

RESILIENT ROTTERDAM PORT

Toward a social-ecological integrated estuary and Rotterdam port transformation

Baokun Wei

P5 Presentation | 06-07-2021

Tutors:

Dr.Frits Van Loon
Dr.D.A. Sepulverda Carmona

PRESENTATION STRUCTURE

Toward a social-ecological integrated estuary and Rotterdam port transformation

INTRODUCTION

Delta Context of Rotterdam

The story of landscape transition

Problem field

Problem statement

RESEARCH FIELD

Case study: Rotterdam port

Why choose Rotterdam port as the case

Main research question

Sub research questions

SYSTEM ASSESSMENT

Ecological and social-economic system

Guiding principles

Summary of principles

COLLABORATIVE GOVERNANCE

Power and interest of stakeholders

Multi-actors interaction

Desired situation

Overarching the planning framework

STRATEGY

Strategy planning tool

Plans, programes and project

Strategic plans

Strategic timeline

Project M4H

Programmes stadhaven

Adaptive planning pathways

preferred pathways

CONCLUSION

Back to research questions

Relationship to urban ecology lab

INTRODUCTION

DELTA CONTEXT OF ROTTERDAM

The Delta Environment of Rotterdam
Rotterdam has the only open link to North Sea;

Source:The Dutch-Belgian Rhine-Meuse-Scheldt delta (from: Deltanet, 2014). https://www.researchgate.net/publication/287968520_Sediment_transport_

INTRODUCTION

THE STORY OF LANDSCAPE TRANSITION

What is the transition of landscape before and after **Urbanization?**

wadden and mud flat

open water

saltmarshes and river plains

5500 BC

Mudflats, wadden and dunes take the dominance of the area

The transition of Rotterdam landscape(Workshop of Urban Ecology Lab)

Source: http://rce.webgispublisher.nl/Viewer.aspx?map=Paleogeografischekaarten#

2020—2021 UECL Uraban ecology and eco-city lab

The transition of Rotterdam landscape(Workshop of Urban Ecology Lab)

Source: http://rce.webgispublisher.nl/Viewer.aspx?map=Paleogeografischekaarten#

2750 BC

The coastline was decreasing and closing; Water dynamic influnced the expanding peat area.

The transition of Rotterdam landscape(Workshop of Urban Ecology Lab)

open water

urban area

inland water

saltmarshes and river plains

Source: http://rce.webgispublisher.nl/Viewer.aspx?map=Paleogeografischekaarten#

Beach wall and low dunes

River dunes

1400AD

After building up the dams in Rotterdam; the city kept to expand and grow, natural system shrinked, cultural landscape developed

The transition of Rotterdam landscape(Workshop of Urban Ecology Lab)

open water

urban area

inland water

saltmarshes and river plains

Source: http://rce.webgispublisher.nl/Viewer.aspx?map=Paleogeografischekaarten#

River dunes

Land reclamation

2000 AD

Becasue of the port and city expansion, the nature system and cultural landscape gradually declined in Rotterdam

INTRODUCTION

PROBLEM FIELD

With this tranistion, Rotterdam development encounter with issues...

Source: http://rce.webgispublisher.nl/Viewer.aspx?map=Paleogeografischekaarten#

20

Rain pattern change in South Holland

Flooding in the region for the past and future

Data source:nationaalgeoregister.nl.

CONCLUSION MAP OF FLOODING IN ROTTERDAM

Urban development exacerbates the climate change in water and soil

Water Quality

Data source:Nationaalgeoregister.nl.

Soil and water are interelate with each other...

Soil Condition

Data source:Nationaalgeoregister.nl.

INTRODUCTION

PROBLEM STATEMENT

Without Natural system, Rotterdam lacks of ecosystem services, the negative cycle generates

It requires to imagine a new resilient, adaptive and sustainable urban development pattern for Rotterdam, so called "Social-ecological integration"

RESEARCH FIELD

CASE STUDY: ROTTERDAM PORT

Source: De urbanisten,2014

RESEARCH FIELD

WHY CHOOSE ROTTERDAM PORT AS CASE

1.Diversified landscape: where city, estuary and port meet

2. Energy transition and circular economy

Source: -horizon,2020

- -global challenges 2014-2020
- -a long term port of call and home to immgrants 1970-2015
- -dutch soical housing in a Nutshell 1970-2013
- -quality in diversity 2010-2025
- -the dutch cultural system 2013-2016
- -Municpal Waste Management report 2001-2010
- -key planning decesion space for the river 2001-2016
- -port vision
- -National water plan

2020—2021 UECL Uraban ecology and eco-city lab

3. City-port development

CityPorts Rotterdam is the place where city and port meet

Stadhaven area in Rotterdam aims to be clean tech Delta by applying knowlege and techniques in this field in terms of water, climate and energy issues

RESERACH FIELD

MAIN RESEARCH QUESTION

"In order to deal with **climate change**, is it possible to use the **river and estuary** as backbone to align with **port transfromation** and **city-port development** toward social-ecological integrations by urban planning, landscape and strategic urban design interventions?

RESERACH FIELD

SUB RESEARCH QUESTIONS

SQ1 Understanding quesiton

What is the concept of socialecological integrations in spatial planning and governance?

SQ2 What to do question

What is the current social-ecological system of Rotterdam port, and what are the challenges and opportunities?

What are the guiding principles of social-ecological integrated port transformation in terms of ecological, social, and economic aspects?

SQ3 How to do question

What are the stakeholders involved in the current and future process? and then how to facilitate strategic multi-actor collaborations?

SQ4 Application question

How to apply to combine the spatial planning and implementation with multi-actors in Rotterdam port through time?

CONCEPT BUILDING

SYSTEM ASSESSMENT

COLLABORATIVE GOVERNANCE STRATEGY MAKING

CONCEPT BUILDING

THEORETICAL FRAMEWORK

COCEPTUAL FRAMEWORK

CONCEPTUAL FRAMEWORK

Current Situation

Toward a new integrated development paradigm

Nature-based and resilient river backbone

Circular and bio-based economy

Sustainable, adaptive city and port integration

SYSTEM ASSESSMENT

Source: I. Bobbink, Tudelft,(2015)

SYSTEM ASSESSMENT

ECOLOGICAL AND SOCIAL-ECONOMIC SYSTEM

Biodiversity

River and water-related infrastructure

Land uses and industries

Strategic layers in Stadhaven

Mobility

BIOPHYSICAL

LAYERS

RESOURCE

LAYERS

SOCIAL

LAYERS

2020—2021 UECL Uraban ecology and eco-city lab

SYSTEM ASSESSMENT

GUIDING PRINCIPLE

Guiding Principle I

Water managment and ecosystem restoration synergy

WATER MANAGEMENT

SEDIMENTATION MANAGEMENT

2020—2021 UECL Uraban ecology and eco-city lab

Water purfication

BIO-BASED ECONOMY CLUSTER

Guiding Principle III

Multifunctionality and increase responsive nature in their systematic capacity and transformation

2020—2021 UECL Uraban ecology and eco-city lab

Guiding Principle IV

Land use diversification

SLOW MOBILITY(STADHAVEN)

DENSIFICATIONS AND REDEVELOPMENT

SYSTEM ASSESSMENT

SUMMARY OF PRINCIPLES

Water managment and ecosystem restoration synergy

Multifunctionality and increase responsive nature in their systematic capacity and transformation

Land use diversification

Develop the circularity of bio-energy flow

Process and Multi-scales synergy for implementation

SYSTEM ASSESSMENT

SUMMARY OF PRINCIPLES

Water Mangement and Ecosystem restoratioon Synergy

Multifunctionality and responsive nature improvment

Land use diversification

Circluarity development

COLLABORATIVE GOVERNANCE

Public

2020—2021 UECL Uraban ecology and eco-city lab

GOVERNANCE

POWER AND INTEREST OF STAKEHOLDERS

The hierarchy of governance structure

current connectionsproposed and empowered connections

Power and interest analysis of main stakeholders in region

GOVERNANCE

MULTI-ACTOR INTERACTION

Actors

Relationship

Existing Stakeholders

Secondary Stakeholders

Primary Stakeholders

Relationship

Frimary Stakeholders

Primary Stakeholders

Relationship

Frimary Stakeholders

Primary Stakeholders

Relationship

Frimary Stakeholders

Frimary Stakeholders

72

GOVERNANCE

DESIRED SITUATIONS

Desired Situation

GOVERNANCE

OVERACHING THE PLANNING FRAMEWORK

2020—2021 UECL Uraban ecology and eco-city lab

STRATEGY

STATEGIC PLANNING TOOL

the strategic planning

STATEGIC PLANNING TOOL

Proposed planning process

PLAN, PROGRAMME, AND PROJECT

STRATEGIC PLANS

Environment Actions

- 1.Restore the water gradients at the strategic points
- 2. Strengthen and establish ecological connections
- 3.Develop the retention area as waterscape

new constructed dyke

peat meadow landscape

Economic Actions

- 1. Develop energy landscape such as wind farming
- 2. Seaweed cultivation at North sea; Apply acaponic farming in Rotterdam port
- 3.Networks of bio-gas and carbon pipelines

4.network of bio-waste transport and storage space

94

Social Actions

1. Integrate the tranport hubs; develop the water transportation

2. Increase the waterfront accessibility by slow mobility

3.Identify the green port and place for the densifications for city activities

Multi-model hub

STRATEGIC TIMELINES

In **2025**, the pilot projects will be tested and evaluated firsl-ty.

In **2030**, regional infrastructure(Backbones) will be developed.

Future

Current

In **2040**,and the more project continues to appear and expanded.

In **2050**, the targeting goals will be achieved and further develop a social-ecological integrated Rotterdam port.

STRATEGY PROJECT M4H 10 1.5km

TESTING: M4H

PROJECT M4H

Green Space

Buildings
Buildings
Buildings
Buildings

Road System

106

STRATEGY

TIDAL PARK

STAKEHOLDER ENGAGEMENT

Rotterdam port authority

Municipality of Rotterdam

Deitares

Witteveen+Bos

Property development

Local residents

EXISTING CONDITIONS

SITE ANALYSIS

DESIGN CONCEPT

Green Space Open Space Building block

SHORT TERM

PLACE FOR ECOLOGY IN PORT

MID-TERM

MID-TERM

PLACE FOR SOCIAL DEVELOPMENT

LONG TERM

TIDAL PARK

MAKER DISTRICT

COMMUNITY

128
UECL Uraban ecology and eco-city lab

STRATEGY

PROGRAMMES STADHAVEN

Step1:

LANDSCAPE FRAMEWORK

Step 3:

URBANIZATION

INFRASTRUCTURE

Step4:

INTEGRATIONS

PREFERRED PATHWAYS

CONCLUSION

BACK TO RESEARCH QUESTION

SQ1 Understanding quesiton

What is the concept of socialecological integrations in spatial planning and governance?

SQ2 What to do question

What are the current social-ecological system of Rotterdam port and what are the challenges and opptunities?

What are the design principles of social-ecological integrated port transformation in terms of ecological, soical and econonic aspects?

SQ3 How to do question

What are the stakeholders involved in the current and future process? and then how to facilitate strategic multi-actor collaborations?

SQ4 Application question

How to apply combine the spatial planning and implementation with mulit-actors in Rotterdam port through time?

CONCEPT BUILDING

SYSTEM ASSESSMENT

GOVERNANCE

STRATEGY MAKING

2020—2021 UECL Uraban ecology and eco-city lab

CONCLUSION

RELATIONSHIP TO URBAN ECOLOGY LAB

Source: Tilie, (2019)

Dr. Ir. Ni Research Delft Univ

Source: Tilie, (2019)

Thank You

Baokun Wei

TU Delft 06 July 2021

