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Abstract— Irrigation canals are large-scale systems, covering takes place at a very slow time scale, i.e., years, in the form
vast geographical areas, and consisting of many interconnected of agreements laid out in contracts.
canal reaches that interact with control structures such as ) _ o
pumps and gates. The control of such irrigation canals is In order to improve the operation of irrigation systems
usually done in a manual way, in which a human operator the controllers of different parts of the irrigation netor
travels along the irrigation canal to adjust the settings of the should cooperate and coordinate their local water manage-

gates and pumps in order to obtain a desired water level. In t acti dailv. hourl inute basi h
this paper we discuss how distributed model predictive control ment actions on a daily, hourly, or even minute basis, suc

(MPC) can be applied to determine autonomously what the that predictions or forecasts of expected water consumptio
settings of these control structures should be. In particular, future rain fall, future droughts, future arrival of incesal

we propose the application of a distributed MPC scheme for water flow via rivers, etc. can be taken into account using
control of the West-M irrigation canal in Arizona. We present various weather and hydrological sensors, and prediction

a linearized model representing the dynamics of the canal, we o .
propose a distributed MPC scheme that uses this model as models. Model predictive control (MPC) is a control strateg

a prediction model, and we illustrate the performance of the that enables such a control framework.

scheme in simulation studies on a nonlinear simulation model . .
In [3] an MPC scheme is proposed that is used by a

of the canal.
Index Terms— Distributed control, model predictive control, ~ Single controller to determine in a centralized way the set-
large-scale systems, irrigation canals. points for local flow controllers in an irrigation canal. In
[4] we made a first attempt to implement a distributed
. INTRODUCTION MPC scheme to take over this task. In that paper, a highly

Irrigation canals are used for transporting water fronsimplified model of the so-called West-M irrigation canal is

source nodes, such as lakes, large rivers, etc., to sinkspoggfudied. The assumption is made that local Pl controllers ar
such as small rivers and pipes that transport water to agRI€Sent to control the control gates and that constraintaen
cultural fields of farmers. Irrigation canals consist of yan Minimum and maximum water levels and on the minimum
connected canal reaches, the inflow or outflow of which ca@nd maximum gate positions do not have to be taken into
be controlled by adjusting structures such as overshot gFcount. In [4], MPC controllers are then designed for each
undershot gates, activating pumps, filling or draining Waténdlwdugl control structure_. In gddmon, simulation dtes
reservoirs, and controlled flooding of water meadows or i€ carried out only on a linearized model of the system.

emergency water storage areas [1]. In this paper, we make a next step for obtaining a
In the near future the importance of efficient and reliablgjistributed MPC controller that can be used in practice. We
irrigation management systems for delivering water to sisetonsider control of a validated, nonlinear model of the West
will keep on increasing, among others due to the effects @f canal using a distributed MPC scheme. Hereby, it is not
global warming (more heavy rain during the spring seasoRssumed that local PI controllers are present. Instead, the
but possibly also drier summers). changes in the positions of gates are determined directly. |
Due to the large scale of irrigation networks, control ofaddition, operational constraints on the water levels aatd g
such networks in general cannot be done in a centralizggsitions are taken into account. Moreover, we design MPC
way, in which from a single location measurements from theontrollers for controlling parts of an irrigation canahsist-
whole system are collected and actions for the whole systey of several, instead of single, canal reaches and control
are determined. Instead, control is typically decentedliz structures. Furthermore, we perform simulation studies on
over several local control bodies, each controlling a pakir  the nonlinear, instead of a linear, system.
part of the network [2]. Currently, coordination betweenlsu

decentralized local control bodies is either non-existiog | NiS Paper is organized as follows. In Section Il, we briefly
outline the distributed MPC scheme that we employ. In
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II. DISTRIBUTED MODEL PREDICTIVE CONTROL

=— Win_ji Woutij
In distributed MPC the control of a system is divided over
several controllers. An individual controller on the onetia || -
obtains measurements from and determines actions for s
part of the network, and on the other hand communicates
with other controllers in order to obtain coordination andig. 1. lllustration of the relation between the models andakdes of two
to improve the overall network performance. To actuallyPnetworks and;.
determine which actions to take, each controller uses MP as

In [5] we have proposed a distributed MPC scheme for

it Wout ji Winij ™)

control of general transportation ne_tworks. Irrigatiomaia win.i (k) = v;(k) (3)
are a particular type of transportation networks, and there T T ——
fore this scheme is also suitable for distributed control of Wouti (k) = K; [Xi (k) wi(k) v; (k)] ) (4)

irrigation canals. Below, we briefly outline the scheme and

; where K; is an interconnecting output selection matrix
the assumptions made on the system under control. . X
that contains zeros everywhere, except for a single 1 per

row corresponding to a local variable that corresponds to
A. Dynamics an interconnecting output variable. The variabieg ;(k),

:(k) are partitioned such that:
Consider a network divided intan subnetworks. It is Wouti (k) P

assumed that the dynamics of subnetwoek{1,...,n} are T T N

given by a deterministic linear discrete-time time-ineati Win,i(k) = [wi"ajm( ) ’Wiﬂvjumii( )} ®)
model (possibly obtained after symbolic or numerical lin- [T T T
earization of a nonlinear model in combination with dis- Wouti (k) = [Wouﬂjmi(k)’“"Wouﬁifumii(k)] - (®)

cretization): . L
) The interconnecting inputs to the control problem of con-

ik + 1) = Ay (k) + By o () troller 4 Wlth respect to controllef must be equal to the inter-
’ connecting outputs from the control problem of controljer
+ Baidi(k) + Bs,vi(k) (1) with respect to controllei; since the variables of both control

vi(k) = Cix;(k) + D1 ;u,(k) problems model the same quantity. For controll¢his thus
+ Dy d;(k) + Dy vi(k), (2) gives rise to the followingnterconnecting constraints
Win ji (K) = Wouti; () )

where at control steg, for subnetworki, x;(k) € R
are the local statesy;(k) € R™: are the local inputs, Woutji (k) = Win,i; (k), 8
d;(k) € R™ are the local known or measureable exogenous ,
inputs, y; (k) € R™: are the local outputsy;(k) € Rv:  for all j € .

are the remaining variables influencing the local dynamical )

states and outputs, andl; € R™ %™, By ; € R X"y B. Assumptions

By € R "M, By € R "™vi, G € R ™™, Dy € It is assumed that each of the subnetwarks{1,...,n}
R7yiXMi, Dy € R™i*M4, Dy; € R™: "™ determine js controlled by a control controller that:

how the different variables influence the local states and

outputs of subnetwork. The v;(k) variables represent the
influence of other subnetworks on subnetwarkand are
therefore equal to some of the variables of models rep- °
resenting dynamics of neighboring subnetworks. So-called
interconnecting input variables, j; (k) € R"vni: are the
variables of subnetwork that are influenced by subnetwork
Jj, 1.e., a selection o¥; (k). So-called interconnecting output
variables woy j;(k) € R™owii are the variables of sub-
network i that influence a neighboring subnetwojki.e.,
a selection ofx;(k), u;(k), and y;(k). Fig. 1 illustrates
the relations between the variables of the models of two It is assumed that the controllers are cooperative, meaning
subnetworks. that the individual controllers strive for the best overall
Let subsystemi be connected ton; neighboring sub- network performance. In addition, it is assumed that the
systems. Let the set of indices of the; subsystems con- objectives of the controllers can be represented by convex
nected to subsystem be denoted by the neighbors setfunctions.Jigeai, for i € {1,...,n}, which are typically lin-
N; ={ji1,---,Jim, |- Define the interconnecting inputs andear or quadratic. Such functions are commonly encountered,
outputs for the control problem of controlleat control step in particular for systems that can be represented by (1)-(2)

o has a prediction model of the form (1)-(2) of the

dynamics of subnetwork

can measure or estimate the stat¢k) of its subnet-

work;

« can estimate exogenous inpufis(k + ) of its sub-
network over a certain horizon of lengtN, for | =
{0,...,N -1}

« can communicate with neighboring controllers.

C. Control objectives



D. Distributed MPC scheme Send Am i (k) to controller j and receive the

The distributed MPC scheme that we employ comprises rp(lilﬂlp)llers from controller j to be used as

at control stepk the following steps: Xoutij (k).

1) Fori=1,...,n, controlleri makes a measurement of d) Move on to the next iteration + 1 and repeat
the current state of the subnetwotk(k) and estimates steps 2b—2c. The iterations stop when the follow-
the expected exogenous inpufs(k + 1), for I = ing stopping condition is satisfied:

0,...,N —1. < (s+1)
2) The controllers cooperatively solve their control prob- inerjr,,1(F)
lems in the following serial iterative way : < ey (11)

a) Set the iteration counterto 1 and initialize the ALt (k)
Lagrange multipliers.. 71(’@), A(()i)t,ij( k) arbitrar- eI o0
. | With Nrew i (6) = Moy (k) — Ao (k), and

b) Fori = 1,. o one contr(o)llerz af(t%r an- where +, is a small positive scalar anfl- [|o
other determlne& 'k +1), a8 (k), Wi i (k). denotes the infinity norm.
‘i’gu{ji(k> as solutions of the following optimiza-  3) The controllers implement the actions until the begin-
tion problem: ning of the next control step.

min Jical; (ii(k; +1),0;(k),yi(k)) Under the assumptions that we have made on the objective

c)

1The tilde notation is used to represent variables over theligtion

Z (W 35(k), Woursi (k). (9) functions and prediction models the solution of this scheme
~ '”te” n,gi\%/> Foutji ’ converges to the solution that a centralized MPC controller
I€ would have obtained for a sufficiently small, see [5].

subject to the local dynamics (1)~(2) and (3)=(4) |n the next section we discuss how the presented approach
of subsystem over the horizon, the current state 5 pe used for controlling irrigation canals.

x;(k), and the known exogenous inpufis(k).

The additional performance criteriokher; in (9) [Il. CONTROL OF AN IRRIGATION CANAL
at iterations is defined as Let an irrigation canal be controlled bycontrollers. Each
‘]lEierz (Winsi(k), Woutji (k) = _controllers controls the water levels and control struetur
, T in several connected canal reaches. Let therenbeanal
S‘i(:)ji(k) Win,ji (k) reaches. Let the set of canal reaches that controller
5‘(%) Wout ji (k) {1,...,n} controls be denoted bR;. Below we describe
—Aoutij (k) Jt : ;
for a particular controller the dynamics of the canal reache
Ye ||| Win,previj (k) — Wout ji (k) it considers, the operational constraints it has to take int
2 || [Woutprevij (k) — Win ji(k) | ||,”  account, and the formulation of its control goals.

where|la||; is the 2-norm of vecton. Further- A sypnetwork dynamics
o AR C)) 5 g ’

mo[e(,sx)vm previj (K) = Wi 35 (k) andWoutprevi; (k) The subnetwork of controllei consists of several inter-

= Woui; () is the information computed at the connected canal reaches that are usually separated bylcontr

current iterations for each controllerj € N;  ggryctures, such as undershot gates. Next, we model these

that has solved its probleiveforecontrolleri in - components.

the current iteration s. In addition, Winprev.i; (k) 1) A single canal reach:The dynamics of canal reaches
= Wi(,ii_jl) (k) and Woutprevij (k) = Wéf,;? (k) is  can be described in detail using a system of hyperbolicaarti
the information computed at thpeeviousiteration  differential equations called the Saint Venant equatids [

s — 1 for the other controllers. The constaptis  Although a model obtained using such a detailed representa-
a positive scalar that penalizes the deviation fronfion is desirable for simulation, for control this high &

the interconnecting variable iterates that wergjetail is usually not necessary and in addition undesired fo
computed by the controllers before controlién  computational reasons. Therefore, instead of repreggtitin

the current iteration and by the other Contr0||ef9reach dynamics with the Saint Venant equations, we employ
during the last iteration. The result: )ﬂ(k) the integrator delay model [7], [1], similarly as in [3]. Ehi

and wouw(k) of the optimization are sent to model has shown to adequately capture relevant dynamics

controller ;. [7], and it reduces computations required for simulation of
Update the Lagrange multipliers, the dynamics (and consequently model-based optimization)
< (s+1) —(s) significantly.
Aingi (k) = Ain ji (k) The integrator delay model is a linear discrete-time model,
+ e ( I(n) (k) — Néi{%@) . (10) vyhich modgls how th_e water Ieyel in the canal changes over
g Y time. Let time be discretized into control stepsc Ny

(where Ny are the positive natural numbers) and let the

horizon. E.g.;i1; (k) = [us(k)T, ..., u;(k + N — 1)T]T. continuous time between two control stepsand k& + 1



Gin,r variables fromk — 1 to k.

;g_r\\ 2) Undershot gates:By adjusting the gate position of
,,,,,,,,,, ’ undershot gates flows can be altered. Sometimes a local
Ginextr oy, flow controller is present that accepts flow set-points and

IR /\v after that autonomously adjusts the gate position in order t
meet the set-points. However, such a local flow controller is

not always present and we therefore explicitly include the

hr_1 ¢ ?gwﬂ

‘Dj» gate position of undershot gates in the model. In order to do
canal reachr / this, the discharge formula of an undershot gate is linedriz
a hy Under free-flow conditions, the discharge for such a gate at
out,extr

the upstream end of reaehdepends on the water levi} _;
Fig. 2. lllustration of canal reach and its associated variables. at the downstream end of the upstream reaeh and on the

N opening of the gaté, , of reachr. The linearized discharge
correspond tdlc € R* (s) (whereR™ are the positive real can pe written down as [3]:

numbers). Each canal reach is considered to have an inflow

from an upstream canal reach as illustrated in Figure 2. Let din, (k) = ginr(k — 1) + Ce (k) Ahy—1 (k)

this inflow into reachr be given bygin (k) € RT (m3/s). + Cuyr(k)Adg, (k),

A canal reach has an outflow to a downstream canal reach,

Let gour (k) € RT (m?/s) denote this outflow. In addition Wit

to this inflow and outflow due to upstream and downstream (k) = gew,r Wsrpirdg (k)

canal reaches there can be additional local inflow (e.g.talue " V29(he—1(k) — (25, + prdg,r(k)))

rainfall) and outflow (e.g., due to outflow caused by farmers)

Let such inflow be represented lyin, (k) € RT (m3/s) Cur(k) = cwrWsrpr \/ZQ(h"—l(k) — (27 + pirdg.r(K)))

and such outflow byjextout-(k) € RT (m3/s). The inflow 9w, Wsri2dg.,

qext,m’r(l_c) and OUtﬂOqux-t_ougr(]ﬂ) are assumed to be known V20t 1(E) — (zar + pirdgr (k)

or predicted accurately in advance. ) o o )
Depending on how the inflows and outflows change ovet/here for reachr, . is a calibration coefficientiVs,. is

time, the levels of the water in reaches will change. Insted#® Width of the gate (m)u. is the contraction coefficient,

of considering the levels of the water at each location iff~—1(k) iS the downstream level of the upstream canal reach

the reaches, the integrator delay model only considers thie~ 1 (M), g the gravitational acceleration (Mjs zs, the

level h,.(k) € R* (m) of the water at the downstream end ofcrest level of the gate (m), ani (k) the gate opening (m).

a reachr, since this is usually the place where offtakes arslence, the fpllowmg relation for the change in the disckarg

located. In addition to the amount of inflow and outflow, als¢@n e obtained:

the surface of the reach influences how much the level of the A (k) = ., (k) Ae,_1 (k) + Cur (k) Adg, (k).  (13)

water will change. Let,. (k) € R (m) denote the deviation of

the level of the water in canal reacHrom a given reference A similar relation is obtained for the downstream discharge

water level for that canal reach, i.e,,(k) = h,(k) — hret,, s follows:

and let the surface of reachbe ¢, € RT (m?). It takes _

some time for a change in the inflow of reagchto result Adour (k) = Co,r1(k) Aer (k) + C“”“H(kmdg’“(ké)l"l)

in a change of the water level at the downstream end of the

reach. Let this delay by, € Ny control steps for reach. 3) Dependencies on neighboring reache$he canal
Using the variables defined above, the model describifgaches controlled by a single controller are connected to

how the level of the water in a single canal reach chang&$ie another. By (13) and (14) we observe that in order

from one control stepk to the next control stefi + 1 is to evaluate the model of canal reachthe values of the

given by: variablesAe,._ (k) andh,._1 (k) of the upstream canal reach
T T r—1 and of the variablé\dg , 1 (k) of the downstream canal
er(k+1)=e.(k)+ C—Cqm(k — k) — C—quuw(k:) reachr + 1 have to be known.
T T B. Operational constraints
+ *C(Iext,in,r(k) - *C(Iext,out,r(k)a P . . L .
Cr Cr Several operational constraints have to be satisfied with
of, respect to the operation of canal reach
o Te o There is a maximum value for the change in the gate
er(k+1) = er(k) + Aer(k) + Cr Adinr (k= a.r) position, both upwards and downwards, i.e.,
T T T
- ?CAQOqu(k) + ?CAQext,in,T-(k) - ?CAQext,outv-(k)a (12) Adg,r (k) > Adg,r,min (15)
. ' ' Adgr (k) < Adgr ma; (16)

where Aer(k), AQin,r(k)a A(Iout,r(k), A(]ext,in,r(k), and
Adgextoutr (k) represent changes in the values of the respective  where Adg . min < 0, Adgr max > 0.



« The gate position should always be positive and thﬁlf?i;( . o
gate should not be lifted out of the water. Therefore, * %&°
minimum and a maximum on the absolute gate positio

reach 2.

are present, i.e., S LT X P S S
\L\'%Ch L2 : controller 2
g (k) > 0 a - N —
2 =econtroller -4 =, feach.>
dg,r(k) < g(h’r’fl(k/’) - ZS,T)7 (18) - '/}"’/ i

where 2(h,_; (k) — z,) is the maximum water level ~
above the crest. il M

“reach 8

C. Control objectives

The changes in the gate position determined by controllefg. 3. Longitudinal view of the West-M irrigation canal aitd division

i should be chosen in such a way that into two subnetworks.
1) the deviations of water levels from provided set-points V. CASE STUDY
e, are minimized in all canal reaches; ) ) ) . . .
2) the changes in the deviations of the water levkis In this section we describe a simulation result to illugtrat

from one control step to the next are minimized inthe performance of the MPC scheme discussed in this paper.
all canal reaches to encourage smooth water levape irrigation canal that we consider is based on the West-
changes; M canal (as illustrated in Figure 3), which is an irrigation
3) the changes in the gate positiogy, are minimized canal close to Phoenix, in the south of Arizo_na. This canal
in all canal reaches to reduce wear of equipment. Nas been used by the ASCE Task Committee on Canal
Automation Algorithms to define Test Canal 1 for testing

The objective functionJica; for controllers is therefore automatic control schemes [8]. The canal is used to provide

written as: water to farmers. The length of the canal is almost 10 km and
N-1 the maximum capacity of the head gateism?/s [3]. The
Jiocali = Z Z e (er(k+1+1))° canal consists of 8 canal reaches. At each of the reaches of
1=0 r€R; the canal water can be taken out at offtakes for irrigation
N-1 purposes. Between each of the reaches control structures
+ Z Z qae (Aep(k+141))° are present in the form of undershot gates to change the
1=0 reR; water flow locally. Between canal reaches 5 and 6 a local Pl
N-1 controller is present, and therefore canal reaches 5 and 6 ar
+ Z Z qad, (Adgr(k + D)?, considered as one reach. We refer to [8] for details on the
1=0 reR; dynamics of the canal.

For the benchmark system under study, MPC schemes
have been proposed based on a single controller determining
in a centralized way the set-points for the local flow con-

B 1 B 1 _ 1 trollers. MPC has been proposed for controlling the first 2
e = (emave)? 9he = (Aewave)’ dadg = (Adguave)?’ ~ canal reaches of the benchmark system in [9], for contgllin

the first 3 canal reaches of the system in [10], and for
where emave, Aemave, and Adgmave are the maximum controlling all canal reaches in [11], [3].
allowed value estimates (MAVE) of, Ae, and Adg, re- Here, we consider distributed control of the canal using
spectively. These estimates indicate how much a variable figo controllers that each control their own part of the

allowed to vary. By defining the objective function in thisnetwork. For controller 1, the set of controlled reaches is
way the various objective terms in the objective functioa arRr, = {1,2,3,4}. For controller 2, the set of controlled

where g., ga., and gaq, are penalty coefficients. These
penalty coefficients are chosen as follows:

normalized. reaches isR, = {5,7, 8}.
We consider a nonlinear simulation model of the canal,
D. Summarizing implemented in Sobek [12]. For solving the optimization

t]Rroblems at each control step we use the ILOG CPLEX
va.O quadratic programming solver through the Tomlab v5.7
interface in Matlab v7.3.

The equations representing the system are linear, and
objective functions are quadratic. It is now straightforgvto
cast the resulting prediction model, constraints, andativie
function in the form suitable for application of the distrted A Scenario
MPC scheme of Section Il. In the next section we employ™
this scheme based on linearized models to control a nomlinea The time 7, between two consecutive control steps is
representation of an irrigation canal. 120s. A prediction horizon length aV = 30 is chosen



- we have observed that the performance of the distributed
MPC approach over the full simulation is within 10% of the
performance that obtainable by a centralized MPC approach.

I
S o e

V. CONCLUSIONS AND FUTURE RESEARCH

‘Tfffi?fj'f_w—m-r'~i In this paper we have considered model predictive control
S (MPC) for distributed control of irrigation canals. We have
discussed the use of an iteration-based, distributed MPC
scheme for the control of irrigation canals. With this scleem
performance comparable to the performance of a centralized
t ) MPC scheme can be achieved in a distributed way. On a
Fig. 4. Evolution of actions over the full simulation. benchmark irrigation canal we have illustrated the po#nti
of the approach. In this case study, two controllers using
LN | linear prediction models have successfully determinediwhi
[\ - actions to take for controlling a nonlinear hydro-dynamic
‘\‘ \/ ) ] representation of the West-M irrigation canal in Arizona.
f /:U ] Future work consists of further assessing the performance
of the proposed scheme, in particular when larger irrigatio
canals are controlled and the number of controllers ine®as
Moreover, when the gates become submerged, the dependen-
cies between canal reaches will change. Future work will
» address this change.

dgs (15)
o
8

s =150
s =200

[[win,12(k + 1) — wour21 (k + 1)1 (M)
N

20 25
1 (steps) A

Fig. 5. Evolution att = 2.23 of the absolute error (1-norm) between CKNOWLEDGMENTS

the interconnecting output of controller 1 and the intermmmting inputs of ~Research supported by the BSIK project “Next Generatioratfuctures

controller 2, i.e., the values that both controllers wolile lto give to the (NGI)”, the Delft Research Center Next Generation Infrastires, the

interconnecting variabledAes(k +1), for = 1,..., N over the iterations. European STREP project “Hierarchical and distributed mqgtedictive

control (HD-MPC)”, and the project “Multi-Agent Control dfarge-Scale

to take into account the total delay present in the irrigabybrid Systems” (DWV.6188) of the Dutch Technology Foundat&Tw.

tion canal. 'ghe controllers use as parametgrs= 1000, REFERENCES

7. = 1.107°. As parameters _for the opjectlve functions [1] M. Cantoni, E. Weyer, Y. Li, S. K. Ooi, I. Mareels, and M. Ry,
the controllers use the following valuesiae = 0.15, “Control of large scale irrigation networksProceedings of the IEEE
Aemave = 0.005, Aumave = 0.0075. vol. 95, no. 1, pp. 75-91, Jan. 2007.

We perform a simulation of 240 time steps, corresponding?! ?A'agéaigjjgétg?(fcn;gﬂﬁ?g Pcrgggo'lé’;lcomp'ex SystemsBoston,

to 8 hours. We consider an increase in the offtake of canak) p. j. van Overloop, “Model predictive control on open evatystems,”
reach 3 at time step 60, corresponding to continuoss2 h, Ph.D. dissertation, Delft University of Technology, Deffhe Nether-

and a decrease in the offtake of the same canal reach at tin?ﬁ 'Fi‘”gS*NJe‘g“aenEg&G-P 3. van Overloop, T. Keviczky, and B.Gpbutter

step 120, corresponding to continuous time 4 h. “Distributed model predictive control for irrigation casdl Networks
We show over a full simulation which actions the con-  and Heterogeneous Mediaol. 4, no. 2, pp. 359-380, June 2009.

trollers choose, and illustrate for a particular time steph [ R- R. Negenbom, B. De Schutter, and J. Hellendoom, tMagent
model predictive control for transportation networks: 8enersus

controllers obtain agreement on interconnecting vargable parallel schemesEngineering Applications of Artificial Intelligence
vol. 21, no. 3, pp. 353—-366, Apr. 2008.
B. Results bP 3

[6] V. T. Chow, Open-Channel Hydraulics New York, New York: Mc-
Figure 4 shows the gate settings that the two controller?7

Graw-Hill Book, 1959.
. ] J. Schuurmans and M. Ellerbeck, “Linear approximation nad¢he
determine to take. We can clearly observe how the contsoller” * wwm canal for controller design,” iProceedings of the First Inter-

anticipate the additional offtake in reach 3 betwees 2 national Conference on Water Resources Engineeran Antonio,
— — 9 i i ; Texas, June 1995, pp. 353-357.

andt = 4 by al_regdy before 2 increasing the inflow in [8] A.J.Clemmens, T. F. Kacerek, B. Grawitz, and W. Schuurmérest

the reaches. S"“”?—“Y: we Observe.that already bef@fe‘l cases for canal control algorithmgpurnal of Irrigation and Drainage

the controllers again decrease their inflows, anticipative Engineering vol. 124, no. 1, pp. 23-30, Jan. 1998.

offtake decrease in canal reach 3tat 4 [9] P. O. Malaterre and J. Rodellar, “Multivariable prediet control
’ of irrigation canals. design and evaluation on a 2-pool mbdel

Figure 5 i”UStrate_S how at a particular time £ 2.23) _ Proceedings of the International Workshop on Regulatiomrigfation
the controllers obtain agreement on the values of the in- Canals: State of the Art of Research and Applicatjokarrakech,

i i _ Morocco, Apr. 1997, pp. 239-248.
terconnecting Va”a.blegs.e‘l(k .+ ), for i ..., N [10] V. M. Ruiz and J. Ramirez, “Predictive control in irrigat canal
As the number of iterations increases lfecomes larger), operation,” inProceedings of the 1998 IEEE International Conference

the absolute error between the interconnecting inputs and on Systems, Man, and Cyberneti€an Diego, California, Oct. 1998,

i i ; pp. 3897-3901.
Interconnecting outputs with reSpeCtm4(k+1) decreases, [11] B. T. Wahlin, “Performance of model predictive control A8CE test

ultimatgly result.ing in agregment. . _ . canal 1,”Journal of Irrigation and Drainage Engineeringol. 130,
In this experiment and in experiments with alternative  no. 3, pp. 227-238, May 2004.

scenarios (in each of which the gates where free flowing§1,2] Delft Hydraulics, “Sobek,” URL: http://delftsoftwarwldelft.nl/, 2008.



