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 A B S T R A C T

Natural sediment flocs are highly porous particulate aggregates composed of biogenic and minerogenic 
materials. They can be an important component of suspended sediment load in rivers, estuaries and the 
marine environment and modelling floc dynamics and behaviour is very important for many aquatic industries, 
maintenance of waterways and conservation and management of aquatic water bodies. X-ray computed 
microtomography has recently been applied to quantify the complex three-dimensional (3D) geometry of 
natural sediment flocs. Here, X-ray images of 3 selected natural millimetre-sized flocs sampled from the Thames 
River have been digitalised and converted into geometries used in Stokesian Dynamics calculations of the 
hydrodynamic properties of the flocs, where each floc is represented as a rigid ensemble of spherical beads 
moving in the creeping flow regime. Our approach is a substantial step from previous attempts in which 
synthetic fractal structures were simulated. In addition to describe the complex dynamics of floc settling, 
we compute: (i) the hydrodynamic radius of the flocs; (ii) the floc mobility and resistance tensors; and (iii) 
the relation between sedimentation velocity and fractal dimension. The simulations show that the coupling 
of gravitational forces with lateral velocities, which we analysed by examining the cross-components of the 
mobility matrix, produces a helical motion of the flocs as they settle. We argue that this lateral motion 
may lead to an enhancement of floc–floc aggregation by differential sedimentation due to an increase in the 
effective collisional area. Furthermore, the simulations demonstrate significant differences in the dynamics of 
settling between the three flocs despite a similar gross shape. Our work exemplifies how high-resolution X-ray 
techniques can be coupled with accurate particle-resolved simulations to understand the settling dynamics of 
real (as opposed to synthetic) flocs collected from estuarine, coastal or waste-water environments.
1. Introduction

Natural water bodies such as estuaries and coasts are usually char-
acterised by high concentrations of fine-grained and cohesive sediments 
which are transported in suspension and can be highly variable in 
space and time. This suspended particulate matter (SPM) is critical for 
the transport of sediment, nutrients, carbon and pollutants from catch-
ment to coast, and in excess can cause rapid sedimentation causing 
problems for navigation, deterioration to water quality and smothering 
of benthic habitats (Manning et al., 2017; Mehta, 2013; Zhu et al., 
2022). Therefore, accurate modelling and prediction of the dynamics 
and in particular settling behaviour of fine sediments is crucial to 
the understanding and management of all natural fresh and marine 
water bodies and associated aquatic industries (Johnson et al., 1996; 
Kumar et al., 2010; Spearman and Manning, 2008; Dorrell and Hogg, 
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2010). Where fine sediment sources dominate, flocs are an impor-
tant component of this suspended particulate matter. Fine sediments 
(clays and silts) are cohesive and in suspension aggregate to form 
loosely bound, highly irregular, fragile sediment flocs which comprise 
inorganic mineral particles, organic matter, microbial organisms and 
fluid-filled pore space (Liss et al., 1996; Droppo, 2001; Rahmani et al., 
2022). Modelling approaches to predict the large-scale hydrodynamics 
of sediment in estuarine and coastal waters are well established includ-
ing e.g., TELEMAC and DELFT3D (Lesser et al., 2004; Villaret et al., 
2013). However, predicting the fate and behaviour of fine-grained 
and cohesive sediment is far more challenging. This is largely due to 
the failure to adequately represent floc dynamics in the model and 
predictions of cohesive sediment behaviour is often poor (Droppo et al., 
1998; Li et al., 2025).
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Floc settling velocity is dependent upon floc diameter, shape, den-
sity and porosity and these are critical input parameters required to 
mathematically predict their behaviour (Baugh and Manning, 2007). 
Consequently, investigations of floc dynamic behaviour frequently fo-
cus on estimating the floc settling velocity (Gibbs, 1985; Dyer and Man-
ning, 1999; Derksen, 2014) and this is a key parameter in large-scale 
transport models used to predict fine or cohesive sediment transport 
particularly within the estuarine environment and when estimating 
the distribution and fate of fine sediment and contaminant plumes 
associated with e.g., dredging activities. Floc size and shape are typ-
ically derived from two-dimensional (2D) observations of SPM aggre-
gates using image analysis or laser diffraction (Agrawal and Pottsmith, 
1994; Schwarz et al., 2017; Chapalain et al., 2019), whilst density and 
porosity are estimated and typically assume that flocs are spherical. 
However, the shape of natural sediment flocs is in fact highly irregular 
and settling velocity can be derived by establishing a relationship be-
tween floc density and size (Tambo and Watanabe, 1979). This can be 
achieved by assuming the flocs are self-similar, where a computation-
ally simple fractal-based model assumes that floc structures are scale 
invariant, and is widely used to predict floc behaviour (e.g., settling 
velocity, rate of floc aggregation and disaggregation) (Kranenburg, 
1994; Winterwerp and Van Kesteren, 2004; Smoczyński et al., 2016).

The estimation of settling velocity is most commonly based on 
the amended form of the Stokes’ law which incorporates the effects 
of the floc shape, fractal dimension and finite inertia (Winterwerp, 
1998). The variability of the floc fractal dimension as a function of 
floc size has been investigated by several authors including Khelifa 
and Hill (2006), Maggi et al. (2007), Vahedi and Gorczyca (2012). 
Some works have modelled floc aggregates as porous and permeable 
spheres (Veerapaneni and Wiesner, 1996; Kim and Stolzenbach, 2002; 
Lattuada et al., 2004), while some other investigations have modelled 
the aggregates as a collection of spherical primary spheres (Filippov 
et al., 2000; Binder et al., 2006; Harshe et al., 2010). By assuming that 
the floc is fractal, the excess weight of the floc is allowed to scale with 
the size of the floc as a power law of the floc fractal dimension. This 
is a simplification as floc shape can alter settling velocity directly, by 
altering the floc hydrodynamic mobility (Happel and Brenner, 2012). 
Flocs with asymmetric shapes can induce a coupling between the 
external force due to gravity and the angular velocity of the floc (Tozzi 
et al., 2011). The rotational motion of the floc is an important part of 
the floc settling behaviour that has often been overlooked in previous 
studies.

Despite the complexity of floc sedimentation, some general results 
on the settling (or sedimentation) velocity follow from basic fluid me-
chanics considerations. The importance of fluid inertia during settling 
is indicated by the particle Reynolds number 𝑅𝑒𝑝 = 𝑢𝑠𝑅𝑒𝑛∕𝜈, where 𝑢𝑠
is the settling velocity, 𝜈 is the kinematic viscosity of the surrounding 
liquid and 𝑅𝑒𝑛 is the characteristic size of the particle (Koch and Hill, 
2001; Zhang et al., 2006; Aidun et al., 1998), which in the case of 
flocs can be taken as the radius of the smallest sphere enclosing the 
floc. When 𝑅𝑒𝑝 ≪ 1 the fluid flow in the vicinity of the floc is in 
the Stokes regime where the inertia of the fluid is negligible (see 
e.g. Ref. Maxey and Riley 1983). In this regime, the velocity of the 
floc must be a linear function of the external gravitational (gravity 
plus buoyancy) force, regardless of the shape of the floc (Happel and 
Brenner, 2012). In general, such a relationship is tensorial, implying 
that there is a coupling between the force in the gravitational direction 
and the velocities in the lateral direction, as well as the rotational 
velocity.

A sphere of course settles with a velocity that is parallel to the 
direction of gravity. However, this is not the case for particles of non 
spherical shape. Flocs will, in general, drift laterally as they settle. This 
can be shown by a simple derivation. If we call 𝐅𝐵 the force vector due 
to buoyancy (Archimede’s force), 𝐅𝑀  the force vector due to weight, 
and 𝐅 the hydrodynamic force due to the fluid, at steady state a force 
balance requires 
𝐅 + 𝐅𝐵 + 𝐅𝑀 = 𝟎 (1)
2 
To find the settling velocity, we need to relate the hydrodynamic force 
to velocity. In Stokes flow we can write, for any floc shape, a relation 
of the form 
𝐅 = −𝜇𝐑 ⋅ 𝐔 (2)

where 𝐔 is the settling velocity vector, 𝜇 is the fluid dynamic viscosity, 
and 𝐑 is the so-called resistance tensor (i.e. a matrix, in a given 
coordinate system). For a floc of homogeneous density 𝜌𝑠 immersed in 
a fluid of density 𝜌𝑓 , one can write 𝐅𝑀 = 𝜌𝑠𝑉 𝐠 and 𝐅𝐵 = −𝜌𝑓𝑉 𝐠, where 
𝑉  is the volume occupied by the solid. Thus the settling velocity is: 

𝐔 =
(𝜌𝑠 − 𝜌𝑓 )𝑉

𝜇
𝐑−1 ⋅ 𝐠 (3)

where 𝐑−1, the inverse of 𝐑, is also called the mobility matrix. Because 
𝐑−1 is a matrix, 𝐔 will in general not be parallel to 𝐠. If gravity is 
directed along the 𝑧 axis, say, there will be a component of the settling 
velocity in the 𝑥 and 𝑦 directions. The aim of this paper is to study 
the resistance or mobility matrices using realistic floc geometries. To 
our knowledge this has not been previously considered due to the 
challenges of sampling and quantifying the 3D characteristics of fragile 
natural sediment flocs. While a characterisation of 𝐑 and 𝐑−1 requires a 
certain level of mathematical analysis, the advantages are considerable. 
It is indeed impossible to fully characterise the settling velocity of 
an anisotropic body without characterising 𝐑. Furthermore, 𝐑 is an 
intrinsic property that depends only on the size and shape of the floc, 
thus information on 𝐑 can be obtained from geometrical characteristics 
only.

With our work we also intend to challenge an assumption often 
made in practical modelling of floc sedimentation. The assumption is 
that the fractal dimension of the floc affects the effective weight of 
the floc, but not the hydrodynamic resistance (Spencer et al., 2021; 
Smoczyński et al., 2016; Xu and Dong, 2017; Chapalain et al., 2019).

The settling velocity is often calculated as 

𝑢𝑠 =
(𝜌𝑠 − 𝜌𝑤)𝑔𝑉

𝜃𝜇𝓁
, (4)

where (𝜌𝑠−𝜌𝑤)𝑔𝑉  is the excess weight of the floc, 𝓁 is the characteristic 
size of the floc, and 𝜃 is a dimensionless shape factor for the drag force 
(for a sphere, 𝜃 = 6𝜋 and 𝓁 is the radius). For a fractal-like floc, the 
floc volume 𝑉  scales with its characteristic size 𝓁 according to 
𝑉
𝑉0

∝
(

𝓁
𝓁0

)𝐷𝑓
(5)

where 𝑉0 and 𝓁0 are the volume and characteristic size of the primary 
particle. Assuming the primary particle of the floc is spherical with 
radius 𝓁0 we have 𝑉0 = 4

3𝜋𝓁
3
0 , and we can express the settling velocity 

again as 

𝑢𝑠 =
4𝜋𝑘(𝜌𝑠 − 𝜌𝑤)𝑔

3𝜃𝜇
𝓁𝐷𝑓−1𝓁

3−𝐷𝑓
0 , (6)

where 𝑘 is another dimensionless shape factor for the volume scaling in 
Eq. (5). For a sphere, 𝜃 = 6𝜋, 𝑘 = 1, 𝐷𝑓 = 3, and Eq. (6) reduces to the 
Stokes velocity of a sphere. This Eq.  (6) is of the same form with the ex-
pression of floc settling velocity presented in Winterwerp (1998) where 
differential density instead of volume is assumed to follow the fractal 
scaling (Kranenburg, 1994). The ratio between the settling velocity of 
the floc and the Stokes velocity of the primary sphere is 6𝜋𝑘

𝜃

(

𝑙
𝑙0

)𝐷𝑓−1
. 

As we can see explicitly from Eq.  (5), the excess weight depends purely 
on geometry. In the current paper we are able to calculate 𝐷𝑓  for 
flocs that have a realistic geometry (as opposed to a synthetic fractal 
geometry), and compute the hydrodynamic parameter 𝜃 for the same 
geometry. In the paper, we prefer to discuss the hydrodynamic radius 
of the floc, rather than 𝜃, but the relation between the two is obvious 
once the characteristic size of the floc is set.

In this work, we employ the Stokesian dynamics method (Brady and 
Bossis, 1988) to investigate numerically the settling behaviours of the 
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Table 1
The list of the flocs with realistic geometry used in the current work. The 
length, width and height of the bounding box of the flocs are 𝐿, 𝑊 , 𝐻
respectively, 𝑁𝑣 is the number of voxels of the floc 3D image and 𝑅𝑒𝑛 is the 
radius of the smallest enclosing sphere of the floc. The length is expressed in 
unit of μm.
 Code name 𝐿 𝑊 𝐻 𝑁𝑣 𝑅𝑒𝑛  
 S4 754.5 1770.5 2122.6 190973 1113.1 
 S5 2494.8 2756.4 4537.0 494540 2489.9 
 S6 1629.4 996.6 2151.5 61691 1186.5 

three flocs having realistic geometry. The Stokesian dynamics method 
assumes a negligible effect of fluid inertia. This is a good assumption 
for river flocs, which have a low effective density and therefore set-
tle slowly: for example, for a floc with diameter 100 μm settling in 
water at a typical velocity 1 mm/s (Ali et al., 2024), the Reynolds 
number of the floc is around 0.1. The structure of the flocs is modelled 
as an aggregate of spherical beads whose radius can be adjusted to 
modulate the spatial resolution of the aggregate structure. The realistic 
floc geometries were extracted from the 3D greyscale images of flocs 
generated using X-ray computed microtomography (CT) (Wheatland 
et al., 2017, 2020). The sediments were collected from the Thames 
Estuary, UK and are fine-grained silts and clays. While much work has 
been done on modelling a floc as a synthetic fractal, regular assembly 
of spheres, or bead aggregates generated by stochastic algorithms, the 
current paper analyse flocs that, from a geometric point of view, have 
truly realistic three-dimensional features.

2. Extracting floc shape from X-ray CT images

The experimental methodology to extract the 3D greyscale images 
of flocs generated using X-ray computed microtomography is described 
in a series of previous publications (Wheatland et al., 2020; Lawrence 
et al., 2022; Spencer et al., 2022). Briefly, the protocol involves settling 
flocs directly into plankton chambers and immobilising flocs in agarose 
gel. The gel is used to minimise deformation of the very fragile flocs 
during sample handling as this was placed in sample holders and 
mounted on the stage of a micro-computed tomography (micro-CT) 
machine at the School of Engineering and Materials Science at Queen 
Mary University of London. The micro-CT machine maps the attenu-
ation of X-rays that cross the sample, giving cross-sectional images of 
the density of each floc from μm to mm-scale. The micro-CT software 
assemble multiple cross-sectional images to reconstruct a fully three-
dimensional image of the floc. Notice that the flocs are very fragile 
and this has made the technical hurdles of obtaining the X-ray images 
uniquely challenging, as described in our previous publications (Wheat-
land et al., 2020; Lawrence et al., 2022; Spencer et al., 2022). This is 
why only a few flocs could be analysed.

In this work, 3 flocs were analysed in detail. The characteristics of 
each floc are summarised in Table  1, where the flocs are labelled as 
flocs S4, S5 and S6. Visualisation of the 3D floc geometry through X-
ray computed microtomography generates a binary voxel image of the 
floc, with a pixel resolution of 2.78 μm. The voxel image of each floc is 
shown in Fig.  1.

The voxel images were used for sedimentation simulations. In the 
literature, two classes of modelling approaches have been used to 
analyse the hydrodynamic properties of flocs of aggregated particles. 
In the first approach the floc is modelled as a porous sphere whose 
porosity and permeability are functions of the fractal dimension of 
the floc (Johnson et al., 1996; Kim and Yuan, 2005; Veerapaneni and 
Wiesner, 1996; Vanni, 2000). In the creeping flow regime, Brinkman’s 
equation for the flow inside the sphere is coupled to the Stokes equation 
outside of the sphere This approach models the internal structure of 
the particle as a continuum and requires the knowledge of the dis-
tribution of the permeability coefficient. The second approach models 
3 
the structure of the particle as an assemblage of spherical beads. This 
modelling approach was first proposed by Kirkwood and Riseman 
(1948) to study the hydrodynamic properties of macromolecules in 
solution. The methodology was later extensively studied by Bloomfield 
et al. (1967a,b), McCammon and Deutch (1976), Swanson et al. (1978), 
using the modified-Oseen tensors to more accurately describe hydrody-
namic interactions between primary beads (Rotne and Prager, 1969; 
Yamakawa, 1970). A comparison of several methods to assemble the 
beads into an aggregate to perform hydrodynamic calculations can be 
found in Carrasco and de la Torre (1999). We use this second approach, 
using the Stokesian Dynamics method (Brady and Bossis, 1988) to 
account for the hydrodynamic interactions between the spherical beads 
composing the aggregate. In our method, all the beads are assumed to 
have the same radius and mass density.

A stochastic procedure is employed in the current work to generate 
the aggregate from the 3D voxel image of the floc. First, the radius 𝑎
of the sphere is prescribed according to the required spatial resolution. 
Secondly, a voxel of the floc 3D image is randomly selected follow-
ing an uniform probability distribution. A random location inside the 
selected voxel is then selected, also following a uniform distribution, 
and the first sphere is placed at this coordinate. The voxel selection 
and placement of spheres is repeated in a loop. In the algorithm, a 
sphere placement step is accepted as long as the sphere does not overlap 
with any existing spheres. Otherwise, the current sphere placement is 
rejected and a new location proposed until a valid location is found. 
After a sphere is placed inside a voxel, the voxel selection and sphere 
placement within a voxel are repeated until no more spheres can be 
placed within any voxel of the floc. A schematic of the resulting sphere 
aggregate generated from the digitised image is shown in Fig.  2. The 
use of a uniform probability distribution ensures that all locations 
within the region occupied by the voxels have the same probability of 
being associated with the centre of a spherical bead.

The geometry of the aggregates of spherical beads resulting from 
the algorithm are a close representation of the images of the initial 
floc, as can be seen by comparing Figs.  1 and 3. Changing the bead 
radius 𝑎 enables to represent the digitised images at different coarseness 
levels. Thus, by varying 𝑎 we can analyse how faithfully we need 
to represent the digitised floc to obtain hydrodynamic properties of 
converged values. Of course, the digitised images are also a discrete 
model of a real floc, so examining the limit 𝑎 → 0 will give only 
an approximation of the true hydrodynamic properties of the sampled 
natural floc. However, if the values of the hydrodynamic properties are 
relatively insensitive to the value of 𝑎, then we can conclude that the 
resolution of the experimental imaging method was sufficient to extract 
the hydrodynamic properties of the floc.

3. Simulation method and structure of the mobility and resistance 
matrices

The method of Stokesian dynamics was originally developed to 
simulate the hydrodynamics of a suspension of freely-moving spheres 
in the Stokes regime (Brady and Bossis, 1988).

This method relies on the fact that in the Stokes flow regime the 
vector relation between the hydrodynamic forces and torques on all 
the particles and the corresponding particle translational and angular 
velocity vectors must be linear, and therefore can be recast in matrix 
form (a generalisation of Stokes’ law, where the force on a single 
particle is proportional to the relative particle–fluid velocity). For a 
suspension of 𝑁 spheres, we can write (Brady and Bossis, 1988) 
[

𝐔 − 𝐔∞

−𝐄∞

]

= − ⋅
[

𝐅𝐻

𝐒

]

, (7)

where 𝐔−𝐔∞ is a 6𝑁-dimensional vector representing the translational 
and angular velocity difference between the spheres and the undis-
turbed fluid, 𝐄∞ is the 𝑁-dimensional vector of the imposed rate of 
strain at the location of each sphere, 𝐅𝐻  is the 6𝑁-dimensional vector 
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Fig. 1. The binary voxel image of the floc (a) S4, (b) S5 and (c) S6 from different angles. The scale of each image is adjusted to maximise the floc inside each 
picture.
Fig. 2. The spheres (red sphere) are placed inside the voxels of the floc (black 
cube). The resulting aggregate of spheres is the geometric model which we 
use to study the hydrodynamic properties of the floc. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
4 
of the hydrodynamic forces and torques, and 𝐒 is the 𝑁-dimensional 
vector containing the components of the ‘‘stresslet’’ corresponding to 
each sphere. Importantly, in Eq. (7) the grand mobility matrix  is 
only a function of the configuration of the spheres and its matrix 
properties – including eigenvalues and eigenvectors – fully determine 
the coupling between the external body forces applied to the floc and 
the sedimentation velocity of the floc. The grand mobility matrix 
can be partitioned into four submatrices 

 =
[

𝐌𝑈𝐹 𝐌𝑈𝑆
𝐌𝐸𝐹 𝐌𝐸𝑆

]

. (8)

where the subscript in each submatrix indicates the relevant coupling. 
For instance, 𝐌𝑈𝐹  couples the generalised velocity vector 𝐔 to the 
generalised force vector 𝐅𝐻 .

For sedimentation in a quiescent fluid, we have 𝐄∞ = 𝟎 (no fluid 
velocity gradient in the absence of the particles) and 𝐔∞ = 0 (zero 
uniform velocity in the absence of the particles), thus the vector of 



C. Gu et al. International Journal of Multiphase Flow 196 (2026) 105586 
Fig. 3. Three aggregates of spherical beads generated by the volume sampling method to represent the floc (a) S4, (b) S5 and (c) S6 respectively, corresponding 
to the voxel images shown in Fig.  1. The spherical bead radius 𝑎 = 𝑅𝑒𝑛∕20.
sphere velocities obeys 

𝐔 = 𝐌𝑈𝐹 ⋅ 𝐅, (9)

where 

𝐔 =
[

𝐮
𝝎

]

. (10)

and 

𝐅 =
[

𝐟
𝐭

]

. (11)

Here 𝐟 and 𝐭 are the vectors of forces and torques on the spheres due to 
weight and buoyancy. The expression for 𝐅 takes into account that for 
inertialess particles the hydrodynamic force and torque on each sphere 
balance the corresponding external force and torque due to gravity and 
5 
buoyancy, 𝐅𝐻 = −𝐅. The vector 𝐔 includes the translational velocity 𝐮
and rotational velocity 𝝎 of each sphere composing the floc.

If Eq. (9) was used without additional constraints, the relative 
position of the spheres, and thus the mobility tensor, would change in 
time. To model a rigid floc, an additional constraint must therefore be 
enforced on each sphere so that the entire group of spheres translates 
and rotates according to a rigid body motion (Swan et al., 2011; Yu 
and Niu, 2024; Harshe and Lattuada, 2012). This constraint is enforced 
by transforming the resistance tensor of the free suspension, 𝐑𝐹𝑈 =
𝐌−1

𝑈𝐹 , into the resistance tensor of the rigid aggregate, 𝐑𝑓  by using the 
relation (Swan et al., 2011) 
𝐑𝑓 = 𝐊 ⋅ 𝐑𝐹𝑈 ⋅𝐊𝑇 . (12)

Here 𝐊 is a tensor transforming the velocities of the free spheres into 
velocities following a rigid body motion. The matrix 𝐊 is composed 
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of a number 𝑁 of 6 × 6 submatrices (𝐊1 𝐊2 𝐊3 ⋯ 𝐊𝑁 .
)

, one 
submatrix for each sphere. The submatrix for sphere 𝛼 is only a function 
of the coordinates (𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼) of sphere 𝛼 and of the centre 𝐱0 =
(𝑥0, 𝑦0, 𝑧0) around which the rigid body motion occurs. The structure 
of the 𝐊𝛼 matrix, 𝛼 = 1...𝑁 , is 

𝐊𝛼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −(𝑧𝛼 − 𝑧0) 𝑦𝛼 − 𝑦0 1 0 0

𝑧𝛼 − 𝑧0 0 −(𝑥𝛼 − 𝑥0) 0 1 0
−(𝑦𝛼 − 𝑦0) 𝑥𝛼 − 𝑥0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

Evidently we can describe a rigid body motion with respect to any 
point inside a rigid object. Therefore the point 𝐱0 is arbitrary. However, 
a specific choice for 𝐱0 makes the formulation simpler to analyse and 
the algorithm easier to implement. For any configuration of the rigid 
aggregate, a point exists for which the total torque on the rigid object 
produced by weight and buoyancy is zero. This point is called the centre 
of action (CA) of the body (Bernal and De La Torre, 1980), and is here 
denoted as 𝐱𝐶𝐴. For a rigid distribution of spheres of mass 𝑚𝛼 , the 
centre of action can be calculated from 

𝐱𝐶𝐴 =

∑𝑛
𝛼=1

(

𝑚𝛼 − 𝑚𝛼
𝑓

)

𝐱𝛼
∑𝑛

𝛼=1

(

𝑚𝛼 − 𝑚𝛼
𝑓

) , (14)

where 𝑚𝛼
𝑓  is the mass of the liquid displaced by sphere 𝛼 and 𝐱𝛼 =

(𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼). In our case, we assume that all the spheres have the same 
radius and density, so the centre of action coincides with the geometric 
centre of the aggregate (centroid): 

𝐱𝐶𝐴 = 1
𝑁

∑

𝐱𝛼 . (15)

The more general expression (14) should be used in the inter-
esting case in which one accounts for inhomogeneities in the mass 
distribution.

We set 𝐱0 = 𝐱𝐶𝐴. By doing so, the calculation of the translational 
and rotational velocities of the floc requires only the force on each 
particle composing the floc, but not the moment of this force, which 
is a considerable simplification, both algorithmically and in terms of 
theoretical analysis of the settling velocity.

The algorithm to update the configuration of the floc works as 
follows. We first calculate 𝐑𝐹𝑈  (how to assemble the matrix is ex-
plained in Durlofsky et al. 1987 but Stokesian Dynamics solvers are also 
publicly available, see e.g. Swan et al. 2011). Then we calculate 𝐊 by 
assembling matrices 𝐊𝜶 with 𝐱0 = 𝐱𝐶𝐴. From 𝐑𝐹𝑈  and 𝐊 we compute 
𝐑𝑓  by using Eq. (12). Finally, from 𝐑𝑓  we compute the mobility matrix 
of the rigid aggregate by numerical matrix inversion: 𝐌𝑓 = 𝐑−1

𝑓 .
From the mobility matrix the 6-dimensional velocity vector 𝐔𝑓  of 

the rigid floc, containing the 3 components of the translational velocity 
and the 3 components of the rotational velocity of the floc, can be easily 
calculated from 

𝐔𝑓 = 𝐌𝑓 ⋅ 𝐅𝑡. (16)

In this expression the 6-dimensional vector 𝐅𝑡 is given by 

𝐅𝑡 =
(

𝐟𝑡
𝟎

)

= 𝐊 ⋅
(

𝐅𝑔 + 𝐅𝑏
)

. (17)

where 𝐅𝑔 and 𝐅𝑏 are, respectively, the 6𝑁−dimensional vectors of the 
weight and buoyancy forces on each sphere. Once 𝐔𝑓  is known, the 
velocity of each sphere composing the floc is calculated as 𝐔 = 𝐊𝑇𝐔𝑓 . 
In our implementation, the coordinates 𝐱𝛼 are updated by integrating 𝐔
in time via a four-step Adams–Bashforth method. Code validation was 
obtained by comparing against analytical solutions for a smooth sphere 
and for an asymptotically slender chain of spheres, see Fig.  6.
6 
Fig. 4. The dependence of the number of spheres 𝑁 composing the aggregates 
representing the floc S4, S5 and S6 on the normalised gyration radius 𝑅𝐺∕𝑎
of the aggregates. The dashed lines are the best linear fit between log𝑁 and 
log(𝑅𝐺∕𝑎) for each floc. The slope of each fit is an approximation of the fractal 
dimension 𝐷𝑓  of the floc, being 2.53 for S4, 2.31 for S5 and 2.63 for S6.

4. Results

4.1. Fractal dimension and porosity

Before analysing the hydrodynamic simulations, we discuss the 
fractal dimension of our flocs, noting that a fractal dimension can be 
calculated whether the floc has a self-similar structure or not (Kim 
and Stolzenbach, 2002). For a rigid aggregate of identical spheres of 
radius 𝑎, the fractal dimension 𝐷𝑓  is the power-law exponent between 
the number of spheres 𝑁 and the radius of gyration 𝑅𝐺 (Gmachowski, 
1996): 

𝑁 = 𝑘𝑓

(

𝑅𝐺
𝑎

)𝐷𝑓
, (18)

Here 𝑘𝑓  is a numerical prefactor (Sorensen and Roberts, 1997), and 

𝑅𝐺 =

[

1
𝑁

𝑁
∑

𝑖
|𝐱𝑖 − 𝐱𝑚|2

]

1
2

(19)

where 𝐱𝑚 is the arithmetic mean of the position vectors of the spheres 
constituting the aggregate. In Fig.  4, the number 𝑁 of the spheres 
within an aggregate is plotted against the normalised aggregate size 
𝑅𝐺∕𝑎 on log–log scale for floc S4, S5 and S6. In this test, 𝑅𝐺 is fixed 
while we change 𝑎. The fractal dimension of the floc 𝐷𝑓  is measured 
from a linear fit between log𝑁 and log(𝑅𝐺∕𝑎). The fractal dimensions 
of the floc S4 and S6 are comparable, being 2.53 and 2.63 respectively 
while for floc S5 it is 2.31. The lower fractal dimension of floc S5 
correlates with it having a more ramified shape than 𝑆4 and 𝑆6.

Another important quantity used in the characterisation of aggre-
gates is the floc porosity. The porosity of the fractal aggregates typically 
increases with floc size and is generally derived from density which 
is estimated from settling velocity assuming spherical shape (Droppo 
et al., 2000). In the current study, the porosity 𝜖 is calculated by 
normalising the total volume of the assembling spheres by the volume 
of the enclosing sphere, of radius 𝑅𝑒𝑛 enclosing the aggregate. The 
result is 

𝜖 = 1 −𝑁
(

𝑎
𝑅𝑒𝑛

)3
. (20)

We characterise the radius of the enclosing sphere because this quantity 
is commonly used to estimate the drag force on the floc based on 
the drag formula for spheres (Guazzelli and Morris, 2011). We can 
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Fig. 5. The normalised (a) translational hydrodynamic radius 𝑅𝐻∕𝑅𝑒𝑛 and (b) rotational hydrodynamic radius 𝑅𝜔∕𝑅𝑒𝑛 of floc S4 (purple), S5 (green) and S6 
(light blue) are shown as a function of 𝑅𝑒𝑛∕𝑎. The value of 𝑅𝑒𝑛∕𝑎 is varied by changing the primary sphere radius 𝑎 while 𝑅𝑒𝑛 is an intrinsic property of each 
floc and remains constant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
introduce the ratio 𝑚 = 𝑅𝐺
𝑅𝑒𝑛

 of the radius of gyration of the floc to 
the radius of the enclosing sphere, and knowing Eq. (18) we have 

𝜖 = 1 − 𝑘𝑓

(

𝑅𝑒𝑛
𝑎

)𝐷𝑓−3
𝑚𝐷𝑓 (21)

This equation shows that if 𝑚 is approximately constant and 𝐷𝑓 < 3, 𝜖
increases with the floc diameter 𝑅𝑒𝑛 for constant 𝑎. In other words, the 
porosity of the floc increases as the floc size increases.

4.2. Hydrodynamic radius

The mobility matrix 𝐌𝑓  in Eq.  (16) can be divided to four 3 × 3 sub-
matrices, with 𝐌1 as the coupling between the translational velocities 
of the floc and the force on the floc (𝐟𝑡), 𝐌2 as the coupling between 
the rotational velocities of the floc and the force on the floc, 𝐌3 as the 
coupling between the translational velocities of the floc and the torque 
on the floc (𝟎 in our scenario), and 𝐌4 as the coupling between the 
rotational velocities of the floc and the torque on the floc (Brady and 
Bossis, 1988). From Eqs. (16) and (17) the floc’s linear and angular 
velocities can be calculated as 
𝐮 = 𝐌1𝐟𝑡 (22)

𝝎 = 𝐌2𝐟𝑡 (23)

Because 𝑀1 is a non-diagonal matrix, the linear velocity 𝐮 is in 
general not parallel to the direction of gravity. If gravity acts in the 𝑧
direction, the floc will have a vertical settling velocity 𝐮𝑧 parallel to 𝐟𝑡
and a horizontal drifting velocity 𝐮𝑥𝑦 perpendicular to 𝐟𝑡. In addition to 
this translation, the floc will rotate about an axis, passing through the 
centre of action and not necessarily parallel to 𝑧, with angular velocity 
𝝎.

Being a symmetric, positive-definite matrix, 𝐌1 has three real and 
positive eigenvalues, and three corresponding eigenvectors. If the floc 
is oriented so that gravity acts along one of the eigenvectors, then 
the floc will maintain a velocity parallel to that eigenvector without 
lateral drift. The eigenvalues of 𝐌1 can be interpreted as scalar mobility 
coefficients, each of the 3 mobility coefficients representing the ratio 
of velocity and external force for translation along the corresponding 
eigenvector direction. The average hydrodynamic radius 𝑅𝐻  of the floc 
is defined as (Lattuada et al., 2003) 
𝑅𝐻 = 1

2𝜋𝜇
(

𝛼1 + 𝛼2 + 𝛼3
) , (24)

where 𝛼1, 𝛼2 and 𝛼3 are the three eigenvalues of 𝐌1. Similarly, from the 
3 eigenvalues 𝛽1, 𝛽2, 𝛽3 of 𝐌4, the rotational hydrodynamic radius of 
the floc can be calculated as 
𝑅𝜔 = 1

[

8𝜋𝜇 (

𝛽 + 𝛽 + 𝛽
)

]
1
3

. (25)
3 1 2 3
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While 𝑅𝐻  and 𝑅𝜔 give a practically accurate quantification of the 
translation and rotation of the floc, their calculation requires knowl-
edge of the corresponding mobility matrices. In contrast, the radius 
of the enclosing sphere 𝑅𝑒𝑛 is straightforward to calculate from an 
experimental image of the floc. Therefore, finding a relation between 
𝑅𝑒𝑛 and the hydrodynamic radii is practically important.

In Fig.  5, 𝑅𝐻∕𝑅𝑒𝑛 and 𝑅𝜔∕𝑅𝑒𝑛 are plotted versus 𝑅𝑒𝑛∕𝑎. For this 
plot, we have changed 𝑎 from 𝑅𝑒𝑛∕5 to 𝑅𝑒𝑛∕45 keeping 𝑅𝑒𝑛 fixed.

From the plot we can draw the following conclusions. First of all, 
𝑅𝐻  and 𝑅𝜔 are comparable in magnitude to 𝑅𝑒𝑛, but are both smaller 
than 𝑅𝑒𝑛. For all aggregates we observe that 𝑅𝜔 is slightly larger than 
𝑅𝐻 , although the difference is not large. Both 𝑅𝐻∕𝑅𝑒𝑛 and 𝑅𝜔∕𝑅𝑒𝑛
decrease with increasing 𝑅𝑒𝑛∕𝑎 for relatively large values of 𝑎, and 
reach a plateau for 𝑅𝑒𝑛∕𝑎 > 10 approximately. This suggests that when 
the floc is represented by a group of fairly large spheres the resulting 
aggregates tend to overestimate the hydrodynamic resistance of the floc.

The radius of gyration is often used to characterise the geometric 
properties of flocs. Hence, to characterise the hydrodynamic behaviour 
of a floc the ratio 𝑅𝐻∕𝑅𝐺 of hydraulic radius to radius of gyration has 
been quantified in several publications (Wiltzius, 1987; Van Saarloos, 
1987; Gmachowski, 1996). These publications report a correlation 
between 𝑅𝐻∕𝑅𝐺 and the fractal dimension. However limited, our data 
seem to confirm this trend. In Fig.  6a we have plotted 𝑅𝐻∕𝑅𝐺 versus 
the number 𝑁 of spheres of the aggregates used to represent the flocs 
S4, S5 and S6. The ratio 𝑅𝐻∕𝑅𝐺 remains approximately constant for 
all three flocs as 𝑁 increases, indicating that 𝑅𝐻∕𝑅𝐺 can be quite 
independent of the number of beads composing the Stokesian Dynamics 
aggregate. We can see that S4 and S6, which have a similar fractal 
dimension, have also similar values of 𝑅𝐻∕𝑅𝐺. The floc S5, which has 
a smaller fractal dimension, has also a smaller value of 𝑅𝐻∕𝑅𝐺.

The voxel images of the three flocs (Fig.  1) show that the flocs are 
far from spherical. Actually it would be difficult to associate them to 
any regular geometry, even as an approximation. Floc S5 for example 
looks roughly like a short bent ribbon, while floc S6 is composed 
of a relatively compact structure with a linear branch coming out 
of it. On the other hand, the fractal dimension of the flocs is in 
between that of a sphere (𝐷𝑓 = 3) and of a disk (𝐷𝑓 = 2), so it is 
useful to compare the hydrodynamic radius of the flocs to these two 
regular shapes. The ratio 𝑅𝐻∕𝑅𝐺 for a spherical aggregate, a disk-
like aggregate, and a linear aggregate (chain) is plotted vs. 𝑁 in Fig. 
6(b). These regular aggregates are generated by assembling spherical 
beads, using a number of spheres 𝑁 ranging from 𝑂(10) to 𝑂(1000), 
and the hydrodynamic radius calculated with the Stokesian Dynamics 
code. The accuracy of the calculation has been probed by comparing 
the solution for a chain to the analytical solution for a chain of spheres 
predicted by the slender body theory (Filippov, 2000). The excellent 
agreement between the values calculated from the slender body theory 
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Fig. 6. The ratio 𝑅𝐻∕𝑅𝐺 of the aggregates representing the floc S4, S5 and S6 are plotted as a function of the number 𝑁 of primary spheres in (a). The value 
of 𝑁 is increased by decreasing the primary sphere radius 𝑎, approximately following the scaling relationship shown in Fig.  4. As a comparison, the relation 
between 𝑅𝐻∕𝑅𝐺 and 𝑁 for a sphere, a disk and a chain of spheres is calculated in Stokesian dynamics and the result is shown in (b). The sphere, the disk and 
the chain represent the shape having the fractal dimension of 3.0, 2.0 and 1.0 respectively. The line (SBT) is the analytical solution 𝑅𝐻

𝑅𝐺
=

√

3
ln (2𝑁)

.

Fig. 7. Trajectories of the centroids of the three flocs during settling from 𝑡 = 0 to 𝑡 = 500. (a) 3-d view, (b) in the 𝑥 − 𝑦 horizontal plane, and (c) in the 𝑥 − 𝑧
vertical plane. Gravity is in the negative 𝑧 direction.
and from the Stokesian dynamics for a 1D chain structure, and the 
ratio 𝑅𝐻∕𝑅𝐺 for a spherical aggregate converging approximately to the 
theoretical value of 

√

5∕3 ≈ 1.291 expected for a smooth sphere, both 
provide the validation of our numerical methodology and actual code 
implementation.

From Fig.  6(a) and 6(b) we can see that for floc S4, S5 and S6 the 
slope of 𝑅𝐻∕𝑅𝐺 versus 𝑁 is nearly zero, smaller than the slope for 
sphere, which is slightly positive, and larger than the slope for disk, 
which is slightly negative. The results are consistent with the fact that 
the fractal dimensions of the three flocs considered in the current paper 
are bounded by the fractal dimensions of a sphere and disk. However, 
the value of 𝑅𝐻∕𝑅𝐺 for S5 is significantly lower than the disk while its 
fractal dimension is larger than the disk. This apparent contradiction 
reveals that fractal dimension alone cannot fully capture hydrodynamic 
behaviour. While S5’s mass distribution is more compact than a disk 
(higher fractal dimension), its internal porosity create smaller flow 
resistance, resulting in a smaller hydrodynamic radius relative to gyra-
tion radius. This highlights that hydrodynamic interactions depend not 
only on mass distribution but also on local permeability inaccessible to 
structural fractal analysis

4.3. Dynamic settling behaviour

After having considered in the previous section the hydrodynamic 
properties of each floc, we here look at the dynamics of sedimentation. 
Three aggregates are generated from the voxel images of flocs S4, S5 
and S6 using spheres of radius 𝑎 = 𝑅𝑒𝑛∕20, containing 286, 98 and 
217 spheres, respectively. The time step is chosen as 0.1 to ensure that 
each floc moves a distance of about ≈ 0.1𝑅𝑒𝑛 at each time step. The 
characteristic time is chosen as 𝑎∕𝑢𝑆𝑡,𝑐 where 𝑢𝑆𝑡,𝑐 = 2(𝜌𝑠 − 𝜌𝑓 )𝑎2𝑔∕9𝜇.

We track the centroid of each floc over time (the centre of action 
of each floc coincides with the centroid because the density is the 
8 
same for all the constituent particles). The trajectories of the three flocs 
starting from the position (0,0,0) are shown in Fig.  7. It is seen that 
the trajectories of flocs S4 and S5 are helical with a larger radius of 
curvature than that of floc S6. The axis of the helical motion is inclined, 
i.e. the flocs perform an average lateral drift while settling in a spiral 
motion (Fig.  7(b)). For floc S4, the maximum horizontal drift distance 
from its initial position is around 300, which is around 15𝑅𝑒𝑛. The 
trajectory of floc S4 for a longer time period is shown in Fig.  10(a), 
which shows more clearly a helical motion. For flocs S5, the maximum 
horizontal drift is around 40, which is 2𝑅𝑒𝑛. Floc S4 settles the fastest 
and floc S5 the slowest (Fig.  7(c)). Fig.  5(a) shows that to obtain 
a converged representation of the 𝑀1 matrix, one needs at least 20 
beads per unit 𝑅𝑒𝑛. Because the helical motion is primarily due to the 
properties of the 𝑀1 matrix, we can estimate that helical motion we 
observe should not change provided that the geometry is discretised 
with at least 20 beads per unit 𝑅𝑒𝑛.

Time series of translational and rotational velocities are shown in 
Figs.  8 and 9, respectively. The translational velocities of S4 and S5 
show a sinusoidal variation, which corresponds to the helical trans-
lational motion discussed above. The vertical velocity relaxes to a 
steady state value on a time scale much smaller than the time scale 
of this helical motion. The horizontal velocities of floc S4 for a longer 
time period are shown in Fig.  10(b), which show clear sinusoidal 
variations and a 1

4 -period phase lag between the velocities in the 𝑥
and 𝑦 directions, corresponding to the circular motion of floc S4 in the 
horizontal plane. Looking at the components of the rotational velocity, 
we notice that the axis of spinning motion around the centre of the 
floc is, predominantly, the direction of gravity. The finite rotational 
velocity components 𝜔𝑥 and 𝜔𝑦 at early times are transient and due 
to the reorientation of the floc from the initial configuration.

We can use Eq. (6) to estimate the floc settling velocities by setting 
𝜃 = 6𝜋, 𝑘 = 1, 𝑙 = 𝑎𝑁1∕3 (i.e., a sphere radius corresponding to a sphere 
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Fig. 8. Translational velocities of the flocs in (a) x, (b) 𝑦 and (c) z directions.
Fig. 9. Rotational velocities of the flocs in (a) x, (b) 𝑦 and (c) z directions.
Fig. 10. (a) The trajectory and (b) horizontal translational velocities of floc S4 from 𝑡 = 0 to 𝑡 = 1000.
Table 2
Floc settling velocities rescaled by the Stokes velocity of the constituent 
spheres from simulations and estimations using Eq. (6).
 Floc Velocity from simulations Velocity from estimations 
 S4 23.9 17.9  
 S5 10.0 7.4  
 S6 19.2 18.6  

having the same volume of the floc) and 𝐷𝑓  taken from Fig.  4. This 
rough estimate and the value computed from the dynamic simulations 
are compared in Table  2. The estimate tends to underestimate the 
settling velocities with a relative differences of about 25% for S4 and 
S5. Since all three flocs have the same 𝑅𝑒𝑛∕𝑎, the porosity decreases as 
the number of constituent spheres 𝑁 increases, as shown in Eq. (20). 
Thus S4 is the least porous floc and S5 is the most porous floc. Thus, in 
our simulations the magnitude of the settling velocity increase as the 
porosity decreases.

In Figs.  11–13, we show instantaneous snapshots, at different times 
during settling. The observed configurations correspond well to the 
features seen in the time traces of translational and rotational velocity. 
For example, comparing the first two snapshots (𝑡 = 0 and 𝑡 = 100), we 
see that each floc flips upside down, which corresponds to the rotation 
around the horizontal 𝑥 and 𝑦 axes for 𝑡 < 50 seen in Fig.  9(a) and 
(b). After flipping upside down, each floc rotates about the vertical 
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z axis (last four snapshots for each floc). Floc S5 rotates the fastest 
and floc S6 the slowest, as already discussed when introducing Fig. 
9(c). These reconfigurations, which could conceivably be measured by 
optical experiments, produce immediate changes in the settling velocity 
because the flow has no inertia. A finite Reynolds number of the floc 
would produce a time lag between the hydrodynamic force and the 
instantaneous configuration.

5. Discussion and conclusion

Three-dimensional geometries of 3 natural sediment flocs sampled 
from the Thames Estuary, UK have been digitalised and converted into 
a realistic fluid dynamics model based on Stokesian Dynamics calcula-
tions, allowing us to calculate with high accuracy the viscous resistance 
to sedimentation and therefore the settling velocity. Output of the 
simulations is the full hydrodynamic resistance and mobility matrices, 
whose features are analysed in detail to get insight into the coupling 
between the gravitational force and translational/rotational motion. 
The radius of gyration of the 3 flocs have been calculated and compared 
with the computed hydrodynamic radius. The rotational dynamics of 
the floc, and its motion in the lateral direction (i.e. perpendicular 
to gravity) is also quantified. This work complements and extends 
previous analyses which were limited to synthetically-generated fractal 
flocs.
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Fig. 11. Snapshots of floc S4 observed in the y–z plane with z in the vertical direction as it settles. From (a) to (f) 𝑡 increases from 0 to 500 linearly.
Fig. 12. Snapshots of floc S5 observed in the y–z plane with z in the vertical direction as it settles. From (a) to (f) 𝑡 increases from 0 to 500 linearly.
Two of the flocs have a hydrodynamic radius, 𝑅𝐻 , practically 
identical to the radius of gyration 𝑅𝐺. For the third floc, the ratio 
𝑅𝐻∕𝑅𝐺 is slightly smaller than the other two flocs despite a similar 
gross floc shape, but deviations of the ratio from 1 are relatively 
minor and therefore practically not very important. This result seem 
to support the widely-held assumption that accurate measurements of 
the radius of gyration from scanned experimental images – a purely 
geometry quantity – could give a good estimation of settling rates and 
sedimentation fluxes.

Spatial resolution of scanned images can be important. We found 
that capturing the hydrodynamic radius accurately requires represent-
ing the floc with beads of radius at least 1/30 smaller than the radius 
of smallest sphere completely circumscribing the floc; using larger 
beads, which corresponds to adopting a lower spatial resolution, leads 
to an overestimation of the actual hydrodynamic radius. In terms of 
experimental measurements, this result implies that coarse resolution 
of scanned images will tend to underestimate the true settling rate.
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For a fractal-like flocs, the hydrodynamic resistance of the floc 
can be a function of the fractal dimension if the floc is highly fractal 
with 𝐷𝑓 < 2. This dependence on fluid dynamics is often ignored in 
previous studies (Spencer et al., 2021; Smoczyński et al., 2016; Xu and 
Dong, 2017; Chapalain et al., 2019), which often assume that the main 
effect of the fractal geometry is to change only the effective density of 
the floc, rather than both the effective density and the hydrodynamic 
resistance to translational motion. For example, the formula for the 
settling rate of the classic book by Winterwerp and Van Kesteren (2004) 
is obtained by using the fractal dimension for the estimation of the 
effective weight of the floc (weight minus buoyancy) (see Eq. 4.6 in the 
book), but the formula for the drag force does not account for 𝐷𝑓  (Eq. 
5.1 in the book). The effect of fractal dimension on floc permeability 
has been appreciated in the past, see e.g. Binder et al. (2009) and 
references therein, but not calculated for realistic floc geometries. The 
consideration of a floc geometry that is not synthetic is the main 
contribution of the current paper. 
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Fig. 13. Snapshots of floc S6 observed in the y–z plane with z in the vertical direction as it settles. From (a) to (f) 𝑡 increases from 0 to 500 linearly.
The simulations reveal that the flocs can rotate while settling, 
performing an helical motion. This rotational motion is caused by the 
hydrodynamic interaction between different parts of the floc, which 
produce a coupling between the downward pointing gravitational force, 
the lateral floc velocity and its angular velocity. Because the lateral 
motion will effectively enlarge the collision radius of a floc, this ob-
served lateral displacement could influence sediment transport fluxes 
by altering the rate of coagulation by differential sedimentation (Li and 
Botto, 2024). To illustrate the potential importance of this effect, we 
consider the following model for the rate of coagulation by differential 
sedimentation (Van Leussen, 1988): 

𝛽 = 𝜋(𝑟𝑖 + 𝑟𝑗 )2|𝑤𝑖 −𝑤𝑗 | (26)

Here 𝑟𝑖 and 𝑟𝑗 are the average radii of the two flocs, and 𝑤𝑖 and 
𝑤𝑗 are the corresponding settling velocities. While simple, this model, 
which is based on the advective flux of particles that cross a collisional 
area 𝜋(𝑟𝑖 + 𝑟𝑗 )2 surrounding a test particle 𝑖, is often used in practice 
because it capture the essential physics of flocs moving in rectilinear 
motion parallel to each other (Zhang and Zhang, 2011). If the flocs 
move in the lateral direction, performing a helical motion of radius 
𝑟ℎ𝑒𝑙𝑖𝑐𝑎𝑙,𝑖 = 𝜆𝑟𝑖, the collision area will increase by a factor dependent 
on 𝜆. The model above predicts that the collision rate is enhanced 
by a factor 𝜆2, which can be significant for typical parameters. For 
example, using the results of Fig.  3 to estimate 𝜆, we get 𝜆 ≈ 3, 
which corresponds to an enhancement of the collision rate by almost 
an order of magnitude (our simulations suggest that the exact value 
of 𝜆 is dependent on the exact shape of the floc). While there are 
many parameters that could influence this enhanced collision rate (for 
example, the ratio of the pitch of the helix to the floc size), it is clear 
that because the floc size is small even small deviations from a straight 
sedimentation trajectory induced by floc shape anisotropy can play an 
important role in setting aggregation rates and deposition fluxes. Our 
observation of spiralling motion also links to the notion of ‘‘chirality’’ 
and its effect on sedimentation, recently explored in the fluid dynamics 
community using geometrically well-defined particles (Vaquero-Stainer 
et al., 2024; Melikhov and Ekiel-Jeżewska, 2025).

More broadly, our analysis represents a first step towards the de-
velopment of a protocol to translate high-resolution experimental mea-
surements of three-dimensional floc geometry to high-accuracy fluid 
dynamical calculation enabling to extract testable sedimentation pa-
rameters.
11 
CRediT authorship contribution statement

Chuan Gu: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Methodology, Investigation, For-
mal analysis, Data curation. Heng Li: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Software, Method-
ology, Investigation, Formal analysis, Data curation. Kate L. Spencer: 
Writing – review & editing, Writing – original draft, Supervision, Re-
sources, Project administration, Funding acquisition, Conceptualiza-
tion. Lorenzo Botto: Writing – review & editing, Writing – origi-
nal draft, Supervision, Resources, Project administration, Methodology, 
Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

This research was supported by the UK Natural Environment Re-
search Council (grant number NE/011678/1) and the European Re-
search Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program (Grant Agreement No. 715475, project 
FLEXNANOFLOW).

Data availability

Data will be made available on request.

References

Agrawal, Y., Pottsmith, H., 1994. Laser diffraction particle sizing in STRESS. Cont. Shelf 
Res. 14 (10–11), 1101–1121.

Aidun, C.K., Lu, Y., Ding, E.-J., 1998. Direct analysis of particulate suspensions with 
inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311.

Ali, W., Kirichek, A., Chassagne, C., 2024. Collective effects on the settling of clay 
flocs. Appl. Clay Sci. 254, 107399.

Baugh, J.V., Manning, A.J., 2007. An assessment of a new settling velocity param-
eterisation for cohesive sediment transport modeling. Cont. Shelf Res. 27 (13), 
1835–1855.

Bernal, J.M.G., De La Torre, J.G., 1980. Transport properties and hydrodynamic centers 
of rigid macromolecules with arbitrary shapes. Biopolym.: Orig. Res. Biomol. 19 
(4), 751–766.

http://refhub.elsevier.com/S0301-9322(25)00460-4/sb1
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb1
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb1
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb2
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb2
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb2
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb3
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb3
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb3
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb4
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb4
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb4
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb4
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb4
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb5
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb5
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb5
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb5
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb5


C. Gu et al. International Journal of Multiphase Flow 196 (2026) 105586 
Binder, C., Feichtinger, C., Schmid, H.-J., Thürey, N., Peukert, W., Rüde, U., 2006. 
Simulation of the hydrodynamic drag of aggregated particles. J. Colloid Interface 
Sci. 301 (1), 155–167.

Binder, C., Hartig, M.A., Peukert, W., 2009. Structural dependent drag force and 
orientation prediction for small fractal aggregates. J. Colloid Interface Sci. 331 
(1), 243–250.

Bloomfield, V., Dalton, W., Van Holde, K., 1967a. Frictional coefficients of multisubunit 
structures. I. Theory. Biopolym.: Orig. Res. Biomol. 5 (2), 135–148.

Bloomfield, V., Van Holde, K., Dalton, W., 1967b. Frictional coefficients of multisubunit 
structures. II. Application to proteins and viruses. Biopolym.: Orig. Res. Biomol. 5 
(2), 149–159.

Brady, J.F., Bossis, G., 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 
111–157.

Carrasco, B., de la Torre, J.G., 1999. Hydrodynamic properties of rigid particles: 
comparison of different modeling and computational procedures. Biophys. J. 76 
(6), 3044–3057.

Chapalain, M., Verney, R., Fettweis, M., Jacquet, M., Le Berre, D., Le Hir, P., 2019. 
Investigating suspended particulate matter in coastal waters using the fractal 
theory. Ocean. Dyn. 69, 59–81.

Derksen, J.J., 2014. Simulations of hindered settling of flocculating spherical particles. 
Int. J. Multiph. Flow 58, 127–138.

Dorrell, R., Hogg, A.J., 2010. Sedimentation of bidisperse suspensions. Int. J. Multiph. 
Flow 36 (6), 481–490.

Droppo, I.G., 2001. Rethinking what constitutes suspended sediment. Hydrol. Process. 
15 (9), 1551–1564.

Droppo, I., Walling, D., Ongley, E., et al., 1998. Suspended sediment structure: 
implications for sediment and contaminant transport modelling. IAHS Publication, 
pp. 437–444.

Droppo, I., Walling, D., Ongley, E., et al., 2000. Influence of floc size, density 
and porosity on sediment and contaminant transport. (263), pp. 141–147, IAHS 
Publication(International Association of Hydrological Sciences).

Durlofsky, L., Brady, J.F., Bossis, G., 1987. Dynamic simulation of hydrodynamically 
interacting particles. J. Fluid Mech. 180, 21–49.

Dyer, K., Manning, A., 1999. Observation of the size, settling velocity and effective 
density of flocs, and their fractal dimensions. J. Sea Res. 41 (1–2), 87–95.

Filippov, A., 2000. Drag and torque on clusters of N arbitrary spheres at low Reynolds 
number. J. Colloid Interface Sci. 229 (1), 184–195.

Filippov, A., Zurita, M., Rosner, D., 2000. Fractal-like aggregates: relation between 
morphology and physical properties. J. Colloid Interface Sci. 229 (1), 261–273.

Gibbs, R.J., 1985. Estuarine flocs: their size, settling velocity and density. J. Geophys. 
Res.: Ocean. 90 (C2), 3249–3251.

Gmachowski, L., 1996. Hydrodynamics of aggregated media. J. Colloid Interface Sci. 
178 (1), 80–86.

Guazzelli, E., Morris, J.F., 2011. A Physical Introduction to Suspension Dynamics, vol. 
45, Cambridge University Press.

Happel, J., Brenner, H., 2012. Low Reynolds Number Hydrodynamics: with Special 
Applications to Particulate Media, vol. 1, Springer Science & Business Media.

Harshe, Y.M., Ehrl, L., Lattuada, M., 2010. Hydrodynamic properties of rigid fractal 
aggregates of arbitrary morphology. J. Colloid Interface Sci. 352 (1), 87–98.

Harshe, Y.M., Lattuada, M., 2012. Breakage rate of colloidal aggregates in shear flow 
through Stokesian dynamics. Langmuir 28 (1), 283–292.

Johnson, C.P., Li, X., Logan, B.E., 1996. Settling velocities of fractal aggregates. Environ. 
Sci. Technol. 30 (6), 1911–1918.

Khelifa, A., Hill, P.S., 2006. Models for effective density and settling velocity of flocs. 
J. Hydraul. Res. 44 (3), 390–401.

Kim, A.S., Stolzenbach, K.D., 2002. The permeability of synthetic fractal aggregates with 
realistic three-dimensional structure. J. Colloid Interface Sci. 253 (2), 315–328.

Kim, A.S., Yuan, R., 2005. Hydrodynamics of an ideal aggregate with quadratically 
increasing permeability. J. Colloid Interface Sci. 285 (2), 627–633.

Kirkwood, J.G., Riseman, J., 1948. The intrinsic viscosities and diffusion constants of 
flexible macromolecules in solution. J. Chem. Phys. 16 (6), 565–573.

Koch, D.L., Hill, R.J., 2001. Inertial effects in suspension and porous-media flows. Annu. 
Rev. Fluid Mech. 33 (1), 619–647.

Kranenburg, C., 1994. The fractal structure of cohesive sediment aggregates. Estuar. 
Coast. Shelf Sci. 39 (6), 451–460.

Kumar, R.G., Strom, K.B., Keyvani, A., 2010. Floc properties and settling velocity of 
san Jacinto estuary mud under variable shear and salinity conditions. Cont. Shelf 
Res. 30 (20), 2067–2081.

Lattuada, M., Wu, H., Morbidelli, M., 2003. Hydrodynamic radius of fractal clusters. J. 
Colloid Interface Sci. 268 (1), 96–105.

Lattuada, M., Wu, H., Morbidelli, M., 2004. Radial density distribution of fractal 
clusters. Chem. Eng. Sci. 59 (21), 4401–4413.

Lawrence, T., Carr, S., Wheatland, J., Manning, A., Spencer, K., 2022. Quantifying the 
3D structure and function of porosity and pore space in natural sediment flocs. J. 
Soils Sediments 22 (12), 3176–3188.

Lesser, G.R., Roelvink, J.v., van Kester, J.T.M., Stelling, G., 2004. Development and 
validation of a three-dimensional morphological model. Coast. Eng. 51 (8–9), 
883–915.

Li, H., Ali, W., Chassagne, C., Botto, L., 2025. Estimating the density of individual 
particles from the settling of a particle cloud. Front. Earth Sci. 13, 1710847.
12 
Li, H., Botto, L., 2024. Hindered settling of a log-normally distributed Stokesian 
suspension. J. Fluid Mech. 1001, A30.

Liss, S.N., Droppo, I.G., Flannigan, D.T., Leppard, G.G., 1996. Floc architecture in 
wastewater and natural riverine systems. Environ. Sci. Technol. 30 (2), 680–686.

Maggi, F., Mietta, F., Winterwerp, J., 2007. Effect of variable fractal dimension on the 
floc size distribution of suspended cohesive sediment. J. Hydrol. 343 (1–2), 43–55.

Manning, A., Whitehouse, R., Uncles, R., 2017. ECSA practical handbooks on survey 
and analysis methods: Estuarine and coastal hydrography and sedimentology. pp. 
211–260.

Maxey, M.R., Riley, J.J., 1983. Equation of motion for a small rigid sphere in a 
nonuniform flow. Phys. Fluids 26 (4), 883–889.

McCammon, J., Deutch, J., 1976. Frictional properties of nonspherical multisubunit 
structures. application to tubules and cylinders. Biopolym.: Orig. Res. Biomol. 15 
(7), 1397–1408.

Mehta, A.J., 2013. An Introduction to Hydraulics of Fine Sediment Transport, vol. 38, 
World Scientific Publishing Company.

Melikhov, Y., Ekiel-Jeżewska, M.L., 2025. Dynamical modes of highly elastic loops 
settling under gravity in a viscous fluid. J. Fluid Mech. 1013, A13.

Rahmani, M., Gupta, A., Jofre, L., 2022. Aggregation of microplastic and biogenic 
particles in upper-ocean turbulence. Int. J. Multiph. Flow 157, 104253.

Rotne, J., Prager, S., 1969. Variational treatment of hydrodynamic interaction in 
polymers. J. Chem. Phys. 50 (11), 4831–4837.

Schwarz, C., Cox, T., Van Engeland, T., Van Oevelen, D., Van Belzen, J., Van de Kop-
pel, J., Soetaert, K., Bouma, T.J., Meire, P., Temmerman, S., 2017. Field estimates of 
floc dynamics and settling velocities in a tidal creek with significant along-channel 
gradients in velocity and SPM. Estuar. Coast. Shelf Sci. 197, 221–235.

Smoczyński, L., Ratnaweera, H., Kosobucka, M., Smoczyński, M., Kalinowski, S., 
Kvaal, K., 2016. Modelling the structure of sludge aggregates. Environ. Technol. 
37 (9), 1122–1132.

Sorensen, C.M., Roberts, G.C., 1997. The prefactor of fractal aggregates. J. Colloid 
Interface Sci. 186 (2), 447–452.

Spearman, J., Manning, A.J., 2008. On the significance of mud transport algorithms for 
the modelling of intertidal flats. In: Proceedings in Marine Science, vol. 9, Elsevier, 
pp. 411–430.

Spencer, K.L., Wheatland, J.A., Bushby, A.J., Carr, S.J., Droppo, I.G., Manning, A.J., 
2021. A structure–function based approach to floc hierarchy and evidence for the 
non-fractal nature of natural sediment flocs. Sci. Rep. 11 (1), 14012.

Spencer, K., Wheatland, J., Carr, S., Manning, A., Bushby, A., Gu, C., Botto, L., 
Lawrence, T., 2022. Quantification of 3-dimensional structure and properties of 
flocculated natural suspended sediment. Water Res. 222, 118835.

Swan, J.W., Brady, J.F., Moore, R.S., 174, C., 2011. Modeling hydrodynamic self-
propulsion with Stokesian dynamics. Or teaching Stokesian Dynamics to swim. 
Phys. Fluids 23 (7), 071901.

Swanson, E., Teller, D.C., de Haën, C., 1978. The low Reynolds number translational 
friction of ellipsoids, cylinders, dumbbells, and hollow spherical caps. Numerical 
testing of the validity of the modified oseen tensor in computing the friction of 
objects modeled as beads on a shell. J. Chem. Phys. 68 (11), 5097–5102.

Tambo, N., Watanabe, Y., 1979. Physical characteristics of flocs—I. The floc density 
function and aluminium floc. Water Res. 13 (5), 409–419.

Tozzi, E., Scott, C.T., Vahey, D., Klingenberg, D., 2011. Settling dynamics of asymmetric 
rigid fibers. Phys. Fluids 23 (3), 033301.

Vahedi, A., Gorczyca, B., 2012. Predicting the settling velocity of flocs formed in water 
treatment using multiple fractal dimensions. Water Res. 46 (13), 4188–4194.

Van Leussen, W., 1988. Aggregation of particles, settling velocity of mud flocs a review. 
In: Physical Processes in Estuaries. Springer, pp. 347–403.

Van Saarloos, W., 1987. On the hydrodynamic radius of fractal aggregates. Phys. A 
147 (1–2), 280–296.

Vanni, M., 2000. Creeping flow over spherical permeable aggregates. Chem. Eng. Sci. 
55 (3), 685–698.

Vaquero-Stainer, C., Miara, T., Juel, A., Pihler-Puzović, D., Heil, M., 2024. U-shaped 
disks in Stokes flow: chiral sedimentation of a non-chiral particle. J. Fluid Mech. 
999, A71.

Veerapaneni, S., Wiesner, M.R., 1996. Hydrodynamics of fractal aggregates with radially 
varying permeability. J. Colloid Interface Sci. 177 (1), 45–57.

Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., Davies, A.G., 2013. Morpho-
dynamic modeling using the Telemac finite-element system. Comput. Geosci. 53, 
105–113.

Wheatland, J.A., Bushby, A.J., Spencer, K.L., 2017. Quantifying the structure and 
composition of flocculated suspended particulate matter using focused ion beam 
nanotomography. Environ. Sci. Technol. 51 (16), 8917–8925.

Wheatland, J.A., Spencer, K.L., Droppo, I.G., Carr, S.J., Bushby, A.J., 2020. Develop-
ment of novel 2D and 3D correlative microscopy to characterise the composition 
and multiscale structure of suspended sediment aggregates. Cont. Shelf Res. 200, 
104112.

Wiltzius, P., 1987. Hydrodynamic behavior of fractal aggregates. Phys. Rev. Lett. 58 
(7), 710.

Winterwerp, J.C., 1998. A simple model for turbulence induced flocculation of cohesive 
sediment. J. Hydraul. Res. 36 (3), 309–326.

Winterwerp, J.C., Van Kesteren, W.G., 2004. Introduction to the Physics of Cohesive 
Sediment Dynamics in the Marine Environment. Elsevier.

http://refhub.elsevier.com/S0301-9322(25)00460-4/sb6
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb6
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb6
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb6
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb6
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb7
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb7
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb7
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb7
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb7
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb8
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb8
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb8
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb9
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb9
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb9
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb9
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb9
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb10
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb10
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb10
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb11
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb11
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb11
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb11
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb11
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb12
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb12
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb12
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb12
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb12
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb13
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb13
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb13
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb14
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb14
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb14
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb15
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb15
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb15
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb16
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb16
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb16
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb16
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb16
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb17
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb17
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb17
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb17
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb17
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb18
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb18
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb18
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb19
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb19
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb19
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb20
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb20
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb20
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb21
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb21
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb21
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb22
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb22
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb22
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb23
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb23
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb23
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb24
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb24
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb24
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb25
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb25
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb25
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb26
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb26
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb26
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb27
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb27
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb27
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb28
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb28
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb28
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb29
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb29
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb29
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb30
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb30
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb30
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb31
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb31
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb31
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb32
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb32
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb32
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb33
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb33
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb33
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb34
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb34
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb34
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb35
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb35
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb35
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb35
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb35
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb36
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb36
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb36
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb37
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb37
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb37
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb38
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb38
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb38
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb38
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb38
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb39
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb39
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb39
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb39
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb39
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb40
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb40
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb40
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb41
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb41
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb41
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb42
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb42
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb42
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb43
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb43
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb43
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb44
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb44
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb44
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb44
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb44
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb45
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb45
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb45
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb46
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb46
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb46
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb46
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb46
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb47
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb47
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb47
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb48
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb48
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb48
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb49
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb49
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb49
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb50
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb50
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb50
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb51
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb52
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb52
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb52
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb52
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb52
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb53
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb53
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb53
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb54
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb54
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb54
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb54
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb54
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb55
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb55
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb55
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb55
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb55
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb56
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb56
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb56
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb56
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb56
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb57
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb57
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb57
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb57
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb57
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb58
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb59
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb59
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb59
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb60
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb60
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb60
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb61
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb61
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb61
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb62
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb62
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb62
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb63
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb63
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb63
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb64
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb64
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb64
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb65
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb65
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb65
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb65
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb65
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb66
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb66
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb66
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb67
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb67
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb67
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb67
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb67
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb68
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb68
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb68
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb68
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb68
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb69
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb70
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb70
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb70
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb71
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb71
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb71
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb72
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb72
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb72


C. Gu et al. International Journal of Multiphase Flow 196 (2026) 105586 
Xu, C., Dong, P., 2017. A dynamic model for coastal mud flocs with distributed fractal 
dimension. J. Coast. Res. 33 (1), 218–225.

Yamakawa, H., 1970. Transport properties of polymer chains in dilute solution: 
hydrodynamic interaction. J. Chem. Phys. 53 (1), 436–443.

Yu, Z., Niu, X., 2024. The motion of three-dimensional fractal aggregates in 
homogeneous shear flow. Phys. Fluids 36 (1).

Zhang, Z., Botto, L., Prosperetti, A., 2006. Microstructural effects in a fully-resolved 
simulation of 1,024 sedimenting spheres. In: IUTAM Symposium on Computational 
Approaches To Multiphase Flow. Springer, pp. 197–206.
13 
Zhang, J.-F., Zhang, Q.-H., 2011. Lattice Boltzmann simulation of the flocculation 
process of cohesive sediment due to differential settling. Cont. Shelf Res. 31 (10), 
S94–S105.

Zhu, Z., Hu, R., Lei, Y., Shen, L., Zheng, X., 2022. Particle resolved simulation of 
sediment transport by a hybrid parallel approach. Int. J. Multiph. Flow 152, 
104072.

http://refhub.elsevier.com/S0301-9322(25)00460-4/sb73
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb73
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb73
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb74
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb74
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb74
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb75
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb75
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb75
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb76
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb76
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb76
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb76
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb76
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb77
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb77
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb77
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb77
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb77
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb78
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb78
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb78
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb78
http://refhub.elsevier.com/S0301-9322(25)00460-4/sb78

	Sedimentation and resistance tensor of a river floc from 3D X-ray microtomography
	Introduction
	Extracting floc shape from X-ray CT images
	Simulation method and structure of the mobility and resistance matrices
	Results
	Fractal dimension and porosity
	Hydrodynamic radius
	Dynamic settling behaviour

	Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


