics when evaluating driver 
skills, aligning with suggestions from prior research (Sundström, 2008; 
Kosuge et al., 2021). (ii) Similarly, while the direct relationship be-
tween drivers’ 𝑅𝑇𝐴 and their 𝑝𝑆𝐶 lacks statistical significance, specific 
characteristics associated with 𝑅𝑇𝐴—such as 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠 and 
𝑡𝑟𝑢𝑠𝑡—show strong correlations with 𝑝𝑆𝐶. This apparent discrepancy 
may result from the context-dependent measurement of 𝑅𝑇𝐴 within 
automated driving scenarios, where drivers may adjust their usual 
risk preferences when interacting with CADS. Rather than being con-
tradictory, this finding underscores the phenomenon of behavioral 
adaptation, where drivers modify their behavior to suit CADS. Such 
adaptations have been well-documented in existing studies (Varotto 
et al., 2020; Soni et al., 2022), emphasizing the importance of under-
standing how automation influences driver behavior to design effective 
human-automation interactions that promote both safety and user 
comfort.

In summary, driver characteristics influence the development of 
drivers’ cognition (such as spare capacity) to varying extents during 
the transition of control. When measuring these characteristics, it is 
essential to use specific questions adjusted appropriately for takeover 
contexts to ensure the validity and reliability of research findings.

5.3. Limitations

This study is subject to the following limitations: (i) although the 
final sample size of 57 participants is comparable to those used in 
similar studies (Liu et al., 2025, 2024; Yoon et al., 2021), we ac-
knowledge that a larger sample could further enhance the robustness 
and generalizability of our findings. A limited sample size may reduce 
statistical power, particularly in detecting subtle interaction effects or 
non-linear relationships among multiple influencing factors. Moreover, 
while the sample includes a range of drivers in terms of years of 
driving experience, accumulated mileage, and driving frequency, rel-
atively few participants subjectively identified as inexperienced. This 
discrepancy between objective and perceived experience may influence 
how self-reported driving competence interacts with perceived spare 
capacity and takeover time. Future research would benefit from re-
cruiting larger and more diverse participant pools, and from further 
examining how discrepancies between perceived and actual driving 
ability shape takeover behavior and cognitive self-assessments. (ii) the 
experiment was conducted in a simulated environment rather than 
in real-world driving conditions. While simulators provide controlled 
environments for experimentation, driver behavior may differ in real-
world settings, limiting the generalizability of our findings. Given that 
this study serves as a foundational step toward optimizing feature 
selection in takeover time prediction models, future research should 
evaluate the model’s effectiveness under more varied and dynamic 
conditions. Specifically, our scenarios were structured and non-time-
critical, whereas urgent takeovers—such as reacting to sudden hazards 
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or system failures—may involve different cognitive and behavioral 
dynamics, potentially altering the relationship between perceived spare 
capacity and actual takeover time. As a result, the current findings 
may be more applicable to routine or moderately urgent transitions. 
Future work should test the model in more diverse scenarios, especially 
those involving real traffic and time-critical demands, to evaluate its 
robustness and adaptability. (iii) repeated exposure to similar takeover 
scenarios may lead to faster or more confident responses, potentially 
inflating performance measures and altering perceived spare capacity. 
This trial order effect could confound results and limit generalizability 
to real-world conditions, where takeovers are less predictable and 
not repeated systematically. To mitigate learning effects in this study, 
participants completed a 10 min practice drive (Radhakrishnan et al., 
2023), and the nine takeover scenarios were arranged using a Latin 
Square design to balance order effects across participants (Calvert et al., 
2014). Additionally, takeover requests were randomized between 30 
and 60 s after automated driving began to reduce predictability within 
trials (Eriksson and Stanton, 2017). Despite these design features, some 
residual learning or anticipation effects may still remain and should 
be considered in future research and experimental designs, particularly 
in studies involving repeated within-subject measurements. (iv) this 
study used self-report questionnaires to assess driver cognition, aligning 
with our aim to capture subjective comfort and cognitive experience 
during takeovers. We adopted well-established instruments (such as 
NASA-Task Load Index, Driving Activity Load Index, and Driver Skill 
Inventory) and carefully adapted them to suit the context of takeover 
scenarios. While these instruments are widely used and validated in 
driving research, the reliance on self-report still introduces limitations 
related to response subjectivity and the lack of continuous data, poten-
tially affecting the reliability of real-time predictions. Future studies 
could benefit from exploring the integration of psychophysiological 
data (such as eye movements, heart rates, and EEG), which can serve 
as real-time, non-intrusive proxies for cognitive load and capacity. 
Such data has the potential to enhance the practical validity of the 
proposed takeover time prediction model while maintaining model 
interpretability, provided that the correlation between these psycho-
physiological data and drivers’ cognitive constructs is validated. In our 
future work, we will further explore this relationship to improve model 
robustness and applicability. Addressing these limitations could further 
enhance the validity and applicability of the findings to additional 
driving contexts.

6. Conclusions

This study contributes to improving the reliability and interpretabil-
ity of takeover time (ToT) prediction models by optimizing predictor 
selection, enabling the exclusion of redundant predictors—such as 
extensive driver characteristics—without compromising accuracy. We 
examine the complex relationship between drivers’ ToT, cognitive con-
structs, and diverse driver characteristics within a driving simulator 
experiment encompassing nine takeover scenarios. Using CatBoost-
based prediction models and a linear regression model, our findings 
demonstrate that perceived spare capacity (i.e., perceived driver task 
capability minus perceived task demand) alone serves as a strong 
predictor of drivers’ actual ToT. Notably, incorporating 13 additional 
driver characteristics does not significantly improve prediction accu-
racy when perceived spare capacity is already considered. Furthermore, 
our results reveal that driver characteristics influence ToT indirectly by 
shaping how drivers cognitively process objective takeover situations. 
These findings deepen our understanding of drivers’ cognitive mech-
anisms during takeovers and highlight the importance of prioritizing 
cognition-based predictors over extensive driver characteristics when 
designing ToT prediction models. We argue that real-time cognitive 
monitoring, rather than static driver characteristics, may be more ef-
fective in predicting ToT and designing adaptive automation strategies. 
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Implementing systems that assess perceived spare capacity dynami-
cally could enable personalized takeover interventions, ensuring drivers 
receive appropriate support based on their actual cognitive state.

By refining the selection of predictive features, this study provides a 
framework for more interpretable and reliable ToT predictions, which 
can support the development of adaptive takeover assistance systems. 
Future studies should explore the integration of psycho-physiological 
and behavioral data—such as eye-tracking or heart rate variability—
as additional indicators of cognitive states related to ToT. Besides, 
the generalizability of these models should be tested across different 
driving conditions to validate their applicability.
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Appendix A. Latin square orderings

To minimize potential order effects, the nine takeover scenarios 
were arranged using a Latin Square design. Table  5 lists the 18 coun-
terbalanced order groups used in the study, ensuring that each scenario 
appears in every ordinal position and maintains full pairwise balance 
across participants.

Appendix B. Spare capacity survey

This study assesses drivers’ perceived spare capacity (𝑝𝑆𝐶) using a 
survey composed of items measuring perceived takeover task demand 
(𝑝𝑇𝐷) and perceived task capability (𝑝𝑇𝐶). These questions were pre-
sented randomly to reduce order effects. Participants were asked to 
indicate their agreement with the scale statements on a five-point scale 
(1 = Strongly Disagree, 5 = Strongly Agree).

B.0.1. Perceived task demand for takeovers
Drivers’ pTD for takeovers is deconstructed into their perceived 

mental demand (pTDmental), visual demand (pTDvisual), and temporal 
demand (pTDtemporal) for takeover contexts. Accordingly, three scales 
for measuring drivers’ pTD are developed based on NASA Task Load 
Index (NASA-TLX) (Hart and Staveland, 1988) and Driving Activity 
Load Index (DALI) (Pauzié, 2008), as listed in Table  6.
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Table 5
Latin square order groups for the nine takeover scenarios.
 Group/Order 1 2 3 4 5 6 7 8 9  
 1 A B I C H D G E F  
 2 G F H E I D A C B 
 3 C D B E A F I G H 
 4 I H A G B F C E D 
 5 E F D G C H B I A 
 6 B A C I D H E G F  
 7 G H F I E A D B C 
 8 D C E B F A G I H 
 9 I A H B G C F D E  
 10 F E G D H C I B A 
 11 B C A D I E H F G 
 12 H G I F A E B D C 
 13 D E C F B G A H I  
 14 A I B H C G D F E  
 15 F G E H D I C A B 
 16 C B D A E I F H G 
 17 H I G A F B E C D 
 18 E D F C G B H A I  
Note: Letters A–I represent the nine experimental conditions:
A = (0 veh/km, 0-back), B = (0 veh/km, 1-back), C = (0 veh/km, 2-back),
D = (10 veh/km, 0-back), E = (10 veh/km, 1-back), F = (10 veh/km, 2-back),
G = (20 veh/km, 0-back), H = (20 veh/km, 1-back), I = (20 veh/km, 2-back).
Table 6
Scales measuring perceived task demand for takeovers.
 Latent variable No. Observed variable Reference  
 Mental demand pTDmental Taking over car control in this situation was mentally demanding.

Hart and Staveland (1988), Pauzié (2008)
 

 Visual demand pTDvisual Taking over car control in this situation was visually demanding.  
 Temporal demand pTDtemporal The time left for me to take over car control was short.  
Table 7
Scales measuring perceived driver capability for takeovers.
 Latent variable No. Observed variable Reference  
 Anticipation capability pDCanticipation When I started 

to take over car 
control, I 
believed ...

I anticipated what would happen next in this situation. Zhang et al. (2019), 
Rosenbloom et al. (2010), 
Lajunen and Summala 
(1995)

 
 Reaction capability pDCreaction I responded to the takeover request promptly.  
 Speed adjustment capability pDCspeed_adjust I could adjust speed effectively in this situation.  
 Lane change capability pDClane_change I could change lanes fluently in this situation.  
 Safety capability pDCsafety I could maintain sufficient distance from the cars around me in this situation.  
B.0.2. Perceived driver capability for takeovers
This study extends the scales in Rosenbloom et al. (2010) and de-

constructs drivers’ pDC for takeovers into five distinct dimensions based 
on the Driver Skill Inventory (DSI) (Lajunen and Summala, 1995; Mar-
tinussen et al., 2014). As shown in Table  7, drivers’ pDC is measured 
from their perceived anticipation capability (pDCanticipation), reaction ca-
pability (pDCreaction), speed adjustment capability (pDCspeed_adjust), lane 
change capability (pDClane_change), and safety capability (pDCsafety). This 
is because the takeover manoeuvres in this study encompass anticipat-
ing the takeover situation, resuming motor readiness in response to 
takeover requests, adjusting driving speed to suit the takeover situation, 
changing lanes to bypass the detected collision ahead, and keeping 
sufficient distances from surrounding vehicles (Zhang et al., 2019). The 
developed scales are employed to measure drivers’ pDC when they have 
made decisions for takeover manoeuvres, i.e., when they start to take 
over vehicle control.

Appendix C. Driver characteristic questionnaire

This study employs the following questionnaire to assess driver 
characteristics, drawing from established instruments. The question-
naire collects drivers’ background information (Table  8), risk-taking 
attitudes (Table  9), trust in the conditionally automated driving systems 
(Table  10), takeover skills (Table  11), and takeover styles (Table  12).
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Background information

This study employs seven questions to capture drivers’ backgrounds 
as outlined in Table  8. The first two questions collect drivers’ demo-
graphic information, including 𝑎𝑔𝑒 and 𝑔𝑒𝑛𝑑𝑒𝑟. The rest five questions 
measure general driving-related characteristics, namely accumulated 
driving years (𝑎𝑐𝑐𝑢_𝑦𝑒𝑎𝑟𝑠), accumulated driving distance (𝑎𝑐𝑐𝑢_𝑑𝑖𝑠), 
driving frequency (𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒), driving skill (𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙), and driver 
assistance usage frequency (𝑎𝑠𝑠𝑖𝑠𝑡_𝑓𝑟𝑒).

C.1. Risk-taking attitude

A driver’ high risk-taking attitude has previously been observed 
to strongly correlate with risky driving behaviors (Iversen, 2004). 
Such risk-prone tendencies may become evident in takeover situations, 
potentially leading to risky takeover behaviors and shorter ToT than 
those necessary for safe ToC. This study measures drivers’ risk-taking 
attitudes in driving situations using the scale in Table  9. This scale is 
derived from (Ma et al., 2010), Taubman-Ben-Ari et al. (2004), and La-
junen and Summala (1995). Participants were instructed to indicate 
their agreement with the following statements on a five-point scale (1 = 
Strongly Disagree, 5 = Strongly Agree). The general risk-taking attitude 
(𝑅𝑇𝐴) is calculated as: 

𝑅𝑇𝐴 =
∑5

𝑖=1 (6 − 𝑅𝑇𝐴𝑖) +
∑10

𝑖=6 𝑅𝑇𝐴𝑖

𝑁
(6)

where 𝑅𝑇𝐴1 to 𝑅𝑇𝐴5 represent answers that are negatively related 
to drivers’ 𝑅𝑇𝐴, 𝑅𝑇𝐴  to 𝑅𝑇𝐴  represent answers that are positively 
6 10
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Table 8
Background questions, based on Nordhoff et al. (2023) and Lu et al. (2017).
 Latent variables Observed variables  
 𝑎𝑔𝑒 What is your age?  
 𝑔𝑒𝑛𝑑𝑒𝑟 What is your gender? [Male; Female; Others]  
 𝑎𝑐𝑐𝑢_𝑦𝑒𝑎𝑟𝑠 How many years of driving experience do you have?  
 𝑎𝑐𝑐𝑢_𝑑𝑖𝑠 How many kilometres (approximately) have you driven in the past 12 months?  
 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑓𝑟𝑒 How many days (on average) have you driven per week in the past 12 months?  
 𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑘𝑖𝑙𝑙 How is your general driving skill? Please select the option that best matches your situation.  
 [Inexperienced; Intermediate; Experienced]  
 𝑎𝑠𝑠𝑖𝑠𝑡_𝑓𝑟𝑒 How often (out of 10 times) do you use driver assistance functions while driving in the past 12 months? 
Table 9
Scale measuring drivers’ risk-taking attitude (𝑅𝑇𝐴), based on Ma et al. (2010), Taubman-Ben-Ari et al. (2004), and Lajunen and Summala (1995).
 Latent variables Abbr. Observed variables  
 

𝑅𝑇𝐴

𝑅𝑇𝐴1 I follow the traffic rules most of the time [−].  
 𝑅𝑇𝐴2 I drive cautiously most of the time [−].  
 𝑅𝑇𝐴3 I am not willing to compete with other drivers in traffic [−].  
 𝑅𝑇𝐴4 I try to keep sufficient distances to the cars in front most of the time [−].  
 𝑅𝑇𝐴5 I am willing to give up my right of way to other drivers to ensure safety [−].  
 𝑅𝑇𝐴6 I enjoy the feeling of pushing a car to its maximum capability limits.  
 𝑅𝑇𝐴7 It makes sense to exceed speed limits to get ahead of drivers who drive erratically, slowly, or extremely cautiously. 
 𝑅𝑇𝐴8 Engaging in risky driving behaviours does not necessarily mean someone is a bad driver.  
 𝑅𝑇𝐴9 It’s acceptable to break some traffic rules if they are restrictive.  
 𝑅𝑇𝐴10 It’s acceptable to drive at the moment when traffic lights change from yellow to red.  
[−] indicates reversed questions.
Table 10
Scale measuring drivers’ trust in conditionally automated driving, based on Nordhoff et al. (2021).
 Latent variables Abbr. Observed variables  
 
𝑡𝑟𝑢𝑠𝑡

𝑇1 I trust the automated car to maintain sufficient distances from the cars around me.  
 𝑇2 I trust the automated car to effectively detect the collisions ahead that it can not handle. 
 𝑇3 I trust the automated car to alert me to take over car control in time.  
related to drivers’ 𝑅𝑇𝐴, and 𝑁 represents the total number of the 
questions.

C.2. Trust in conditionally automated driving

Drivers’ trust in CADS influences their readiness to resume vehicle 
control when required (Ayoub et al., 2021), which can, in turn, affect 
their ToT. To evaluate trust in the context of takeover situations, we 
selected and adapted three items (Cronbach’s alpha = 0.75) from the 
broader trust scale developed by Nordhoff et al. (2021), which was 
originally designed to capture drivers’ trust in partially automated 
vehicles. The employed three items specifically assessed trust in the 
system’s ability to: (i) maintain safe following distances, (ii) detect 
hazards it cannot manage, and (iii) issue timely takeover alerts—core 
functions critical to safe control transitions. Items from the original 
scale that were unrelated to our setup, such as manual activation, mode 
awareness, or general engagement, were excluded, as all takeovers 
were system-initiated, mode status was clearly displayed, and par-
ticipants were engaged in cognitively demanding n-back tasks. This 
focused selection helped reduce participant burden while maintaining 
contextual relevance. Table  10 lists the measurements of drivers’ trust 
in three CADS functions. Participants were instructed to indicate their 
agreement with the following statements on a five-point scale (1 = 
Strongly Disagree, 5 = Strongly Agree). Drivers’ general trust in CADS 
(𝑡𝑟𝑢𝑠𝑡) is computed as the average of 𝑇1, 𝑇2, and 𝑇3.

C.3. Takeover skill

Drivers’ takeover skill in various aspects reflects their abilities to 
assume vehicle control effectively, which can be improved through 
13 
practice and training. This study develops an inventory to assess 
drivers’ takeover skill (𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑘𝑖𝑙𝑙) based on the Driver Skill Inven-
tory (DSI) (Lajunen and Summala, 1995). Aligned with the DSI, this 
takeover skill inventory assesses drivers’ perceptual-motor skills (𝑃𝑀𝑆) 
and safety skills (𝑆𝑆) (Martinussen et al., 2014), with a specific focus on 
takeover contexts. Details of the takeover skill inventory are presented 
in Table  11. Participants were instructed to indicate their agreement 
with the statements on a five-point scale (1 = Strongly Disagree, 5 = 
Strongly Agree). Drivers’ 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑘𝑖𝑙𝑙 is computed as the average of 
all variables, including 𝑃𝑀𝑆1 to 𝑃𝑀𝑆8 and 𝑆𝑆1 to 𝑆𝑆8.

C.4. Takeover style

To evaluate drivers’ takeover styles, this study adapts the Multi-
dimensional Driving Style Inventory (MDSI) (Taubman-Ben-Ari et al., 
2004) for takeover contexts. A takeover style inventory is formu-
lated based on the four-factor structure of the MDSI, categorizing 
drivers’ characteristic takeover behaviors into: (i) reckless and care-
less (𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑟𝑒𝑐𝑘𝑙𝑒𝑠𝑠); (ii) anxious (𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠); (iii) 
angry and hostile (𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑔𝑟𝑦); and (iv) patient and care-
ful (𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡). The specifics of the takeover style inven-
tory are presented in Table  12. Participants were instructed to in-
dicate their agreement with the statements on a five-point scale (1 
= Strongly Disagree, 5 = Strongly Agree). For 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑟𝑒𝑐𝑘𝑙𝑒𝑠𝑠, 
𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠, and 𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑔𝑟𝑦, each is computed as the 
average of five observed variables in the same subcategory. For
𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡, it is calculated as the average of ∑4

𝑖=1 𝑃𝐶𝑖 + (6 −
𝑃𝐶5), as 𝑃𝐶5 is measured via a reversed question.



K. Liang et al. Applied Ergonomics 129 (2025) 104603 
Table 11
Takeover skill inventory, modified from Driver Skill Inventory (Lajunen and Summala, 1995).
 Latent variables Abbr. Observed variables  
 

Perceptual-Motor Skills (𝑃𝑀𝑆)

𝑃𝑀𝑆1 Taking over car control from automation fluently was easy for me.  
 𝑃𝑀𝑆2 Adjusting driving speed was easy for me.  
 𝑃𝑀𝑆3 Controlling the car was easy for me.  
 𝑃𝑀𝑆4 Bypassing the detected collisions ahead was easy for me.  
 𝑃𝑀𝑆5 I realized that I needed to take over car control from automation before the takeover requests. 
 𝑃𝑀𝑆6 I reacted to takeover requests fast.  
 𝑃𝑀𝑆7 I knew the right actions to take in response to the takeover requests.  
 𝑃𝑀𝑆8 I made firm decisions to take over car control from automation.  
 

Safety Skills (𝑆𝑆)

𝑆𝑆1 I followed the traffic rules while taking over car control from automation.  
 𝑆𝑆2 I was cautious while taking over car control from automation.  
 𝑆𝑆3 I paid attention to the cars around me in automated mode.  
 𝑆𝑆4 I paid attention to the cars around me while taking over car control.  
 𝑆𝑆5 Keeping sufficient distances from the cars ahead was easy for me.  
 𝑆𝑆6 Merging into the adjacent lane was easy for me.  
 𝑆𝑆7 Braking effectively (i.e., not too hard nor too soft) was easy for me.  
 𝑆𝑆8 I did not cause risks to myself and the cars around me.  
Table 12
Takeover style inventory, modified from the Multidimensional Driving Style Inventory (Taubman-Ben-Ari et al., 2004).
 Latent variables Abbr. Observed variables  
 

𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑟𝑒𝑐𝑘𝑙𝑒𝑠𝑠

𝑅𝐶1 I misjudged the speed of the cars passing me when I was taking over car control.  
 𝑅𝐶2 I forgot to switch on the turn indicator before changing lanes.  
 𝑅𝐶3 I nearly crashed due to misjudging my distances from other cars.  
 𝑅𝐶4 I engaged in mind wandering from time to time when I was driving the car manually.  
 𝑅𝐶5 I tried to move into the left lane as soon as possible.  
 

𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑥𝑖𝑜𝑢𝑠

𝐴1 I felt nervous when I was taking over car control.  
 𝐴2 Taking over car control frustrated me.  
 𝐴3 It worried me when taking over car control after engaged in the n-back task.  
 𝐴4 I drove at or below the speed limit when I was taking over car control.  
 𝐴5 I used muscle relaxation techniques (such as taking deep breaths).  
 

𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑎𝑛𝑔𝑟𝑦

𝐴𝐻1 I swore at the automation when it asked me to take over car control.  
 𝐴𝐻2 I wanted to blow my horn or ‘‘flash’’ the car in front as a way of expressing frustrations.  
 𝐴𝐻3 I enjoyed the excitement of taking risks when I was taking over car control.  
 𝐴𝐻4 I took chances to merge into the adjacent lane.  
 𝐴𝐻5 I removed at least one hand from the steering wheel when I was driving the car manually. 
 

𝑡𝑎𝑘𝑒𝑜𝑣𝑒𝑟_𝑠𝑡𝑦𝑙𝑒_𝑝𝑎𝑡𝑖𝑒𝑛𝑡

𝑃𝐶1 I waited for a proper gap to change lanes.  
 𝑃𝐶2 I based my takeover behaviours on the motto ‘‘better safe than sorry’’.  
 𝑃𝐶3 I took over car control from automation cautiously.  
 𝑃𝐶4 I shifted my focus from the game to taking over car control before the takeover requests.  
 𝑃𝐶5 I had to slam on the brake to avoid collisions [−].  
[−] indicates reversed items.
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