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Natural sediment flocs are highly porous particulate aggregates composed of biogenic and minerogenic
materials. They can be an important component of suspended sediment load in rivers, estuaries and the
marine environment and modelling floc dynamics and behaviour is very important for many aquatic industries,
maintenance of waterways and conservation and management of aquatic water bodies. X-ray computed
microtomography has recently been applied to quantify the complex three-dimensional (3D) geometry of
natural sediment flocs. Here, X-ray images of 3 selected natural millimetre-sized flocs sampled from the Thames
River have been digitalised and converted into geometries used in Stokesian Dynamics calculations of the
hydrodynamic properties of the flocs, where each floc is represented as a rigid ensemble of spherical beads
moving in the creeping flow regime. Our approach is a substantial step from previous attempts in which
synthetic fractal structures were simulated. In addition to describe the complex dynamics of floc settling,
we compute: (i) the hydrodynamic radius of the flocs; (ii) the floc mobility and resistance tensors; and (iii)
the relation between sedimentation velocity and fractal dimension. The simulations show that the coupling
of gravitational forces with lateral velocities, which we analysed by examining the cross-components of the
mobility matrix, produces a helical motion of the flocs as they settle. We argue that this lateral motion
may lead to an enhancement of floc—floc aggregation by differential sedimentation due to an increase in the
effective collisional area. Furthermore, the simulations demonstrate significant differences in the dynamics of
settling between the three flocs despite a similar gross shape. Our work exemplifies how high-resolution X-ray
techniques can be coupled with accurate particle-resolved simulations to understand the settling dynamics of
real (as opposed to synthetic) flocs collected from estuarine, coastal or waste-water environments.

1. Introduction 2010). Where fine sediment sources dominate, flocs are an impor-

tant component of this suspended particulate matter. Fine sediments

Natural water bodies such as estuaries and coasts are usually char-
acterised by high concentrations of fine-grained and cohesive sediments
which are transported in suspension and can be highly variable in
space and time. This suspended particulate matter (SPM) is critical for
the transport of sediment, nutrients, carbon and pollutants from catch-
ment to coast, and in excess can cause rapid sedimentation causing
problems for navigation, deterioration to water quality and smothering
of benthic habitats (Manning et al., 2017; Mehta, 2013; Zhu et al.,
2022). Therefore, accurate modelling and prediction of the dynamics
and in particular settling behaviour of fine sediments is crucial to
the understanding and management of all natural fresh and marine
water bodies and associated aquatic industries (Johnson et al., 1996;
Kumar et al., 2010; Spearman and Manning, 2008; Dorrell and Hogg,
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(clays and silts) are cohesive and in suspension aggregate to form
loosely bound, highly irregular, fragile sediment flocs which comprise
inorganic mineral particles, organic matter, microbial organisms and
fluid-filled pore space (Liss et al., 1996; Droppo, 2001; Rahmani et al.,
2022). Modelling approaches to predict the large-scale hydrodynamics
of sediment in estuarine and coastal waters are well established includ-
ing e.g., TELEMAC and DELFT3D (Lesser et al., 2004; Villaret et al.,
2013). However, predicting the fate and behaviour of fine-grained
and cohesive sediment is far more challenging. This is largely due to
the failure to adequately represent floc dynamics in the model and
predictions of cohesive sediment behaviour is often poor (Droppo et al.,
1998; Li et al., 2025).
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Floc settling velocity is dependent upon floc diameter, shape, den-
sity and porosity and these are critical input parameters required to
mathematically predict their behaviour (Baugh and Manning, 2007).
Consequently, investigations of floc dynamic behaviour frequently fo-
cus on estimating the floc settling velocity (Gibbs, 1985; Dyer and Man-
ning, 1999; Derksen, 2014) and this is a key parameter in large-scale
transport models used to predict fine or cohesive sediment transport
particularly within the estuarine environment and when estimating
the distribution and fate of fine sediment and contaminant plumes
associated with e.g., dredging activities. Floc size and shape are typ-
ically derived from two-dimensional (2D) observations of SPM aggre-
gates using image analysis or laser diffraction (Agrawal and Pottsmith,
1994; Schwarz et al., 2017; Chapalain et al., 2019), whilst density and
porosity are estimated and typically assume that flocs are spherical.
However, the shape of natural sediment flocs is in fact highly irregular
and settling velocity can be derived by establishing a relationship be-
tween floc density and size (Tambo and Watanabe, 1979). This can be
achieved by assuming the flocs are self-similar, where a computation-
ally simple fractal-based model assumes that floc structures are scale
invariant, and is widely used to predict floc behaviour (e.g., settling
velocity, rate of floc aggregation and disaggregation) (Kranenburg,
1994; Winterwerp and Van Kesteren, 2004; Smoczynski et al., 2016).

The estimation of settling velocity is most commonly based on
the amended form of the Stokes’ law which incorporates the effects
of the floc shape, fractal dimension and finite inertia (Winterwerp,
1998). The variability of the floc fractal dimension as a function of
floc size has been investigated by several authors including Khelifa
and Hill (2006), Maggi et al. (2007), Vahedi and Gorczyca (2012).
Some works have modelled floc aggregates as porous and permeable
spheres (Veerapaneni and Wiesner, 1996; Kim and Stolzenbach, 2002;
Lattuada et al., 2004), while some other investigations have modelled
the aggregates as a collection of spherical primary spheres (Filippov
et al., 2000; Binder et al., 2006; Harshe et al., 2010). By assuming that
the floc is fractal, the excess weight of the floc is allowed to scale with
the size of the floc as a power law of the floc fractal dimension. This
is a simplification as floc shape can alter settling velocity directly, by
altering the floc hydrodynamic mobility (Happel and Brenner, 2012).
Flocs with asymmetric shapes can induce a coupling between the
external force due to gravity and the angular velocity of the floc (Tozzi
et al., 2011). The rotational motion of the floc is an important part of
the floc settling behaviour that has often been overlooked in previous
studies.

Despite the complexity of floc sedimentation, some general results
on the settling (or sedimentation) velocity follow from basic fluid me-
chanics considerations. The importance of fluid inertia during settling
is indicated by the particle Reynolds number Re, = u;R,, /v, where u;
is the settling velocity, v is the kinematic viscosity of the surrounding
liquid and R,, is the characteristic size of the particle (Koch and Hill,
2001; Zhang et al., 2006; Aidun et al., 1998), which in the case of
flocs can be taken as the radius of the smallest sphere enclosing the
floc. When Re, < 1 the fluid flow in the vicinity of the floc is in
the Stokes regime where the inertia of the fluid is negligible (see
e.g. Ref. Maxey and Riley 1983). In this regime, the velocity of the
floc must be a linear function of the external gravitational (gravity
plus buoyancy) force, regardless of the shape of the floc (Happel and
Brenner, 2012). In general, such a relationship is tensorial, implying
that there is a coupling between the force in the gravitational direction
and the velocities in the lateral direction, as well as the rotational
velocity.

A sphere of course settles with a velocity that is parallel to the
direction of gravity. However, this is not the case for particles of non
spherical shape. Flocs will, in general, drift laterally as they settle. This
can be shown by a simple derivation. If we call F2 the force vector due
to buoyancy (Archimede’s force), FM the force vector due to weight,
and F the hydrodynamic force due to the fluid, at steady state a force
balance requires

F+FE+FM =0 @
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To find the settling velocity, we need to relate the hydrodynamic force
to velocity. In Stokes flow we can write, for any floc shape, a relation
of the form

F=-uR-U 2

where U is the settling velocity vector, y is the fluid dynamic viscosity,
and R is the so-called resistance tensor (i.e. a matrix, in a given
coordinate system). For a floc of homogeneous density p, immersed in
a fluid of density p,, one can write F¥ = p Vg and F® = —p Vg, where
V is the volume occupied by the solid. Thus the settling velocity is:

(ps—pp)V
7

U= R!.g 3)
where R™!, the inverse of R, is also called the mobility matrix. Because
R~! is a matrix, U will in general not be parallel to g. If gravity is
directed along the z axis, say, there will be a component of the settling
velocity in the x and y directions. The aim of this paper is to study
the resistance or mobility matrices using realistic floc geometries. To
our knowledge this has not been previously considered due to the
challenges of sampling and quantifying the 3D characteristics of fragile
natural sediment flocs. While a characterisation of R and R~! requires a
certain level of mathematical analysis, the advantages are considerable.
It is indeed impossible to fully characterise the settling velocity of
an anisotropic body without characterising R. Furthermore, R is an
intrinsic property that depends only on the size and shape of the floc,
thus information on R can be obtained from geometrical characteristics
only.

With our work we also intend to challenge an assumption often
made in practical modelling of floc sedimentation. The assumption is
that the fractal dimension of the floc affects the effective weight of
the floc, but not the hydrodynamic resistance (Spencer et al., 2021;
Smoczynski et al., 2016; Xu and Dong, 2017; Chapalain et al., 2019).

The settling velocity is often calculated as

= (o5 — P8V

s out
where (p,—p,,)gV is the excess weight of the floc, £ is the characteristic
size of the floc, and 6 is a dimensionless shape factor for the drag force
(for a sphere, # = 6z and ¢ is the radius). For a fractal-like floc, the
floc volume V scales with its characteristic size ¢ according to

D
1a<£> ’ ®)

where ¥}, and ¢, are the volume and characteristic size of the primary
particle. Assuming the primary particle of the floc is spherical with
radius ¢, we have Vj, = %mfg, and we can express the settling velocity
again as

4

v = drk(ps — py)g
g 30u
where k is another dimensionless shape factor for the volume scaling in
Eq. (5). For a sphere, 6 = 67, k =1, D, =3, and Eq. (6) reduces to the
Stokes velocity of a sphere. This Eq. (6) is of the same form with the ex-
pression of floc settling velocity presented in Winterwerp (1998) where
differential density instead of volume is assumed to follow the fractal

scaling (Kranenburg, 1994). The ratio between the settling velocity of
Dy-1
/ !

the floc and the Stokes velocity of the primary sphere is % <l_

As we can see explicitly from Eq. (5), the excess weight depend% purely
on geometry. In the current paper we are able to calculate D, for
flocs that have a realistic geometry (as opposed to a synthetic fractal
geometry), and compute the hydrodynamic parameter 6 for the same
geometry. In the paper, we prefer to discuss the hydrodynamic radius
of the floc, rather than 6, but the relation between the two is obvious
once the characteristic size of the floc is set.

In this work, we employ the Stokesian dynamics method (Brady and
Bossis, 1988) to investigate numerically the settling behaviours of the

fo_lfg_Df, (6)



C. Gu et al.

Table 1

The list of the flocs with realistic geometry used in the current work. The
length, width and height of the bounding box of the flocs are L, W, H
respectively, N, is the number of voxels of the floc 3D image and R,, is the
radius of the smallest enclosing sphere of the floc. The length is expressed in
unit of pm.

Code name L w H N, R,,

S4 754.5 1770.5 2122.6 190973 1113.1
S5 2494.8 2756.4 4537.0 494540 2489.9
S6 1629.4 996.6 2151.5 61691 1186.5

three flocs having realistic geometry. The Stokesian dynamics method
assumes a negligible effect of fluid inertia. This is a good assumption
for river flocs, which have a low effective density and therefore set-
tle slowly: for example, for a floc with diameter 100 pm settling in
water at a typical velocity 1 mm/s (Ali et al.,, 2024), the Reynolds
number of the floc is around 0.1. The structure of the flocs is modelled
as an aggregate of spherical beads whose radius can be adjusted to
modulate the spatial resolution of the aggregate structure. The realistic
floc geometries were extracted from the 3D greyscale images of flocs
generated using X-ray computed microtomography (CT) (Wheatland
et al., 2017, 2020). The sediments were collected from the Thames
Estuary, UK and are fine-grained silts and clays. While much work has
been done on modelling a floc as a synthetic fractal, regular assembly
of spheres, or bead aggregates generated by stochastic algorithms, the
current paper analyse flocs that, from a geometric point of view, have
truly realistic three-dimensional features.

2. Extracting floc shape from X-ray CT images

The experimental methodology to extract the 3D greyscale images
of flocs generated using X-ray computed microtomography is described
in a series of previous publications (Wheatland et al., 2020; Lawrence
et al., 2022; Spencer et al., 2022). Briefly, the protocol involves settling
flocs directly into plankton chambers and immobilising flocs in agarose
gel. The gel is used to minimise deformation of the very fragile flocs
during sample handling as this was placed in sample holders and
mounted on the stage of a micro-computed tomography (micro-CT)
machine at the School of Engineering and Materials Science at Queen
Mary University of London. The micro-CT machine maps the attenu-
ation of X-rays that cross the sample, giving cross-sectional images of
the density of each floc from pm to mm-scale. The micro-CT software
assemble multiple cross-sectional images to reconstruct a fully three-
dimensional image of the floc. Notice that the flocs are very fragile
and this has made the technical hurdles of obtaining the X-ray images
uniquely challenging, as described in our previous publications (Wheat-
land et al., 2020; Lawrence et al., 2022; Spencer et al., 2022). This is
why only a few flocs could be analysed.

In this work, 3 flocs were analysed in detail. The characteristics of
each floc are summarised in Table 1, where the flocs are labelled as
flocs S4, S5 and S6. Visualisation of the 3D floc geometry through X-
ray computed microtomography generates a binary voxel image of the
floc, with a pixel resolution of 2.78 pm. The voxel image of each floc is
shown in Fig. 1.

The voxel images were used for sedimentation simulations. In the
literature, two classes of modelling approaches have been used to
analyse the hydrodynamic properties of flocs of aggregated particles.
In the first approach the floc is modelled as a porous sphere whose
porosity and permeability are functions of the fractal dimension of
the floc (Johnson et al., 1996; Kim and Yuan, 2005; Veerapaneni and
Wiesner, 1996; Vanni, 2000). In the creeping flow regime, Brinkman’s
equation for the flow inside the sphere is coupled to the Stokes equation
outside of the sphere This approach models the internal structure of
the particle as a continuum and requires the knowledge of the dis-
tribution of the permeability coefficient. The second approach models

International Journal of Multiphase Flow 196 (2026) 105586

the structure of the particle as an assemblage of spherical beads. This
modelling approach was first proposed by Kirkwood and Riseman
(1948) to study the hydrodynamic properties of macromolecules in
solution. The methodology was later extensively studied by Bloomfield
et al. (1967a,b), McCammon and Deutch (1976), Swanson et al. (1978),
using the modified-Oseen tensors to more accurately describe hydrody-
namic interactions between primary beads (Rotne and Prager, 1969;
Yamakawa, 1970). A comparison of several methods to assemble the
beads into an aggregate to perform hydrodynamic calculations can be
found in Carrasco and de la Torre (1999). We use this second approach,
using the Stokesian Dynamics method (Brady and Bossis, 1988) to
account for the hydrodynamic interactions between the spherical beads
composing the aggregate. In our method, all the beads are assumed to
have the same radius and mass density.

A stochastic procedure is employed in the current work to generate
the aggregate from the 3D voxel image of the floc. First, the radius a
of the sphere is prescribed according to the required spatial resolution.
Secondly, a voxel of the floc 3D image is randomly selected follow-
ing an uniform probability distribution. A random location inside the
selected voxel is then selected, also following a uniform distribution,
and the first sphere is placed at this coordinate. The voxel selection
and placement of spheres is repeated in a loop. In the algorithm, a
sphere placement step is accepted as long as the sphere does not overlap
with any existing spheres. Otherwise, the current sphere placement is
rejected and a new location proposed until a valid location is found.
After a sphere is placed inside a voxel, the voxel selection and sphere
placement within a voxel are repeated until no more spheres can be
placed within any voxel of the floc. A schematic of the resulting sphere
aggregate generated from the digitised image is shown in Fig. 2. The
use of a uniform probability distribution ensures that all locations
within the region occupied by the voxels have the same probability of
being associated with the centre of a spherical bead.

The geometry of the aggregates of spherical beads resulting from
the algorithm are a close representation of the images of the initial
floc, as can be seen by comparing Figs. 1 and 3. Changing the bead
radius a enables to represent the digitised images at different coarseness
levels. Thus, by varying a we can analyse how faithfully we need
to represent the digitised floc to obtain hydrodynamic properties of
converged values. Of course, the digitised images are also a discrete
model of a real floc, so examining the limit a — 0 will give only
an approximation of the true hydrodynamic properties of the sampled
natural floc. However, if the values of the hydrodynamic properties are
relatively insensitive to the value of a, then we can conclude that the
resolution of the experimental imaging method was sufficient to extract
the hydrodynamic properties of the floc.

3. Simulation method and structure of the mobility and resistance
matrices

The method of Stokesian dynamics was originally developed to
simulate the hydrodynamics of a suspension of freely-moving spheres
in the Stokes regime (Brady and Bossis, 1988).

This method relies on the fact that in the Stokes flow regime the
vector relation between the hydrodynamic forces and torques on all
the particles and the corresponding particle translational and angular
velocity vectors must be linear, and therefore can be recast in matrix
form (a generalisation of Stokes’ law, where the force on a single
particle is proportional to the relative particle—fluid velocity). For a
suspension of N spheres, we can write (Brady and Bossis, 1988)

U-U*® FH
[ ) ?
where U-U_, is a 6 N-dimensional vector representing the translational
and angular velocity difference between the spheres and the undis-
turbed fluid, E, is the N-dimensional vector of the imposed rate of
strain at the location of each sphere, F¥ is the 6 N-dimensional vector
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Fig. 1. The binary voxel image of the floc (a) S4, (b) S5 and (c) S6 from different angles. The scale of each image is adjusted to maximise the floc inside each

picture.

X

(

O Aggregate primary sphere

C
Fig. 2. The spheres (red sphere) are placed inside the voxels of the floc (black
cube). The resulting aggregate of spheres is the geometric model which we
use to study the hydrodynamic properties of the floc. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web
version of this article.)

[ Floc 3D image voxel

of the hydrodynamic forces and torques, and S is the N-dimensional
vector containing the components of the “stresslet” corresponding to
each sphere. Importantly, in Eq. (7) the grand mobility matrix M is
only a function of the configuration of the spheres and its matrix
properties — including eigenvalues and eigenvectors — fully determine
the coupling between the external body forces applied to the floc and
the sedimentation velocity of the floc. The grand mobility matrix M
can be partitioned into four submatrices

M= [MUF MUS] ) 8)
Mgr  Mgs

where the subscript in each submatrix indicates the relevant coupling.
For instance, My couples the generalised velocity vector U to the
generalised force vector F/,

For sedimentation in a quiescent fluid, we have E = 0 (no fluid
velocity gradient in the absence of the particles) and U® = 0 (zero
uniform velocity in the absence of the particles), thus the vector of
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Fig. 3. Three aggregates of spherical beads generated by the volume sampling method to represent the floc (a) S4, (b) S5 and (c) S6 respectively, corresponding

to the voxel images shown in Fig. 1. The spherical bead radius « = R, /20.

sphere velocities obeys

U=My;-F, )
where
U- [“] . (10)
[0)
and
f
F=L} an

Here f and t are the vectors of forces and torques on the spheres due to
weight and buoyancy. The expression for F takes into account that for
inertialess particles the hydrodynamic force and torque on each sphere
balance the corresponding external force and torque due to gravity and

buoyancy, F¥ = —F. The vector U includes the translational velocity u
and rotational velocity @ of each sphere composing the floc.

If Eq. (9) was used without additional constraints, the relative
position of the spheres, and thus the mobility tensor, would change in
time. To model a rigid floc, an additional constraint must therefore be
enforced on each sphere so that the entire group of spheres translates
and rotates according to a rigid body motion (Swan et al., 2011; Yu
and Niu, 2024; Harshe and Lattuada, 2012). This constraint is enforced
by transforming the resistance tensor of the free suspension, Rpy; =
M;F, into the resistance tensor of the rigid aggregate, R, by using the
relation (Swan et al., 2011)

R; =K R, K. 12)

Here K is a tensor transforming the velocities of the free spheres into
velocities following a rigid body motion. The matrix K is composed
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of a number N of 6 x 6 submatrices (K; K, K; Ky.), one
submatrix for each sphere. The submatrix for sphere « is only a function
of the coordinates (x,,y,,z,) of sphere « and of the centre x, =
(x> Yo» Zo) around which the rigid body motion occurs. The structure
of the K, matrix, « = 1...N, is

1 0 0 0 0 O
0 1 0 0 0 0
0 0 1 0 0 0
K, = . 1
’ 0 —(z4 — 2¢) Yo — Yo 1 0 0 13)
Zy — Zg 0 —(x,—=x9) 0 1 0
(Ve — Yo) Xq — Xg 0 0 0 1

Evidently we can describe a rigid body motion with respect to any
point inside a rigid object. Therefore the point x,, is arbitrary. However,
a specific choice for x, makes the formulation simpler to analyse and
the algorithm easier to implement. For any configuration of the rigid
aggregate, a point exists for which the total torque on the rigid object
produced by weight and buoyancy is zero. This point is called the centre
of action (CA) of the body (Bernal and De La Torre, 1980), and is here
denoted as xo4. For a rigid distribution of spheres of mass m,, the
centre of action can be calculated from

ZZ:l (ma - m?) Xy
Xea= a4
Za= 1 (ma -—m f)
where m; is the mass of the liquid displaced by sphere « and x, =
(X4 Ya» Z4)- In our case, we assume that all the spheres have the same
radius and density, so the centre of action coincides with the geometric
centre of the aggregate (centroid):

1
Xea = 5 me. (15)

The more general expression (14) should be used in the inter-
esting case in which one accounts for inhomogeneities in the mass
distribution.

We set x, = X¢4. By doing so, the calculation of the translational
and rotational velocities of the floc requires only the force on each
particle composing the floc, but not the moment of this force, which
is a considerable simplification, both algorithmically and in terms of
theoretical analysis of the settling velocity.

The algorithm to update the configuration of the floc works as
follows. We first calculate Rg; (how to assemble the matrix is ex-
plained in Durlofsky et al. 1987 but Stokesian Dynamics solvers are also
publicly available, see e.g. Swan et al. 2011). Then we calculate K by
assembling matrices K, with x, = x-,. From Ry and K we compute
R, by using Eq. (12). Finally, from R, we compute the mobility matrix
of the rigid aggregate by numerical matrix inversion: M, = R;l.

From the mobility matrix the 6-dimensional velocity vector U, of
the rigid floc, containing the 3 components of the translational velocity
and the 3 components of the rotational velocity of the floc, can be easily
calculated from

U, =M, F, (16)

In this expression the 6-dimensional vector F, is given by

F, = <f;) =K (F,+F;). a7

where F, and F, are, respectively, the 6 N—dimensional vectors of the
weight and buoyancy forces on each sphere. Once U, is known, the
velocity of each sphere composing the floc is calculated as U = KT'U I
In our implementation, the coordinates x, are updated by integrating U
in time via a four-step Adams-Bashforth method. Code validation was
obtained by comparing against analytical solutions for a smooth sphere
and for an asymptotically slender chain of spheres, see Fig. 6.
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Fig. 4. The dependence of the number of spheres N composing the aggregates
representing the floc S4, S5 and S6 on the normalised gyration radius R;/a
of the aggregates. The dashed lines are the best linear fit between log N and
log(R /a) for each floc. The slope of each fit is an approximation of the fractal
dimension D, of the floc, being 2.53 for S4, 2.31 for S5 and 2.63 for S6.

4. Results
4.1. Fractal dimension and porosity

Before analysing the hydrodynamic simulations, we discuss the
fractal dimension of our flocs, noting that a fractal dimension can be
calculated whether the floc has a self-similar structure or not (Kim
and Stolzenbach, 2002). For a rigid aggregate of identical spheres of
radius q, the fractal dimension D, is the power-law exponent between
the number of spheres N and the radius of gyration R; (Gmachowski,
1996):

D
N:kf<RG> " (18)

a
Here k, is a numerical prefactor (Sorensen and Roberts, 1997), and

2

N
Rg = [% >ix - xmlz] (19)

where x,, is the arithmetic mean of the position vectors of the spheres
constituting the aggregate. In Fig. 4, the number N of the spheres
within an aggregate is plotted against the normalised aggregate size
R /a on log-log scale for floc S4, S5 and S6. In this test, R is fixed
while we change a. The fractal dimension of the floc D, is measured
from a linear fit between log N and log(R;/a). The fractal dimensions
of the floc S4 and S6 are comparable, being 2.53 and 2.63 respectively
while for floc S5 it is 2.31. The lower fractal dimension of floc S5
correlates with it having a more ramified shape than S4 and S6.

Another important quantity used in the characterisation of aggre-
gates is the floc porosity. The porosity of the fractal aggregates typically
increases with floc size and is generally derived from density which
is estimated from settling velocity assuming spherical shape (Droppo
et al., 2000). In the current study, the porosity ¢ is calculated by
normalising the total volume of the assembling spheres by the volume
of the enclosing sphere, of radius R,, enclosing the aggregate. The
result is

3

We characterise the radius of the enclosing sphere because this quantity
is commonly used to estimate the drag force on the floc based on
the drag formula for spheres (Guazzelli and Morris, 2011). We can
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/R,, of floc S4 (purple), S5 (green) and S6
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(light blue) are shown as a function of R,,/a. The value of R,,/a is varied by changing the primary sphere radius a while R,, is an intrinsic property of each
floc and remains constant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

introduce the ratio m = 11:—0 of the radius of gyration of the floc to

the radius of the enclosing §"phere, and knowing Eq. (18) we have

R \Ds-3
e:l—kf< e”> mPr 21
a

This equation shows that if m is approximately constant and D, <3, €
increases with the floc diameter R,, for constant «. In other words, the
porosity of the floc increases as the floc size increases.

4.2. Hydrodynamic radius

The mobility matrix M, in Eq. (16) can be divided to four 3 x 3 sub-
matrices, with M, as the coupling between the translational velocities
of the floc and the force on the floc (f,), M, as the coupling between
the rotational velocities of the floc and the force on the floc, M5 as the
coupling between the translational velocities of the floc and the torque
on the floc (0 in our scenario), and M, as the coupling between the
rotational velocities of the floc and the torque on the floc (Brady and
Bossis, 1988). From Egs. (16) and (17) the floc’s linear and angular
velocities can be calculated as

u=M,f (22)

o =M,f, (23)

Because M, is a non-diagonal matrix, the linear velocity u is in
general not parallel to the direction of gravity. If gravity acts in the z
direction, the floc will have a vertical settling velocity u, parallel to f,
and a horizontal drifting velocity u,, perpendicular to f,. In addition to
this translation, the floc will rotate about an axis, passing through the
centre of action and not necessarily parallel to z, with angular velocity
.

Being a symmetric, positive-definite matrix, M, has three real and
positive eigenvalues, and three corresponding eigenvectors. If the floc
is oriented so that gravity acts along one of the eigenvectors, then
the floc will maintain a velocity parallel to that eigenvector without
lateral drift. The eigenvalues of M, can be interpreted as scalar mobility
coefficients, each of the 3 mobility coefficients representing the ratio
of velocity and external force for translation along the corresponding
eigenvector direction. The average hydrodynamic radius Ry of the floc
is defined as (Lattuada et al., 2003)

1

Ry=—"—"—|
" 2u (‘11 +a; + a3)

24
where a;, a, and a5 are the three eigenvalues of M. Similarly, from the
3 eigenvalues g, f,, p; of M,, the rotational hydrodynamic radius of
the floc can be calculated as

R = 1 . (25)

@ 1

[8”7” (B + 5, +ﬂ3)]

While Ry and R, give a practically accurate quantification of the
translation and rotation of the floc, their calculation requires knowl-
edge of the corresponding mobility matrices. In contrast, the radius
of the enclosing sphere R,, is straightforward to calculate from an
experimental image of the floc. Therefore, finding a relation between
R,, and the hydrodynamic radii is practically important.

In Fig. 5, Ry /R,, and R,/R,, are plotted versus R,,/a. For this
plot, we have changed a from R,,/5 to R,,/45 keeping R,, fixed.

From the plot we can draw the following conclusions. First of all,
Ry and R, are comparable in magnitude to R,,, but are both smaller
than R,,. For all aggregates we observe that R, is slightly larger than
Ry, although the difference is not large. Both Ry /R,, and R,/R,,
decrease with increasing R,,/a for relatively large values of a, and
reach a plateau for R,,/a > 10 approximately. This suggests that when
the floc is represented by a group of fairly large spheres the resulting
aggregates tend to overestimate the hydrodynamic resistance of the floc.

The radius of gyration is often used to characterise the geometric
properties of flocs. Hence, to characterise the hydrodynamic behaviour
of a floc the ratio Ry /R of hydraulic radius to radius of gyration has
been quantified in several publications (Wiltzius, 1987; Van Saarloos,
1987; Gmachowski, 1996). These publications report a correlation
between Ry /R and the fractal dimension. However limited, our data
seem to confirm this trend. In Fig. 6a we have plotted Ry /R versus
the number N of spheres of the aggregates used to represent the flocs
S4, S5 and S6. The ratio Ry /R; remains approximately constant for
all three flocs as N increases, indicating that Ry /R; can be quite
independent of the number of beads composing the Stokesian Dynamics
aggregate. We can see that S4 and S6, which have a similar fractal
dimension, have also similar values of Ry /R;. The floc S5, which has
a smaller fractal dimension, has also a smaller value of Ry /Rg.

The voxel images of the three flocs (Fig. 1) show that the flocs are
far from spherical. Actually it would be difficult to associate them to
any regular geometry, even as an approximation. Floc S5 for example
looks roughly like a short bent ribbon, while floc S6 is composed
of a relatively compact structure with a linear branch coming out
of it. On the other hand, the fractal dimension of the flocs is in
between that of a sphere (Df = 3) and of a disk (Df = 2), so it is
useful to compare the hydrodynamic radius of the flocs to these two
regular shapes. The ratio Ry /R, for a spherical aggregate, a disk-
like aggregate, and a linear aggregate (chain) is plotted vs. N in Fig.
6(b). These regular aggregates are generated by assembling spherical
beads, using a number of spheres N ranging from O(10) to O(1000),
and the hydrodynamic radius calculated with the Stokesian Dynamics
code. The accuracy of the calculation has been probed by comparing
the solution for a chain to the analytical solution for a chain of spheres
predicted by the slender body theory (Filippov, 2000). The excellent
agreement between the values calculated from the slender body theory
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Fig. 6. The ratio R, /R of the aggregates representing the floc S4, S5 and S6 are plotted as a function of the number N of primary spheres in (a). The value
of N is increased by decreasing the primary sphere radius a, approximately following the scaling relationship shown in Fig. 4. As a comparison, the relation
between R, /R; and N for a sphere, a disk and a chain of spheres is calculated in Stokesian dynamics and the result is shown in (b). The sphere, the disk and

the chain represent the shape having the fractal dimension of 3.0, 2.0 and 1.0 respectively. The line (SBT) is the analytical solution
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Fig. 7. Trajectories of the centroids of the three flocs during settling from ¢ = 0 to + = 500. (a) 3-d view, (b) in the x — y horizontal plane, and (c) in the x — z

vertical plane. Gravity is in the negative z direction.

and from the Stokesian dynamics for a 1D chain structure, and the
ratio Ry /R for a spherical aggregate converging approximately to the
theoretical value of \/% ~ 1.291 expected for a smooth sphere, both
provide the validation of our numerical methodology and actual code
implementation.

From Fig. 6(a) and 6(b) we can see that for floc S4, S5 and S6 the
slope of Ry /Rg versus N is nearly zero, smaller than the slope for
sphere, which is slightly positive, and larger than the slope for disk,
which is slightly negative. The results are consistent with the fact that
the fractal dimensions of the three flocs considered in the current paper
are bounded by the fractal dimensions of a sphere and disk. However,
the value of Ry; /R for S5 is significantly lower than the disk while its
fractal dimension is larger than the disk. This apparent contradiction
reveals that fractal dimension alone cannot fully capture hydrodynamic
behaviour. While S5’s mass distribution is more compact than a disk
(higher fractal dimension), its internal porosity create smaller flow
resistance, resulting in a smaller hydrodynamic radius relative to gyra-
tion radius. This highlights that hydrodynamic interactions depend not
only on mass distribution but also on local permeability inaccessible to
structural fractal analysis

4.3. Dynamic settling behaviour

After having considered in the previous section the hydrodynamic
properties of each floc, we here look at the dynamics of sedimentation.
Three aggregates are generated from the voxel images of flocs S4, S5
and S6 using spheres of radius a = R,,/20, containing 286, 98 and
217 spheres, respectively. The time step is chosen as 0.1 to ensure that
each floc moves a distance of about ~ 0.1R,, at each time step. The
characteristic time is chosen as a/ug, . where ug, . = 2(p; — p;)a*g/9u.

We track the centroid of each floc over time (the centre of action
of each floc coincides with the centroid because the density is the

same for all the constituent particles). The trajectories of the three flocs
starting from the position (0,0,0) are shown in Fig. 7. It is seen that
the trajectories of flocs S4 and S5 are helical with a larger radius of
curvature than that of floc S6. The axis of the helical motion is inclined,
i.e. the flocs perform an average lateral drift while settling in a spiral
motion (Fig. 7(b)). For floc S4, the maximum horizontal drift distance
from its initial position is around 300, which is around 15R,,. The
trajectory of floc S4 for a longer time period is shown in Fig. 10(a),
which shows more clearly a helical motion. For flocs S5, the maximum
horizontal drift is around 40, which is 2R,,. Floc S4 settles the fastest
and floc S5 the slowest (Fig. 7(c)). Fig. 5(a) shows that to obtain
a converged representation of the M, matrix, one needs at least 20
beads per unit R,,. Because the helical motion is primarily due to the
properties of the M, matrix, we can estimate that helical motion we
observe should not change provided that the geometry is discretised
with at least 20 beads per unit R,,,.

Time series of translational and rotational velocities are shown in
Figs. 8 and 9, respectively. The translational velocities of S4 and S5
show a sinusoidal variation, which corresponds to the helical trans-
lational motion discussed above. The vertical velocity relaxes to a
steady state value on a time scale much smaller than the time scale
of this helical motion. The horizontal velocities of floc S4 for a longer
time period are shown in Fig. 10(b), which show clear sinusoidal
variations and a %-period phase lag between the velocities in the x
and y directions, corresponding to the circular motion of floc S4 in the
horizontal plane. Looking at the components of the rotational velocity,
we notice that the axis of spinning motion around the centre of the
floc is, predominantly, the direction of gravity. The finite rotational
velocity components w, and o, at early times are transient and due
to the reorientation of the floc from the initial configuration.

We can use Eq. (6) to estimate the floc settling velocities by setting
0 =6z, k=1,1=aN'/? (ie., a sphere radius corresponding to a sphere



C. Gu et al. International Journal of Multiphase Flow 196 (2026) 105586
2 2 10
—S4 -
(@) ®) S5 © —s1
1 1 _S6 S5
-15 —S6
S0 >0 3
-20
—S4
-1 S5 -1
—S6
-2 2 -25
0 200 400 0 200 400 0 200 400
t t t
Fig. 8. Translational velocities of the flocs in (a) x, (b) y and (c) z directions.
—7] | —
0.1 0 0.04 $5
—S6 —S6
-0.05 0.02
8 ) N M
3 0 3 01 3 0
-0.02
-0.15
-0.1 (a) (b) -0.04 (c)
0.2 -0.06
0 100 200 300 0 100 200 300 0 100 200 300
t t t
Fig. 9. Rotational velocities of the flocs in (a) x, (b) y and (c) z directions.
(b)
100
100300 200 : : :
" - -300 0 200 400 600 800 1000
Yy x t
Fig. 10. (a) The trajectory and (b) horizontal translational velocities of floc S4 from 7 =0 to 7 = 1000.
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Floc settling velocities rescaled by the Stokes velocity of the constituent
spheres from simulations and estimations using Eq. (6).

Floc Velocity from simulations Velocity from estimations
S4 23.9 17.9

S5 10.0 7.4

S6 19.2 18.6

having the same volume of the floc) and D, taken from Fig. 4. This
rough estimate and the value computed from the dynamic simulations
are compared in Table 2. The estimate tends to underestimate the
settling velocities with a relative differences of about 25% for S4 and
S5. Since all three flocs have the same R,,/a, the porosity decreases as
the number of constituent spheres N increases, as shown in Eq. (20).
Thus S4 is the least porous floc and S5 is the most porous floc. Thus, in
our simulations the magnitude of the settling velocity increase as the
porosity decreases.

In Figs. 11-13, we show instantaneous snapshots, at different times
during settling. The observed configurations correspond well to the
features seen in the time traces of translational and rotational velocity.
For example, comparing the first two snapshots (r = 0 and ¢ = 100), we
see that each floc flips upside down, which corresponds to the rotation
around the horizontal x and y axes for + < 50 seen in Fig. 9(a) and
(b). After flipping upside down, each floc rotates about the vertical

and floc S6 the slowest, as already discussed when introducing Fig.
9(c). These reconfigurations, which could conceivably be measured by
optical experiments, produce immediate changes in the settling velocity
because the flow has no inertia. A finite Reynolds number of the floc
would produce a time lag between the hydrodynamic force and the
instantaneous configuration.

5. Discussion and conclusion

Three-dimensional geometries of 3 natural sediment flocs sampled
from the Thames Estuary, UK have been digitalised and converted into
a realistic fluid dynamics model based on Stokesian Dynamics calcula-
tions, allowing us to calculate with high accuracy the viscous resistance
to sedimentation and therefore the settling velocity. Output of the
simulations is the full hydrodynamic resistance and mobility matrices,
whose features are analysed in detail to get insight into the coupling
between the gravitational force and translational/rotational motion.
The radius of gyration of the 3 flocs have been calculated and compared
with the computed hydrodynamic radius. The rotational dynamics of
the floc, and its motion in the lateral direction (i.e. perpendicular
to gravity) is also quantified. This work complements and extends
previous analyses which were limited to synthetically-generated fractal
flocs.
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Fig. 11. Snapshots of floc S4 observed in the y—z plane with z in the vertical direction as it settles. From (a) to (f) ¢ increases from 0 to 500 linearly.

(% g
etol (b)

Fig. 12. Snapshots of floc S5 observed in the y—z plane with z in the vertical direction as it settles. From (a) to (f) ¢ increases from 0 to 500 linearly.

Two of the flocs have a hydrodynamic radius, Ry, practically
identical to the radius of gyration R;. For the third floc, the ratio
Ry /Rg is slightly smaller than the other two flocs despite a similar
gross floc shape, but deviations of the ratio from 1 are relatively
minor and therefore practically not very important. This result seem
to support the widely-held assumption that accurate measurements of
the radius of gyration from scanned experimental images — a purely
geometry quantity — could give a good estimation of settling rates and
sedimentation fluxes.

Spatial resolution of scanned images can be important. We found
that capturing the hydrodynamic radius accurately requires represent-
ing the floc with beads of radius at least 1/30 smaller than the radius
of smallest sphere completely circumscribing the floc; using larger
beads, which corresponds to adopting a lower spatial resolution, leads
to an overestimation of the actual hydrodynamic radius. In terms of
experimental measurements, this result implies that coarse resolution
of scanned images will tend to underestimate the true settling rate.
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For a fractal-like flocs, the hydrodynamic resistance of the floc
can be a function of the fractal dimension if the floc is highly fractal
with D, < 2. This dependence on fluid dynamics is often ignored in
previous studies (Spencer et al., 2021; Smoczynski et al., 2016; Xu and
Dong, 2017; Chapalain et al., 2019), which often assume that the main
effect of the fractal geometry is to change only the effective density of
the floc, rather than both the effective density and the hydrodynamic
resistance to translational motion. For example, the formula for the
settling rate of the classic book by Winterwerp and Van Kesteren (2004)
is obtained by using the fractal dimension for the estimation of the
effective weight of the floc (weight minus buoyancy) (see Eq. 4.6 in the
book), but the formula for the drag force does not account for D, (Eq.
5.1 in the book). The effect of fractal dimension on floc permeability
has been appreciated in the past, see e.g. Binder et al. (2009) and
references therein, but not calculated for realistic floc geometries. The
consideration of a floc geometry that is not synthetic is the main
contribution of the current paper.



C. Gu et al.

International Journal of Multiphase Flow 196 (2026) 105586

Fig. 13. Snapshots of floc S6 observed in the y-z plane with z in the vertical direction as it settles. From (a) to (f) 7 increases from 0 to 500 linearly.

The simulations reveal that the flocs can rotate while settling,
performing an helical motion. This rotational motion is caused by the
hydrodynamic interaction between different parts of the floc, which
produce a coupling between the downward pointing gravitational force,
the lateral floc velocity and its angular velocity. Because the lateral
motion will effectively enlarge the collision radius of a floc, this ob-
served lateral displacement could influence sediment transport fluxes
by altering the rate of coagulation by differential sedimentation (Li and
Botto, 2024). To illustrate the potential importance of this effect, we
consider the following model for the rate of coagulation by differential
sedimentation (Van Leussen, 1988):

B =x(r;+r)|lw; —wl (26)

Here r; and r; are the average radii of the two flocs, and w; and
w; are the corresponding settling velocities. While simple, this model,
which is based on the advective flux of particles that cross a collisional
area z(r; + rj)2 surrounding a test particle i, is often used in practice
because it capture the essential physics of flocs moving in rectilinear
motion parallel to each other (Zhang and Zhang, 2011). If the flocs
move in the lateral direction, performing a helical motion of radius
Fhelicali = Ari, the collision area will increase by a factor dependent
on A. The model above predicts that the collision rate is enhanced
by a factor A%, which can be significant for typical parameters. For
example, using the results of Fig. 3 to estimate A, we get 4 ~ 3,
which corresponds to an enhancement of the collision rate by almost
an order of magnitude (our simulations suggest that the exact value
of 4 is dependent on the exact shape of the floc). While there are
many parameters that could influence this enhanced collision rate (for
example, the ratio of the pitch of the helix to the floc size), it is clear
that because the floc size is small even small deviations from a straight
sedimentation trajectory induced by floc shape anisotropy can play an
important role in setting aggregation rates and deposition fluxes. Our
observation of spiralling motion also links to the notion of “chirality”
and its effect on sedimentation, recently explored in the fluid dynamics
community using geometrically well-defined particles (Vaquero-Stainer
et al., 2024; Melikhov and Ekiel-Jezewska, 2025).

More broadly, our analysis represents a first step towards the de-
velopment of a protocol to translate high-resolution experimental mea-
surements of three-dimensional floc geometry to high-accuracy fluid
dynamical calculation enabling to extract testable sedimentation pa-
rameters.
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