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Abstract

Aiming at the problem of mismatch between real-time data distribution and modeling data distribution

caused by the change of working conditions in industrial process, which leads to the performance

deterioration of the soft sensor model, a multi-source unsupervised soft sensor method based on joint

distribution alignment and mapping structure preservation is proposed. Firstly, the method uses the

hypergraph to establish the complex structure of feature and label, and clusters the hypergraph matrix

in multiple views to completely construct the class pseudo label; then dynamic distribution alignment is

used to adapt marginal distribution and conditional distribution between the data of historical working

conditions and the current working conditions, and the hypergraph Laplacian operator is introduced

for manifold regularization to prevent the mapping relationship between feature and label from being

destroyed; finally, similar working conditions are introduced to further enhance the robustness of the

model. The experimental results show that compared with the traditional unsupervised soft sensor

methods, the method used in this paper can effectively improve the prediction accuracy of the model.

Keywords: Soft sensor, Hypergraph, Multi-view clustering, Dynamic distribution alignment

1. Introduction

With the increasing requirements for control, monitoring and operational reliability in industrial

processes, real-time monitoring of the key variables has become particularly important. However, factors

such as process mechanism, physical environment and characteristics of instrument hardware often make

it difficult to directly measure process parameters with sensors, which will affect process monitoring and

automatic control. Soft sensor [1–3] has become an effective solution to the above-mentioned problems.

It adopts the idea of indirect measurement and establishes a model to estimate the main variables

through auxiliary process information. At present, soft sensor methods can be divided into two classes:
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modeling methods based on process mechanism analysis and data-driven. The process mechanism model

is easily affected by many factors such as changes in application environment. At the same time, there

are many disturbance factors in the actual industrial process, such as nonlinearity, time-varying and

large hysteresis. There are a large number of differential processes in the mechanism model constructed,

which lead to problems such as complex solutions and difficulty in obtaining measured values in real

time. The data-driven modeling methods rely on the internal connection of data in the process, so

there is no need to deeply understand the research object. This method solves the measurement of key

parameters in practical engineering problems, and is suitable for modeling applications in the process

industry.

At present, data-driven soft sensor methods mainly include multivariate statistical methods rep-

resented by partial least squares and principal component analysis, and machine learning methods

represented by support vector machines and neural networks. However, the premise of these methods is

that the modeling data and real-time data must satisfy the same probability distribution. In the actual

production process, due to some situations in the production process such as equipment reorganization,

material or environmental changes, production conditions will change significantly. The production

system presents the characteristics of multiple working conditions and multiple modes [4, 5], resulting

in a distribution mismatch between real-time data and modeling data, causing the original soft sensor

model to be inaccurate. And because of the lack of actual sensor data, it is impossible to form an

effective mark value of modeling, so it is difficult to establish an accurate soft sensor model after the

working conditions change.

Transfer learning solves the problem which is difficult to establish a machine learning model in the

target domain due to changes in data distribution and lack of labeled data by transferring the model

or parameters of the source domain. It provides new ideas and methods for soft sensor modeling under

multiple working conditions. It uses known modal data as the source domain and unknown modal

data as the target domain for transfer prediction. Gretton et al. [6] used the maximum mean discrep-

ancy (MMD) to measure the data distribution difference between source domain and target domain,

and then reduce the distribution distance between them to achieve the purpose of domain adaptation.

However, MMD is mainly used for marginal distribution adaptation, and cannot perform joint adap-

tation of conditional distribution, thus losing the relationship between feature and label. Therefore,

Long et al. [7] used the joint distribution adaptation (JDA) algorithm to match marginal distribution

and conditional distribution of the source and target domain data during the transfer process, thereby

reducing the overall distribution difference. However, JDA assumes that marginal distribution and

conditional distribution are equally important, and this assumption may not be applicable in actual

situations. Wang et al. [8] proposed a manifold embedded distribution alignment (MEDA), by intro-

ducing a balance factor to weigh the importance of marginal distribution and conditional distribution
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in domain adaptation. According to the actual situation, the marginal distribution and conditional

distribution are assigned different weights to improve the performance of joint distribution adaptation.

But this method is mainly used to solve the classification problem. In the regression problem studied

in this paper, the continuous characteristic of data will not cause the MMD matrix to change during

the process of adjusting data distribution, and thus it is impossible to directly use MEDA to perform

joint distribution adaptation.

Therefore, a classification framework is needed to solve the problem of joint distribution adaptation

in soft sensor modeling. However, the compactness criterion of the data contained in the classification

problem can make the original class more distinguishable in new space through multiple iterations.

But the regression data does not have this characteristic, and only discretizing the data to obtain

label may not suitable for regression problems. At the same time, it should be noted that, unlike the

classification problem, the regression problem focuses on the internal connection between the feature

and label. Therefore, this paper intends to adopt the method of multi-view joint clustering, which uses

the feature and label as the two views of the working condition data. In the process of mapping to

the low dimensional space, the information between the two views is combined to preserve mapping

relationship with feature and label.

At the same time, the hypergraph can more completely express the complex relationships between

research objects and capture the deep connections between features and labels than simple graphs.

It can better describe its internal overall structure and enhance the effect of multi-view clustering.

Hypergraph combined with manifold regularization can reduce the damage to the data structure due

to the compactness criterion to a certain extent.

In conclusion, a multi-source unsupervised soft sensor method based on joint distribution alignment

and mapping structure preservation (DASP) is proposed, to solve the problem that the distribution of

modeling data and real-time data is not consistent due to the multi-mode of the system. This work

makes the following contributions: (1) DASP constructs pseudo label to dynamically distribute adapt

the continuous regression data and keeps the internal structure of the data in the new projection space.

(2) A multi-view classification pseudo label construction method based on hypergraph is proposed, the

new label can retain the mapping relationship between the original data feature and label. (3) The

experimental results of the ball mill load parameters and Tennessee Eastman (TE) process verify the

effectiveness of the method.

The rest of this article is organized as follows. Section 2 introduces related work. Section 3 introduces

the soft sensor model based on our method. Section 4 takes TE and wet ball mill experiments as example

to verify the effectiveness of our method. Section 5 draws a conclusion.
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2. Related work

There are two main difficulties in the soft sensor of multi-conditions processes. The first difficulty is

how to deal with the differences between different condition. Because traditional multivariate statistical

methods are difficult to deal with the differences between different modes in a model, some researchers

use mixed models for modeling, integrating pattern recognition and regression into one model, so as

to avoid switching predictive models when data patterns change. Ge et al. [9] extended the principal

component regression model to form a mixed probabilistic regression model for soft sensor modeling,

used the expectation maximization algorithm to solve the parameters of the mixed probability model,

and calculated each type of new data sample for the posterior probability in the operating mode, the

combined model gave the estimated result. However, the principal component regression modeling

process assumed that the modeling variables were subject to Gaussian distribution, while this was not

the case in actual industrial processes. Mei et al. [10] used Gaussian mixture model for regression,

set up several Gaussian models to fit the distribution, and directly fused the predicted output of the

Gaussian model as the final output. However, the problem of determining the number of Gaussian

models that fit the distribution needed to be optimized. Tan et al. [11] used local nearest neighbor

standardization to Gaussian processing of the original data and established a partial least square (PLS)

model for fault detection in a multi-condition process. However, the above method also requires the

labeled data in each condition when modeling, which is unrealistic in the actual process. And when

the working conditions are frequently changed, the global model cannot effectively track the changes in

the dynamic characteristics of the industrial process, resulting in a decrease in predictive ability. The

method based on multi-model matching once the model is mismatched, it will have a greater impact on

system monitoring [12].

Another difficulty in soft sensor modeling for multi-modal processes is the update of the system

model to cope with the conceptual drift in the process, so that the model has the ability to adapt to

unknown operating conditions. Recursive Modeling/Moving Window (MW) and Just-in-time Learning

(JITL) are commonly used adaptive (online) learning tools to deal with concept drift in the industrial

process [13]. The recursive iteration method/moving window uses the sample closest to the query

point time in the historical data segment for modeling. However, in the case of large process drift, the

established model is difficult to track the process dynamics that occur in the new data. Just-in-time

learning selects the sample set most relevant to the current sample from the marked historical data

according to the similarity metric to establish a real-time regression model. However, the established

model is susceptible to the influence of different similarity measurement criteria, and when a new working

condition appears, historical data that matches it cannot be found. A process may experience various

types and frequencies of operating condition changes during its operation. Therefore, it is unreasonable

to expect a single MW or JITL model to be effective for a long time. The most popular method to
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solve this problem is ensemble learning (EL), in which models built for different working conditions

are adaptively combined to predict query points [14]. Ensemble learning builds multiple sub-models of

historical data, evaluates the prediction results of each sub-model, and weights and fuses the multiple

sub-models according to the confidence level of the model output, and finally obtains the ensemble

regression model. The ensemble learning strategy balances the diversity of process data by establishing

multiple local models, which is essential to offset the changes in operating conditions of different types

and rates in industrial processes. However, due to the need to build multiple local models, the amount

of calculation in the training process will increase exponentially in the case of large data sets.

None of the above methods substantially eliminates the impact of data distribution differences on

modeling under multiple working conditions. At the same time, the above-mentioned adaptive real-time

modeling methods all assume that the real label can be obtained under a certain delay, which is unre-

alistic in some actual processes. Transfer learning aims to reduce the distribution difference between

the source domain and the target domain, so that the knowledge obtained from the source domain

can be used to help improve the learning of the prediction function in the target domain. Regarding

the historical working condition in the multi-condition problem as the source domain and the current

working condition as the target domain, constructing a transfer learning model that migrates from the

historical working condition to the current working condition provides a solution to the soft sensing

problem under multiple working conditions [15]. It is important to note that unsupervised transfer

learning provides a distribution alignment framework that does not require target working condition

label values, Zheng et al. [16] designed a multisource-Refined transfer network based on unsupervised

transfer learning for unsupervised cross-domain fault diagnosis. So the use of transfer learning based

multi-modal soft sensor methods to solve this problem has become a hot spot in current researches. It

is assumed that there is a shared latent feature space between the source domain and target domain

to reduce the existing distribution differences between domains. The strategy to find such a shared

latent feature space is to adopt a dimensionality reduction method and minimize some predefined dis-

tance measurements to reduce the marginal distribution or conditional distribution mismatch between

the source domain and target domain. In order to match the marginal distribution, Chen et al. [17]

introduced two subspace distribution adaptation frameworks. Both frameworks use the subspace distri-

bution adaptation function to make source distribution similar to target distribution, and at the same

time learn the adaptive classifier through the principle of structural risk minimization. Kumagai et al.

[18] transformed the source feature representation through a linear matrix function, so that the source

distribution and target distribution are similar under the MMD distance. Pan et al. [19] proposed the

transfer component analysis (TCA) algorithm, which projected the source and target domain data into

a high dimensional Hilbert space, minimized the distance between source domain and target domain

instead of only modifying the source distribution, while reducing the difference between source domain
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and target domain distribution, retained their respective internal attributes to the greatest extent. Kan

et al. [20] proposed the target source domain (TSD) algorithm. While preserved the data structure,

constructed the projection matrix of the conversion to reduce the distribution difference between source

domain and target domain in the subspace. However, the marginal distribution adaptation would lose

the role of the label in the distribution adaptation. Therefore in [21–23], the author explored matching

the marginal distribution and the class conditional distribution at the same time to enhance the effect

of the label. Roughly speaking, most of these works are based on the joint distributed adaptation

method. The above methods are very likely to cause damage to the data structure in the process of

adjusting distribution and adaptation. Du et al. [24] introduced the idea of manifold regularization to

reduce the distribution difference between source domain and target domain, while preserved the local

feature information, thereby reducing the structural drift of the two in the process of projecting into the

subspace. However, the above methods are all used for the classification problem. Applied in the field

of soft sensor, the continuous distribution of the regression data itself is different from the compactness

structure of the classification, which will cause greater damage to the data structure. Therefore, this

paper uses the method of multi-view clustering to combine the feature and label data to construct the

process pseudo label so that it retains the mapping relationship between feature and label.

Since different features can be extracted to describe a sample, multi-view learning can capture the

internal associations between multiple views, thereby improving learning performance [25]. The success

of multi-view learning lies in its principles of consistency and complementarity, which can well charac-

terize the relationship between multiple views. In recent years, multi-view clustering mostly combines

data from different views into a single view representation before data clustering. Guo et al. [26] de-

scribed multi-view subspace learning as a joint optimization problem, which has a common subspace

representation matrix and group sparsity inducing norm. White et al. [27] learned a common expression

based on multiple views in a targeted manner, and solved a joint optimization problem through a com-

mon subspace representation matrix. Lu et al. [28] tried to find low dimensional embedding of the data

by calculating the eigenvectors of the standardized Laplacian matrix, so as to use lower dimensional

representation methods to solve the problem that is difficult to calculate in the high dimensional space.

Brbicet al. [29] proposed a multi-view low-rank sparse subspace clustering method. This method learns

joint subspace representations by constructing an association matrix shared between views, and then

used spectral clustering to process multi-view data. This method combines the feature information of

multiple different views and divides similar samples into the same group in an attempt to obtain a more

accurate cluster assignment.

At the same time, when the research object has a paired relationship, it can be represented by a

graph. However, in many practical problems, the relationship between objects is much more complicated

than the pair-wise relationship. Simply compressing complex relationships into pairwise relationships
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will inevitably lead to the loss of information. Therefore, consider using hypergraph [30] to completely

represent the complex relationship between the research objects. Agarwal et al. [31] proposed the

use of hypergraph to construct Laplacian matrix, and developed a general framework for classification

and clustering of complex relational data. Wang et al. [32] proposed hypergraph canonical correlation

analysis. This method is based on canonical correlation analysis and considers high-level label structure

information through hypergraph regularization.

It is also noted that the utilization of multiple source domains is an opportunity to further improve

the model performance by extracting more useful information. Liu et al. [33] used a novel framework

of an adversarial transfer learning (ATL)-based soft sensing method which was designed for the quality

inferring of multigrade processes. Treating each grade as a domain, the concept of ATL was adopted to

learn a suitable feature transformation between different domains, which reduces the data distribution

discrepancy. As a supervised soft sensing method, the labeled target domain data is often difficult to

obtain. Therefore, this method uses the MMD similarity measure to select the two domains closest to

the target domain from multiple source domains to build models and carry out weighted integration,

so as to improve the prediction accuracy and enhance the robustness of the model.

To sum up, in order to solve the problem that the regression data cannot be adapted to the joint dis-

tribution of the multi-condition soft sensor modeling, this paper uses multi-view clustering to establish

class pseudo label with the known working conditions, and hypergraph can be used to describe feature

of deep structure of data to construct the view matrix, which made the multi-view clustering result

more reliable. In addition, the Laplacian similarity matrix is constructed through the hypergraph, and

the manifold regularization constraint is performed to keep the data structure during the projection

process. The algorithm diagram is shown in Figure 1.

3. Related theories and algorithms

Throughout this paper, matrices are represented with bold capital symbols and vectors with bold

lower-case symbols. For matrix X = (xij), the row i is denoted as xi, and the column j is denoted as

xj . Given the feature Xs = [x1,x2, · · · ,xn]
T ∈ Rn×r and label Ys ∈ Rn×1 of the historical working

condition (source domain) Ds and the feature Xt = [x1,x2, · · · ,xm]
T ∈ Rm×r of the current working

condition (target domain) Dt, where n,m is the number of data samples and r is the dimension of the

sample feature vector. Xc
s = [xc1,x

c
2, · · · ,xcn]

T
, Xc

t = [xc1,x
c
2, · · · ,xcm]

T
and Yc

s represent the feature

and label after clustering, respectively.

3.1. Dynamic distribution alignment

In the soft sensor model, due to process differences, the distribution of real-time data and modeling

data among multiple working conditions will be inconsistent, which does not satisfy the assumption of
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Figure 1: Schematic diagram of the algorithm. (a) Perform multi-view clustering through labeled source domain data to

obtain class pseudo label and establish a clustering model, such as KNN, to predict feature of unlabeled target domain;

(b) Condition and edge of two domain data distribute adaptation and dynamically assign weights; (c) In the process of

domain adaptation, the internal complex structure of the data is constrained by hypergraph Laplacian regularization. In

the figure, blue represents the source domain data, and red represents the target domain data. Use triangles, squares, and

five-pointed stars to represent different class of data, that is, the process of class pseudo labeling, and circles represent

regression data. In the process of (b-c), iteratively update and optimize the MMD matrix, balance factor, hypergraph

Laplacian matrix L, projection matrix W and label matrix Y; (d) The source domain and target domain data distribution

after feature transformation is pulled in, finally, PLSR is used to obtain the final predicted label.

the same data distribution. And there are differences in the distribution of feature and label at the

same time, resulting in a mismatch between the marginal distribution and conditional distribution. In

addition, the degree of difference between two distributions may be different, so an adaptive factor

needs to be introduced to weigh the importance of marginal and conditional distribution and adjust

them dynamically. The dynamic distribution alignment is defined as [8]:

D̄f (Ds,Dt) = (1− µ)Df (Ps, Pt) + µ

k∑
c=1

D
(c)
f (Qs, Qt) (1)

where µ ∈ [0, 1] is the balance factor, c ∈ [1, · · · , k] is the class indicator. Df (Ps, Pt) denotes the

marginal distribution alignment, and D
(c)
f (Qs, Qt) denotes the conditional distribution alignment for

class c.

The balance factor µ is calculated according to the global and local structure of the domain, that

is, a linear classifier is established using a metric to distinguish the error of two domains (i.e. a binary

classification), such asA-distance [34]. Therefore, the marginal distribution distance ϕm and conditional

distribution distance ϕc can be measured by this method. The estimated value of µ is [8]:

µ̂ ≈ 1− ϕm

ϕm +
∑k
c=1 ϕc

(2)

This paper uses the MMD to calculate the difference between the two probability distributions, and

continuously adjusts the MMD matrix by minimizing the overall difference between the two, so that

the constructed projection matrix adaptively distributes the source and target domains data conduct

guidance. The dynamic distribution alignment item can be expressed in the form of a matrix as:
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D̄f (Ds,Dt) = (1− µ)

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
i=1

φ(xi)−
1

m

m∑
j=1

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

HK

+ µ

k∑
c=1

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
i=1

φ(xci )−
1

m

m∑
j=1

φ(xcj)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

HK

(3)

where φ(·) represents the transformation of the sample in the reproducing kernel Hilbert space HK .

The marginal distribution alignment item is:

Df (Ps, Pt) =

∣∣∣∣∣∣∣∣ 1n (WTK1 + . . .+ WTKn

)
− 1

m

(
WTKn+1 + . . .+ WTKn+m

)∣∣∣∣∣∣∣∣2
HK

= tr

(
WT

(
1

n
Ks1n×1 −

1

m
Kt1m×1

)(
WT

(
1

n
Ks1n×1 −

1

m
Kt1m×1

))T
)

= tr(WTKM0KW) (4)

where Ks= (K1, . . . ,Kn) and Kt= (Kn+1, . . . ,Kn+m) are the kernel matrices of source and target

domains, respectively, K= [Ks,Kt] ∈ R(n+m)×(n+m).The projection matrix is W ∈ R(n+m)×k, tr(·)

represents the trace of the matrix. In the same way, the conditional distribution alignment item is:

D
(c)
f (Qs, Qt) =

k∑
c=1

tr

((
WT

(
1

n(c)
K(c)
s 1n(c)×1 −

1

m(c)
K

(c)
t 1m(c)×1

))

×
(

WT

(
1

n(c)
K(c)
s 1n(c)×1 −

1

m(c)
K

(c)
t 1m(c)×1

))T
)

=

k∑
c=1

(
tr(WTKMcKW)

)
(5)

Therefore, the dynamic distribution alignment item can be expressed as:

tr(WTKMKW) (6)

where M is the MMD matrix, expressed as:

M = (1− µ)M0 + µ
∑k

c=1
Mc (7)

where M0 represents the marginal distribution matrix, Mc represents the conditional distribution ma-

trix, M0 and Mc are constructed as follows:

(M0)ij =


1
n2 , xi,xj ∈ Ds
1
m2 , xi,xj ∈ Dt

− 1
mn , otherwise

(8)
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Figure 2: Schematic diagram of pseudo label structure

(Mc)ij =



1
n2
c
, xi,xj ∈ D(c)

s

1
m2
c
, xi,xj ∈ D(c)

t

− 1
mcnc

,

 xi ∈ D(c)
s ,xj ∈ D(c)

t

xi ∈ D(c)
t ,xj ∈ D(c)

s

0, otherwise

(9)

where D(c)
s and D(c)

s denote samples from class c in Ds and Dt, respectively, and nc =
∣∣∣D(c)

s

∣∣∣,mc =
∣∣∣D(c)

t

∣∣∣.
3.2. Acquisition of category pseudo labels in regression problems

Dynamic distribution alignment is mainly proposed for classification problems. When facing soft

sensor regression problems, conditional distribution adaptation cannot be performed directly, and class

pseudo label need to be obtained firstly. However, the traditional clustering method cannot fully express

the information association between the original data: it only considers the feature or label of data, and

ignores the internal connection between feature and label. In other words, if only using feature, it will

lose the guiding role of the label; if only use the label, it will lose the relationship between feature and

label. In response to such problem, this paper uses the hypergraph based multi-view method to construct

source domain pseudo label: firstly cluster the data to obtain the internal structure relationship of data,

and construct its hypergraph matrix; then, use the hypergraph matrix as its view matrix. Using the

method of multi-view clustering, label and feature are used as views representing two opposite directions

of the data structure, which act on the whole clustering process. Applying the hypergraph matrix to

multi-view clustering can more effectively express the internal structure of each view and promote data

association between multiple views. The schematic diagram of pseudo label structure is shown in Figure

2 .
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3.2.1. Hypergraph construction

Generally, in a simple graph, the connecting edges between nodes can only reflect a certain rela-

tionship that exists between these two nodes. However, the hyperedge in a hypergraph can include

any number of nodes, which can reflect the relationship between multiple nodes, so the hypergraph can

represent the complex relationship between objects. For soft sensor, the data collected in the industrial

process is used to represent the information transmitted by multiple sensors over time, such as liquid

level, pressure, temperature, etc. which are the physical meaning of the feature. With the development

of industrial process, the change of feature information often does not proceed simultaneously. There-

fore, at a certain process point, the ways that different features affect are different. In the process of

feature change, due to the setting of the threshold, the value will fluctuate within this range. When

the threshold is exceeded, the feature is considered to have entered a new working state. Therefore,

at the same time, different features may be in different working states, which lead to the clustering of

continuous data, and the same sample will be divided into different class. Therefore, in the hypergraph

constructed by clustering the regression data, each sample represents a vertex, and a working state is

a hyperedge. The hypergraph can be used to obtain a variety of state information contained in the

different feature of the working condition, so the knowledge structure between data collected under

different conditions can be better expressed and the robustness of model can be enhanced.

If the finite set of vertices V and the set of edges E satisfy Ue∈E = V, then a hypergraph G = (V,E)

can be constructed. If each hyperedge e is associated with a positive weight ψ (e), it is called a weighted

hypergraph G. For a hyperedge e ∈ E, the number of vertices is its degree, namely δ (e) = |e|. For a

vertex v = V, its degree is defined as [32]:

d (v) =
∑

v∈e,e∈E

ψ (e) (10)

The hypergraph G can be represented by the incidence matrix of vertices and edges as:

H (v, e) =

 h (v, e) = 1; v ∈ e

h (v, e) = 0; otherwise
(11)

The essence of graph-based or hypergraph-based methods is to discover the underlying structure of

the data set. Therefore, it is necessary to reduce the number of hyperedge while preserving the original

structure. For this reason, this paper uses the clustering method to generate the centroid as the most

representative data point in the data set, and iteratively makes this point have a strong representation

ability and can fully cover the data set. If the same number of hyperedges is used to represent the

hypergraph, using a centroid to generate the hyperedges is better than other methods. This method

can keep the integrity of the data set structure to the maximum. In order to achieve this goal, this

paper uses a general clustering method, such as the k-means method.
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Considering the interrelationship between the high dimensional feature samples of the data set,

all samples of each dimension feature are clustered to construct a feature hypergraph matrix. Each

hyperedge is composed of a sample and all other samples that belong to the same centroid. Since each

sample will belong to multiple class at the same time (it is assumed that the importance of each class

is the same, which is, the weight of the hyperedge is 1), the structural relationship between the data

can be established through the hypergraph. Then the feature hypergraph matrix can be expressed as:

Hf
i =

 1; xcij ∈ c

0; otherwise
j = 1, · · · , n

Hf=
[
Hf

1 ,H
f
2 , · · ·Hf

m

] (12)

where m is the feature dimension, n is the number of samples, Hf
i is the hypergraph matrix of the i-th

dimensional feature, and xcij is the class of the j-th sample after the i-th dimensional feature clustering.

At the same time, from the point of view of data structure, the main difference between feature and

label is that feature is a set of data composed of multi-dimensional while label can be regarded as single

dimensional feature and have a guiding role for feature. With the continuous nature of the label itself,

discretizing it into segments can perform clustering more efficiently and obtain the label hypergraph

matrix Hl.

3.2.2. Multi-view subspace clustering

Given the feature hypergraph matrix Hf
s and label hypergraph matrix Hl constructed by the source

domain feature Xc
s and label Yc

s after clustering, they are regarded as the respective view matrix

H =
{
Hf ,Hl

}
. Therefore, for a hypergraph matrix with two views, this paper uses a low-rank sparse

subspace multi-view clustering (MC) method to map the data from the high dimensional space to the

low dimensional subspace, using the linear combination of few bases represents the essential feature of

the data, and a joint representation matrix C is found to weigh the consistency between different views.

Need to solve the following problems [29]:

min
C

1
2 ‖H−HC‖2F + θ1‖C‖∗ + θ2‖C‖1

s.t. diag(C) = 0.
(13)

where the kernel norm ‖·‖∗ is used to approximate the rank of C. Matrix sparsity requires that each

simple is represented by a small number of data points in its own subspace. The `1 norm is used as

the tightest convex relaxation of the `0 quasi-norm that counts the number of nonzero elements of the

solution. Constraint diag(C) = 0 is used to avoid trivial solution of representing a data point as a

linear combination of itself.

In order to solve the problem in equation (13), introducing auxiliary variables C
(v)
1 ,C

(v)
2 and F(v).
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Without considering the influence of noise, the objective function can be expressed as:

min
C

(v)
1 ,C

(v)
2 ,F(v)

θ1

∥∥∥C(v)
1

∥∥∥
∗

+ θ2

∥∥∥C(v)
2

∥∥∥
1

s.t. H(v) = H(v)F(v),F(v) = C
(v)
2 − diag(C

(v)
2 ),

F(v) = C
(v)
1 , v = 1, 2.

(14)

where C(v) is the representation matrix of the view v. Parameters θ1, θ2 are the trade-off coefficients

of low-rank and sparsity constraints.

Augmented Lagrangian is:

L(
{

C
(v)
i

}2

i=1
,F(v),

{
Λ

(v)
i

}3

i=1
) = θ1

∥∥∥C(v)
1

∥∥∥
∗

+ θ2

∥∥∥C(v)
2

∥∥∥
1
+ψ1

2

∥∥H(v) −H(v)F(v)
∥∥2

F

+ψ2

2

∥∥∥F(v) −C
(v)
2 + diag(C

(v)
2 )
∥∥∥2

F
+ ψ3

2

∥∥∥F(v) −C
(v)
1

∥∥∥2

F

+tr

[
Λ

(v)
1

T (
H(v) −H(v)F(v)

)]
+ tr

[
Λ

(v)
2

T (
F(v) −C

(v)
2 + diag(C

(v)
2 )
)]

+tr

[
Λ

(v)
3

T (
F(v) −C

(v)
1

)]
(15)

where {ψi > 0}3i=1 is the penalty coefficient and
{

Λ
(v)
i

}3

i=1
is the Lagrangian dual variable. In order

to solve the convex optimization problem in the above formula, the Alternating Direction Method of

Multipliers (ADMM) [35] can be used to obtain the update formula of each iteration process:

F(v)=
[
ψ1H

(v)T
H(v) + (ψ2 + ψ3) I

]−1

×
(
ψ1H

(v)T
H(v) + ψ2C

(v)
2 + ψ3C

(v)
1 + H(v)T

Λ
(v)
1 −Λ

(v)
2 −Λ

(v)
3

)
C

(v)
1 = Π θ1

ψ3

(
F(v) +

Λ
(v)
3

ψ3

)
C

(v)
2 = π θ2

ψ2

(
F(v) +

Λ
(v)
2

ψ2

)
Λ

(v)
1 = Λ

(v)
1 + ψ1

(
H(v) −H(v)F(v)

)
Λ

(v)
2 = Λ

(v)
2 + ψ2

(
F(v) −C

(v)
2

)
Λ

(v)
3 = Λ

(v)
3 + ψ3

(
F(v) −C

(v)
1

)

(16)

where Πθ (∆) = Uπθ (Σ) VT represents the soft threshold operation on the singular values of ∆ and

πθ (Σ) represents the defined soft threshold operator.

By averaging the elements
{
C(1),C(2)

}
and obtaining the matrix C, the adjacency matrix B can

be obtained as:

B= |C|+ |C|T (17)

Because spectral clustering [36] only needs the similarity matrix between data, it is very effective

for processing sparse data clustering. Therefore, the main steps of using spectral clustering to obtain

pseudo label Yc
s of source domain class are as follows:

1) Obtain the Laplacian matrix Ly through the adjacency matrix B;
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2) Perform eigenvalue decomposition on Ly and take the eigenvector corresponding to the k smallest

eigenvalue;

3) Take the solved eigenvectors (and normalize them respectively) to form a new spectral clustering

characteristic matrix Xsc = [xsc1 ,x
sc
2 , · · · ,xscn ]

T ∈ Rn×k, and k-means clustering of matrix Xsc to obtain

pseudo label Yc
s ∈ n×1.

3.3. Hypergraph Manifold Regularization

The pseudo label constructed by the multi-view method can preserve the mapping relationship

between the original feature and label, but this relationship between the data may be destroyed in

the process of dynamic distribution adaptation. In order to solve this problem, this paper introduces

hypergraph manifold regularization (HMR) to constrain the projection matrix, and uses the hypergraph

Laplacian to construct data associations between feature and label, so that the data can preserve the

deep geometric structure of the original data in the new projected space.

The hypergraph regular item is defined as [30]:

Rh (`) =
1

2

∑
e∈E

∑
u,v∈V

ψ (e)h (v, e)

δ (e)

(
` (u)

d (u)
− ` (v)

d (v)

)2

(18)

Taking the diagonal matrix Dv, De as the degree matrix of the vertices and the hyperedge in the

hypergraph, respectively, Ze as the weight matrix of the hyperedge, since the weight is 1, this matrix is

equivalent to the identity matrix. The Laplacian of the hypergraph is L = I−S, where I is the identity

matrix, and the similarity matrix S can be expressed as [32]:

S = D−1/2
v HjZeD

−1
e HT

j D−1/2
v (19)

where Hj is the joint hypergraph matrix, which can be expressed as:

Hj =

 Hs

Ht

 ,Hs =
[

Hf
s Hl

s

]
,Ht =

[
Hf
t Hl

t

]
(20)

where Hs and Ht are the hypergraph matrices of source domain and target domain respectively, and

they are obtained by the hypergraph matrices of their respective feature and label. So the regularization

expression of manifold based on the hypergraph Laplacian is:

tr
(
WTKLKW

)
(21)

4. Algorithm model and optimization solution

DASP is mainly divided into two parts: (1) Obtain class pseudo label through the hypergraph

based multi-view clustering method; (2) Use the pseudo label obtained in the first part to perform
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dynamic distribution alignment and manifold regularization constraints. At the same time, both parts

use iterative methods to optimize and update the requested parameters.

The first part to obtain class pseudo label Yc
s. The second part of the model needs to integrate

the above parts. Due to the large number of parameters, it is easy to cause large model complexity.

And the empirical risk optimization strategy believes that the model with the least empirical risk is the

optimal model, but using this model may cause over-fitting problems. Therefore, this paper uses the

structural risk function to prevent overfitting. Its structural risk is defined as [8]:

Rsrm =
1

n

n∑
i=1

L(yi, ŷi) + ηJ(fm) (22)

where J(fm) is the model complexity. η is a coefficient, used to weigh empirical risk and model

complexity. L(yi, ŷi) is the loss function, yi is the true value, and ŷi is the predicted value. This paper

adopts the square loss function, which is expressed as:

arg min
fm∈HK

n∑
i=1

(yi − fm(xi))
2

+ η ‖fm‖2K (23)

where HK represents the reproducing kernel Hilbert space. Using the representation theorem [37], it

can be extended to:

fm(·) =

n+m∑
i=1

wik(xi, ·)

= (w1, . . . , wn+m)


k (x1, ·)

. . .

k (xn+m, ·)


= WTK (24)

Therefore, the structural risk function can be written as:

n+m∑
i=1

(yi − fm(xi))
2

+ η ‖fm‖2K =

n+m∑
i=1

Aii(yi −wTki))
2 + ηtr

(
fmfm

T
)

=
∥∥(Y −WTK)A

∥∥2

F
+ ηtr(WTKW) (25)

where ‖·‖F represents the F norm. Kij = K(xi,xj) is the kernel matrix, A ∈ R(n+m)×(n+m) represents

the diagonal matrix used to identify the domain. If i ∈ Ds, Aii = 1, otherwise Aii = 0. Y =

[y1, y2, · · · , yn+m]T indicates the label of source and target domains.

In summary, each part of the algorithm is optimized under the framework of structural risk mini-

mization, and combined with the above parts, DASP can be expressed as:

min {Empirical risk}+η{Modelcomplexity}+λ{Distributionshift}+ρ{Manifoldregularization}

(26)
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where η, λ and ρ are the regular coefficients of each item.

According to equations (6), (21) and (25), the objective function can be written as:

fo = arg min
fo∈HK

∥∥(Y −WTK)A
∥∥2

F
+ ηtr(WTKW) + tr(WTK(λM + ρL)KW) (27)

Let ∂fo/∂W = 0, it can get:

W∗ = ((A + λM + ρL)K + ηI)−1AYT (28)

Using similar working condition selecting (SDS) to understand the data distribution of the current

working condition, by selecting working conditions with similar data distribution, the data distribution

between different working conditions can be processed to a certain extent the problem of poor transfer

effect caused by differences enhances the robustness of the model. The similar working conditions

are measured by MMD, and the smaller the calculated value was, the more similar the two working

conditions were. So we can proceed as follows: first use MMD to measure the data distribution distance

between each working condition, select p working conditions (q > p) that are similar to the current

working conditions among q historical working conditions, then reconstruct the data through dynamic

distribution alignment for this p historical working condition, and reconstruct each group establish a

regression model fri (·), i ∈ [1, p] based on the historical working condition data XSi , and use MMD to

measure the similar weight of each historical working condition. The formula is as follows:

αi =
1

MMD(XSi ,XT )
(29)

Algorithm 1 Pseudo-code of DASP algorithm
Input: Data: q historical working condition data X1 · · ·Xq and its label Y1 · · ·Yq ; current working condition data Xt . The

regular coefficients η , λ , ρ and the number of iterations t of each item.

Output: current working condition label Yt .

1: Select p working conditions similar to the current working conditions among q historical working conditions.

2: Use multi-view clustering to construct initial pseudo label for historical conditions, establish a clustering model, and use

current working conditions to predict its pseudo label ŷt ;

3: Construct the kernel matrix K and the hypergraph Laplacian matrix L;

4: for each i ∈ [1, t] do

5: Calculate the balance factor µ, and calculate the marginal distribution matrix M0 and conditional distribution matrix

Mc by formulas (8) and (9);

6: Calculate the projection matrix W∗ in the objective function by formula (28), and obtain the reconstructed historical

working condition and current working condition data.

7: Update the pseudo label ŷt and the hypergraph Laplacian matrix L of the target domain;

8: end for

9: Use the reconstructed historical working condition data to train the regression model, and test the reconstructed current

working condition data to obtain the required prediction label;

10: Calculate the final current working condition label from the predicted label obtained from each similar working condition,

and obtain the root mean square error with the real label.
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Figure 3: Flow chart of DASP

βi =
αi∑p
i=1 αi

(30)

where αi is the reciprocal of the MMD between the i-th reconstructed historical working condition data

and the current working condition data. βi is the weight of the i-th regressor. The integrated regression

model fr(·) can be expressed as:

fr = β1f
r
1 + β2f

r
2 + · · ·+βpfrp (31)

The regression model is established through the above formula for prediction, and each regression

machine is used to predict the label of the current working condition.The pseudo code of DASP algorithm

is shown in Algorithm 1. The DASP flow chart is shown in Figure 3.
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5. Experiment

In this section, several experiments are conducted to evaluate the performance of the proposed

DASP method in multiple data sets.

5.1. Data set

TE dataset: The Tennessee Eastman process[38] was created by Eastman chemical company and

can simulate the chemical production process. It is a typical multi-modal process, and its operating

point can be adjusted according to production requirements, so that the data can produce multi-modal

and multi-condition characteristics. The whole process consists of five main operating units: reactor,

stripper, condenser, gas-liquid separator and circulating compressor. There are 8 kinds of material

components in the whole process, including the reacting gases A, C, D, E and the inert and insoluble

B, the liquid products G and H, and the by-product F. The working process is shown in Figure 4. In

addition, the entire TE process involves 41 measured variables and 12 control variables, of which 41

monitored variables are divided into 22 process variables and 19 component variables.

Figure 4: Schematic diagram of TE process

In view of the fact that the reactor pressure and the reactor liquid level have the most important

influence on the product, experiments in this paper changes the reactor pressure setting value and the

reactor liquid level to make the system produce multi-model characteristics. In order to simulate the
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continuous production scenario in the industrial process, the entire TE process is based on the setting

value of working condition 1 as the initial state. After the simulation runs for 50 hours, it is switched

to working condition 2, and the setting value of working condition is switched according to the same

running time, until the operation reaches the end of the set value under working condition 18. Working

condition setting of TE process is shown in Table 1. The data sampling interval of all working conditions

is 3 minutes, that is, 1000 samples are collected under each working condition. Since the stirring rate

among the 12 control variables belongs to the mechanical field and will not have a great impact on the

final product, 22 process variables and 11 control variables are selected as input for each sample under

all working conditions in this article.

Table 1: Working condition setting of TE process

System Settings Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

Reactor pressure 2800 2750 2700 2650 2600 2550 2500 2450 2400

Reactor liquid level 65 65 65 65 65 65 65 65 65

System Settings Mode 10 Mode 11 Mode 12 Mode 13 Mode 14 Mode 15 Mode 16 Mode 17 Mode 18

Reactor pressure 2350 2300 2300 2350 2400 2450 2500 2550 2600

Reactor liquid level 65 65 75 75 75 75 75 75 75

Ball mill dataset: Ball mill is a typical energy consuming equipment, widely used in electric

power, chemical industry and other process industries. The accurate detection of the load parameters

of the ball mill is of great significance to the optimization control of the grinding process, energy saving

and consumption reduction, and safe operation. The comprehensive and complex characteristics of the

grinding process and the characteristics of the operation of the ball mill make it difficult to directly

detect the key internal parameters. Therefore, the use of an effective soft sensor strategy to predict

the load parameters of the ball mill is a problem worthy of study in the multi-modal soft sensor. This

experiment uses a small-scale wet ball mill in the laboratory as shown in Figure 5 to perform soft sensor

Figure 5: Ball mill equipment used in the experiments
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modeling and prediction of load parameters. By changing the ball volume ratio to simulate the sudden

change of working conditions, using a multi-channel data acquisition device, five groups of vibration

signals were collected on the ball mill. In order to ensure the high resolution of the load parameters,

each group has carried out sufficient experiments and synchronously collected vibration signals on site.

For each group of experiments, the charge volume ratio (CVR), the pulp density (PD) and the material

to ball volume ratio (MBVR) were changed by changing the amount of material. The experimental

setup is shown in Table 2. Each group of working condition data and vibration signal is divided into 20

samples on average. The coverage length of each sample is longer than the rotation time of the wet ball

mill. Then the fast Fourier transform is used to transform the time-domain signal, which is difficult to

model, into the frequency-domain signal.

Table 2: Working condition setting of ball mill

working steel water starting ending material

condition ball/kg /kg material/kg material/kg change times

1 292 35 25.5 174 139

2 340.69 40 29.7 170.1 103

3 389.36 40 34.2 157.5 88

4 483.02 35 23.4 151.2 95

5 486.7 40 15.3 144.9 102

Figure 6 shows that the two data sets are processed respectively, and the data of five working condi-

tions are randomly selected to be reduced to 2 dimensions for plane visualization. As can be seen from

the figure, the data distribution modes under different working conditions have certain similarity, but

there are obvious distribution differences. Different working conditions all belong to the same process,

so there is a strong similarity between different working conditions. However, when the composition

content changes, the mechanism equation of key variable parameters will also change. At the same

time, the sensor type and position are not changed when the data under different working conditions
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Figure 6: Multi-condition feature distribution diagram
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are sampled, so the multi-working condition ball mill and TE experiment is a typical multi-working

condition data.

5.2. Experimental setup

TE dataset: In the TE process experiments, it is assumed that the historical working condition

is the source domain and the current working condition is the target domain. Experiments take the

task of predicting component A (label 29), component F (label 34), and component G (label 35) in

the component variables. Use working conditions 1 to 11 are historical working conditions, and current

working conditions are working conditions 12 to 18;

Ball mill dataset: In the load parameter prediction of the ball mill, due to the limited number

of working conditions collected during experiments, when one of the working conditions is the current

working condition, the remaining four working conditions are historical working conditions. Experi-

ments predict and compare the three load parameters of MBVR, PD and CVR.

To demonstrate the prediction performance of the proposed method, the soft sensing model com-

posed of the bagging, the JITL-PLS, the JTIL-SVR, the RPLS, the MW-PLS, the MW-SVR and the

EL are used to compare the DASP method. After optimization, we set the following parameters for the

comparison methods. For the JITL-PLS and JTIL-SVR, we select 30 samples that are closest to the

current test sample to train the model. For the MW-PLS and the MW-SVR, we set the moving window

size to 100 samples. During the experiment, PLS and SVR model parameters are automatically updated

through the toolbox by Matlab2018b. For the RPLS, we set the forgetting factor to 0.98. The basic

model we chose is the decision tree for the bagging and the EL. We set the number of learning cycles

to 20 for bagging and we set the number of trees to 100 for random forest-based ensemble learning.

5.3. Evaluation index

In order to quantify the prediction performance of various methods, root mean square error (RMSE)

is used as the evaluation standard of measurement accuracy, and the calculation formula is as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2
(32)

where yi and ŷi represent the true value and predicted value of the i-th sample, respectively. N is the

number of samples.

5.4. Experimental results

TE dataset: Table 3 shows the experimental results of TE process data using 1-11 working con-

ditions to predict A,F and G of working conditions 12-18.The result record contains the average value

of the ten tests, and the symbol ” → ” means to transfer the historical working condition to the cur-

rent working condition. Figure 7-Figure 9 (a)-(h) show the single results of 10, 11 working conditions
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Table 3: Comparison of RMSE of different methods for TE predicting results

Ingredient Method
Current working condition

→12 →13 →14 →15 →16 →17 →18

29

Bagging 1.9258 2.1338 1.8273 1.1630 1.6436 1.4071 2.1024

JITL-PLS 1.8302 2.7666 2.0433 2.0706 1.7029 2.1134 1.9512

JITL-SVR 0.8850 2.9821 2.2101 2.4396 2.0349 2.6441 2.6421

RPLS 1.0923 2.8461 3.7280 3.8763 4.2674 2.8916 2.9901

MW-PLS 0.8127 1.2759 1.1841 2.0422 2.5417 3.5234 4.5488

MW-SVR 1.3369 3.1269 2.8717 3.6683 2.5617 3.5756 4.1237

EL 1.0358 2.5994 1.7896 1.3410 1.8202 1.8477 1.7436

DASP 0.7455 1.4930 1.1445 0.8500 0.7231 0.8147 1.1094

34

Bagging 0.3589 0.8426 0.6436 0.5318 0.2916 0.4572 0.4702

JITL-PLS 0.4328 0.5106 1.0972 0.8099 0.2420 0.2960 0.5865

JITL-SVR 0.1656 0.5089 0.4895 0.5269 0.2212 0.2843 0.3316

RPLS 0.1357 0.2296 0.2247 0.4020 0.2536 0.4422 0.4086

MW-PLS 0.1540 0.4021 0.6298 0.9046 1.8994 2.0049 2.3122

MW-SVR 0.3029 0.7067 0.2814 0.3270 0.9869 0.8670 1.1034

EL 0.3914 0.6764 0.5028 0.5533 0.2665 0.3194 0.4410

DASP 0.1198 0.2041 0.1668 0.1739 0.2061 0.1932 0.2812

35

Bagging 0.2677 0.5965 0.3965 0.4870 0.3656 0.6177 0.5231

JITL-PLS 0.3356 0.5755 0.4300 0.5512 0.3629 0.7479 0.5233

JITL-SVR 0.1324 0.2050 0.1994 0.1740 0.1908 0.1979 0.3373

RPLS 0.1042 0.1339 0.2071 0.1540 0.1222 0.2457 0.2195

MW-PLS 0.0870 0.1050 0.1101 0.1771 0.2790 0.3513 0.4383

MW-SVR 0.1121 0.2557 0.4493 0.6085 0.7645 0.8437 1.0187

EL 0.2540 0.3934 0.4768 0.4996 0.4034 0.4436 0.4773

DASP 0.0876 0.1070 0.0967 0.0967 0.0926 0.0970 0.1237

predicting 15 working condition. From these experiments, it can be seen that the fitting degree of

regression prediction based on DASP method is higher, whose RMSE between the real value and the

predicted value is smaller.

Ball mill dataset: In order to verify the effectiveness in the actual work environment, DASP is

selected to transfer three component variables MBVR, PD and CVR in ball mill, which predict result

is 10 times average. The experimental results are shown in the Table 4. Figure 10-Figure 12 (a)-(h) are

the single results of 3, 5 working conditions predicting 4 working condition.

The method proposed in this paper uses pseudo-labels for joint distribution alignment, in order to

design a more fair comparison experiment, for RPLS, MW-SVR, MW-PLS, we use the predicted value

of the first local model as a pseudo-label to update the model in real time. For EL, bagging, JITL-PLS,

JITL-SVR, we use all historical working condition samples as the training set, and the current working

condition as the test set for experiment. From these results, it can be seen that the prediction effect

of JITL is not ideal. Compared with JITL, EL and bagging has improved some prediction effects, but

it does not substantially reduce the data difference between different working conditions, so the model
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Table 4: Comparison of RMSE of different methods for predicting the load parameters of the ball mill under various

working conditions

Parameter Method
Current working condition

→ 2 → 3 → 4 → 5

MBVR

Bagging 0.2817 0.4225 0.3838 0.5756

JITL-PLS 0.3688 0.4490 0.7043 0.9147

JITL-SVR 0.1510 0.2588 0.5026 0.3571

RPLS 0.6552 0.6519 1.2892 3.3013

MW-PLS 0.2527 0.6149 1.5063 4.0229

MW-SVR 0.7784 0.3603 1.2474 1.4655

EL 0.2851 0.2970 0.4119 0.4468

DASP 0.1228 0.1107 0.0679 0.3749

PD

Bagging 0.0720 0.1950 0.1135 0.4210

JITL-PLS 0.0695 0.1149 0.3406 0.3467

JITL-SVR 0.0342 0.0681 0.1280 0.1534

RPLS 0.1215 0.1530 0.2225 0.6087

MW-PLS 0.0451 0.0456 0.1803 0.4052

MW-SVR 0.0738 0.0935 0.1298 0.1839

EL 0.0444 0.0733 0.0833 0.1506

DASP 0.0319 0.0223 0.0387 0.0543

CVR

Bagging 0.0927 0.2368 0.1557 0.3845

JITL-PLS 0.0908 0.1428 0.1777 0.2471

JITL-SVR 0.0819 0.1355 0.1413 0.1947

RPLS 0.1588 0.2059 0.2640 0.5257

MW-PLS 0.1055 0.1850 0.2718 0.6061

MW-SVR 0.0800 0.0944 0.0922 0.1042
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Figure 7: TE component A prediction results
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Figure 8: TE component F prediction results
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Figure 9: TE component G prediction results
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Figure 10: MBVR prediction results of ball mill
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Figure 11: PD prediction results of ball mill
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Figure 12: CVR prediction results of ball mill

performance has not improved much. For RPLS, MW-SVR and MW-PLS, When using pseudo-labels to

replace real labels to update the model, these methods gradually increase the prediction error as samples

are added. The comparison methods have very unsatisfactory prediction effects for each component. As

the working conditions change, when there is a big difference between the historical working conditions

and the current working conditions, problems such as under-fitting will occur. Therefore, it can only

roughly keep up with the true value in the trend, but there are large fluctuations and large errors.

Compared with other forecasting models, the DASP method proposed in this paper shows out-

standing advantages in regression problems. It has good forecasting effects in different data sets or

in forecasting components, and its forecasting values are well realized. The tracking of the true value

highlights the good label prediction effect under unsupervised multi-working conditions, and further

proves the effectiveness and robustness of the algorithm.

5.5. Impact of each part

In order to verify the influence of each part of the method on the performance of the model, the

PLSR model was selected, which did not go through the multi-view clustering (No-MC) model, did

not have the hypergraph manifold regularization (No-HMR) model, and did not use similar working

condition selecting (No-SDS) model and DASP direct modeling to compare the prediction results of

all components under different conditions. As shown in Figure 13 and Figure 14 are the experimental

results for two data sets. It can be seen that the prediction error of DASP is the smallest, and the

introduction of each item can further improve prediction accuracy of the model. The reason is that

due to the large differences between the data working conditions, direct modeling without distribution

alignment will lead to unsatisfactory prediction results, and the effect of joint distribution adaptation
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Figure 13: Comparison of TE component soft sensor RMSE results of different prediction methods
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Figure 14: Different methods of ball mill parameter soft sensor RMSE results

is significantly improved, but in the process of feature transformation, if the model does not establish

constraints on feature and label, which will destroy its data structure and have a great impact on the

effect of domain adaptation. And by selecting similar working conditions to improve the generalization

of the model can make it have the same good effect under different forecasting conditions.

5.6. Parameter Sensitivity

In essence, label discretization is equal clustering of continuous data. The selection of category

number will directly affect the range of each segment in the discrete process. In this experiment, the

5 10 15 20 25 30

Number of categories

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
M

S
E

TE component F (12)
TE component G (12)
ball mill PD (2)
ball mill CVR (2)

Figure 15: Number of categories analysis

27



optimal category number is determined by discretization of labels into different categories and running

DASP. As shown in the figure 15. By experimenting with random tasks in two data sets, it was

observed. Within a reasonable range, the prediction ability gradually decreases with the number of

optimal categories. If the number of categories is too small or too many, the prediction accuracy will

be reduced. The experiment runs DASP with a wide range of values for parameters η, λ and ρ on

several random tasks to compare its performance in Figure 16 (a), (b)and(c). DASP can achieve a

robust performance with regard to a wide range of parameter values. Specifically, the best choices of

these parameters are: λ ∈ [1, 100], η ∈ [0.01, 1], ρ ∈ [0.01, 1]. To sum up, the performance of DASP

stays robust with a wide range of regularization parameter choices.
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Figure 16: Parameter sensitivity analysis

6. Conclusion

In this paper, a multi-source unsupervised soft sensor method based on joint distribution align-

ment and mapping structure preservation is adopted. This method preserves the mapping relationship

between feature and label, and uses joint distribution adaptation to reduce known modal data and

unknown modalities. The difference of distance between the state data improves the performance of

the unsupervised soft sensor model. In order to verify the effectiveness of the method, it was applied

to the soft sensor of TE and the load parameters of wet ball mill with multiple working conditions, and

the soft sensor modeling of multiple working conditions was completed. The experimental results show

that the method proposed in this paper can effectively improve the prediction accuracy of the model.
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