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Abstract

The world is transitioning to a low carbon power generation system, and
local energy storage plays a key role in this transition. Many of such energy
storage systems comprises batteries and power electronics that is controlled
by firmware. Uptime of these systems is vital, and consequently any down-
time should be avoided.

This thesis discusses the impact of firmware updating on the time-critical
embedded systems, in particular energy storage systems. Concretely, firmware
update procedures for the Tesla Powerwall product is designed, implemented
and evaluated. The engineered solution offers a flexible update method:
it supports multiple physical layers for data communication and the used
communication speed does not affect the downtime of the product. The
developed update procedure is shown to be reliable and has been used tens
of thousands of times to date. The downtime has shown to be mainly de-
pendent on the speed of the CAN bus, where the file transfer dominates the
update process duration.
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Chapter 1

Introduction

We’re running the most
dangerous experiment in history
right now, which is to see how
much carbon dioxide the
atmosphere can handle before
there is an environmental
catastrophe.

Elon Musk

1.1 Renewable Energy

Over the next decades, the world is transitioning to a low carbon power
generation system. More and more energy will be sourced from alternative
energy sources such as solar power, wind power, and hydropower. Moreover,
an increasing number of home owners have the desire to being self-sufficient
in their energy generation and consumption. Stationary energy storage so-
lutions are playing a key role in the reliable and economic operation of grid
energy solutions with significant renewable power sources [1, p. 519].

On April 30th 2015, Tesla, Inc. introduced the Tesla Powerwall : a sta-
tionary energy storage system designed for residential usage.1 A Powerwall
enables home owners to charge the Powerwall during times when solar panels
are generating electricity, or during off-peak hours when the price of energy
is low, and discharge during high on-peak hours. Another use case for the
Powerwall is to provide backup power during a power grid outage.

The system layout of a home power system using the Powerwall is depicted
in Figure 1.1. An inverter is connected to both solar panels and to the
Powerwall. The inverter runs optimization strategies to make the best use
of the available power and energy.

1https://www.teslamotors.com/powerwall
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Figure 1.1: Overview of a residential stationary energy storage system that
includes a solar generation installation. An inverter is connected by a DC
bus to the Powerwall and to DC-coupled solar installations. Alternatively,
solar installations are AC-coupled by solar micro-inverters. The inverter is
connected to the home’s electrical panel, which is the point of connection of
the house with the electrical grid. Home loads, consuming AC voltage, are
connected to the electrical panel. Most modern inverters are connected to
the Internet, allowing monitoring of the system’s performance and remote
operation.

The inverter is connected to the Internet to allow data logging, remote
diagnostics and firmware updating capabilities. A communications bus con-
nects the inverter with the Powerwall, and enables the inverter to send op-
erational parameters to and obtain operational information from the Pow-
erwall.

1.2 Problem Statement

This thesis encompasses the challenge of updating the firmware of time-
critical products. Such systems are required to have as little as possible
downtime. Actions such as updating of the firmware of these products could
introduce temporary or permanent (e.g. if a firmware update fails) downtime
in the product’s functioning.

The main statement is the following: to what extent can the negative
impacts of firmware updates of time-critical battery systems be minimized?

2



1.3 Contributions

The work as presented in this thesis is the design, implementation and eval-
uation of a timely and robust firmware update method for a time-critical
embedded systems product, the Tesla Powerwall.

Numerous design requirements, decisions and limitations are discussed
with regard to topics such as the firmware update method’s robustness, du-
ration and extendibility. The result of this thesis is a reliable and extendible
solution for firmware updating of embedded systems. Moreover, downtime
of the Powerwall as introduced by the firmware update is minimized. The
design can be applied to similar types of time-critical embedded systems.

This thesis is structured as follows:

• Chapter 2 discusses the system layout and restrictions of the Powerwall
product. In addition, several detailed requirements for the Powerwall’s
firmware update process are specified.

• Chapter 4 discusses the requirements and design of the firmware up-
date process. In addition, this chapter discusses a number of theoret-
ical parameters of the design, such as firmware update duration and
memory space usage.

• Chapter 5 evaluates the actual parameters the implemented firmware
update solution. In particular, the duration of each step of the firmware
update process is measured and the results are discussed.

• Chapter 6 discusses the conclusions to the implemented firmware up-
date solution and discusses in what manner future work can improve
the implemented solution.

3
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Chapter 2

System Layout

2.1 Powerwall Overview

The inverter is responsible for determining the optimal power distribution
from solar panels, to and from Powerwalls, and to and from the utility grid.
To control the power going into and out of a Powerwall, the inverter has to
communicate with the Powerwall in order to control power conversion by
the Powerwall. In addition, the inverter can obtain operational parameters
from the Powerwall, e.g. state of charge of the battery.

As shown in Figure 1.1, a communication bus is connected between an in-
verter and a Powerwall. The Powerwall integrates two physical layers, which
both can be used as means for communication with inverters. Specifically,
the physical layers are:

1. A RS485 bus, operating at a communication speed of 9,600 bps and
using serial port configuration 8-N-1 (i.e. 8 data bits, no parity bits,
one stop bit). Moreover, this RS485 bus strictly transports the Modbus
RTU application layer protocol, as specified in [2].

2. A Controller Area Network (CAN) bus, operating at a communication
speed of 250 kbps.

The Modbus protocol is the de facto standard communication protocol for
communication between electronic control units (ECUs) in energy storage
systems. The CAN bus is implemented in accordance to ISO 11898 spec-
ification [3]. Powerwalls implement addressing schemes for both physical
layers, allowing an inverter to be connected to multiple Powerwalls on the
same communications bus.

The communication busses internal to the Powerwall are depicted in Fig-
ure 2.1. Internally to the Powerwall, the RS485 bus that is connected to
the inverter is connected to the Powerwall’s Interface ECU. This ECU acts
as a Modbus slave device and responds to Modbus requests from a Modbus

5



Figure 2.1: System-level overview of communication busses between a Tesla
Powerwall and a third-party inverter. An inverter is connected to a Power-
wall using either a RS485 bus or a CAN bus. Internally to the Powerwall,
both RS485 and CAN busses are connected to the Powerwall’s Interface
ECU. The Interface ECU is connected by a CAN bus to various other of the
Powerwall’s internal ECUs.

master, a role taken by the inverter. The CAN bus that is connected to the
inverter is connected to all ECUs in the Powerwall.

A Powerwall consists of one Interface ECU and a number of sub-ECUs.
The precise functionality of these sub-ECUs are out of the scope of this
thesis and are therefore referred to as sub-ECUs.

Next to its microcontroller’s flash memory, the Interface ECU is equipped
with additional microcontroller-external non-volatile memory for use cases
such as data logging and firmware updating. This external memory contains
1MB of non-volatile memory.

2.2 Update Process Requirements

As aforementioned, the purpose of this thesis is to engineer means to update
the firmware of a Powerwall. This constitutes updating all of the ECUs in
the Powerwall: one Interface ECU and an arbitrary number of sub-ECUs.

The following requirements and restrictions are identified as means for
updating firmware of ECUs in a Powerwall:

1. It shall be possible to update the firmware of all of the Powerwall’s
ECUs.

2. The Powerwall shall remain operational for as long as possible; down-
time of the Powerwall should be kept to a minimum.

6



3. The first Powerwall to be deployed shall be able to be updated, hence
the design and implementation of the updating procedure shall be
such that new updating features and capabilities can be added in sub-
sequent firmware releases and existing Powerwalls can be updated to
firmware with newer updating capabilities.

4. It shall be possible to update Powerwalls over both RS485 and CAN
physical layers.

5. The firmware update process should be as transparent and as simple
to the inverter as possible.

6. There should be a means for an external party to inquire about any
errors that may have occurred in the update process.

7. The Powerwall should always be able to accept a new firmware update,
even after a previous failed firmware update.

8. There shall be a notion of firmware versioning across all Powerwall
ECUs, and both upgrades and downgrades should be possible.

9. There shall be a notion of ECU hardware identification, and an ECU
should never execute firmware that is not built for that ECU.

10. The only communication over the RS485 bus is the Modbus protocol
as specified in [2].

7
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Chapter 3

Related Work

As introduced in Chapters 1 and 2, the Powerwall is a device that requires
the updating of the firmware of its microcontrollers. Much research has been
done over the last decades into methods for firmware updating of electronic
devices. Such devices range from hard disk drives to entire automotive
vehicles [4, 5].

Dynamic Software Updating (DSU) The process of Dynamic Software
Updating (DSU) allows for software to be upgraded while being executed
[6, 7]. With DSU, code is updated by analyzing the present and new code,
assembling a set of new data objects and functions, and load this new set
onto the target device. The actual update of data objects and functions can
only be performed under certain conditions, e.g. when these data objects
and functions are not in use [8, p. 393-398].

DSU can upgrade code in a running system and thus provides almost
continuous availability of the system [9, p. 12] [8, p. 398]. However, replacing
small pieces of code can only be performed when the system allows for small
pieces of memory to be erased. Microcontrollers equipped with non-volatile
memory technologies such as NAND-type flash are not capable to perform
per-byte flash erasure. Placing all data and executing all code out of RAM is
not seen as an option since the size of a microcontroller’s RAM is generally
much smaller than its flash memory. Therefore, the program size would be
limited by the size of the RAM.

Moreover, for DSU, a supervisory device needs to be able to perform
inspection of object files in order to assemble new data objects and functions.
Felser et al. call this supervisory device the manager, and would require
megabytes of memory [8, p. 390]. However, a Powerwall does not have a
device with such resources, thus DSU does not seem to be applicable to the
Powerwall.

9



Duplicate Firmware Images Many approaches for firmware updating
of devices require such devices to be equipped with enough memory to hold
two firmware images. Tarra et al. describe a firmware update method in
which two firmware images are available at all times [10]. Upon startup of
the device, the bootloader can either start the primary or secondary firmware
image, dependent on the verification result of both images.

The Chromium OS also uses a secondary memory location to use as fall-
back in the case of a failed update [11]. A secondary partition is used to
write the new updated firmware to. When an update has finished, the OS
will switch to the secondary partition, yielding a seamless update.

Of the Powerwall’s ECUs, only the Interface ECU is equipped with ex-
ternal non-volatile memory. Storing a second firmware image at a sub-ECU
requires half of the sub-ECU’s microcontroller flash to be reserved. This
restriction is not acceptable, thus storing two complete firmware images at
a sub-ECU is not feasible.

Since the Powerwall’s Interface ECU is equipped with external non-volatile
memory, storing a second firmware image there is possible. However, the
Interface ECU’s microcontroller is not able to execute code from this exter-
nal memory. The image stored in external memory has to be transferred to
the microcontroller’s internal flash memory in order to execute this image.
Whenever the image stored in microcontroller flash is not valid, the image
from external memory can be transferred to the microcontroller’s flash and
be executed.

Fault Tolerance Liu et al. describe a mechanism for verifying the con-
tents of a firmware image before it is consumed [12]. This verification can
be done by either the host device or the device that is being updated. Ver-
ification of firmware images before the firmware update takes place ensures
that no unsuitable code is loaded on the device.

The mechanism describes verification on the following pieces of data:

• Vendor identification code.

• Model name supported by the firmware.

• Specific instructions at specific memory addresses.

Liu et al. describe that the above checks ensure that no unsuitable code
is loaded [12, p. 3]. A vendor identifier and a model name can be statically
included in or together with the firmware file and this can be easily checked
for by a host device or by the device to be updated. Verifying these pieces
of data satisfies Requirement 9 from Section 2.2.

However, verifying instruction and data within a firmware file does not
seem feasible. The main challenge is to identify a set of conditions that
guarantees that a firmware image is suitable. Instead, additional focus can

10



be placed into the release and validation process of firmware images. Exten-
sive validation of firmware images is a more feasible approach than verifying
specific instructions at specific memory addresses by the update process.

Ferlitsch describes a similar concept of querying the device to be updated
for its device type identifier [13]. Using this device type identifier, the ap-
propriate firmware file is used to update the device. This process makes sure
that only the suitable firmware files are loaded onto devices.

11
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Chapter 4

Design and Implementation

4.1 Inverter-Powerwall Interaction

The first major design decision is to determine what component is responsi-
ble for what part of the firmware update process. From the requirements as
discussed in Section 2.2, it becomes apparent that the inverter’s role shall
be minimal. For minimalistic inverter functionality, the two main tasks for
an inverter to update a Powerwall are:

1. Transfer data to the Powerwall.

2. Notify the Powerwall that all necessary data has been transferred.

In regards to the inverter’s roll, the abovementioned steps are the only re-
quired steps for a Powerwall to perform a firmware update.

In addition, there should also be a mechanism to obtain the Powerwall’s
firmware update status. Without such a mechanism, the inverter is not able
to determine whether the Powerwall is in progress of or has finished with a
firmware update. The inverter needs such information to be able to properly
control the Powerwall. For multi-Powerwall setups, an inverter will update
all Powerwalls in a sequential fashion. An inverter starts updating the first
Powerwall and keeps the rest of the Powerwalls in a normal operating mode.
Once the first Powerwall signals that it has finished updating, the inverter
will put the first Powerwall in a normal operating mode and advances to
updating the second Powerwall.

The inverter can fulfill the aforementioned two tasks at two levels:

1. The inverter transfers controls a Powerwall’s update per ECU: for each
of the Powerwall’s ECU, the inverter transfers data to the ECU and
notifies the ECU that the data has been transferred.

2. The inverter transfers data to a Powerwall and notifies the Powerwall.

13



Since only the Powerwall’s Interface ECU is connected to the inverter, the
first method requires that the inverter has access to each ECU within the
Powerwall, which, as can be seen in Figure 2.1, is not the case. For Modbus-
connected systems, the Interface ECU would need to tunnel data to each
ECU and, to accomplish this, there needs to be an additional addressing
scheme to address each of the Powerwall’s ECUs from the inverter.

Also, while an ECU is being updated, its Powerwall would be non-operational
for the duration of this data transfer. Subsequently, by the first method, the
Powerwall will remain in a non-operational state for the cumulative time it
takes for each of the Powerwall’s ECUs update to finish.

The second method does not require a connection between the inverter
and all of the Powerwall’s ECUs. Instead, this method requires a direct
connection to solely update the Powerwall’s Interface ECU. The inverter
now only communicates with an imaginary Powerwall ECU, instead of a
number of individual ECUs. More precisely, this method abstracts what
constitutes a Powerwall in terms of ECUs and gives a generic ”Powerwall
interface” to the inverter.

The method of exposing a single Powerwall interface to the inverter can
be broken down further:

1. The inverter transfers data to the Powerwall, which is directly used
for updating each ECU.

2. The inverter transfers data to a Powerwall, which is cached in the
Powerwall. Following a notification from the inverter, the Powerwall
starts updating each ECU from the data it has previously received.

The principal difference between these two methods is that in the second
method, the actual updating process of the ECUs can be expedited. The
data receiving logic can be part of the normal operational code of the Pow-
erwall’s Interface ECU, and the other Powerwall ECUs do not play a role in
this initial data caching process. Consequently, the Powerwall can remain
operational during this initial data transfer process.

The disadvantage of this caching strategy is that the cache size inherently
limits the number of ECUs that can be updated. If more ECUs need to be
updated than can fit in the cache, the cache would have to be reused. In
such a scenario, an inverter is equipped with a set of data packages, and for
each such package the inverter transfers the data and initiates an update to
let the Powerwall update a select set of its ECUs.

Due to an increased update time compared to the second method, the
first method would increase the non-operational time of the Powerwall. The
advantage of a streaming-based update strategy is that it does not require
a cache in the Powerwall, making the Powerwall PCBA cheaper than the
second method. Following this logic, the first method does not inherently
put bounds on the number of ECUs it can update.

14



Also, a streaming-based update strategy is less capable of keeping the sys-
tem in a non-operational state for as short as possible and is not always able
to perform the necessary precondition checks on the data that is transferred.
For example, a consistency error in a firmware image will only be caught
at the end of processing a certain firmware image chunk, which might be
midway of a firmware image download. Special measures would need to be
taken to ensure that the consistency check failure does not leave the sys-
tem non-operational for a long time. A caching-based update strategy can
perform such checks before deciding to use a firmware file. By rejecting
an update early on in the update process, a caching-based update strategy
keeps the non-operational time of the Powerwall to the minimum.

Based on all of the above constraints and considerations, the caching
strategy has been chosen. The reasons for this decision was that the non-
operational time is kept to a minimal in this strategy.

4.2 Data Transfer

An inverter has the responsibility to obtain a firmware package and transfer
it to the Powerwall. A firmware package can be obtained in a number
of methods, e.g. over a local interface such as an SD card that can be
plugged into the inverter, or a remote inverter interface such as an inverter’s
monitoring and diagnostics webserver. These methods are out of the scope
of this thesis and are henceforth not further discussed.

4.2.1 Data Transfer over RS485 Bus

As discussed in Section 2.2, all data transfers on the RS485 bus shall be
over the Modbus protocol. This includes any data that is needed for the
firmware update process.

The Modbus specification specifies a number of function codes that enable
a Modbus master device to perform certain operations on a Modbus slave
device. Each such function code is a specific operation on the Modbus slave,
such as reading of operational parameters and writing commands. For an
overview of all Modbus function codes, refer to the Modbus specification. [14]

In order to make firmware updating over Modbus possible, appropriate
Modbus function codes shall be used to implement the update procedure
as specified in Section 4.1. The Modus specification specifies a dedicated
function code for the transfer of non-operational data: function code Write
File Record. This function code allows transferring of data file in chunks,
so-called file records.

As per the Modbus specification, a Modbus frame consists of a maximum
of 256 bytes: one Modbus address byte, followed by one function code byte,
followed by the Modbus function code’s data bytes, followed by two CRC
bytes. The Modbus write file record function code itself consists of eight
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metadata bytes. Effectively, using the Modbus write file record function
code, a maximum of 244 data bytes can be transferred per Modbus trans-
action.

A major downside to this function code is that, as per the Modbus spec-
ification, the Modbus response to a Modbus write file record function code
frame is the echo of the Modbus request. Consequently, this Modbus func-
tion’s response frame puts a 100% overhead on the data transmission rate.
In addition, as marking of start of frame, Modbus frames shall be separated
by at least 3.5 characters worth of dead time [2, p. 13].

If ndata is the number of data bytes per Modbus transaction, then ntr is
the number of bytes required to be transferred on the RS485 bus to transfer
ndata over the Modbus protocol, which can be computed as

ntr(ndata) = 2 · (2 + 8 + ndata + 2)︸ ︷︷ ︸
Modbus frames

+ 2 · 3.5︸ ︷︷ ︸
Dead time

. (4.1)

For example, when ndata = 244, for every byte transferred over the Modbus
protocol, 519

244 ≈ 2.13 bytes need to be transferred over the RS485 bus. The
efficiency of the Modbus Write File Record protocol neff for a certain ndata

is

neff(ndata) =
ndata

ntr
. (4.2)

The highest efficiency can be obtained by using the highest value for ndata.
Lower values for ndata can be desirable in order maintain timely communi-
cation of non-firmware update related information.

Firmware Package Transfer Time On a RS485 bus operating at a
baudrate Bd baud 8-N-1 configuration, the number of bytes per second that
can be transmitted over the bus can be computed as

B8-N-1(Bd) =
Bd

nstartbits + ndatabits + nstopbits
=

Bd

10
bytes per second.

(4.3)
Using Equations (4.2) and (4.3), the maximum throughput of data trans-

fers using the Modbus Write File Record function code with ndata = 244
over a RS485 bus operating at 9,600 baud and configuration 8-N-1 can be
computed as

BModbus,8-N-1(Bd, ndata) = B8-N-1(Bd) · neff(ndata)

≈ 960 · 0.470

≈ 451 bytes per second.

(4.4)

The firmware package transfer time tpt can be calculated by adding the
transfer duration over Modbus tModbus and the duration of storing it in the

16



Interface ECU’s external memory, tmemory. Since the external memory can
hold 1 MB, the assumption is made that the largest firmware package is
1 MB as well.

The total data transfer time of the largest firmware package over the
Modbus protocol over the RS485 bus, tModbus, can be calculated as

tModbus =
1 MB

BModbus,8-N-1(Bd, ndata)
≈ 2,323 seconds, (4.5)

where ndata is 244 and Bd is 9,600 bps. Observe that this calculation does
not take into account any errors e.g. Modbus frame errors. Note that in
addition to the transfer time over Modbus, the duration to store the received
data in external non-volatile memory also needs to be taken into account.

4.2.2 Data Transfer over CAN Bus

From Section 2.2, there is no requirement for any particular application-
level protocol that needs to be used on the CAN bus. For the entire update
process, the UDS protocol is chosen as application level protocol for all
firmware update related communications over CAN [15]. The UDS protocol
is widely used in, mostly automotive, applications and is a very well estab-
lished protocol within the Tesla organization. Using UDS will bring a broad
set of libraries, tools and support. No other application level protocols are
considered.

Firmware Package Transfer Time Transferring a set of bytes using
the UDS protocol requires the use of three UDS services: RequestDownload,
TransferData and RequestTransferExit. [15, p. 231] A firmware package con-
sists of a continuous set of data, hence the transfer of a firmware package over
UDS requires one RequestDownload transaction, followed by n TransferData
transactions, followed by one RequestTransferExit.

To limit the size of the receive buffer in the UDS server, the maximum
size of a UDS transaction is limited to 256 bytes per transaction. Since the
UDS TransferData transaction adds two bytes of overhead to the data it
transfers, the maximum number of data bytes that can be transferred by
one UDS TransferData transaction is 254 bytes. [15, p. 237-238]

The ISO-TP protocol is a transport layer protocol for CAN, which is used
to transfer UDS transactions. [16] Appendix A describes in detail how a set
of n bytes is transferred over the UDS, ISO-TP and CAN protocols.

Transferring a TransferData transaction over ISO-TP introduces addi-
tional overhead. All CAN frames consist of eight data bytes, as required by
the ISO-TP specification [16, p. 31]. To transfer 254 data bytes over the
UDS, ISO-TP and CAN protocols, a total of 39 eight-byte CAN frames are
needed.

17



The transfer of 1 MB over UDS requires 1MB
254 = 4,128 UDS TransferData

transactions are needed. One such transaction requires the transmission of
39 eight-byte CAN frames, thus the number of 8-byte CAN frames needed
to send 1 MB of data is 4,128 · 39 = 160,992 CAN messages.

The CAN bus connecting inverters to the Powerwall’s Interface ECU op-
erates at a baudrate of 250 kpbs. Since only 11-bit CAN identifiers are used,
the maximum number of eight-byte CAN messages is estimated to be 1,968
frames per second. Note that this rate is for a 100% utilized CAN bus and
consists of solely UDS messages.

Using the CAN frame rate and the number of CAN frames needed to
transfer 254 data bytes, the throughput of a file transfer over a UDS on the
CAN bus is calculated as:

BUDS,B250 ≈
1,968

39
≈ 50 UDS transactions per second

≈ 50 · 254 = 12,817 bytes per second
(4.6)

Using (4.6), a 1 MB file can be transferred over the CAN bus in 1MB
12,817 =

81.8 seconds.

4.3 Update Procedure

Section 4.2 discusses the different ways in which a firmware package is trans-
ferred onto the Powerwall’s Interface ECU. This section discusses how the
Powerwall’s Interface ECU uses the firmware package to update its own
firmware and that of all of the Powerwall’s subcomponents. Also, this section
discusses design for reliability and how this affects various design decisions.

4.3.1 Sequence of Updating

As per the requirements as specified in Section 2.2, the Powerwall shall sup-
port changes of the Powerwall-internal update procedure. The Powerwall’s
Interface ECU is responsible for the Powerwall-internal update procedure,
such as distributing the contents of firmware packages across the Powerwall’s
ECUs.

Changes in the Powerwall-internal update procedure requires a change
in the Interface ECU’s firmware. For the Powerwall to be able to have a
forward-compatible update procedure, the Interface ECU needs to be up-
dated as early in the update procedure as possible. After updating of the
Interface ECU’s firmware, any subsequent steps in the update procedure will
be executed using the update procedure that is implemented and active in
the just updated Interface ECU firmware. This approach allows for changes
such as the format of firmware packages and communication between the
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Interface ECU and the Powerwall’s subcomponent ECUs. Also, as long as
the Interface ECU can be updated, any bugs in the update procedure can be
resolved and even deployed Powerwalls can be updated to the new firmware.

4.3.2 Updating of the Interface ECU

The Powerwall’s Interface ECU consists of a microcontroller with both flash
memory within the microcontroller and non-volatile memory external to the
microcontroller. Per Requirement 1 in Section 2.2, it shall be possible to
update the internal flash memory of this ECU, such that new firmware can
be executed.

From the requirements as described in Section 2.2, the process of over-
writing this memory shall be fault-tolerant: there shall be no path in the
firmware update process that leads to the ECU not being able to execute
valid application code. Invalidating parts, or all, of the contents stored in
this memory may lead to non-operational behavior of this ECU. Since this
ECU acts as the Powerwall’s communications interface, non-operational be-
havior may lead to the Powerwall not being able to be communicated with,
making any subsequent firmware update attempt of the Powerwall impossi-
ble. Alternative paths would be needed to repair a system in such a state,
for example by using JTAG to directly program the ECU’s internal memory
with known good firmware.

The above observation implicates the need for a secondary application
that is decoupled from the primary application. This secondary application,
which is called the ECU’s bootloader for the remainder of this document, will
safeguard the update process of the primary firmware application, which is
called the ECU’s application firmware.

To avoid the need to also update the bootloader, the bootloader’s design
should be as simple as possible. The bootloader shall be programmed once
onto the microcontroller’s flash memory (e.g. using JTAG) and not be
changed afterwards. Extended firmware validation shall be conducted on
the bootloader to ensure reliable execution of all of its functionalities.

Careful design should be made in assigning firmware update responsibili-
ties between the ECU’s application firmware and the bootloader. A design
could be to put most firmware update functionality in the bootloader, and
none in the application firmware. Assuming a problem-free bootloader, such
a design would guarantee that the ECU is always updatable. However, such
a design would not allow the functionality of the update process to be ex-
tended after the first Powerwall is deployed, which violates Requirement 3
from Section 2.2.

To satisfy the aforementioned requirement, more functionality needs to
be placed into updatable firmware, which is the application firmware. The
bootloader’s role it solely responsible for transferring the memory contents
from the secondary memory location to the primary memory location. A
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power interruption during this transfer would leave the primary memory
location with a partial firmware image. To account for this, additional
firmware image validation checks need to be performed in the bootloader,
such that the bootloader is able to validate the memory contents of both the
primary and secondary memory locations. Moreover, such a validation check
is also needed for the bootloader to know whether the secondary memory
location holds a valid firmware image.

Per Requirement 9 from Section 2.2, the update process shall enforce that
solely firmware images that are built for a certain ECU are written to their
respective ECUs. Part of the validation check is to verify that the firmware
image as stored in the secondary memory space is built for the correct ECU.
As such, the bootloader will be equipped with an ECU identifier, which will
be used to compare against the firmware image’s ECU identifier. By putting
these validation steps in the bootloader, there is always the bootloader that
catches a firmware image validation bug in the application firmware.

At a high-level, the functions of the bootloader are:

1. Act as the code start point.

2. Checking for valid firmware image in secondary location.

(a) Consistency check of the firmware image to make sure that firmware
image is complete and contains no errors.

(b) Validate that firmware image is valid for this ECU.

3. Copying of application firmware from secondary application space to
primary application space.

4. Invalidate contents of secondary application space after copying to
primary application space.

5. Start primary application code.

The bootloader requires the following functionalities from the application
firmware:

1. Application firmware puts a binary-encoded firmware image in a spec-
ified location in the secondary memory.

2. Application firmware resets ECU, whereafter bootloader starts.

The bootloader compiles into its firmware the ECU identifier and the
memory location in the secondary memory where the application puts new
firmware images. Similarly, metadata such as the ECU identifier and con-
sistency check information (e.g. CRC) is attached to firmware images.
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if secondary firmware consistency check passes and is valid for this
ECU then

repeat
bootloader copies secondary firmware into primary firmware
memory space;

until secondary firmware is equal to primary firmware and
primary firmware consistency check passes;

jump to primary application;

else
if primary firmware passes consistency check then

jump to primary application;
else

remain in bootloader indefinitely;
end

end
Algorithm 1: Interface ECU bootloading logic. Upon power-on of the
Interface ECU, the bootloader starts and verifies the consistency of the sec-
ondary firmware. If the secondary firmware is not valid, the bootloader de-
termines whether if should start the primary application. If the secondary
firmware is valid, and is different from the current firmware application,
the bootloader copies the secondary firmware application into its primary
memory. After verifying that transfer was successful, the bootloader starts
primary application, which takes over execution of the processor.

Bootloader Control Flow The logic implemented of the Interface ECU’s
bootloader is depicted in Algorithm 1. Upon powering of the Interface ECU,
the bootloader is executed. The first task for the bootloader is to obtain
information about the firmware image stored in the secondary memory lo-
cation: a) does the firmware image pass the consistency check, and b) is
the image built for this particular ECU. If either checks are not successful,
the existing primary application firmware is started, granted that it passes
these checks. If the firmware image satisfies both conditions, the bootloader
checks if the firmware images in the secondary and primary memory loca-
tions are different. If they are the same, then no update is needed, and the
bootloader starts the primary application firmware. If they are not the same,
the bootloader erases the primary memory location and copies the contents
of the secondary memory location into the primary memory location. As
for verifying of a successful copying action, a final consistency check is done
on the primary memory space, whereafter the primary application firmware
is started.

Table 4.1 describes various scenarios and how the previously discussed
bootloader control flow handles these scenarios. There should always be a
valid image available: either in the primary or the secondary memory. Also,
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Scenario Recovery path

Power cut while firmware application is
writing new image to secondary memory
location.

Bootloader does not pass secondary memory val-
idation check. Primary memory still contains
a valid firmware image, which the bootloader
starts.

Power cut after bootloader has validated
firmware image in secondary memory lo-
cation and has erased primary memory in
preparation for copying data from second
to primary memory.

Secondary memory still contains a valid
firmware image, thus bootloader passes sec-
ondary memory validation check. Since primary
memory contains a different image, bootloader
starts copying secondary to primary memory,
and subsequently starts the primary firmware
application.

Power cut while bootloader has partly
copied the firmware image from the sec-
ondary memory location to the primary
firmware location.

Same as above.

Power cut after bootloader is done copy-
ing the firmware image from the secondary
memory location to the primary firmware
location.

Secondary memory still contains a valid
firmware image, thus bootloader passes sec-
ondary memory validation check.

Bootloader has validated that firmware
image in secondary memory is valid. Dur-
ing copying, data as transferred over the
communications bus is corrupted.

Post-copy check verifies the firmware image in
the primary memory, which will not pass. The
bootloader will reattempt copying of data from
secondary memory to primary memory.

Figure 4.1: List of non-nominal firmware update scenarios and handling by
the bootloader during a firmware update of the Powerwall’s Interface ECU.

only when the bootloader has verified that both consistency check and ECU
identifier check have passed for the firmware image in the primary memory,
the bootloader will actually start this firmware. Solely hardware-related
errors, e.g. erroneous communications bus or flash chip, can put this ECU
in a state that makes it unable to be updated.

Bootloader in RAM One of the functions of the bootloader is to read,
write and erase sectors of the microcontroller’s internal flash memory. The
code that executes these functions generally cannot run out of the same flash
memory sectors as what is being written to or erased from. Due to this lim-
itation, parts of the bootloader code is copied to and executed out of RAM
in order to perform these sector operations. In particular, the C-functions
that are responsible for writing to and erasing from microcontroller’s inter-
nal flash are placed in a location in RAM. Upon start of the bootloader,
these functions are copied into the predefined location in RAM.
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4.3.3 Updating of Sub-ECUs

As depicted in Figure 2.1, the only connection between Powerwall’s sub-
ECUs and the Interface ECU is through a CAN bus. Unlike the Powerwall’s
Interface ECU, these ECUs are not equipped with external memory.

Without external memory, there are two designs of updating these micro-
controllers:

1. Evenly divide the microcontroller’s flash memory into primary and
secondary memory locations. As a firmware image is received over
CAN, the firmware application writes the firmware image to the sec-
ondary memory. After rebooting, the bootloader copies the contents
from secondary into the primary memory.

2. Use a bootloader that receives a firmware image over CAN and writes
it directly into the primary memory.

Design 1 puts a limit on the size of the firmware application that is possible
for updating. Evenly dividing the microcontroller’s flash memory space,
while also reserving some room for bootloader code, leaves less than half of
the available flash memory for application firmware. This limit is too strict,
so this design is not chosen.

Design 2 requires a bootloader that is able to receive a firmware image
over CAN and directly writes it to primary memory. The maximum size of
the application firmware is almost the total size of the microcontroller’s flash
memory; there only needs to be some space reserved for the bootloader. The
application firmware’s only responsibility is to be able to be commanded to
reset the microcontroller, which starts the bootloader.

The major downside of this design is that it is not guaranteed that a sub-
ECU is always equipped with a valid firmware image. Upon receiving of a
new firmware image, the existing application firmware image is erased from
flash memory. If the new firmware image is not valid, the microcontroller is
left in a non-operational state and runs bootloader code. However, this sce-
nario is deemed acceptable, since a new firmware update can be attempted
afterwards. Also, this design provides the fastest update time as, unlike
Design 1, there is no intermediate storage of the firmware image. For these
reasons, this design is chosen over the other design.

Bootloader Design The Powerwall’s Interface ECU obtains a firmware
package, which may contain a firmware image appropriate for a particular
sub-ECU. The Interface ECU then executes a sequence of steps in order
to get this firmware image into the sub-ECU’s flash memory and have the
sub-ECU execute that firmware. To support these steps, the sub-ECU’s
bootloader needs to implement functionality that allows the Interface ECU
to perform the following steps:
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1. Reset sub-ECU’s microcontroller such that the bootloader is started.

2. Obtain sub-ECU’s ECU identifier information.

3. Obtain sub-ECU’s application firmware version.

4. Initiate sub-ECU to erase flash memory.

5. Transfer firmware image to sub-ECU.

6. Initiate sub-ECU’s bootloader to perform consistency check on re-
ceived firmware image.

7. Initiate sub-ECU’s bootloader to start executing the application firmware.

Since this bootloader is in no way tied to the microcontroller’s built-in
bootloader, the protocol that is used to perform these steps can be cho-
sen freely. Either a custom protocol is designed, or an existing protocol
is used. As discussed in Section 4.2.2, this project already uses UDS for
downloading firmware images over CAN from the inverter to the Power-
wall’s Interface ECU. Since all the aforementioned steps can be performed
over UDS, and since UDS is already implemented, UDS is chosen for the
firmware update process of sub-ECUs. Choosing a different protocol means
the implementation and validation of two communication protocols, which
is deemed unreasonable in the available time. In the chosen design, the
Interface ECU acts as a UDS client and the sub-ECUs act as UDS servers.

The bootloader’s decision tree is depicted in Algorithm 2. The bootloader
waits for a maximum duration of 10 milliseconds for a UDS request, after
which the bootloader will start the application firmware, if any. This allows
for fast bootup time of the ECU in the case where no firmware update is
being performed. The 10 ms time window is chosen to allow sufficient time
for the Interface ECU to initiate an update while keeping the bootup time
very short. Upon receiving of a UDS request, the bootloader will stay in
the bootloader until the Interface ECU initiates it to start the application
firmware.

The bootloader always verifies the application firmware prior to running
it. This enforces requirement 9 from Section 2.2.

The transmission of a firmware image requires the bootloader’s UDS server
to support three UDS services: UDS services RequestDownload, Transfer-
Data and RequestTransferExit [15, p. 231-249]. Usage of these three UDS
services to transfer a firmware file is depicted in Algorithm 3.

For every data section of the firmware image to transfer, the Interface
ECU has to use one RequestDownload transaction, containing the following
information:

• Start address of the data section on the UDS server.
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Loop
if received UDS request then

/* bootloader resets UDS timeout timer */

bootloader handles UDS request;

end
if bootloader times out on UDS requests or reset command has
been received then

if primary firmware passes consistency check then
jump to primary application;

end

end

EndLoop
Algorithm 2: Powerwall sub-ECU bootloader logic. Upon power-on of
the sub-ECU, the bootloader starts and waits a fixed amount of time (10
ms) for a UDS request. If no UDS request is received, the bootloader
verifies the contents of the microcontroller’s flash memory, and if valid,
jumps to the application firmware. If an update is initiated while the
sub-ECU is executing the bootloader, the bootloader will handle any UDS
requests needed for a firmware update.

foreach segment in firmware file do
issue UDS RequestDownload transaction;
/* RequestDownload response contains maximum data size

per TransferData transaction */

while bytes left in segment do
blockSize = min(bytes left in segment, maximum data size)
issue UDS TransferData transaction, transferring blockSize
bytes;

end
issue UDS RequestTransferExit transaction;

end
Algorithm 3: Procedure for transferring a firmware file over UDS, using
UDS RequestDownload, TransferData and RequestTransferExit services.
A firmware file describes the memory layout discontinuous segments. For
each segment, a RequestDownload transaction is needed, specifying the
start address and segment size. A UDS server response with blockSize:
the maximum number of bytes per TransferData transaction. The UDS
client transfers up to blockSize bytes per TransferData transactions to
transfer the binary contents of the segment. Finally, the segment transfer
is exited by issuing a RequestTransferExit transaction.

• Size of the data section to transfer.
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After the transfer of the data section has been negotiated, a number of
TransferData transactions are being performed. These transactions have
the data section of the firmware image as payload. The transfer of the data
section is terminated by a RequestTransferExit transaction.

After the firmware file has been transferred, the bootloader verifies that
it is equipped with a valid firmware image that is built for its ECU. The
bootloader has a hardcoded ECU identifier in its own flash memory, and
validates that against the firmware image’s fixed-addressed metadata field’s
ECU identifier field. If this check does not pass, the Interface ECU has
probably attempted to update using an incorrect firmware image. When all
checks pass, the sub-ECU’s bootloader starts its application.

4.4 Powerwall Updater

This section discusses how the Powerwall’s Interface ECU updates all ECUs
in a Powerwall. It also discusses the format of a Powerwall firmware package.

4.4.1 Interface ECU External Memory

As discussed in Section 4.1, the Powerwall’s Interface ECU is responsible
for the updating of all the ECUs within a Powerwall. The Interface ECU
receives a firmware package from an inverter and saves this package into its
external flash memory.

The external flash memory stores two pieces of data: the Interface ECU’s
secondary application and the Powerwall firmware package. This size of the
external flash memory directly puts a bound on the number of ECUs that
can be updated using one firmware package. Multiple firmware packages
might be needed in order to update all ECUs of a Powerwall.

4.4.2 Updating Logic

As discussed in Section 4.2, the inverter transfers a Powerwall firmware
package to the Powerwall, and subsequently triggers the Powerwall to start
the update process. Upon receiving the trigger to start the update, the
Interface ECU verifies the consistency of the contents of the received data
as stored on its external flash memory.

Once the package is validated, the Interface ECU starts updating the
Powerwall’s ECUs. As discussed in Section 4.3.1, the Interface ECU is
always updated first, followed by the sub-ECUs.

The Interface ECU determines what file in the firmware package can be
used for updating itself. A firmware image can be used when its ECU
identifier corresponds to the Interface ECU’s ECU identifier. The Interface
ECU verifies that this firmware image is different than its currently running
firmware, and copies the secondary firmware image into secondary memory.
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After validating that the secondary memory now contains a valid firmware
image, the Interface ECU resets itself such that the bootloader starts. As
discussed in 4.3.2, the Interface ECU’s bootloader copies the contents of the
secondary memory space and writes it into the primary memory space, and
finally starts the new application firmware.

After the Interface ECU restarts, the first thing it does is verifying that
that the firmware version of the code that it is executing is the same as
the firmware version of the firmware image in the firmware package. If the
versions do not match, the update has failed, and the other ECUs are not
updated. Retries are not performed at this stage since the same problem
could make the Interface ECU unavailable for an extended time. An external
trigger is required in order for the Interface ECU to restart the update
process.

If the update of the Interface ECU did succeed, the Interface ECU deter-
mines what other ECUs can be updated. For each ECU, the Interface ECU
verifies that there is a valid new firmware file available within the firmware
package, and updates the ECU according to the update protocol as discussed
in Section 4.3.3.

4.4.3 Powerwall Firmware Package

As discussed in Section 4.4.1, the Interface ECU obtains a firmware package
from the inverter, stores it in its external memory, and uses it to update the
Powerwall’s ECUs. This package contains all data needed for the Interface
ECU to determine if it can and should update these ECUs.

Requirements The firmware package should satisfy a number of require-
ment described in Section 2.2:

1. From requirement 3, the file format should be forward compatible: it
should be possible to add more data or features at a later time. Any
version of the Interface ECU’s application firmware should be able to
handle any firmware package, although not all features or data of the
firmware package may be used necessarily. For example, older versions
of the Interface ECU firmware may only support certain features and
should disregard any new features that have been added to a newly
downloaded firmware package.

2. In order to update all ECUs in a Powerwall, firmware packages should
be able to contain multiple firmware files. Allowing updating of all
ECUs with one firmware packages yields the minimum system down-
time, which is required per requirement 2.

3. There should be means for checking for the consistency of firmware
packages. Using an inconsistent firmware package may lead to an
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ECU not being able to execute its application firmware, which leads
to additional downtime.

In addition to these requirements, the means to interpret firmware pack-
ages should be on the Interface ECU.

Firmware File Metadata Powerwall firmware packages should contain
one or more files, and there should be means to determine what file can be
used to update what ECU. Per firmware file, the following properties need
to be known:

1. ECU identifier, consisting of:

(a) Component ID, e.g. Interface ECU, sub-ECU.

(b) Hardware ID revision.

2. Checksum for consistency checking of the firmware file.

3. Version identifier of the firmware.

4. Type of encoding of the firmware file.

5. Identifier of the firmware file in the file archive corresponding to this
data.

All this metadata of a firmware file can either be put together with each
firmware file, or can be stored in one central manifest file. Having a manifest
file has the benefit of having one central place were all information is stored,
and only one piece of data needs to be read to get information about the
contents of all files in the file archive.

Since the above list may need to be expanded, the manifest itself should
also be forward compatible. Also, storing any information in a binary for-
mat is highly preferred over an ASCII-encoded format. ASCII files are by
definition at least twice as large in size as the data that they encode, and
string parsing would need to be done in the Interface ECU’s application
firmware.

Hence, a binary encoded format is preferred. Binary formats such as
BSON 1 and Efficient XML Interchange2 are considered, but no lightweight
decoders have been found for these file formats. Existing libraries require a
significant amount of available RAM or flash or both.

Google’s protocol buffers format is a binary-encoded format that is for-
ward compatible, and various lightweight decoders for most programming
languages are widely available3. An example of a very lightweight decoding

1http://bsonspec.org/spec.html
2https://www.w3.org/XML/EXI/
3https://developers.google.com/protocol-buffers/
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message Mani fest {
repeated FirmwareList ing f i r m w a r e l i s t i n g s = 1 ;

}
message FirmwareList ing {

enum ECU ident i f i e r {
unkown = 0 ;
i n t e r f a c e e c u = 1 ;
sub ecu = 2 ;

}
op t i on a l ECU ident i f i e r e cu id = 1 ;
op t i on a l u int32 hardware r ev i s i on = 2 ;
op t i on a l s t r i n g f i l ename = 3 ;
op t i on a l u int32 firmware checksum = 4 ;
// ID 5 i s deprecated , should not be used
enum ImageFormat {

binary segmented = 0 ;
}
op t i on a l ImageFormat image format = 6 ;

}

Figure 4.2: Protocol buffers description for the Powerwall firmware package’s
manifest. A Manifest consists of a number of FirmwareListings. Each
FirmwareListing contains all metadata of a firmware file. This description
is used to encode manifest files on the build servers, and in the Interface
ECU’s application firmware to decode the manifest file data in firmware
packages.

library is the nanopb library4. The nanopb library allows for each protocol-
buffer signal a maximum size to be defined. This allows for fully statically-
allocated data structures without the need for any dynamic memory alloca-
tion. Because of the availability of a lightweight file format decoder, Google’s
protocol-buffer format is chosen to encode the manifest file.

Figure 4.2 shows a .proto file describing how a manifest is structured. A
Manifest consists of a number of FirmwareListings, each representing the
metadata of a firmware file. The .proto file is used to encode manifest files
on the build servers, and in the Interface ECU’s application firmware to
decode the manifest file data in firmware packages.

File Archive Powerwall firmware packages should contain one or more
files, which should be stored in a file archive. The only requirements for this
file archive format are the support for file archiving, i.e. file concatenation,
and it should be an open file format. Support for additional features such
as consistency checking are not strictly needed since these checks can also

4https://koti.kapsi.fi/jpa/nanopb/
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Format Decoding complexity Decoding memory footprint

ar ++ ++
tar ++ +
zip − −

Table 4.1: Comparison between decoding complexity and memory footprint
for various popular file archive formats.

be implemented in higher levels. Also, there is no need for error correcting
codes.

Because of their simplicity and popularity, the ar, tar and zip file archive
formats are considered. The RAR format has not been considered since it
is a proprietary format.

Table 4.1 depicts a comparative analysis between the considered file for-
mats, comparing the complexity and memory footprint of a file format de-
coder. The ar and tar formats are by far the simplest – mostly because
of their limited set of features. Also, both file formats allow decoding in a
sequential order: the decoder starts with the first byte and strictly advances
in the file.

The zip format requires to first obtain a global header, which is located
at the end of the file. To determine the end of the file, the length of the
file needs to be known, which is not needed for ar and tar formats. Also,
the zip format incorporates to legacy support for all of its prior file format
versions, which also increases decoding complexity. Unlike the ar and tar
formats, the zip natively supports file compression. Due to its complexity,
the zip format is not chosen. File compression can always be added at a
later stage at a different level, e.g. compress firmware files within an ar or
tar archive.

Between the ar and tar formats, the only difference is that the ar archive
puts more restrictions on the length of filenames, which is 16 and 100 char-
acters for ar and tar, respectively. Moreover, the tar archive allows for more
file metadata to be stored, resulting in larger headers and a less-efficient file
format compared to the ar format. However, supporting longer filenames
has been considered more important than a slightly less-efficient file format.
Hence, the tar format is the chosen archive format.

Conveniently, the manifest file, having a hardcoded filename, is stored in
the tar archive. Alternatively, a predefined memory region would have to
be reserved to store this file, which puts additional limitations on expansion
of the manifest. By storing it in the tar archive, the only limitation is the
predefined filename.

Next to the manifest, a set of firmware files is stored in the tar archive.
For each firmware file, a FirmwareListing exists in the manifest, of which
the filename is set to the filename of the file in the tar archive. Filenames are
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the means to link FirmwareListings with firmware files in the tar archive.

Integrity In order to verify that a Powerwall firmware package has been
successfully received on the Interface ECU, there should be a means of ver-
ifying the consistency of the firmware package.

As means for checking the integrity, a checksum is used. Since the In-
terface ECU already has the lookup table for CRC-32 and its functions
implemented in the bootloader, this CRC-32 is used5. Reusing this CRC
lookup table directly saves 1 kB of flash space on the Interface ECU.

Using a CRC-32 is deemed sufficient since

• CAN and Modbus have their own CRC, any errors in a firmware pack-
age are burst errors, making CRC-32 a good contestant [17, p. 66].

• Additional integrity checks are done at the firmware file level.

Equipping a Powerwall firmware package with a checksum allows for the
Interface ECU to verify the integrity of all data in the firmware package:
the file archive and any metadata.

Firmware Image Powerwall firmware packages contain file archives that
mainly contain firmware images. These firmware images contain data that
should end up in each ECU’s microcontroller internal flash memory.

Each firmware should contain a representation of the binary data together
with the location in flash memory to program this binary data. Since this
binary data is not necessary continuous, it could be advantageous to store
multiple of such representations instead of one single sparse region of binary
data.

There are a large number of file formats that describe firmware images,
most notably the Intel HEX and SREC formats [18] [19, p. 5] [20, p. 2].
Since the size of the external memory on the Interface ECU is very limited,
a file format needs to be as efficient as possible. However, file formats such
as Intel HEX and SREC use ASCII text encoding in such a way that the
encoded data is at least twice as large as the binary content they encode.

A new file format has been designed that encodes a set of segments of a
binary image in a binary format. A file encoded with this binary segmented
encoding contains the following data:

1. A file header, containing the file’s total data size.

2. A number of segments, each containing:

(a) A header containing the segment’s target start address, the seg-
ment data size and a checksum of the segment image.

5http://reveng.sourceforge.net/crc-catalogue/17plus.htm
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(b) Binary encoded data that encompasses the segment.

This format is designed such that it fully describes the binary data and
their memory addresses, and allows for decoding in small or large chunks.
Also, due to the binary encoding of all segments, the encoding is very space
efficient in the sense that the size of an encoded file is almost equal to the
size of the binary information it encodes. Adding compression to encoded
files would even further decrease the file size, but supporting compression is
not yet considered.

As discussed in Sections 4.3.2 and 4.3.3, bootloaders of all ECUs need
to be able to verify that a firmware image corresponds to the bootloader’s
ECU identifier. Next to that, bootloaders should also be able to verify the
integrity of a firmware image.

To achieve both requirements, firmware files themselves also need to be
equipped with metadata. More specifically, the firmware image should con-
tain an ECU identifier and a means for checking the firmware image’s in-
tegrity.

As discussed previously, CRC-32 is used by both the bootloader and by
application firmware to verify their firmware images. Similar to the integrity
checks in firmware packages, firmware images are equipped with a CRC-32
checksum.

For the bootloader to start the application firmware, the application
firmware’s code entry point should also be known by the bootloader. Since
this the code entry point is not necessarily the same across firmware images,
firmware images should have the code entry pointed stored in a predefined
location.

All aforementioned three pieces of metadata of the firmware file are located
in a predefined location within the firmware file such that bootloaders can
obtain this information. The build system generates firmware images in this
format, and bootloaders of all ECUs are able to handle firmware images
according to this format. Firmware applications themselves also implement
functionality to read their own firmware image metadata, such that they
can report this information.
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Chapter 5

Results and Discussion

This chapter discusses the performance of the Powerwall’s firmware updating
procedure. Based on empirical data, analysis is done to compare theoretical
estimates with real-world systems.

5.1 Firmware Package Transfer

This section discusses the performance of firmware package transfer from
inverters to Powerwalls, of which its design is discussed in Section 4.2.

5.1.1 Package Transfer over Modbus

As discussed in Section 4.2.1, the RS485 bus between inverters and Power-
walls transfers Modbus packets, which is named the Modbus channel from
here on. As determined by (4.4), for ndata = 244, a theoretical throughput
of 451 bytes per second can be obtained over this channel.

Test Setup A Linux-based x86 PC is connected by a USB-to-RS485 con-
verter1 to the Powerwall’s RS485 bus. The length of the twisted pair cable
is 10 feet long.

To perform Modbus transactions, a PC-based program is developed to
act as the Modbus master and will be the entity that transfers a Power-
wall firmware package to the Powerwall. This tool implements the Power-
wall Modbus firmware update protocol. The performance of this PC-based
program, the Linux serial port driver, and the USB-to-RS485 converter is
separately verified to not introduce any inter-byte and inter-frame delays.
This setup has been verified by continuously sending Modbus requests and
receiving Modbus responses between the PC and a Powerwall. Using a

1http://www.gearmo.com/shop/usb-to-rs485-rs422-converter-ftdi-chip-with-
terminals/
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logic analyzer2, the Modbus transactions on the RS485 bus were verified to
strictly follow the 8-N-1 serial communications configuration as described in
Section 2.

The firmware package being transferred consists of 896 kB of randomly
generated data. The PC sends Modbus Write File Record transactions with
ndata = 128, resulting in a total of 7,168 Modbus transactions. Using equa-
tion (4.1), a theoretical throughput of 428 bytes per second can be obtained.
For this test, choosing 128 instead of 244 for ndata is justified by a slightly
less sophisticated PC tool while still being able to exercise and validate the
performance of the Modbus transfer protocol.

The time between the first and last Modbus transaction is considered the
overall package transfer time. To characterize the transfer time of Modbus
transactions, a general purpose pin is used. This pin is set high by the
microcontroller when it receives the first byte of a Modbus request, and
is set low when it has sent the last byte of the Modbus response. This
microcontroller pin is sampled by a logic analyzer. The Modbus transaction
time is equal to the time that the pin is high. The time taken for this
extra handling by the microcontroller to actuate the pin is assumed to be
negligible.

Results Figure 5.1 depicts the Modbus file transfer times of the 896 kB
firmware packages. The figure on the bottom of Figure 5.1 depicts a detailed
set of the first 122 Modbus Write File Record transactions.

As can be seen, for each 32nd transaction, the transaction time is signif-
icantly higher. This is caused by the Interface ECU’s Modbus File Record
data flushing logic, which happens on every 32nd Modbus File Record. The
Modbus response for each 32nd transaction is returned after the data flush-
ing has finished. To characterize the duration of the data flushing, a second
microcontroller pin is used: the pin is set high upon starting the data flush-
ing and set low upon finishing the data flushing.

Figure 5.2 depicts the duration of each of the data flush operations from
Figure 5.1. The mean data flush operation takes 90.60 milliseconds with
a standard deviation of 5.12 milliseconds. Over the three test cases, the
average cumulative duration of the data flush operations is 20.3 seconds.

Figure 5.3 depicts the total firmware package transfer time of the test as
described above. On average, the package transfer takes 2,173 seconds with
a standard deviation of 118 milliseconds. Naturally, using a less reliable
Modbus channel (e.g. improper RS485 bus) will create more errors in the
Modbus transactions, and thereby introduce a longer and less consistent
transfer times.

A transfer time of 2,173 seconds to transfer 896 kB of data yields a
throughput of 422 bytes per second. The aforementioned throughput of

2https://www.saleae.com/
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Snapshot of the above figure, showing the first 122 transactions

Figure 5.1: Duration of Modbus Write File Record transactions for three
file transfers of size 896 kB, each using 7,168 transactions. The nominal
transaction duration is 300 milliseconds. As can be seen in more detail
in the bottom-most figure, the duration of each 32nd transaction takes is
about 80-100 milliseconds longer than other transactions. This is due to the
additional data flushing logic that happens on every 32nd transaction. In
the top-most figure, arrows indicate how certain transactions consistently
deviate from the nominal transaction duration.
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Figure 5.2: Duration of Modbus File Record data flush operations for the
three file transfers of size 896 kB of Figure 5.1. The mean data flush time
is 90.60 milliseconds and the standard deviation is 5.12 milliseconds.

428 bytes per second is not obtained due to the added duration of the data
flushing logic. Removing the duration of the data flushing logic yields a total
duration of 2, 173 − 20.3 = 2, 153 seconds, which would yield a throughput
of 426 bytes per second. Thus, removing the duration of data flush opera-
tions yields a throughput of 99.5% of the theoretical maximum throughput.
With the data flush operations included, the throughput is 98.6% of the
theoretical maximum throughput.

5.1.2 Package Transfer over CAN

To evaluate file transfers over a CAN bus, a similar test approach as for Mod-
bus file transfer is taken. An x86 PC connected to a USB-to-CAN device3

is connected a Powerwall’s Interface ECU’s CAN bus. The PC executes a
tool that implements the Powerwall UDS firmware update protocol. During
these tests, all CAN messages that are not part of the update procedure
are disabled. Timestamps of the file transfers are obtained by connecting a
logic analyzer to the CAN bus and observe the timestamp of the first UDS
request message and the last UDS response message.

Figure 5.4 depicts a histogram of 104 file transfers over UDS, each file
being 896 kB in size. The duration between the first UDS RequestDownload
transaction and the final UDS RequestTransferExit transaction is shown. Of
the 104 file transfers, the average transfer time is 87.449 seconds and the
standard deviation 89 milliseconds.

Equation (4.6) estimated a transfer rate of 12.817 bytes per seconds over
UDS, which equates to about 72 seconds for an 896 kB file. The discrepancy

3http://www.peak-system.com/PCAN-USB.199.0.html
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Figure 5.3: Total file transfer duration of several transfers of 896 kB worth of
data using Modbus Write File Record transactions. Across these seventeen
samples, the average file transfer duration is 2,172.805 seconds, and the
standard deviation is 119 milliseconds.

between the observed data and the estimate is mainly the bus load of the
CAN bus. During all tests, the bus load averaged to about 70%, and not
100% as the theoretical estimate assumes. Also, other higher-priority code is
being executed on the Interface ECU’s microcontroller during a file transfer.

Close inspection of the time between CAN frames show that the time
between the last UDS request frame and final UDS response CAN frames of
a UDS TransferData transaction has a considerable delay of 2.8 milliseconds.
During this period, the Interface ECU is flushing the received bytes into
external memory.

5.2 Firmware Package Validation

As discussed in 4.4.2, the Interface ECU executes a consistency check on
a received firmware package. For this check, the entire firmware package is
streamed in 500 byte blocks from the Interface ECU’s external flash memory
into RAM, and incrementally the checksum is computed. The firmware
package is considered consistent when the streamed data is consistent.

The rate at which the consistency check is performed is such that 100% of
CPU is used for a short period of time. Due to the watchdog mechanism of
the Interface ECU, the full utilization of CPU time during the consistency
check resulted in the Interface ECU’s watchdog being triggered. A delay
is intentionally introduced to overcome this problem; after loading a 500
byte block from external memory, a 1 millisecond delay is introduced before
loading the next block. This 1 millisecond delay allows the idle task to be

37



0

2

4

6

8

10

12

14

16

87,375 87,450 87,525 87,600 87,675 87,750

C
o
u

n
t

Transfer time (ms)

Figure 5.4: Histogram of file transfer durations of an 896 kB file over UDS.
The file transfer time is the time between the first UDS RequestDownload
transaction and the final UDS RequestTransferExit transaction. Of the 104
file transfers, the average transfer time is 87.449 seconds and the standard
deviation is 89 milliseconds.

scheduled by the operating system, which feeds the watchdog, preventing
the watchdog from timing out.

For this test, a UDS transaction is used to trigger the consistency check
to be executed. An 896 kB firmware package containing random data is
transferred to the Interface ECU, and the consistency check is triggered. The
time between the UDS request and UDS response CAN frames is considered
the consistency check duration.

For 100 samples, the average duration is 2.110 seconds with a standard
deviation of 21 milliseconds. An 896 kB file is streamed in 1,836 chunks,
each adding 1 millisecond to the total duration. Without this intentional
delay, about 274 milliseconds is actually spend in verifying the checksum.
Observe that during this computation, other higher-priority RTOS tasks can
be scheduled.

5.3 Update of Interface ECU

As discussed in Section 4.3.2, updating of the Interface ECU consists of the
Interface ECU’s application to place a new binary encoded firmware file in
a secondary memory location in the Interface ECU’s external flash memory,
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and subsequently the bootloader reads this new image and writes it over the
microcontroller’s flash memory. This section evaluates the steps that make
up for almost all the time of an Interface ECU firmware update.

5.3.1 Interface ECU Secondary Memory Interaction

For this test, the external memory are repeatedly populated with random
data and a custom flash erase command, using a UDS RoutineControl trans-
action, is send over UDS to the Interface ECU. Upon receiving this com-
mand, the Interface ECU erases the memory location designated for the
Interface ECU’s binary firmware image. The time between the UDS request
message and the UDS response message of the UDS transaction is consid-
ered the flash erasure time. Similar to the previous tests, the exact timing
is determined with a logic analyzer.

Over 100 samples, the average memory erase time is 1.948 seconds, with
a standard deviation of 9.1 milliseconds. The duration of this erase opera-
tion is fully determined by the internal workings of the external memory’s
controller.

5.4 Update of Sub-ECUs

As described in Section 4.3.3, the updating procedure for updating the
firmware of a sub-ECU consists of erasing flash memory, transferring a
firmware file over CAN to the sub-ECU and validation checks by the sub-
ECU. This section depicts the duration of each step and discusses how the
results relate to the expected results.

5.4.1 Sub-ECU Flash Memory Erase Duration

To test the duration for a sub-ECU to erase its flash memory, the flash erase
command is repeatedly send to the sub-ECU. The duration between the UDS
request and UDS response of this UDS transaction, measured with a logic
analyzer, is considered the flash erasure time. In order for the flash controller
to not optimize flash erasures, the entire flash memory region dedicated to
application code is reinitialized to random values prior to issuing an erasure.

Over 100 test samples, the flash erasure time is measured to have a mean
duration of 943.2 milliseconds and a standard deviation of 0.4 milliseconds.
Similar to flash erasure of the Interface ECU’s external memory, the dura-
tion the erase operation is fully determined by the internal workings of the
memory controller.
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5.4.2 Sub-ECU File Transfer Duration

To evaluate the transfer speed of firmware images from a Powerwall Inter-
face ECU to a sub-ECU, similar tests are conducted as for firmware package
transfers over CAN, as described in Section 5.1.2. Now, randomly gener-
ated files of 448 kB in size are send to a sub-ECU. Using (4.6), 448 kB of
data takes 35.8 seconds to be transferred to a sub-ECU over the CAN bus.
Again, the file transfer duration is considered the duration between the first
UDS RequestDownload transaction and the final UDS RequestTransferExit
transaction.

Figure 5.5 depicts the histogram of durations of 100 file transfers over UDS
to a sub-ECU. The mean duration is 42.042 milliseconds with a standard
deviation of 49 milliseconds. Similar to firmware package transfers over UDS
to the Interface ECU as depicted in Figure 5.4, the duration follows a normal
distribution.

The obtained file transfer rate is faster than the firmware package transfer
speed to the Interface ECU, as discussed in Section 5.1.2. The difference in
transfer rate is mainly due to the relatively little time spend in writing to
the sub-ECU’s flash memory. Less than a millisecond is spend in between
consecutive UDS transactions, indicating that each write operation to the
sub-ECU’s flash memory takes less than a millisecond.

5.4.3 Sub-ECU Validation Check Duration

As discussed in Section 4.3.3, the sub-ECU’s bootloader performs two checks
to verify a firmware file: one consistency check and validation check. In
order to test the duration of these steps, the largest possible firmware file is
generated and transferred to a sub-ECU, and a PC initiates both checks by
sending the appropriate UDS commands. The duration between the UDS
request and response messages of both UDS transactions are considered the
duration of the firmware file checks.

Over 100 samples, the mean duration for the firmware file consistency
check is 32.1 milliseconds with a standard deviation of 0.03 milliseconds.
These consistent numbers can be explained by the fact that the sub-ECU’s
bootloader does not consist of an RTOS, and thus all bootloader code runs
in one single thread. As such, no other tasks are executed while a validation
check is initiated.

Over 100 samples, the sub-ECU’s firmware file validation check’s duration
always is less than 1 millisecond, and thus this check is not accounted for.
The duration for this check is so little since it consists of a couple lookups
of the bootloader’s ECU identifier and the firmware file’s ECU identifier.
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Figure 5.5: Histogram of durations of 100 file transfers of an 448 kB file
over UDS to a sub-ECU. The file transfer time is the time between the first
UDS RequestDownload transaction and the final UDS RequestTransferExit
transaction. Of the 100 file transfers, the average transfer time is 42.042
milliseconds and the standard deviation 49 milliseconds.

5.5 Fault Tolerance

To analyze the fault tolerance of the firmware update mechanism, a Power-
wall has been subjected to non-nominal scenarios. The non-nominal scenar-
ios are categorized into the following three groups:

• Firmware package-level errors.

• Interface ECU-level errors.

• Sub-ECU-level errors.

5.5.1 Firmware Package-Level Errors

The following non-nominal scenarios have been identified regarding firmware
package-level errors:

• Corrupt protobuf data.

• Corrupt tar archive.

• Firmware package checksum error.
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The effect of all three errors are checked for in unit tests of the Interface
ECU’s application firmware. The entire firmware package decoding logic
(including tar file decoding and nanopb decoding) is written such that it
can run on x86 machines.

To mimic corrupt protobuf data, randomly generated data is served as
manifest data to the nanopb library. In a similar fashion, randomly gener-
ated data is served to the tar library. To test a firmware package checksum
error, a firmware package is generated and manually the checksum bytes are
overwritten with the checksum’s inverse.

All three scenarios are correctly identified by the Interface ECU as failure
cases, and the firmware update is subsequently aborted.

5.5.2 Interface ECU-Level Errors

The non-nominal scenarios for Interface ECU-level errors are described in
Figure 4.1. The effect of all listed scenarios are checked for in unit tests
of the Interface ECU’s bootloader firmware. Power cuts are simulated by
providing corrupt images in certain parts of the firmware, e.g. a corrupt
image in primary or secondary application space.

All scenarios are correctly handled by the bootloader firmware. In the
case of a corruption, there is always one firmware image available to fall
back on.

5.5.3 Sub-ECU-Level Errors

The following non-nominal scenarios have been identified regarding sub-
ECU-level errors:

• Firmware file checksum error.

• Firmware file loaded with incorrect ECU identifier.

The effect of the two scenarios are checked for in unit tests of the sub-
ECU’s bootloader firmware. Similarly to Interface ECUs, a power cut during
the transfer of a firmware file is simulated by providing a corrupt firmware
file to the sub-ECU.

All scenarios are correctly handled by the bootloader firmware. When a
corrupt firmware file or a firmware file with an incorrect ECU identifier is
loaded, the bootloader will not start this firmware and will remain in the
bootloader instead.

5.6 Discussion

Figure 5.1 depicts the summary of the results obtained in the previous sec-
tions of this chapter. This figure highlights how each step in the update
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Step Mean time (s) Powerwall operational?

Firmware package transfer (Modbus) 2,173.0 Yes
Firmware package transfer (UDS) 87.449 Yes

Firmware package checks 2.110 Yes

Erase sub-ECU memory 0.9432 No

Transfer firmware to sub-ECU 42.042 No

Firmware file test on sub-ECU 0.00321 No

Table 5.1: Mean durations of different steps in a Powerwall’s firmware up-
date process as empirically observed. All data is observed from the tests
as discussed in the previous sections of this chapter. For each step of the
firmware update process, the right-most column depicts whether the Pow-
erwall is in an operational state.

process contributes to the overall firmware update duration of a Powerwall
with a single sub-ECU. The cumulated duration of all steps for such an
update over Modbus is 2,235 seconds and over UDS is 149 seconds.

As can be seen, the transfer of data from an inverter to the Powerwall take
a very significant time in the Powerwall’s update process. For Modbus, this
step accounts for 97% and 59% of the total update procedure for Modbus
and UDS, respectively. This shows the importance that local storage at the
Powerwall of firmware packages is performed, since the non-operational time
otherwise would be greatly increased.

The cumulative non-operational time is 43.99 seconds, of which 98% is
due to the firmware file transfer from Interface ECU to the sub-ECU. Any
optimization in this step would equally decrease the non-operational time.
Examples of such optimizations are:

• Local storage at sub-ECU. The Interface ECU transfers a firmware file
onto the sub-ECU’s external memory (which currently does not exist).
The sub-ECU’s bootloader transfers the firmware file from external
memory onto microcontroller memory. The non-operational time is
limited since the sub-ECU is running firmware code as it receives a
firmware file over the CAN bus.

• Increase CAN bus baudrate, which increases the number of UDS trans-
actions per second on the CAN bus.

• Compress firmware files, which decreases the number of UDS transac-
tions over the CAN bus.
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Chapter 6

Conclusions

The goal of this thesis is to design, implement and evaluate a fault-tolerant
firmware update method for a time-critical battery product, specifically for
the Tesla Powerwall product. In addition to being fault-tolerant, require-
ments as described in Section 2.2 have been taken into the design phase to
lead to a product that satisfies all requirements. In particular, the firmware
update process should have minimal impact on the customer of the battery
product.

The design and implementation as described in Section 4 result in a
firmware update strategy that is recoverable in every scenario. Safeguards
are put in those places where non-nominal scenarios occur, such as power
interruption during an update and corrupt images. The design is such that
in the event of a failed firmware update of a certain ECUs, the ECU remains
in such a state that another firmware update can be attempted.

The only scenario in which a Powerwall cannot be updated is when erro-
neous firmware is updated onto the Powerwall’s Interface ECU. More pre-
cisely, bugs in the Interface ECU’s firmware updating logic can cause the
Interface ECU to not being able to update itself. Since the firmware update
process cannot identify bugs in firmware, safeguards at the firmware vali-
dation level are to be placed. These safeguards are out of the scope of this
thesis, and therefore not further discussed.

As discussed in Section 4.4.3, the designed firmware package format is
designed in such a way that it can be used for the updating of any embedded
system, even microcontrollers constrained by RAM and flash. The format
allows for any type of ECU to be packaged, and the format of the firmware
file can be of any type. Supporting the packaging of multiple firmware file
format allows for the updating of ECUs that don’t follow the default update
method, e.g. in the case of the updating of third-party devices.

As discussed in Section 5.6, the firmware update method performs very
well in regards to the impact to the customer. Appropriate design decisions
were made to keep the product operational for as long as possible. Moreover,
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most of the contributing factors to the time of a firmware update are due to
hardware limitations, such as data communication over a fixed-speed CAN
bus and write operations to memory. Hence, with the current hardware and
communications interfaces, not much improvement can be made to further
limit the duration of a firmware update.

One of the points of improvement is to use a multicast-like transport
protocol to allow parallel file transfer to multiple sub-ECUs. The current
design transfers a firmware image to each sub-ECU separately, leading to
increased firmware update durations as the number of sub-ECUs increases.
However, these sub-ECUs normally need different firmware files, which still
leads to a sequential file transfer.

To date, tens of thousands of firmware updates have been performed on
Powerwall test setups. The vast majority of these update have been success-
ful, while several firmware updates have failed, mostly due to errors within
the checksum calculation. However, these failed updates were all recover-
able, proofing the recoverability of the design.
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Schröder-Preikschat. Dynamic software update of resource-constrained
distributed embedded systems. In Embedded System Design: Topics,
Techniques and Trends, pages 387–400. Springer, 2007.

[9] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Prac-
tical dynamic software updating for C, volume 41. ACM, 2006.

[10] Raghuveer Tarra and Harsha Saagi. Firmware update for consumer
electronic device, October 18 2011. US Patent 8,041,988.

[11] Chromium Project authors. The chromium projects - file sys-
tem/autoupdate. (visited 11/21/2016).

47



[12] Tun-Hsing Liu and Yuan-Ting Wu. Firmware updating method and
related apparatus for checking content of replacing firmware before
firmware updating, October 8 2003. US Patent App. 10/605,560.

[13] Andrew Ferlitsch. Methods and systems for managing firmware,
March 27 2006. US Patent App. 11/277,551.

[14] Modbus.org. Modbus Application Protocol Specification v1.1b.
http://www.modbus.org/docs/Modbus Application Protocol V1 1b3.pdf,
v1.1b edition, April 2012.

[15] ISO/TC 22/SC 31. Iso 14229-1:2013. Standard, International Organi-
zation for Standardization, Geneva, CH, March 2013.

[16] Road vehicles diagnostics on controller area networks (can) part 2:
Network layer services. Standard, International Organization for Stan-
dardization, Geneva, CH, October 2004.

[17] Philip Koopman and Tridib Chakravarty. Cyclic redundancy code (crc)
polynomial selection for embedded networks. In Dependable Systems
and Networks, 2004 International Conference on, pages 145–154. IEEE,
2004.

[18] Intel Corporation, http://microsym.com/editor/assets/intelhex.pdf.
Hexadecimal Object File Format Specification, January 6 1988.

[19] Heinrich Hawig and Ulfert Ulken. Method for programming flash eep-
roms in microprocessor-equipped vehicle control electronics, Septem-
ber 28 2004. US Patent 6,799,101.

[20] Jaein Jeong. Node-level representation and system support for network
programming. University of California, Berkeley, 2003.

48



Appendix A

UDS TransferData service

A UDS TransferData transaction request consists of the following elements:

1. 1 byte indicating UDS TransferData service (0x36)

2. 1 byte indicating the block sequence counter

3. n bytes of data to transfer

A UDS TransferData transaction response consists of the following ele-
ments:

1. 1 byte indicating UDS TransferData response service (0x76)

2. 1 byte indicating the echoed block sequence counter from the request

3. Optional data as specified by the user

The optional data field in the UDS response can be used to transport a
checksum of the data as received by the UDS server. With this checksum,
the UDS client can verify that the UDS has successfully received the data
as sent by the UDS client.

An example UDS TransferData transaction as transported over a CAN
bus is shown in Table A.1. This example shows how 254 data bytes (green)
are transported over three protocols: UDS, ISO-TP and CAN.
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CAN data byte #

Message B0 B1 B2 B3 B4 B5 B6 B7

UDS Request \11 \00 \36 \02 \16 \84 \A9 \E3

UDS Response \30 \00 \00 \00 \00 \00 \00 \00

UDS Request \21 \00 \00 \7F \A0 \00 \00 \78

UDS Request \22 \42 \00 \01 \78 \82 \14 \AA

. . . 35 UDS Requests . . .

UDS Request \24 \80 \64 \1F \70 \00 \00 \00

UDS Response \04 \76 \02 \F3 \44 \00 \00 \00

Table A.1: Example UDS TransferData transaction, transferring a total of
254 data bytes using 39 CAN frames. The UDS transaction request consists
of the UDS TransferData service identifier (orange), followed by the current
block number (purple), followed by 254 data bytes (green). The ISO-TP
bytes (grey) add functionality such as sequence numbers (e.g. 0x21, 0x22),
total request length (0x100) and control flow (0x30). The UDS transaction
response consists of the UDS TransferData response service identifier (or-
ange), the echoed block number (purple) and a checksum of the received 254
data bytes (yellow).
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