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Abstract

This paper presents a new greedy heuristic to ex-
tend SAT Solvers when solving the Preemptive
resource-constrained project scheduling problem
(PRCPSP-ST). The heuristic uses domain-specific
knowledge to generate a fixed order of variable se-
lection. We also extend previous work into encod-
ing PRCPSP-ST by providing an alternative upper
bound. The heuristic was tested against VSDIS on
the J12 dataset. These experiments show that it per-
formed, on average, six times slower than VSDIS.

1 Introduction

Satisfiability (SAT) solvers provide great versatility in solv-
ing any problem expressed as a set of Boolean clauses. Once
encoded, no knowledge of the problem is needed for efficient
searching. Starting 20 years ago, efficient and scalable algo-
rithms for SAT have proven useful when dealing with NP-
Hard problems[1]. Any optimization to the solver is an op-
timization to all. Interestingly, Solvers have been found to
perform “unreasonably well”’[2] for real-world problems and
are deployed in many industrial processes, such as the auto-
motive industry[3].

However, it comes at a cost. The solver only takes advan-
tage of the knowledge of the problem space in the encoding.
Encoding is the method used to feed information to the solver.
If the encoding cannot capture relations or other knowledge,
they don’t contribute to finding a solution. Heuristics such as
”schedule early” or “minimize lateness” are difficult to trans-
mit.

This information loss raises the question at the heart of our
investigation: How do we add domain-specific information
to a SAT solver? Would a SAT solver with problem-specific
knowledge outperform one without?

To investigate this potential improvement, we selected the
Resource Constrained project scheduling problem with activ-
ity splitting and setup time (PRCPSP-ST). It is a derivative of
the generic Resource Constrained project scheduling problem
(RCPSP). This general scheduling problem concerns projects
with precedence and resource requirements, and its subprob-
lem adds preemption and setup time.

For a concrete example, imagine a factory producing cars.
Each machine has a specific power draw, and the factory can
only output a fixed amount of electricity every hour. The fac-
tory can not power all devices at the same time. Furthermore,
parts may require others to be assembled before being built.
A window can only be completed if its frame has been cre-
ated. We can preempt work, meaning it can be stopped before
completion to be finished later. Each preemption pays a cost
called setup time.

Numerous works on scheduling, including with setup time
exist. We can split previous work into two approaches:
Custom algorithms for scheduling and SAT modelling with
some heuristics. Mario Vanhouke and Jose Coelho have pub-
lished much[4]—[7] in the domain of Resource-constrained
project scheduling, including with setup time, but their work
concerns domain-specific algorithmic. Combining domain-
specific heuristics and SAT exists, such as [8] and [9], but

they don’t look at this sub-problem. Lastly, the work of [10]
will be drawn upon for modelling the problem in SAT, but it
does not implement a domain-specific heuristic.

We developed a naive greedy approach. Instead of the
dynamic variable ordering found in the current state-of-the-
art solvers, we implemented a static arrangement computed
alongside encoding. This heuristic relies on reducing the
problem (removal of resource constraint) and sorting the vari-
ables according to start time and size. We compared this to
Variable State Independent Decaying Sum (VSIDS) over the
J12 dataset. Our approach was between 3 to 10 times slower
than VSIDS.

This paper is organized as follows. Section 2 develops on
some of the previous works that influenced this paper. Section
3 describes both PRCPSP-ST and SAT solvers. Following
it, Section 4 details our efforts to extend previous work and
the development of our heuristic. Next, Section 5 explains
the experimental setup as well as the results. Section 6 dives
into the steps we took to make our research reproducible. A
discussion of results can be found in Section 7. Lastly, the
conclusion and future works are in Section 8

2 Related Work

This section discusses related work in scheduling, heuristics,
and encoding, diving into some specific papers and how they
inspired this one.

M. Vanhoucke and J. Coelho[5] proposed a fascinating ap-
proach to solving PRCPSP-ST. Their domain-specific algo-
rithm has two repeating steps: A SAT solver that generates
correct schedule permutations and a genetic algorithm that
finds the optimal schedule for that permutation. Their ap-
proach combines the strengths of global search, the solver
and local search, the genetic algorithm. However, they do not
compare their algorithm with current state-of-the-art schedul-
ing, and therefore it is hard to tell what the effectiveness of
their algorithm is. To avoid this drawback, we elected to
compare our heuristic to VSIDS, the current state-of-the-art
heuristic for SAT.

J. Vermeulen [10] proposes an encoding to translate any
PRCPSP-ST problem into wncf, allowing the solver to pro-
pose a potential schedule. The main drawback was its low sat-
isfiability for some data instances, notably the J30 instance.
Scheduling should always be satisfactory if the assumptions
of encoding are not broken. It is always possible to execute
projects sequentially. This encoding was replicated for this
paper, and the main steps can be found later in the paper.
Some corrections to its methods can also be found later in the
paper, though their effect on satisfiability is hard to tell, given
that we used a different data set.

Greedy approaches for scheduling are well known and ac-
tively studied[11]. The work of [12] uses a greedy heuris-
tic to solve RCPSP, the parent problem of PRCPSP-ST. The
greedy heuristic is used to avoid enumerating all possible so-
lutions and retaining only the promising ones. While being
very different in approach to SAT, having the heuristic guide
the search for promising solutions was the primary inspiration
behind our development.



3 Formal Problem Description

This section aims to explain all the terminology related to
PRCPSP/ST and briefly explain SAT solvers. It builds pri-
marily on the works of [5].

3.1 RCPSP

To define PRCPSP-ST, we first need to define its parent prob-
lem, RCPSP.

Formally, RCPSP is represented as a graph G(NV, A) where
N and A are:

e N, the Set of nodes which each represent a project

e A, the edges, representing the pairs with a finish-start
antecedent relationship with time lag 0.

We assume G(NN, A) to be acyclic.

We use R to denote the Set of renewable resources which
projects will use. Each resource in R has a capacity, ax, k =
1..|R|.

Each project has a deterministic duration, d; and requires
some renewable resource in set R. We express this as 7 j.
We assume that 7; , < ax,% € N,k € R. No individual
project has a consumption above availability.

Project | Antecedents Duration Resource Usage
A 2 01
B A 2 11
C A 2 10
D C 2 01
E B,D 0 00
Table 1: Set of example projects
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Figure 1: Graph Representation of Table 1

Table 1 shows an example set of projects. A graph repre-
sentation can be seen in figure 1.

Once scheduled, activities can be represented with a Gnatt
chart, as seen in figure 2. We can see the parallel work being
done on B and C as they are executed at the same time. Given
the properties of antecedent relations, projects can start when
antecedent projects end. Thus, this schedule is done by time
6.

However, this example does not account for resource us-
age. Resource constraint prevents perfect parallelization of
all tasks, and is why this problem is NP-hard. Section 4 has a
deeper exploration of this.

Gnaat chart of example project
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Figure 2: Gnatt chart of possible schedule for example projects

3.2 PRCPSP-ST

PRCPSP/ST is a strongly NP-hard algorithmic problem[13]
with the same characteristics as RCPSP. A set of projects,
N, and a set A represent antecedent relationships among
projects. The enactment of projects requires the use of some
amount of renewable resources.

The difference stems from preemption and setup time.
When projects are pre-empted, they are stopped and started
at some later time. Preemption incurs a setup time penalty,
so the second segment of the project would take longer than
its duration had it not been preempted. The objective is to
minimize the makespan, the time between the start of the first
project and the end of the last project.
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Figure 3: Possible Ways to preempt a Project of duration 3. Orange
represents the set up time cost
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To model preemption and activity split, [5] introduced
the concept of “segments”. They correspond to potential
splits of a project. In the words of M. Vanhoucke and J.
Coelho[5], “[...] an activity segment S’ D, is any integer part
of an activity with duration d; for which z € {1...d;} and
y € {1...d; — x + 1} Figure 3 shows a visualization of a
project of duration three. Segments are denoted S¢ D, for a
segment belonging to project i, starting at point X and having
duration y. For a project of duration d;, there exist %
segments and 2%~ possible combinations that can recreate
the original project.

When multiple projects are introduced, and we need to
consider multiple combinations for each project, the problem
grows dramatically. If all projects have the same duration,
there will be (29%)" possible combinations of segments to
schedule.

Many types of setup times have been proposed[5], but for
this paper, we will only look at fixed setup times. Having a
dynamic setup time, though closer to reality, is beyond the
scope of this research. Set up time for segment S D, is de-
noted ¢s: p, . The fixed setup cost is denoted f
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Segments play a vital role in the encoding developed in Sec-
tion 3.4.

3.3 SAT solvers

SAT Solvers are a powerful modern tool used to deal with
NP-Hard problems. Their versatility stems from the Cook-
Levin theorem, which states that every NP problem can be
reduced to SAT in polynomial time[14], otherwise known as
NP-completeness.

To solve these NP-hard problems, the solvers re-
fine brute force search. First laid out in 1961,
the Davis—Putnam-Logemann—Loveland (DPLL) algorithm
searches the space in three repeating steps: Variable selec-
tion, value assignment and propagation. One of the Boolean
variables is selected, given a value. In each constraint, it is
substituted by the value DPLL has assigned. Then we prop-
agate the value. Setting a variable X to true and propagating
it is similar to saying, ”If X is true, and X and Y are true,
then Y must be true.” Propogationing may arrive at conflicts,
i.e. contradictions, which require backtracking. For example:
If X is false, X Or Y is true, but Y is false because of other
constraints, X cannot be false. In such cases, the algorithm
backtracks to a previous decision and tries again.

SAT solvers have gone through many iterations, and mod-
ern solvers primarily rely on CDCL[15], conflict-driven
learning. One of the current favoured implementations of
CDCL is VSDIS. A full exploration of VSDIS is beyond the
scope of this paper, as the reason it is so successful is still an
area of active research[15].

Briefly summarised, VSIDS looks at the conflicts among
variables and uses this to pick the next. Variables with high
conflict tend to be selected first[15]. A priority queue (or
similar data structure) keeps track of variable ordering, pri-
oritizing based on weights. Weights are updated for variables
present in clauses that get learned and decay as iterations con-
tinue. Despite being proposed twenty years ago, this remains
the core approach to variable selection[16].

3.4 Encoding

We based our encoding on [10] and [5]. We begin by turning
our schedule N into the enhanced schedule N * by replacing
each project with all possible combinations of its segments.
Projects which had precedence relations pass those off to
their segments. If Project X has Y as an antecedent relation,
all segments S7 D, have the last Y segments as antecedents.
Lastly, we add a dummy start and end. All segments with
no antecedents have a dummy start as an antecedent, and all
tasks with no decedents have a dummy end as one. A more
detailed explanation of this process can be found in [5]

To encode the enhanced schedule, we develop two vari-
ables to represent the problem. S variables represent the start-
ing time of a project segment, and U variables, represent if a
project is taking place at that time. Formally we can say:

Let s;+ € {0,1}, where 1 means segment j is scheduled at
time ¢.

Let u;, € {0, 1}, where 1 means segment ¢ is taking place
at time ¢.

Let d; represent the duration of project or segment j.

Let N represent the set of projects and N represent the
set of segments. Let R denote the set of resource capacities.

Let A(x,y) denote that segment z is the antecedent of
y. Let es; denote the earliest starting time of segment 4.
The shortest distance between a project and the dummy start
project is the earliest start time. Let [s; denote the latest start-
ing time of segment i. The method used to obtain this value
is discussed later in section 4. Unless otherwise specified, all
time values ¢ for segments rest between es; and s;.

Hard Clauses are clauses that must evaluate to be true.
These variables are used in the following hard clauses:

» Completion Clauses ensure that the combination of seg-
ments scheduled represents the entire project. We use
the subset C'x; ; to group all segments that contain time
segment [ of ¢. They are expressed as:

1€{0..d;}ii€ Ciu\/ s

 Consistency Clauses ensure that u variables are set if the
corresponding start time is set.

le {tdl},l S N*;—\Siyt Voug g

» Set precedence clauses ensure that no project is started
before the completion of all its precedents

Gri) € Aimsie \ si

l€esj...es;—d

* Resource Clauses. Using a Pseudo-Boolean weighted
sum, we can capture that at no point in time should the
resource usage surpass its limit. Explaining the transfor-
mation into CNF is beyond this paper’s scope, but more
information can be found in [17].

n
k € R; § Ui * Ty < A
=1

To capture optimally, we use soft clauses. Depending on the
encoding, these clauses have a weight, which the solver will
try to minimize or maximize. Since we are trying to minimize
the makespan, we use the start time of the dummy end to
measure this.

1 = dummy end; ¢ as weight; s; +

4 Original Contribution

We based our encoding of PRCPST on [10] and [5]. We had
to adapt the upper bound used because it proved ill-suited to
the resource constraints. We then developed a heuristic based
on this encoding.

4.1 Extension

A vital component of the encoding is the latest start time. It
determines the upper bound used in variable generation take.
The upper bound is necessary as we cannot encode infinite



time. Increasing the upper bound dramatically increases the
number of variables, clauses and search space.

By changing the upper bound, we adopted the encoding
more closely to suit PRCPST. The original paper[10] favours
a critical path method, often used in project scheduling. The
critical path corresponds to the longest path in the Directed
Acyclic Graph (DAG), representing project precedence rela-
tions. An illustration can be seen in Figure 4. However, be-
cause of the resource constraint, some tasks can monopolize
their scheduled time. This forces linear project execution and
means a schedule may exceed the limit predicted by the crit-
ical path. An example of such a schedule can be seen in FIG
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Figure 4: Example of Dependency graph with critical path analyse.
The orange line shows the critical path( Length of 14)

0000
Figure 5: Order of projects if executed sequentially because resource
capis 10

We instead used the horizon, which is the sum of all du-
rations. On a J30 instance, the critical path would be around
30-40. The horizon would be 120. The challenges this caused
us can be found in Section 5.

4.2 Heuristic development

Part of the challenge of developing a heuristic for a SAT
solver rests on what part of the solver the heuristic should
intervene at. There are several possible interception points.
A heuristic could inform the solver by providing initial start-
ing values for specific variables. A heuristic could also act in
the encoding, such as the previously mentioned critical path
method providing an upper bound to values. We choose to
focus on variable selection, as it most easily maps back to the
domain.

As explained in section 3, current approaches favour dy-
namic variable selection. This provides flexibility and adapt-
ability. Variables can be picked because they often cause con-
flict or because they appear a lot, and giving them a value at
the start ensures high propagation.

This flexibility comes at the cost of greater complex-
ity and needing to reshuffle the order after each conflict.
We used a more straightforward approach since few previ-
ous works combine domain-specific heuristics with domain-
specific knowledge. Fixed order variable traversal can be
computationally cheap and potentially produce a viable so-
lution, which can then converge to the optimal solution.

Current efforts in Scheduling heuristics focus on ap-
proaches which are opposite to Sat Solvers. Genetic algo-
rithms [18] are a form of local search, fundamentally differ-
ent from the solver’s exhaustive search. Marrying these two
approaches is beyond the scope of this paper.

For these reasons, we favoured a greedy heuristic to ex-
plore this new approach. The intuition is as follows: wu vari-
ables are always defined in relation to s variables in consis-
tency clauses. Previous research has shown situations where
splitting, especially for smaller tasks, is worse than no split
[5]. Therefore segments with no set-up time should be at-
tempted first, providing a baseline. Additionally, when com-
paring s variables, we want to prioritize early start times.
Lastly, we want to attempt to schedule longer segments be-
fore shorter ones, as they are less likely to incur set-up time
penalties in their descendants.

In Pseudocode, this is expressed as follows:

Algorithm 1 Heuristic order

1: procedure HEURISTIC ORDERING(S, U, Aux)
for each variable type
2 S < Sort by key S
time inc, duration dec
3: vars < Append S U Aux
4: return vars

> Lists

> Sort by set up time incr, start

This ordering is passed as a comment in the encoded file
to the SAT solver. This ensures that the same file can be used
by a solver with the heuristic and one without, and doesn’t
require significant changes to the functionality of the solver,
only the order it visits variables.

Both of these approaches are left open as potential future
work.

5 Experimental Setup and Results

This section details some of the challenges faced in generat-
ing the wenf files, as well as the experimental setup and the
results we obtained.

5.1 Hardware Limitations

This subsection elaborates on some of the technical chal-
lenges encountered during encoding and the steps we took
to overcome them.

We used the Pumpkin Solver, currently in development by
Dr. Emir Demirovi, Maarten Flippo, and Konstantin Sidorov
It is written in Rust. Before heuristic development, we de-
cided that the transformation from schedule files into WCNF
should also be done in Rust to increase code reuse if the
heuristic needed access to any structures. Rust’s performance
gains compared to other languages[19] were also seen as a
comparative advantage. However, the specifics of Rust’s life-
time and ownership model clash with Direct Acyclic graphs.
To handle this, we deployed an arena, a memory structure that
does not deallocate anything until it is destroyed.

The next challenge came from the translation of the re-
source clauses. Transforming Psuedo-Boolean into CNF re-
quired using an external library, as developing a maximum
totalizer was beyond the scope of this paper. However, no



such library exists for Rust, and the maximum totalizer found
inside the pumpkin solver proved challenging to extract. In-
stead, we use Rust’s foreign function interface and call a
Python library to handle this case. However, the Python call
was being done inside the arena, and since Python has no
manual memory deallocation, python instances would remain
in memory until the end of the program.

Had we been dealing with RCPSP, that is, no pre-emption
nor set-up time, this problem may have yet to surface. How-
ever, PRCPSP-ST has a significantly greater memory load,
as each project generates d?> segments and 2¢ combination.
u variables in the resources clause belong to one segment,
not any individual project. Lastly, correcting the critical path
method meant our upper bound was significantly higher than
other encoding attempts. For the J30 instance, horizon pro-
duces a latest starting time above 100, and the critical path
around 30. The amount of u variables is drastically more sig-
nificant in our proposed encoding than in previous work.

Set-up time added another complicating factor. One
scheduling file generates one wenf file for each set-up time,
which meant six files per original RCPSP instance for our
chosen range.

Combining all this led to a significant setback: Memory
leaking. The python call lived inside the arena and therefore
was not deallocated, as references to it long outlived the code
it was responsible for generating. As more files were gen-
erated, more fragments of previous generations lived on and
rapidly clogged memory, halting the code once the memory
was full.

5.2 Setup

We collected 90 instances from the J12 dataset. We selected
this dataset due to the hardware constraints imposed by the
upper-bound encoding. J30 proved too large and complex to
encode in a reasonable time.

To gather data for PRCPSP-ST, we can use any representa-
tion of RCPSP and generate its segments and encoding. Our
data sets came from the Project Scheduling Problem Library.
However, because of the need to use a smaller dataset, and the
lack of smaller instances for RCPSP, we instead transformed
a Multi-Mode J12 instance into RCPSP. We did this by re-
moving the additional modes and non-renewable resources.

We rebuilt the encoding in Rust to maximize performance
and used it to generate six different encodings per file cor-
responding to different setup times. Five hundred forty file
wenf files were generated in total. After generating the files,
We batch-processed them into the solver and collected results
for each setup time. We focused on time taken and the num-
ber of optimal vs unsatisfiable solutions. Because of the par-
allelized nature of the workload manager, all eight concurrent
threads had access to 32 GB of shared memory. They ran on
an AMD Ryzen 5 3600 6-Core Processor at a base frequency
of 3.6 GHz.

5.3 Results

Method Avg solve time(s) # of Timeouts # of Errors
Greedy 1.07 5 54
VSIDS 0.162 0 54
Table 2: Processed Results of the Runs
Setup Average Time (s) Avg T for Opt Avg T Unsat
1 0.77 0.193 0.04
2 0.70 1.01 0.04
3 1.07 0.557 0.05
4 1.11 0.590 0.04
5 1.29 0.793 0.05
6 1.46 1.00 0.05
Table 3: Metrics for heuristic
Setup #Optimal #UnSat # Errors
1 40 26 23
2 61 23 6
3 64 18 7
4 67 16 6
5 70 13 6
6 70 13 6
Table 4: Overall Run info Heuristic
Setup  Average Time (s) AvgT for Opt Avg T Unsat
1 0.09 0.169 0.04
2 0.12 0.19 0.04
3 0.16 0.22 0.04
4 0.17 0.20 0.04
5 0.20 0.24 0.04
6 0.24 0.29 0.05
Table 5: Metrics for VSIDS
Setup #Optimal #UnSat # Errors
1 41 26 23
2 61 23 6
3 65 18 7
4 68 16 6
5 71 13 6
6 71 13 6

Table 6: Overall Run info VSIDS

The error column corresponds to errors produced by the
Pumpkin solver. Given that this solver is still in development,
most of these were “to do” style errors, with specific cases not
being handled correctly.



6 Responsible Research

We have made the source code available at
https://github.com/gdemenibus/SatHeuristic ~ to  increase
transparency. The original J12 schedules and their wenf
encoding alongside the collection and work scripts are also
hosted in this repo. A readme file also gives a high-level
overview of the code and the splits.

To adequately represent the work that came before us, we
tested the encoder to reproduce examples worked out by hand
and worked out examples on more minor instances.

The potential for misuse of this research is practically
none. This paper demonstrates that this greedy approach is
ill-suited for this problem and should not be considered for
enhancement.

7 Discussion

The results in table 2 show that the heuristic performed sig-
nificantly worse. There is a factor of 6 between the time it
took VSIDS and Greedy. Both produced errors on the same
files. Therefore, we can isolate solver issues from the poten-
tial explanation. Both arrived at unsatisfiable solutions within
similar timeframes, pointing to an error with the files produc-
ing impossible schedules (Such as not being a DAG).

There are several potential explanations for this significant
divergence that merit further consideration.

The first is that the heuristic is a suboptimal choice for
this problem. Other heuristics may better indicate what ac-
tivity should be scheduled next. Our proposed heuristic is ig-
norant of the resource constraints and, therefore, may spend
too long attempting to allocate jobs to slots which are full.”
A heuristic that takes resource constraints into account may
prove more useful.

The second is with the heuristic’s static nature. The pro-
posed greedy heuristic does not consider the problem’s cur-
rent state; it only dictates a fixed order of traversal. When de-
signing the heuristic, we saw this as a positive, avoiding the
need to compute weights at each decision point. However,
VSIDS’ dynamic approach, bumping high conflict clauses,
gives it great flexibility. A more dynamic ordering may be
more successful, not based on the boolean clauses but instead
on what they represent.

It is also possible that domain-specific heuristics are poorly
suited for scheduling. Current heuristics in scheduling focus
on metaheuristics [20]. These usually involve genetic algo-
rithms or tabu search, which are more general approaches
adapted to scheduling. They also fulfill a different role than
SAT, as they are local search algorithms, whereas SAT is an
exhaustive search algorithm.

Lastly, VSIDS and other domain-blind methods may con-
sistently outperform any domain-specific heuristic. These ap-
proaches are designed to search the problem space efficiently,
and much research has gone into explaining why[16]. Vari-
ables represent the problem, but the efficient searching of
variable space and domain space could be different.

8 Conclusions and Future Work

This paper has presented the key components to encoding
PRCPSP-ST into conjunctive normal form, as well as an ex-

tension of previous work to capture the upper bound. We
describe the greedy heuristic we developed for static variable
ordering. Augmenting a SAT solver with this greedy heuristic
is detrimental to performance, on average performing 6 times
worse.

Future work could focus on providing more insight as to
why, by collecting the number of decisions or a measure of
how quickly good solutions are found. Additionally, there
remain a number of schedules that produce unsatisfiable files.
This would point to an error in the encoding, but the cause
would have to be investigated.

Several approaches could be taken to add a dynamic ele-
ment to this heuristic. Adding an element to the sort that is
derived from the state of the solver, such as the number of
conflicts or amount of previous propagations, and recomput-
ing the order at every assignment, or every few assignments,
could make it respond dynamically to the changing circum-
stances.

To merge it with VSIDS, this ordering could provide the
original weights that VSIDS will modify. This approach risks
providing very little impact, as the growth rate of weights in
VSIDS is steep. VSIDS could be modified to reset weights to
their original values every X iteration, ensuring the heuristic
is tried repeatedly as more variable values are fixed.
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