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A new detection method for noisy channels with
time-varying offset

Kees A. Schouhamer Immink, Fellow, IEEE and Jos H. Weber, Senior Member, IEEE

Abstract—We consider noisy communications and storage sys-
tems that are hampered by varying offset of unknown magnitude
such as low-frequency signals of unknown amplitude added to
the sent signal. We study and analyze a new detection method
whose error performance is independent of both unknown base
offset and offset’s slew rate. The new method requires, for a
codeword length n ≥ 12, less than 1.5 dB more noise margin than
Euclidean distance detection. The relationship with constrained
codes based on mass-centered codewords and the new detection
method is discussed.

Keywords− channel mismatch, constrained code, Pearson
code, Pearson distance, slew rate, varying offset.

I. INTRODUCTION

Euclidean-distance-based detection of transmitted or stored
encoded data signals is optimal in the presence of white
Gaussian noise, but its error performance is vulnerable in the
presence of channel mismatch, such as offset of unknown
magnitude. Unknown offset magnitude variations may be
caused by a variety of interference sources. For example,
in optical disc recording, scratches and finger prints on the
disc [1] cause low-frequency varying offset in the read-out
signal.

In nonvolatile memories (NVMs) data are represented by
stored charge [2, 3, 4]. The stored charge can leak away
from the floating gate through the gate oxide or through
the dielectric. The amount of leakage, called drift, depends
on various physical parameters, such as, for example, the
device temperature and the time elapsed between writing and
reading [5].

In [6, 7], the authors assume that the unknown offset mis-
match can be approximated by a zeroth-order, constant, term
for all symbols in a codeword. In this model, the offset term
may vary from word to word, but is fixed within a codeword.
The authors advocate detection based on the Pearson distance,
which is resilient to unknown, but constant within a codeword,
offset and gain (scaling) of the received signal [6, 7, 8].
The zeroth-order model can be overly simplistic in specific
communications channels, where the offset or low-frequency
interference may vary so rapidly that the basic premise that
the offset is constant within a codeword is false.

A low-frequency varying offset can be segmented into an
approximately piecewise linear function of time, where the
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‘pieces’ have a length equal to the codeword length. As
discussed in [9], memory cells of nonvolatile data storage
products that are closer to warmer spots lose their data charge
more rapidly than memory cells closer to colder spots, so that
offset loss is not constant within a codeword [4]. Evidently,
the (varying) offset cannot be considered to be equal for all
symbols in a codeword, and alternative detection methods have
been sought for.

It is assumed in this paper that the unknown time-varying
offset can be approximated by a word-wise first-order term
that varies linearly over the codeword symbols, where both the
base offset and offset’s slew rate (the offset’s first-order rate
of change) are unknown. Both unknown terms, the base offset
and offset’s slew rate, may vary from codeword to codeword,
but are fixed within a codeword. The quest for advanced
detection techniques that are immune to unknown, first-order,
offset variation is not new. Skachek and Immink [9] introduced
mass centered codewords whose detection is independent
of both unknown base offset and offset’s slew rate. They
concluded that the redundancy of their scheme is prohibitively
large for many applications. Bu and Weber [10] also addressed
a channel model where the offset varies within a codeword.
They introduced Pearson-distance-based detection in conjunc-
tion with a difference operator and a pair-constrained code.
Their adopted code has significantly less redundancy than
the previously proposed mass-centered codes [9]. However,
it requires a 3 dB higher noise margin, which makes it less
suitable for noise-dominant channels.

Alternative solutions are wanted that are less costly in terms
of noise figure or redundancy. To that end, we propose and
analyze a detection method based on a new distance measure,
whose error performance is independent of both unknown base
offset and offset’s slew rate. The rate of the requisite binary
constrained code is very high as only one codeword must
be barred from the repertoire of 2n possible codewords. It
requires less than 1.5 dB more noise margin than Euclidean
distance detection, or less than 1 dB with respect to Pearson
distance detection, both for n = 12.

The paper is organized as follows. In Section II, we start
with preliminaries, a description of the adopted channel model,
and a description of the properties of prior art minimum
Pearson distance detection. In Section III, we propose a novel
detection method that improves the detector’s resilience in case
the received signal is distorted by changing offset. We analyze
the error performance of the new detection method, and offer
results of simulations. Receiver complexity is discussed in
Section IV. Section V furnishes the conclusions of our paper.
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II. PRELIMINARIES, CHANNEL MODEL, PRIOR ART

Let S be a codebook of selected binary codewords x =
(x1, . . . , xn), where the integer n denotes the codeword length,
and xi ∈ {0, 1}. The received signal is denoted by the vector
r having real entries ri, which is defined by

ri = xi + νi + Ii, i = 1, 2, . . . , n. (1)

The (real) variables νi denote zero-mean white additive Gaus-
sian noise samples with variance σ2, for example caused
by thermal noise. The (real) variable Ii denote time-varying
interfering offset. It is assumed that the interfering offset, Ii,
can be approximated by a word-wise linear function waveform
(ramp), which is denoted by

Ii = b0 + b1i, i = 1, 2, . . . , n, (2)

where the (real) coefficients b0 and b1 denote the unknown
base offset and the unknown offset’s slew rate, respectively.
Both offset and offset’s slew rate are assumed to be constant
within a codeword; they may vary from codeword to code-
word.

A. Motivating example

The error performance of Euclidean detection is seriously
deteriorated in the face of relatively small mismatch. In
order to demonstrate this, Figure 1 shows, for n = 12, the
word error rate (WER) versus signal-to-noise ratio, SNR =
−20 log(σ) (dB), of in Curve (c) Euclidean detection, ideal
noisy channel without mismatch, i.e. b0 = b1 = 0, in Curve (a)
noisy channel with offset mismatch, b0 = 0.1 and b1 = 0.01.
The diagram clearly shows that the error performance of
Euclidean detection is seriously degraded by a small offset.
Curve (b) is obtained using a novel detection scheme, whose
error performance is independent of both channel mismatch
terms b0 and b1; the new method is described in Section III. We
may observe that in the matched case, the error performance
of the new method is inferior to that of Euclidean detection,
but in case of mismatch the situation changes, and the new
method has a superior error performance. The development
and analysis of the new method is the main topic of our paper,
and described in Section III and further.

B. Prior art, constant offset

In order to make the error performance independent of
unknown (base) offset mismatch, Immink and Weber [6]
introduced the (modified) Pearson distance between two n-
vectors. Let x, x̂ ∈ S, be two n-vectors, where S is the
set of chosen codewords. For the base offset mismatch case,
Ii = b0, they proposed the distance measure between the
received vector r and x̂

δ′(r, x̂) =
n∑

i=1

(
ri − x̂i + x̂

)2
, (3)

where y = 1
n

∑n
i=1 yi denotes the average of the entries of

an n-vector y. Since δ′(r,0) = δ′(r,1), the receiver cannot
distinguish between the all-0 word and the all-1 word, denoted
by 0 and 1, respectively. The ambiguity can be remedied by
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Fig. 1. Word error rate, WER versus signal-to-noise ratio, SNR =
−20 log(σ) (dB). Curve (a) shows Euclidean detection with channel
mismatch, b0 = 0.1, b1 = 0.01, Curve (b) shows the new detection
method, which is detailed in Section III, and Curve (c) shows
Euclidean detection for the ideal AWGN channel, no mismatch,
b0 = b1 = 0. All curves for n = 12.

arbitrarily excluding one of them, say the word 0, so that
S = {0, 1}n \ {0}.

A minimum Pearson distance detector outputs the codeword

xo = arg min
x̂∈S

δ′(r, x̂). (4)

By substituting ri = xi +νi +b0 into (3), we can easily verify
that the outcome of (4) is independent of b0 for codewords in
S. Note that offset may vary from codeword to codeword, but
not within a codeword. In many practical situations of interest,
however, the offset within a codeword is not constant, but
slowly varying, i.e, in our model b1 6= 0. In the next section,
we develop a new detection method that can cope with varying
offset Ii = b0 + b1i, b1 6= 0.

III. NEW DISTANCE MEASURE

In the vein of (3), we establish a distance measure that is
independent of the varying offset term Ii = b0 + b1i.

A. Definition of distance measure

Define

δ(r, x̂) =
n∑

i=1

(ri − x̂i + ϕi(x̂))
2
, (5)

where the proposed x̂-dependent term is

ϕi(x̂) = β0(x̂) + β1(x̂)i. (6)

The coefficients β0(x̂) and β1(x̂) are to be determined to
ensure that the outcome of the detection is independent of the
unknown offset parameters b0 and b1. The decoded codeword,
xo, is found, as in (4), by the minimization process

xo = arg min
x̂∈S

δ(r, x̂). (7)
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After substituting (1) into (5), we have

δ(r, x̂) =
n∑

i=1

(xi + νi − x̂i + ϕi(x̂))
2

+ 2
n∑

i=1

(−x̂i + ϕi(x̂)) Ii

+
n∑

i=1

[I2i + 2Ii(xi + νi)]. (8)

The first term is independent of the offset term Ii. The third
term is independent of x̂, and therefore irrelevant in view of
the minimization process (7). The second term

2
n∑

i=1

(−x̂i + ϕi(x̂)) (b0 + b1i), (9)

is independent of the unknown variables b0 and b1 if we choose
the coefficients β0(x̂) and β1(x̂) in such a way that, see (6),

n∑
i=1

(−x̂i + β0(x̂) + β1(x̂)i) = 0 (10)

and
n∑

i=1

i(−x̂i + β0(x̂) + β1(x̂)i) = 0. (11)

After substituting the well-known expressions for
∑
ik, k =

1, 2, we obtain two equations for the unknown coefficients,
β0(x̂) and β1(x̂):{

β0(x̂) + n+1
2 β1(x̂) = ζ0(x̂)

n+1
2 β0(x̂) + (n+1)(2n+1)

6 β1(x̂) = ζ1(x̂),
(12)

where the zeroth and first moment of the codeword x̂ are
defined by

ζ0(x̂) =
1

n

n∑
i=1

x̂i and ζ1(x̂) =
1

n

n∑
i=1

ix̂i. (13)

Solving the linear system (12) in the unknown coefficients,
β0(x̂) and β1(x̂), yields

β0(x̂) = 2
(2n+ 1)ζ0(x̂)− 3ζ1(x̂)

n− 1
(14)

and

β1(x̂) = 6
−(n+ 1)ζ0(x̂) + 2ζ1(x̂)

n2 − 1
, (15)

which establishes with (5) and (6) the new detector algorithm.
In the next subsection, we analyze the error performance of
the new detection method based on (5).

B. Analysis of the error performance

We adopt here the same set of codewords, S = {0, 1}n\{0},
which is used in conjunction with the prior art modified
Pearson distance detector [6]. Let x ∈ S be the sent codeword,
and let x̂ ∈ S , x̂ 6= x. In view of (7), δ(r, x̂) can be
rewritten as an equivalent expression, which is convenient
for the computation of the error performance. The detector’s
performance is independent of a term c1 + c2i, (c1 and c2

arbitrary constants), thus we may delete Ii = b0 + b1i or sub-
tract ϕi(x) = β0(x) + β1(x)i without effect on the outcome
of (7). Then, exploiting the linearity of the expressions (13),
(14), (15) in ϕi, we derive from (8) after deleting irrelevant
terms:

δ(r, x̂) ≡
n∑

i=1

(xi − x̂i + ϕi(x̂) + νi)
2

≡
n∑

i=1

(xi − x̂i + ϕi(x̂)− ϕi(x) + νi)
2

=
n∑

i=1

(xi − x̂i − ϕi(x− x̂) + νi)
2
. (16)

where the equivalence symbol ≡ denotes that the expressions
on both sides of ≡ yield xo after the minimization (7). Let
e = x− x̂, then we obtain

δ(r, x̂) ≡
n∑

i=1

(ei − ϕi(e) + νi)
2
. (17)

The detector errs, if it restores x̂ instead of the sent x, that
is, if

δ(r, x̂) < δ(r,x), (18)

or, after using (17),

2
n∑

i=1

(ei − ϕi(e))νi +
n∑

i=1

(ei − ϕi(e))2 < 0. (19)

The noise samples, νi, are assumed to be white and drawn
from N(0, σ2), so that the pairwise error probability Pr(x→
x̂) equals

Pr(x→ x̂) = Pr(δ(r, x̂) < δ(r,x))

= Q

(
d(x, x̂)

2σ

)
, (20)

where
Q(x) =

1√
2π

∫ ∞
x

e−
u2

2 du, (21)

and the squared noise distance d2(x, x̂) between x and x̂ is

d2(x, x̂) =

n∑
i=1

(ei − ϕi(e))
2

= δ(0, e). (22)

The union bound offers a useful tool to approximate the
average word error rate (WER). The WER is upperbounded
by [6]

WER ≤
∑
d

KdQ

(
d(x, x̂)

2σ

)
, (23)

where Kd is the average number of neighbors at distance d =
d(x, x̂). The minimum noise distance between any pair of
distinct codewords, denoted by dmin, is defined by

dmin = min
x,x̂∈S,x6=x̂

d(x, x̂). (24)

The union bound estimate of the word error rate is

WER ≈ Ndmin
Q

(
dmin

2σ

)
, σ � 1, (25)

where the average number of neighbors at minimum noise
distance dmin is denoted by Ndmin

.
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1) Analysis of minimum noise distance dmin: For relatively
small values of n we can, using exhaustive search (24), find
the worst case error vector e. Substituting the found e into (22)
yields the expression (26) for various values of n, n < 30 (the
maximum word length, n, of our search), so that

d2min =


n2−1
16n , n = 3, 5, 7, 9,
n(n2−4)
16(n2−1) , n = 2, 4, 6, 8, 10,
(n−1)(n−2)

n(n+1) , 11 ≤ n < 30.

(26)

Figure 2 displays the minimum noise distance,
20 log(dmin) (dB) versus codeword length n, where the
results are obtained using (26). As a reference we plotted the
minimum noise distance of the prior art method that offers
constant offset immunity, based on the distance measure
(3). We notice for small values of n a significant loss in
the receiver’s noise margin with respect to conventional
Euclidean distance detection due to the decrease in dmin. For
n ≥ 12, the loss is less than 1.5 dB, (for n ≥ 18 the loss
is less than 1 dB). Note that the method advocated by Bu
et al. [10] that aims to solve the same problem has a 3 dB
noise penalty, irrespective of the codeword length.

For large n, the minimum distance computation is amenable
for analysis. We approximate β0(e) and β1(e) by, see (14) and
(15),

β0(e) ≈ 4nw − 6s

n2
and β1(e) ≈ 12s− 6nw

n3
,

where we use the short-hand notation w = nζ0(e) and s =
nζ1(e). Then, after working out (22), we obtain

δ(0, e) ≈ dH + 4
3nws− n2w2 − 3s2

n3
, (27)

where dH =
∑
e2i denotes the Hamming distance between x

and x̂. For 1 ≤ dH ≤ n − 1, we find that minimizing (27)
over w and s gives

min
s,w

δ(0, e) ≈ dH −
4n2d2H − 6nd3H + 3d4H

n3
, n� 1, (28)

where the minimum is achieved at the maximum values for w
and s, i.e., w = dH and s = n(n+1)/2− (n−dH)(n−dH +
1)/2. The expression in (28) is at a minimum for dH = 1 and
dH = n−1, which shows that a large Hamming distance does
not necessarily lead to a large noise distance δ(0, e). Observe
that this minimum is approximately 1−4/n. For the remaining
case dH = n, we find from (27) that mins,w δ(0, e) ≈ 4,
achieved when w and s are maximum, i.e., w = n − 2, and
s = n(n + 1)/2 − 2. Note that the choice w = dH = n
and s = n(n + 1)/2, corresponding to e = 1, would lead to
δ(0, e) = 0, but this undesirable case is avoided by excluding
the all-zero vector from the code S. In conclusion, we obtain

d2min ≈ 1− 4

n
, n� 1. (29)

For detection based on (3), which refers to a constant offset,
the minimum squared noise distance equals

d2min = 1− 1

n
. (30)

The minimum distance of the new method is smaller than
that of the prior art, which accounts for the immunity against
varying offset that we created.
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Fig. 2. Minimum noise distance, 20 log(dmin) (dB), versus codeword
length n for the new scheme and the prior art using (3) as a reference.

2) Analysis of Ndmin
: Let 1 be the all-1 word, and

x1 = (0, . . . , 0, 1), and x2 = (1, 0, . . . , 0). For n > 11,
each codeword x ∈ S \ {1,x1,x2}, has two words x̂ at
minimum noise distance d(x, x̂) = dmin that differ at the
first or last position. The words x1 = (0, . . . , 0, 1) and
x2 = (1, 0, . . . , 0) also have two neighbors at minimum
noise distance, namely x̂ = 1 and x̂ = (1, 0, . . . , 0, 1). The
all-1 word, x = 1, has four neighbors at minimum noise
distance, namely (1, 0, . . . , 0), (0, 1, . . . , 1), (0, . . . , 0, 1), and
(1, . . . , 1, 0), so that the average number of neighbors at
minimum noise distance is Ndmin

= 2 + 2/|S| ≈ 2.

C. Results

We have conducted simulations and computations to eval-
uate the error performance of the new detection method. We
started by comparing the word error rate of the new detection
scheme as computed by two methods and by simulations.
Results are shown in Figure 3, which displays the WER
versus SNR = −20 log(σ) (dB) for the union bound (23),
union bound estimate (25), and computer simulations. The
error performance is independent of mismatch terms b0 and b1.
We note that the simulations agree favorably with the union
bound (23); the difference between union bound and union
bound estimate is large in the range of small SNR.

We also appraised the error performance of various detec-
tion schemes. Figure 1 shows results of computations (union
bound), where we compare the word error rate of various
scenarios of offset and detection schemes.

Figure 4 displays the word error rate versus SNR for
three detection methods, namely Curve 1) Euclidean distance
detection, Curve 2) modified Pearson distance detection us-
ing distance measure (3), and Curve 3) the new detection
method. Results are shown for the ideal noisy channel and
the mismatched channel, b0 = 0, b1 = 0.025. Without offset
mismatch, both Euclidean and modified Pearson distance
detection perform better than the new method. The situation
changes when there is a varying offset. Then, both Euclidean
and modified Pearson distance detection perform less than
the new detection method. The error performance of the new
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Fig. 3. Word error rate, WER versus SNR = −20 log(σ) (dB) of
the new detection method computed using (a) union bound (23), (b)
union bound estimate (25), and by simulations. The points marked
with ‘*’ result from simulations. Note that Curve (a) is the same as
Curve (b) in Figure 1. For all curves, n = 12.

detection method is independent of the offset terms b0 and
b1. If the channel is ideal b0 = b1 = 0, the new detection
method loses error performance with respect to the prior art
detection methods. If, however, the channel is mismatched
b0, b1 6= 0, we notice, see Curve (3), that the error performance
is unaffected, while the alternative schemes lose performance.
For all curves, we have n = 12. The performance curves for
the ideal channel, b0 = b1 = 0, have been computed for
Curve (2a) (Pearson distance detection) using, see [6, eqn.
(28)],

WERp ≈ nQ

(
1

2σ

√
1− 1

n

)
, (31)

and for Curve (1a) (Euclidean distance detection) by

WERe ≈ nQ
(

1

2σ

)
, (32)

where WERp and WERe denote the word error rate of
Pearson and Euclidean distance detection, respectively. We
used computer simulations for the mismatched case shown by
Curves (1b) and (2b). Curve (3) showing the new method’s
error performance was computed using union bound (23) and
confirmed by simulations.

D. Relationship with mass-centered codewords

In [9], an alternative approach has been disclosed for ob-
taining immunity against varying offset by using a constrained
code. The constrained set, Sm, of mass-centered codewords is
defined by [9]

Sm = {x ∈ {0, 1}n : Ω(x) = 0}, (33)

where

Ω(x) = 2
n∑

i=1

(
i− n+ 1

2

)
xi. (34)

17 17.5 18 18.5 19 19.5 20

SNR

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

W
E

R

(2a)

(1b)

(2b)

(1a)

(3)

Fig. 4. Word error rate, WER versus SNR = −20 log(σ) (dB) of (1a)
Euclidean detection, no offset; (1b) Euclidean detection, b0 = 0, b1 =
0.025; (2a) Pearson detection, no offset; (2b) Pearson detection, b0 =
0, b1 = 0.025; (3) new detection method, with and without offset.
For all curves, n = 12.

We simply rewrite (34) as, see (13) and (15),

Ω(x) = 2

n∑
i=1

ixi − (n+ 1)

n∑
i=1

xi

= n (2ζ1(x)− (n+ 1)ζ0(x))

=
n(n2 − 1)

6
β1(x). (35)

For mass-centered codewords, where Ω(x) = 0, we may write

ζ1(x) =
n+ 1

2
ζ0(x),

so that, using (14) and (15),

β0(x) = ζ0(x) = x and β1(x) = 0. (36)

Clearly, by selecting a set of mass-centered codewords, we are
able to significantly simplify the detection routine as the term
β1(x)i is absent in (5), at the cost of extra code redundancy.
We also note that as β0(x) = x, the distance measure δ(r, x̂)
changes into the prior art δ′(r, x̂), see (3). The rate of a mass-
centered code is not attractive for many applications, see, for
example, Table 1 of [9], which shows the size of Sm versus
n.

IV. RECEIVER IMPLEMENTATION COMPLEXITY

The complexity of the encoder and detector/decoder can
be partitioned into three major blocks, namely a) encoding
arbitrary user data into a codeword in the Pearson code S and
vice versa, b) computation or storage of the coefficients β0(x̂)
and β1(x̂), and c) evaluation of the distance measure (7) for
all codewords in S.

A. Encoder/decoder complexity

Systematic methods for designing Pearson codes that effi-
ciently translate (arbitrary) source data into n-bit codewords
in the codebook S = {0, 1}n \ {0} and vice versa have
been presented in [11, 12, 13]. The rate of the encoder,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 17,2022 at 17:02:57 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3140613, IEEE
Transactions on Information Theory

R = 1 − 1
2n−1 , presented in [13] is close to the maximum

possible, and the complexity of the encoder and decoder scales
linearly with n.

B. Coefficient storage

The receiver requires the coefficients β0(x̂) and β1(x̂)
for computing (5). The coefficients β0(x̂) and β1(x̂) can be
calculated ‘on the fly’ for each codeword x̂ ∈ S, but in order
to save computation time, they are preferably pre-calculated
and stored in a memory. The coefficients storage requires at
first sight 2n−1 memory cells. We may, however, save on the
coefficients storage as illustrated by the following observation.

We partition the codebook set S in distinct subsets of
codewords that have equal zeroth- and first-order moments.
Let m0 and m1 be two positive integers. The codeword subset
Sm0,m1 with prescribed moments m0 and m1 is defined by

Sm0,m1
=

{
x ∈ S :

n∑
i=1

xi = m0 ∧
n∑

i=1

ixi = m1

}
. (37)

Let N(n) denote the number of distinct nonempty subsets
Sm0,m1 .

Theorem 1: The number of distinct nonempty subsets
Sm0,m1 is upper bounded by

N(n) ≤ n(n2 + 5)

6
. (38)

Proof: Let q =
∑n

i=1 xi = m0 denote the number of 1’s in x
(weight), then

m1 =

n∑
i=1

ixi ∈ {q1, q1 + 1, q1 + 2, . . . , q2},

where q1 = q(q + 1)/2 (all q 1’s at the beginning of x) and
q2 = nq − q(q − 1)/2 (all q 1’s at the end of x). Then the
number of distinct values of m1 for a given m0 equals q2 −
q1 + 1 = nq− q2 + 1. The number of distinct pairs (m0,m1)
is

n∑
q=1

(nq − q2 + 1) =
n(n2 + 5)

6
,

which proves the theorem.

We conclude that the number of distinct coefficient pairs
β0(x̂) and β1(x̂) equals N(n), so that the decoder storage
complexity grows polynomially, ∝ n3, with the codeword
length n. If the size of the subset Sm0,m1

is small, this does
not provide great solace, but for larger subset sizes it may
offer an attractive saving in coefficient storage.

C. Time complexity

For evaluating (7), the decoder requires |S| = 2n − 1
computations of δ(r, x̂) plus comparisons, which makes the
new method unattractive for very large n. It is shown in [6] that
the (time) complexity of the prior art method based on (3) can
be reduced to n computations and comparisons using Slepian’s
method [14]. This significant reduction in time-complexity is

possible as S consists of n permutation codes. We cannot
apply Slepian’s method here as the subset Sm0,m1 is not a
simple permutation code. Although the storage requirements
of the precalculated coefficients can be reduced as shown
above, the evaluation of (7) requires 2n− 1 computations and
comparisons per decoded codeword.

V. CONCLUSIONS

We have presented a new detection method for noisy
channels with an offset of monotonically increasing time-
varying magnitude. The error performance of the new detec-
tion method is independent of both unknown base offset and
offset’s slew rate. The rate of the requisite constrained code
is very high as only one codeword has to be barred. Com-
puter simulations have been conducted to appraise the error
performance of the new detection method. The simulations
compare favorably with theory based on the union bound.
For large signal-to-noise ratios, the new method requires, for
a codeword length n ≥ 12, less than 1.5 dB more noise
margin than Euclidean distance detection or less than 1 dB
loss with respect to Pearson detection. The relationship with
constrained codes based on mass-centered codewords and the
new detection method has been discussed.
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